16 research outputs found

    Learning and Reasoning Strategies for User Association in Ultra-dense Small Cell Vehicular Networks

    Get PDF
    Recent vehicular ad hoc networks research has been focusing on providing intelligent transportation services by employing information and communication technologies on road transport. It has been understood that advanced demands such as reliable connectivity, high user throughput, and ultra-low latency required by these services cannot be met using traditional communication technologies. Consequently, this thesis reports on the application of artificial intelligence to user association as a technology enabler in ultra-dense small cell vehicular networks. In particular, the work focuses on mitigating mobility-related concerns and networking issues at different mobility levels by employing diverse heuristic as well as reinforcement learning (RL) methods. Firstly, driven by rapid fluctuations in the network topology and the radio environment, a conventional, three-step sequence user association policy is designed to highlight and explore the impact of vehicle speed and different performance indicators on network quality of service (QoS) and user experience. Secondly, inspired by control-theoretic models and dynamic programming, a real-time controlled feedback user association approach is proposed. The algorithm adapts to the changing vehicular environment by employing derived network performance information as a heuristic, resulting in improved network performance. Thirdly, a sequence of novel RL based user association algorithms are developed that employ variable learning rate, variable rewards function and adaptation of the control feedback framework to improve the initial and steady-state learning performance. Furthermore, to accelerate the learning process and enhance the adaptability and robustness of the developed RL algorithms, heuristically accelerated RL and case-based transfer learning methods are employed. A comprehensive, two-tier, event-based, system level simulator which is an integration of a dynamic vehicular network, a highway, and an ultra-dense small cell network is developed. The model has enabled the analysis of user mobility effects on the network performance across different mobility levels as well as served as a firm foundation for the evaluation of the empirical properties of the investigated approaches

    Terminal cooperation in next generation wireless networks: aerial and regional access networks

    Get PDF
    Throughout the years, progress of humankind has depended on the power of communication and over the decades, the ways of communication has witnessed mammoth changes. Specifically wireless communication in the last decade has completely revolutionized the way we communicate with each other. Smartphones have become an ubiquitous part of our life. With most operators throughout the world deploying fourth generation wireless communication systems, peculiar use cases and scenarios are being envisioned such as public safety networks, aerial networks, etc. to be addressed by the next generation wireless systems. Moreover, as urban areas are becoming saturated commercial network operators are looking for business cases to move towards the untapped regional areas. However, to deploy networks in regional areas economically, novel technologies and architectures need to be developed and investigated. In this thesis, we study the novel concept of terminal cooperation in the context of next generation wireless communication systems especially looking into aerial and regional access networks. In the first part of the thesis, we investigate the physical radio channel for device-to-device (D2D) communication which would help in enabling terminal cooperation in wireless networks. Specifically, we propose propagation model for D2D in rural areas using 922 MHz and 2466 MHz, a channel model for vehicular communications using 5.8 GHz and a propagation model for D2D using millimetre wave frequencies. In the second part of the thesis, we evaluate the coverage performance of aerial access networks using different technologies and develop algorithms to enhance the coverage using terminal cooperation in regional access networks. Specifically, we evaluate the performance of two different technologies, LTE and WiFi, in aerial access networks. We propose game-theoretic algorithms to enable terminal cooperation to enhance coverage in regional access networks and perform system level simulation to evaluate the proposed algorithms. In the last part of this thesis, we analyse and develop techniques to enhance energy efficiency in aerial access networks using terminal cooperation. Specifically, we propose a clustering algorithm called EECAN which improves the energy efficiency of the terrestrial nodes accessing the aerial base-station, a clustering algorithm based on Matern Hardcore Point Process which allows us to optimize cluster head spacing analytically and we further enhance this algorithm by including impairments introduced by the wireless channel. Throughout this thesis, we verify and validate our analytic results, algorithms and techniques with Monte-Carlo simulations of the considered scenarios. Most of the work presented in this thesis was published in-part or as a whole in conferences, journals, book-chapters, project reports or otherwise undergoing a review process. These publications and reports are highlighted in the course of the thesis. Lastly, we invite the reader to enjoy exploring this thesis and we hope that it will add more understanding to this promising new technology of terminal cooperation in aerial and regional access networks

    A Survey on 5G Usage Scenarios and Traffic Models

    Get PDF
    The fifth-generation mobile initiative, 5G, is a tremendous and collective effort to specify, standardize, design, manufacture, and deploy the next cellular network generation. 5G networks will support demanding services such as enhanced Mobile Broadband, Ultra-Reliable and Low Latency Communications and massive Machine-Type Communications, which will require data rates of tens of Gbps, latencies of few milliseconds and connection densities of millions of devices per square kilometer. This survey presents the most significant use cases expected for 5G including their corresponding scenarios and traffic models. First, the paper analyzes the characteristics and requirements for 5G communications, considering aspects such as traffic volume, network deployments, and main performance targets. Secondly, emphasizing the definition of performance evaluation criteria for 5G technologies, the paper reviews related proposals from principal standards development organizations and industry alliances. Finally, well-defined and significant 5G use cases are provided. As a result, these guidelines will help and ease the performance evaluation of current and future 5G innovations, as well as the dimensioning of 5G future deployments.This work is partially funded by the Spanish Ministry of Economy and Competitiveness (project TEC2016-76795-C6-4-R)H2020 research and innovation project 5G-CLARITY (Grant No. 871428)Andalusian Knowledge Agency (project A-TIC-241-UGR18)

    Connected vehicles for internet access: deployment and spectrum policies

    Get PDF
    Internet traffic from mobile users has been growing sharply. To meet the needs of thoseusers, it is important to expand capacity of networks that provide Internet access in cost effectiveways. This capacity has traditionally been provided by cellular networks. However,expanding the capacity of those networks alone may not be the most cost-effective way to meetthe present and future growth of mobile Internet under some circumstances. In this dissertation,we show that networks of connected vehicles can be an important way to complement thecapacity of cellular networks to provide mobile Internet access under several scenarios.Connected vehicles may soon be widely deployed, forming mesh networks of short-rangeconnections among vehicles and between vehicles and roadside infrastructure. Theseconnections are collectively referred to as vehicle-to-everything, or V2X. Deployment ofconnected vehicles and infrastructure is primarily intended to enhance road safety, and the U.S.Department of Transportation has recently proposed a mandate of V2X devices in vehiclesusing Dedicated Short Range Communications (DSRC) technology. Other applications are alsoenvisioned that include Internet access in vehicles connecting to roadside infrastructure servingas gateways to the Internet.In this work, we find that V2X-based networks are more cost-effective than cellular toprovide Internet access, in scenarios which DSRC devices are mandated in vehicles to enhanceroad safety. This is true initially for densely populated urban areas, but over time V2X-basednetworks would be cost-effective in less populated areas as well, as long as Internet traffic orpenetration of V2X devices grow as expected.Local and state governments are expected to deploy roadside infrastructure for safetyapplications. If that infrastructure is shared with Internet Service Providers for a fee, then V2XABSTRACT based networks are cost-effective in locations with even lower population densities than thelocations where it is cost-effective to deploy infrastructure for Internet access only. Moreover,the sharing fee could help governments save in infrastructure costs. We find the pricingstrategies that maximize either cost-effectiveness or government savings. We estimate thatgovernments could save about one-fifth of the total cost to deploy safety infrastructurenationwide in the U.S., if fees are set to maximize government savings. Although we find thatthese prices may differ from the pricing strategy that maximizes cost-effectiveness, maximizinggovernment savings results in near-optimal cost-effectiveness.The U.S. Federal Communications Commission has allocated 75 MHz of spectrum to beused exclusively by DSRC devices, and it has been hotly debated whether all or part of thatbandwidth should be shared with unlicensed devices. We find that it is highly efficient to shareany spectrum allocated to V2X communications beyond the portion of that spectrum that isneeded for safety-critical DSRC messages. V2X and unlicensed devices require up to 50% lessbandwidth on shared spectrum to achieve given throughputs, compared to V2X and unlicenseddevices using separate bands. We conclude that the spectrum available for V2X should bemaintained or increased, as long as much of that spectrum is shared with non-V2X devices.Conclusions are derived from an engineering-economic approach, in which part of theassumptions are based on data from a citywide deployment of connected vehicles in Portugal.The data is used in a detailed and realistic packet-level simulation model of V2X-basednetworks used to provide Internet access with DSRC technology. In some scenarios, thesimulation also includes unlicensed devices using Wi-Fi technology. The results of the networksimulation are then fed into engineering-economic models to compare costs of V2X-basednetworks with costs of macrocellular networks to carry given amounts of Internet traffic, and toestimate other measures such as government revenues and spectrum usage. Those measureshelp inform decisions about where and when to deploy V2X-based networks, decisions about whether and how to promote public-private partnerships to deploy V2X infrastructure, anddecisions about sharing spectrum used for V2X communications with non-V2X devices. <br

    Towards reliable geographic broadcasting in vehicular networks

    Get PDF
    In Vehicular ad hoc Networks (VANETs), safety-related messages are broadcasted amongst cars, helping to improve drivers' awareness of the road situation. VANETs’ reliability are highly affected by channel contention. This thesis first addresses the issue of channel use efficiency in geographical broadcasts (geocasts). Constant connectivity changes inside a VANET make the existing routing algorithms unsuitable. This thesis presents a geocast algorithm that uses a metric to estimate the ratio of useful to useless packet received. Simulations showed that this algorithm is more channel-efficient than the farthest-first strategy. It also exposes a parameter, allowing it to adapt to channel load. Second, this thesis presents a method of estimating channel load for providing feedback to moderate the offered load. A theoretical model showing the relationship between channel load and the idle time between transmissions is presented and used to estimate channel contention. Unsaturated stations on the network were shown to have small but observable effects on this relationship. In simulations, channel estimators based on this model show higher accuracy and faster convergence time than by observing packet collisions. These estimators are also less affected by unsaturated stations than by observing packet collisions. Third, this thesis couples the channel estimator to the geocast algorithm, producing a closed-loop load-reactive system that allows geocasts to adapt to instantaneous channel conditions. Simulations showed that this system is not only shown to be more efficient in channel use and be able to adapt to channel contention, but is also able to self-correct suboptimal retransmission decisions. Finally, this thesis demonstrates that all tested network simulators exhibit unexpected behaviours when simulating broadcasts. This thesis describes in depth the error in ns-3, leading to a set of workarounds that allows results from most versions of ns-3 to be interpreted correctly

    Performance evaluation of future wireless networks: node cooperation and aerial networks

    Get PDF
    Perhaps future historians will only refer to this era as the \emph{information age}, and will recognize it as a paramount milestone in mankind progress. One of the main pillars of this age is the ability to transmit and communicate information effectively and reliably, where wireless radio technology became one of the most vital enablers for such communication. A growth in radio communication demand is notably accelerating in a never-resting pace, pausing a great challenge not only on service providers but also on researches and innovators to explore out-of-the-box technologies. These challenges are mainly related to providing faster data communication over seamless, reliable and cost efficient wireless network, given the limited availability of physical radio resources, and taking into consideration the environmental impact caused by the increasing energy consumption. Traditional wireless communication is usually deployed in a cellular manner, where fixed base stations coordinate radio resources and play the role of an intermediate data handler. The concept of cellular networks and hotspots is widely adopted as the current stable scheme of wireless communication. However in many situations this fixed infrastructure could be impaired with severe damages caused by natural disasters, or could suffer congestions and traffic blockage. In addition to the fact that in the current networks any mobile-to-mobile data sessions should pass through the serving base station that might cause unnecessary energy consumption. In order to enhance the performance and reliability of future wireless networks and to reduce its environmental footprint, we explore two complementary concepts: the first is node cooperation and the second is aerial networks. With the ability of wireless nodes to cooperate lays two main possible opportunities; one is the ability of the direct delivery of information between the communicating nodes without relaying traffic through the serving base station, thus reducing energy consumption and alleviating traffic congestion. A second opportunity would be that one of the nodes helps a farther one by relaying its traffic towards the base station, thus extending network coverage and reliability. Both schemes can introduce significant energy saving and can enhance the overall availability of wireless networks in case of natural disasters. In addition to node cooperation, a complementary technology to explore is the \emph{aerial networks} where base stations are airborne on aerial platforms such as airships, UAVs or blimps. Aerial networks can provide a rapidly deployable coverage for remote areas or regions afflicted by natural disasters or even to patch surge traffic demand in public events. Where node cooperation can be implemented to complement both regular terrestrial coverage and to complement aerial networks. In this research, we explore these two complementary technologies, from both an experimental approach and from an analytic approach. From the experimental perspective we shed the light on the radio channel properties that is hosting terrestrial node cooperation and air-to-ground communication, namely we utilize both simulation results and practical measurements to formulate radio propagation models for device-to-device communication and for air-to-ground links. Furthermore we investigate radio spectrum availability for node cooperation in different urban environment, by conductive extensive mobile measurement survey. Within the experimental approach, we also investigate a novel concept of temporary cognitive femtocell network as an applied solution for public safety communication networks during the aftermath of a natural disaster. While from the analytical perspective, we utilize mathematical tools from stochastic geometry to formulate novel analytical methodologies, explaining some of the most important theoretical boundaries of the achievable enhancements in network performance promised by node cooperation. We start by determining the estimated coverage and rate received by mobile users from convectional cellular networks and from aerial platforms. After that we optimize this coverage and rate ensuring that relay nodes and users can fully exploit their coverage efficiently. We continue by analytically quantifying the cellular network performance during massive infrastructure failure, where some nodes play the role of low-power relays forming multi-hop communication links to assist farther nodes outside the reach of the healthy network coverage. In addition, we lay a mathematical framework for estimating the energy saving of a mediating relay assisting a pair of wireless devices, where we derive closed-form expressions for describing the geometrical zone where relaying is energy efficient. Furthermore, we introduce a novel analytic approach in analyzing the energy consumption of aerial-backhauled wireless nodes on ground fields through the assistance of an aerial base station, the novel mathematical framework is based on Mat\&#039;{e}rn hard-core point process. Then we shed the light on the points interacting of these point processes quantifying their main properties. Throughout this thesis we relay on verifying the analytic results and formulas against computer simulations using Monte-Carlo analysis. We also present practical numerical examples to reflect the usefulness of the presented methodologies and results in real life scenarios. Most of the work presented in this dissertation was published in-part or as a whole in highly ranked peer-reviewed journals, conference proceedings, book chapters, or otherwise currently undergoing a review process. These publications are highlighted and identified in the course of this thesis. Finally, we wish the reader to enjoy exploring the journey of this thesis, and hope it will add more understanding to the promising new technologies of aerial networks and node cooperation

    Cooperative Radio Communications for Green Smart Environments

    Get PDF
    The demand for mobile connectivity is continuously increasing, and by 2020 Mobile and Wireless Communications will serve not only very dense populations of mobile phones and nomadic computers, but also the expected multiplicity of devices and sensors located in machines, vehicles, health systems and city infrastructures. Future Mobile Networks are then faced with many new scenarios and use cases, which will load the networks with different data traffic patterns, in new or shared spectrum bands, creating new specific requirements. This book addresses both the techniques to model, analyse and optimise the radio links and transmission systems in such scenarios, together with the most advanced radio access, resource management and mobile networking technologies. This text summarises the work performed by more than 500 researchers from more than 120 institutions in Europe, America and Asia, from both academia and industries, within the framework of the COST IC1004 Action on "Cooperative Radio Communications for Green and Smart Environments". The book will have appeal to graduates and researchers in the Radio Communications area, and also to engineers working in the Wireless industry. Topics discussed in this book include: • Radio waves propagation phenomena in diverse urban, indoor, vehicular and body environments• Measurements, characterization, and modelling of radio channels beyond 4G networks• Key issues in Vehicle (V2X) communication• Wireless Body Area Networks, including specific Radio Channel Models for WBANs• Energy efficiency and resource management enhancements in Radio Access Networks• Definitions and models for the virtualised and cloud RAN architectures• Advances on feasible indoor localization and tracking techniques• Recent findings and innovations in antenna systems for communications• Physical Layer Network Coding for next generation wireless systems• Methods and techniques for MIMO Over the Air (OTA) testin

    Cooperative Radio Communications for Green Smart Environments

    Get PDF
    The demand for mobile connectivity is continuously increasing, and by 2020 Mobile and Wireless Communications will serve not only very dense populations of mobile phones and nomadic computers, but also the expected multiplicity of devices and sensors located in machines, vehicles, health systems and city infrastructures. Future Mobile Networks are then faced with many new scenarios and use cases, which will load the networks with different data traffic patterns, in new or shared spectrum bands, creating new specific requirements. This book addresses both the techniques to model, analyse and optimise the radio links and transmission systems in such scenarios, together with the most advanced radio access, resource management and mobile networking technologies. This text summarises the work performed by more than 500 researchers from more than 120 institutions in Europe, America and Asia, from both academia and industries, within the framework of the COST IC1004 Action on "Cooperative Radio Communications for Green and Smart Environments". The book will have appeal to graduates and researchers in the Radio Communications area, and also to engineers working in the Wireless industry. Topics discussed in this book include: • Radio waves propagation phenomena in diverse urban, indoor, vehicular and body environments• Measurements, characterization, and modelling of radio channels beyond 4G networks• Key issues in Vehicle (V2X) communication• Wireless Body Area Networks, including specific Radio Channel Models for WBANs• Energy efficiency and resource management enhancements in Radio Access Networks• Definitions and models for the virtualised and cloud RAN architectures• Advances on feasible indoor localization and tracking techniques• Recent findings and innovations in antenna systems for communications• Physical Layer Network Coding for next generation wireless systems• Methods and techniques for MIMO Over the Air (OTA) testin

    Overview of Millimeter Wave Communications for Fifth-Generation (5G) Wireless Networks-with a focus on Propagation Models

    Get PDF
    This paper provides an overview of the features of fifth generation (5G) wireless communication systems now being developed for use in the millimeter wave (mmWave) frequency bands. Early results and key concepts of 5G networks are presented, and the channel modeling efforts of many international groups for both licensed and unlicensed applications are described here. Propagation parameters and channel models for understanding mmWave propagation, such as line-of-sight (LOS) probabilities, large-scale path loss, and building penetration loss, as modeled by various standardization bodies, are compared over the 0.5-100 GHz range
    corecore