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Abstract 27 

Due to their structurally efficient shape, spherical tanks are widely used in various industries to store 28 

massive amounts of compressed gas or fluid at high pressure. Cracks in such tanks can cause significant 29 

financial losses and human casualties. To diagnose the state of spherical tanks at an early stage, existing 30 

diagnostic frameworks include manual feature analysis from time, frequency, or time-frequency domains. 31 

However, these types of analyses require extensive domain expertise and the statistical feature extraction 32 

models are very sensitive to variable operating conditions. To address these issues, several deep learning-33 

based approaches where the feature analyses can be performed automatically have been introduced. 34 

Nevertheless, construction of these algorithms requires a substantial amount of prior knowledge and time 35 

to establish an optimal diagnostic model. To solve these problems, a crack diagnosis framework is proposed 36 

that combines a new signal-to-imaging technique and transfer learning-aided deep learning framework to 37 

automate the diagnostic process. The objective of the signal-to-imaging technique is to convert one-38 

dimensional (1D) acoustic emission (AE) signals from multiple sensors into a two-dimensional (2D) image 39 

to capture information under variable operating conditions. In this process, a short-time Fourier transform 40 

(STFT) is first applied to the AE signal of each sensor, and the STFT results from the different sensors are 41 

then fused to obtain a condition-invariant 2D image of cracks; this scheme is denoted as Multi-Sensors 42 

Fusion-based Time-Frequency Imaging (MSFTFI). The MSFTFI images are subsequently fed to the fine-43 

tuned transfer learning (FTL) model built on a convolutional neural network (CNN) framework for 44 

diagnosing crack types. The proposed diagnostic scheme (MSFTFI+FTL) is tested with a standard AE 45 

dataset collected from a self-designed spherical tank to validate the performance under variable pressure 46 

conditions. The results suggest that the proposed strategy significantly outperformed existing methods with 47 

average performance improvements of 5.39 - 10.82%.  48 

 49 
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1. Introduction 52 

Spherical tanks are commonly used in refineries, nuclear plants, and chemical industries to store massive 53 

amounts of gas or fluid at high pressure due to their structurally efficient shape [1]. A small accident in a 54 

spherical tank may result in the loss of millions of dollars and interruptions in operations, while a large 55 

accident can lead to the devaluation of a company’s stock price and bankruptcy [1,2]. The prevention of 56 

such hazardous incidents is of utmost concern since spherical tanks are mostly installed in environments 57 

with coarse operating conditions. Failures in these environments can occur due to stress, corrosion, fatigue 58 

cracks, leakage, lightning, and open flames  [3–5]. Fatigue cracks are one of the leading causes of spherical 59 

tank failure, and such an incident can lead to the spillage of enclosed substances [6–8].  Therefore, in this 60 

paper, a data-driven framework is proposed that combines a new signal-to-imaging technique for feature 61 

representation and deep learning to automate feature extraction and the crack classification process.  62 

Acoustic emission (AE) is a popular non-destructive test (NDT) for monitoring the structural health of 63 

spherical tanks since it can capture a very low-energy signal with information regarding a crack [9,10]. 64 

Existing crack diagnosis methods consist of three main steps: (1) handicraft feature extraction by analyzing 65 

acquired signals with information regarding structural health, (2) feature subset selection to determine the 66 

best set of features, and (3) detection and diagnosis of health states using shallow machine learning 67 

algorithms [9,10].  These approaches are mostly built upon the manual feature extraction process and 68 

traditional machine learning approaches that require an expert level of domain knowledge [9,10]. In [11], 69 

Morofuji et al. developed an AE-based technique to identify corrosion in a tank by analyzing the 70 

fundamental characteristics of AE waves. In [2],  Sohaib et al. analyzed the statistical properties of time- 71 

and frequency-domain AE signals to extract crack features with information on storage tank health 72 

conditions; the extracted features were further applied to a support vector machine (SVM) to diagnose crack 73 

types. In previous studies, the authors improved the formation of health indicators for cracks based on a 74 

statistical analysis of AE signals in the time and frequency domains [12,13]. However,  these approaches 75 

have two main limitations: (1) handicraft features are sensitive to variable operating conditions (e.g., 76 

different pressures, temperatures, etc.) and (2) the use of shallow machine learning techniques is restricted 77 

to the automation of a general diagnostic framework such as in the case of spherical tanks operating in an 78 

industrial setting.  79 

To address the first issue mentioned above, a new signal-to-imaging technique is developed that transforms 80 

a one-dimensional (1D) AE time-domain signal into a two-dimensional (2D) image based on a short-time 81 

Fourier transform (STFT). STFT is an effective time-frequency analysis method that can capture sensitive 82 

information changes in the AE signal of spherical tank health due to variable operating conditions [14]. To 83 

summarize the proposed signal-to-imaging technique, collected multi-sensor AE signals are first 84 

decomposed based on STFT to obtain time vs. frequency information. Next, the time vs. frequency 85 



information for each sensor is converted into a gray-scale image. Finally, all gray-scale images for the 86 

multi-sensors are fused to form a 2D image about the invariant crack health condition; this process is 87 

denoted as Multi-Sensor Fusion-based Time-Frequency Imaging (MSFTFI). MSFTFI produces a 2D image 88 

that contains information from different sensors and enables generalization to identify crack types under 89 

different pressure conditions. 90 

To address the second issue mentioned above, developed MSFTFI images are fed to a deep learning 91 

framework for diagnosing crack types under variable pressure conditions. A popular deep learning 92 

framework such as a convolution neural network (CNN) automates the feature extractor and/or diagnostic 93 

framework to accommodate the diverse nature of input data [15,16].  However, the CNN often requires that 94 

a new optimal network model be established for the classification task under variable operating conditions.  95 

Therefore, the CNN requires substantial time to establish an optimal architecture because deciding on the 96 

proper structures and training parameters is a complex process that is mostly dependent on prior human 97 

experience [17]. Fortunately, transfer learning (TL)-based approaches can inherit improvements from other 98 

pre-trained models using developed structures or learning parameters, which can mitigate the need for prior 99 

knowledge and save a significant amount of time [18–20]. In this paper, fine-tuned transfer learning (FTL) 100 

built on the CNN architecture is applied to automate the final diagnostic process. To build the FTL model, 101 

the MSFTFI images from one pressure condition of a collected AE dataset are first used for training; this 102 

is defined as a source task. Once the training is complete and the performance of the task is satisfactory, 103 

the acquired knowledge is passed to the target task. In the target task, the MSFTFI images for different 104 

pressure conditions are fed to the learned CNN in the FTL framework. The proposed diagnostic framework 105 

(MSFTFI +FTL) was tested on an AE dataset collected from multiple sensors of a spherical tank to validate 106 

performance. The contributions of the proposed scheme can be briefly summarized as follows: 107 

(1) A new signal-to-imaging technique that applies a short-time Fourier transform on 1D AE signals 108 

and combines the results of the STFT from multiple sensors to obtain a condition-invariant 2D 109 

crack image (i.e., MSFTFI).  110 

(2) The 2D MSFTFI images are further applied with transfer learning built on a convolutional neural 111 

network architecture to automate the feature extraction and classification processes. 112 

(3) A fine-tuned transfer learning (FTL) model to enhance the classification performance under 113 

variable pressure conditions. FTL transfers learned parameters among the CNN models to obtain 114 

a fine-tuned model through a knowledge sharing process. The FTL diminishes the need for 115 

adjusting CNN architectures with different parameters for various working conditions. 116 

The remainder of this paper is organized as follows: Section 2 provides background knowledge of the 117 

STFT, CNN, and FTL that is relevant to the proposed diagnostic framework. The overall scheme of the 118 



proposed approach and the self-designed experimental test setup are described in Section 3. Experimental 119 

results are discussed in Section 4, and conclusions are presented in Section 5. 120 

2. Preliminaries 121 

This section highlights technical information regarding the short-time Fourier transform, convolutional 122 

neural network, and the fundamentals of transfer learning. 123 

2.1 Short–Time Fourier Transform 124 

Time-domain or frequency-domain analysis is frequently utilized to observe the health state of different 125 

industrial equipment. However, neither of these methods can portray signal variations in the association 126 

between time and frequency domains. In practical cases, most signals acquired from equipment (e.g., 127 

spherical tanks) are non-stationary in nature. Therefore, time-frequency analysis meets the challenges of 128 

evaluating such signals in the shape of an image [17]. Furthermore, the features of an image directly impact 129 

the final detection accuracy of deep learning-based algorithms. Hence, it is of immense significance to 130 

investigate methods for time-frequency based analysis. 131 

STFT is a time-frequency-based decomposition technique that is effective for analyzing non-stationary 132 

time-varying signals. Such an analysis allows 1D heath condition signals to be transformed into 2D matrices. 133 

Thus, STFT contributes to the processing of deep learning-based algorithms by providing  2D matrices [14]. 134 

The key concept of STFT is to utilize a static-length window function to capture the total time-varying 135 

signals in a smaller time, t , and process each of the captured parts with a Fourier transform to obtain a local 136 

spectrum. This way, the feature spectrum of the STFT contains information from the time and frequency 137 

domains. The basic formula of the 2D STFT function can be expressed as follows: 138 

( ){ }( ) ( ) ( ), jwtSTFT x t t w x fr F fr t e ds
∞

−

−∞

= −∫  
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where ( )x t  is the signal from the time domain, t  and fr indicate time, w is the frequency, and 139 

( )F fr t−  is the window function. Here, ( )F fr t− regulates the time and frequency resolution of the 140 

calculated spectrum. A longer window length describes the spectrum with a higher frequency and lower 141 

time resolution after calculating the Fourier transform. Thus, the window size must be carefully chosen for 142 

a better analysis [14]. 143 

2.2 Convolutional Neural Network Architecture 144 

CNN is a deep neural network primarily constructed with an input layer, several convolution layers, pooling 145 

layers, a few fully connected layers, and one final classification layer [19,21]. One of benefits of CNN is 146 

the sparse number of attributes, which decreases the number of learning parameters (i.e., weights and biases) 147 

when compared to conventional artificial neural networks (ANN) [21]. Several optimization constraints, 148 



including dropout, batch normalization (BN), and rectified linear units (ReLUs), are also utilized for 149 

incorporation into the main architecture of the basic CNN to improve classification performance [22–24]. 150 

2.2.1 Convolution Layers 151 

Several convolution strategies have been presented in the literature. All types of convolution operations 152 

were primarily utilized for feature mapping to extract the attributes of an input image to the network through 153 

their shared weight properties. A valid convolution, which is a convolution operation without any kind of 154 

padding on the provided input to the network, is frequently preferred in CNN architectures [17]. 155 

Padding is known as the preprocessing step before the convolution operation. For example, if the network 156 

has an input A  of an m m× image and there is convolution filter F  with a size of f f× , the output matrix 157 

of the valid convolution can be calculated as: 158 

( )* 1 1n f n fA F
s s
− −   = + × +      
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where s is the number of vertical and horizontal steps that the filter F takes over the provided input image 159 

A , and the ( )*  operator represents the convolution operation. Finally, the Rectified Linear Unit (ReLU) 160 

activation function is adopted to finalize the output of the CNN. The overall process of this convolution 161 

operation can be expressed as: 162 
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Here, A BX R ×∈  refers to the input of the convolution layer, where the dimension of the input image is 163 

A B× ; cnW  and cnB are the weight matrix and bias, respectively, and f is the ReLU activation function. 164 

Thus, the cn th feature map output cnY is obtained. 165 

2.2.2 Pooling Layers 166 

A down-sampling layer, known as a pooling layer, generally supports each convolutional layer. The 167 

objective of the pooling architecture is to decrease both the number of spatial factors and the computational 168 

load. Therefore, it is useful to lessen the over-fitting probability. In this study, max pooling [25], which can 169 

yield a maximum value of the convolutional output cnY , is adopted as follows: 170 

( )cn cnPL max Y=  (5) 

The CNN usually incorporates numerous sequences of convolution and pooling layers. Consequently, many 171 

fully connected layers proceed layer by layer, which transforms the matrix in a filter to a column or row. 172 



Lastly, a SoftMax [26] function is applied to approximate the probability of every target in the final output 173 

layer. 174 

2.2.3 Objective Function 175 

The main objective of the CNN is to reduce the training error. That is to say, the difference between the 176 

actual output kY and predicted output AkY must be minimized by the network. To minimize error, the 177 

following cost function is adopted: 178 

( ) ( )2

1

1
2
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k
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where m is the quantity of neurons, and p denotes the p -th iterative steps. The objective of the CNN is 179 

to lessen the cost function ( )E n  via backpropagation and stochastic gradient descent (GD) [27].  180 

2.3 Transfer Learning with CNN 181 

The main goal of transfer learning is to transfer the knowledge acquired from a specific source task to 182 

another new (different but relatively similar) target task in order to improve the performance of the target 183 

task [18,20]. Fine-tuning-based transfer learning (FTL) is one of the key factors in this process [17]. In the 184 

FTL approach, the parameters, weights, and network structure of one specific task are transferred to the 185 

related task. For example, in the source task, the final output of the CNN after completion of the training 186 

with source data can be attained as follows: 187 

( ),s s s sCNN f I E=  (7) 

where sI refers to the input source data, sE is the objective function, and sf  is the mapping function of the 188 

source task. Similarly, the output of the target domain can be obtained as follows: 189 

( ),T T T TCNN f I E=  (8) 

where TI refers to the input source data, TE  is the objective function, and Tf  is the mapping function of 190 

the source task. In this approach, the network learns the correlated properties in the source task by first 191 

attaining the mapping function sf . It then transfers sf to the target domain and obtains Tf . Hence, the 192 

main objective of FTL is to improve the learning process of the target domain by utilizing the acquired 193 

knowledge of the source domain. 194 

3. Proposed Methodology 195 

The main purpose of this study is to diagnose crack types in spherical tanks under variable pressure 196 

conditions based on a new signal-to-imaging technique and a fine-tuned transfer learning algorithm. Figure 197 

1 presents a block diagram of the proposed methodology. 198 



 199 
Figure 1: The proposed diagnostic framework for a spherical tank based on transfer learning. 200 

As depicted visually in the figure, the proposed method is composed of three main steps: 201 

(1) Source task: From the original testbed of the spherical tank, data for a pressure of zero (0) bar are 202 

collected. The collected 1D acoustic emission signals from multiple sensors are transformed into a 203 

2D image (MSFTFI). MSFTFI allows for visualization of the health conditions of the spherical 204 

tank, which are later passed on to the CNN in the FTL framework for optimization of network 205 

parameters. 206 

(2) Transfer block: The knowledge assembled from the source task mainly passes to the target network 207 

for boosting the performance of the target task by optimizing the parameters of the target network. 208 

(3) Target task: From the testbed, the AE signals for 1 bar of pressure are converted into an MSFTFI 209 

image for testing the final model used for classifying different health states. 210 



3.1 Self-Designed Testbed for AE Data 211 

An experiment is performed on a self-designed test bed to collect AE signals from multiple sensors of a 212 

spherical tank. The data acquisition (DAQ) system is developed according to industrial standards offered 213 

in the American Society of Mechanical Engineers (ASME) Boiler & Pressure Vessel Code (BPVC) – 214 

version 2015. A carbon steel (model A283, grade C) spherical tank is utilized to collect AE signals. Here, 215 

4 WDI-AST [28] sensors with -25 dB peak sensitivity are attached to the carbon steel tank. The location of 216 

a 3 mm pinhole crack and locations of the AE sensors are presented in Figure 2. 217 

 218 
Figure 2: Schematic diagram of the self-designed test rig of a spherical tank. 219 

For collecting data through multiple channels (AE sensors) at two different pressures (0 and 1 bar), a pencil 220 

lead test was conducted to produce a guided wave through the structure of the steel tank. A peripheral 221 

component interconnect bus (PCI-2) based DAQ device [29] was attached to the AE sensors to record the 222 

AE signals for further analysis. Data were collected with a sampling frequency of 1 MHz 223 

3.2 Multi-Sensor Fusion-Based Time-Frequency Imaging (MSFTFI) 224 

Data preprocessing plays an important role in the neural network-based data-driven diagnostic framework 225 

[30–32]. Here, MSFTFI is proposed for the preprocessing of AE signals from multiple sensors. In the 226 

MSFTFI framework, raw time-domain AE signals from four separate sensors are first decomposed via 227 

STFT. Thus, information from both the time and frequency domains are present in the STFT images of 228 

each sensor. The resulting matrices of the STFT images are then converted into gray-scale images. These 229 

gray-scale images must be compressed to meet the input size constraint of the proposed CNN architecture 230 

[17]. Therefore, each gray-scale image from the four separate sensors are compressed into 256 256×  231 

dimensions. Finally, the compressed gray-scale images are fused according to sensor to form the final 232 

MSFTFI image with a dimension of 256 256 4× × . The overall MSFTFI process is displayed in Figure 3. 233 

 234 



 235 
Figure 3: Flowchart of the multi-sensor fusion-based time-frequency imaging process using short-time Fourier 236 
transform analysis. 237 

3.3 Convolutional Neural Network Architecture 238 

The prepared MSFTFI images are used as inputs in the proposed CNN architecture. While carrying out the 239 

source task (Figure 1), input data are fed to the network to optimize network parameters by minimizing the 240 

objective function (Equation 6). The proposed CNN architecture is illustrated in Figure 4. 241 

 242 
Figure 4: Proposed architecture of the convolutional neural network. 243 

As shown in Figure 4, the proposed architecture has 10 layers: 1 input layer, 2 convolution layers, 2 pooling 244 

layers, 2 dropout layers, 2 fully connected layers, and 1 final output layer. The size of the input layer is 245 

256 256 4× ×  (the size of MSFTFI image), while the size of the convolution kernel is 3 3× to improve 246 

model training efficiency by reducing the number of parameters. The C1 and C2 convolution layers have 247 

64 and 32 filters, respectively. The size of the C1 layer is down sampled by pooling layer P1. Similarly, the 248 

size of the C2 layers is down sampled by layer P2. The fully connected layer F1 combines all feature maps 249 



of the C2 layer into a 1D form. Another fully connected layer F2 helps the output layer classify the input 250 

data into desired categories. The valid convolution technique utilized in this study allows the size of the 251 

feature maps to remain unchanged. Furthermore, the 2 dropout layers allow the network to generalize data 252 

for reducing the over-fitting problem [22,24]. 253 

3.4 Fine-Tuned Transfer Learning Framework 254 

FTL built on CNN is adopted for measuring diagnostic performance. As described in Figure 1, the proposed 255 

CNN architecture is designed and fine-tuned by minimizing the objective function for the source task. Next, 256 

the fine-tuned model with learned parameters and optimized weights are transferred to the target task. 257 

Finally, in the target domain the model is adjusted and fine-tuned with the dataset of the target task. This 258 

way, the fine-tuned target neural model can attain better diagnostic performance [33]. It is important to 259 

mention that both sets of data (data from the source and target domains) are acquired from the same 260 

experimental testbed with similar acquisition approaches by varying the pressure conditions. The 261 

components of the proposed CNN with specifics regarding the transferrable layers are presented in Table 262 

1. 263 

Table 1. Elements of the proposed CNN with transfer measurements for the target network. 264 

Layers Parameters Observations Height Width Depth 
Parameters 

Trainable 
Transfer 

Input  
Preprocessed 

Signals 
256 256 4   

Convolution 1 

Kernel Size Filter 3 3  

Yes Yes 
Padding Zero    

Depth Filter number   64 

Output  256 256 64 

Pool 1 

Kernel Size Filter 3 3  

No Yes Padding Zero    

Output  85 85 64 

Dropout Output  85 85 64 No Yes 

Convolution 2 

Kernel Size Filter 3 3  

Yes 

 
Yes 

Padding Zero    

Depth Filter number   32 

Output  85 85 32 

Pool 2 

Kernel Size Filter 3 3  

No Yes Padding Zero    

Output  28 28 32 

Dropout Output  28 28 32 No Yes 

FC 1 Nodes Flatten into 1D 128   Yes No 

FC 2 Nodes Flatten into 1D 64   Yes No 



SoftMax Nodes Flatten into 1D 2   Classify No 

4. Experimental Verification and Discussion 265 

In this section, the proposed diagnostic framework (MSFTFI+FTL) is validated using data collected from 266 

a real-world spherical tank. 267 

4.1 Dataset Description 268 

The standard multi-sensor AE dataset of a spherical tank is utilized to conduct the experimental test. A 0.1 269 

second signal with a 1 MHz sampling frequency is considered [12]. Two different pressure conditions (0 270 

and 1 bar) are employed to record 1000 signals from each health condition (i.e., normal, and faulty). 271 

Descriptions of the datasets are provided in Table 2. 272 

Table 2.  Specifics of the datasets for the spherical tank. 273 

 

 Health Type 

Crack Size (mm) 

Sensors Pressure 

(Bar) 

Number of 

Samples 
Length 

(mm) 

Width 

(mm) 

Depth 

(mm) 

Dataset 1 
Normal Condition (NC) N/A N/A N/A 4 0 1000 

Faulty Condition (FC) 3 0.5 0.4 4 0 1000 

Dataset 2 
Normal Condition (NC) N/A N/A N/A 4 1 1000 

Faulty Condition (FC) 3 0.5 0.4 4 1 1000 

4.2 MSFTFI-Based Performance Visualization of Cracks 274 

In Figure 5, the results of the STFT analysis for two datasets with different health conditions are presented. 275 

According to the results in the figure, it is observed that in the normal condition (NC) for both datasets, the 276 

highest distributions of energy are concentrated into very similar frequency bands for all sensors. Similarly, 277 

when a fault occurs in both datasets, a few more significant energies bands are observed in certain frequency 278 

ranges. As depicted in Figure 5 for the NC, a strong energy distribution can be observed within a similar 279 

range for all sensors under all pressure conditions. Similarly, for the faulty condition (FC) the energy 280 

distribution is quite comparable for all sensors. A sample signal from the NC (sensor 1, pressure of 1 bar) 281 

is shown in Figure 6(a) to better illustrate the time, frequency, and attained time-frequency domains by 282 

STFT. In the  frequency domain, two frequencies contain higher energies than the others. Therefore, in the 283 

STFT analysis, a strong energy distribution on those specific frequencies is observed with respect to time. 284 

As shown in Figure 6(b), a sample from the FC (sensor 1, pressure of 1 bar) has also been considered. From 285 

the attained frequency domain of this sample, it is observed that, when compared to the NC, few other 286 

frequency bands contain a higher energy distribution with respect to time. 287 



 288 
Figure 5: Short-time Fourier transform (STFT) images of different sensors at various health conditions. 289 

 290 
Figure 6: (a) Time, frequency, and time-frequency domain analysis of the sample considered from the normal 291 
condition (sensor 1, 1 bar of pressure) and (b) time, frequency, and time-frequency domain analysis of the sample 292 
considered from the faulty condition (sensor 1, 1 bar of pressure). 293 



The extracted STFT images from all sensors (depicted into Figure 5) are fused together channel-wise 294 

(details are described into Section 3.2) to form the final MSFTFI image. Finally, the MSFTFI images are 295 

supplied to the proposed FTL-embedded CNN architecture for a final diagnosis.  296 

4.3 FTL-Based Diagnostic Performance Analysis 297 

The proposed MSFTFI framework is very useful for visualizing the state of the spherical tank. To further 298 

utilize the full benefits of MSFTFI images, FTL is proposed to diagnosis cracks in the spherical tanks under 299 

variable pressure conditions. To validate the proposed MSFTFI+FTL method, the dataset is divided into 300 

training and testing categories. Two scenarios were employed in this experiment. In scenario 1, dataset 1 is 301 

used for training the improved CNN architecture to gather knowledge as the source task. For this case, 70% 302 

of the data is utilized for training, 20% is employed for validation, and 10% is used for testing network 303 

performance before sharing the acquired knowledge with the target task. Next, dataset 2 is fed to the target 304 

task for final diagnosis using the shared knowledge learned from the source task. From dataset 2, 20% of 305 

the data is first used for adjusting the target network with shared knowledge from the source task. 306 

Consequently, the remaining 80% of the data is passed to the network for diagnostic purposes. Similarly, 307 

for scenario 2, dataset 2 is employed for the source task and dataset 1 is considered for the target task. To 308 

train, test, and validate all cases, 10-fold cross validation is used to remove bias from the diagnosis result 309 

[19]. For measuring diagnostic performance, the sensitivity score (SN) and average class sensitivity (avcSN) 310 

are calculated. The SN is calculated as follows [19]: 311 

_ 100%
_ _

true positiveSN
true positive false negetive

= ×
+

 (9) 

where the term “true positive” refers to correctly classified samples from the provided test data to the 312 

network at every iteration, while the term “false negative” refers to the number of samples from a class that 313 

are wrongly classified. The avcSN can be obtained as follows: 314 

_
SNavcSN

total classes
∑=  (10) 

where SN∑  is a summation of the class-wise accuracy for the target dataset. To clarify the pressure 315 

variation situation, 2 scenarios are considered to measure diagnostic performance. In scenario 1, dataset 1 316 

is considered as the source task and dataset 2 as the target task. The improved CNN is first trained and 317 

validated with dataset 1. After attaining 100% accuracy for both the training and validation data considered 318 

from dataset 1, the acquired knowledge is transferred to the target task. The performance of this training 319 

stage is illustrated in Figure 7(a), while the performance of the target task with dataset 2 is demonstrated in 320 

Figure 7(b) over 600 epochs. In a similar way, for scenario 2, dataset 2 is first considered as the source task 321 

to train and validate the network architecture, and the network parameters and architecture are subsequently 322 

used in the target domain to verify the diagnostic performance with dataset 1. The diagnostic performances 323 



of the proposed framework are listed in Table 3. According to the results in Table 3, the diagnostic 324 

performances are 100%  both scenarios.  325 

Table 3.  Diagnostic performance of the proposed framework. 326 
Scenario Target Domain Source Domain Sensitivity (SN) % Average Class 

Sensitivity 

(avcSN) % NC FC 

1 Dataset 1 Dataset 2 100 100 100 

2 Dataset 2 Dataset 1 100 100 100 

Average (%) 100 100 100 

 327 

 328 
Figure 7: (a) Training vs. validation accuracy for the source domain (scenario 1: dataset 1) and (b) testing accuracy 329 
with transfer learning for the target domain (scenario 1: dataset 2). 330 

 331 
Figure 8: (a) Confusion matrix of scenario 1 (target task 1: dataset 2), (b) confusion matrix of scenario 2 (target task 332 
2: dataset 1), (c) learned feature space of the proposed network in the target task (target task 1: dataset 2), and (d) 333 
learned feature space of the proposed network in the target task (target task 2: dataset 1). 334 



To further validate the maximum diagnostic performance, the results of the confusion matrix [34] and 335 

feature space (visualized by t-stochastic neighbor embedding, t-SNE) final layer of FTL for the target 336 

domain in both scenarios are provided. The confusion matrix depicts the classification performance in the 337 

form of actual verse-predicted deviation. According to the results in Figure 8, the confusion matrix perfectly 338 

classifies all fault types with no error. Furthermore, the t-SNE-based feature distribution for both crack 339 

classes (NC, FC) are clearly separable, which also ensures better diagnostic performance.  Besides, to 340 

confirm the efficiency of the proposed framework, several experiments are carried out. A diagnostic 341 

comparison between the FTL-embedded CNN and the CNN without FTL is performed. For this experiment, 342 

the CNN is trained with 20% of dataset 2 for scenario 1; the remaining data are used for testing performance. 343 

The train vs. test ratio has been kept constant to facilitate a comparison of diagnostic performance on a 344 

similar scale. From Figure 9(a), it is shown that the improved CNN without FTL does not perform as well 345 

(80.2% accuracy) as the proposed framework in the training phase. As displayed in Figure 9(b), the FTL-346 

embedded CNN (proposed framework) can learn faster during the training phase. 347 

 348 
Figure 9: (a) The training accuracy typically achieved with dataset 2 (without TL, where train: test = 20:80) and (b) 349 
comparison of training accuracy for the two approaches (with and without FTL). 350 

To demonstrate the robustness of the devised framework, the performance of the proposed method is 351 

compared to that achieved with two state-of-art approaches, namely (1) RAW+TL-CNN: a TL-based 352 

method where a raw 1D signal from a single sensor is fed to the network for measuring diagnostic 353 

performance [33] and (2) FE+k-NN: a traditional feature extraction-based approach where statistical 354 

features are first extracted from single-sensor data and a k-nearest neighborhood (k-NN) algorithm is used 355 

for the final diagnosis after reducing the features by principal component analysis (PCA)  [35]. Details 356 

regarding the comparison results are presented in Table 4. 357 

Table 4. Diagnostic performance comparison 358 
Sensitivity (SN) % 



Scenario Method 
NC FC Average Class  

Sensitivity 
(avcSN) % 

Improvement 
(%) 

1 Proposed 100 100 100 - 

RAW+TL-CNN [33] 93.82 94.91 94.37 5.64 

FE+k-NN [35] 89.21 90.23 89.72 10.82 

2 Proposed 100 100 100 - 

RAW+TL-CNN [33] 93.62 95.61 94.62 5.39 

FE+k-NN [35] 90.57 91.21 90.89 9.11 

The comparison findings show that the proposed framework (MSFTFI+FTL) clearly outperformed two 359 

state-of-the-art methods, yielding average performance improvements of 5.64 -10.82% and 5.39 - 9.11% 360 

for scenarios 1 and 2, respectively. The impact of noisy data on the diagnostic performance was also 361 

explored. Gaussian white noise with a signal to noise ratio (SNR) of 10 dB is added into test samples of the 362 

target task to simulate data with supplementary background noise. All comparable methods and the 363 

proposed scheme were first trained on original AE data in the source task. This was followed by testing and 364 

validation on noisy data created for the target task. The diagnostic performances of the proposed and 365 

comparable methods are listed in Figure 10. 366 

 367 
Figure 10: Impact of noisy data on classification performance. 368 

From Figure 10, it can be stated that the diagnostic performance of all methods degrades due to the noisy 369 

dataset. However, the performance of the proposed framework is still better than that of the other two 370 

approaches considered for comparison.  371 



5. Conclusion 372 

This paper introduced a multi-sensor fusion-based imaging technique combined with fine-tuned transfer 373 

learning (FTL) built on a convolutional neural network (CNN) framework that augments a new diagnostic 374 

approach for spherical tank structural health monitoring. By incorporating a deep learning-based 375 

architecture with short-time Fourier transform (STFT) analysis, the proposed method makes full use of the 376 

capability of STFT to process non-stationary multi-sensory acoustic emission (AE) signals and enable an 377 

end-to-end diagnosis without handcrafted feature analysis. Data collected from a self-designed test rig are 378 

utilized to validate the diagnostic performance of the proposed approach. Experimental findings imply that 379 

the proposed approach can significantly enhance diagnostic performance and enable more rapid converging 380 

when compared to basic CNN-based models. The experimental results also indicate that the proposed 381 

framework (MSFTFI+FTL) clearly outperformed two state-of-the-art methods, yielding significant 382 

performance improvements.  383 

At present, the proposed approach is confined to the fixed time-frequency resolution of STFTs. MSFTFI 384 

images with adaptive time-frequency resolution will be considered as inputs in future work. While the 385 

current framework belongs to the supervised learning paradigm, meaning that health states must be labeled 386 

in advance, the unsupervised learning paradigm could be a fascinating direction for future studies. Lastly, 387 

an assessment of the usefulness of the developed diagnostic framework will be performed for relevant 388 

applications such as boiler tubes, cylindrical pumps, and pipeline fault diagnosis. 389 
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