5,586 research outputs found

    Multi-sensor fusion-based time-frequency imaging and transfer learning for spherical tank crack diagnosis under variable pressure conditions.

    Get PDF
    In this paper, a crack diagnosis framework is proposed that combines a new signal-to-imaging technique and transfer learning-aided deep learning framework to automate the diagnostic process. The objective of the signal-to-imaging technique is to convert one-dimensional (1D) acoustic emission (AE) signals from multiple sensors into a two-dimensional (2D) image to capture information under variable operating conditions. In this process, a short-time Fourier transform (STFT) is first applied to the AE signal of each sensor, and the STFT results from the different sensors are then fused to obtain a condition-invariant 2D image of cracks; this scheme is denoted as Multi-Sensors Fusion-based Time-Frequency Imaging (MSFTFI). The MSFTFI images are subsequently fed to the fine-tuned transfer learning (FTL) model built on a convolutional neural network (CNN) framework for diagnosing crack types. The proposed diagnostic scheme (MSFTFI + FTL) is tested with a standard AE dataset collected from a self-designed spherical tank to validate the performance under variable pressure conditions. The results suggest that the proposed strategy significantly outperformed classical methods with average performance improvements of 2.36–20.26%

    Learning sound representations using trainable COPE feature extractors

    Get PDF
    Sound analysis research has mainly been focused on speech and music processing. The deployed methodologies are not suitable for analysis of sounds with varying background noise, in many cases with very low signal-to-noise ratio (SNR). In this paper, we present a method for the detection of patterns of interest in audio signals. We propose novel trainable feature extractors, which we call COPE (Combination of Peaks of Energy). The structure of a COPE feature extractor is determined using a single prototype sound pattern in an automatic configuration process, which is a type of representation learning. We construct a set of COPE feature extractors, configured on a number of training patterns. Then we take their responses to build feature vectors that we use in combination with a classifier to detect and classify patterns of interest in audio signals. We carried out experiments on four public data sets: MIVIA audio events, MIVIA road events, ESC-10 and TU Dortmund data sets. The results that we achieved (recognition rate equal to 91.71% on the MIVIA audio events, 94% on the MIVIA road events, 81.25% on the ESC-10 and 94.27% on the TU Dortmund) demonstrate the effectiveness of the proposed method and are higher than the ones obtained by other existing approaches. The COPE feature extractors have high robustness to variations of SNR. Real-time performance is achieved even when the value of a large number of features is computed.Comment: Accepted for publication in Pattern Recognitio

    Health state classification of a spherical tank using a hybrid bag of features and K-nearest neighbor.

    Get PDF
    Feature analysis puts a great impact in determining the various health conditions of mechanical vessels. To achieve balance between traditional feature extraction and the automated feature selection process, a hybrid bag of features (HBoF) is designed for multiclass health state classification of spherical tanks in this paper. The proposed HBoF is composed of (a) the acoustic emission (AE) features and (b) the time and frequency based statistical features. A wrapper-based feature chooser algorithm, Boruta, is utilized to extract the most intrinsic feature set from HBoF. The selective feature matrix is passed to the multi-class k-nearest neighbor (k-NN) algorithm to differentiate among normal condition (NC) and two faulty conditions (FC1 and FC2). Experimental results demonstrate that the proposed methodology generates an average 99.7% accuracy for all working conditions. Moreover, it outperforms the existing state-of-art works by achieving at least 19.4%

    Learning audio and image representations with bio-inspired trainable feature extractors

    Get PDF
    Recent advancements in pattern recognition and signal processing concern the automatic learning of data representations from labeled training samples. Typical approaches are based on deep learning and convolutional neural networks, which require large amount of labeled training samples. In this work, we propose novel feature extractors that can be used to learn the representation of single prototype samples in an automatic configuration process. We employ the proposed feature extractors in applications of audio and image processing, and show their effectiveness on benchmark data sets.Comment: Accepted for publication in the journal "Eleectronic Letters on Computer Vision and Image Understanding

    Maintenance Management of Wind Turbines

    Get PDF
    “Maintenance Management of Wind Turbines” considers the main concepts and the state-of-the-art, as well as advances and case studies on this topic. Maintenance is a critical variable in industry in order to reach competitiveness. It is the most important variable, together with operations, in the wind energy industry. Therefore, the correct management of corrective, predictive and preventive politics in any wind turbine is required. The content also considers original research works that focus on content that is complementary to other sub-disciplines, such as economics, finance, marketing, decision and risk analysis, engineering, etc., in the maintenance management of wind turbines. This book focuses on real case studies. These case studies concern topics such as failure detection and diagnosis, fault trees and subdisciplines (e.g., FMECA, FMEA, etc.) Most of them link these topics with financial, schedule, resources, downtimes, etc., in order to increase productivity, profitability, maintainability, reliability, safety, availability, and reduce costs and downtime, etc., in a wind turbine. Advances in mathematics, models, computational techniques, dynamic analysis, etc., are employed in analytics in maintenance management in this book. Finally, the book considers computational techniques, dynamic analysis, probabilistic methods, and mathematical optimization techniques that are expertly blended to support the analysis of multi-criteria decision-making problems with defined constraints and requirements

    Imaging Sensors and Applications

    Get PDF
    In past decades, various sensor technologies have been used in all areas of our lives, thus improving our quality of life. In particular, imaging sensors have been widely applied in the development of various imaging approaches such as optical imaging, ultrasound imaging, X-ray imaging, and nuclear imaging, and contributed to achieve high sensitivity, miniaturization, and real-time imaging. These advanced image sensing technologies play an important role not only in the medical field but also in the industrial field. This Special Issue covers broad topics on imaging sensors and applications. The scope range of imaging sensors can be extended to novel imaging sensors and diverse imaging systems, including hardware and software advancements. Additionally, biomedical and nondestructive sensing applications are welcome

    Novel Approaches for Nondestructive Testing and Evaluation

    Get PDF
    Nondestructive testing and evaluation (NDT&E) is one of the most important techniques for determining the quality and safety of materials, components, devices, and structures. NDT&E technologies include ultrasonic testing (UT), magnetic particle testing (MT), magnetic flux leakage testing (MFLT), eddy current testing (ECT), radiation testing (RT), penetrant testing (PT), and visual testing (VT), and these are widely used throughout the modern industry. However, some NDT processes, such as those for cleaning specimens and removing paint, cause environmental pollution and must only be considered in limited environments (time, space, and sensor selection). Thus, NDT&E is classified as a typical 3D (dirty, dangerous, and difficult) job. In addition, NDT operators judge the presence of damage based on experience and subjective judgment, so in some cases, a flaw may not be detected during the test. Therefore, to obtain clearer test results, a means for the operator to determine flaws more easily should be provided. In addition, the test results should be organized systemically in order to identify the cause of the abnormality in the test specimen and to identify the progress of the damage quantitatively

    Simulation Modeling

    Get PDF
    The book presents some recent specialized works of a theoretical and practical nature in the field of simulation modeling, which is being addressed to a large number of specialists, mathematicians, doctors, engineers, economists, professors, and students. The book comprises 11 chapters that promote modern mathematical algorithms and simulation modeling techniques, in practical applications, in the following thematic areas: mathematics, biomedicine, systems of systems, materials science and engineering, energy systems, and economics. This project presents scientific papers and applications that emphasize the capabilities of simulation modeling methods, helping readers to understand the phenomena that take place in the real world, the conditions of their development, and their effects, at a high scientific and technical level. The authors have published work examples and case studies that resulted from their researches in the field. The readers get new solutions and answers to questions related to the emerging applications of simulation modeling and their advantages

    Advanced Composite Materials and Structures

    Get PDF
    Composite materials are used to produce multi-objective structures such as fluid reservoirs, transmission pipes, heat exchangers, pressure vessels due to high strength and stiffness to density ratios and improved corrosion resistance. The mathematical concepts can be used to simulate and analyze the generated mechanical and thermal properties of composite materials regarding to the desired performances in actual working conditions.  To solve and obtain the exact solution of the developed nonlinear differential equations in the composite materials, analytical methods can be applied. Mechanical and thermal analysis of complex composite structures can be numerically analyzed using the Finite Element Method (FEM) to increase performances of composite structures in different working conditions. To decrease failure rate and increase performances of composite structures under complex loading system, thermal stress and effects of static and dynamic loads on the designed shapes of composite structures can be analytically investigated. The stresses and deformation of the composite materials under the complex applied loads can be calculated by using the FEM method in order to be used in terms of safety enhancement of composite structures. To increase the safety level as well as performances of the composite structures in different working conditions, crack development in elastic composites can be simulated and analyzed. To develop and optimize the process of composite deigning in terms of mechanical as well as thermal properties under different mechanical and thermal loading conditions, the advanced machine learning systems can be applied. A review in recent development of composite materials and structures is presented in the study and future research works are also suggested. Thus, to increase performances of composite materials and structures under complex loading systems, advanced methodology of composite designing and modification procedures can be provided by reviewing and assessing recent achievements in the published papers

    Advanced Composite Materials and Structures

    Get PDF
    Composite materials are used to produce multi-objective structures such as fluid reservoirs, transmission pipes, heat exchangers, pressure vessels due to high strength and stiffness to density ratios and improved corrosion resistance. The mathematical concepts can be used to simulate and analyze the generated mechanical and thermal properties of composite materials regarding to the desired performances in actual working conditions.  To solve and obtain the exact solution of the developed nonlinear differential equations in the composite materials, analytical methods can be applied. Mechanical and thermal analysis of complex composite structures can be numerically analyzed using the Finite Element Method (FEM) to increase performances of composite structures in different working conditions. To decrease failure rate and increase performances of composite structures under complex loading system, thermal stress and effects of static and dynamic loads on the designed shapes of composite structures can be analytically investigated. The stresses and deformation of the composite materials under the complex applied loads can be calculated by using the FEM method in order to be used in terms of safety enhancement of composite structures. To increase the safety level as well as performances of the composite structures in different working conditions, crack development in elastic composites can be simulated and analyzed. To develop and optimize the process of composite deigning in terms of mechanical as well as thermal properties under different mechanical and thermal loading conditions, the advanced machine learning systems can be applied. A review in recent development of composite materials and structures is presented in the study and future research works are also suggested. Thus, to increase performances of composite materials and structures under complex loading systems, advanced methodology of composite designing and modification procedures can be provided by reviewing and assessing recent achievements in the published papers
    • …
    corecore