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Abstract

Sound analysis research has mainly been focused on speech and music process-

ing. The deployed methodologies are not suitable for analysis of sounds with

varying background noise, in many cases with very low signal-to-noise ratio

(SNR).

In this paper, we present a method for the detection of patterns of interest

in audio signals. We propose novel trainable feature extractors, which we call

COPE (Combination of Peaks of Energy). The structure of a COPE feature

extractor is determined using a single prototype sound pattern in an automatic

configuration process, which is a type of representation learning. We construct

a set of COPE feature extractors, configured on a number of training patterns.

Then we take their responses to build feature vectors that we use in combination

with a classifier to detect and classify patterns of interest in audio signals.

We carried out experiments on four public data sets: MIVIA audio events,

MIVIA road events, ESC-10 and TU Dortmund data sets. The results that

we achieved (recognition rate equal to 91.71% on the MIVIA audio events,

94% on the MIVIA road events, 81.25% on the ESC-10 and 94.27% on the

TU Dortmund) demonstrate the effectiveness of the proposed method and are

higher than the ones obtained by other existing approaches. The COPE feature

extractors have high robustness to variations of SNR. Real-time performance is
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achieved even when the value of a large number of features is computed.

Keywords: audio analysis, event detection, peaks of energy, representation

learning, trainable feature extractors

1. Introduction

Methods and systems for the automatic analysis of people and vehicle be-

havior, scene understanding, familiar place recognition and human-machine in-

teraction are traditionally based on computer vision techniques. In robotics or

public security, for instance, there has been a great effort to equip machines5

with capabilities for autonomous visual understanding. However, video analysis

has some weak points, such as sensitivity to light changes and occlusions, or

limitation to the field of view of the camera. Sound is complementary to visual

information and can be used to improve the capabilities of machines to deal

with the surrounding environment. Furthermore, there are cases in which video10

analysis cannot be used due to privacy issues (e.g. in public toilets).

In this paper we focus on automatic learning of representations of sounds

that are suitable for pattern recognition, in the context of environmental sound

analysis for detection and classification of audio events. Recently, the interest in

automatic analysis of environmental sounds increased because of various appli-15

cations in intelligent surveillance and security [1], assistance of eldery people [2],

monitoring of smart rooms [3], home and social robotics [4], etc.

A large part of sound analysis research in the past years focused on speech

recognition [5], speaker identification [6] and music classification [7]. Features

and classifiers for voice analysis are established and widely used in practical20

systems: spectral or cepstral features in combination with classifiers based on

Hidden Markov Models or Gaussian Mixture Models. However, state of the art

methods for speech and music analysis do not give good results when applied

to environmental sounds, which have highly non-stationary characteristics [8].

Most speech recognition methods assume that speech is based on a phonetic25

structure, which allows to analyze complex words or phrases by splitting them
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in a series of simple phonemes. In the case of environmental sound there is

no underlying phoneme-like structure. Moreover, human voice has very specific

frequency characteristics that are not present in other kinds of sound. For

example, interesting events for surveillance applications, such as gun shots or30

glass breaking usually have high-frequency components that are not present

in speech. For speech recognition and speaker identification the sound source

is typically very close to the microphone. It implies that background noise

has lower energy than foreground sounds and does not impair considerably the

performance of the recognition system. Environmental sound sources can be,35

instead, at any distance from the microphone. Hence, the background noise can

have relatively high energy, so determining very low or even negative signal-to-

noise ratio (SNR).

Existing methods for detection of audio events, for which we provide an

extensive overview in Section 2, are based on the extraction of hand-crafted40

features from the audio signal. The features extracted from (a part of) the audio

signal are submitted to a classification system. The employed features describe

stationary and non-stationary properties of the signals [9]. This approach to

pattern recognition requires a feature engineering step that aims at choosing

or designing a set of features that describe important characteristics of the45

sound for the problem at hand. Widely used features are mainly borrowed from

the field of speech recognition: responses of log-frequency filters, Mel-frequency

cepstral coefficients, wavelet transform coefficients among others. The choice of

effective features or combination of them is a critical step to build an effective

system and requires considerable domain knowledge.50

More recent approaches do not rely on hand-crafted features but rather

involve automatic learning of data representations from training samples by

using deep learning and convolutional neural networks (CNN) [10]. CNNs were

originally proposed for visual data analysis, but have also been successfully

applied to speech [11], music processing [12] and sound scene classification [13].55

While they achieve very good performance, they require very large amount of

labeled training data which is not always available.
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In this work, we propose trainable feature extractors for sound analysis which

we call COPE (Combination of Peaks of Energy). They are trainable as their

structure is not fixed in advance but it is rather learned in an automatic con-60

figuration procedure using a single prototype pattern. This automatic config-

uration of feature extractors is a type of representation learning. It allows to

automatically construct a suitable data representation to be used together with

a classifier and does not require considerable domain expertise. We configure a

number of COPE feature extractors on training sounds and use their responses65

to build a feature vector, which we then employ as input to a classifier. With

respect to [14], in which we reported preliminary results obtained using COPE

feature extractors on sound events with the same SNR, in this work we provide:

a) a detailed formulation of the configuration and application steps of COPE

features, b) a thourough validation of the performance of a classification system70

based on COPE features when tested with sounds with different values of SNR,

c) an extension of the MIVIA audio events data set the includes null or negative

SNR sound events and d) a wide comparison of the proposed method with other

existing approaches on four benchmark data sets. Furthermore, we discuss the

importance of robustness to variations of the background noise and SNR of the75

events of interest, for applications of sound event detection in Section 5.4. We

provide a detailed analysis of the contribution of the COPE features to the im-

provement of sound event detection and classification performance with respect

to existing approaches.

The design of COPE feature extractors was inspired by certain properties80

of the inner auditory system, which converts the sound pressure waves that

reach our ears into neural stimuli on the auditory nerve. In the Appendix A we

provide some details about the biological mechanisms that inspired the design

of the COPE feature extractors.

We validate the effectiveness of the proposed COPE feature extractors by85

carrying out experiments on the following public benchmark data sets: MIVIA

audio events [15], MIVIA road events [16], ESC-10 [17], TU-Dortmund [18].

The main contributions of this work are: a) novel COPE trainable feature
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extractors for representation learning of sounds that are automatically config-

ured on training examples, b) a method for audio event detection that uses the90

proposed features, c) the release of an extended version of the MIVIA audio

events data set with sounds at null and negative SNR.

The rest of the paper is organized as follows. In Section 2 we review related

works, while in Section 3 we present the COPE feature extractors and the

architecture of the proposed method. We describe the data sets used for the95

experiments in Section 4. We report the results that we achieved, a comparison

with existing methods and an analysis of the sensitivity of the performance

of the proposed method with respect to the parameters of the COPE feature

extractors in Section 5. We provide a discussion in Section 6 and, finally, draw

conclusions in Section 7.100

2. Related works

Representation learning has recently received great attention by researchers

in pattern recognition with the aim of constructing reliable features by direct

learning from training data. Methods based on deep learning and CNNs were

proposed to learn features for several applications: age and gender estimation105

from facial images [19], action recognition [20], person re-identification [21],

hand-written signature verification [22], and also sound analysis [23]. Other

approaches for feature learning focused on sparse dictionary learning [24, 25],

learning vector quantization [26], and on extensions of the bag of features ap-

proach based on neural networks [27] or higher-order pooling [28].110

In the context of audio analysis research, it is common to organize existing

works on sound event detection according to the feature sets and classifica-

tion architectures that they employ. Early methods approached the problems

of sound event detection and classification by dividing the audio signal into

small, partially overlapped frames and computing a feature vector for each115

frame. The used features ranged from relatively simple (e.g. frame energy,

zero-crossing rate, sub-band energy rate) to more complicated ones (e-g. Mel-
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frequency Cepstral Coefficients [29], log-frequency filter banks [30], perceptual

linear prediction coefficients [31], etc.). The frame-level feature vectors were

then used together with a classifier to perform a decision. Gaussian Mixture120

Model (GMM) based classifiers were largely employed to classify the frames

as part of sounds of interest or background [32, 33]. To limit the influence of

background sounds on the classification performance, One-Class Support Vector

Machines were proposed [34].

Spectro-temporal features based on spectrogram or other time-frequency125

representations were also developed [35, 36]. Inspired by the way the inner

auditory system of humans responds to the frequency of the sounds, an auditory

image model (AIM) was proposed [37]. The AIM was used as basis for improved

models which are called stabilized auditory images (SAI) [38]. In [39], the event

detection was formulated as an object detection problem in a spectrogram-like130

representation of the sound, and approached by using a cascade of AdaBoost

classifiers. The design of hand-crafted features poses some limitations to the

construction of systems that are robust to varying conditions of the events of

interest and requires considerable domain knowledge.

In order to construct more reliable systems, efforts towards automatic learn-135

ing of features from training data by means of machine learning techniques were

made. Various approaches based on bag of features were proposed for sound

event representation and classification [40, 41]. A code-book of basic audio fea-

tures (also called audio words) is directly learned from training samples as result

of a quantization of the feature space by means of various clustering algorithms140

(e.g. k -Means or fuzzy k -Means). A comparison of hard and soft quantization

of audio words was performed in [15]. Other approaches for the construction of

a code-book of basic audio words were also based on non-negative matrix fac-

torization [42] or sparse coding [43]. In the bag of features representation, the

information about the temporal arrangement of the audio words is lost. This was145

taken into account in [44] and [45], where a feature augmentation and a classifier

based on Genetic Motif Discovery were proposed, respectively. The sequence of

audio words were also employed in [46] and [47]. The temporal information was
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described by a pyramidal approach to bag of features in [18, 48]. A method for

sound representation learning based on Convolutional Neural Networks (CNN)150

was proposed in [49]. Learning features from training samples does not require

an engineering effort and allows for the adaptation of the recognition systems

to various problems. However, the effectiveness and generalization capabilities

of learned features depend on the amount of available training data.

Evaluation of algorithms for audio event detection on public benchmark155

data sets is a valuable tool for objective comparison of performance. The great

attention that was dedicated to music and speech analysis determined the pub-

lication of several data sets used in scientific challenges for benchmarking of

algorithms. The MIREX challenge series evaluated systems for music informa-

tion retrieval (MIR) [50]. The CHiME challenge focused on speech analysis in160

noisy environments [51]. The “Acoustic event detection and classification” task

of the CLEAR challenges (2006 and 2007) focused on the detection of sound

events related to seminars, such as speech, chair moving, door opening and

applause [52]. Recently, the DCASE challenge [53] stimulated the interest of

researchers on audio processing for the analysis of environmental sounds. The165

attention was driven towards audio event detection and classification and scene

classification.

3. Method

In Figure 1, we show an overview of the architecture of the proposed method.

The algorithm is divided in two phases: configuration and application.170

In the configuration phase (dashed line), the Gammatonegrams (see details

in Section 3.1) of prototype training sounds are used to configure a set of COPE

feature extractors (see Section 3.2.2). Successively, the response of the set of

COPE feature extractors, computed on the sounds in the training set, are em-

ployed to construct COPE feature vectors (Figure 1b-d). A multi-class SVM175

classifier is finally trained using the COPE feature vectors (Figure 1e) to distin-

guish between the classes of interest for the application at end.
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In the application phase, the previously configured set of COPE feature

extractors is applied to extract feature vectors from input unknown sounds and

the multi-class SVM classifier is used to detect and classify sound events of180

interest. The implementation of the COPE feature extractors and the proposed

classification architecture is publicly available1.

3.1. Gammatonegram

The traditional and most used time-frequency representation of sounds is the

spectrogram, in which the energy distribution over frequencies is computed by185

dividing the frequency axis into sub-bands with equal bandwidth. In the human

auditory system, the resolution in the perception of differences in frequency

changes according to the base frequency of the sound. At low frequency the

band-pass filters have a narrower bandwidth than the ones at high frequency.

This implies higher time resolution of filters at high frequency that are able190

to better catch high variations of the signal. In this work we employ a bank

of Gammatone band-pass filters, whose bandwidth increases with increasing

central frequency. The functional form of Gammatone is biologically-inspired

and models the response of the cochlea membrane in the inner ear of the human

auditory system [54].195

The impulse response of a Gammatone filter is the product of a statistical

distribution called Gamma and a sinusoidal carrier tone. It is formally defined

as:

hi(t) =

at
n−1e−2πBitcos(2πωit+ φ), t ≥ 0

0, else

, (1)

where ωi is the central frequency of the filter, and φ is its phase. The constant

a controls the gain and n is the order of the filter. The parameter Bi is a200

decay factor and determines the bandwidth of the band-pass filter. The relation

between the central frequency of a Gammatone filter and its bandwidth is given

1The code is available at http://gitlab.com/nicstrisc/COPE
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COPE features
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Multi-class
SVM

C

...
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(a)

(b)

(c) (d) (e)

r̂1
r̂2

r̂L

Figure 1: Architecture of the proposed method. The (a) Gammatonegram of the training

audio samples is computed in the training phase (dashed arrow), and used to configure a (b)

set of COPE feature extractors. The learned features are used in the application phase to

(c) process the input sound and (d) construct feature vectors with their responses. A (e)

multi-class SVM classifier is, finally, employed to detect events of interest.

by the Equivalent Rectangular Bandwidth (ERB):

Bi =

[(
ωi
Qear

)p
+ (Bmin)

p

]1/p

(2)

where Qear is the asymptotic filter quality at high frequencies and Bmin is

the minimum bandwidth at low frequencies, while p is usually equal to 1 or205

2. In [55], the parameters Qear = 9.26779, Bmin = 24.7 and p = 1 where

determined by measurements from notched-noise data. In Figure 2a, we show

the impulse response of two Gammatone filters with low (ω1 = 115.1 Hz) and

higher (ω2 = 1.96 KHz) central frequencies. The filter with higher central

frequency has larger bandwidth, as it can be seen from their frequency response210

in Figure 2b.

We filter the input signal x(t) with a bank of Γ Gammatone filters h(t) =

[h1(t), h2(t), . . . , hΓ(t)]
T

. The response of the i-th filter to an input signal x(t)

is the convolution of the input signal with the impulse response hi(t):

x̃i(t) = x(t) ∗ hi(t). (3)

We divide the input audio signal in frames of F samples and process ev-215

ery frame by a bank of Gammatone filters in order to capture the short-time
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Figure 2: (a) Impulse responses of two Gammatone filters (with central frequencies ω1 = 115.1

Hz and ω2 = 1.96 KHz). The dashed lines represent the envelope of the sinusoidal tone. The

(b) frequency responses of the filters in (a): the filter with higher central frequency (dashed

line) has larger bandwidth (B2 = 240 Hz while B1 = 37.2 Hz).

properties of the energy distribution of the sound. Two consecutive frames

have F/2 samples in common, which means that they overlap for 50% of

their length. This ensures continuity of analysis and that border effects are

avoided. Given an input signal with N samples, the number of concerned220

frames is Θ = b2(N − F )/F c + 1. We finally construct the Gammatone-

gram of a sound as a matrix X ∈ RΓ×Θ, whose j-th column corresponds to

[x̃i(jF/2), x̃i(jF/2 + 1), . . . , x̃i(jF/2 + F − 1)]
T

with j = 0, 1, . . . ,Θ − 1. The

energy value of the i-th frequency channel in the Gammatonegram at the j-th

time instant is:225

Xi,j =

√√√√ 1

F

F−1∑
k=0

[
x̃i

(
j
F

2
+ k

)]2

. (4)

In Figure 3a, we show the Gammatonegram representation of a sample scream

sound. It is similar to the spectrogram, with the substantial difference that

the frequency axis has a logarithmic scale and the bandwidth of the band-pass

filters increases linearly with the value of the central frequency.
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3.2. COPE features230

The configuration and application of COPE feature extractors involve a num-

ber of steps that we explain in the following of this section. In the application

phase, given the Gammatonegram representation of a sound, a COPE feature

extractor responds strongly to patterns similar to the one used in the configu-

ration step. It also accounts for some tolerance in the detection of the pattern235

of interest, so being robust to distortions due to noise or to varying SNR.

3.2.1. Local energy peaks

The energy peaks (local maxima) in a Gammatonegram X are highly robust

to additive noise [56]. This property provides underlying robustness of the

designed COPE features to variation of the SNR of the sounds of interest. We240

consider that a point is a peak if it has higher energy than the points in its

neighborhood. We suppress non-maxima points in the Gammatonegram and

obtain an energy peak response map, as follows:

PX (t, f) = max
t−∆t≤t′≤t+∆t
f−∆f≤f ′≤f+∆f

X (t′, f ′) (5)

where t = 0, . . . ,Θ− 1 and f = 0, . . . ,Γ− 1. The values ∆t and ∆f determine

the size, in terms of time and frequency, of the neighborhood around a time-245

frequency point in which the local energy is evaluated (in this work we consider

8-connected pixels). We consider the arrangement (hereinafter constellation) of

a set of such time-frequency points as a description of the distribution of the

energy of a particular sound.

3.2.2. Configuration of a COPE feature extractor250

Given the constellation of energy peaks of a sound and a reference point (in

our case the point that correspond to the highest peak of energy), we determine

the structure of a COPE feature extractor in an automatic configuration process.

For the configuration one has to set the support size of the COPE feature

extractor, i.e. the size of the time interval around the reference point in which255

to consider energy peaks.

11



fr
eq

.
(K

H
z)

time (seconds)

Prototype sound (scream)

0 0.32 0.64 0.96 1.28 1.6 1.92

0.2

0.7

1.5

3

6

12

(a)

fr
eq

.
(K

H
z)

time (seconds)

Energy peaks and feature extractor support

0 0.32 0.64 0.96 1.28 1.6 1.92

0.2

0.7

1.5

3

6

12

(b)

fr
eq

.
(K

H
z)

time (seconds)

Configured COPE feature extractor

0 0.32 0.64 0.96 1.28 1.6 1.92

0.2

0.7

1.5

3

6

12

(c)

Figure 3: Example of configuration of a COPE feature extractor performed on the (a) Gam-

matonegram representation of a scream. The (b) energy peaks are extracted and a support

(dashed lines) is chosen around a reference point (small circle). The (c) configured feature

extractor is composed of only those points whose energy is higher than a fraction t1 of the

energy of the reference point.

In Figure 3, we show an example of the configuration process on the scream

sound in Figure 3a. First, we find the position of the local energy peaks and

select a reference point (small circle in Figure 3b) around which we define the

support size of the feature extractor. The support is contained between the260

two dashed (red) lines in Figure 3b. We consider the positions of only those

peaks that fall within the support of the feature extractor and whose energy is

higher than a fraction t1 of the highest peak of energy (Figure 3c). Every peak

point pi is represented by a 3-tuple (∆ti, fi, ei): ∆ti is the temporal offset with

respect to the reference point, fi is its corresponding frequency channel in the265
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Gammatone filterbank and ei is the value of the energy contained in it.

The configuration process results in a set of tuples that describe the constel-

lation of energy peaks in the Gammatonegram image of a sound. We denote by

S = {(∆ti, fi, ei) | i = 1, . . . , L} the set of 3-tuples, where L is the number of

considered peaks within the support of the filter.270

3.2.3. Feature computation

Given a Gammatonegram, we compute the response of a COPE feature

extractor as a combination of its weighted and shifted energy peaks. We define

the weighting and shifting of the i-th energy peak as :

si(t) = max
t′,f ′
{ψ(t−∆ti − t′, fi −∆fi − f ′)Gσ′(t′, f ′)} (6)

where −3σ′ ≤ t′, f ′ ≤ 3σ′.275

The function ψ(t, f) can be seen as a response map of the similarity between

the detected energy peak in the input Gammatonegram and the corresponding

one in the model. In this work we consider ψ(t, f) = PX (t, f), so as to account

only for the position and energy content of the peak points in the constellation.

We weigth the response ψ(t, f) with a Gaussian weighting function Gσ′(·, ·)280

that allows for some tolerance in the expected position of the peak points. This

choice is supported by evidence in the auditory system that vibrations of the

cochlea membrane due to a sound wave of a certain frequency excite neurons

specifically tuned for that frequency and also neighbor neurons [57]. The size of

the tolerance region is determined by the standard deviation σ′ of the function285

Gσ′ , which is a parameter and we set as σ′ = σ0/2 .

The value of a COPE feature is computed with a sliding window that shifts

on the Gammatonegram of the input sound. Formally, we define it as the

geometric mean of the weighted and shifted energy peak responses in Eq. 6:

r(t) =

∣∣∣∣∣∣∣
 |S|∏
i=1

si(t)

1/|S|
∣∣∣∣∣∣∣
t2

, (7)

where t2 is a threshold value. Here, we set t2 = 0, so to not suppress any290

response. The value of a COPE feature for a sound in an interval delimited by
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[T1, T2] is given by max-pooling of the response r(t) with T1 ≤ t ≤ T2:

r̂ = max
t∈[T1,T2]

ri(t) (8)

3.3. COPE feature vector

We configure a set of COPE feature extractors on K training audio samples

from different classes. For a given interval of sounds [T1, T2], we then construct295

a feature vector as follows:

v[T1,T2] = [r̂1, r̂2, . . . , r̂K ] . (9)

3.4. Classifier

We use the COPE feature vectors to train a classifier, which is able to assign

the input sound to one of the M classes of interest. The COPE feature vectors

are not dependent on a specific classier and thus one can employ them together300

with any multi-class classifier.

In this work, we employ a multi-class SVM classifier, designed according to a

one-vs-all scheme, in which M binary SVM classifiers (where M corresponds to

the number of classes) are trained to recognize samples from the classes of inter-

est. We use linear SVMs with soft-margin as they provide already satisfactory305

results and are easy to train. We set the hyperparameter c = 1 for the training

of each SVM, which indicates the trade-off between training error and size of the

classification margin while training the SVM classifier (see [58] for reference).

We train the i-th SVM (i = 0, . . . ,M − 1) by using as positive examples those

of the class Ci and as negative samples those of all the remaining classes. In310

this scheme, the training of each SVM classifier is an unbalanced problem, as

the cardinality of the samples from the negative class |N | outnumbers that of

the samples from the positive class |P |. We thus employ an implementation of

the SVM algorithm that includes a cost-factor J = |N |/|P | by which training

errors on positive examples outweight errors on negative examples2 [59]. In this315

2Available in the SVMlight library - http://svmlight.joachims.org/
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way, the training errors for the positive and negative examples have the same

influence in the overall optimization.

During the test phase, each SVM classifier assigns a score mi to the given

sample under test (i.e. a COPE feature vector that represents the sound to

classify). We analyze the SVM scores mi and assign to the test vector the class320

that corresponds to the SVM that gives the highest classification score. We

assign the sample under test to the reject class C0 (background sound) in case

all the scores are negative. We formally define the classification rule as:

C =


C0, if mi < 0 ∀i = 0, . . . ,M − 1

arg max
i
mi, else.

(10)

4. Data sets

We carried out experiments on four public data sets, namely the MIVIA325

audio events [15], MIVIA road events [16], ESC-10 [17] and TU-Dortmund [18]

data sets.

4.1. MIVIA audio events

Typical sounds of interest for intelligent surveillance applications are glass

breakings, gun shots and screams. In the MIVIA audio events data set, such330

sounds are superimposed to various background sounds and have different SNRs

({5, 10, . . . , 30}dB). This simulates the occurrence of sounds in different envi-

ronments and at various distances from the microphone. We extended the data

set by including cases in which the energy of the sounds of interest is equal or

lower than the one of the background sound, so having null or negative SNR.335

Thus, adopting the same procedure described in [15], we created two versions

of the audio events at 0dB and −5dB SNR. The final data set3 contains a total

of 8000 events for each class, divided into 5600 events for training and 2400

events for testing equally distributed over the considered values of SNR. The

3The data set is publicly available at the url http://www.gitlab.com/nicstrisc/COPE
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Table 1: Details of the composition of the MIVIA audio events data set. The total duration

of the sounds is expressed in seconds.

MIVIA audio events data set

Training set Test set

#Events Duration (s) #Events Duration (s)

BN - 77828.8 - 33382.4

GB 5600 8033.1 2400 3415.6

GS 5600 2511.5 2400 991.3

S 5600 7318.4 2400 3260.5

audio clips are PCM sampled at 32KHz with a resolution of 16 bits per sample.340

Hereinafter we refer at glass breaking with GB, at gun shots with GS and at

screams with S. We indicate the background sound with BN. In Table 1, we

report the details of the composition of the extended data set.

4.2. MIVIA road events

The MIVIA road events data set contains car crash and tire skidding events345

mixed with typical road background sounds such as traffic jam, passing vehicles,

crowds, etc. A total of 400 sound events (200 car crashes and 200 tire skiddings)

are superimposed to various road sounds ranging from very quiet (e.g. in country

roads) to highly noisy traffic jams (e.g. in the center of a big city) and highways.

The sounds of interest are distributed over 57 audio clips of about one minute350

each, which are organized into four independent folds (in each fold 50 events

per class are present) for cross-validation experiments. The audio signals are

sampled at 32KHz with a resolution of 16 bits per PCM sample. In the rest of

the paper, we refer at car crash with CC and at tire skidding with TS.

4.3. ESC-10355

The ESC-10 data set is composed of 400 sounds divided in ten classes (dog

bark, rain, sea waves, baby cry, clock tick, sneeze, helicopter, chainsaw, rooster,

fire crackling), each of them containing 40 samples. The sounds are sampled

at 44.1 KHz with a bit rate of 192 kbit/s and their total duration is about
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33 minutes. The data set is organized in five independent folds. The average360

classification accuracy achieved by human listeners is 95.7%.

4.4. TU Dortmund

The TU Dortmund data set was recorded in a smart room with a microphone

embedded on a table. The data set is composed of sounds from eleven classes

(chair, cup, door, keyboard, laptop keys, paper sheets, pouring, rolling, silence,365

speech, steps), divided in a training and a test sets. The sounds of interest

are sampled at 48 Khz and are mixed with the background sound of the smart

room. A ground truth with the start and end points of the sounds is provided.

We constructed a second observer ground truth, which contains a finer grain

manual segmentation of the events.370

5. Experiments

5.1. Performance evaluation

For the MIVIA audio events and the MIVIA road events data sets we adopted

the experimental protocol defined in [15]. The performance evaluation is based

on the use of a time window of Tw seconds that forward shifts on the audio375

signal by ∆Tw seconds. An event is considered correctly detected if it is de-

tected in at least one of the time windows that overlap with it. Besides the

recognition rate and confusion matrix, we consider two types of error that are

important for performance evaluation: the detection of events of interest when

only background sound is present (false positive) and the case when an event of380

interest occurs but it is not detected (missed detection). In case a false positive

is detected in two consecutive time windows, only one error is counted. We mea-

sured the performance of the proposed method by computing the recognition

rate (RR), false positive rate (FPR), error rate (ER) and miss detection rate

(MDR). Moreover, in addition to the receiver operating characteristic (ROC)385

curve and in order to assess the overall performance of the proposed method we

compute the Detection Error Trade-off (DET) curve. It is a plot of the trade-off
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Table 2: Classification matrix obtained by the proposed method on the extended MIVIA

audio events data set. GB, GS and S indicate the classes in the data set (see Section 4.1),

while MDR is the miss detection rate.

Results - MIVIA audio events data set

Detected class

GB GS S MDR

True

class

GB 95.33% 2.13% 1.25% 1.29%

GS 4.33% 89.25% 2.58% 3.83%

S 1.5% 4.92% 87.79% 5.79%

between the false positive rate and the miss detection rate and gives an insight

of the performance of a classifier in terms of its errors. In contrast to the ROC

curve, in the DET curve the axis are logarithmic in order to highlight differences390

between classifiers in the critical operating region. The closer the curve to the

point (0, 0), the better the performance of the system.

For the ESC-10 and TU Dortmund data sets, we evaluate the performance

for the classification of isolated audio events. This type of evaluation is done

according to the structure of these data sets and to make possible a compar-395

ison with the results achieved by other approaches. We compute the aver-

age recognition rate (RR) and the F-Measure F = 2RePr/(Re + Pr), where

Pr = TP/(TP + FP ) is the precision and Re = TP/(TP + FN) is the recall.

TP , FP and FN are the number of true positive, false positive and false nega-

tive classifications, respectively. In the case of the MIVIA road events and the400

ESC-10 data sets, we perform cross-validation experiments.

5.2. Results

In Table 2, we report the classification matrix that we obtained on the

extended version of the MIVIA audio events data set. The average recognition

rate for the three classes is 90.7%, while the miss detection rate and the error405

rate are 3.7% and 5.6%, respectively. We obtained an FPR equal to 7.1%, of

which 1.25% are glass breakings, 2.74% are gun shots and 3.11 are screams.

In Table 3 we report the classification matrix achieved by the proposed
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Table 3: Average results obtained by the proposed method on the MIVIA road events data

set. CC and TS are acronyms for the classes in the data set (see Section 4.2).

Results - MIVIA road events

Guessed class

CC TS MDR

True

class

CC 92% 2% 6%

TS 0.5% 96% 3.5%

approach on the MIVIA road events data set. The average RR is 94% with a

standard deviation of 4.32%, while the average FPR is 3.94% with a standard410

deviation of 1.82%. The results are in line with the ones achieved on the MIVIA

audio events data set. The low standard deviation of the recognition rate is

indicative of good generalization capabilities.

The proposed method shows high performance on the ESC-10 and TU Dort-

mund data sets, which both contain a larger number of classes than in the415

MIVIA data sets, but with a lower number of samples per class. We achieved

RR = 81.25% (5.38%), P r = 0.8263 (0.053), Re = 0.8125 (0.054), F =

0.8048 (0.059) on the ESC-10 data set (the standard deviation of each measure

is in brackets). On the TU Dortmund data set we achieved RR = 94.27%, P r =

0.9479, Re = 0.9519 and F = 0.9469. In the following, we compare the achieved420

results with the ones reported in other works.

5.3. Results comparison

In Table 4, we report the results that we achieved on the MIVIA audio event

data set, compared with the ones of existing methods. In the upper part of the

table we compare the results achieved by considering the classification of sound425

events with positive SNR only. In the lower part of the Table, we report the

results achieved by including also sound events with negative and null SNR in

the evaluation.

It is important to clarify that the methods described in [15, 60] employ the

same multi-class one-vs-all linear SVM classifiers of this work. The results that430

we report using SoundNet features [61] were obtained by using the features com-
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Table 4: Comparison of the results with the ones of existing approaches on the MIVIA audio

events data set. RR, MDR, ER and FPR refer to the metrics described in Section 5.1.

Result comparison - MIVIA audio events data set

Method RR MDR ER FPR

Test with SNR > 0

COPE 96% 3.1% 0.9% 4.3%

bofh [15] 84.8% 12.5% 2.7% 2.1%

bofs [15] 86.7% 10.7% 2.6% 3.1%

Gammatone [60] 88.6% 9.65% 1.4% 1.4%

UDWT [60] 77.81% 10.65% 11.54% 6.6%

SoundNet [61] 93.33% 0.67% 6% 22.34%

HRNN [62]
96.55%

− − −

Test with SNR > 0 and SNR ≤ 0

COPE 91.7% 2.61% 5.68% 9.2%

bofh [15] 56.07% 36.43% 7.5% 5.3%

bofs [15] 59.11% 32.97% 7.92% 5.3%

SoundNet [61] 84.13% 4% 11.88% 25.9%

puted at the last convolutional layer of the SoundNet network in combination

with the same classifier of this work.

SoundNet features obtained comparable recognition rate to the one achieved

by the proposed approach, but a considerably higher FPR. The recognition435

rate achieved by the Hierarchical Recurrent Neural Network classifier (HRNN)

proposed in [62] is slightly higher than the ones we obtained, though the HRNN-

based approach has more complex design and training procedure, and a different

classifier than SVM. The values of MDR, ER and FPR are not reported in [62].

The performance of the proposed method demonstrated high robustness of440

the COPE feature extractors w.r.t. variations of the SNR. Conversely, for the

methods proposed in [15], the performance of the classification systems strongly

depend on the SNR of the training sound events. When sounds with only

positive SNR are used for training, the recognition rate achieved by the proposed

method is almost 10% higher than the one obtained by the approaches proposed445

in [15, 60]. The performance results of the latter methods decrease strongly
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Table 5: Comparison of the results achieved on the MIVIA roads events data set with respect

to the methods proposed in [16, 63]. RR, MDR, ER and FPR refer to the evaluation metrics

described in Section 5.1.

Comparison of results on MIVIA road events data set

RR MR ER FPR

COPE 94% 4.75% 1.25% 3.95%

σ 4.32 4.92 1.26 1.82

bofBARK [16] 80.25% 21.75% 3.25% 10.96%

σ 7.75 8.96 2.5 8.43

bofMFCC [16] 80.25% 19% 0.75% 7.69%

σ 11.64 11.63 0.96 5.92

bof [63, 16] 82% 17.75% 0.25% 2.85%

σ 7.79 8.06 1 2.52

(recognition rate more than 30% lower than the one of the proposed method)

when sounds with negative SNR are included in the model. We provide an

extensive analysis of robustness to variations of SNR in Section 5.4.

In Table 5, we compare the results we obtained on the MIVIA road events450

data set with the ones reported in [16], where different sets of audio features

(BARK, MFCC and a combination of temporal and spectral features) have

been employed as short-time descriptors of sounds. We obtained an average

recognition rate (94%) that is more than 10% higher than the ones achieved by

existing methods, with a lower standard deviation.455

In Figure 4a and 4b, we plot the DET curves obtained by our method (solid

lines) on the MIVIA audio events and MIVIA road events data sets, respec-

tively, and those of the methods proposed in [15] and [16] (dashed lines). The

curve of our method is closer to the point (0, 0) than the ones of other ap-

proaches, so confirming higher performance with respect to existing methods on460

the concerned data sets.

We compare the results that we achieved on the ESC-10 data set with the

ones reported by existing approaches in Table 6. The sign ‘−’ indicates that the

concerned value is not reported in published papers. The highest recognition

rate is achieved by SoundNet [61], which is a deep neural network trained on a465

21



0.1 0.2 0.5 1 2 5 10 20 40

0.1

0.2

0.5

1

2

5

10

20

40

False Alarm probability (%)

M
is

s
p
ro

b
a
b
il
it

y
(%

)
MIVIA audio events

COPE

bofh
bofs

(a)

0.1 0.2 0.5 1 2 5 10 20 40

0.1

0.2

0.5

1

2

5

10

20

40

False Alarm probability (%)

M
is

s
p
ro

b
a
b
il
it

y
(%

)

MIVIA road events

COPE
BARK
MFCC
[63]

(b)

Figure 4: Detection Error Trade-off curves achieved by the proposed method (solid line)

compared to the curves achieved by existing methods (dashed lines) on the (a) MIVIA audio

events and (b) MIVIA road events data sets. (Notice the logarithmic scales.)

Table 6: Comparison of the results on the ESC-10 data set. In brackets we report the standard

deviation of the average performance metrics. RR, MDR, ER and FPR refer to the evaluation

metrics described in Section 5.1.

Result comparison on ESC-10 data set

Method RR F

COPE 81.25% (5.38) 0.81 (0.06)

Baseline [17] 66.74% (6.11) −
Random Forest [17] 72.75% (8.68) 0.72 (0.09)

Piczak CNN [49] 80.25% (5.48) 0.80 (0.06)

Conv. Autoenc. [61] 74.3% −
Hertel CNN [64] 89.9% −
SoundNet [61] 92.2% −
MCLNN. [65] 85.5% −

very large data set of audio-visual correspondences. Approaches based on CNNs

([49, 61, 64, 65]) are trained with data augmentation techniques and generally

perform better than the proposed approach on the ESC-10 data set, which is

instead trained only on the original sounds in the ESC-10 data set.
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Table 7: Comparison of the results on the TU Dortmund data set. The results were computed

with respect to the second observer ground truth that we constructed. RR, MDR, ER and

FPR refer to the evaluation metrics described in Section 5.1.

Result comparison on TU Dortmund data set

RR Pr Re F

COPE 94.27% 94.79% 95.19% 94.69%

BoF [18] 90.05% 92.39% 88.82% 90.57%

P-BoF [18] 89.94% 92.24% 88.67% 90.42%

BoSF [18] 90.31% 92.73% 88.13% 90%

In Table 7, we report the results that we achieved on the TU Dortmund470

data set together with those reported in [18], where a classifier based on bag of

features was proposed. Besides the traditional bag of features (BoF) scheme, the

authors proposed a pyramidal approach (P-BoF) and the use of super-frames

(BoSF) for embedding temporal information about the sequence of features.

The results in Table 7 are computed according to the ground truth that we475

constructed based on a fine segmentation of sounds of interest and that we

made publicly available. It is worth noting that the performance results of our

method refer to the classification of sound events. For the methods proposed

in [18] the evaluation is performed by considering the classification of sound

frames.480

5.4. Robustness to background noise and SNR variations

We carried out a detailed analysis of the performance of the COPE feature

extractors on sounds with different levels of SNR. We trained the proposed clas-

sifier following two different schemes. For the first training scheme (that we refer

at as T1) we included in the training process only sound events with positive485

SNR. For the second training scheme (that we refer at as T2) we trained the

classifier with all the sounds in the data set, including those with null and nega-

tive SNR. In Table 8, we report the results that we achieved for the classification

of sounds in the MIVIA audio event data set by training the system according

to T1 and T2. We tested both trained models on the whole test set of the490
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MIVIA audio event data set (including negative and null SNRs). The proposed

method showed stronger robustness to changing SNR w.r.t. previously pub-

lished approaches in [15], especially when samples with null and negative SNR

are not included in the training process. This demonstrate high generalization

capabilities of the proposed COPE feature extractors to sound events corrupted495

by high-energy noise.

In Figure 5, we plot the ROC curves relative to the performance achieved

at the different levels of SNR of the sounds of interest contained in the MIVIA

audio event data set. We observed substantial stability of performance when the

sounds of interest have positive (also very low) SNR. The high robustness of the500

COPE feature extractors with respect to variations of the SNR is attributable to

the use of the local energy peaks extracted from the Gammatonegram, which are

robust to additive noise. The slightly lower results at negative SNR are mainly

due to the changes of the expected energy peak locations caused by high energy

of the background sounds. In such cases, most of the wrong classifications are505

due to errors rather than to miss detection of sounds of interest.

5.5. Sensitivity analysis

We analyzed the sensitivity of the COPE feature extractors with respect

to the parameter σ0 which regulates the degree of tolerance to changes of the

Table 8: Analysis and comparison of stability of results w.r.t. varying value of SNR of the

events of interest. Details on the training schemes T1 and T2 are provided in Section 5.4.

RR, MDR, ER and FPR refer to the evaluation metrics described in Section 5.1.

Comparison of results on the MIVIA audio events data set

Training T1 Training T2

Test Method RR MDR ER FPR RR MDR ER FPR

a
ll

S
N
R COPE 91.7% 2.61% 5.68% 9.2% 90.7% 3.7% 5.6% 7.2%

bofh [15] 76.4% 11.64% 11.96% 5.9% 56.07% 36.43% 7.5% 5.3%

bofs [15] 77.81% 10.65% 11.54% 6.6% 59.11% 32.97% 7.92% 5.3%

S
N
R
>
0 COPE 96% 3.1% 0.9% 4.3% 95.2% 4% 0.8% 2.2%

bofh [15] 84.8% 12.5% 2.7% 2.1% 64.63% 31% 4.4% 4.2%

bofs [15] 86.7% 10.7% 2.6% 3.1% 68.74% 26.4% 4.9% 4.5%
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Figure 5: ROC curves obtained by the proposed method on the MIVIA audio events data set

at different SNR values ({−5, 0, 5, . . . , 30}dB). The arrow indicates increasing values of SNR.

sounds of interest due to background noise or distortion. We used a version of510

the MIVIA audio events data set specifically built for cross-validation experi-

ments. The data set was released in [15], employing the same procedure used

for the MIVIA audio events data set, ensuring statistical independence and high

variability among folds. The sound events were divided into k = 5 independent

folds, each of them containing 200 events of interest per class (times 8 versions515

of the SNR, as in the original MIVIA events data set). In our analysis, we esti-

mated the variance of the generalization error using the Nadeau-Bengio variance

estimator [66], which takes into account the variability of the training and test

sets used in cross-validation experiments.

For the configuration of a COPE feature extractor, the user has to choose520

the size of its support, i.e. the length of the time interval around the ref-

erence point in which energy peaks are considered for the configuration (see

Section 3.2.2). We experimentally observed that different sizes of the support,

namely st = {200, 300, 400} ms, do not significantly influence the performance

of the proposed system on the MIVIA data sets. We report results achieved525

with a support of 200 ms, which involves a limited number of energy peaks in
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Table 9: Sensitivity of the COPE feature extractors to various values the parameter σ0. Higher

the value of σ0, larger the tolerance of the feature extractor to variations of the pattern of

interest. For the generalization error (ER) of cross-validation experiments, we report the

value of the Nadeau-Bengio estimator of variance that takes into account the variability in

the training and test sets [66]

.

Sensitivity of COPE feature extractors

MIVIA audio events MIVIA road events

σ0 ER σ̂ER FPR σFPR ER ˆσER FPR σFPR

1 35.98% 8.3 19.21% 7.29 28.5% 6.47 17.09% 7.66

2 26.6% 3.92 18.75% 3.16 19% 3.87 21.46% 11.14

3 13.84% 1.41 13.97% 2.85 4.75% 4.41 18.78% 12.5

4 13.83% 2.1 11.53% 2.4 4.75% 3.08 7.44% 4.39

5 14.70% 2.22 9.91% 2.2 6% 3.05 3.94% 1.82

6 14.37% 3.04 10.23% 2.1 6.25% 3.39 3.94% 1.13

the configuration of the feature extractors. One could however choose st = 400

ms, achieving similar performance to the case in which st = 200 ms. The draw-

back is the need of computing and combining the responses of a higher number

of energy peaks, which increase the processing time of each feature extractor.530

In Table 9, we report the generalization error (ER) and the false positive rate

(FPR) as the parameter σ0 varies. The performance of the proposed system is

slightly sensitive to varying values of the parameter σ0, mostly when they are

kept very low. For higher values (σ0 = 3, 4, 5, 6), the performance shows more

stability. Higher tolerance for the detection of the energy peak positions deter-535

mines stronger robustness to background noise. It is worth pointing out that

too large values of tolerance might cause a loss in the selectivity and descrip-

tive power of the COPE feature extractors and consequently a decrease of the

classification performance.

6. Discussion540

The high recognition capabilities of the proposed method are attributable to

the trainable character and the versatility of the COPE feature extractors. The

concept of trainable filters has been previously introduced for visual pattern
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recognition. COSFIRE filters were proposed for contour detection [67], key-

point and object detection [68], retinal vessel segmentation [69, 70], curvilinear545

structure delineation [71, 72, 73], and action recognition [74]. In this work, we

extended the concept of trainable feature extractors to sound recognition. It

is noteworthy that the proposed COPE feature extractors do not relate with

template matching techniques, which are sensitive to variations with respect to

the reference pattern. The tolerance introduced in the application phase allows550

also for the detection of modified versions of the prototype pattern, mainly due

to noise or distortion.

An important advantage of using COPE feature extractors is the possibility

of avoiding the process of feature engineering, which is a time-consuming task

and requires substantial domain knowledge. In traditional sound recognition555

approaches, hand-crafted features (e.g. MFCC, spectral and temporal features,

Wavelets and so on) are usually chosen and combined together to form a fea-

ture vector that describes particular characteristics of the audio signals. On

the contrary, the automatic configuration of COPE feature extractors consists

in learning data representations directly from the sounds of interest. Manual560

engineering of features is indeed not required.

Representation learning is typical of recent machine learning methods based

on deep and convolutional neural networks, which require large amount of train-

ing data. When large data sets are not available, new synthetic data is generated

by transformations of the original training data. To this concern, the COPE565

algorithm differs from deep and convolutional neural networks approaches, as it

requires only one prototype pattern to configure a new feature. Moreover, the

tolerance introduced in the application phase guarantees, to a certain extent,

good generalization properties. Because of their flexibility, COPE feature ex-

tractors can be thus employed in various sound processing applications such as570

music analysis [75, 76] or audio fingerprinting [77], among others.

The COPE feature extractors are robust to variations of the background

noise and of the SNR of the sounds of interest. In Figure 6a we show the

Gammatonegram of a glass breaking sound with SNR equal to 30dB. As an
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Figure 6: The (a) Gammatonegram of a prototype glass breaking sound used for the configu-

ration of a COPE feature extractor. The (b) response r(t) of the feature extractor computed

on the sound in (a). The (c) time-zoomed (between 0.4s and 0.58s) response r(t) at different

SNRs ({−5, 0, . . . , 30}dB). The response is stable for positive values of SNR and decreases for

null or negative SNR values.

example, we configure a COPE feature extractor on this sound and compute its575

response r(t) on the sound of Figure 6a, which we show in Figure 6b. One can

observe that the response is maximum in the same point used as reference point

in the configuration phase. The response is null when at least one of the expected

energy peaks is not present. In Figure 6c, we show a time-zoomed detail of the

response of the feature extractor computed on the same glass breaking event580

at different values of SNR (from −5dB to 30dB in steps of 5dB). The response

keeps stable for positive, also very low values of SNR and it slightly decreases for

null or negative SNR values. As demonstrated by the results that we reported

in Section 5.4, the stability of the response of COPE feature extractors and

the high performance on sounds with different values of SNR. The decrease of585
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performance at null and negative SNR is due to the effect of background sounds

with energy higher than that of the sounds of interest. It determines strong

changes of the position of the energy peaks with respect to those determined in

the configuration. To this concern, the effect of other functions ψ(f, t) in eq. 6

to evaluate the energy peak similarity can be explored.590

7. Conclusions and outlook

We proposed a novel method for feature extraction in audio signals based

on trainable feature extractors, which we called COPE (that stands for Combi-

nation of Peaks of energy). We employed the COPE feature extractors in the

task of environmental sound event detection and classification, and tested their595

robustness to variations of the SNR of the sounds of interest. The results that

we achieved on four public data sets (recognition rate equal to 91.71% on the

MIVIA audio events, 94% on the MIVIA road events, 81.25% on the ESC-10

and 94.27% on the TU Dortmund data sets) are higher than many existing

approaches and demonstrate the effectiveness of the proposed method.600

The design of COPE feature extractors was based on neuro-physiological

evidence of the mechanism that translates sound pressure waves into neural

stimuli from the cochlea membrane through the Inner Hair Cells (IHC) in the

auditory system of mammals. The proposed method can be extended by also

including in its processing the implementation of a neuron response inhibition605

mechanism that prevents the short-time firing of those IHCs that have recently

fired [78]. In this view, the computation of the energy peak map would need to

account for the energy distribution of the sounds of interest in each frequency

band at a larger time scale, instead of performing a local analysis only. The

extension of the COPE feature extractor with such inhibition phenomenon can610

further improve the robustness of the proposed method to changes of background

noise and SNR, as only significant energy peaks are to be processed.

Although the current implementation of the COPE feature extractor is

rather efficient (0.965 seconds to compute a COPE feature vector of 200 ele-
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ments for a signal of 3 seconds, on a 2GHz dual core CPU), their computation615

can be further speeded-up. Parallelization approaches can be explored, which

compute the value of COPE features or the local energy peak responses in sepa-

rate threads. The construction of the COPE feature vector can also be optimized

by including in the classification system only those filters that are relevant for

the application at hand. A feature selection scheme based on the relevance of620

the feature values described can be employed [79]. The optimization of the num-

ber of configured feature extractors and the implementation of parallelization

strategies can jointly contribute to the implementation of a real-time system for

intelligent audio surveillance on edge embedded systems.

Appendix A. Biological motivation625

The sound pressure waves that hit our ears are directed to the cochlea mem-

brane in the inner auditory system. Different parts of the cochlea membrane

vibrate according to the energy of the frequency components of the sound pres-

sure waves [54]. A bank of Gammatone filters was proposed as a model of the

cochlea membrane, whose response over time forms a spectrogram-like image630

called Gammatonegram [37]. The membrane vibrations stimulate firing of in-

ner hair cells (IHC), which are neurons that lay behind the cochlea. The firing

activity of IHCs stimulates various fibers of the auditory nerve over time. We

consider the pattern of the IHC firing activity as a descriptor of the input sound.

Given a prototype sound, a COPE feature extractor models the pattern of635

points that describe the IHC firing activity. We consider the points of highest

local energy in the Gammatonegram as the locations at which the IHCs fire,

and the constellation that they form is a robust representation of the pattern

of interest. Hence, a COPE feature extractor is configured by modeling the

constellation of the peak points of the Gammatonegram of a prototype sound.640
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