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1. Introduction 

Modern societies, due to their intrinsic complexity, are strongly dependent on critical 
resources and even more vulnerable to uncertain conditions. Despite the ability of 
controlling technical processes has increased over the past century, several different external 
and internal factors continue to affect the overall performance and sustainability of modern 
socio-technical systems. Globalisation, technology innovation and the organisational 
complexity of several actors are some of the major sources of uncertainty alongside the 
political context. 

Emerging risks, also sometimes called global risks, are large-scale events or circumstances 
that arise from global trends; are beyond any particular party’s capacity to control; and may 
have impacts not only on the organisation but also on multiple parties across geographic 
borders, industries, and/or sectors, in ways difficult to imagine today. 

Moreover, modern societies are sustained and shaped by large socio-technical systems, 
where technology is deeply integrated with the human element and the organisational 
dimension. The identification and management of the wide spectrum of risks affecting such 
system of systems require new approaches and methods able to properly model and 
account for the growing complexity and dynamic interconnectedness of the modern world. 

In this perspective, many organisations have deployed risk management programmes to 
identify, assess, and manage risks, using techniques such as risk assessment, scenario 
analysis, and stress testing as a basis for determining response strategies aligned with the 
entity’s objectives, risk appetite and tolerance.  

The recent world economic crisis pointed out two important lessons in the risk 

management field. The first is related to the continuous attempt of academics and 

practitioners to research for new approaches to predicting emerging risks and possible 

disaster scenarios that can irremediably affect operations or business viability. In the 

recent years top management, especially in the financial sector, paid more attention into 

sophisticated techniques, able to assure a limited exposure to specific risks, but that, on 
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the other hand, opened to a wider exposure to correlated or systemic risks. As evidence, 

this approach made companies and the entire global economy more vulnerable than ever 

(Taleb et al., 2009). The second lesson learnt is that industrial organizations are facing 

highly differentiated risks, by types and scale, than the ones faced by the financial sector. 

An example is given by some automotive companies pushed down in the market by the 

same risks they had assumed for twenty years by generating profits only from energy not 

efficient vehicles (Kaplan et al., 2010). Moreover, risks affecting customers, employees and 

long-term viability of the business model are claiming for a wider understanding of risk 

nature and related correlations. Instead of designing more sophisticated tools to anticipate 

such catastrophic events, should be urgent a deeper understanding of the nature of 

operational risks and the development of a more integrated way to address these risks 

among the entire enterprise levels and entities, in order to foster its resilience and 

sustainability (Silvestri, 2010). 

2. Evolutions in operational risk analysis and management 

The category of “operational risk” was conceived as a composite term for a wide variety of 
organizational and behavioural risk factors which were traditionally excluded from formal 
definitions of market and credit risk (Power, 1993). Operational risk is much more than risks 
related to operations; in fact operations risk is a subset of the operational risks, only 
including risks related to the production process and planning (Samad-Khan A., 2008).  

However the growing attention to operational risks is putting into light that new effort is 
needed not to merely re-label or codify a well established set of risk factors, but to develop a 
coherent new body of knowledge for the effective management of a complex phenomenon. 
The challenge calls for a real integration between professional and scientific contributions 
and perspectives (Power, 1993; Abbott, 1988).  

A still widely used definition of operational risk was firstly proposed in the financial sector: 

“the risk of direct or indirect loss resulting from inadequate or failed internal processes, 

people and systems or from external events” (BCBS, 2001). The apparent aim of this 

definition is to give operational risk a clear and actionable focus on losses, although this 

definition still leaves open a range of operational risk attributes. For example, in the 

transportation industry operational risk management was defined by Beroggi and Wallace 

(1994) as “a decision logic to support individual or group-level reasoning processes in risky, 

time constrained situations when the need for plan revision arises”. Here, the authors 

focused on the relevance of operational risk management for decision making, but at the 

same time reduced its scope to real-time or tactical decisions.  

The potential targets exposed to operational risks can be identified by considering which 

company’s entities are affected by uncertain events; indeed, operational risk results from the 

potential disruptions in the core operating, manufacturing or processing capabilities of a 

generic organisation.  

In conclusion, operational risks can be defined as those interactions between an uncertain 

event and internal organisation’s processes and/or resources, with the potential of 

influencing the core capabilities and resulting in a value variation over a time horizon 

(Silvestri et al., 2009; Trucco et al., 2010). 
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2.1 Classification of Operational Risks 

The evolution towards an integrated approach to Operational Risk Management (ORM) 
raised the need of a comprehensive risk classification. To this end a basic classification of 
enterprise risks can be firstly considered, with the aim of grouping risk factors into 
homogeneous clusters as perceived by management and stakeholders (Figure 1). 

 

Fig. 1. Example of Enterprise Risk Classification (source: Clarke C. J. & Varma S., 1999) 

Referring to most frequently adopted risk taxonomies (e.g. Tah & Carr 2001; Chapman, 
2006), the basic operational risk categories can be identified as follows: 

 Technology Risk: potential events in which the risk source is the technology 
implemented (i.e. poor performance of plants/equipments; failure in selecting a new 
technology, etc); 

 Supply chain risk: potential events related to the procurement, expediting, inspection 
and logistic activities; 

 Project risk: potential events affecting time, costs and quality objectives within project 
boundaries; 

 Environmental risk: potential natural events impacting the area where the system/plant 
is located; 

 Occupational risk: potential events affecting the employees health and safety; 

 Information risk: potential events affecting critical requirements of information flows 
within the system/plant; 

 Organizational risk: potential events related to lack of coordination, unclear 
task/objectives assignment, conflict or high turnover rate among the organization; 

 Management risk: potential events caused by inadequate management processes or 
decisions. In these respect the complexity of the organization is the key driver of 
management risks; 

 Facility and asset risks: potential events in which facilities or company assets are 
involved (e.g. fire). 
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2.2 Causal chains and influencing factors in Operational Risk Management 

Despite their practical usefulness in allocating risk management responsibilities and 
simplifying risk reporting, operational risk classifications are largely inadequate to support 
the optimisation of risk control options, mainly in case of complex relationships among risk 
factors (e.g., interdependencies and escalation dynamics) or trade-offs between alternative 
lines of action . Indeed, operational risks are generated or influenced by a large spectrum of 
technology-, human- and organisational-related factors, that may dynamically combine 
together in several different ways, through complex and soft relationships that cannot be 
reduced to simple deterministic cause-effect chains. 

Several examples can be raised to clarify this distinguishing nature of operational risks. 

Globalisation of supply chains and their increasing interconnectedness due to global and 

highly differentiated companies is an issue of increasing relevance that can be properly 

tackled only through more complex risk modelling approaches (Mittnik, S. & Starobinskaya, 

2010). Similar requirements are needed when the relationships between global supply 

networks and critical infrastructures (electricity, gas, transportation, telecommunication, ...) 

are taken into consideration (Ferrari et al. 2011). 

Also in project-based operations - e.g. aviation, power generation or oil & gas industries - 

traditional project risk management techniques (Chapman & Ward, 2003) are no longer 

sufficient to manage all the risks brought by modern large engineering projects. Indeed, 

interactions between project teams, company functions, business units and long term 

programmes create a network of interdependencies where a specific risk raising from a 

single project may create cascading effects climbing up at higher organisational levels, 

causing larger consequences than the one estimated at the project level (Silvestri et al. 2011). 

In the last couple of decades common awareness on the increasing importance of human 
factors and organisational culture in shaping operational risks has also strengthen. 
Examples can be found in the analysis of the influence that safety culture may have on the 
occurrence of at risk behaviours and on injury rate in workplaces (De Ambroggi et al., 2008; 
Zhou et al., 2008), or in the increasing number of models proposed in literature to integrate 
human and organisational risk factors in Quantitative Risk Analysis (QRA) (Mohaghegh, 
Kazemi & Mosleh, 2009; Mohaghegh & Mosleh, 2009, Trucco et al. 2008a). 

For all that, it comes clear that the effectiveness of Operational Risk Management practices 

can be improved only by providing the risk identification and risk analysis phases with 

enhanced risk modelling capabilities, able to take into account all the relevant contributing 

factors and mutual influences, from the root causes to the final effects. These emerging 

needs have to face two different but interrelated issues: 

 the chronic lack of data and information on past events increases the importance of 
identifying and adopting proper methods to elicit experts' judgements and to assess 
epistemic uncertainties; 

 the availability of different advanced risk modelling techniques - such as Bayesian 
Networks, System Dynamics (Sterman, 2000), Stochastic Petri Nets(Marsan et al. 1995), 
Fuzzy Cognitive Maps (Kosko, 1986) - foster the need of identifying clear driving 
criteria in the selection of the most appropriate one, under different risk management 
problems and application domains. 
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In the following sections of the chapter we offer a systematic review of the most interesting 
and relevant applications of Bayesian Networks and Bayesian Belief Networks to different 
problems in the area of Operational Risk Management. This critical overview is then used to 
identify and discuss some methodological issues and requirements for the correct adoption 
of BN in Operational Risk Analysis. 

3. Modelling operational risks with BN: Critical review of the state of the art 

“Probability theory is nothing but common sense reduced to calculation” Laplace, 1819. 

The main issue in modelling operational risks has to do with the understanding of the 
functioning of a complex system. It requires the application of inductive logic for each one of 
the possible way in which a system operates to reach its objectives. Then it is the comparison 
between the hypothesis formulated in the functional analysis and the observations possible on 
the way the system actually function that can lead to an evolution of the knowledge regarding 
the system itself. This knowledge is the only credible base for the understanding and therefore 
a correct modelling of the system under analysis (Galvagni, 2011). 

Therefore, the first feature that should be evaluated in a risk model is the functional analysis 
form which the modelling process stems. 

The use of BBNs in modelling operational risk provides a specific advantage in respect to 
many other modelling approaches since a BBN is to be structured as a knowledge 
representation of the problem domain, explicitly including the probabilistic dependence 
between the main elements of the model and their causal relationship, therefore explicating 
the analyst's understanding of the problem. This is a key feature for validating the 
behaviour of the model and its accuracy in reporting to third parties the reality under 
analysis (Friiis-Hansen, 2000). 

Furthermore, another issue that appears to be in common with all projects regarding the 
assessment of risks embedded in complex systems lays in the lack of consistent data. 
Example of this are for instance risk assessment studies on industrial plants willing to take 
into proper account human and organizational factors, where many analysts lament the lack 
of an adequate dataset for the quantification of the error mechanisms as well as for the 
contextual and organizational conditions affecting human performance (Straeter, 2004 and 
Fragola, 2000). Aside from this specific example in many operational domains the main 
issue regarding the assessment of safety and reliability of a system has to do with the scarce 
availability of data for the main causation factors to be taken into account. When data 
availability is a considerable issue the use of methods such that of Event Trees and Fault 
Trees would not be advisable for helping the analyst in the difficult issue of data gathering, 
especially because some of the data would be collected through the use of experts' 
judgments (Hensen, 2004). A more suitable method for implementing the main structure of 
safety assessment, as far as the causation factors for the accidental scenarios are concerned, 
is represented by the use of Bayesian Belief Networks (BBN). BBN are in fact better suited 
for representing uncertain knowledge. Further, since BBN approach stems from conditional 
independence assumptions and strongly relies on graphical representations, it makes it easy 
to display how the relationship among the variables and therefore the underlying data 
structure works. In addition, the outcome of compiling a model is the marginal probability 
distributions of all variables in the domain. Modelling local dependencies in facts amounts 
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to specification of the probabilistic dependence of one variable on other variables. Therefore, 
even when the marginal distribution of the dependent variable is not known beforehand, it 
will be provided as a result of the assumptions being made on the causal relationships once 
the network has been compiled.  

The main feature in this respect of BBN is that they allow easy inference based on observed 
evidence, even when the evidence to be observed is scarce. In fact, if one of the variables in 
the domain is observed then the probability distributions of the remaining variables in the 
model are easily updated accordingly. So, if the probabilities of a generic BBN are 
updateable, given a set of evidences collected from the field, a BBN model of organisational 
factors involved in accident scenarios might be validated over time, for instance, exploiting 
information contained in accident/incident reporting systems.  

Specific examples where the pros and cons of using BBNs have already been explored are 
the followings: 

 Integration of human and organisational risk factors in system safety engineering; 

 Safety culture analysis and assessment; 

 Project Risk Management; 

 Operational Risk Management (ORM); 

 Integration between Enterprise Risk Management (ERM) and ORM. 

3.1 BBN and Human and Organizational Factors (HOF) in Probabilistic Risk Analysis 
(PRA) 

BBN are becoming more and more widely used in the current generation of Probabilistic 
Risk Analysis (PRA), to try and support an explicit representation of the possible impacts of 
organization and management processes on the safety performance of equipment and 
personnel (Trucco et al. 2008a).  

In the Bayesian statistical framework, a fully quantified BBN represents the prior knowledge 
for the analyst. However, as already pointed out, the model can be updated using 
observations (sets evidence) about certain nodes and verifying the impact on the remaining 
nodes in the network. By setting evidence, an analyst is proving the model with new 
information (e.g., recent incident events) about the state of the system. And this information 
can be propagated through the network to produce updated probabilities for all nodes in 
the model. These resulting probabilities combine both prior information and new evidence. 
BBNs have been recently used in traditional Probabilistic Risk Analysis by linking BBN 
nodes to other risk models using the so called Hybrid Causal Logic methodology (Groth et 
al., 2010; Wang, 2007), which links BBNs to Event Trees and Fault Trees. The use of HCL 
enables to include soft causal factors, such as human error in more deterministic models, 
which were more traditionally used for hardware systems. 

Furthermore, current HRA methods often ignore the interdependencies and causal 
relationships among various Performance Shaping Factors (PSFs). While only recently BBNs 
have been proposed as a way of assessing the interactions among PSFs and the failure 
modes they are suppose to influence (Fig. 2; Leva et al., 2006; Groth, 2009). 

The model used by Leva et al. (2006) for assessing human performance in a solo watch 
situation for a ship on possible collision courses takes into account the main elements 
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affecting human performance considering features of the ship that are also observable 
during a normal training session with the use of a bridge simulator. Thus the time to detect 
a ship, the time used for planning an action, the probability of taking the wrong decision the 
probability of performing the wrong execution of a manoeuvre (even if the right plan has 
been made) and the needed time for manoeuvring the ship have been considered as the 
primary elements of the operator performance in the model. As most of the Human 
Reliability Models also the data used for the current example mostly rely on experts' 
Judgments. However the model was built so as to collect and make use of real observational 
data (collectable from observations, as, for instance, training sessions) this should be the 
final test of any model: the verification coming from experience. 

 

Fig. 2. Example of a BN used for the assessment of an operator not reacting in time in a ship 
collision scenario. The elements in white with a rectangular shape are object (sub-networks) 
while the nodes are input nodes to be inserted by the end-user. (Source: Leva et al. 2006).  

However as pointed out by Mohaghegh and Mosleh (2009) there are a number of technical 
challenges in developing a predictive model of organizational safety performance most of 
which have to do with “the absence of a comprehensive theory, or at least a set of principles 
and modelling guidelines rooted in theory and empirical studies” as the major cause of 
current lacking of an adequate basis to validate these models. Yet as already pointed out if 
the probabilities of a generic BBN are updateable given a set of evidences collected from the 
field, a BBN model of organisational factors involved in accident scenarios for instance 
might be validated over time exploiting information contained in accident/incident 
reporting systems. So why is it that this empirical validation is often missing from the 
literature? 

Looking at the characteristics of several HOF models proposed in literature, it seems to us 
that, in general it is their increasing complexity that mainly impedes to clearly justify 
modelling solutions, to assure consistency, replicability, and eventually the possibility to sue 
observation data for validation purposes. This issue might be particularly critical when 
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multiformalism is adopted: limitations posed by the integration of different sub-models 
often weaken the quality and the detailed specification of single parts of the model  and 
BBNs are therefore often mixed with other modelling formalisms used to model 
interconnected parts of a final PRA contributing model (e.g. operator model, system model, 
etc.) (Trucco & Leva, 2010). So the attempt to incorporate an even broader spectrum of soft 
factors – such as safety culture, climate, management commitment to safety, etc. – requires 
to develop complex but ambiguous HOF models where the main weakness is the measures 
of hardly measureable factors, and results in what Dougherty calls an “often obfuscating 
numerology”(1990). 

3.2 The use of BBN to assess safety culture 

The validity of BBNs in supporting the modelling of safety culture and the evaluation of 
potential strategies for safety improvement has been demonstrate by Zhou et al. (2008) 
when they proposed a Bayesian Network (BN) based model aimed at establishing a 
probabilistic relational network among causal factors, including safety climate factors and 
personal experience that were thought to have an influence on human behaviour pertinent 
to construction safety. Zhou et al. (2008) study used the data coming from a survey 
involving more than 4700 employees at a large construction firm to collect the data to feed 
the network. The BBN was built around the categories used in the survey based on 
theoretical models previously developed about the factors affecting safety climate. The 
results of the study, and consequently the factors to be considered, were revised on the 
bases of the results of the factorial analysis. The scope of the BBN developed was to support 
the diagnosis of the state of a safety climate, the diagnostic of main issues and consequently 
the identification of potential strategies for safety improvement. The use of BBNs for 
representing, analysing and improving the actual anatomy of company’s safety culture and 
its impact on the expected probability of safe behaviours performed by workers was also  

 

Fig. 3. Preliminary socio-technical model predicting safe work behaviour (Source: Brown et 
al., 2000).  
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used in successive studies (e.g., Trucco et al., 2008b), in some of them the results of the 
survey were used to find out the Bayesian structure underlying the relationships among 
socio-technical factors. This is possible through an algorithm called K2 (Cooper & 
Herskovitz, 1992). The BBNs resulting from the use of the algorithm are then often reviewed 
by the experts to direct the arcs in the direction that makes more sense in terms of cause-
effect relationships (e.g. it is apparent, for example, that the “age of the worker” affects the 
safety climate and not the reverse) and an underlying theoretical model can also be used as 
a guiding principle (Figure 3). 

Trucco et al. (2008b) applied the proposed methodology to identify and analyse the 
effectiveness of different organizational and behaviour-based measures for improving 
occupational safety in a leading tractor manufacturer. The BBN representation of the safety 
culture structure in the manufacturing area is reported in Figure 4. 

 

Fig. 4. Example of sensitivity analysis on some safety culture variables in the manufacturing 
area of a large truck manufacturer (Trucco et al., 2008b). 

Considering the current setting of systemic factors as assessed by employees (e.g. 27.2% 
probability of having poor safety climate, 30.8%, for good safety climate and 42% for 
optimal safety climate), the rate of safe work behaviours was estimated about 93.6%. Even 
though this value may seem high (6 unsafe behaviours out of 100), the high value of the 
severity index of incidents occurred at workers operating in manufacturing area suggests 
the need for an improvement of compliance with safe behaviours. Table 1 reports a 
summary of the expected effectiveness of alternative strategies to improve the rate of safe 
work behaviours. 
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Strategy 
Safety 

hazards 
(%) 

Safety 
Climate (%) 

Management 
commitment 

(%) 

Safe Work 

Behaviour 

(%) 

Unsafe 

Work 

Behaviour 

(%) 

Single factor 
optimisation 

(simple strategy)

-27,2   0,8 -11,9 

 16,3  0,0 -0,2 

  13,7 0,2 -3,1 

10%  single factor 
improvement 

(simple strategy)

-10   0,3 -4,4 

 10  0,0 -0,1 

  10 0,2 -2,3 

Multiple factors 
optimisation 

(complex 
strategy) 

-27,2 16,3  1,5 -21,3 

-27,2  13,7 1,0 -14,7 

 16,3 13,7 0,3 -3,9 

27,2 16,3 13,7 1,8 -25,9 

Table 1. Summary of the expected effectiveness of strategies to improve safe work 
behaviours in the manufacturing area (values are in percentage; negative values means 
decreases) (Trucco et al., 2008b). 

3.3 The use of BBN and risk assessment in project management 

BBN have been recently applied to quantify the probability of risks affecting success of 
projects like for instance the probabilities of significant delays (Luu et al., 2008; Wang et al., 
2009). 

BBNs have in fact been usefully deployed in the area of decision support under 

uncertainties (Bouissou et al., 1997; Ziv & Richardson, 1997). There are many uncertainties in 

development processes for products of processes like the uncertainties in estimating project 

completion time, the project needs for supply the quality of the output etc. From experience 

or from the literature it is to identify the main factors related to delays in projects. The 

literature can also be specific about the domain the project risk factors relate to, such as 

construction industry (Assaf et al., 2006), or software development projects (Fan & Yu, 2004) 

and Hi-Tech industry (Raz & Michael, 2001). However some factors are also in common 

across the different domains: delay antecedents for instance can be factors caused by clients, 

contractors, consultants, and designers, or to the main inputs (Materials-, workforce-, and 

equipment-related factors are input factors); environment-related factors (exogenous factors 

such as difficult meteorological conditions, changes in government regulations and laws, 

traffic control etc.); Project-related factors are factors deriving from the project characteristics 

and the way the process is designed to deliver the desired outcome. 

The usefulness of a BBN based approach in assessing the projects associated risks and the 

likely outcomes can be summarised as follow:  

 Help to perform continuous risk management using data collected as the project 
develop to provide a feedback loop to detect and adjust problematic situations , as 
shown in Figure 5 (Lee et al., 2009). 

 As already said, the BBNs model can take into account the main uncertainties and 
provides probabilistic estimates for them. Whenever new evidence is available in the 
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monitoring loop, the new data can be plugged in the related BBNs model to recalculate 
and update previous estimates. 

 Moreover a model developed for one project may help identifying and evaluating the 
relative importance of the significant factors contributing to delay cost overruns in 
general on the basis of the actual collection of statistical evidence (Luu et al., 2009). This 
in turns can also help modifying the model itself as belief networks also allows 
variables to be added or removed without significantly affecting the remainder of the 
network because modifications to the network may be isolated (McCabe et al., 1998) 

 

Fig. 5. Example of A BBN used for predicting project issues in shipbuilding (source: Lee et 
al., 2009). 

3.4 From assessing risks in project management to operations risk management: 
advantages of BBN approaches 

Operational risks have also been defined as risks of human origin that, unlike financial risks 

that can be handled in a financial manner (e.g. insurances, savings, derivatives), require a 

more “managerial approach”(Fragniere et al., 2010). 

The recent developments in the quantification of Operational Risk has, to a significant 
extent, been determined by changes in the supervisory regimes for financial institutions. 
These changes have increased the level of supervisory scrutiny on Operational Risks (OR) 
and how it is managed by relevant firms has been deeply affected by the high-profiled 
corporate failures in recent decades. This has determined the development of Operational 
Risks models as a means to demonstrate good management and financial strength (Cowell 
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et al., 2007). Even in this domain Bayesian Networks offer a way to combine both qualitative 
and quantitative data and also to meet the requirements of the regulators for measuring OR. 
As pointed out by Conalba and Giudici (2004) the use of Bayesian networks for operational 
risk management allows to integrate, via the Bayes' theorem, different sources of 
information coming from loss data collection, self assessment, industry loss data and 
opinion of risk managers, to give a unified knowledge. This capacity in turns facilitate the 
managing of OR (i.e., identification, assessment, monitoring and control/mitigation) and 
justify decision taken on a more transparent ground, combining the use of retrospective 
historical data with prospective expectations and opinions so as to evaluate also the 
Influence of “causal” factors (Cornalba & Giudici, 2004). Summarising, the usage of BNs in 
modelling OR loss distribution, can have significant benefits for supporting decisions, 
particularly in capital allocation. Stress and scenario testing are also possible in BBNs 
allowing  the drafting of an early warning system (Figure 6; Yoon, 2003). 

 

Fig. 6. Example of the prior distribution assigned to  a BBN used for predicting costs derived 
from operational risks (source: Yoon, 2003). 

3.5 The use of BBNs to support Enterprise Risk Management 

Enterprise risk is normally defined as the possibility that something with an impact on the 
company objectives happens, and it can be measured in terms of combination of probability 
of an event (frequency) and of its consequence (impact). 

Enterprise risk assessment is a keystone of Enterprise Risk Management (ERM) therefore it 
is vital for the assessment to be as much as possible grounded on trustworthy assumptions. 

Bonafede and Giudici (2006) have reported that to estimate the frequency and the impact 
distributions historical data as well as expert opinions are typically used. Then such 
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distributions are combined to get the loss distribution. In the case of enterprise risk 
assessment the considered risks can be strategic, operational, legal and political and they are 
normally difficult to quantify. As for many other domains also in this case it is often easier 
to gather data from experts’ opinions. In this context Bayesian Network are a useful tool to 
integrate historical data with qualitative or quantitative estimates coming from experts. 
Example of applications are the use of BBN to examine the risk related to production or 
distribution or certain products (Pai et al., 2003) or the ones associated to specific decisions 
in the management of a business like the risk involved in the choice of a supplier or in 
outsourcing a certain service/activity. The example provided by Lockami and McCormack 
(2010) for instance is a BBN  model that examines the probability of a supplier's revenue 
impact on a company based upon the supplier's associated network, operational, and 
external risks. Network, operational, and external risks were determined based upon the a 
priori probabilities for risk events which directly influence them. 

Figure 7 reports the network they developed in their study. The nodes named with numbers 
represent the set of considered potential influencing factors: misalignment of interest (1); 
supplier financial stress (2); supplier leadership change (3); tier stoppage (4); supplier 
network misalignment (5); quality problems (6); delivery problems (7); service problems (8); 
supplier HR problems (9); supplier locked (10); merger/divestiture (11); disasters (12). The 
model was found useful for supporting outsourcing decisions, develop risk profiles for 
suppliers so as to analyse current and future outsourcing relationships. However, as noted 
by the authors, the most important potential limitation to the use of this methodology to 
assess risks in supply networks is the ability to provide accurate information regarding 
external risks as reflected in the 12 risk events outlined in the model. 

 

Fig. 7. Example of a BBN used for predicting the risk profile associated with each company 
Supplier (source: Lockamy & McCormack 2010). 
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In this domain BBN are often used as influence diagrams. An influence diagram is a 
Bayesian Network used for the scope of solving decision problems and it presents some 
special features. In an influence diagram two additional types of nodes are included in the 
network, namely decision nodes (rectangular shaped) and utility nodes (diamond shaped). 
A decision node defines the action alternatives that the user is considering. Preceding nodes 
on decision nodes define information available at the time of decisions. Decision nodes may 
have multiple children, and thus dependent on the choice of action alternative the decision 
node changes the state of the world. On the other hand utility nodes have no children but 
are conditioned on probabilistic and/or decision nodes. The utility nodes hold tables of 
utility for all possible configurations of the outcomes of the parent nodes. The rational basis 
for decision-making is established by computation of the expected utility (EU) of each of the 
action alternatives. Being an influence diagram a modified Bayesian Network, evidence can 
be inserted into the model. Propagating this evidence can give updated expected utilities for 
all decision variables. Hence as Hensen (2004) points out “the influence diagram serves as a 
dynamic decision model always showing the optimal strategy, possibly conditional on a set 
of observations. The optimal plan initially suggested may therefore be altered, as more data 
becomes available. Moreover, the expected utilities of the non-optimal choices are always 
available allowing a quantitative comparison of the action alternatives. However it should 
be noted, that when a Bayesian Network is combined with decision nodes it is essential that 
the Bayesian Network is modelled as a causal model since in an influence diagram the flow 
of information can only follow the causal link”. However the modelling domains of 
enterprise risk assessment are often so complex that it is intrinsically difficult to establish 
clear causal relationship among all the variables at play. 

4. Methodological issues and requirements for BBN applications in risk 
analysis  

Looking at the BBN applications presented in the previous sections it is clear that compared 
to other analysis tools, they offer several capabilities to a risk analyst that has to face 
different types of risk factors and mechanisms involved in complex socio-technical system. 
Moreover, when needed, BBN risk models can be easily reduced to more traditional risk 
analyses as in the case of  structural reliability problems studied through the so-called max-
propagation (Friis-Hensen, 2004); the algorithm returns the most probable configuration of 
the network given the occurrence of a specified event (hard evidence). When some critical 
failure events are taken into consideration, the max-propagation algorithm can be used to 
identify the most probable configuration of the network (system's risk factors) that leads to 
the occurrence of a specific critical event. If the nodes of the BN are binary variables, the 
max-propagation directly gives the most dominant cut-set as well as the application of the 
Fault Tree Analysis (FTA) of the same system. 

In the previous paragraphs however we have been mainly focusing on the benefits of using 
BBN to model operational risk in various domains. Nevertheless, also BBNs have limitations 
and shortcomings. The adoption of a coherent modelling approach is thus a key element for 
assuring the relevance, the accuracy and the reproducibility of the risk model. In this regard 
some issues are worth to be considered: 

 Before starting to define the topology of the BN model it is very important to fully 
understand the structure and the dynamics of the system first and the scope of the 
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analysis as well. This statement may be perceived as obvious, but nowadays Bayesian 
Networks are often built through very intuitive graphical software and it is therefore 
very easy to get carried away by the graphical modelling, that at the end may be 
incoherent and misleading; 

 The model can get highly complex very quickly with many nodes and relationships to 
be specified – this is especially true when the nodes have many parents. Indeed, the size 
of a CPT grows exponentially with the number of the parents; for example, a node with 
five parent variables, defined with only three states, requires the specification of 243 
entries for each one of its states. In such a case, there can be too many conditional 
probabilities to specify – if the maximum likelihood method of prior elicitation is used, 
significant volume of data might actually be required, thus reducing one of the main 
advantages of using Bayesian methods; 

 BBNs pose the problem of trustworthy exert opinion elicitation. Sometimes this would 
need the deployment of rigorous methodologies in prior elicitation through costly 
methods, such as the Delphi method which involves many rounds of questionnaires. 
Another issue can derive from the fact that sometimes the experts are not comfortable 
in eliciting frequencies (Yoon, 2003); 

 Last but not least, BBNs generally require that the state space of nodes shall be 
countable and discrete; thus their application require the discretisation of random 
variables. Discretisation is not simple and when applied to variables continue in nature, 
sometimes brings to the definition of many categories and therefore many possible 
states. This is a downside of BBN strictly connected to the previous issue, i.e. the 
exponential growth of the number of states and thus of the dimension of CPTs. 
However, as Friis-Hansen (2004) points out, neither Fault Tree Analysis (FTA) nor 
Event Traa Analysis (ETA) offer any better alternatives.  

Cowell et al. (1999) in their book provide useful guidelines on how to deal with these 
methodological issues. 

5. Conclusions 

In the realm of risk assessment of modern complex socio-technical systems, as already 
mentioned, it is of paramount importance the identification and understanding of all the 
causal chains leading to disruptions or even destruction of the system. Several internal and 
external factors of different nature - human, organisational, natural, sociological, political - 
may influence or modulate these cause-effect mechanisms and must be taken into proper 
consideration. It requires the application of inductive logic for each one of the possible way 
a system operates to reach its objectives. This knowledge is the only credible base for the 
understanding and therefore a correct modelling of the system under analysis (Galvagni, 
2011). The main advantage provided by the use of BNs in modelling operational risks is that 
the model itself can be structured as a knowledge representation of the problem, explicitly 
including the probabilistic dependence between the main elements of the risk model and 
their causal relationships, therefore explicating the level of understanding achieved by the 
analyst. This is a key feature for validating the accuracy of the risk model and its reliability 
in reporting to third parties (Friis-Hansen, 2000). 

Furthermore as seen for the case of applications to project risk assessment, BBNs are able to 
provide a way of comparing the cost of the action to its risk mitigating effect. Similarly, in 
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applications regarding OR it is of great importance to carefully evaluate whether the 
expected risk reduction for the considered initiative is worth its estimated cost. In the end, 
being able to provide a more transparent and rational ground to decision makers is really 
key. Moan (2000) clearly illustrates the benefit of rational evaluations in risk management. 

However, as briefly discussed in Section 4, the specification of the structure of a BBN  is 
often subject to debate because based on expert assumptions and/or on theoretical 
modelling of the reality under analysis, that have not been subject to the test of operational 
experience. For this reason the tendency is to deploy the BBNs capability of using real data 
for structural learning – i.e. letting the data speak for itself not just with regards the 
probability distributions of the variables but even the very structure itself (Yoon, 2003). This 
is currently a promising research area. 
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