
Copyright and use of this thesis

This thesis must be used in accordance with the 
provisions of the Copyright Act 1968.

Reproduction of material protected by copyright 
may be an infringement of copyright and 
copyright owners may be entitled to take 
legal action against persons who infringe their 
copyright.

Section 51 (2) of the Copyright Act permits 
an authorized officer of a university library or 
archives to provide a copy (by communication 
or otherwise) of an unpublished thesis kept in 
the library or archives, to a person who satisfies 
the authorized officer that he or she requires 
the reproduction for the purposes of research 
or study. 

The Copyright Act grants the creator of a work 
a number of moral rights, specifically the right of 
attribution, the right against false attribution and 
the right of integrity. 

You may infringe the author’s moral rights if you:

-  fail to acknowledge the author of this thesis if 
you quote sections from the work 

- attribute this thesis to another author 

-  subject this thesis to derogatory treatment 
which may prejudice the author’s reputation

For further information contact the University’s 
Director of Copyright Services

sydney.edu.au/copyright



Towards Reliable Geographic
 
Broadcasting in Vehicular
 

Networks
 

Quincy Tse 

A thesis submitted in fulfilment of 
the requirements for the degree of 

Doctor of Philosophy 

Faculty of Engineering and Information Technologies
 
The University of Sydney
 

2014
 



© Copyright 2014, Quincy Tse
 

This work is licensed under the Creative Commons Attribution 3.0 Australia Li­

cense. To view a copy of this license, visit http://creativecommons.org/licenses/by/3.0/au/.
 

http://creativecommons.org/licenses/by/3.0/au/
http://creativecommons.org/licenses/by/3.0/au/


Abstract 

Vehicular ad hoc Networks (VANETs) use wireless data communication technolo­

gies to allow elements of the road systems to communicate amongst each other, 

with the aim of improving road safety. In VANETs, vehicles broadcast safety-

related messages, including vehicle positions and road conditions, to neighbouring 

stations. This helps to improve drivers’ awareness of the road situation beyond 

their sensory ranges. VANETs are highly susceptible to channel contention, which 

can degrade these systems’ reliability. 

This thesis first addresses the issue of channel use efficiency in multi-hop geo­

graphical broadcasts (geocasts) in the VANET environment. Geocasts are used by 

safety applications to disseminate vehicle status and thus require high reliability. 

Constant connectivity changes inside a VANET make the more efficient routing 

algorithms unsuitable. This thesis presents an adaptable, channel-efficient geo­

cast algorithm that uses a metric to estimate the ratio of beneficial to redundant 

and irrelevant packet reception. Using this metric, relays are selected using a 

delay-based priority scheme. Through computer simulations, it is demonstrated 

that this algorithm has more efficient channel use than the farthest-station-first 

family of strategies, being able to achieve comparable packet reception with lower 

interference. It is also capable of adapting to channel load by adjusting a single 

parameter, allowing the algorithm to mimic more efficient algorithms for certain 

channel situations. 

Second, this thesis presents a method of estimating channel load. This tech­

nique can be used to provide feedback for moderating the load offered to the 
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network, including the adjustment of retransmission algorithm parameters. This
 

thesis presents a theoretical model that identifies the relationship between channel 

load and the idle time between transmissions, which is then exploited to estimate 

channel contention. Through computer simulations of the IEEE 802.11 Distributed 

Coordination Function (DCF), channel estimators implementing Bayesian infer­

ence and configured with the observation probabilities derived from this model 

show higher accuracy and much faster convergence time to the steady state than 

an existing method presented by Bianchi and Tinnirello that observes packet 

collisions. 

Furthermore, the effects of unsaturated stations on the performance of this 

estimator are investigated. This thesis demonstrates that unsaturated stations 

have small but observable effects on the relationship between channel contention 

and both idle slot counts and collision probabilities. Through simulations, it can 

be shown that estimators observing idle slot counts to determine an “equivalent” 

number of concurrent saturated stations are less affected by unsaturated stations 

than observing just channel busy probabilities. An extension to the DCF Markov 

model, accounting for unsaturated stations, is also presented but this model is 

shown to be not viable due to its increased complexity and floating point errors. 

Third, this thesis improves the reliability of VANETs in multi-hop geocasts by 

adapting to instantaneous channel conditions. A modified version of the channel 

estimator is presented, enabling it to track instantaneous channel conditions. 

Coupling this tracking estimator to the geocast algorithm produces a closed-loop 

load-reactive geocast system. Through computer simulations, this closed-loop 

system is not only shown to be more efficient in channel use, but is also able to 

automatically adapt to channel contention. This system is observed to self-correct 

suboptimal retransmission decisions as well. 

Finally, this thesis identifies the non standard compliant behaviours of a num­

ber of commonly used network simulators when simulating broadcasts. Given 

broadcasts are the dominant form of safety message dissemination in VANETs, 
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such misbehaviours can impact on the validity of VANET research, and must
 

therefore be accounted for. This thesis first demonstrates that these errors ex­

ist in all the simulators tested, and subsequently describes in depth the error in 

ns-3, culminating in a set of workarounds that allows simulation outcomes to be 

interpreted correctly. These workarounds are applicable to most versions of the 

ns-3 simulator. 
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Chapter 1 

Introduction 

In a society where people regularly travel using various forms of road transport, 

traffic accidents and congestion are extremely costly in terms of productivity loss, 

energy consumption and travellers’ health. As the number of vehicles using public 

roads increases, the impact of traffic incidents also increases. 

Vehicular ad hoc Networks (VANETs) have been proposed as the next-gener­

ation road safety system, allowing vehicles and drivers to extend their awareness of 

the road situation, thereby improving the reaction time when unexpected events 

occur. A VANET acts as a large collection of distributed sensors connected by 

a wireless network, with each vehicle sharing relevant information to all others. 

The success of these systems depends heavily on the reliability of the underlying 

wireless communication network — low reliability can affect the accuracy of the 

safety systems. Too many false positives generated by such systems may lead to 

high cognitive load and general inconvenience to the driver; false negatives can 

fail to prevent hazardous situations, leading to mistrust of these systems. 

In wireless networks, the typical causes of low reliability are physical-layer 

effects such as shadowing and fast fading, and MAC-layer packet collisions caused 

by hidden terminals and channel contention. Using MAC-layer techniques, this 

thesis aims to improve the overall network reliability in high-load environments 

affected by shadowing by using cooperative retransmissions. It also highlights 

non-standard behaviours observed from commonly used simulator packages for 
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broadcast mode messages, with a set of workarounds proposed for using and
 

interpreting outcomes from ns-3 simulations despite the non-standard behaviours 

in the simulator. 

1.1 Outline 

This thesis aims to present a closed-loop load-reactive geocast system. The in­

dividual components of this system are themselves novel, and this thesis first 

presents, evaluates and discusses these separate parts before presenting the over­

all design of the entire system. 

Following this introductory chapter, this thesis first provides a background of 

technological developments in the road transport and vehicular technologies in 

Chapter 2. This chapter outlines the key evidence supporting the need for these 

networks, and reviews the technology which may be used to implement them. An 

in-depth explanation of IEEE 802.11 broadcast procedures, which is relevant to 

the theoretical analysis in later chapters, is also included. 

A review of the current and previous research into VANETs is then provided 

in Chapter 3. This chapter discusses the works related to the three distinct areas 

covered by this thesis — techniques to improve packet reception in VANETs (in­

cluding routing algorithms), methods to gauge and adapt to channel contention, 

and evaluations of simulation packages. 

Chapters 4 to 8 present the works conducted for this thesis. Chapter 4 presents 

and evaluates a static, interference-aware, distributed geographic broadcast algo­

rithm. Chapters 5 and 6 deals with estimating channel contention in networks 

consisting of saturated and unsaturated stations respectively. Chapter 7 then 

links the work in these previous chapters into a closed-loop load-reactive geocast 

system. 

Chapter 4 addresses the issue of packet reception ratio in DSRC-based VANETs 

being below the requirement set by the U.S. Department of Transport. A retrans­

mission metric and a retransmission algorithm using that metric are presented, 
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including a variant that also adapts a station’s transmission range as needed.
 

These algorithms were tested against other similar algorithms in computer sim­

ulations, showing their flexibility in adapting to channel condition as long as the 

algorithm parameter can be adjusted dynamically. 

The need to dynamically adjust the algorithm parameter leads to the channel 

contention estimation technique that is presented in Chapter 5. In this chapter, 

the technique of estimating channel contention by observing the length of the 

idle period between transmissions is presented. It is intended that, by sensing the 

current channel contention level, a station can better moderate the load it offers to 

the network, for example by adjusting the retransmission algorithm parameter. 

As part of this technique, a Markov model of a DCF broadcasting station is 

presented and used to discover the relationship between channel contention and 

observed channel statistics. Computer simulations demonstrating the accuracy 

of the DCF model and the viability of the contention estimation technique are 

presented. 

The investigation in Chapter 5 focuses on saturated stations, which are uncom­

mon in real VANETs. Chapter 6 investigates the effects of unsaturated stations 

on the network observation. To compare these observations, a measure called 

“Equivalent Saturated Node” (ESN) is defined to both describe the level of sat­

uration of a station and the level of contention in a network. Through computer 

simulations, it is shown that unsaturated stations cause observable differences 

amongst networks with the same level of contention. It is however also demon­

strated that such differences do not appear to greatly affect the channel contention 

estimates from the estimation techniques presented in Chapter 5. Finally, an ex­

tension to the DCF model accounting for unsaturated stations is presented, but 

is found not to be viable due to its complexity and floating point errors. 

Having presented and analysed both the techniques to improve packet re­

transmission decisions and the mean to determine channel contention, Chapter 7 

couples these components together to form a load-reactive geocast system. This 
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chapter first confirms the validity of using ESN to predict packet reception be­

fore presenting an algorithm that couples the load sensing component to the 

interference-aware geocast algorithm. This investigation clearly shows that the 

interference-aware geocast algorithm is efficient in using the radio channel. In 

addition, an emergent behaviour in the closed-loop system such that the geocast 

system would self-correct suboptimal retransmission parameters calculated by the 

load adaptation algorithm is observed. 

As the work in this thesis relies heavily on computer simulation of broad­

cast packets, the accuracy of these computer simulations is important. Chapter 8 

validates simulation packages by comparing their results of broadcast mode trans­

missions to the expected theoretical values. It is demonstrated that the commonly 

used simulator packages all showed non standard-compliant behaviours. Further 

investigations in the chapter identify caveats that allow results from the ns-3 

simulator to be correctly interpreted. 

Finally, this thesis is concluded in Chapter 9, with suggestions on future works 

arising from this thesis identified. 

1.2 Contributions 

•	 I developed a metric that ranks wireless stations for relay prefer­

ences. This metric considers both the extra coverage a station provides, 

and the interference it introduces by retransmitting. In addition, this met­

ric is computed from the potential relay without the need for coordination 

amongst other stations. It is independent of the actual retransmission al­

gorithm and hence can be used by other algorithms for prioritising relays. 

•	 I implemented and evaluated a retransmission algorithm utilising 

the retransmission metric. The metric was implemented in an ns-3 

simulation, together with a delay-based relay selection algorithm. Simula­

tion results showed that the metric is capable of selecting good relay stations 
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in order to cope with high network contention scenarios, with the scalability
 

controlled by a dynamically adjusted parameter. 

•	 I investigated the relationship between wireless channel con­

tention and observed MAC-layer idle slot counts. A Markov model 

of the MAC-broadcast DCF was constructed in this investigation. Numeric 

solutions to the model provides a mapping between the probability distri­

bution of interframe idle slot counts and the channel contention in terms 

of the number of concurrent saturated stations. This mapping can be used 

by the MAC layer to estimate channel contention, in order to adjust MAC 

parameters and/or to provide feedback to upper layers for moderating the 

offered load onto the network. 

•	 I demonstrated and evaluated a passive technique for estimating 

channel contention using simple Bayesian inference. Using the 

probability distribution computed from the Markov model, the technique of 

estimating contention through observing idle slots was compared to Bianchi 

et al.’s MAC-level contention measurement technique using computer sim­

ulations. I have shown that estimates from this technique converge to the 

scenario parameter quicker and is more accurate. 

•	 I demonstrated the effects unsaturated stations have on the rela­

tionship between the wireless channel contention and the observed 

idle slot counts and their impacts on channel contention estima­

tion techniques. Here, channel contention is defined as the sum of 

individual stations’ saturation across all stations in the network. Through 

simulation, I showed that station saturation has a small but observable ef­

fect on both the distribution of idle slot count and the collision probability. 

There are minor impacts on the estimators’ channel contention estimation 

accuracy as well as slight lengthening of time before the estimates stabilise. 

I have also shown that the technique of observing idle slot counts is more 
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resilient to errors caused by unsaturated stations.
 

•	 I have validated the usefulness of the ESN metric in predicting 

packet non-reception. Statistical analysis on computer simulation re­

sults showed that a simple threshold test on observed ESN value has a very 

high Negative Predictive Value. This means that ESN can very accurately 

predict packet non-reception. 

•	 I have used statistical techniques to provide further evidence on 

the efficiency of the interference-aware geocast algorithm. Statis­

tics on the ESN-based threshold test shows that the test has a higher Pos­

itive Predictive Value on the interference-aware geocast algorithm than a 

greedy distance-based technique. This provides further evidence that the 

geocast algorithm is more efficient in using the channel to improve packet 

reception. 

•	 I have designed and evaluated a geocast algorithm that changes 

its behaviour in reaction to channel contention. This algorithm 

uses outputs from the passive idle slot-based channel estimator to deter­

mine whether rebroadcasts should be increased or suppressed, and adjusts 

the retransmission parameter of the interference-aware geocasting algorithm 

automatically. This allows the algorithm to adapt to channel conditions 

without the need for manual intervention. 

•	 I have identified high discrepancies between outputs of differ­

ent commonly-used network simulator packages. The discrepancies 

amongst the simulators are likely to be caused by errors in the implemen­

tation of the IEEE 802.11 MAC-layer broadcast behaviour. 

•	 I have evaluated the impact of ns-3 broadcast-mode misbehaviour. 

By comparing the simulation results to theoretical predictions, I have shown 

that the misbehaviour observed from ns-3 simulations of broadcast mode 
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IEEE 802.11 transmissions has a small impact in terms of application-layer
 

performance, but has major effects on algorithms that rely on MAC-layer 

observations such as collision probabilities and idle slot counts. The obser­

vations and analysis is applicable to all versions of ns-3 at least from ns-3.4 

to ns-3.15. (It is most probable that the workarounds are also applicable to 

releases after ns-3.0.4 when the YANS Wifi model [1] is first introduced.) 

1.3 Publications 

•	 Tse, Quincy, “Improving Message Reception in VANETs,” in Proceedings 

of Mobile Systems PhD Forum, 2009 International Conference on, Krakow, 

Poland, Jun 2009. 

•	 Tse, Quincy and Landfeldt, Björn, “Interference-Aware Geocasting for 

VANET,” in Proceedings of World of Wireless, Mobile and Multimedia Net­

works, 2012 IEEE International Symposium on, pp. 1-6, San Francisco, CA, 

USA:IEEE, 25-28 June 2012. 

•	 Tse, Quincy, Si, Weisheng and Taheri, Javid, “Estimating Contention of 

IEEE 802.11 Broadcasts Based on Inter-Frame Idle Slots,” in Proceedings 

of Local Computer Networks Workshops (LCN Workshops), 2013 IEEE 9th 

Conference on, pp. 120-127, Sydney, Australia:IEEE, 21-24 October 2013. 
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Overview 

This chapter provides background information on ITS and related fields, lead­

ing to the development of VANETs. In addition, an introduction to the 

IEEE 802.11 standard relevant to this thesis is presented. 
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Chapter 2 

Background 

Road transport now forms an integral part of many people’s lives such that any 

disruptions to the road system can be extremely costly. The Australian Bureau 

of Transport and Regional Economics projected that the avoidable social costs 

of traffic congestion in Australian capital cities will rise from $9.4 billion in 2005, 

to $20.4 billion in 2020 [2]. The U.S. Government estimated traffic congestion to 

have costed US$87.2 billion in 2010 [3]. In addition, traffic accidents amounted 

to a loss of $17 billion in 2003 alone, resulting from material costs, social costs 

and productivity losses [4]. In 2005, 1,627 road fatalities and a further 31,204 

hospitalisations for an average of 4.4 days were recorded in Australia, representing 

8.0 deaths and 153 hospital admissions per 100,000 population [5,6]. These figures 

are very close to the OECD median. It is therefore both socially and economically 

important to improve road safety and efficiency. 

Research into technological improvements in both road traffic management 

and vehicular safety started in the 1960s. Outcomes from these research had 

greatly enhanced both the efficiency of road transportation and reduced acci­

dent rates by using on-road sensors and better management algorithms, and had 

improved vehicle safety through the development of in-vehicle safety devices. 
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2.1 Technologies in traffic management 

The efficient operation of the road transport network is extremely important in 

any city. In addition to avoidable social costs, traffic congestion also has impacts 

on the economy in terms of productivity loss, and are associated with increased 

traffic accident rates. Weisbrod et al. estimated an increase of around US$250 mil­

lion in the cost of business in the Chicago CBD alone if traffic congestion caused 

a 6% delays in truck delivery [7]. Traffic congestion is also a major contributor 

to pollution in terms of emissions of greenhouse gases, particulates, nitrites and 

other pollutants. For these reasons, improvements in traffic efficiency is a priority 

for governments across the world. 

One of the earliest technological developments in traffic management is the 

traffic light. Since their introduction, the operation of traffic lights has increased 

in complexity, improving the overall network-wide traffic efficiency. The traffic 

lights have improved from using simple timer-based scheduling to sensor-triggered 

phase changes. Today’s traffic lights are not only sensor actuated in order to adapt 

to varying traffic levels, they are also interconnected and are coordinated by cen­

tral systems such as SCAT [8] and SCOOT [9], improving traffic efficiency in 

terms of the expected number of red lights encountered, trip times and/or overall 

network speed and throughput. The current generation of traffic management 

systems take input from a wide range of sensors, including the inductive loop de­

tectors, magnetometers, pneumatic tube sensors and video cameras, and control 

traffic using traffic lights, tidal-flow control systems, variable message boards, 

variable speed limit signs, as well as TV and radio broadcasts and telemetry 

systems [10, 11]. 

These current generation systems are unfortunately limited by the specificity 

of control messages, and their inability to obtain the travel intentions of the 

individual vehicles. Current traffic control devices affect all vehicles in the target 

area, lacking fine-grain control. Furthermore, travel intentions of vehicles can only 

be gauged from aggregated coarse-grain information sources such as population 
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Figure 2.1: NICTA’s vision of intelligent transportation systems in year 2020, 
where the road infrastructure is able to send to road users up-to-date and rele­
vant information, and road users can report relevant information back to traffic 
authorities [12]. 

census data, as well as traffic flow, speed and demand data from the sensors 

deployed. These sources are poor at predicting traffic demands in presence of 

extraordinary situations such as congestion and accidents. The collection and 

processing of trip origin-destination data can greatly assist in predicting the traffic 

demand, improving traffic scheduling. 

The next generation of ITS systems aim to improve the granularity, detail and 

accuracy of both sensor inputs and traffic control capabilities. These capabilities 

can only be achieved if bidirectional communication can be reliably established 

between individual vehicles and traffic control devices. Figure 2.1 shows a typical 

vision for ITS in year 2020. These capabilities can be enabled by technologies 

such as wireless networks. 
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2.2 In-vehicle safety devices 

In addition to enhancements in the road infrastructure and network control sys­

tems, improvements to the safety of individual vehicles are also critical for road 

transportation. The vehicular technology community had introduced a number of 

in-vehicle safety devices since its inception, leading to improved safety outcomes. 

Worldwide statistics have shown reduction in motor vehicle fatalities correlating 

to the introduction of these safety technologies (Figure 2.2). These safety devices 

can be broadly divided into passive and active safety devices. 

Figure 2.2: European (E15) road fatality statistics based on ERF Road Statis­
tics 2008, showing the approximate periods of safety devices introduction, with 
projected fatality reduction for 2010 as a result of “eSafety” technologies [13]. 

Passive devices are designed to reduce the severity of the consequences should 

accidents occur. These devices include seat belts, pretensioners and airbags. 

Seat belts are designed to restrain the occupants, reducing the likelihood of the 

occupant being ejected from the vehicle during collision or from hitting parts 

of the vehicle. Pretensioners are designed to minimise the amount of movement 
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permitted by the seat belts, thereby improving the protection offered by seat belts.
 

While the correct wearing of seat belts have been shown to save lives during traffic 

accidents, the incorrect wearing of it is known to cause severe abdominal injuries 

in relatively minor traffic accidents [14]. 

Similar to seat belts, airbags are passive devices designed to reduce the con­

sequences of collisions. SRS and SRP airbags are designed to deploy when they 

are triggered during a collision, creating a “pillow” of air to reduce the impact 

to the occupants’ bodies against the vehicle components and/or ground. Airbags 

also require occupants to be properly restrained and positioned. Inappropriate 

positioning and/or restraint of occupants (e.g. young children in front passenger 

seat) have been known to cause death when airbags are activated [14]. 

Unfortunately, these passive devices can only reduce the severity of the in­

juries caused by accidents, and cannot prevent the occurrence of accidents. For 

this reason, much research and development is now focused on the prevention of 

accidents using active safety devices such as electronic stability control. 

Active safety technologies continuously monitor the driving situation, and ini­

tiate behaviours (such as warnings or direct control of the vehicle) to reduce the 

likelihood of accidents. Well-known examples of this category include electronic 

stability control, anti-lock brakes and traction control. These features aim to 

improve vehicle traction, thus controllability of the vehicle, during turns, braking 

and acceleration respectively, by autonomously moderating engine output and 

brake pressure. These systems have been assessed as among the most important 

safety features that governments should take action on its adoption [15]. Unfor­

tunately, these technologies can only react to the vehicle’s own condition — they 

are unable to react to its surroundings. 

More recently, various Advanced Driver Assistance Systems (ADAS) have 

been developed, enhancing a vehicle’s awareness of its own immediate surround­

ings. Forward collision avoidance technology is one such system which had already 

been commercialised. This technology uses various longer-range sensors such as 
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radar, LIDAR, infrared, ultrasound and/or computer vision to allow vehicles to
 

detect the distance they are from the objects in the front, and can be used to 

prevent or reduce the severity of frontal collisions. A government funded study 

using computer simulation of reconstructed crash scenes had identified such sys­

tems as being capable of reducing overall fatal collisions by 30% and injuries by 

40% [16]. This, and similar technologies such as adaptive cruise control, increase 

the vehicle’s awareness from just itself to also include its immediate surroundings, 

thereby allow better preparedness for potential hazards. These technologies are 

still unable to react to situations that are more than a few meters away from the 

vehicle. 

The next generation of vehicular safety systems not only rely on sensors 

mounted on individual vehicles, but also integrate inputs from sensors in other 

vehicles and in the environment. This allows vehicles and drivers to extend their 

awareness of the road situation beyond the range of any single vehicle sensor and 

beyond human capabilities, potentially greatly enhancing the accident prevention 

capabilities of the vehicle. In order to use sensor data from outside the vehicle, 

reliable wireless communication amongst road elements is essential. 

2.3 Vehicular ad hoc networks (VANETs) 

Recent developments in wireless computer networking technologies had provided 

the opportunities for vehicles to become connected to each other as well as to 

the road infrastructure, providing the technological platform for the next gen­

eration traffic management and vehicle safety systems. The wireless network on 

which vehicles and road infrastructure communicates is termed Vehicular ad hoc 

network (VANET). 

VANETs consist of mobile stations placed in vehicles (OBE, “On Board 

Equipment”) and fixed stations typically collocated with road infrastructure (RSE, 

“Road-Side Equipment”), wirelessly connected in an opportunistic manner. These 

networks are used mainly to facilitate autonomous communication amongst ve­
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hicles and between vehicles and road infrastructure. Similar to mobile ad hoc
 

networks (MANETs), VANETs contain stations that move over time, but differs 

from MANETs in terms of mobility pattern. VANET stations typically follow a 

more rigid movement pattern (i.e. along roads) at high velocities. The high sta­

tion velocity reduces the amount of time any pair of stations remain connected 

— Jerbi et al. measured the average time a pair of stations remained connected 

to be approximately 60 seconds [17] — making some MANET routing algorithms 

unsuitable for VANETs. 

The sharing and the possible distributed processing of information amongst 

vehicles also makes VANETs similar to wireless sensor networks (WSNs), with 

the added bonus that battery power is not a constraint on VANETs. This dif­

ference makes the power-saving features in most WSNs unnecessary, with the 

trade off inherent in most WSN routing protocols negatively impacting on net­

work performance. Furthermore, the mobility pattern in WSN are different to 

MANET and VANETs, with WSN stations typically not moving much in space, 

and connectivity changes are typically due to power-saving features. For these 

reasons existing broadcasting techniques developed for these networks may also 

not be applicable for VANETs. 

In terms of the applications of VANET, the main purpose of systems utilising 

VANETs is to improve the safety and efficiency of the road system, by giving 

drivers and vehicles better situational awareness, as well as finer-grained traffic 

interventions. A secondary objective of VANETs is to facilitate so called “comfort 

applications” — applications that are not safety critical and do not improve 

traffic, but are useful and/or convenient to drivers or the greater population so 

as to help promote the uptake of the technology. Table 2.1 outlines some of the 

proposed applications that can use VANET as the underlying communication 

technology. 

VANET applications typically have two modes of operation — vehicle-to­

vehicle (V2V) and vehicle-to-infrastructure (V2I). V2V applications are those 

15
 



Table 2.1: Examples of proposed VANET applications 
Cooperative Collision Avoidance 
Post-Collision Warning 
Wireless Traffic Signage 

Safety 
Wireless Traffic Lights 
Emergency Vehicle Warning 
Emergency Vehicle Signal Preemption 
Adaptive Cruise Control 
Cooperative Platooning 
Accident Reporting 

Efficiency 
Origin-Destination Reporting 
Electronic Toll payment 
Dangerous Goods Tracking 

Comfort
 

Repair Notifications 
Wireless Diagnostics 
Software Updates 
Cooperative Headlight Aiming 
Parking Spot Reservation 
Enhanced Route Guidance/Navigation 
GPS correction and position improvement 
Internet Services 
Mobile Media 

where relevant information are shared amongst vehicles via wireless links. Typ­

ical uses of V2V are the sharing of vehicles’ positions and the transmission of 

emergency warning signals. V2I applications are those where information are 

communicated between vehicles and road side equipment, which may or may 

not forward the information to other entities. Example of V2I include wireless 

traffic lights where signal phase data are communicated from the traffic lights 

themselves directly to the vehicles, and parking spot reservation systems where 

parking intentions are communicated by the vehicles to the car park operators 

via an RSE. 

2.3.1 Safety applications 

Safety is the primary focus of VANET technologies. The intention of VANET-

based safety applications is to provide drivers and vehicles an extended hazard 

detection distance by sharing relevant information, allowing vehicles and drivers 

more time to react to the hazards. It was shown that approximately 80% of 
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vehicle collisions happened at intersections or in low-visibility areas, and 70%
 

of the accidents were caused by the failure to recognise hazards in time [18]. 

Solutions that can improve the hazard perception time could therefore potentially 

improve the safety of the road system. The U.S. National Highway Traffic Safety 

Administration and the Crash Avoidance Metric Partnership (CAMP) identified 

a few priority applications and their communication requirements (Table 2.2) [19], 

some of the applications identified had been combined in the discussions in this 

chapter. The majority of the safety applications proposed rely on geographically-

bound broadcast (geocast) messages conveying relevant information. The use 

of geocast allows much more efficient message transmissions that apply to all 

vehicles in a given area. 

In the V2I settings, applications such as wireless traffic signage and wireless 

traffic lights have been proposed. The idea of wireless traffic signage is similar 

to that of the traditional static or variable traffic signs, except the information 

is disseminated as data packets directly to each vehicle. This allows the vehicles 

to take relevant actions as necessary, for example, adjusting traction control pa­

rameters when a warning messages from a wireless traffic sign indicating slippery 

conditions on the road is received. One interesting extension of this concept is 

to transmit control signals that are machine-readable, but may be too complex 

for humans. Fitzgerald et al. presented a concept whereby road segments are not 

limited by vehicle speed, but rather by “risk” calculated from various physical 

factors such as driver age, vehicle condition, blood alcohol concentration, etc. [20]. 

Such “risk limit” would be extremely difficult for humans to interpret on the fly, 

but on-board computers could easily convert the limit obtained from the wireless 

road sign into a more human-friendly form such as speed limit. 

The concept of wireless traffic lights is similar to wireless traffic signs. There 

had been proposals suggesting that traffic lights, being located in a good posi­

tion to connect to most vehicles on the intersection, be used to aggregate traffic 

information, and to disseminate summaries to all vehicles in that intersection for 
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safety purposes. (For example identifying and disseminating warning message
 

about high speed oncoming vehicle likely to run red light.) Other useful infor­

mation that can be included are signal phase information that allows individual 

vehicle to decide whether it should attempt to cross during the current green 

phase, as well as coordinating vehicle platoons to facilitate more efficient traf­

fic. A more radical vision of the wireless traffic lights sees that vehicles would 

independently decide whether to cross an intersection without explicit red/green 

phases, with the decision making facilitated by the wireless traffic lights [21]. 

Such a system would greatly improve the traffic throughput of the intersection. 

A third V2I application proposed is emergency vehicle signal preemption. 

This refers to the ability for emergency vehicles to request traffic light phase 

change in order to enable the emergency vehicle to not need to slow down at red 

lights. It can also reduce the risk of oncoming traffic that is currently being shown 

the green light not knowing about the approaching emergency vehicle and hence 

not give way. This third application, while useful, can already be implemented 

using current technologies: since many emergency services already track their 

fleet using various positioning techniques, one only needs to install a gateway 

between the emergency service control centre and the traffic management centre 

in order to request traffic light phase change. 

Most of the networking aspects in VANETs tend to focus on V2V scenario. 

The common examples cited in the literature includes various variants of Coop­

erative Collision Avoidance (CCA) [22,23] and post-collision warning (also called 

Cooperative Collision Warning (CCW)) [24,25]. A third commonly cited example 

is the Emergency Vehicle Warning. 

Cooperative Collision Avoidance aims to prevent collisions by enabling the 

sharing of vehicles’ knowledge of road situation (or at a minimum, knowledge 

of themselves) amongst each other. Even though more information can be sent, 

it is assumed that, at a minimum, beacon packets containing the vehicles’ po­

sitions, directions and velocities are broadcasted every 100 ms. By collecting 
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these beacons from its neighbours, a vehicle can derive a map of its surround­

ings to determine and react to hazards. Additional information that may also 

be broadcasted include the status of vehicles and their sensors (e.g. whether 

their turn indicators are on, whether surface traction is poor at a road segment). 

Depending on the way CCA information is used, it can be further classified into 

more specific types such as left/right turn assistance, merge assistance, blind spot 

warning, extended brake lights, etc. Timing requirements for such applications 

had been investigated in works such as [26]. In terms of network requirements, 

CCA can typically withstand occasional packet losses due to the inherent redun­

dancy in consecutive position data, but these packets are delay sensitive. El Batt 

et al.have identified that consecutive packets can be lost not infrequently even 

in highway environments, and as vehicle density increases, single-hop reception 

ratio deteriorates quickly [23]. This points to the need for further research into 

improving the communication system reliability. 

Unlike Cooperative Collision Avoidance systems, which actively tries to pre­

vent collisions from occurring, post-collision warning (also called Cooperative 

Collision Warning or CCW) systems attempt to prevent secondary collisions. 

Typical example used to explain and investigate such system involves the scenario 

where a vehicle had suddenly deployed its airbags (indicative of a collision) — 

the vehicle involved in the accident would generate a relevant warning and broad­

cast it to its neighbours. This allows all its neighbours to react to the changed 

situation, e.g. prepares oncoming vehicles for collision because it is too close to 

avoid chain collisions, activate brakes for vehicles close enough to be threatened 

but have time to react, or to issue a warning to the following drivers through 

human-computer interfaces. CCW messages are not only time critical, but also 

requires high reception reliability. Biswas et al. have analysed the requirements 

for such systems, and showed that high packet reception ratio is important in the 

operation of such systems [24]. (Note: Biswas et al. referred to these system as 

“CCA” in their paper.) 
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Emergency Vehicle Warning systems have also been proposed as an extension 

to the existing lights-and-siren systems for warning road users of oncoming emer­

gency vehicles. These systems extend the existing systems by broadcasting digital 

warning messages to each vehicle in range, which can in turn inform their drivers. 

This system helps mitigate the problems faced by the newer model vehicles that 

have better sound isolation, which, when combined with loud music being played 

in the vehicle, would mask the siren sounds from the emergency vehicle. These 

systems would have similar data requirements as with CCA systems, except the 

required transmission area may need to be longer and be skewed towards the 

front of the emergency vehicle. The shaping of antenna beams in such situation 

is a physical-layer consideration, and is beyond the scope of this thesis. 

All the aforementioned safety applications require very high reliability in terms 

of delays and/or reception ratio. Poor network reliability may cause hazardous 

conditions to remain undetected and/or safety messages not received and pro­

cessed until too late. This thesis aims to improve the overall reliability of VANETs 

in the V2V setting. While the current standards for VANETs assume CCA bea­

cons are only transmitted to single-hop neighbours, due to radio propagation 

difficulties, multi-hop forwarding of messages may be advisable for some safety 

applications. Through simulations, Chen et al. [27] showed that one-hop packet 

reception falls quickly below the requirements specified by the US Department 

of Transport. This shortfall is also demonstrated in proof-of-concept prototype 

studies in the U.S. PATH project [28]. The work in this thesis tries to improve 

packet reception for CCA and CCW by using other vehicles to forward packets, 

and tries to reduce the channel load caused by these retransmissions so as not to 

overwhelm the channel. 

2.3.2 Traffic management applications 

Another major focus of VANET applications is to improve traffic throughput. 

V2V applications in this area include technologies such as Adaptive Cruise Con­
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trol and Cooperative Platooning. These features use VANETs to communicate
 

relevant information between vehicles, increasing traffic efficiency by enabling 

tighter spacing between vehicles [24]. Both the US PATH project and Honda 

have separately demonstrated tight platooning of vehicles with headway of 4– 

6.5 m using a combination of in-car sensors and V2V communication [29]. Such 

tight headway can greatly enhance the throughput of the road traffic network. 

The more useful traffic management applications tend to be V2I. Data commu­

nication enabled by VANETs allows more detailed information such as detailed 

accident reports, origin-destination information, etc. to be gathered by traffic 

authorities, allowing better dispatching and scheduling decisions to be made. 

Notwithstanding the current technologies already implemented, applications such 

as electronic tolling and dangerous goods tracking were also envisaged for this 

system. While this thesis does not address the specific concerns related to the 

communication requirements for these applications, the retransmission and chan­

nel load detection techniques presented may be applicable to these applications. 

2.3.3 Comfort applications 

VANETs are also designed to support a range of other non-safety critical and not 

management-related applications, broadly referred to as “comfort applications”. 

These applications may be the key drivers for the adoption of VANET technolo­

gies, allowing these technologies to gain sufficient market penetration in order for 

the safety and management applications to operate. Applications envisaged in­

clude vehicle maintenance (repair/service notifications, diagnostics and updates), 

enhanced route guidance and navigation (improved positioning data [30,31], traf­

fic situation-aware routing), parking assistance (parking reservations and direc­

tions), as well as general network services including web browsing. However, it 

must be stated that VANET may not be the most appropriate means to pro­

vide certain applications (e.g. mobile data services may be more cost-effective for 

general network services). This thesis does not address issues related to com­
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fort applications, which may be extremely variable depending on the individual
 

service requirements. 

2.3.4 Other considerations for VANETs 

Having discussed the various applications intended for VANETs and their net­

working requirements, it is also important to be aware of requirements that are 

not network communication related. Not only do these factors potentially increase 

the channel load for their implementation, they may also impact on the appro­

priateness of the underlying communication protocols. Due to the sensitivity of 

messages passed over VANETs, security and privacy are two major considerations 

for VANETs. Other factors for VANETs includes data processing requirements, 

costing and deployment, as well as legislative framework. The impacts from these 

other factors on communications protocols are not high, and are not discussed in 

this thesis. 

Since VANETs are proposed for safety-related applications, it is extremely 

important to ensure that integrity, availability and authenticity of messages are 

safeguarded. Current proposals for the provision of security functions include 

the use of dedicated hardware and the use of special cryptographic functions, 

with sensitive keys, etc. potentially be transmitted (“updated”) over the air. If 

encryption keys are updated over the air, then these essential communication 

(and associated protocol overhead) will contribute to the network load and po­

tentially reduces the available resources for safety messages, making the efficient 

forwarding of safety messages important. 

Privacy is also a major concern for VANETs. It is not difficult to track ve­

hicles and infer personal information by collecting CCA messages unless other 

privacy safeguards are in place. Many privacy-preserving techniques have been 

proposed, and many involve the use of frequently changing pseudonyms. The use 

of pseudonyms greatly increases the complexity for CCA applications as these 

pseudonyms inflate the number of stations seen by pseudonym-unaware algo­
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rithms. For example, algorithms that estimate channel load by counting the
 

number of different network identifiers in the local area is necessarily inaccurate 

if each station may have multiple pseudonyms. The channel load measurement 

technique presented in this thesis is resilient to pseudonym changes as it relies on 

the properties of the MAC layer without the need for identifier tracking. 

2.4 Technical developments in VANETs 

The basic architecture and the protocols used for VANETs have been standardised 

separately in Europe and in the USA. They are partly compatible architectures, 

and are currently in the process of harmonisation. Both architectures define a 

stack of interrelated protocols that form the fundamental communication links, 

with the European (ESTI) architecture also including a more specific definition 

of the higher-layer functionality. 

The USA commenced investigating vehicular communications in November 

2003, with the U.S. Department of Transportation (USDOT) announcing a new 

initiative called “Vehicle Infrastructure Integration (VII)”. The project attempted 

to specify, design, build and test a small-scale prototype of the proposed system, 

projected to begin deployment around 2010. The system was evaluated against 

three sets of application-goals (safety, mobility and “private services”) and three 

sets of system requirements (security, maintainability and privacy). The proof­

of-concept system built was designed to: [28] 

•	 Deliver broadcast messages from network providers to OBEs at 

specified geographic locations 

•	 Deliver broadcast messages from local systems such as traffic 

signals or toll stations to OBEs at specified geographic locations 

•	 Deliver broadcast messages between OBEs 

•	 Collect data from OBEs and distribute topical information ex­

tracted from the data to network subscribers 
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• Provide OBEs access to remote private service providers, and
 

this access can be carried over from one RSE to the next without 

disrupting the service 

•	 Provide security functions to protect against attacks and to pro­

tect the privacy of the individual users. 

The VII initiative was successful in demonstrating a prototype system capable 

of delivering most of the stated objectives. Most importantly (and relevant to this 

thesis), this project had resulted in the development and eventually the rectifica­

tion of the Dedicated Short Range Communication (DSRC) group of protocols. 

The project also revealed shortcomings in the technologies used, including con­

cerns about the reliability of antennae, communication protocols and positioning 

accuracy. 

Following on from the VII project, in order to address the shortcomings iden­

tified and to implement a more up-to-date vision of the next-generation road 

network (the “Connected Transportation Environment”), the USDOT commis­

sioned further research for the five years from 2010 to 2014 with the aim of 

furthering the development on V2V and V2I technologies [3]. Relevant to this 

thesis is the work on “connected vehicle”, where the outcomes from the VII study 

are being field-trialled. 

Similar to USA, European countries were also developing a parallel set of 

technologies for the next-generation ITS. A number of projects were commissioned 

by the EU in the early 2000s looking into adding data communication support into 

vehicles. The Car 2 Car Communication Consortium (C2C-CC), eSafetyForum, 

ISO/CEN project on “Communications Access for Land Mobiles” (ISO-CALM), 

etc. were formed, investigating various aspects of vehicular communications. 

Currently, the European Telecommunications Standards Institute (ETSI), to­

gether with the European Committee for Standardization (CEN), is developing 

an integrated and globally compatible structure of the entire ITS Communication 

(ITSC) architecture, in addition to the standards for the individual components. 
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Figure 2.3: ETSI envisaged mode of ITS communications [32, Figure 1] 

The overall architecture of ITSC is defined in ETSI EN 302 665 [32]. Figure 2.3 

depicts the envisioned communications pattern for the ITSC infrastructure. In 

that vision, the components of the ITS may communicate with each other using 

different media depending on the usage scenario. The standards were developed 

to be able to support a variety of underlying physical technologies, ranging from 

physical wire and infrared, to satellites and DSRC (a.k.a. “ITS-G5”, “CALM 

M5”). ETSI standards define the overarching architecture, integrating the pre­

vious work from the various projects, including the large-scale multi-modal com­

munications in the ISO-CALM project, system designs from C2C-CC, as well as 

the physical and MAC layer specifications from IEEE. 
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Figure 2.4: ETSI ITSC station architecture [32, Figure 3] 

2.4.1 Communication protocol stack 

The overall communication protocol stack used in ITSC is being harmonised 

across the world, with the harmonisation efforts for the majority of the lower 

layers already completed. The discussion below is based on the harmonised ETSI 

model, with differences between American and European models highlighted. 

In general, the protocol stack used for ITSC is relatively simple in order to 

minimise processing latency. The high-level view of the protocol stack (from the 

ETSI model) features three protocol layers and two cross-layer functional planes 

(Figure 2.4). Note — the “application” block in the figure represents the actual 

applications using the stack, not the OSI Application Layer (layer 7). 

The higher functional layers (OSI layers 5, 6, and 7) are defined in the “Fa­
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cilities” layer. This layer defines the message formats and processing for various 

application communication requirements. Implementations of these functions are 

driven by the Society of Automotive Engineers (SAE) in USA and ISO-CALM in 

Europe. Most of the work in this layer are to be harmonised. The SAE J2735 [33] 

“Dedicated Short Range Communications (DSRC) Message Set Dictionary” is a 

standard developed by SAE specifically for ITSC, version 2 of which will contain 

the harmonised set of messages. 

The “Network & Transport” layer in ETSI architecture deals with the (po­

tentially) reliable routing, i.e. OSI layers 3 and 4. The architecture is designed to 

support both TCP/UDP over IPv6 (with optimisations), as well as ITSC-specific 

protocols. This layer implements the geographical routing and broadcasting func­

tions, which are essential for many VANET applications, and is relevant to the 

work in this thesis. It is noted that the American standards initially did not 

specify any routing strategies, leaving routing and reliability to “higher layer ap­

plication” definitions (Figure 2.5). The European solution integrates the network 

layer from C2C-CC, enabling wireless multi-hop forwarding based on geograph­

ical addressing and routing. It implements location table, beaconing, location 

service, and geographical addressing and forwarding algorithms, as well as con­

gestion control (Figure 2.6). 

The actual communication technology (OSI layers 1 and 2) is specified in the 

access layer of the ETSI architecture. The European model specifically supports 

a wide range of access technologies, including infrared, Bluetooth, GSM / UMTS 

/ LTE mobile data, LAN/WLAN, as well as ITS-G5 (i.e. DSRC in American 

terminology). DSRC is defined in IEEE 802.11p and IEEE 1609.4 (Figure 2.5). 

IEEE 802.11p is an extension to the IEEE 802.11 PHY and MAC layers, while 

IEEE 1609.4 specifies channel use. This thesis focuses on the DSRC (ITS-G5) 

technology — the other access methods will not be further discussed. 

Multi-DSRC channel access is specified in IEEE 1609.4-2010 [36], detailing 

the higher layer functions when the vehicular network operates on multiple chan­
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Figure 2.5: IEEE DSRC/WAVE protocol architecture [34] 

nels. This standard allocates some time period (the CCH Interval) during which 

all stations must switch to and monitor a control channel (CCH), while at other 

times (the SCH Interval) the station may operate on service channels (SCH) 

(Figure 2.7). This has the net effect of reducing the total capacity of the control 

channel as the CCH is only guaranteed to be monitored for a subset of the time, 

and also increases channel contention at the start of the CCH interval. Studies 

have presented analysis and simulation results demonstrating the limitation in­

troduced by IEEE 1609.4 [37–40], thus the efficient use of the CCH interval is 

crucial to the success of DSRC-based VANETs. Discussions and analysis in this 

thesis concentrate on the MAC layer and network layers, and do not consider the 

effects due to multi-channel operation. 

In addition to the stack of network protocols, two cross-layer planes were also 

defined. The ESTI architecture contains a Management plane that deals with the 

overall management of the device, as well as ensuring regulatory conformance. 

The other is the Security plane, involved in coordinating privacy and security 

safeguards in the station. These two planes are still being harmonised. In USA, 

the Management plane is specified in IEEE 1609.1, while the Security plane is 
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Figure 2.6: C2C-CC networking design [35] 

specified in IEEE 1609.2 (Figure 2.5). 

ETSI also developed an outline of how the sub-systems of the ITSC network 

interact with each other. Figure 2.8, taken from the ETSI document [32], shows 

how various components in the network may implement different subsets of the 

protocol stack, and how the components may be connected to each other. For ex­

ample, a vehicle ITS sub-system may implement a full stack in order to utilise the 

ITS services, a gateway that connects to the vehicle’s internal control network, 

Figure 2.7: IEEE 1609.4 sync interval, guard interval, CCH interval and SCH 
interval [36, Figure 4] 
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Figure 2.8: ITSC subsystem interaction [32, Figure 4] 

and separately, a router sub-system partially implement the stack and connects 

to the outside network. The separation of the router sub-system from the con­

trol network enhances isolation of core functionalities, minimising the impact of 

potential security breaches. 

2.4.2 Dedicated Short Range Communications (DSRC) 

DSRC (also known as ITS-G5 and CALM-M5) is the central feature of V2V 

communication. DSRC operates at 5.8-5.9 GHz, a slice of the radio spectrum 

dedicated to vehicular communications, using OFDM and with a bandwidth of 

10 or 20 MHz per channel (depending on the regulation and applications). 

The DSRC network protocols are specified in IEEE 802.11 and its amendment 

IEEE 802.11p. The changes introduced by IEEE 802.11p enables “association­

less” mode of operation, removing the requirement for stations to transmit/dis­

cover group membership status before operating on the channel. This change 

overcomes the problem with the very high station mobility, with many station 
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Figure 2.9: IEEE 802.11 MAC architecture [44, Figure 9-1] 

joining and leaving within very short time frames. In summary, stations commu­

nicate following the standard CSMA/CA procedure as specified in IEEE 802.11, 

with binary exponential backoff retransmissions and optional RTS/CTS for uni­

cast. IEEE 802.11p uses the normal IEEE 802.11 frame formats. The typical 

use-case for DSRC safety applications is broadcast-mode transmissions, which 

are not often used in WLAN for data packets. A good understanding of the 

IEEE 802.11 backoff process is essential in order to effectively use its properties 

to estimate channel load. 

2.5 MAC-layer broadcasts in VANETs 

The medium access (MAC) protocol used in DSRC-based VANETs is described 

in IEEE 802.11 with amendments. IEEE 802.11p [41] incorporates the physical 

layer (PHY) timing parameters from IEEE 802.11a [42], the Quality-of-Service 

(QoS) mechanisms in IEEE 802.11e [43], amends PHY parameters (frequencies, 

bandwidths, etc.), and enables association-less communications. These changes 

are essential to DSRC, but do not change the behaviour of MAC broadcasts and 

will not be further discussed. All changes specified in IEEE 802.11p are now 

incorporated into the revised standard IEEE 802.11-2012 [44]. 
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Figure 2.10: IEEE 802.11 basic access method [44, Figure 9-11] 

The IEEE 802.11 standard provides two means to access the channel relevant 

to non-mesh operations — contention-based channel access during the “Con­

tention Period” (CP) where stations compete for the channel in a distributed 

manner; and the contention-free “HCF controlled channel access” during an op­

tional “Contention-free Period” when the “Hybrid Coordinator” (e.g. a base sta­

tion) polls all stations and time-schedules their use of the channel. Furthermore, 

broadcasts during the CP may or may not be facilitated by a base station (Fig­

ure 2.9). Only the contention-based channel access not facilitated by a coordina­

tor (typical for VANETs with rapidly changing network topologies), and in the 

absence of station clustering schemes (i.e. no obvious coordinators), is considered 

in this thesis. 

Channel access during the Contention Period is governed by the Enhanced 

Distributed Channel Access Function (EDCAF). Non-QoS enabled stations op­

erating under EDCAF behaves in the same way as those under the Distributed 

Coordination Function (DCF). (This thesis may refer to EDCAF and DCF in­

terchangeably.) In the non-QoS case, each station maintains a single backoff 

counter, initialised to a value uniformly chosen within the initial contention win­

dow CW = [0, aCWmin]. When the medium is sensed to be idle, stations having 

something to transmit will not send the packet immediately, but will continue to 

wait for a short time called an “Inter-Frame Space” (IFS). If the medium is still 

idle after the IFS and the backoff counter is zero, the frame at the head of its 

transmit queue is then transmitted. If the backoff counter is non zero after the 
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Figure 2.11: IEEE 802.11 backoff procedure [44, Figure 9-12] — When a station 
has something to transmit, it first senses the channel. If the channel is busy, 
it defers access until a period equals to DIFS after the channel becomes idle 
(Stations B, C, D). The station then begins decrementing its backoff counter. 
The first station with counter equals to zero is permitted to transmit (Station C). 
Upon the channel becoming busy again, all other stations suspend decrementing 
their backoff counters until DIFS after the channel becomes idle (Stations B, D). 

IFS, as long as the medium remains idle, the backoff counter is decremented after 

a slot time (ST) and the station again checks the value of the backoff counter. The 

station will continue decrementing the counter every ST as long as the medium 

remains idle. The medium becomes busy when any station (including the sta­

tion itself) starts transmitting, in which case the backoff counter pauses until the 

medium becomes idle again and the process is repeated. After a frame has been 

transmitted by the station, the backoff counter is reset to a value within the ini­

tial CW. The chosen value should be uniformly distributed, but some vendors are 

known to violate this specification [45]. For unicast messages, an Acknowledge­

ment (ACK) frame will be sent by the receiver to indicate correct receipt of the 

frame. This channel access scheme is called “Basic Access”. Figures 2.10 and 2.11 

illustrate the Basic Access scheme and the backoff procedure. In addition, uni­

cast messages may also be preceded by a “request to send” (RTS) and “clear to 

send” (CTS) handshake, designed to activate “virtual carrier sense” to mitigate 

hidden terminal problems. For broadcast messages, because there are multiple 

unspecified and possibly unknown receivers, both the use of ACK and RTS/CTS 

do not make sense, and therefore is disallowed in the standard [44, Section 9.3.6]. 
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Figure 2.12: IEEE 802.11 IFS relationships [44, Figure 9-3]
 

The RTS/CTS procedure will not be further considered in this thesis.
 

There are also different types of frames defined in the IEEE 802.11 standard, 

some with higher priority than others (e.g. control frames takes precedence over 

data frames). In order to prioritise these frames, the standard specifies differ­

ent IFS — Reduced IFS (RIFS), Short IFS (SIFS), PCF IFS (PIFS), DCF IFS 

(DIFS), Arbitration IFS (AIFS) and Extended IFS (EIFS) (see Figure 2.12). 

These IFS define the length of time between the channel is sensed to be idle fol­

lowing a transmission, and the station is permitted to transmit a frame or to start 

decrementing their backoff counters. IFS are typically of different durations, and 

therefore, with the exception of RIFS and EIFS, specifies the priority of frames 

that are sent. (Frames that uses a shorter IFS has a higher priority to ones that 

uses longer IFS.) The RIFS is designed to replace SIFS to reduce waiting time 

when SIFS-spaced frames are not expected (e.g. no ACK frames expected for 

broadcasts). The EIFS is another special IFS that is not used for prioritising 

frames, but is used to prevent a frame being transmitted over an ACK frame 

from a hidden terminal. EIFS is triggered when a station cannot successfully de­

code a frame (i.e. a station sensed the channel to be busy, but the frame header 

was decoded with errors.) For heavily congested channels, it is likely that EIFS 

may frequently be triggered due to frame collisions, which EIFS not only cannot 

help mitigate, but also act to further reduce the channel capacity. When making 

observations on the channel contention, it is important to take into account the 

effects EIFS may have on the observed value. 
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Figure 2.13: Example of exponential increase of CW [44, Figure 9-10] 

In order to balance channel utilisation and collision probability (hence through­

put), the EDCAF (and DCF) adjusts the contention window size dynamically for 

unicasts. A small CW improves utilisation when contention is low as stations 

do not have to wait as long before transmitting, whereas a large CW reduces 

the chance of multiple stations choosing the same backoff for transmission (i.e. 

collisions). A “binary exponential backoff” mechanism (Figure 2.13) is used in 

unicasts to increase the contention window when the channel is congested. Both 

EDCAF and DCF determines channel contention by assuming frames are lost 

only due to packet collisions, which becomes more frequent as channel contention 

increases. Therefore, when frames are lost (indicated by the non-receipt of an 

ACK frame), the contention window size is doubled until reaching aCWmax, a 

parameter specified in the standards. In broadcasts, no feedback mechanism is 

available to indicate the success or failure of transmissions, thus the exponential 

backoff is never invoked and the CW always remain at [0, aCWmin]. As a result, 

the IEEE 802.11 EDCAF is not able to adapt to channel contention in cases 

where a large proportion of transmissions are broadcasts, as can be expected on 

the control channel of VANETs. 

The IEEE standards for vehicular networks also incorporates support for 

Quality-of-Service (QoS) mechanisms. In IEEE 802.11 four classes of priorities 
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Figure 2.14: IEEE 802.11 reference implementation model [44, Figure 9-19] 

(called “Access Categories” or ACs) are defined (Table 2.3) — voice (AC VO), 

video (AC VI), best-effort (AC BE) and background (AC BK). QoS is provided 

by putting frames of different categories in their own separate queue. These 

queues operates as though they are separate stations, individually participating 

in the CSMA/CA process and maintaining their own backoff counter. The stan­

dard defines different values of AIFS, min and max CW size for the different 

queues, thereby achieving a probabilistic service differentiation. There is a sepa­

rate mechanism defined for the case where a “virtual collision” occurs between the 

different queues within the same station — the higher priority frames is transmit­

ted, and the lower priority frames will follow exponential backoff. (Figure 2.14) 

The work in this thesis does not consider network QoS, therefore their effects 

Table 2.3: IEEE 802.11 UP-to-AC mappings [44, Table 9-1] 
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on channel saturation behaviour will not be further discussed. There are other
 

analytical works such as [46–49], which may be adapted in a similar fashion to 

the work in Chapter 5 to allow the techniques presented in this thesis be used. 
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Overview 

This chapter is a literature survey on existing work related to the investiga­

tions in this thesis. 
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Chapter 3 

Related works 

3.1 Improving packet reception 

VANETs, being wireless communication systems, are exposed to many effects 

that can limit their reliability, and therefore limiting the reliability of any safety 

systems based on them. Since VANET stations are highly mobile, they may 

at times experience significant multipath fading (e.g. in tunnels) and shadowing 

(e.g. behind heavy vehicles or buildings), causing packet loss. The U.S. VII 

Consortium, in their final report, found that while the DSRC transmission ranges 

between tall vehicles are adequate, the effective range amongst low vehicles are 

inadequate, with shortcomings evident in all proof-of-concept test scenarios [28]. 

Stanica et al. presented investigations on the reasons for broadcast packet 

losses in VANETs [50]. They have identified radio propagation problems, the 

time-sensitive nature of VANET broadcasts, packet collisions and hidden ter­

minals as the main causes of packet loss. They noted that the severity of link 

layer packet loss can be controlled by adjusting beaconing frequency, PHY/MAC 

layer data rate, transmission power, contention window size and the carrier sense 

threshold. 

Even though the IEEE 802.11 standard specifies automatic repeat request 

(ARQ) techniques for error recovery, they cannot be used because VANET mes­

sages are typically sent in broadcast mode. While occasional packets losses may 
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be acceptable for “comfort” applications, they are detrimental to safety sys­

tems such as Cooperative Collision Avoidance (CCA) [22] and Post-Collision 

Warning (a.k.a. Cooperative Collision Warning, CCW) [25]. Packet loss re­

duces the accuracy of these systems, either resulting in dangerous scenarios 

not being detected and reacted upon, or in users no longer trusting these sys­

tems. Bastani et al. found that the hidden terminal problem is a significant 

contributor to packet loss in VANETs, especially impacting high speed road seg­

ments [51]. Ma et al., using mathematical modelling, had identified that the stan­

dard IEEE 802.11 mechanisms are insufficient for providing the required packet 

reception ratio, even when packet losses are caused only by MAC-layer mecha­

nisms [52]. 

Previous experiments and simulations [25,53] have identified that a large pro­

portion of transmitted packets are lost due to fading [53], even when the receiver 

is as close to the transmitter as half the maximum transmission radius. In con­

trast, Bai and Krishnan conducted physical experiments investigating the effect 

of distance on packet delivery ratio, and found that in the absence of obstruc­

tions, packet reception are acceptable, with minimal consecutive packet losses in 

highway settings [54]. Their findings suggest that, in the absence of obstructions, 

the fast fading effect dominates in highway situations, but the magnitude of the 

fast fading appears to be lower than predicted under the Nakagami model used 

in previous simulation studies. However, obstructions between the transmitter 

and the receiver were shown to further attenuate the signal, thereby decreasing 

the reliability of the system. 

It is well known that heavy vehicles cause shadowing in radio channels. Ra­

dio channel measurements and analyses conducted for mobile telephony in the 

1990s [55] showed that large vehicles can cast deep shadows between 6 dB and 

30 dB at 900 MHz in an experiment that measured signal strength across the 

width of a tunnel. Rustako et al. measured an attenuation of up to 20 dB at 

11 GHz when using monopole antennae, and based on their model, an attenua­
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tion of up to 20 dB at 4 GHz can be expected [56]. In a real world study, Klingler
 

measured an additional attenuation of 50 dB over 3 km when heavy vehicle flow 

is at 150 trucks per hour, compared to 2 trucks per hour over the same distance 

of road [57]. 

More recently, radio channel measurements were also conducted specifically 

for DSRC applications. Paier et al. reported field measurements that revealed 

non-trivial delay-spread and Doppler shifts in addition to shadowing loss of ap­

proximately 20 dB across trucks at 5.6 GHz [58]. Meireles et al. also observed 

an attenuation of up to 20 dB across small vans, and up to 27 dB across semi­

trailers in static environments (parked vehicles) [59, 60]. Those experiments also 

revealed significant deterioration in packet delivery ratio in on-road scenarios. 

Abbas et al. presented a channel model in attempt to characterise the effects of 

vehicle obstructions [61]. In their measurement study, Abbas et al. differentiated 

between line-of-sight (LOS), line-of-sight obstructed by vehicles (OLOS) and line­

of-sight obstructed by buildings, and found that the LOS and OLOS scenarios 

can be modelled using log-normal distribution, with means separated by 10 dB, 

implying a mean attenuation 10 dB can be attributed to vehicles’ shadows. 

In order to combat packet loss resulting from this shadowing effect, hence 

increasing the robustness of VANET transmissions, this thesis presents a load-

adaptive and interference-aware geocast system. Even though many work have 

been proposed for improving packet reception, they often introduce excessive 

interference into the system, thereby causing unintentional packet collisions. 

Existing methods to improve packet reception ratio fall into two categories: 

localised strategies that operate only on the sender, and forwarding-based strate­

gies that operates across all stations on the network. 

3.1.1 Localised strategies 

Localised strategies for improving packet reception include QoS-based techni­

ques [24, 53] and repetition techniques [22]. They tend to generate lower inter­

43
 



ference than forwarding-based techniques, but are not very effective in the pres­

ence of shadowing. 

QoS-based techniques work by giving priority to emergency traffic, thus re­

ducing the channel contention for this class of traffic. Torrent-Moreno et al. 

investigated the effect of using IEEE 802.11e QoS technique to prioritise warn­

ing messages [53]. By placing warning messages in a higher access category than 

routine traffic, Torrent-Moreno et al. had demonstrated a higher packet reception 

ratio for the warning messages, at the cost of lower reception ratio for routine 

traffic. Unlike Torrent-Moreno et al.’s work, Biswas et al. investigated the effect 

of a local QoS scheme where each station always schedules CCW (denoted as 

“CCA” in the paper) packets to transmit in preference to any routine packets 

from that station [24]. They have shown that this type of QoS scheme can also 

boost reception of warning messages. Wischhof and Rohling [62] investigated a 

QoS scheme whereby each station prioritises its traffic based on some “utility” 

metric, and implements the station’s transmit queue as a finite priority drop-tail 

queue based on that metric such that lower priority packets are discarded as 

necessary. All the techniques above improved reception ratio and/or delay for 

a subset of packets, but either reduce reception ratio, or increase delay for the 

remainder. 

Unlike QoS-based techniques, repetition techniques improve packet reception 

by adding temporal redundancy, thus helping to overcome fast fading and packet 

collisions. Xu et al. tested a number of repetition techniques with simulations in 

scenarios with no fading [22]. They have tested cases where stations are or are not 

synchronised, CSMA is or is not followed and the number of repetitions is either 

fixed or p-persistent (repeat with certain probability p). Xu et al. found that both 

having a fixed number of retransmissions and the use of CSMA produce the best 

results, but noted that these repetition techniques are ineffective for mitigating 

packet losses due to shadowing [22]. 

Artimy et al. presented an interesting alternative technique for controlling 
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channel contention — adjusting transmission power. The technique control chan­

nel contention by moderating the amount of stations affected by another station’s 

transmission, with lower transmission power affecting only the stations that are 

closer to the transmitter. They presented a method to estimate the local station 

density based on traffic flow theory, and adjusted transmission power based on 

the density estimate [63, 64]. Torrent-Moreno et al. used transmit power adap­

tation technique for another effect — packet capture [65]. Their central idea is 

that packet collisions are not necessarily bad because the colliding packet with 

higher receive power can often be recovered. By carefully considering the trans­

mit power, two stations can concurrently transmit with the packets being received 

correctly by stations closer to the transmitters (hence probably more relevant). 

Sebastian et al. [66] also looked into adjusting transmission power, but unlike 

Torrent-Moreno et al.’s work, Sebastian et al. only used this technique as part 

of a routing algorithm. Many other works have since been published describing 

methods to improve transmission power control, with some requiring explicit co­

ordination amongst vehicles, and others by inference from channel observations. 

Recent work by Stanica et al. also tries to exploit packet capture effect [67]. 

In Safety Range Carrier Sense Multiple Access (SR-CSMA), instead of exploiting 

packet capture by adjusting transmission power similar to Torrent-Moreno et al.’s 

scheme [65], they adjust the carrier sense threshold. By increasing the carrier 

sense threshold, their technique ignores concurrent transmissions from farther 

stations, thereby increasing the collision probability with those stations. The 

authors reasoned that collisions with packets from outside the safety range doesn’t 

matter as long as the packets from within the safety range can be reliably received. 

In the physical layer, there had also been work aimed at reducing contention. 

Chigan and Li presented a technique that uses directional antennae (or antenna 

arrays) in order to minimise the interference introduced [68]. Such technique is 

not currently feasible due to cost. Furthermore it is also well known that the 

use of directional antennae can adversely affect the CSMA/CA protocol used 
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in DSRC — directional antenna reduces the interference to non-target stations,
 

which also means that those stations cannot detect a concurrent transmission. 

This introduces extra hidden-terminal problem into the already shadow-prone 

channel. 

Another method to reduce channel contention is to improve the determination 

of the target area. By being more precise in determining and specifying the 

target area, in combination with forwarding-based techniques, the interference to 

stations outside the more refined target can be reduced, hence reducing overall 

channel contention and collision, and improving reception. Xian and Huang [69] 

proposed a method that relies on a map database to help determine the target 

area of warning messages. The technique of better specifying targets operates 

orthogonally to other techniques for improving reception, and will not be further 

discussed in this thesis. 

While these localised techniques have each been shown to improve packet 

reception, as explained by Xu et al. [22], they are ineffective in overcoming packet 

loss caused by shadowing. 

3.1.2 Forwarding-based strategies 

Unlike localised techniques, forwarding-based strategies exploit spatial diversity 

to route around obstacles. These can overcome problems caused by shadowing 

if suitable relays exist. Multi-hop message forwarding typically belongs in OSI 

Layer 3 (Networking), and many routing and cooperative retransmission schemes 

have been proposed for unicast in wireless ad hoc or mesh networks with the aim 

of minimising the number of hops and/or latency. This thesis concentrates the 

discussions on broadcast and geocast algorithms, some of which were adapted 

from unicast work. Maihöfer [70] published a comprehensive survey of geocast 

algorithms in 2004, which has since been extended to address VANET-specific is­

sues by Li and Wang in their well cited paper [71], and subsequently by Chen et al. 

in [72]. 
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In terms of geographically-bound broadcasting (geocasting), there are three
 

main classes of techniques — predetermined routes (e.g. by routing table or just-

in-time route discovery, etc.), clustering and flooding. Techniques using prede­

termined routes are typically more optimal (in whatever metric the algorithm 

was optimised for), but requires some knowledge of the network topography. 

Flooding-based techniques often require minimal a priori knowledge, but may 

be sub-optimal and potentially causes many irrelevant/redundant packets to be 

transmitted due to the lack of coordination between stations. There are also 

other techniques (e.g. data aggregation, packet concatenation and piggybacking) 

designed to operate at higher communication layers in order to lessen the load 

offered to the network. 

Predetermined routes 

The predetermined route methods involve building and updating routing tables 

and/or just-in-time route discovery. In networks where the topology is known, 

there exist algorithms that can achieve high reception ratios (deterministically 

or probabilistically) at relatively low communication costs. Peng and Luo [73] 

described an algorithm where each station knows the exact network topology, 

and waits briefly before forwarding to its neighbours. During the delay, the relays 

individually keep track of retransmissions overheard, and determine whether it 

still needs to retransmit. If all its neighbours had been covered already, the relay 

will not forward the packet. Unfortunately, the requirement of perfect 2-hop 

knowledge makes this algorithm unsuitable for ad hoc networks. 

Ros et al. transformed the problem of broadcast into a graph-theoretic prob­

lem of determining a connected dominating set (CDS). In their algorithm [74], 

VANET broadcast/geocast is achieved by a series of unicasts to members of a 

CDS. Ros et al.’s work provides a method to maintain and update neighbour­

hood information by recording broadcast message received and by non-reception 

of ACK packets. Their algorithm abstracts out the technique of determining a 
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CDS, which the author admitted is NP-complete, simply stating that “computing
 

a CDS in a VANET environment comes for free” due to the pervasive position 

information of all stations on the network. The use of multiple unicasts to achieve 

broadcast and the complexity of determining a CDS especially when the topology 

is constantly changing make such scheme difficult to implement for time-sensitive 

messages. 

Sebastian et al. investigated the issue of localised interference (i.e. local chan­

nel contention) during geocasts [66]. In their graph-theoretic work, Sebastian 

et al. reduced the problem of geocast to a vertex-weighted delay-constrained min­

imum Steiner tree (which is also NP-complete), with vertex cost being the area 

a relay station covers at a given transmission range. Each station may change 

its transmission range to cover more or less stations. This algorithm produces a 

theoretically good set of relays that satisfies given delay requirements, achieving 

good coverage while minimising interference. Unfortunately, similar to Peng and 

Luo’s [73] and Ros et al.’s [74] works, the need to first transform the problem into 

a graph is problematic because the stations in VANETs are highly mobile, thus 

requiring very frequent updates or else the cached graph would be stale, making 

this technique not very suitable for VANETs. 

In ad hoc networks such as MANETs and VANETs, station connectivity 

changes frequently, making the maintenance of complete network knowledge not 

scalable. Direct Source Routing (DSR) [75] and Ad hoc On-Demand Vector 

Routing (AODV) [76] are two protocols designed to discover and maintain par­

tial knowledge of the network topology on demand, thereby reducing the cost 

involved in maintaining relevant network knowledge. 

In Direct Source Routing (DSR) [75], the source station floods a Route Re­

quest to the destination only when it has something to send and the source does 

not have a valid cached route entry. The source and each intermediate station 

append its identity onto the routing path field. When the destination receives 

the request it sends a Route Reply back to the source, either by specifying the 
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reversed routing path in the IPv4 source route field, or by flooding a Route Re­

quest packet back to source with a piggybacked Route Reply. Once the route 

had been discovered, messages are sent between the source and destination by 

source routing. There are also mechanisms in DSR to recover broken routes. In 

this scheme, only the source and the destination need to maintain some partial 

knowledge of the network. Unfortunately, while DSR can be used for unicast mes­

sages, broadcast/geocast packets cannot be source routed and therefore cannot 

utilise DSR. 

Ad hoc On-Demand Vector Routing (AODV) [76] is another routing protocol 

designed for MANETs. Similar to DSR, AODV message source floods a Route 

Request (RREQ) packet across the network only when it has something to send. 

As destinations are reached, Route Reply (RREP) packets are sent back via the 

original route. Unlike DSR, AODV does not use source routing. Instead, interme­

diate stations between source and destination aggregates all the RREP received 

to compile and maintain a partial routing table for the communicating stations, 

and can easily support broadcasts and multicasts. AODV had also been extended 

to support geocast, for example, in Context-Based AODV [77,78] where RREQ 

packets also incorporate details of geographical zones. AODV is able to maximise 

packet delivery while minimising redundancy but require routing tables to be con­

tinuously updated, and may also cause packet losses if intermediate stations leave 

the network before the routing table is updated. Wang et al. conducted an ex­

periment using 6 sedan vehicles, and found that AODV was unable to find and 

maintain long routes, and suffers excessive packet losses [79]. Furthermore, DSR-

and AODV-like algorithms require a route establishment phase (RREQ-RREP 

exchanges), which is unsuitable for VANET safety messages as the handshake 

may require delays of more than 200 ms [24]. 

In a scheme similar to DSR, Liu and Seet et al. demonstrated the potential 

improvements that can be attained by incorporating knowledge of the environ­

ment in their A-STAR protocol [80, 81]. In A-STAR, stations rely on matching 
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statistically related maps to determine the optimal “junctions” (relay positions),
 

and then follows geographical source routing. The authors demonstrated a 40% 

improvement in packet delivery when (vehicular) traffic-aware A-STAR was used 

for unicasts. 

Flooding 

Because route establishment and recovery is costly in terms of time, it can be 

argued that flooding, which does not need to maintain states, may be a more suit­

able method for the dissemination of VANET safety messages. Flooding-based 

schemes typically assume no knowledge of network topology, and can use only 

relatively local knowledge to make forwarding decisions. Since stations do not 

coordinate amongst each other, transmissions might be triggered at suboptimal 

locations, causing stations to receive more duplicate and/or irrelevant packets 

than in other methods. This therefore generates a larger amount of interference 

both within and outside the coverage area. Ni et al. showed that packet retrans­

missions in MANETs are highly redundant, with relays capable of providing only 

up to 61% additional coverage under unit-disc coverage assumptions [82,83]. This 

interference reduces the capacity of the network both by taking up air time as 

well as causing collisions with other transmissions. When broadcast messages 

are infrequent, these schemes can function relatively well, but they are unable to 

handle the high broadcast loads as expected from CCA systems. 

Ni and Tseng et al. [82,83] described and compared five classes of techniques 

to reduce the cost of broadcasting in MANETs. First, probabilistic forwarding, 

which is also known as “gossipping”, modifies the flooding behaviour by setting 

a probability of retransmission to a value less than one. There had since been 

further improvement in such schemes by intelligently choosing the probability 

of retransmission. Second, introduces a random delay before forwarding, and 

inhibits forwarding by the potential relay if a certain fixed number of retransmis­

sions had been overheard by that relay. Third, a greedy distance-based scheme, 
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where after introducing a random delay, the relay retransmits only if the distance 

between the relay and the closest overheard retransmitter is above a threshold. 

This scheme is similar to the scheme proposed by Briesemeister et al. [84]. Fourth, 

a location-based scheme where potential relays calculate circle-circle intersections 

of all retransmissions heard and retransmit only if the potential relay can provide 

at least some threshold amount of additional coverage. This is similar to the tech­

nique presented in this thesis. Finally, cluster-based schemes, where only a subset 

of stations (“gateway”) are permitted to retransmit, and using any of the previ­

ous four techniques to determine whether to relay the message. These schemes 

require some sort of coordination amongst stations in electing gateways and de­

termining cluster membership, and are implemented in works such as [85–87]. In 

addition to Ni et al.’s techniques, flooding in geocast can also be controlled by 

restricting the set of potential relays. 

Restricting potential relays 

Perhaps one of the earliest flooding-based technique for geocast that requires no 

a priori knowledge of the network or prior collaboration was presented by Ko and 

Vaidya [88]. In their work, a source station would address a packet to a defined 

geographical area, and in addition, define a “forwarding zone” within which all 

stations would flood the packet to all its neighbours. However, without a priori 

knowledge of the connectivity between stations in the network, the source station 

would only prescribe the area between the source and the target area as the 

forwarding zone, potentially missing the only available forwarding station that 

lie outside the forwarding zone. 

Boban et al. proposed an alternative method of restricting membership into 

the set of relays — stations were chosen based on their physical characteristics. 

This scheme exploits the station characteristics unique to VANETs, choosing tall 

vehicles as relays only [89]. Based on physical measurements [60], Boban et al. 

identified that tall vehicles are less affected by shadowing than short vehicles, 
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making tall vehicles similar to semi-trailers good candidates for relays.
 

Gossipping protocols 

Another method of controlling channel load caused by retransmission is to make 

retransmissions probabilistic. These group of strategies is often known as “gos­

sipping protocols”. Haas et al. presented one of the first works that made use of 

the theoretical property that a message would be eventually sent to all stations 

if each station retransmit with some large enough probability p < 1 in “nice” 

graphs [90, 91]. They then used it to reduce the interference introduced by wire­

less flooding. Haas et al. implemented gossiping on top of AODV, and claimed 

the technique can reduce message passing by up to 35% compared to flooding. 

On the other hand, Chandra et al. use the technique over MAODV to intro­

duce redundancy into the system, improving error recovery in multicasts [92]. 

Luo et al. implemented the technique over DSR and showed similar resilience to 

packet losses in multicasts [93]. 

Recent development, especially for gossipping in VANETs, attempts to im­

prove the adjustment of forwarding probability with minimal prior knowledge of 

network topologies. Birman et al. noted the bimodal behaviour of gossipping pro­

tocols — a message will either be completely broadcasted or dies out — depends 

strongly on the chosen forwarding probability [94]. Furthermore, the critical for­

warding probability is highly dependent on the network topology. In order to 

help resolve this problem, Kyasanur et al. presented Smart Gossip [95], which 

chooses different forwarding probability for each station for each packet with the 

probability being inversely proportional to the number of duplicates received for 

the last packet. Parent-sibling-child relationships needed to be maintained to 

facilitate forwarding. 

Kyansanur et al.’s work uses one-hop information to determine parent-sibling­

child relationships. The selection of forwarding probability can be improved by 

considering two-hop information. Two-hop topology information can be used 
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by a relay to determine the probability that its neighbour had already received
 

the packet, and thereby moderating the retransmission probability. Bako et al. 

devised Advanced Adaptive Gossipping (AAG) based on this concept, and showed 

an improvement in packet reception ratio [96]. 

Another method to improve on Kyansanur et al.’s work is to permit neighbour­

hood information to change over time. Bako et al. [97] changed the neighbour­

hood discovery process in Smart Gossip [95] into a continuous process, thereby 

permitting the Smart Gossip protocol be used in MANETs and VANETs [97]. 

Furthermore, by focusing the work on VANETs, they exploited the property that 

vehicles typically only move along roads, thus the neighbourhood information 

can be derived easily from positioning data. Given the importance of positioning 

information in their algorithm, they named their algorithm “Position-based Gos­

sipping” (PbG). Road intersections present a challenge to PbG because vehicles 

are no longer confined to mostly 1-dimensional lines, making the derivation of 

neighbourhood relationships more difficult. Bako et al. resolved this problem by 

adding a second neighbourhood table, enabling PbG to operate on crossroads [98]. 

In Speed Adaptive Probabilistic Flooding algorithm [99], Mylonas et al. exploited 

the relationship between vehicle speed and vehicle density using traditional traffic 

flow theory. This allowed the algorithm to estimate neighbourhood information 

based on locally obtainable information, making the algorithm less dependent on 

reliable communication between vehicles than PbG or Smart Gossip. 

Finally, Bako et al. investigated the interference introduced by gossipping 

protocols. They remarked that as network densities increase, one may safely lower 

the forwarding probability correspondingly, thereby reducing the network load 

without compromising on packet reception ratio [100]. Using empirical data from 

simulations, Bako et al. devised a logistic function to moderate the forwarding 

probability of PbG. Unfortunately, determination of station density in VANETs is 

not straightforward, especially in the presence of constantly changing pseudonyms 

as introduced by various privacy measures. 
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Distance based strategies
 

Distance based strategies use the distance of a potential relay from some fixed 

point, and may or may not require this information to be communicated explicitly. 

Briesemeister et al. extended Ko and Vaidya’s work on forwarding zones [88] 

by concentrating on the scenarios where the source is within the intended target 

area, removing the need to explicitly define a forwarding zone. In addition, their 

algorithm implicitly selects a narrow band of stations as relays, and is now consid­

ered the classic greedy forwarding algorithm for geocast in highly mobile wireless 

ad hoc networks such as VANETs. Similar to the work presented in this thesis, 

their algorithm [84] involves each station making their retransmission decisions 

independently based on inputs received at the station without prior collabora­

tion. Their retransmission algorithm operates on top of the standard CSMA/CA 

as specified in IEEE 802.11 and when a packet is received, the station applies a 

delay before submitting the packet for retransmission. The delay value is calcu­

lated using Equation 3.1 [84, Equation (1)] where d is the distance the potential 

relay is from the original sender. This delay function is inversely proportional to 

the distance, thus closer stations wait longer. If another copy of the packet is 

received during the waiting period, the potential relay cancels the retransmission. 

This behaviour of the algorithm effectively ensures that only the stations at the 

border of the physical transmission range participate in retransmissions, minimis­

ing the hop count of multi hop transmissions. This algorithm also incorporates a 

hop count field in the header to prevent the packet being forwarded indefinitely. 

Unfortunately, while this technique does not require a priori knowledge of the 

network, the design of the delay equation will necessarily cause packets to be 

forwarded to stations outside the intended transmission area (“MaxRange” in 

the paper). 
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MaxW T ˆWT (d) = − · d + MaxW T (3.1)
Range 

d̂ = min d, Range 

where MaxW T : maximum waiting time 

Range: transmission range 

Briesemeister and Hommel then improved their work by introducing the con­

cept of dynamically adjusting the intended transmission range of a packet, thereby 

potentially reducing the size of intended coverage area, hence channel contention [101]. 

Using emergency braking as an example, they derived Equation 3.2 to be the re­

quired transmission range. This concept is effective in identifying the targets 

of the message more precisely, and improves reception by reducing channel con­

tention. This technique is orthogonal to forwarding algorithms, so can be applied 

to most similar algorithms. 

2v
distbrake(v) = v · Δtreaction + (3.2)

2 · bmax 

where Δtreaction: reaction time of driver = 1 s 

bmax: maximum deceleration = 4.4 m/s2 

Wisitpongphan et al. presented a distance based gossipping scheme [102]. 

Three variants of their scheme were proposed — p-persistent, slotted 1-persistent 

and slotted p-persistent techniques. The p-persistent scheme is a gossipping pro­

tocol, with the forwarding probability p being a linearly increasing function of 

distance from source. The slotted 1-persistent scheme is essentially Briesemeis­

ter’s algorithm [84], except the delay value is quantised. Finally, the slotted 

p-persistent method is initially the same as the slotted 1-persistent scheme, but 

if a retransmission was overheard during the delay, the relay would forward with 
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probability p (same calculation as the p-persistent scheme) instead of discarding
 

it. All three variants favour the furthest station for retransmission. The slotted 

timeline helps synchronise the stations such that retransmissions can be more 

reliably detected. 

For unicast routing (not geocast), it is possible for greedy techniques like 

Briesmeister et al.’s [84] to fail as there may be no station closer to the destination 

than the current station, and the packet needs to be routed around some obstacles. 

Perimeter routing [103–105] and face routing [106–109] techniques were developed 

to address this issue, guaranteeing loop-free paths. These techniques are not 

relevant for geocasting, and will not be discussed further. 

Location based strategies 

Briesemeister et al.’s algorithm [84] can also be improved by further restricting the 

potential relays. In M-GeRaF [110], Odorizzi and Mazzini adapted GeRaF [111], 

restricting potential relays by also considering the direction of the message prop­

agation. M-GeRaF excludes stations that induce a large change in direction 

as candidates. For example, if a packet was last forwarded towards the east, the 

packet will not be forwarded by a station that would make “progress” towards the 

west. M-GeRaF extends the original GeRaF by allowing multiple sink stations. 

This improvement is able to reduce interference by reducing retransmissions that 

make minimal progress, but will still introduce interference outside the target 

area due to the underlying progress metric. 

Ni et al.’s example of location based strategy [82, 83] was for each station to 

keep track of all overheard retransmissions. Assuming that the potential relay 

knows the centre of the overheard transmission (e.g. by incorporating relay po­

sition in a header field), and estimating the range of that transmission (e.g. by 

using receive power), the technique forms a set of overlapping circles. Ni et al.’s 

algorithm then computes the additional coverage provided by the potential relay 

(area of the circle centred at the relay, less overlaps with any other circles). Poten­
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tial relays are prevented from forwarding the message if the calculated additional
 

coverage is below some threshold. 

Ni et al. noted that the computation of circle-circle intersections with many 

overlapping circles is expensive. They suggested the use of either a grid filling 

approximation or by using convex polygons to help determine whether to re­

broadcast. The method using convex polygon involves determining whether the 

potential relay lies within the convex hull of the polygon containing all the centre 

points. If the relay is outside the convex hull, then it is permitted to transmit, 

otherwise, retransmission is suppressed. Ni et al. calculated that geometrically, 

this technique can cause up to 22% of stations not to receive the packet. 

Ni et al.’s original technique is very expensive computationally, and the convex 

hull approximation is still quite expensive, even though there are O(n) algorithms 

that can compute the convex hull. The convex hull approximation requires all 

potential relays to track all retransmissions, therefore has a higher memory re­

quirements as well. Furthermore, this technique also does not encourage retrans­

mission by preferable stations, it just suppress the undesirable ones, therefore can 

still introduce significant redundancies. Being a broadcast algorithm (not geo­

cast), this technique forwards irrelevant packets outside the intended coverage 

area. 

Urban Multi-Hop Broadcast (UMB) [112] and its extension Ad-hoc Multi-Hop 

Broadcast (AMB) [113] are two of the most well-cited protocols that uses the 

location-based technique for controlling contention. UMB operates primarily as 

a distance-based scheme, but adds the requirements for repeaters to be installed 

at intersections to help overcome building shadows. In AMB, Korkmaz et al. 

removed the need for repeaters by incorporating an algorithm to identify relay 

vehicles near intersections to replace the repeaters. Both UMB and AMB bor­

rowed the RTS/CTS scheme in IEEE 802.11, and introduced a similar RTB/CTB 

(Request-to-broadcast/Clear-to-broadcast) handshake. RTB/CTB operates sim­

ilar to RTS/CTS, except the RTB is untargeted and CTB is generated by all 
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potential relays in distance order with furthest relay transmits first. CTB in­

hibits all other transmissions including CTB from closer relays. Once RTB/CTB 

handshake has been completed, the source begins broadcast, and the relay who 

sent the CTB is responsible for forwarding it. RTB/CTB helps suppress un­

necessary forwarding and reduces collisions in the same way as the RTS/CTS 

virtual carrier sense. This method of selecting relay stations was also used by 

Taha and Hasan [114] as well as Fasolo et al. in Smart Broadcast [115]. Barradi 

et al.’s Highway Multihop Broadcast (HMB) [116] uses a variant of RTB/CTB, 

allowing the RTB/CTB to be routed to cover the target area, and also use these 

RTB/CTB to introduce QoS access control. HMB suppresses the broadcasting 

of lower priority messages by stations receiving the RTB/CTB. Unfortunately 

RTB/CTB-based broadcasts require an explicit handshake, which may delay the 

delivery of time-sensitive data. 

Máté and Vida combined the idea of location-based forwarding with gossip-

ping technique to form the Localized Urban Dissemination scheme (LUD) [117]. 

LUD contains elements similar to the intersection determination in AMB such 

that only stations near an intersection may participate in the probabilistic for­

warding. LUD also assumes the availability of a database containing traffic statis­

tics, especially turning probabilities at each intersection, and uses information in 

that database to assist in assigning forwarding probabilities. This work was then 

extended by also adopting a counter-based retransmission inhibition [118]. 

Sung and Lee’s Light Weight Reliable Broadcast Message Delivery (LW­

RBMD) [119] combines the intersection relay priority found in AMB [113], and 

relies on a traffic database similar to LUD [117]. Their technique uses two sepa­

rate timers to determine retransmit priority — one for the distance-based implicit 

ACK, the other for intersection priority. While their investigation suggested an 

improvement in delivery efficiency (in terms of number of packets received per 

broadcast message), their scheme is more complicated to implement than other 

schemes of this type. 

58
 



DV-CAST [120] is another location-based technique. In DV-CAST, a station
 

determines its one-hop neighbourhood topology by observing periodic beacon 

messages. It then uses this information to switch between three behaviours — 

well connected (has potential relay in direction of propagation), sparsely con­

nected (no relay in direction of propagation, but has neighbours in the opposite 

direction) and disconnected neighbourhoods. When a potential relay is “well 

connected”, it uses a slotted 1-persistence algorithm (forward after a delay unless 

suppressed by overhearing another retransmission). In the sparsely connected 

mode, it rebroadcasts immediately, and depending on configuration, might wait 

for a further rebroadcast from new opposite direction neighbours or simply return 

to the idle state. When a station is disconnected, it would cache the packet until 

either the packet timer expires, or retransmit when a new station arrives. DV­

CAST demonstrated the use of locally-obtainable neighbourhood information in 

order to adjust the potential relay’s behaviour, and may be a useful extension to 

the technique presented in this thesis. 

The interference-aware retransmission algorithm in this thesis is a location 

based technique, using the time-delay prioritisation technique from Briesmeister 

et al.’s work [84], and borrows the circle-circle intersection concept from Ni et al.’s 

work [82, 83]. Unlike previous techniques, the technique presented in this thesis 

does not require tracking of all retransmissions, and is therefore more resilient 

to errors in tracking other stations. It encourages retransmission by desirable 

stations, while at the same time suppresses undesirable stations. The algorithm 

only remembers the SINR of the strongest copy of each packet in order to further 

suppress unnecessary retransmissions. 

Cluster based strategies 

Cluster-based techniques try to reduce communication cost by restricting long-

distance communications to a certain subset of stations, each of those are re­

sponsible for the stations in their cluster. Liao et al. [85] presented GeoGRID, a 
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cluster-based routing technique whereby stations implicitly belongs to the cluster
 

defined by geographical grid cells. Liao et al. defined an election algorithm to 

select cluster heads. This technique requires the use of fixed-sized grids, thus 

cluster membership may become highly skewed. 

Further improvements on this type of systems include improving communi­

cations within the cluster and between clusters, as well as improving the way 

stations are partitioned into the clusters. For example, Jain et al. [121] proposed 

the use of a Voronoi diagram to assist with partitioning, and later Stojmenovic 

et al. [86] used Voronoi diagrams followed by convex hull heuristics to help inter-

cluster communications. Hoang and Motani investigated additional aggregation 

techniques that can be employed as part of the cluster [122]. Santos et al. pre­

sented a variant of the cluster-based algorithm whereby messages are passed be­

tween clusters through “gateway” stations that belong to multiple clusters [123]. 

Similar to predetermined routes methods, cluster-based techniques are not 

primarily designed for ensuring reliability, but rather reducing redundancy. Clus­

ter heads have the responsibility for message delivery within the cluster, but 

packet losses to cluster heads would be detrimental to the communications sys­

tem. Mauve et al. remarked that fault resilience can be built into the communica­

tion system by increasing the overlap between clusters such that stations overhear 

communications of multiple clusters [87]. However, this would greatly negate the 

benefits provided by such cluster-based systems. 

Aggregation, Concatenation and Piggybacking 

A final class of methods for reducing interference in cooperative forwarding is to 

completely alter the packets being forwarded whilst maintaining the information 

they contain. There are two main ways to achieve this goal — piggybacking and 

aggregating. In the piggybacking scheme, packet retransmissions are attached to 

other packets from the relay, potentially greatly reducing the overall contention 

by reducing the contention events. Jiang et al. first proposed the use of piggy­
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backed ACK/NACK responses for single-hop broadcasts, which can be use to 

trigger retransmissions as needed [124]. Yang et al. presented and evaluated a 

piggybacking retransmission method [125]. In their technique, potential packets 

to be relayed are ranked based on a certain metric (i.e. earliest deadline first 

and furthest distance first, but is adaptable to any given metric). On expiry 

of some timer, a fixed number of packets are either concatenated together or 

piggybacked to packets from the relay based on the metric used and queued for 

retransmission. They found by simulation that such a piggybacking scheme can 

improve reception ratio and reduce collision. These relaying techniques operate 

orthogonally to the actual retransmission algorithm, and can be used to augment 

algorithms including the one presented in this thesis in order to further reduce 

channel contention. 

Unlike piggybacking and concatenation, the concept of aggregation is to pro­

cess the message contained within the packet in the application layer, then for­

ward a summary of that data instead of blindly forwarding the packet at the 

network layer. Wischoff et al. presented a system whereby application data are 

subdivided according to road segments, with results aggregated [126]. Unfortu­

nately this system suffers from poor scalability [127], and is not easily adaptable 

to different application requirements [128]. Improvements to aggregation sys­

tems have been published on enhancing scalability through aggregation hierarchy 

for comfort applications [129, 130]. Since data aggregation is about presenting a 

summary of the underlying data, it is not suitable for many safety applications. 

Delay-tolerant networks (DTN) 

For completeness, it is also noted that there is a body of work related to “delay­

tolerant networks” (DTN) [131, 132]. Delay tolerant networks deal with the dis­

semination of messages through physical movement of relays in order to minimise 

data transmission. These techniques are useful for information that are not delay 

sensitive and are relevant to either a large area, or in a distant area. In DTNs, 
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relays are usually selected based on their mobility characteristics (e.g. speed [132],
 

current location [133], direction [133], etc.) in addition to their propagation de­

sirability (e.g. height). Due to the delays involved in these techniques, they are 

typically unsuitable for safety messages, and will not be further discussed in this 

thesis. 

3.2 Adapting to channel contention 

Regardless of the retransmission scheme used to enhance packet reception, the act 

of retransmission introduces extra load onto the radio channel. When the lower-

level communication protocol uses a contention-based channel access scheme, the 

extra load increases the contention on the radio channel, which can suffer degra­

dation in packet reception due to timeouts and/or collisions. Whilst investigating 

the various aspects of the design of DSRC, Jiang et al. had identified that the 

principal factor affecting CSMA/CA broadcasts is “communication density” (the 

“number of carrier-sensible events per unit area and unit time”, i.e. the product 

of message rate, station density, and range) [124]. For this reason, the ability 

to determine and adapt to the current “communication density” (a.k.a. channel 

contention) can greatly enhance the performance of the network. 

Similar to many consumer wireless devices, DSRC VANETs use contention-

based channel access schemes to coordinate access to the wireless channel. The 

IEEE 802.11 standard specifies the use of the Enhanced Distributed Channel 

Access Function (EDCAF), which is backwards compatible with the older Dis­

tributed Coordination Function (DCF) for transmissions that do not have QoS 

requirements. Both DCF and EDCAF are implementations of the CSMA/CA 

scheme for contention-based channel access. While these contention-based schemes 

benefit from lower control overhead, their channel utilisation tend to be sub­

optimal when the contention is low, and their throughput can quickly degrade as 

the channel becomes congested. 

CSMA/CA-based schemes, including the IEEE 802.11 EDCAF, use a variable­
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length contention window to in order to adapt to channel contention, thereby bal­

ancing channel utilisation and throughput. The correct sensing of current channel 

contention is therefore important for the optimal adjustment of the contention 

window size. Reinders et al. had identified that under the default IEEE 802.11p 

broadcasting contention window (16 slots) and a beacon generation rate of 10 Hz, 

single-hop packet reception ratio falls below the 99% requirement due to con­

tention when there are only 20 vehicles per km per lane on a 4-lane highway [134]. 

Reception falls below 50% at around 120 vehicles per km per lane on the same 

4-lane highway. 

This thesis contains works on improving the resilience of channel contention 

estimation technique. Even though many existing works had concentrated on the 

analysis and improvement in channel sensing and adaptation, most of these works 

are developed for unicast transmissions due to the dominance of this transmission 

mode in consumer wireless devices. Channel sensing and adaptation on broad­

casts are much less studied. In VANETs, many applications use broadcasts or 

geocasts instead of unicast. These transmission modes present unique challenges 

that cannot be addressed using existing sensing and adaptation techniques. 

In this section, the large body of work describing methods to adapt the DCF in 

response to changing channel contention is surveyed. First the IEEE 802.11 stan­

dard itself has a mean to adjust DCF parameters to adapt to varying con­

tention, but it only works for unicast frames. Second, a range of preemptive 

contention window adjustment techniques designed to improve the performance 

of the IEEE 802.11 DCF is discussed. Here, some of these approaches simply 

assume that the level of channel contention is known [135], while others also 

describe ways to sense channel contention. Third, the current techniques of mea­

suring channel contention, including observing frame collisions [136–139], and the 

channel utilisation [140,141] are compared and contrasted. 
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3.2.1 The Standard IEEE 802.11 DCF/EDCAF
 

Even though the IEEE 802.11 standard does not provide a direct metric for chan­

nel contention, the DCF has mechanisms to adapt its behaviour based on channel 

contention, hence one can deduce information on channel contention by observ­

ing system parameters. The IEEE 802.11 DCF adapts to channel contention by 

moderating the CW size — a large CW reduces the probability that more than 

one station will transmit concurrently (hence frame collision), whereas a small 

CW improves throughput for the sending station. A binary exponential backoff 

mechanism is used to expand the size of CW when the channel is perceived to 

have high contention. At the completion of a frame’s transmission attempt (ei­

ther successfully or have reached the maximum number of retries), the size of 

the CW is reset, allowing the station to improve throughput should the channel 

become less congested. Since DCF adapts the CW based on perceived contention, 

the CW size at the completion of a transmission attempt can provide an indirect 

measure of the channel contention. 

Unfortunately, as mentioned in Section 2.5, the exponential backoff mech­

anism is not triggered for broadcast frames, and therefore the CW size is not 

a suitable measure of channel contention for these broadcast communications. 

The assumption that frame losses are caused only by frame collisions is also not 

always true as it ignores frame losses due to distance (path loss), obstacles (shad­

owing) [55, 56, 142] and fast fading [53, 143], potentially overestimating channel 

contention. It also ignores frame capture [144,145] — the ability for the physical 

layer to successfully decode a strong enough signal even if that frame collided 

with a weaker signal (typically due to the near-far effect) — and potentially 

underestimate the channel contention. 

3.2.2 Slot Utilization 

To improve the performance of IEEE 802.11 networks, many works have been 

presented to enable dynamic, pre-emptive setting of the CW based on channel 
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contention. Amongst the first works addressing this is Bononi et al.’s [140] work
 

on the “Distributed Contention Control (DCC)” mechanism, which features the 

metric “Slot Utilization” (SU) as a mean of determining channel contention. 

Num Busy Slots Bononi et al. initially defined this metric as Slot Utilization =	 .
Init Backoff 

This metric is designed to be computed when a station has a frame to send. 

The frame follows the normal DCF process and is assigned an initial backoff 

from within the CW. As the station counts down its backoff period, it observes 

the channel for other transmission attempts during that period. It relies on the 

observation that as the number of contending stations increases, the more backoff 

slots will be occupied. Bononi et al. claimed the Slot Utilization metric to have 

the following properties: 

1.	 values are within [0, 1] ∈ R — 0 indicates no slots were occupied, and 1 

indicates transmission attempts were observed on all slots; and 

2. intermediate values within [0, 1] should be proportional to the contention 

level. 

The Slot Utilization metric is useful in providing a contention measure that 

can be used to compare different contention levels. Since this metric only looks at 

transmission attempts, it does not consider the success or failure of that attempt 

and is therefore more resilient to physical layer channel conditions. This metric 

was originally designed to complement link layer congestion control measures, 

therefore the authors specified that it be obtained based on the selected backoff 

value. For continuous channel monitoring, this may cause a very slow update 

rate (it would update only if the station have something to send), and may have 

large fluctuations as the initial backoff value is randomly chosen by the station. 

Averaging this measurement over a larger measurement window may improve this 

usefulness of this metric for continuous channel monitoring. 

Unfortunately, the assumption of linearity between channel contention and the 

proportion of busy slots (property 2) does not hold. As the channel contention 
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increases, collision probability increases, therefore the mean proportion of busy 

slots is asymptotic to 1, and is therefore not proportional to the contention level 

as asserted. In fact, as will be shown in Chapter 5, the relationship between the 

number of contending stations and the mean proportion of busy slot is actually 

quite complex and definitely non-linear. 

Bononi et al. further extended their concept of Slot Utilization, developing 

an “Asymptotic Optimal Backoff” (AOB) mechanism [146]. AOB uses the SU 

metric and extends on the p-persistent IEEE 802.11 MAC [147]. AOB aims to 

set the parameter p in the p-persistent MAC dynamically by tracking slot utiliza­

tion, making an assumption on the packet size (affecting the parameter q). The 

mechanism is asymptotically optimal in the number of stations (M) multiplied 

by determined optimal parameter (pmin). They have determined that AOB es­

timation of M · pmin improves as message length (q) increases. They have also 

investigated the transient behaviour of AOB, and found that AOB copes well 

when the number of concurrent stations changes sharply, contrasting with the 

standard MAC’s inability to cope. 

3.2.3 Methods based on theoretical analysis 

In parallel with the work on heuristic based MAC layer improvement technique 

such as [140], others have approached the problem of improving the DCF through 

theoretical analysis. Bianchi et al.’s discrete-time Markov Chain model of the 

IEEE 802.11 DCF [148, 149] (Figure 3.1) is one of the most well known models, 

and is still being used and extended for other applications. Bianchi et al.’s model 

discretises time into slots, analogous to the slots in the DCF, and has layers 

of longer chains to model the DCF recovery process (binary exponential back-

off). The model assumes saturated stations. There are further works extending 

this model by relaxing the saturation assumption [150–152] (Figures 3.2, 3.3), 

relaxing the “perfect channel” assumption by considering frame loss due to noise 

(modelled as a probability) [153], as well as incorporating extra queues to model 
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Figure 3.1: The Bianchi Model. [148, Figure 4] — The top row is the initial 
contention window. Subsequent rows represent retry attempts. The modelled 
station fails with probability p, after which the station enter the next level of 
retry attempt. The Markov model does not model the maximum retry limit of a 
station. 

EDCAF [152]. In addition, investigations on the veracity of the assumptions 

used in these models had recently validated the models against ns-2 simulation 

and test bed data, finding the model to be reasonable for both saturated and 

unsaturated stations with no buffers [154–156]. 

Unlike Bianchi et al., Ma and Chen modelled IEEE 802.11 broadcasts, which 

are expected in VANETs [52]. In their work, they constructed two Markov chain 

model of message processes, one for “emergent services” and the other for “routine 

services” (Figure 3.4). In order to accommodate for the unsaturated nature of 

these messages, Ma and Chen used a separate Poisson processes to model packet 

arrivals. The authors then solved the system as an M/G/1 queue, deriving various 

metrics of the system [157]. 

Ma and Chen’s model uses Poisson processes to model packet arrivals, which 
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Figure 3.2: Extension to the Bianchi model to account for unsaturated sta­
tions [150, Figure 1] — An extra waiting state is added above the standard 
Bianchi model [148]. This state represents the time where the station does not 
have anything to send. When a packet arrives (with probability q), the station 
commences standard MAC backoff and then follows the Bianchi model. This 
model does not account for the allowance for stations to decrement the backoff 
counter when has nothing to send. 

is not suitable for modelling periodic transmissions such as beacons. In Bastani 

et al.’s model [51], they introduced a fixed length chain prior to the branching 

behaviour of the DCF backoff process (Figure 3.5). This fixed length chain in­

troduces a fixed delay, giving a more accurate model of beacon messages. Their 

model is also discretised into slot times (hence assumes message transmission 

takes integer multiple of slots), but at each slot time, the DCF backoff state does 

not advance if the channel is busy. For an extremely congested channel, a station 

may remain in the backoff stages for a very long time before a new beacon is 

generated. For this reason, the model is still unable to fully capture the periodic 

nature of beacons. 
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Figure 3.3: Malone et al.’s extension to the Bianchi model to account for unsatu­
rated stations [152, Figure 1] — The top row (states ending in “e”) is the addition 
to the Bianchi model [148]. This top row represents the time where the station 
does not have anything to transmit, but is still counting down the backoff timer. 
When the MAC receives a frame to be transmitted, it jumps to the next lower 
state in the standard initial backoff state and follows the usual process as per the 
Bianchi Model. At state (0,0e), possible actions are: 1. still have no frame to 
transmit (loop back to self with probability (1 − q)); 2. unsuccessfully transmits 
(go to branching below row 2 with probability pq); 3. successfully transmits and 
has no other frame ready (back to top branching with probability (1 − p)(1 − q)); 
and 4. Successfully transmits and has another frame ready (to second branching 
with probability (1 − p)q). 

A recent paper by van Eenennaam et al. [158] described another method to 

analyse VANET beacons based on Markov chains, and is similar to the work in 

this thesis. Similar to Ma and Chen’s model [52], they have defined unsaturated 

stations so as to allow random message arrival from a Poisson process. The 

resultant Markov chain from their analysis (Figure 3.6) is not too dissimilar to 

Malone et al.’s [152] except for the lack of the reattempt layers. Differences 

between numeric and simulated results for their unsaturated test highlight the 

difficulty in generalising such MAC layer analysis to unsaturated stations. 

Based on these models, the transmission probability of each station can be 

evaluated, and more importantly, expressions for the collision probability as a 

function of contending stations can be derived. 

These works therefore suggest that one can use observed collision probability 

as a measure of channel contention. Following from these works, Bianchi and 
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Figure 3.4: Ma and Chen’s Markov model of broadcast messages (two QoS 
classes) [52, Figure 3] — Exponential backoff is not modelled as they do not 
happen in IEEE 802.11 broadcasts. 

Tinnirello presented a method to estimate the number of contending stations 

based on observing the conditional collision probability [136]. In this work, the 

authors rearranged the collision probability function to yield a function that maps 

collision probability to the number of contending stations. The authors then 

demonstrated two implementations of this function and showed by simulation 

that both techniques are effective in obtaining and tracking an estimate of the 

number of contending stations even when channel contention is varied in the 

scenario. 

Both channel contention sensing methods presented by Bianchi and Tin­

nirello [136] operate by observing the radio channel. They estimate the prob­

ability of collisions by assuming the observing station is also about to transmit 

a frame, hence the “collision probability” can be inferred by simply observing 

the channel busy status. These two methods differ by the way the measurements 

are aggregated — one uses an Auto Regressive Moving Average (ARMA) filter, 

whereas the other uses an Extended Kalman Filter (EKF). Simulations on the 

ARMA filter implementation showed that as the number of contending stations 

increases, the noise from the filter output increases. This is as expected due to the 

reducing slope of the formula. To mitigate this noise, the authors implemented 

the technique using an EKF. An Extended Kalman Filter enables runtime ad­

70
 



f , 0 f , 1 f , 2 f , 2-ߙ f , 1-ߙ

b, 0 b , 1 b , 2 b , wb-2 b , wb-1

1/Wb

1-pb 1-pb 1-pb

pb
pb pb pb

1-pb 1-pb

11 1 11

Figure 3.5: Bastani et al.’s Markov model of safety messages broadcasts (bea­
cons) [51, Figure 1] — Unlike previous models, stations under this model do not 
always count down the backoff states depending on channel conditions. This 
model requires close coupling between the channel states and the model param­
eter, requiring a more complex method to solve the system. The extra non-
branching chain on top represents waiting states that is used to model fixed 
delay-periods for beacons. This still cannot fully capture the periodic behaviour 
because the delays encountered in the bottom chain are variable, making the 
period of the broadcast non-deterministic. 

justment of the tolerable noise, something an ARMA filter cannot do. Finally, 

the authors presented a change detection routine. When changes in the amount 

of contention are not detected, the routine increases the filter memory, thus uses 

all new updates to improve the previous estimate. When a change is detected, 

the filter quickly reduces its filter memory, allowing the filter to quickly update 

to the new contention level. The authors also tested both implementations on 

stations with unsaturated traffic with packet arrival at the station following a 

Poisson process, and showed that both implementations are able to provide an 

estimate of the “average” number of contending stations. 

Some more recent work have extended Bianchi and Tinnirello’s techniques by 

substituting alternative filters for the ARMA and the EKF. Toledo, Vercauteren 

and Wang investigated the use of batched and sequential Bayesian estimators 

combined with maximum a posteriori (MAP) [137], sequential Monte Carlo tech­

niques, and Viterbi algorithm [138]. Kim, Serpedin and Shin also investigated 

the use of various particle filtering techniques for this task [139]. 
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Figure 3.6: van Eenennaam’s Markov Markov model of VANET beacon mes­
sages [158, Figure 3] — This is similar to Malone et al.’s model [152] without the 
retry attempts. 

This group of techniques had demonstrated their accuracy and effectiveness 

in tracking the contention level, but relies heavily on collision probability. The 

metric (number of contending stations) can be easily interpreted, and can provide 

intuitive feedback to upper layers in order to moderate their offered load. As 

described previously, techniques based on Bianchi and Tinnirello [136] observes 

whether the channel is busy as a proxy for packet collision. This assumes that the 

observer station is going to transmit a frame regardless of the channel condition, 

hence the observer station will cause a collision if the channel is busy. These 

imagined transmissions make the observer station oversaturated as the station 

does not follow the CSMA/CA backoff rule and would send a packet at every 

slot. This therefore artificially inflates the amount of channel contention sensed, 

as confirmed in Chapter 5. 

Furthermore, Bianchi et al. had also identified in an experimental assessment 

that commercially available network cards have a tendency of not conforming to 

IEEE 802.11 backoff behaviour [45]. This non-conformance is likely to impact 

on the usability of most contention-estimation techniques (including the one pre­

sented in this thesis) in real world applications. Conformance tests on backoff 

behaviour should therefore be standardised, and is highly recommended prior to 

any real world deployment of DSRC hardware. 
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Figure 3.7: Two stations contending for the same channel [141, Figure 2] — Idle 
Sense counts the “SLOTS” as shown in the figure, and adapts the CW size in 
order to balance channel contention and throughput. 

3.2.4 Idle slots 

Heusse et al. presented a variant of IEEE 802.11 DCF improvements technique [141] 

— instead of measuring and tracking the number of contending stations, it is 

based on adjusting the CW continuously to achieve an optimal level of contention. 

Extending from the Bianchi model [148], Heusse et al. derived an expression link­

ing throughput to the number of idle slots between transmissions (Figure 3.7), 

and presented an algorithm to maintain the CW size so as to keep the measured 

number of idle slots between transmissions close to the optimal value. While this 

work does not directly address the issue of measuring channel contention, it sug­

gested that given a fixed CW (which is expected for broadcasts and geocasts), the 

number of idle slots between transmissions is an indicator of channel contention. 

Compared to Bianchi and Tinnirello’s technique [136], this method of measuring 

contention does not rely on observing collisions, and is therefore both immune 

to the frame capture effect, and does not make assumptions on the observing 

station. Compared to Slot Utilization [140], this method does not assume a lin­

ear relationship between contention and the proportion of busy slots. This thesis 

extends this idea of observing idle slots counts to measure channel contention. 

3.2.5 Differentiating between channel errors and collisions 

In addition to the attempts to directly observe/measure the load on the radio 

channel, there had also been other works that can also infer channel load and/or 
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improve the estimate of channel load. One class of these techniques attempts to
 

account for frame errors that arise from channel conditions, thereby relaxing the 

common assumption that frame losses are caused by collisions. Pang et al. pro­

posed the use of a new NACK frame to help differentiate the causes [159,160], Ma 

et al. looked at characterising loss statistically [161], while Malone et al. proposed 

an observation-based approach [162]. These techniques complement the vast lit­

erature covering techniques that operate at the PHY-layer (e.g. [161, 163, 164]), 

and at higher layers (e.g. TCP [165], UDP [166], TFRC [167]). While these loss 

differentiation algorithms can help provide and improve the feedback on channel 

contention to the application, many would not work in broadcast scenarios due 

to the lack of explicit feedback at the lower layers, and therefore provide limited 

improvement over contention estimates that do not rely on detecting collisions. 

As explained in the previous subsections, there are many limitations when 

trying to adapt and/or use these techniques for measuring channel contention in 

broadcast situations. To alleviate these limitations, this thesis presents a pas­

sive method that relies on overhearing current communications. This technique 

is similar to the one proposed by Bianchi and Tinnirello [136], but relaxed the 

requirement for observing “packet collisions”, allowing the technique to be po­

tentially more proactive in reducing collisions. This technique also produces a 

less noisy output and is more resilient in presence of unsaturated stations. 

3.3 Accuracy of computer simulations 

Computer simulations are used in most research on wireless networking, including 

most of the existing works outlined in this chapter. Through a survey on papers 

published in MobiHoc, Kurkowski et al. identified that 75.5% of the work on 

MANETs published during 2000–2005 used computer simulations [168]. However, 

the accuracy and validity of commonly used network simulator packages have not 

been well studied despite Johnson [169] having proposed a framework to validate 

simulation results against real and/or emulated scenarios in a 1999 DARPA study. 
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Of the few published validation studies concerning wireless networks, the ma­

jority focused on the accuracy of the physical layer modelling, which is perhaps 

the layer that is most abstracted. Liu et al. [170] validated the SWAN simu­

lator against testbed results, Rachedi et al. [171] compared ns-2, OPNET and 

QUALNET also against testbed, and both drew conclusions on the accuracy and 

configuration requirements of the PHY layer models. Pei and Henderson [172] 

specifically investigated ns-3 IEEE 802.11b PHY model against theory, and con­

cluded that ns-3’s IEEE 802.11b PHY model is accurate in line-of-sight scenar­

ios. Ivanov et al. [173] found high deviations between simulation, emulation and 

testbed results from multi-hop wireless network simulation, and similar to previ­

ous works, attributed the differences to the PHY layer abstractions. 

Attribution of differences to physical effects are not limited to just the PHY 

layer of the communication stack. In their validation of wireless sensor network 

in OMNet++ against testbed measurements, Colesanti et al. [174] found that 

OMNet++ is unable to adequately simulate hardware timing “quirks” inherent 

in the actual testbed stations. 

A few other works have validated simulation outputs, either against each 

other or against testbeds, and drew some conclusions on MAC layer implemen­

tations. Cavin et al. [175] compared OPNET, ns-2 and GloMoSim and observed 

highly diverging outcomes amongst the simulators, and conjectured that the de­

viation stemmed primarily from the variations in abstractions used in their re­

spective PHY models, as well as non standard-compliant implementation of the 

MAC protocol. Bredel and Bergner [176] validated OMNet++ simulations of 

IEEE 802.11g unicast communications against testbed results. They found that 

while the simulation outcomes mostly achieve a good match against testbed re­

sults, they observed significant differences in the “inter-transmission” metric when 

there are more than two saturated stations on the network. (Inter-transmission is 

the number of packets transmitted by a saturated station during the time taken 

for another saturated station to transmit two packets. This metric measures 
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the fairness amongst contending stations.) Bredel and Bergner attributed the
 

difference to the scheduling behaviour of OMNet++ MAC models. 

To date, it appears that only one work had been published specifically seeking 

to validate the MAC layer behaviour of a well known simulator. Baldo et al. 

validated ns-3 simulations against testbed, showing good agreement with testbed 

observations between the macroscopic behaviour of the MAC layer, as measured 

from the application layer metrics (e.g. throughput, latency, etc.) in most test 

scenarios [177]. For the scenarios where deviations were observed, Baldo et al. 

attributed the differences to both the simulation model and testbed hardware 

configuration, citing limitations in the version of MadWiFi driver installed on 

the testbed stations. 

Even though many works outlined in Section 3.1 relies on having access to 

accurate MAC layer statistics, it appears that no existing investigations had been 

presented validating the MAC layer statistics from well known simulator packages. 

All the works identified above only investigated the validity of simulation from 

application layer metrics such as throughput, latency, and inter-transmissions. 

While these metrics are useful for validating application layer performance results, 

they do not validate the correctness of the MAC algorithms implemented. It is 

not possible to be certain about the trustworthiness of evaluations on contention 

adaptation technique that uses these simulators. In this thesis, it is demonstrated 

that errors exist in these simulators’ MAC implementations and are not easily 

observable from the application layer statistics. Furthermore, the causes and 

consequences of such misbehaviours in ns-3.9, are investigated, culminating in a 

set of workarounds that can be applied in order to correctly use and interpret the 

simulation outcomes. 

3.4 Conclusion 

In summary, the work presented in this thesis contributes to the three areas iden­

tified above. It describes a channel contention estimation technique that is both 
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more reactive to changes in channel contention, and is very accurate in predict­

ing non-reception of packets. It addresses the inherent interference generated 

by cooperative retransmission algorithms, improving the efficiency of retrans­

missions from relays. A load reactive geocast system is also presented, which 

allows enhanced packet reception through a channel efficient geocast algorithm, 

and is capable of adapting to channel conditions. Finally, this thesis highlights 

the important but hidden problem regarding the accuracy of existing well-known 

computer simulation packages, and presents workarounds that allow one of these 

simulators to be used despite its non standard-compliant behaviour. 
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Overview 

This chapter presents and evaluates a geocast algorithm that aims to balance 

the amount of interference produced with the amount of redundancy required. 

A control parameter is exposed in this algorithm, enabling control algorithms 

to be developed that can adjust the tradeoff at run time. 

Contributions 

•	 I developed a metric that ranks wireless stations for relay 

preferences. This metric considers both the extra coverage a station 

provides, and the interference it introduces by retransmitting. In addi­

tion, this metric is computed from the potential relay without the need 

for coordination amongst other stations. It is independent of the actual 

retransmission algorithm and hence can be used by other algorithms for 

prioritising relays. 

•	 I implemented and evaluated a retransmission algorithm util­

ising the retransmission metric. The metric was implemented 

in an ns-3 simulation, together with a delay-based relay selection algo­

rithm. Simulation results showed that the metric is capable of select­

ing good relay stations in order to cope with high network contention 

scenarios, with the scalability controlled by a dynamically adjusted pa­

rameter. 

Publications 

•	 Tse, Quincy, “Improving Message Reception in VANETs,” in Pro­

ceedings of Mobile Systems PhD Forum, 2009 International Conference 

on, Krakow, Poland, Jun 2009. 

•	 Tse, Quincy and Landfeldt, Björn, “Interference-Aware Geocasting 

for VANET,” in Proceedings of World of Wireless, Mobile and Multi­

media Networks, 2012 IEEE International Symposium on, pp. 1-6, San 

Francisco, CA, USA:IEEE, 25-28 June 2012. 

78
 



Chapter 4 

Interference-Aware Geocasting 

4.1 Introduction 

This chapter presents a cooperative retransmission algorithm requiring no a priori 

knowledge of the network, yet controls the amount of unnecessary interferences 

caused. For this algorithm, a retransmission metric that estimates the benefit-to­

interference ratio is developed and combined with a delay-based priority scheme 

in order to select the most appropriate relays. This algorithm improves the recep­

tion of periodic beacon messages used in Cooperative Collision Avoidance (CCA) 

systems, such that relays provide spatial diversity for recovering failed receptions 

due to distance or shadowing. In this thesis, a station is defined as experienc­

ing interference if its radio interface senses a carrier on the channel, or when 

it is receiving duplicate and/or irrelevant packets. This interference adds extra 

load onto the wireless channel, which can potentially reduce packet reception 

and increase delivery latency for safety messages. The retransmission algorithm 

is evaluated in static scenarios using computer simulations and is shown that 

the algorithm can adapt to channel conditions through an exposed dynamically 

adjustable parameter. An alternative formulation of the algorithm containing 

dynamic transmission range control is also considered, but computer simulations 

show that it is not viable. Finally, suggestions on strategies to dynamically adjust 

this retransmission parameter are discussed. 
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4.2 Packet retransmission algorithm 

The packet retransmission algorithm presented in this chapter aims to maximise 

the gain in coverage area while minimising the interference caused, thereby con­

trolling the interference problem inherent in flooding based forwarding algorithms. 

Similar to the other flooding based algorithms, this algorithm exploits spatial di­

versity, enabling stations that were unable to receive the original packet to receive 

a forwarded copy from another station. Instead of using a priori knowledge of 

the network to minimise interference (which introduces overhead in establishing 

and maintaining this knowledge), this algorithm makes retransmission decisions 

based on a metric that takes into account the ratio between benefit and cost, 

i.e. additional coverage-to-interference ratio. Unlike Briesemeister et al.’s greedy 

algorithm [84], which uses station distance as the metric thus optimises hop count 

but generates interference outside the target area, the benefit-to-interference met­

ric not only reduces interference outside the target area, but also naturally choose 

the furthest station if needed. 

A few practical assumptions were made to enable implementation of the algo­

rithm. First, the required coverage area of a packet is represented by a unit disc, 

with the centre and radius specified in the packet header. It is assume that the 

source station is close enough to the intended recipients. The header should also 

contain an expiry field to limit the extent of flooding by preventing the retrans­

mission of stale packets. While the packet itself does not contain any history of 

whether or by whom the packet has been forwarded, each station may keep track 

of its received packets. 

4.2.1 Retransmission metric 

The retransmission metric used in the algorithm is based on the ratio of the area 

of additional coverage (“gain”) to the area of interference, and is computed by 

considering the geometry of overlapping coverage areas. To simplify the metric, 

both unit-disc propagation, and uniformly distributed stations are assumed. This 
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Table 4.1: Symbols used in the retransmission metric model
 
R 
S 
r 
d 

Required range of packet 
Range of retransmissions 
Estimated range of packet 
Distance between source and relay 

AD 

AG 

Estimated area receiving duplicates packets 
Estimated area receiving retransmission but not first transmission 

X An adjustable “weight” parameter 

Relay
Source

AD

AG

AI

Required
Range

Estimated
Range

ReTx
Range

Figure 4.1: Derivation of retransmission metric — Required range is specified in 
the packet header; Estimated range is determined based on the packet’s received 
signal strength; “ReTx range” is the transmission range of relay calculated based 
on its transmit power; AD is the area receiving duplicate packets; AG is the 
area additional coverage due to retransmission; and AI is the area unnecessarily 
receiving the packet 

simplification allows the number of stations receiving useful retransmissions and 

those being interfered with to be estimated assuming constant station density. 

Because the metric uses the ratio between these two counts, the station density 

cancels out in the function and becomes irrelevant. Table 4.1 lists the symbols 

used in this model. Figure 4.1 is a graphical representation of this geometry. 

In this model, the following constraint must hold true for all real systems: 

r ≥ d > 0 

The transmitter is assumed to use half-duplex radio, and does not overhear its 

own transmissions. d > r represents the case where the relay is located outside 

the range of the original transmission, and would not have heard the packet. If 
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d = 0, the transmission could not have been received by any station.

The definition of AD can be simplified by constraining the system to:

R ≥ r ≥ d > 0

For cases where r > R, the original transmission will reach further than

required, thus AG = 0. In this scenario, no retransmissions can improve the

reception of the packet.

Using the geometry of intersecting circles [178]:

AD =



r2 cos−1 d2−S2+r2

2dr
+ S2 cos−1 d2+S2−r2

2dS

−d
2

(
4S2 −

(
d2+S2−r2

d

)2) 1
2

d ≥ |S − r|

πr2 d < S − r ∧ S ≥ r

πS2 d < r − S ∧ S < r

(4.1)

AG =



R2 cos−1 d2−S2+R2

2dR
+ S2 cos−1 d2+S2−R2

2dS

−d
2

(
4R2 −

(
d2−S2+R2

d

)2) 1
2

− AD d ≥ |S −R|

πR2 − AD d < S −R ∧ S ≥ R

πS2 − AD d < R− S ∧ S < R

(4.2)

Finally, the metric for the retransmission decision can be easily calculated from

these areas as the ratio of the area benefited to the areas receiving interference:

M =
XAG

πS2 − AG
X ∈ R∗ (4.3)

Here, X is the externally-adjustable configurable parameter related to the

tolerance of interference. X can be any non-negative real number, with higher

X equating to a higher tolerance to interference (stations are allowed to interfere

more). Retransmissions can be turned off by setting X to 0, and if X is very large,
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all stations will always retransmit. Using this metric, stations with higher M is
 

better positioned to retransmit the packet because they have a better coverage­

to-interference ratio. It is intended that retransmissions be permitted only for 

M ≥ 1 (benefit is at least some threshold multiple of interference). 

In the implementation of this algorithm used in chapter, stations estimate the 

range of each received packet (new or retransmitted) using the received signal 

strength. By assuming that the packet was sent from the centre of the target 

area and all attenuation was due to path loss, the areas above can be calculated, 

with the total area of interference being the difference between the coverage area 

of the retransmission and AG (the areas receiving retransmitted packets but not 

the original). 

4.2.2 Retransmission algorithm 

The retransmission metric relaxes the need for neighbourhood knowledge when 

making the retransmission decision, but it still needs global coordination to cor­

rectly prioritise potential relays. To relax the need for explicit coordination over­

head, a shared knowledge — time — is used. By assuming the difference in the 

speed of the real-time clock is insignificant (i.e. all vehicles agrees on the length 

of the same time period; time difference is irrelevant), and all stations can sense 

the transmission of another, one can use a delay-based algorithm to coordinate 

the transmission order. 

Tpkt 
delay = (4.4)

M 

In this retransmission algorithm, a delay-based scheme similar to the priori­

tising scheme in M GeRaF [110] and in Briesemeister et al.’s work [84] is used. 

Once a packet is received and forwarded up to higher layer, a retransmission 

delay is calculated based on the retransmission metric (M) using Equation 4.4. 

This function maps M to a delay value such that the delay for highly desirable 

stations (high M) tends to 0. Tpkt is the maximum lifetime of a packet. When 
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Algorithm 4.1 Retransmission algorithm
 
function receive packet(pkt) 

if pkt has never been seen then 
Pass pkt to higher layer 

end if 
if a version of pkt (pkt') is in Tx queue then 

Estimate range of pkt based on received signal strength 
if pkt can propagate further than pkt' then 

Drop pkt' from the Tx queue 
else 

Ignore pkt 
return 

end if 
end if 
if pkt has never been seen or pkt' was dropped then 

M = calculate metric()
 
t delay = calculate delay(M)
 
if pkt is not yet expired after t delay then
 

Add pkt to transmission queue with delay = t delay 
end if 

end if 
end function 

M < 1 (when the area ratio is below the minimum specified), the delay exceeds 

the packet lifetime thus disabling retransmissions. A packet will be retransmit­

ted after the calculated delay if a copy of the same packet with a higher received 

signal strength (hence can propagate further) was not received during the delay 

period. To avoid unnecessary transmissions, packets are not added to the re­

transmit queue if the calculated delay causes the retransmission to be scheduled 

after the packet has expired. If a copy of the packet with a higher received signal 

strength was received during the delay period, the packet is dropped from the 

transmit queue, and the new copy of the packet will go through the retransmission 

algorithm to determine a new delay. Algorithm 4.1 outlines the retransmission 

algorithm. 

For the simplicity of implementation in the evaluation, the retransmission 

algorithm is independent of the MAC and link-layer mechanisms. When the 

algorithm “retransmits” the packet, it sends the packet down to the link layer. 

The packet is then subjected to the normal MAC delays (backoff, IFS, etc.). This 
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algorithm does not use the IEEE 802.11e mechanism for prioritising packets.
 

However, implementing this algorithm above the MAC layer without cross-

layer notification of MAC state changes can cause clustering of delayed packets — 

many packets with different delay values may be submitted to the MAC transmit 

queue during the reception and transmission of another packet, and the algorithm 

is unable to remove packets currently in the MAC transmit queue. This clustering 

can overflow the MAC queue and can greatly increase the contention on the 

channel. A production-grade implementation would benefit from being advised 

of state changes at the MAC layer (thus able to pause the delay timer when 

channel is busy), and should be able to drop packets from the MAC transmit 

queue. 

4.2.3 Range adaptation 

In addition to the algorithm described above, this chapter also investigates a 

variant of the algorithm that moderates the range of the retransmissions. It 

can be hypothesised that interference may be further reduced by moderating the 

retransmission power, thus reducing the area where duplicate packets are received 

(AD), and may also reduce the area where irrelevant packets are received (area 

outside the intended area) in certain cases. However, a reduction in range may 

also decrease the area of additional coverage. 

Assuming each station can only transmit at discrete power levels, a simple re­

transmission range adaptation scheme is considered where each station, instead of 

calculating the retransmission metric for a single retransmission range, calculates 

M for each available transmit power. The transmission power (hence the range) 

that yields the highest M is used for the retransmission, with retransmission delay 

calculated based on the highest M . 
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11
m

900m x 900m

No Shadows

200m

Intended
Coverage

Figure 4.2: Vehicle layout of intersection scenario — Tagged sender at the centre 
of circle 

4.3 Performance evaluation 

This algorithm is evaluated using the network simulator ns-3.9. In these simula­

tions, vehicles are arranged in two intersecting, 900 m long, 6-lane road segments 

(3 lanes each way for each road segment). Since the required coverage area is 

a 200 m radius circle at the centre of the field, and the maximum transmission 

range of each vehicle is at most 200 m, this field is sufficiently large to capture 

all expected interference and to avoid edge effects. Given station mobility is neg­

ligible for the duration of the short VANET safety messages, the network can be 

approximated by as a static topology to avoid the ripple effects caused by stations 

entering and leaving the coverage area during a simulation. 

Vehicles in the simulation are distributed linearly along each lane, with the 

spacing between consecutive vehicles following a Poisson distribution. This pro­

duces lanes of vehicles with approximately the specified vehicle density. In 

the cases where two vehicles overlap each other, their positions are adjusted 

to the minimum vehicle separation. Two types of vehicles are modelled: cars 

(5.5 m×2.5 m, no shadows) and heavy vehicles (12 m×2.5 m, attenuates all 

packets that travels into/out of/across it by 20 dB). Transmitters in these sce­

narios generate CCA beacons at 10 pkt/s. For each vehicle density setting, 10 
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Table 4.2: Layout parameters
 
Vehicle densities 

Proportion of HV 
{10, 50, 75, 100} veh/km/lane 
10% 

Lanes per road 6 
Road length 900 m 

Intended coverage radius 200 m 
Position of source Centre of intersection 

80 m south of intersection 
Centre of straight road 

situations are tested with results presented being the average of these situations. 

Figure 4.2 shows a typical vehicle layout for the centre-of-intersection scenario. 

Specific parameters used to generate the vehicle layouts are listed in Table 4.2. 

Three different sets of vehicle layouts are simulated — the tagged sender at 

the centre of intersection, sender 80 m south of the intersection and straight road 

(no intersections). The centre-of-intersection layout represents the case when 

the highest channel contention is near the source; sender offset from intersection 

layout represents the case where station distribution is not homogeneous and 

many stations need relays to receive the packet; and the straight road layout has 

homogeneous station distribution, and building shadow is irrelevant. A total of 

ten layouts were generated for each combination of the layout parameters. 

A log-distance path loss model combined with the Nakagami fast fading model 

is used, in addition to the vehicle shadowing described above as the radio prop­

agation model. A building shadow of -30 dB is also simulated if the line-of­

sight between the two communicating vehicles crosses a building, assuming the 

building sits on the edge of the road segments. Table 4.3 details the channel 

characteristics simulated. Channel parameters used are either the default values 

(Rx and CS Thresholds, Receiver Noise), values used in many existing literature 

(Log-Distant Exponent, Nakagami parameter m, Antenna gain) [125, 179] , or 

fundamental computed values (Log-Distance reference loss using the Friss equa­

tion [180]). Timing and rate parameters are as per IEEE 802.11 specifications. 

Radio shadow depths are assumptions based on measurements in [55–61]. A 
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Table 4.3: PHY, channel and MAC characteristics
 
Antenna Gain (Tx and Rx) 2.512 dB 

Rx Threshold -95 dBm 
CS Threshold -99 dBm 

Log-Distant Exponent (γ) 2.0 
Log-Distant Ref Loss (at 1 m) -47.8588 dB (Friis loss, 5.9 GHz) 

Nakagami parameter (m) 5.0 
Receiver Noise 0 dB 

Attenuation across HV -20 dB 
Building Shadow -30 dB 

Max transmission range 
Transmission rate 

{50, 100, 150, 200}m 
6 Mbps 

Transmission bandwidth 10 MHz 
SIFS 32 µs 

Slot Time 13 µs 

10 MHz OFDM channel is used for the PHY model, under an NQoS 802.11 MAC 

layer. The application modelled transmits raw MAC frames, with no management 

algorithms for any layer above MAC being active, except for the retransmission 

algorithm under test. The 802.11 PHY model used does not account for the 

packet capture effect. 

Two groups of simulations are performed — one group with only the tagged 

station transmitting, used for determining the performance in near-optimal (un­

congested) situations; the other with all stations transmitting regularly, approxi­

mating the intended use-case of Cooperative Collision Avoidance systems (CCA). 

Parameters used for these scenarios and algorithms are listed in Table 4.4. The 

packet size used is based on a IEEE 802.11 data frame [44] + 20 bytes of beacon 

data [33]. The packet rate used is the typical value proposed for CCA applica­

tions [19, 22,23,134]. 

In the CCA use-case, even though all stations transmit packets in the sim­

ulation, only the packets generated by the tagged station are tracked in the 

simulation. For each layout, background beacons are generated at 10 pkt/s (as 

proposed for many VANET applications) with start times randomly drawn from 

a uniform distribution over [0, 100) ms. A sample of 20 tagged packets is taken 
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for each algorithm under test. The performance measures taken include the num­

ber of relevant packets successfully received before expiry, the number of packets 

that arrived expired, the number of redundant or irrelevant packet received, and 

the amount of time the radio interface is in their various states (channel busy, 

receiving and transmitting). 

The behaviour of the metric-based algorithms are compared to some well-

known approaches that have different strengths and weaknesses. AFR-CS [22] is 

the initial strategy proposed when the issue of reception ratio was first highlighted 

and represents a baseline mechanism. In AFR-CS, the sender resends each packet 

k times in order to combat fast fading. Furthest successful station [84] implements 

Briesemeister et al.’s greedy algorithm commonly used for geographical routing. 

A scheme where only heavy vehicles retransmit is also evaluated because shadows 

in our scenario are cast by heavy vehicles. This study does not consider the effect 

of reduced attenuation amongst heavy vehicles observed by Boban et al. [89], 

which was published after this study was completed. Comparing our algorithms 

(with and without range adaptation) with these casts wide spectrum light on the 

performance of our approaches. 

4.4 Results 

4.4.1 Connectivity and interference 

Connectivity of the network due to the operation of the retransmission algorithms 

can be observed be looking at the packet reception ratio (PRR) for single-source 

scenarios. Here, PRR is the proportion of tagged packets that were correctly 

received before packet expiry, aggregated over the stations within the required 

coverage area only. A packet is considered correctly received if at least one copy 

of the packet (original or retransmitted) is received. 

The amount of interference introduced by the algorithm can be observed by 

looking at the channel busy time (CBT). CBT is the total amount of time a 
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Table 4.4: Algorithm and scenario parameters
 
Packet Rate 10 Hz 

Packet lifetime 100 ms 
Packet size 54 octets (incl. all headers) 

Adaptive range increments 10 m/level (up to max Tx range) 
Retransmission Metric param X 

Number of transmitters 
{0.5, 1, 2, 3, ..., 10}
{Single station, All stations} 

station’s radio interface is either transmitting, receiving or has otherwise sensed 

a carrier on the channel. The CBT is also only aggregated over the stations 

within the required coverage area to minimise edge effects. In the figures, the 

CBT is displayed as a percentage of the total lifetime of the tagged packets 

(100 ms × 20 packets = 2000 ms). It should be noted that the CBT by itself may 

not be representative of the channel contention introduced by these algorithms — 

consider the case where hundreds of relays wanting to access the channel within 

a very short fraction of the message period, causing very high contention but the 

CBT value will be low. This case results in a low PRR due to contention, even 

though the CBT might also be low. In terms of “interference” as defined in this 

chapter, this is actually a low-interference scenario as the multiple concurrent 

receptions of packet (collisions) will only cause the radio interface to be blocked 

once. 

Figures 4.3a and 4.3b show the overall PRR and CBT aggregated over the 

ten centre-of-intersection scenarios for each vehicle density tested, with the ratio 

of maximum transmission range to required radius (S) equals to one. These 

scenarios represent the cases where, in the absence of fast fading, shadowing, 

collision and without retransmissions, all vehicles within the coverage area should 

receive all tagged packets and no vehicle outside the area should receive any 

packets (i.e. unit disc propagation). Figures 4.3e and 4.3f show the performance 

when S is 0.5, which is a multi-hop broadcast scenario. Figures 4.3g and 4.3h 

represent the scenario where a packet needs to be forwarded at least 3 times 

before arriving at the edge of the required coverage area. 

As expected, increases in vehicle density cause the PRR to decrease in the 
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Figure 4.3: Results of centre-of-intersection scenario, single transmitter, error 
bars represents two standard deviations, S is the ratio of the maximum transmis­
sion range to required coverage radius. The graphs plot the means and 2 standard 
deviations of the mean value in each test. Parameter X for the metric cases are 
chosen to give the best PRR and is common only between corresponding columns 
in the PRR and CBT graphs. PRR graphs on the left, and the corresponding 
CBT on the right for S ∈ {1.00, 0.75, 0.50, 0.25}. 
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no-retransmission case (Figure 4.3, left plots), due to the increased number of
 

heavy vehicles between the sender and receiver. PRR is slightly improved when 

using AFR-CS [22], which overcomes fast fading but not the shadowing caused 

by the heavy vehicles. As the vehicle density increases, the improvements due to 

AFR-CS diminishes as more packets are lost due to shadowing than fast fading. 

It is observed that, in high enough vehicle densities, the heavy vehicle-only 

scheme (“HV”) performs rather well. This scheme’s success can be attributed 

to the low proportion of heavy vehicles in the test scenarios, thereby heavily 

restricting the set of relays. At low local vehicle densities (i.e. the number of 

vehicles within one transmission radius), the performance is poor, probably due 

to the lack of potential relays within range. This lack of relays can be seen in the 

CBT graphs, which shows that at low local densities, the scheme barely uses the 

radio channel. 

The furthest successful station algorithm also tends to produce an approx­

imately 5% improvement in PRR over the two benefit-interference based algo­

rithms in single source scenarios. However, when the transmission range is very 

short (S = 0.25, Figure 4.3g) its performance is observed to be poor even though 

the algorithm is designed to minimise hop count. Its poor performance can be 

attributed to the way delays were calculated in this algorithm. In Briesemeis­

ter et al.’s algorithm [84], delays were calculated linear to the distance of the 

relay from the source, with no considerations paid to how far the packets can 

actually propagate. This preference of further stations introduces a very large 

retransmission delays when the transmission range is very short compared to the 

required range (in this case, a quarter of the required coverage radius), causing 

many packets to expire before retransmission. This effect can be confirmed by 

observing the corresponding low CBT values in Figure 4.3h, which suggest that 

packets aren’t actually being forwarded. 

Both benefit-to-interference metric based algorithms performed similarly, 

achieving a good (but not perfect) reception ratio. It is noteworthy that the 
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amount of interference caused is comparable (and often lower than) the furthest
 

successful station algorithm. It is acknowledged that the metric based retrans­

mission algorithm is never designed to achieve 100% PRR — given any finite 

value for parameter X, it is always theoretically possible that all potential relays 

will not have a high enough benefit-to-interference ratio to allow retransmissions, 

even if there is a significant area that is estimated to not be able to receive the 

packet. 

Additionally, one can see that the value of the chosen parameter X for all 

of the single-transmitter scenarios are high. High X encourage retransmissions, 

thus increases the probability that the message will be retransmitted quickly. It 

also has the effect of increasing the amount of interference introduced. Figure 4.4 

shows the effect of varying this parameter. 

Looking at Figure 4.4, it is obvious that increasing the value of parameter X 

increases both the CBT and PRR for any given scenario. It is also important to 

observe that after a certain threshold for X, the effect of increasing X diminishes, 

but at the same time, the reduction in CBT growth is much slower than the 

reduction in the PRR growth. This suggests that covering the last few percent of 

stations gets increasingly harder and may not actually be viable. The next section 

investigates the effect of the increasing CBT on PRR (due to the application of 

retransmission algorithms) in the CCA application context. 

4.4.2 Algorithm performance in an application context 

The performance of these algorithms were also investigated within the Cooper­

ative Collision Avoidance context, assuming multi-hop beaconing is permitted. 

The following three performance metrics — packet reception ratio (PRR), channel 

busy time (CBT) and packet delay are evaluated. Packet delay is defined as the 

time between a packet’s generation and its first successful reception at that station 

(receptions of duplicates are ignored). Delay values are collected at each station 

and is inclusive of the time needed for transmission (220 µs), all retransmission 
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Figure 4.4: Effect of varying parameter X in centre-of-intersection scenario, sin­
gle transmitter. S is the ratio of the maximum transmission range to required 
coverage radius. PRR for no retransmission at high and low vehicle density 
marked for comparison. PRR graphs on the left column, and CBT on the right 
for S ∈ {1.00, 0.25}. For clarity, only the mean values are plotted. Two-standard 
deviations (95% CI) values for packet reception are typically higher in sparse 
layouts than dense layouts and decreases with increasing X. Their ranges are: 
(a) 5–11% at 10 veh/km/lane and 3–14% at 100 veh/km/lane; (c) 13–32% and 
6–15% respectively. CBT confidence intervals are approximately the same, all 
decreases with increasing X. In (b) two-standard deviations range 0.05–0.1% for 
sparse layouts, and 0.06–0.1% for dense layouts; (d) ranges are 0.05–0.3% and 
0.06–0.2% respectively. 

delays, and all MAC queuing delays. The simulations terminate after 2000 ms, 

when all packets not yet received will be expired. Figure 4.5 shows the over­

all PRR and CBT across the different scenarios using the centre-of-intersection 

layouts. 

Similar to Section 4.4.1 and as expected, increases in vehicle density causes the 

PRR to decrease in the no-retransmission case (Figures 4.5a and 4.5e), and slight 

improvements in PRR was observed using AFR-CS [22]. Both of these algorithms 

produce little interference, thus performance degradation due to station density 

were not observed in the tests conducted. The performance of the heavy vehicle­
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Figure 4.5: Results of centre-of-intersection scenario, all stations transmitting. 
Graphs plot the means and 2 standard deviations of the mean values in each 
test. S is the ratio of the maximum transmission range to required coverage 
radius, saturation marks the theoretical maximum utilisation. Parameter X for 
the metric cases are chosen to give the best PRR and is common only between 
corresponding columns in the PRR and CBT graphs. PRR graphs are on the 
left, and the corresponding CBT on the right for S ∈ {1.00, 0.75, 0.50, 0.25}. 
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only scheme (“HV”) is also unchanged compared to the single transmitter case
 

for the same reason. 

The furthest successful station algorithm (“Furthest”) [84] is only effective 

at low vehicle densities and degrades rapidly as vehicle density is increased. At 

10 vehicles/km/lane, the channel contention is still very low and the algorithm 

provides sufficient redundancy by triggering at least one retransmission for every 

packet and their retransmissions until packet expiry. As station densities increase 

(even slightly from 10–50 vehicles/km/lane), it can be seen that the furthest-

station algorithm cause packets to not be received at all. This indicates that this 

algorithm is actually detrimental to packet reception as the density scales up. 

By observing the channel busy time (Figures 4.5b and 4.5f), one would conclude 

that these algorithms cause too much interference, either by triggering too many 

retransmissions or triggering them at suboptimal locations. 

Figure 4.5b shows the amount of interference caused by the various retrans­

mission schemes as measured by the channel busy time. As the vehicle densities 

increase, it can be seen that the CBT for the no-retransmission case also increases 

due to the increased load (each station transmits 10 packets per second). It is 

noted that the increase is not linear. This suggests that higher densities also 

increases the probability that two stations would pick the same backoff slot to 

transmit, and therefore increase packet collision events. 

The furthest successful station algorithms causes an approximately 7-fold in­

crease in CBT compared to the no retransmission case, even in the lowest density 

scenario (i.e. each packet is retransmitted at least 7 times). This level of re­

transmission is unsustainable, and results in an unacceptable amount of packet 

collisions and lengthening of the MAC queue delays, causing packets to expire 

while still in the transmit queue at higher densities. The “Saturation” line marks 

the theoretical maximum channel utilisation for frame duration = 220 µs and 

DIFS = 58 µs — the CBT for this algorithms approached and even exceeded 

the maximum channel utilisation at densities higher than 50 vehicles/km/lane. 
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Utilisation in excess of the theoretical maximum can occur due to the hidden
 

terminal problem. 

Figures 4.5a and 4.5b compare the metric based algorithms with the others. 

It is important to note that the graphs show the results of the metric based 

algorithms, with parameter X chosen to give the best PRR at that vehicle density. 

In terms of PRR, the results showed that the metric based algorithms (with and 

without range adaptation) provide some improvements/ over AFR-CS at lower 

vehicle densities. At high densities, these algorithms still performed poorer than 

AFR-CS, but the degradation is slower than the other algorithms due to its lower 

interference. 

It is also noteworthy that the minimum value of X that had been tested 

is 0.5. The performance of the algorithm with X set to 0 is identical to the 

performance of the case without any retransmission (X = 0 disables retransmis­

sions). Therefore, these retransmission algorithms should perform no worse than 

the no-retransmission case as long as X is adjusted appropriately. 

Figures 4.5e and 4.5f show the benefit of the algorithm in terms of spatial 

diversity. These results correspond to the case where the source can only reach 

half its required radius, hence AFR-CS is ineffective in providing any improve­

ments. Here, the furthest successful station algorithm provides the best PRR in 

low vehicle densities because this is the situation it was designed for. The metric 

based algorithm is also able to produce the multi-hop behaviour in these situa­

tions, as evident by the high PRR at low vehicle density. In addition, the lower 

interference it introduces enabled it to degrade slower than the other schemes (it 

even provided better PRR over AFR-CS at 100 vehicles/km/lane) whilst the fur­

thest successful station algorithm quickly saturated the channel, causing packets 

to not be received at all. 

In terms of range adaptation, the results in Figure 4.5 do not show any signif­

icant differences between the two algorithms. The range adapted algorithm ap­

pears to perform slightly worse than the non-range adapted version, with slightly 
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decreased PRR and slightly increased CBT. It is conceivable that the range adap­

tation as implemented may be able to reduce the size of the area experiencing 

interference from the relay, but at the same time increases the channel contention 

as the improvement in the metric causes the delays to decrease across the net­

work. Given the minute differences observed and the increased implementation 

complexity, range adaptation in its current form is not viable. 

4.4.3 Effect of vehicle layouts 

Three types of vehicle layouts were simulated — tagged sender at the centre 

of the intersection, tagged sender 80 m south of the intersection (the “offset 

scenario”) and the tagged sender along a straight road. Figures 4.6 and 4.7 

compare the performances of the algorithms at each layout for S = 1.00 and 

S = 0.25 respectively. 

Overall, the results for each layout with the same transmission range are 

similar, showing quite similar trends, with the straight road achieving slightly 

better performance across all measures for all schemes. This is possibly due to 

the lower vehicle density and the transmissions not being affected by building 

shadows. 

When the maximum transmission range is high, the metric based algorithms 

continues to provide effective interference minimisation, achieving better PRR 

than most other retransmission schemes. The heavy-vehicle only scheme per­

formed well at high densities due to its much smaller set of relays, but it is unable 

provide much improvement at low densities, regardless of the vehicle layout. 

The offset scenario illustrates the problem with the range adapted retransmis­

sion algorithm, where the higher interference is more pronounced. The vehicle 

layout in this scenario is highly non-uniform — there are more vehicles closer 

to the intersection (which is not near the source). Therefore the number of po­

tential relays are higher near the intersection. The range adaptation allows all 

these potential relays to adjust its output power, boosting the potential relay’s 
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Figure 4.6: Results with all stations transmitting, error bars represent two stan­
dard deviations, all target stations should receive packet if under unit-disc prop­
agation. Parameter X for the metric cases are chosen to give the best PRR and 
is common only between corresponding columns in the PRR and CBT graphs. 
First row is centre-of-intersection case, second row is 80 m south of intersection, 
and last row the straight road scenario. 
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Figure 4.7: Results with all stations transmitting, error bars represents two stan­
dard deviations, maximum transmission radius is one quarter of the required 
distance. Parameter X for the metric cases are chosen to give the best PRR and 
is common only between corresponding columns in the PRR and CBT graphs. 
First row is centre-of-intersection case, second row is 80 m south of intersection, 
and last row the straight road scenario. 
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Figure 4.8: Results with a single transmitter, error bars represents two stan­
dard deviations. Parameter X for the metric cases are chosen to give the 
best PRR. Graphs plots PRR for maximum transmission range ratio S ∈ 
{0.25, 0.50, 0.75, 1.00}. 

desirability to retransmit. Figure 4.7d shows that more interference is introduced 

(probably due to more stations deciding to retransmit), but the PRR is not much 

better (if at all) than the non-range adapted version (Figure 4.7c). 

The non-uniform distribution of vehicles also reduces the retransmission algo­

rithms’ ability to provide good coverage. Figure 4.8 shows the PRR of the various 

algorithms with only a single transmitter — channel congestion is not an issue in 

these tests. Figures 4.8a and 4.8b show that the algorithm performs fairly well 

in scenarios that obviously require forwarding by the furthest station. When the 

maximum transmission range increases, the potential benefits (in terms of area) 

for the relays diminish causing a reluctance in retransmission. However, since 

there are many vehicles near the edges of the coverage area, non-retransmission 

causes a higher drop in PRR than scenarios with uniform distribution. Figures 

4.8c and 4.8d suggest that the metric based algorithms had reached its peak PRR 

(parameter X is at the highest value tested). This problem of estimating benefit 
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by area instead of station count is similar to the analogy of having telecommuni­

cation companies providing 98% mobile coverage in a country in terms of area, 

but the 2% that are not covered is located in the major cities because they did 

not consider population distribution. This problem cannot be resolved unless the 

potential relays can also estimate the distribution of vehicles as well. 

4.4.4 Variation of parameter X in an application context 

The results above showed the performance of the algorithms with the algorithm 

parameter X chosen to provide the best PRR for a specific vehicle density. Fig­

ure 4.9 shows the effect of varying parameter X, and shows the regions of interest. 

Not all of the regions were observed when S is higher due to the granularity of 

the variations in X. 

There are four regions in general, numbered I, II, III and IV. Region I rep­

resents the range of X where no retransmission was triggered by the algorithm 

(hence the performance of the algorithm is identical to the no retransmission 

case). With reference to Figure 4.9a, only the end of this region is observed, and 

only in the “free” (10 veh/km/lane) case at X = 0.5. Region II represents the val­

ues of X where improvements can be gained by encouraging more retransmission 

(i.e. increasing X). This correlates to the range of X with positive slope in the 

PRR curve. Region III is the region where increasing the number of transmissions 

causes performance to deteriorate due to collision and excessive delays (i.e.the 

region with negative slope). Finally, Region IV represents the region where no 

successful reception can be expected, either due to collision or delays. 

From Figure 4.9a, it is observed that the optimal value of X (the value of X 

between Regions II and III) decreases non-linearly as vehicle density increases. 

When comparing between Figures 4.9a and 4.9b, it is also observed that as S 

increases, optimal X also decreases. 
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Figure 4.9: Performance of the metric (without range adaptation) algorithm vs 
parameter X, in the centre-of-intersection scenario, all stations transmitting. Ra­
tio of transmission range to required coverage radius (S) ranges between 0.25 and 
1. Error bars omitted for clarity. The PRR without any retransmissions (at den­
sities of 10 and 100 veh/km/lane) are shown for comparison. (a) packet reception 
ratio (S = 0.25); (b) packet reception ratio (S = 1.00); 
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4.5 Discussions 

4.5.1 Behaviours and limitations of the algorithm 

Using the metric presented, the retransmission algorithm optimises the proportion 

of additional coverage at each retransmission. The parameter X was introduced 

to control the level of tolerable interference, providing a lever to allow dynamic 

adjustment based on channel conditions. Under certain conditions, the metric 

based non-range adapted algorithm behaves similar to common algorithms: 

•	 As X approaches 0, retransmission is discouraged, and the algorithm will 

not retransmit when X is 0; 

•	 As X increases, retransmissions are encouraged while the delays between 

stations of different priority are reduced. As X approaches infinity, the 

algorithm becomes “Always retransmit immediately” (i.e. flooding); 

•	 As maximum transmission range reduces past half of the required radius, 

the optimal location moves towards the edge of the transmission range (no 

risk of interfering outside the required area). The algorithm then behaves 

similar to the furthest successful station algorithm; 

•	 As the maximum transmission range approaches the required radius, the 

optimal location moves towards the centre of the coverage area. For very 

high station densities, the algorithm approximates the AFR-CS algorithm 

(except the retransmission is made by a station very close to the source 

instead of the source itself). 

The algorithm’s flexibility allows it to adapt its behaviour as needed. 

On the other hand, the metric assumes log-distance path loss as the only cause 

of signal attenuation. This simplified the calculation of coverage-vs-interference 

metric, but in reality, the actual additional station coverage vs interference can 

be very different to the calculated value. Consider the case where an obstruction 
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completely blocked transmissions in certain directions from a station but leave
 

some paths unattenuated (e.g. at an intersection with a building that casts very 

deep shadow), the necessary relay stations on the same road segment will not be 

triggered to retransmit as they cannot sense any unexpected attenuation. 

In addition, the algorithm uses a maximum interference tolerance (X) to 

limit the number of retransmissions. This has the side effect that the algorithm 

cannot guarantee 100% packet reception even in perfect conditions because the 

ratio of coverage-vs-interference will approach 0 as the original packet estimation 

approaches the required radius (“law of diminishing returns”). This means that 

for any chosen X, there will always be some “critical” estimated range, above 

which retransmission will not occur even if all stations know the packet will not 

be received by all intended recipients. 

4.5.2 Determining parameter X 

To provide the scalability demonstrated, the simulation results showed that the 

parameter X needs to be varied as vehicle density changes. The correct choice 

of the value of X is essential for the correct function of the algorithm. A low 

X discourages retransmissions except when it is highly advantageous (preferable 

for high vehicle densities), and will not retransmit at all when X is 0. A high 

X allows more stations to retransmit, but also reduces the effectiveness of the 

priority scheme, increasing the potential for packet collision (may be required 

for very low vehicle densities). The additional retransmissions can also increase 

packet delays if the retransmit queues are too large [181]. 

Based on the observations in Section 4.4.4, X should be a decreasing func­

tion of the number of one-hop neighbours. As the number of one-hop neighbours 

increases (by increasing transmission range or increasing vehicle density), the 

number of potential interferers increases. Since the number of actual interfer­

ers may be difficult to determine, one may be able to infer the level of inter­

ference/contention by observing the channel. 
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Figure 4.10: Measured PRR vs measured CBT, Centre-of-intersection scenario, 
all transmitting, S = 1.00. Graph plots the mean values of each test conducted. 

Plotting PRR vs CBT (Figure 4.10) seems to indicate that there is a loose 

relationship between the two measurements. It appears that high CBT is associ­

ated with low PRR, but the mapping is not consistent. PRR by itself (or packet 

loss, as used in TCP) is also a poor indicator for channel contention in a wireless 

network since fading and shadowing also causes packet loss. Figure 4.10 suggests 

that in order to achieve an acceptable PRR (≤ 50%), CBT should be kept below 

60%. However, since the various CBT level were achieved using different algo­

rithms (the figure plots data points from all algorithms and parameters tested), 

the CBT may not accurately reflect the actual contention experienced. One can 

see in Figure 4.10: 

•	 PRR > 70% for CBT < 40%; 

•	 Non-reception at CBT above 70% 

•	 PRR is scattered between 40% and 70% 

•	 Transitions between these regions are quite distinct, possibly due to the 

granularity of vehicle density changes. 

Another strategy is to moderate retransmissions based on an estimate of the 

local channel contention instead of simply using the CBT. Heusse et al. [141] 

presented a technique whereby the MAC layer adjusts its contention window such 
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that the observed idle slots is at the theoretically determined optimal. While this 

technique can improve packet reception and throughput for slightly delay-tolerant 

messages it cannot adjust the load offered to the MAC layer. A reactive strategy 

that moderates the retransmission parameter X may be able to achieve similar 

effect by moderating MAC-load instead of the contention window. 

4.6 Conclusion 

In this chapter, a cooperative geocast algorithm that determines whether to re­

transmit based on estimated coverage and interference was evaluated. The al­

gorithm is shown to be effective in improving the dissemination of short packets 

over a prescribed area in the presence of both fast fading and shadowing. The 

algorithm uses a delay-based approach for prioritising packets, with the delay cal­

culated based on a metric that accounts for additional coverage, redundant and 

irrelevant packet reception areas. When compared to selected alternative algo­

rithms, the presented algorithm is effective in reducing the interference caused by 

retransmissions, and degrades slower as station density increases. Since the op­

eration of the algorithm only requires local information and information already 

in packet header, minimal overhead is required. 

In the next chapter, a novel method of estimating local channel contention 

is explored, paving the way for the dynamic adjustment of the retransmission 

algorithm parameter. 
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Overview 

This chapter presents a passive channel contention estimation technique. As 

part of the development of this technique, a theoretical model of the broad­

casting DCF is analysed to gain insight between channel contention and in­

terframe idle period. 

Contributions 

•	 I investigated the relationship between wireless channel con­

tention and observed MAC-layer idle slot counts. A Markov 

model of the MAC-broadcast DCF was constructed in this investiga­

tion. Numeric solutions to the model provides a mapping between the 

probability distribution of interframe idle slot counts and the channel 

contention in terms of the number of concurrent saturated stations. This 

mapping can be used by the MAC layer to estimate channel contention, 

in order to adjust MAC parameters and/or to provide feedback to upper 

layers for moderating the offered load onto the network. 

•	 I demonstrated and evaluated a passive technique for esti­

mating channel contention using simple Bayesian inference. 

Using the probability distribution computed from the Markov model, 

the technique of estimating contention through observing idle slots was 

compared to Bianchi et al.’s MAC-level contention measurement tech­

nique using computer simulations. I have shown that estimates from 

this technique converge to the scenario parameter quicker and is more 

accurate. 

Publications 

•	 Tse, Quincy, Si, Weisheng and Taheri, Javid, “Estimating Contention 

of IEEE 802.11 Broadcasts Based on Inter-Frame Idle Slots,” in Pro­

ceedings of Local Computer Networks Workshops (LCN Workshops), 

2013 IEEE 9th Conference on, pp. 120-127, Sydney, Australia:IEEE, 

21-24 October 2013. 
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Chapter 5 

Estimating contention of 

IEEE 802.11 DCF broadcasts 

without hidden terminals 

5.1 Introduction 

Chapter 4 introduces a retransmission scheme that can effectively balance the 

amount of interference generated by retransmissions, requiring no a priori knowl­

edge of the network. However, the success of the scheme relies heavily on the cor­

rect dynamic adjustment of a parameter so that retransmissions are encouraged 

when the channel is free, but are suppressed when channel is busy. Even though 

the selection of the parameter may be done by observing the channel busy time 

(CBT), CBT itself is not a good measure of contention, and does not allow the 

station to quickly adapt. 

In this chapter, an expression linking the number of idle slots between con­

secutive transmissions and the number of saturated stations is derived, based 

on a broadcast variant of Bianchi et al.’s Markov model [148]. Second, this re­

lationship is exploited using Bayesian inference, observing the interframe idle 

slots in order to estimate the channel congestion level in terms of the number 
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Table 5.1: Notations used — all functions take parameters N and CW implicitly.
 
These parameters are not marked on these symbols unless their values are unclear.
 

CW Contention window size 
N Number of saturated stations (or equivalent) 

Probability of choosing slot k from [0, CW ] ⊂ Z, distributed 
according to the solution of the Markov model 

Pk 

Probability of successfully receiving a transmission at slot k 
R 
Rk 

Probability of successfully receiving a transmission 
nT Probability of n concurrent Tx at slot kk 

nT Probability of n concurrent Tx at slot k given no transmissions k |0Tk−1 

at slot k − 1
 
Tk
 Probability of the first Tx is at slot k 
nT Probability of n concurrent Tx
 
Uk
 Probability of choosing slot k from [0, CW ] ⊂ Z, distributed 

uniformly 
Probability of a collision at slot k
 

X
 
Xk 

Probability of collision k 

of saturated stations on the network. Here, a station is “saturated” if it al­

ways has at least a frame in its transmit buffer. Note that only the legacy 

Non-QoS IEEE 802.11 Distributed Coordination Function (DCF) is considered 

in this chapter. This technique can also predict the collision probability assum­

ing ideal channels with no hidden terminals. Using computer simulations of the 

IEEE 802.11 DCF, estimators configured using this model are shown to be more 

accurate in estimating the channel contention, and converge to the steady state 

faster than the existing technique of observing channel busy status alone [136]. 

5.2 Markov model of the Broadcasting DCF 

By modelling the broadcasting non-QoS-enabled IEEE 802.11 DCF backoff counter 

using a variant of discrete time Markov model presented by Bianchi et al. [148], 

adapted for broadcast transmissions, the behaviour of it can be analysed. The 

symbols used in this model are listed in Table 5.1. 

This model uses only the top row of states in the Bianchi model, and discards 

the remaining states representing the exponential backoff procedure. Similar to 

the original model, this model quantises time into “slots” of varying lengths, 
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Figure 5.1: Markov chain model for a single saturated station 

delineated by the decrement of the backoff counter. Stations are assumed to 

be saturated (always have something to send) and are synchronised. Since this 

analysis is not concerned with throughput or other time-related measures, the 

length of each slot is unimportant. Each state in the model is represented by 

the value of the backoff counter at that state. Figure 5.1 depicts this model 

graphically. If a backoff counter has a value of X ∈ [1, aCWmin], it will always 

have a value of X − 1 at the next slot. If a backoff counter has a value of 0, the 

frame will be transmitted and the counter reset to a value uniformly distributed 

in the contention window [0, aCWmin] as per IEEE 802.11 specifications. 

5.2.1 Analysis of steady state probability 

Based on the Markov model, the steady state probability of being in any state 

can be defined recursively as: 

⎧ ⎪⎨ ⎪⎩
 

Pk+1 + P0 k ∈ [0, CW )
CW +1

P ' = k (5.1)
 
P0 k = CW where CW = aCWminCW +1 

Given that the sum of all Pk equals to 1: 

1 = P0 + P1 + P2 + ... + PCW −1 + PCW 

P0 P 0 
= P0 + P1 + P2 + ... + (PCW + ) + 

CW + 1 CW + 1 
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CW +1W kP0 
= 

CW + 1 
k=1
 

CW +1
WP0 
=	 k 

CW + 1 
k=1 

(CW + 1)(CW + 2) P0 
= 

2 CW + 1 
P0(CW + 2) 

= 
2
 

2
 
P0 =	 (5.2)

CW + 2 

Hence: 

P0
Pk = (CW + 1 − k)

CW + 1 
2(CW + 1 − k) 

=	 (5.3)
(CW + 1)(CW + 2) 

This formula represents the overall probability of a station’s backoff counter 

having a value of k. 

Now, unlike in Bianchi and Tinnirello’s approach [136] where they solved 

the expression for collision probability, this analysis attempts to determine the 

number of backoff slots between transmissions. 

5.3	 Relationship between contention and inter-

frame slots 

5.3.1	 Näıve solution based on binomial expansion 

A näıve solution using the Markov model is to put the steady state probabilities 

into a simple binomial expansion. Assuming there are N saturated stations, 

aCWmin = CW : 
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For slot k = 0:

The probability of not having any transmissions can be written as:

T0 0 =

(
N

0

)
(1− P0)

N

= (1− P0)
N (5.4)

Hence the probability of one or more transmissions is:

T0 = 1− T0 0

= 1− (1− P0)
N (5.5)

Assuming collision is the only cause of frame loss, and any collision will cause

all colliding frames to be lost, the probability of successful Rx is:

R0 =

(
N

1

)
(P0)

1(1− P0)
N−1

= NP0(1− P0)
N−1 (5.6)

and the probability of collision:

X0 = T0 −R0 (5.7)

For slot k ∈ [1, aCWmin]:

Here, only the conditional probability given there had not been any transmissions

earlier in the contention window needs to be considered. If there had been prior

transmissions, the procedure would have been reset (i.e. Pk′|Tk = 0 ∀k ∈ [0, k′)).

This conditional probability can be written as:
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T0 k | T0 k−1
=

(
N

0

)(
1− Pk∑CW

m=k Pm

)N

=

(
1− Pk∑CW

m=k Pm

)N

(5.8)

Therefore the probability of not having any transmission since the start of the

contention window is:

T0 k = T0 k | T0 k−1
× T0 k−1

= T0 k−1

(
1− Pk∑CW

m=k Pm

)N

(5.9)

and the probability of the first transmission being at slot k is:

Tk = (1− T0 k | T0 k−1
)× T0 k−1

= T0 k−1

1−
(

1− Pk∑CW
m=k Pm

)N
 (5.10)

The probability of the first transmission being at slot k and is successful is

therefore:

Rk =

(
N

1

)(
Pk∑CW

m=k Pm

)1(
1− Pk∑CW

m=k Pm

)N−1

T0 k−1

= N T0 k−1

(
Pk∑CW

m=k Pm

)(
1− Pk∑CW

m=k Pm

)N−1

(5.11)
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and the probability of the first transmission being at slot k and is unsuccessful
 

can be expressed as: 

Xk = Tk − Rk (5.12) 

Overall statistics: 

The probability of successful transmission is: 

CWW 
R = Rk (5.13) 

k=0 

The probability of collision is: 

CWW 
X = Xk 

k=0 

= 1 − R (5.14) 

And the expected number of slot between transmissions is: 

CWW 
E[T ] = kTk (5.15) 

k=0 

5.3.2 Accounting for observation dependencies 

The näıve solution gives the steady state probability, assuming that system ob­

servations are taken in a process that is independent from the underlying states. 

When observations can only occur at specific states (i.e. when a station trans­

mits after reaching state 0), some stations may not have reached steady state 

and therefore this näıve model may not fit well. This is especially evident when 

the number of stations (N) is either too small or too large compared to the con­

tention window size. After transmitting a frame, a station reinitialises its backoff 

counter to a uniformly distributed value (thus does not follow the stationary 
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probabilities of the Markov model). The ideal model would account for the entire

history of each station (breaking the Markov model assumption), and would be

intractable for most cases. As a compromise, this thesis accounts for the number

of stations last transmitted and uses uniform distribution instead of the steady

state probabilities of the Markov model for these stations, improving the model

by considering the one-step history at each station.

To allow for multiple concurrent transmissions, one needs to both incorpo-

rate the various expressions for concurrent transmissions and to determine the

likelihood of its occurrence.

In this analysis the uniform distribution over the contention window [0, CW ] ⊂

Z is denoted as U , and the probability of choosing slot k from this distribution

Uk = 1
CW+1

.

The probability of not having any transmissions at slot k, given there were

no transmissions in the previous slot, is:

T0 k | T0 k−1
=

N∑
i=1

Ti
(
i

0

)(
1− Uk

1−∑k−1
j=0 Uj

)i(
N − i

0

)(
1− Pk

1−∑k−1
j=0 Pj

)N−i

(5.16)

Here, i is the number of concurrent transmissions in the last cycle.

To compute the probability of having n concurrent transmissions at slot k

given there was no transmission in the previous slots, all possible ways the n

stations could be distributed between the set of previously transmitted stations

(which follows uniform distribution) and the set of stations that did not transmit

in the last cycle (and follows the Markov chain) need to be considered:

Tn k | T0 k−1
=

N∑
i=1

Ti
min(i,n)∑

m=max(0,n−N+i)

(
i

m

)(
Uk

1−∑k−1
j=0 Uj

)m(
1− Uk

1−∑k−1
j=0 Uj

)i−m
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(
N − i
n−m

)(
Pk

1−∑k−1
j=0 Pj

)n−m(
1− Pk

1−∑k−1
j=0 Pj

)N−i−n+m

(5.17)

Using these, the unconditional probabilities Tn k can be determined as:

Tn k = Tn k | T0 k−1

k−1∏
j=0

T0 j | T0 j−1
where T0 −1 = 1 (5.18)

Finally, the probability of n concurrent transmissions can be determined by

summing over all slots:

Tn =
CW∑
k=0

Tn k (5.19)

5.3.3 Numeric solution to the system of equations

Computing the probability of concurrent transmissions ( Tn for some n ∈ [1, N ])

requires solving a system of polynomials of degree CW with N variables. (The

steady state Tn is a polynomial of Tj ∀j ∈ [1, N ] of degree CW .) While it is

possible to determine exact solutions of such systems using techniques such as

computing the Gröbner basis, algorithms to find these basis are complex. The

most commonly used algorithm, implemented in Matlab, Mathematica and other

software, is the Buchberger’s Algorithm [182]. Extending Mayr’s results [183],

it can be shown that using this algorithm to solve the system has a worst case

complexity of O(CW 2N ), and is therefore not viable for our analysis. Therefore,

numeric approximations are used to solve the system of equations representing

the analytic solution.

To approximate the various Tn , an initial approximate is calculated by drop-

ping all terms with degree greater than 1 and solving the resultant set of linear

equations. The approximate is then improved incrementally using an adapted

form of binary search where, for each Tn , the mean between the approximate
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Algorithm 5.1 Numeric solution of concurrent transmission probabilities
 
function compute approximate(S: set of polynomial equations for nT ) 

S ' ← drop terms of degree > 1 for each equation in S 
A ← solution of S ' using Gauss-Jordan elimination 
while true do 

A ← normalise A such that A = 1 
A ' ← substitute A into S and evaluate 
if max(A ' ) < 5 × 10−4 or max(|a − a ' |) < 10−9 

return current best estimate A 
∀a ∈ A, a ' ∈ A ' then 

end if 
if more than 20 retries then 

return current best estimate A 
end if 
if first retry then 

A ← mean of A and A ' 

continue 
end if 
if odd retries then 

A ← move A ' the opposite direction to last perturbation 
else if even retries then 

Flatten the vector A — reduce peak by 3% and distribute uniformly 
to the remainder 

end if 
end while 

end function 

and the result are first normalised to 1 and then used as the initial approximate 

to the next increment. If the mean does not improve the estimate, the guess is 

then slightly perturbed either side of the guess and/or the result vector flattened 

for up to 20 times, retrying the new guess afterwards. The incremental step is 

iterated until an error of less than 5 × 10−4 is achieved or no improvements can 

be made. This algorithm is presented as Algorithm 5.1. 

Algorithm 5.1 was implemented in C++ and run on a computer with one 

Intel E8400 CPU and 4 GiB of RAM. Analytic results are computed for up to 

450 stations and contention window up to 255. Execution of the approximations 

run for no more than 3 days. 
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5.4 Accuracy of DCF model 

Computer simulations were conducted using a simplified model of the DCF to 

verify the correctness of the model. Complex simulation packages such as ns-3 

were not used in the investigation because these packages also simulate more 

complex physical layer effects that complicate the interpretation of results. Sim­

ulations are conducted for CW sizes of 3, 7, 15, 31, 63, 127 and 255, with up 

to 100 saturated stations within range of each other. The statistics on collision 

probability and interframe idle slot counts are collected and then compared to 

the model predictions. 

5.4.1 Simulated DCF model 

A model simulating a DCF backoff counter was constructed to verify the math­

ematical model. This simulation model is a simple decrementing counter that 

is reset once it reaches zero, and assumes perfect physical channel. The model 

simulates the following: 

•	 Fixed size contention window (CW) for each station; 

•	 Backoff counter reinitialise to a uniformly distributed value within the CW 

after transmission by the station. This models the DCF broadcast be­

haviour (i.e. no ACKs) and assumes all stations are saturated; 

•	 Global (shared) timeline in “slots”. Data transmission, IFS, etc. occur 

between slots and the actual wall time for the action is ignored; 

•	 Transmission is lost if and only if there is a collision (two or more stations 

scheduled to transmit in the same slot); and 

•	 The model assumes all stations are synchronised (propagation and process­

ing times are zero and no hidden stations). Without assuming synchroni­

sation, the time between slots cannot be ignored as stations that are not 

synchronised will see different slot boundaries. 
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Each station simulated is initially assigned a backoff counter value uniformly 

distributed over the contention window. At each time step, all backoff counters 

are decremented by one if the counter value is greater than zero. If the counter is 

zero, it is assumed that the station will initiate a transmission, and the counter 

is reset to a backoff counter uniformly distributed over the contention window. 

The transmission is assumed to be successful if only one station initiated a trans­

mission, and assumed to have failed due to collision if more than one station 

transmitted. If no station initiated a transmission at that timeslot, then the 

channel is considered idle at that time, otherwise, the channel is considered busy. 

In this simulation, statistics on idle periods, probability of channel being busy 

and packet success ratio are collected. 

This model uses the Combined Multiple-Recursive Generator MRG32k3a [184] 

as the pseudo-random number generator. This generator is also used in many 

complex network simulation packages such as ns-2 and ns-3. This pseudo-random 

number generator has a period of 2191, and the implementation used in the sim­

ulator divides this into 264 non-overlapping subsequences of 2127 . Each execution 

of the model uses a different seed, thus has a good probability that the executions 

are statistically independent from each other. In the experiments, a sample of 

500,000 idle periods was collected for each station count–CW pair. 

5.4.2 Results 

Figure 5.2 compares the overall network statistics between the model prediction 

and the simulation results using the simple DCF model. Further comparison 

looking at the distribution of backoff slot for a contention window of 63 and 

varying number of stations are included in Figure 5.3. 

The simulation results (Figure 5.2) suggest that the expected number of idle 

slots decreases and the collision probability increases as the number of saturated 

stations increases. This confirms the intuition that as more stations try to trans­

mit, the chance that some station would transmit while another is still decre­
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Figure 5.2: Overall network statistics for a contention window size of 64 as a 
function of total number of concurrent saturated stations, in the absence of hidden 
stations, as predicted by the theoretical model vs simulation results. Simulation 
results are aggregated over 10 executions of the simulation using different random 
seeds. Error bars denotes two standard deviations from sample means. 
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Table 5.2: Goodness-of-fit — Overall network statistics
 

CW 
15 

Idle Slots Error 
63 

Idle Slots Error 
255 

Idle Slots Error 
R2 0.99893 0.99755 0.99993 0.99986 0.99999 0.99997 

Table 5.3: Goodness-of-fit — Predicted distribution (aCWmin = 64) 
#Stations 1 5 10 15 50 150 

R2 1.4e-11 0.9998 0.9999 0.9999 0.9999 1.0000 

menting the backoff counter increases. This also confirms the intuition that when 

the number of stations increases, the chance of two of more stations choosing the 

same backoff slot also increases. 

By comparing the overall statistics from the theoretical prediction to the sim­

ulation output in Figure 5.2, the accuracy of the theoretical model in predicting 

the expected idle slot counts and the associated error probabilities can be con­

firmed graphically. In addition, Table 5.2 calculates the R2 value for the model. 

Both the idle slots and the success/error predictions have R2 close to 1, indicating 

very high correlation between the observed data and the model. 

Figure 5.3 further compares the performance of the model with the simula­

tion, looking at the probability distributions when the contention window size 

is restricted to 64. In general, these plots indicate that the theoretical model 

presented is quite accurate in predicting the probability distribution of idle slot 

counts. Figure 5.3d and e both showed that the theoretical model very slightly 

underestimates the probability of immediate transmissions at very high station 

densities (50 and 150 stations in range). This small discrepancy would explain 

the underestimation of packet loss observable in Figure 5.2b. Table 5.3 shows the 

R2 values for these predictions. All results except for N = 1 shows a very high R2 

value, indicating high correlation between the prediction and the observations. 

For the case N = 1, since the prediction is a horizontal line, the R2 value cannot 

provide a useful measure of correlation. Nevertheless, the good fit between the 

model predictions and the data can be confirmed visually using graphical means. 
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Figure 5.3: Distribution of idle slots between transmissions (interframe space) for 
a contention window size of 64, as predicted by the model (line) vs simulation 
results (columns) using the simplified DCF model. Simulation results are aggre­
gated over 10 executions of the simulation using different random seeds. Error 
bars show two standard deviations from the sample means, most are too small to 
be visible. 
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5.4.3 Discussion
 

The investigation in this section raises concerns regarding the capacity of the 

current IEEE 802.11p standard for vehicular safety systems. The expected ca­

pacity of the current IEEE 802.11p configuration (where aCWmin is 15) is ob­

vious from the CW = 15 plot in Figure 5.2b. Current proposals for vehicular 

safety applications require a minimum packet reception ratio of 90%. However, 

even two saturated stations on the network will degrade the PRR to the thresh­

old without considering physical effects that contributes to frame loss! It must 

however be noted that this simulation does not consider the effect of distance 

and packet capture, which can enhance reception, nor does it consider any “link 

layer desynchronisation” [185] where the MAC timers are not synchronised across 

the network (typically caused by hidden terminals, shadowing and fast fading). 

Torrent-Moreno et al. found that stations as close as 47% of the transmission 

range (and 24% of carrier sense range) may not be able to detect a concurrent 

transmission due to fast fading alone [185]. The lack of synchronisation between 

stations may cause more collision than is predicted by the model. While it is 

noted that saturated stations may be highly unrealistic in practice, the work in 

the upcoming chapters will relax this condition and show this capacity limitation 

to apply even for unsaturated stations. 

The investigation in this section therefore suggests that, in order for vehicle­

to-vehicle communication to meet the target PRR, load offered to the channel 

must be tightly controlled. Enabling the Medium Access Control function to sense 

and adapt to channel load using implicit feedback mechanisms such as passive 

channel observations may be necessary. 

5.5 Estimating channel load 

Having demonstrated that the model can predict the channel behaviour for a 

given number of concurrent saturated stations on the network, this theoretical 
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Algorithm 5.2 Algorithm to measure the number of saturated stations

Let b be the belief vector of saturated stations count.
for all bi ∈ b do

bi ← 1
length(b)

end for

loop
ô← observed number of idle slots
denominator ← 0
for all bi ∈ b do

denominator ← denominator + bi(Tô|N = i)
end for
for all bi ∈ b do

b′i ← bi(Tô|N=i)
denominator

end for
b← {b′i ∀i}

end loop

Nest ←
∑

i ibi . Estimated station count is the weighted sum of belief

model is then used to estimate the number of concurrent transmitting saturated

stations by observing the distribution of interframe spaces.

In this section, a channel load estimator that uses Bayesian inference to esti-

mate the most likely number of saturated stations on the network is described and

evaluated. Bayesian inference is based on Bayes theorem in probability theory

such that observed outcomes are used to derive a distribution of the underlying

factors on which the observations are conditional upon. It is simple to implement,

and are quite accurate in practice. Algorithm 5.2 outlines the operation of the

load estimator.

The resultant belief vector b represents the likelihood that the current estimate

is the correct number of saturated stations on the network. One method to

interpret this belief vector is by taking the entry with the highest probability

(Maximum Likelihood). However, since the number of categories used in this

estimator is much smaller than the domain of the conditions, the weighted sum

of the belief vector is taken as the estimated contention value. This allows the

estimator to interpolate for the number of saturated stations that is not in the

referenced set.
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5.5.1 Performance evaluation 

In this experiment, a network containing a fixed number of saturated stations is 

simulated, each operating as described in Section 5.4.1. Additionally, one pas­

sive observer station is inserted into the network, and is configured with two 

channel load estimators. During the simulation, channel observations are fed to 

both channel estimators on this station, with the estimates from these estima­

tors compared to the parameters of the simulation. The experiment compares 

the estimation by observing interframe spaces with Bianchi and Tinnirello’s ap­

proach [136] of observing channel busy status at each time slot in terms of both 

accuracy and the time to reach steady state. 

In this experiment, one of the channel estimators is configured with the prob­

ability distribution of idle slots calculated by the theoretical model, and are given 

the idle slot observations every time a transmission occurs. The other estimator 

is configured with the steady state probability of transmission in any given time 

slot. This method adapts Bianchi and Tinnirello’s approach [136] but removes 

from their Markov model all the states related to MAC retransmissions, which are 

not experienced in a broadcast environment. The estimator configured to observe 

channel busy status is fed channel observation (busy or not) at every time slot. 

It is noted that, unlike in Bianchi and Tinnirello’s paper [136], simple Bayesian 

inference is used. Not only this technique very easy to implement, it also provides 

a common basis to compare the two approaches. 

For ease of implementation in this experiment, the number of concurrent sat­

urated stations is limited to a finite set of discrete integers. Even though the 

function that calculates the expected idle slot distribution for any given number 

of saturated stations has a domain that spans the entire set of positive integers, 

the calculation of the actual values are not easily performed. Hence only the prob­

ability distributions of idle slots for the small subset of saturated station counts 

are precomputed. The set of idle slot distributions are chosen to be the data 

points originally obtained for the previous section (Figure 5.3), (including those 

126
 



collected but not plotted in the figure). The data points are chosen mainly due
 

to convenience and are not the category that optimises for accuracy or usefulness 

in prediction outcome. 

5.5.2 Results 

Figure 5.4 plots the respective belief vectors from the two channel load estima­

tors. It should also be noted that Bianchi and Tinnirello’s approach assumes the 

observing station is always transmitting (saturated), thus the actual output from 

this estimator is one higher than the number of saturated stations. Figures 5.4 

and 5.6 have been adjusted to account for this behaviour. 

Overall, the channel load estimator observing idle slot counts outperforms the 

one observing the channel busy status (“collision probability”) in terms of both 

the estimation accuracy and the time to steady state. Figure 5.4 shows the mean 

and standard deviation of the probability distribution in the belief vector over 

time for a system with contention window size of 64 (aCWmin = 63). The number 

of saturated stations tested include the case with only a single station (Figure 

5.4a), less stations than number of slots available (Figures 5.4b and c), number 

of stations close to number of slots available (Figure 5.4d) and the number of 

stations exceeds the number of backoff slots available (Figure 5.4e). 

Figure 5.4 shows that both Bianchi and Tinnirello’s [136] and our model can 

be used with Bayesian inference to determine the number of saturated stations 

based on channel observations. The black points mark the means of the belief 

vectors, and the error bars show the spread of the probabilities (one standard 

deviation). The red error bars are the belief vectors from the estimator observing 

idle slot counts, whereas the green error bars correspond to the estimator observ­

ing channel busy status. These figures show that as time progresses, the means 

of the belief vectors for both techniques converge to a value close to the actual 

parameter (i.e. the estimates are accurate), and the spread of the probabilities 

reduces (i.e. the estimator is becoming more certain). 
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Figure 5.4: Estimator belief vector as time progresses for a contention window 
size of 64. Plotted is the mean and standard variation of the belief vector prob­
ability distribution. The blue solid line represents the true configuration of the 
simulation. Only one in 20 data points are plotted to allow the other line to show 
through. Early values for the red “theory” points (from the idle slot observation 
method) are outside the plot until the after the first backoff period — i.e. the 
first belief vector update. 
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It is noted that the early data points for the estimator observing idle slot
 

counts are outside the range of the y-axis in Figure 5.4a. This is due to the fact 

that, unlike the Bianchi technique, the belief vector is not updated until the first 

transmission, and it may take a few observations before the belief vector gets 

within the range of the y-axis. 

In the scenarios tested and shown in Figure 5.4, the estimator that observes 

idle slots tends to converge to a value closer to the true simulation parameter. 

The mean estimate from Bianchi and Tinnirello’s technique tends to be half to 

one station lower than the actual parameter. In addition, the estimator observing 

channel busy status is slower to become certain about the estimate, as can be 

seen by the higher spread. 

The outcomes when the contention windows is only 16 slots long show similar 

trends. Figure 5.5 shows that both techniques converge to an estimate close to 

the actual parameter value, and their confidence in their estimates also grow 

(reducing probability spread) as time progresses. In these tests, Bianchi and 

Tinnirello’s technique still seems to underestimate at low load, but on the other 

hand the presented technique tends to overestimate at high load. 

Estimating non-referenced values 

When the number of saturated stations are not in the set of reference values, 

the estimators are likely to eventually choose as result a member of the reference 

set instead of the true value. Figure 5.6 compares the belief vectors between (a) 

a non-referenced number of saturated stations (24, the closest categories are 20 

and 30), and (b) 19 saturated stations, which is an element of the reference set. 

The scenario with 20 saturated stations cannot be used here due to assumption 

in Bianchi and Tinnirello’s approach that the observer station is also saturated, 

giving an expected output of 21, which is not within the reference set. In these 

figures, the reference values common to both estimators are coloured black, ones 

unique to Bianchi and Tinnirello’s technique (due to the off-by-one behaviour) 
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Figure 5.5: Estimator belief vector as time progresses for a contention window 
size of 16. Plotted is the mean and standard deviation of the belief vector prob­
ability distribution. The blue solid line represents the true configuration of the 
simulation. Only one in ten data points are plotted to allow the other line to show 
through. Early values for the red “theory” points (from the idle slot observation 
technique) are off the plot until the after the first backoff period — i.e. the first 
belief vector update. 
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Figure 5.6: Comparison of estimated contention levels when the actual number 
of saturated stations is either (a) outside the reference set, or (b) an element of 
the reference set. Estimated contention level is plotted as the weighted sum and 
the standard deviation of the estimator belief vectors. Contention window size 
of 64 was used. Only one in 70 points are plotted to allow other error bars to be 
visible. Plot shows a much noisier output when contention level is not within the 
reference set, with the output converging to a value in the reference set instead 
of the true value. 
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are green, and the ones unique to the idle slots approach are coloured red.
 

Figure 5.6 shows that when the number of saturated stations is not within 

the reference set, the channel load estimator output may eventually converge to a 

value within the reference set instead of the true value, with the output from the 

estimators being much noisier. Consistent with earlier observations, the estimates 

for the 19-station test (Figure 5.6b) converges consistently to the correct value for 

both estimators. In comparison, the 24-station tests (Figure 5.6a) converge much 

slower to their steady states, with the mean lingering around the true value for 

an extended period of time before stabilising at a referenced value. The estimator 

observing channel busy status shows occasional large variances in its estimates 

even after the mean value reached its steady state. 

5.5.3 Discussion and future work 

It can be seen that the output from Bianchi and Tinnirello’s technique is noisier 

across the tests conducted. The noise is more prominent with smaller contention 

window sizes probably because the technique only uses the binary busy/idle status 

to estimate channel condition. This means individual states may be much more 

influential on the mean. It also explains why interframe period observations 

generate a less noisy result. The wider range of possible outcomes from observing 

idle slots is also beneficial for improving confidence in the estimates, thus allows 

the estimates to converge faster despite the lower update frequency. 

This work also highlights the need for appropriate windowing strategies or the 

use of more sophisticated classification/regression algorithms. Simple Bayesian 

inference retains infinite history, therefore it cannot track changing channel con­

ditions. Retaining infinite history means that when the number of samples is 

large enough, additional samples would provide minimal influence on the estima­

tor unless an extremely rare event is observed. Figure 5.6a showed that as time 

progresses, the estimator output converges to one of the reference values due to 

the lack of windowing strategy. Experimental results suggest that the estima­
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tor output may linger near the true value for some time before converging to
 

the steady state value. Hence an appropriately chosen aggregation window (size 

and/or shape) could potentially avoid the estimator getting stuck at a certain 

category, and allows the estimator to track changing conditions. 

The use of simple Bayesian inference in this section is only intended to be 

a sample application of the model. The theoretical model presents a method 

to compute the number of idle slots that can be expected for any number of 

saturated stations in the network. This work also demonstrated that one may 

use observed interframe periods to estimate the channel load in terms of the 

number of saturated stations. In actual practice, one can use the presented 

model and the technique of observing idle slots in estimators other than (or 

in conjunction with) simple Bayesian inference to improve the accuracy and/or 

time to steady state. One may, for example, apply a hamming window, ARMA 

and/or EKF filter [136], MAP filter [137], or Viterbi algorithm over the output 

of the Bayesian estimator [138]; or to use particle filter techniques in place of the 

Bayesian estimator similar to [139]. The work presented in this section can be 

used as the basis of any applicable classification/regression techniques in order 

to estimate channel load. 

Furthermore, when compared to Bianchi and Tinnirello’s technique [136] of 

observing frame collisions, observing idle slot counts converges faster despite the 

lower refresh rate. Observing channel busy status causes the estimator to slowly 

adjust its belief vector at every slot, whereas observing idle slots cause large 

adjustments every few slots. Since channel contention is unlikely to change much 

between slots, the lower refresh rate does not affect the usefulness of the technique. 

On the other hand, the faster convergence enables the use of smaller aggregation 

windows, thereby allowing estimators that do not retain full history to track 

current channel contention quicker in a dynamic environment. 

Finally, in modelling this system, all stations are assumed to be within range 

of all others and are saturated. This is atypical in real life. When a station cannot 
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sense a current transmission, the assumption that all stations are synchronised be­

comes invalid, thus may invalidate the model. Intuitively, hidden terminals might 

transmit during another station’s transmission, thus one may no longer disregard 

the timing aspect of the scenario, and cannot use flexible slots as the unit of time 

(without assuming transmission takes integer number of slots). Additionally the 

state transition of one station is no longer independent of another station. For 

these reasons, a model that allows hidden terminals cannot be Markovian in the 

current form. Bastani et al. used a slight variant of this Markov model whereby 

time is still quantised into slots, but the DCF state may not update at each slot 

depending on the channel condition [51]. A similar extension of the model pre­

sented may be useful for incorporating hidden terminals. Further investigations 

on the actual effect of both unsaturated stations and hidden terminals on the idle 

slot distribution is needed. 

5.6 Conclusion 

In this chapter, the Bianchi model was used to derive an expression relating the 

number of idle slots between IEEE 802.11broadcast transmissions, to the number 

of saturated stations on the network. A channel contention measurement tech­

nique exploiting this relationship was described. The described technique uses 

simple Bayesian inference and observes idle slot counts between frames. Through 

computer simulations, it is shown that this technique is effective in estimating 

the number of saturated stations on a network with no hidden terminals. When 

compared to the existing technique of observing packet collision probability, the 

technique of observing idle slot counts reaches steady state faster, with the esti­

mate being closer to the true value. 

Furthermore, investigations in this chapter revealed a potential issue with 

channel capacity for vehicular networks — the IEEE 802.11p channel would de­

grade to below the required 90% reception with only two saturated stations on the 

network. It is identified that appropriate MAC-layer channel contention sensing 
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with appropriate windowing mechanisms will be necessary for controlling channel
 

contention and thereby improving packet reception ratio. 

In the next chapter, the effects of unsaturated stations on the channel and 

the channel estimation algorithms are evaluated, leading to the development of 

an extension to the broadcasting DCF model. 
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Overview 

This chapter investigates the applicability of the passive channel observation 

technique to networks with stations that are not saturated. The measure 

“Equivalent Saturated Node” (ESN) is introduced both to describe the level 

of saturation of a station, as well as the level of contention across a network. 

An extended theoretical model to analyse unsaturated stations is introduced 

and is found to be not viable. 

Contributions 

•	 I demonstrated the effects unsaturated stations have on the 

relationship between the wireless channel contention and the 

observed idle slot counts and their impacts on channel con­

tention estimation techniques. Here, channel contention is defined 

as the sum of individual stations’ saturation across all stations in the 

network. Through simulation, I showed that station saturation has a 

small but observable effect on both the distribution of idle slot count 

and the collision probability. There are minor impacts on the estimators’ 

channel contention estimation accuracy as well as slight lengthening of 

time before the estimates stabilise. I have also shown that the tech­

nique of observing idle slot counts is more resilient to errors caused by 

unsaturated stations. 
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Chapter 6 

Networks with Unsaturated 

Stations 

6.1 Introduction 

In the previous chapter, networks containing only saturated stations were inves­

tigated, whereas real networks are unlikely to contain many of them (if at all). 

This chapter investigates the applicability of those results to the more generic 

situation with unsaturated stations. In particular, a measure called “Equivalent 

Saturated Nodes” (ESN) is introduced to describe both the level of contention in 

a network as well as the degree of saturation of individual stations. Using this 

measure, the DCF model presented in Chapter 5 and the passive channel load 

estimator is tested against various station saturation levels to determine their 

applicability in situations with homogeneous unsaturated stations. 

An extension to the DCF model incorporating unsaturated stations is also 

presented, with its predictions tested against simulation outcomes from similarly 

configured DCF simulators. The DCF simulator in Chapter 5 is extended to 

simulate unsaturated stations described by ESN values. Statistics on the idle slot 

counts and the packet collision probability are collected and compared to model 

predictions. 
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6.2 Equivalent Saturated Nodes (ESN) 

In this chapter, a station’s degree of saturation is measured not by the probability 

of having something to transmit at a given slot time like [150] and [152], but by 

the proportion of all available transmission opportunities that is used by the 

unsaturated station to transmit. 

Broadcast DCF decrements the backoff counter every slot time when the chan­

nel is idle, and resets to a value uniformly distributed within the contention win­

dow when the counter is zero. When the counter is reset, a saturated station 

transmits the frame in its buffer. The measure “Equivalent Saturated Nodes” 

(ESN) is defined as the probability that a station actually have something to 

transmit when the counter is reset. Since a completely saturated station will 

transmit every time it is able to, the probability it has something to send is 1 — 

such saturation is described as 1 ESN. For stations that, on average, only have 

something to send every two opportunities, they are 0.5 ESN. The concept of 

ESN is time-independent — it considers only transmission opportunities in the 

DCF backoff counter’s perspective. It should be noted that actual implementa­

tions of the DCF do not continuously reset waiting for a frame — ESN assumes 

an “equivalent” modified station that continuously reset. This therefore assumes 

some average cycle length such that the probability can be calculated. 

When using ESN to describe the contention level of a network, the degree 

of saturation for each station in the network is added. For example, a network 

containing 4 stations of 0.5 ESN has a channel contention level of 2 ESN. 

6.3 Effects of station saturation 

This section details the simulation study conducted to investigate the effects 

unsaturated stations have on channel observations. 
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Figure 6.1: State machine description of the extended simulation model 

6.3.1 Method 

In this study, the simple DCF simulation model in Chapter 5 is extended such that 

each station can generate packets as specified by the ESN. In the updated DCF 

model, in addition to resetting the backoff counter to a uniformly distributed value 

within the contention window at the end of the backoff period, the station also 

chooses whether the station will put a packet onto the medium at the end of the 

next backoff period. The decision of whether to retransmit is as specified by the 

ESN value. Figure 6.1 is the state machine description of the updated simulation 

model. Unchanged from the original model, the updated model continues to use 

MRG32k3a as the pseudo-random number generator. 

The simulation study conducted aims to identify: 

•	 whether scenarios with the same total ESN behave similarly (e.g. 2 stations 

of 1 ESN vs 4 stations of 0.5 ESN); and 

•	 whether and how accurately the original analytical model can predict MAC 

idle slot counts and collision statistics. 
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Table 6.1: Simulation parameters
 
CW size 31 

Target Total ESN 
Station ESN 

{1, 2, 5, 10, 15, 20, 30, 40, 50, 100}
{1, .99, .95, .9, .75, .5, .3333, .25, .2, .125, .11111, .02} 

To achieve these aims, the parameters specified in Table 6.1 are used for these 

simulations. The actual number of stations simulated and the actual total ESN 

are calculated from the parameters on execution of each simulation run. 500,000 

idle periods from each simulation are collected and the results of the simula­

tions are compared to the numerical solutions of the analytical model assuming 

saturated stations. 

6.3.2 Results and discussion 

This section presents the results from the simulation, and discusses some of the 

issues immediately relevant to the results being presented. 

Validity of the “Equivalent Saturated Node” metric 

The mean idle slot counts and the collision probabilities from each simulation 

conducted are collected. Figure 6.2 plots the relationship between the changes 

in the observed idle slot count and the collision probability as a result of varying 

the station saturation. 

As evident in these figures, station saturation does have a significant effect 

on both the idle slot counts and the collision probabilities. For low enough sat­

uration, (ESN ≤ 0.5), the effect appears to be fairly consistent. A low station 

saturation increases the mean idle count and also increases collision probability. 

At higher station saturation, the effects seems to be relatively irregular. 

The increase in the mean idle slots is intuitively obvious. As station saturation 

decreases, the probability that some (or many) stations have nothing to send 

increases, which is observed in the channel as idle slots. 
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Figure 6.2: Changes to mean idle slots and collision probability due to station 
saturation, aCWmin = 31. Plots show the ratio of the unsaturated (a) mean idle 
slot counts and (b) collision probability to their respective saturated values from 
simulation. Error bars shows two standard deviations from the sample means. 
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The increase in the collision probability can be explained by the increased
 

number of stations on the network. Collision probability follows a binomial dis­

tribution. As the station count increases, both the exponent of the binomial 

distribution and the number of terms in the expression increase. Whereas as the 

saturation decreases, the base of the binomial distribution decreases. The net 

result is an increase in the probability of two (or more) stations contending for 

the same slot. 

The irregular observations observed at higher station saturation, may be par­

tially attributed to differences between the specified and the actual simulated 

network saturation. The differences observed are due to the fact that it may be 

impossible to generate the specified network saturation using the specified sta­

tion saturation. (e.g. It is impossible to form a 1 ESN network using 0.75 ESN 

stations.) In these cases, the number of stations is rounded down, resulting in 

total network saturation below the value specified. 

One can see that individual station’s saturation does have an effect on both 

the mean idle slot counts and the collision probabilities. The magnitude of the 

difference on mean idle slot counts are relative small ±8%, while the magnitude 

of the difference is up to ±20% at 5 ESN network saturation. Therefore, one can 

draw the conclusion that while the total network ESN does not fully describe the 

effects of the level of network contention, it can still provide a rough measure 

indicative of the underlying channel statistics. 

Accuracy of theoretical models 

Plotting the data obtained against the predictions of the saturated station model, 

the accuracy of the model in networks containing unsaturated stations can be 

gauged. In Figure 6.3, the ratio of the observed values to the predictions is plot­

ted against individual station saturation. From the plot, one can see that, at 

station saturation (station ESN = 1), the model overestimates (ratio < 1) the 

mean idle slots counts (consistent with observations from Chapter 5) and under­
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Figure 6.3: Accuracy of predictions made by the model assuming saturated 
stations, compared to simulation with various individual station saturation, 
aCWmin = 31. Plots show the ratio of the observed (a) mean idle slot counts 
and (b) collision probability to their respective predictions based on the original 
model assuming saturated stations. Error bars show two standard deviations 
from sample means. 
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estimates (ratio > 1) the collision probabilities. As station saturation decreases,
 

the underestimation of collision probability becomes worse. On the other hand, 

the observed mean idle slot counts increase as station saturation decreases such 

that observed values approach, and in some cases exceed the predicted values. 

Note that the predicted values are not bounding the observed idle slot counts. 

Based on the observed values, one can see that the theoretical predictions lie 

within ±5% for the mean idle slot counts (worst near saturation). For low enough 

station saturation, the effect of station saturation forms a linear relationship. 

Similar to the previous section, the unusual behaviour at high station saturation 

can be at least partially attributed to the simulated channel contention being 

different to the specified (thus plotted) value. 

In terms of collision probability, the error is observed to grow linearly as the 

individual station saturation decreases (slight variations at high station satura­

tion), and is worse for lower total network saturation. 

6.4 Impact on channel estimation 

Since individual station saturation has some effects on both the mean idle slot 

count and the collision probability of the system, the impacts of these differences 

on the channel contention measurement technique in Chapter 5 need to be in­

vestigated. In order to study these effects, similar to the previous chapter, a 

simulation study using two Bayesian inference-based channel load estimators as 

described in Chapter 5 is conducted. 

6.4.1 Method 

In this simulation experiment, the estimators are configured using the relevant 

probabilities from the DCF model assuming saturated stations. One of the esti­

mators implements the channel busy status observation technique presented by 

Bianchi and Tinnirello [136], while the other implements the interframe idle slot 
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count technique in Chapter 5. While keeping the network’s total ESN constant,
 

the individual ESN of stations are adjusted and extra stations are added as re­

quired. It is noted that the network’s total ESN cannot be maintained for all 

values of station saturation — e.g. it is impossible to form a network of 1 ESN 

when all stations are 0.99 ESN saturated. In these situations, the next lower in­

teger number of stations are used as long as the contention of the network formed 

is within ±5% of the specified value. 

In this experiment, statistics on the time to reach steady state as well as the 

steady state values are collected. The estimator is considered to have reached 

steady state if its belief vector has not changed by more than 10−9 cumulatively 

for at least 1000 updates. The time to reach steady state is therefore one after the 

last time step that caused the belief vector to change by more than the threshold. 

Furthermore, once the steady state had been reached by both estimators, the 

experiment is terminated. 

Ten executions of the simulation using different random seeds were run. The 

pseudo-random number generator used in these simulations is also MRG32k3a. 

6.4.2 Results 

Time to converge 

Based on the trace of estimator belief vector, the time to converge to steady state 

for each estimator and each scenario can be analysed. Figure 6.4 plots the time 

to converge against individual station saturation. 

Overall, the figure suggests that the technique presented in Chapter 5 tends 

to converge to steady state faster than by observing channel busy status [136] for 

most cases. The technique of observing interframe idle slots consistently perform 

better across the various individual station saturation levels, except of one case 

(0.9 ESN in Figure 6.4c). This data point also corresponds to the situation where 

the actual simulated contention level is lower than specified. Most dips in the 

performance of the idle slot technique correspond to cases where large variations 
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Figure 6.4: Effect of station saturation on the time for Bayesian estimators to 
converge to steady state. Diagrams plot the time taken to converge for both 
Bayesian estimators configured for Bianchi and Tinnirello [136] and the DCF 
model assuming saturated stations (Chapter 5) for each execution of the scenarios. 
Red and green lines represents the respective means for the two approaches. 
Purple lines (right hand axis) mark the total network ESN, with the scenarios 
that are not exactly as specified in the title marked. Steady state is defined as 
estimator belief vector not changed by more than 10−9 cumulatively for 1000 
updates. 
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existed between the simulated and specified values. This behaviour is consistent
 

with the previous findings on estimating non-referenced values. 

Accuracy of steady state estimates 

The accuracy of the techniques is assessed by plotting the final steady state 

estimate from estimators against the individual station saturation in Figure 6.5. 

The final steady state estimates are taken as the weighted mean of the belief 

vectors. The figure shows the min, median, max and the interquartile ranges of 

the estimates from the 10 runs executed for each scenario. 

These results suggest that at low total network saturation (1 ESN, Fig­

ure 6.5a), the effect of individual station saturation is not significant between 

the two techniques. This may be because at low channel contention, the observa­

tion probabilities for both idle slot counts and packet collisions are very distinctive 

such that the small variations caused by unsaturated stations are not significant. 

As the total network contention increases, the effect of unsaturated stations 

increases. Decreases in station saturation lower the contention estimate for both 

techniques, with the effect more prominent for method observing channel busy 

status. Figure 6.5c shows an overestimation for the estimator observing idle 

slot counts. The overestimation is not actually caused by the decreased station 

saturation — this effect is also observed with saturated stations. The results show 

that observing idle slots produces more accurate results than observing channel 

busy status in most scenarios tested. These plots also suggest that the method of 

observing idle slots also cause the estimator to be more certain about its estimates 

than Bianchi and Tinnirello’s technique. 

6.5 Accounting for saturation in the DCF model 

Notwithstanding the ability for the channel estimation techniques to operate rela­

tively accurately in presence of unsaturated stations, these technique may be able 

to be more accurate if the DCF model underlying the technique can be improved, 
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Figure 6.5: Effect of station saturation on the final steady state estimates from 
the Bayesian estimators. These box-and-whisker diagrams plot the spread of the 
weighted mean belief vectors, plotting the min, max, median and interquartile 
range of the observed final estimate with estimators configured for Bianchi and 
Tinnirello’s [136] and the DCF model assuming saturated stations (Chapter 5). 
Red and green lines represents the respective median estimates from the two 
approaches. Purple lines are the actual total network ESN (some are not exactly 
as specified in the title). Steady state is defined as estimator belief vector not 
changed by more than 10−9 cumulatively for 1000 updates. 
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accounting for unsaturated stations.
 

Unsaturated stations have been modelled in a variety of ways previously. 

One such method is to incorporate transmission probability by introducing extra 

“waiting” states into existing Markov models. Daneshgaran et al. [150] added 

an extra idle state that optionally precedes the actual backoff states to represent 

the time when the station has nothing to send. The station moves to this idle 

state only on completion of the previous backoff with probability 1 − q, remains 

in this idle state with probability 1 − q and moves out of the state into one of 

the backoff counts with probability q/CW . Malone et al. [152] instead adds a 

parallel backoff states above the Bianchi model allowing stations to continue to 

count down backoff slots even when it has nothing to send. The station has a 

probability q to transit back to the normal initial backoff chain at the next lower 

slot. (i.e. Packets arrive with probability q at each slot time.) Both of these 

methods model saturation as a probability of packet arrival. 

The concept of “Equivalent Saturated Nodes” used in this chapter does not 

model packet arrival, and can be easily added to the Markov model for saturated 

stations presented in Chapter 5. The extension involves adding an identical par­

allel “not sending” chain such that at the completion of packet transmission (the 

original state 0), the station moves to a state in the original chain with proba­

bility q, and to the new “not sending” chain with probability 1 − q (Figure 6.6). 

Macroscopically, the station will act as though it is saturated, but transmitting 

only q out of all the opportunity for it to transmit. Since the aim is to determine 

the number of slots between transmissions, which of these two chains a station 

is in at a given time is unimportant. Therefore the model can be simplified by 

merging the equivalent stations between each chain, and distinguish only between 

the “real” state 0 and the “not sending” state 0 (Figure 6.7). 
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Figure 6.6: Markov model accounting for ESN value of the station. The bottom 
row of states are corresponding to backoff slots that, once finished count down, 
will not result in an actual transmission. The variable q is the probability that 
the next cycle will result in a transmission. 

q/(CW+1)

0

1 2 CW-
1 CW...

q

1 1 1 1

1/(CW+1)

0' 1-q

(1-q)/(CW+1)

Figure 6.7: Simplified model merging equivalent states. Here, the non-zero back-
off slots from both the sending and the non-sending chains are merged because, 
for the purpose of our evaluation, they are equivalent. 
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Steady State Expression

Using the same process as Section 5.2, the steady state solution Sk to the simpli-

fied model (Figure 6.7) is trivial to derive.

Sk =



(CW + 1− k) P0

CW+1
k ∈ [1, CW ]

q (CW + 1− k) P0

CW+1
k = 0

(1− q) (CW + 1− k) P0

CW+1
k is X

X is the non-sending state 0

(6.1)

Unlike Section 5.2, the length of time a station waits before transmission can-

not be determined simply from the steady state solution. For further analysis,

the probability that a station is k slots away from transmitting needs to be deter-

mined. i.e. merging the probabilities of all state transition that is k slots away

from state 0, resolving any loops caused by one or visits through state X. Such

linearisation will yield an infinite sequence of (mostly) descending probabilities.

In order to generate such mapping, one can form a transition matrix T based

on the simplified Markov model, and removing all the outbound arcs from state

0. The mapping can be computed numerically by computing STk, where S is a

vector containing the steady state solution to the Markov model, and inspecting

the element corresponding to state 0.

Pk = (STk)state0 (6.2)

A finite approximation of the function Pk can be obtained by truncating the

series after
∑k

0 Pk > 1 − ε for some small threshold value ε. The series should

than be scaled such that the total probability equals 1.
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Figure 6.8: State machine for the transition matrix of the group of stations with 
nothing to send currently. 

6.5.1	 Relationship between unsaturated station count and 

interframe period 

A similar expression to Section 5.3.2 can be derived to improve the fidelity of 

the model, but it is unfortunately more complex. In Section 5.3.2, all stations 

who had previously transmitted participate in channel contention, and choose a 

slot according to the uniform distribution. In the unsaturated situation, this is 

not necessarily the case. Therefore, a further partition of the last transmitted 

stations is required — those who has something to transmit (hence chooses slots 

uniformly distributed in [0, aCW min], and those who don’t. In order to simplify 

the final expression, the current definition of Uk is extended by expanding the 

domain of the function: 

Uk =
 

⎧ ⎪⎨ ⎪⎩
 

1 k ∈ [0, CW ]
CW +1 

(6.3)
 
0 otherwise
 

Note that Uk is independent of q (the probability of having something to 

transmit). This is because Uk is used only the stations that transmitted and have 

something to transmit — the probability of whether it has something to send is 

accounted for outside this expression. 

In addition to redefining Uk, a new distribution Dk is needed for the stations 

who don’t currently have frames to send. Similar to Pk, Dk is also evaluated 
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numerically from a transition matrix. Since Dk is used by stations that have

nothing to send, a parallel “definitely nothing to send” chain is needed (Fig-

ure 6.8). After their last transmission, these stations follow the normal DCF

behaviour, selecting a backoff that is uniformly distributed along the “definitely

nothing to send” chain. This chain finishes at state X, after which the station

returns to the standard DCF model. Numeric solution of Dk will yield another

In finitely long series, and can be truncated and scaled in the same way as Pk to

yield a finite approximation.

Finally, expressions similar to Section 5.3.2 can be derived:

T0 0 =
N∑
i=1

Ti
(
N − i

0

)
(1− P0)

N−i

i∑
d=0

(
i

d

)
qi−d (1− q)d (1− U0)

i−d (1−D0)
d (6.4)

Tn k | T0 k−1
=

N∑
i=1

Ti
min(i,n)∑

m=max(0,n−N+i)

(
N − i
n−m

)
P̃k

n−m
(

1− P̃k
)N−i−n+m

i∑
d=0

(
i

d

)
qi−d (1− q)d

min(i−d,m)∑
h=max(0,m−d)

(
i− d
h

)
Ũk

h
(

1− Ũk
)i−d−h

(
d

m− h

)
D̃k

m−h
(

1− D̃k

)d−m+h

(6.5)

X̃k =
Xk

1−∑k−1
m=0Xm

X ∈ {D,P, U} (6.6)

6.6 Evaluation of the extended model

To assess the validity of the extended model, a simulation study comparing the

model predictions to simulation outcomes is conducted.
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Table 6.2: Simulation parameters
 
CW size 31 

Target Total ESN 
Station ESN 

{1, 2, 5, 10, 15, 20, 30, 40}
{1, .99, .95, .9, .75, .6667, .5, .3333, .25, .2, .125} 

6.6.1 Method 

The simulation study uses the extended DCF simulation model in Section 6.3 as 

the “ground truth” to compare the model predictions to. In these evaluations, 

the scenarios in Table 6.2 are configured for both the simulation and the theoretic 

model. Actual number of stations assessed and the actual total network ESN are 

calculated from the parameters on execution of the simulation. It is noted that 

the parameters in Table 6.2 may specify certain total network ESN values that 

is impossible to achieve for the given station saturation — e.g. total 1 ESN for 

stations that are at 0.6667 ESN saturation. In these cases, the next lower integer 

number of stations are used as long as the total network contention is within 

±5% of the specified value, resulting in a total network contention that may be 

slightly below the values specified. Numeric solutions to the theoretic model are 

obtained using the algorithm presented in Chapter 5. 

500,000 idle periods were collected from each simulation. The results of the 

simulation are then compared to numerical solutions of the analytical model. 

6.6.2 Results and discussion 

Figure 6.9 shows the accuracy of the extended model. At 1 total ESN across the 

network, the results show a maximum error of 18.8% at 0.33 individual station 

ESN for mean idle slot counts. For networks with higher total ESN, the results 

recorded lie well within ±5%. 

In terms of collision probabilities, the predicted results lie within ±3%, with 

the model underestimating the collision probabilities. The error decreases ap­

proximately linearly as individual station saturation decreases. Furthermore, it 

is observed that the prediction error increases as channel saturation increases un­
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Figure 6.9: Accuracy of predictions made by the model accounting for station 
saturation, compared with simulation with various individual station saturation, 
aCWmin = 31. Plots show the ratio of the observed (a) mean idle slot counts 
and (b) collision probability to their respective predictions based on the extended 
model. 

155
 



til some maximum before reducing. Due to the excessively long computation time
 

required to solve the model, no data have been collected for channel contention 

above 40 ESN or station saturation below 0.20 ESN (except for 1 and 2 ESN 

channel contention where data is not available for saturation below 0.125 ESN). 

The lack of data for station saturation under 0.2 ESN or channel contention 

over 40 ESN demonstrates the poor scalability of the model solving process. 

The algorithm used to compute model predictions is extremely computationally 

intensive. Compared to the original model, the extended model’s complexity 

has grown by another magnitude in n due to the extra nested summation in 

the equation. Numerically evaluating for 50 × 0.02 ESN stations (1 total ESN) 

required more than 2 hours, and was terminated before completion. In addition, 

the error in Pk after the solver exited is at times more than 1%. (The solver is 

unable to iteratively improve on the error.) For this model to be practically useful, 

better numeric evaluation techniques and/or simplification of the equations are 

required. 

Comparing the extended model with the original model in Figure 6.3b, one 

can see that the extended model gives a better prediction of collision probabilities 

with the extended model underestimating by less than 3% compared to 20% error 

at 1 ESN in the original model. All data points collected show that this model 

underestimates on average, but is not conclusive due to the lack of data points at 

the extremity. In addition, apart from the 1 ESN case, the model predictions are 

within ±8% (±0.1 slots) from the observed value. This performance, in terms of 

the magnitude of error, is similar to those observed in the original model, but the 

original model underestimates whereas the extended model tends to overestimate 

at high channel contention. 

6.7 Conclusion 

In this chapter, the effects of homogeneous unsaturated stations on the network 

is studied. It is found that the measure “Equivalent Saturated Nodes” (ESN) 
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can be used to describe both the degree of saturation of a given station and
 

the total amount of contention in a network, but is insufficient to completely 

characterise the network load. Unsaturated stations on a network is shown to 

have observable non-linear effects on both packet collision ratio and observed idle 

slot counts. Decreases in individual station saturation result in both higher mean 

idle slot count and higher collision probability compared to the saturated case. 

For networks or stations that are saturated enough, the differences are small. 

This suggests that while the ESN measure can be used to describe very saturated 

situations, it does not fully capture the effect of station saturation on channel 

observation. 

The validity of the DCF model assuming saturated stations, as described in 

Chapter 5, was tested against various station saturation. The saturated station 

model is able to predict the idle slot counts fairly accurately (±5%), but greatly 

underestimates the collision probability at low station saturations. 

It is shown that the technique of observing interframe idle periods to estimate 

channel contention can be used on networks containing homogeneous unsaturated 

stations when there are no hidden terminals. Simulation of the operation of both 

Bianchi and Tinnirello’s technique [136] and the idle slot technique showed that 

both are capable of estimating the total network load in terms of “Equivalent 

Saturated Nodes” (ESN), but unsaturated stations cause the estimators to take 

longer time to converge to the steady state. Additionally unsaturated stations 

also cause an underestimation of ESN compared to the saturated case. 

An extension to the DCF model incorporating unsaturated stations was also 

presented, and was shown to be not scalable in its current form. The numerical 

evaluation technique used is not sufficiently accurate, and it still takes too long 

to compute due to the extra nested summation in the extended model. In terms 

of accuracy, the extended model is able to predict the packet collision ratio quite 

accurately (±3%), but differs greatly from the observed values when the total 

network saturation is low. 
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In the next chapter, the accuracy of using the ESN metric to predict packet
 

reception is assessed. Given the accuracy of this metric, one can produce a geocast 

system that is not only efficient in channel use, but can also adapt to channel 

contention automatically by combining the work presented thus far. 
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Overview 

This chapter combines the techniques presented in previous chapters into a 

load-reactive geocasting system. 

Contributions 

•	 I have validated the usefulness of the ESN metric in predicting 

packet non-reception. Statistical analysis on computer simulation 

results showed that a simple threshold test on observed ESN value has 

a very high Negative Predictive Value. This means that ESN can very 

accurately predict packet non-reception. 

•	 I have used statistical techniques to provide further evidence 

on the efficiency of the interference-aware geocast algorithm. 

Statistics on the ESN-based threshold test shows that the test has a 

higher Positive Predictive Value on the interference-aware geocast al­

gorithm than a greedy distance-based technique. This provides further 

evidence that the geocast algorithm is more efficient in using the channel 

to improve packet reception. 

•	 I have designed and evaluated a geocast algorithm that 

changes its behaviour in reaction to channel contention. This 

algorithm uses outputs from the passive idle slot-based channel esti­

mator to determine whether rebroadcasts should be increased or sup­

pressed, and adjusts the retransmission parameter of the interference-

aware geocasting algorithm automatically. This allows the algorithm to 

adapt to channel conditions without the need for manual intervention. 
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Chapter 7 

Load-Reactive Geocasting 

7.1 Introduction 

Having introduced the technique to obtain passive channel contention estimates 

in Chapter 5, this chapter now applies this technique to the interference-aware 

geocast algorithm presented in Chapter 4 in order to allow the algorithm to 

automatically adapt to channel load. 

In this chapter, the use of the “Equivalent Saturated Node” (ESN) metric to 

predict packet non-reception in situations with both hidden terminals and unsat­

urated stations is first validated. Second, this ESN metric is used in the design 

of a load-reactive geocast system, coupling the channel contention estimator to 

the interference-aware geocast algorithm. Through an ns-3 based computer sim­

ulation, the geocast algorithm is shown to be effective in controlling the channel 

load introduced by retransmissions, hence improving packet reception over a wide 

range of vehicle densities without manual intervention. Emergent behaviours ob­

served from this two-part system are also described and discussed. 

7.2 Determining optimal channel conditions 

Results from the geocast simulations in Chapter 4 suggest that packet reception 

ratio (PRR) is highly dependent on channel load. It is also shown that the PRR 
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can be improved by cleverly selecting rebroadcasters and encouraging retransmis­

sions up to some threshold channel saturation level. Furthermore, as long as the 

channel is not too busy, retransmissions add redundancy, allowing stations that 

originally failed to receive the packet to receive a forwarded copy. By knowing 

the current channel contention, reception can be improved by either increasing 

or decreasing retransmissions as appropriate. 

The selection of an appropriate channel contention metric is therefore impor­

tant for a load-reactive geocast algorithm to determine the amount of contention, 

hence the probable PRR, of a channel. Chapter 4 used the channel busy time 

(CBT) as the metric to the describe channel load, and showed that an extremely 

high CBT is associated with low PRR. Unfortunately, the mapping between CBT 

and PRR is not consistent, and is therefore an unreliable measure to base a load-

reactive algorithm on. An alternative passive channel load estimation technique 

was presented and evaluated in Chapters 5 and 6, and it was demonstrated that, 

in ideal channels, this technique can predict PRR very well. 

In this section, the relationship between the channel load and the PRR is 

further investigated, with the aim of finding a good measure of channel load for 

the load-reactive geocasting algorithm. By implementing the passive channel load 

estimation technique into the ns-3 simulation in Chapter 5 and collecting the load 

measurements in the simulation, it was shown that the “Equivalent Saturated 

Node” (ESN) metric is a useful load measure for our purpose. Furthermore, an 

optimal ESN value for predicting packet non-reception is also determined. 

7.2.1 Method 

The relationship between channel load and PRR is determined empirically through 

computer simulations using the ns-3.9 simulator. Since the investigations in 

Chapter 4 show an abrupt drop in mean PRR as vehicle density is increased, 

a much finer increment in vehicle densities is used in these simulations in an 

attempt to identify the nature of the transition from good to bad PRR. 
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Table 7.1: Simulation parameters for selection of load measures
 
Vehicle densities 

Proportion of HV 
Lanes per road 

Road length 
Intended coverage radius 

Position of source 

{10, 15, 20, 25, 30, 45, 50, 60} veh/km/lane 
10% 
6 
900 m 
200 m 
Centre of intersection 

Antenna Gain (Tx and Rx) 
Rx Threshold 
CS Threshold 

Log-Distant Exponent (γ) 
Log-Distant Ref Loss (at 1 m 

Nakagami parameter (m) 
Receiver Noise 

Attenuation across HV 
Building Shadow 

Max transmission range 
Transmission rate 

Transmission bandwidth 
SIFS 

Slot Time 

2.512 dB 
-95 dBm 
-99 dBm 
2.0 
-47.8588 dB (Friis loss, 5.9 GHz) 
5.0 
0 dB 
-20 dB 
-30 dB 
{50, 100, 150, 200}m 
6 Mbps 
10 MHz 
32 µs 
13 µs 

Packet Rate 
Packet lifetime 

Packet size 
Retransmission algorithms 

Retransmission parameter X 
Number of transmitters 

10 Hz 
100 ms 
54 octets (incl. all headers) 
{Greedy distance-based, interference-aware}
{0.5, 1, 2, 3, ..., 10}
All stations 

In this experiment, a load estimator implementing the idle slot channel ob­

servation technique is attached to each station on the network. The probability 

distributions for idle slot counts for various numbers of saturated stations are 

precomputed and inserted into each estimator. Similar to the investigation in 

Chapter 6, idle slot counts from the MAC layer are fed to the load estimators 

when it senses the channel has switched from the IDLE state to any busy state. 

It is important to note that the IEEE 802.11 implementation in ns-3.9 contains 

a known bug (“DCF Immediate Access” bug [186]), whose implications on MAC-

layer measurements are detailed in Chapter 8. In order to account for this non­
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standard behaviour in the simulator, the idle slot probability distributions are
 

precomputed for a contention window size of 15 (one less than specified in the 

standard) and the DIFS is assumed to be 3 slot times (instead of 2). 

Station layouts as well as most other simulation parameters are identical to 

those used in Chapter 4, except the vehicle densities investigated are more fine-

grained. Detailed explanation of these parameters are contained in Chapter 4. 

Table 7.1 summaries the values of the parameters used. 

In these simulations, the various channel contention measures were tested on 

both a greedy distance-based forwarding algorithm by Briesemeister et al. [84] 

and the interference-aware geocast algorithm in Chapter 4. The interference-

aware geocast algorithm was simulated using a range of fixed values for the re­

transmission parameter (X) in order to observe the estimator’s behaviour over a 

range of contention levels. 

Statistics collected include the channel busy time (CBT) as a proportion of 

the total simulation time, the packet reception ratio (PRR), the last estimated 

channel load at the conclusion of the simulation and the proportion of observed 

idle slot counts that are above one contention window. To minimise the impact 

of edge effects, only the packets sent from one tagged vehicle positioned at the 

centre of the simulated field is considered when computing the PRR. In addition, 

statistics are gathered only from stations within the target area of the tagged 

station for the same reason. The simulation field is large enough such that edge 

effects on the stations in the target area are minimal. The final state of the belief 

vector for each station is also recorded. 

7.2.2 Results 

This section presents results from this simulation study. Some results and their 

implications are also further discussed within this section. 
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Relationship between channel measures and vehicle density
 

This investigation compares three channel measures — the channel busy time 

(CBT), the estimated equivalent number of saturated stations (“Load”) in ESN, 

and the proportion of inter-frame idle slot counts being above one contention 

window length (“over CW”). CBT is the proportion of time a station is either 

transmitting, receiving or has sensed the channel to be busy, to the total sim­

ulation time; the estimated load is obtained from the channel estimator imple­

menting the idle slot count technique. Results presented are the final values at 

the conclusion of the simulation. These measures are collected at each station, 

and, unless otherwise stated, they are presented without further aggregation with 

other stations in the same scenario. Figure 7.1 shows the relationships between 

these measures and the configured vehicle density when the greedy distance-based 

algorithm is used. 

From Figure 7.1, one can see that all three measures vary as a monotonic func­

tion of vehicle density on average, but their final values can have high variance 

for each vehicle density setting. The figures on the left plot the scenarios where 

all stations transmit with sufficient power such that, in the absence of shadowing, 

fast fading or packet collision, all stations within the target area can receive the 

packet (S = 1). These plots suggest that both the mean and the median of all the 

measures investigated change monotonically up to 25 vehicles per km per lane, 

after which they appear to flatten. This flattening suggests that channel satura­

tion had been reached and the measures used are unable to precisely describe the 

actual load offered to the network. 

When the transmission power of each station is lowered, the area experiencing 

interference introduced by each station reduces, thus the contention on the chan­

nel is lower. The plots on the right in Figure 7.1 show a corresponding reduction 

(or increase in the case of “over CW”) as a result of reducing the transmission 

range to one quarter of the required radius. It is noteworthy that Figure 7.1d 

shows significant outliers with the estimated ESN value when the station density 
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Figure 7.1: Results of centre-of-intersection scenario, all stations transmitting 
and use greedy distance-based forwarding algorithm. The body of the box-and­
whiskers plot shows the inter-quartile range with the means marked by purple 
diamonds. Whiskers extend to the furthest observations within ±3 standard de­
viations from the mean. Outliers close to the end of the whiskers might have been 
omitted due to software limitations. S is the ratio of the maximum transmission 
range to the required coverage radius. 

is very low. 

Relationship amongst the channel measures 

Interestingly, if the load measures observed at each station is plotted against the 

other measures from the same station, insights on the measures’ relationships 

with each other can be gleamed. Figure 7.2 contains scatter plots between each 

pair of the measures at each station. Both CBT and “over CW” show a step-like 
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relationship against ESN load — flat at high ESN, and almost vertical at low 

ESN. It is noteworthy that the outliers at low load from Figure 7.1 can also be 

seen in Figures 7.2b (spurious high ESN at 0% CBT) and 7.2d (spurious high 

ESN near 100% “over CW”). 

CBT and “over CW” show an almost linear relationship until the load be­

comes very high, showing a slight flattening when the CBT is greater than ap­

proximately 60%. It should be noted that in the plots presented, data points 

are overlaid on top of each other by series, making certain regions in Figure 7.2f 

appear concave. The visible area for each vehicle densities (except for the case 

where the density is 10 vehicles/km/lane) represents only the lower and leftmost 

bounds of the region — the top edge of the region is the same as the upper bound 

for the blue region (10 vehicles/km/lane) and are obscured by these data points. 

When the vehicle density increases in these plots, the regions are simply widened 

and lengthened with little changes in concavity. 

Predictive value of the measures 

By plotting the packet reception ratio (PRR) against the channel measures, one 

can ascertain whether these measures are useful for predicting packet reception. 

Figure 7.3 shows the relationship between these measures and the corresponding 

PRR at each station. 

The top four plots (especially Figures 7.3b and 7.3d) shows both high and 

low PRR across the range of observed metric values, suggesting that PRR is not 

highly correlated to either CBT or “over CW” notwithstanding that associations 

between mean CBT and mean PRR were observed in Chapter 4. Figures 7.3e 

and 7.3f show an almost step-like shape, with high estimated ESN appears pre­

dictive of non-reception of the packet. It should however be noted that low ESN 

is not indicative of good PRR. The usefulness of the ESN for PRR prediction is 

further validated in Section 7.2.3. 
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Figure 7.2: Scatter plot amongst the three measures for each station in the sce­
nario. Centre-of-intersection scenario, all stations transmitting and use greedy 
distance-based forwarding algorithm. S is the ratio of the maximum transmission 
range to required coverage radius. It should be noted that there are significantly 
more data points for the higher vehicle density scenarios because there are more 
stations. The colour of the points depicts the vehicle density configuration the 
data point is sourced — the units are in vehicles per km per lane. 
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Figure 7.3: Scatter plots illustrating the potential predictive power of the vari­
ous channel measures. Results from centre-of-intersection scenarios, all stations 
transmitting and use greedy distance-based forwarding algorithm. S is the ratio 
of the maximum transmission range to required coverage radius. The colour of 
the points represents the vehicle density configuration the data point is sourced 
— the units are in vehicles per km per lane. 

Differences with the interference-aware geocast algorithm 

As expected, the PRR-vs-Load scatter plots (Figure 7.4) does not show significant 

differences between the greedy distance-based algorithm and interference-aware 

geocast. This confirms the utility of the ESN-based load value as a measure 

of channel contention in predicting packet non-reception for both the greedy 

distance-based and the interference-aware geocast algorithms. 
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Figure 7.4: Scatter plots illustrating the differences and similarities of the 
interference-aware geocasting algorithm. Results from centre-of-intersection sce­
narios, all stations transmitting and use the interference-aware geocast algorithm 
with X = 10 or X = 2. S is the ratio of the maximum transmission range to 
required coverage radius. The colour of the points represents the vehicle density 
configuration the data point is sourced — the units are in vehicles per km per 
lane. 

It is however interesting to note that in Figure 7.4, the data points achiev­

ing high PRR are of different colours. In Figure 7.3e (greedy algorithm), only 

scenarios with vehicle density at 10 vehicles/km/lane could achieve high PRR, 

whereas Figure 7.4a shows that scenarios with up to 20 vehicles/km/lane (green) 

is able to achieve high PRR using the interference-aware algorithm (retransmis­

sion parameter X = 10). Furthermore, reception is improved by suppressing 

transmission, as demonstrated by Figure 7.4b where X is lowered to 2. Looking 

at the horizontal positions of the data points of the same colour (same vehicle 

density), Figure 7.4 indicates that reducing the retransmission parameter (X) 

reduces the measured load on the channel in most cases. 

When the transmission range of each station decreases (Figures 7.4c, 7.4d), ne­

cessitating multi-hop forwarding, the benefit of the interference-aware algorithm 

is not as pronounced. This is because the behaviour of the interference-aware geo­
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Figure 7.5: The mean and max values of stations’ belief vectors. Low max values 
suggest that perhaps the corresponding bin is unnecessary. Results from centre-
of-intersection scenarios, all stations transmitting and use greedy distance-based 
forwarding algorithm. S is the ratio of the maximum transmission range to 
required coverage radius. The results show that categories above 20 is rarely 
used by any estimator, and the mean value for the high contention believes are 
small. 

cast algorithm converges to that of a greedy distance-based algorithm in these 

scenarios. When this happens, the furthest stations rebroadcast the packet with 

the parameter X adjusting the distance-based delay, high X shortens the delay. 

Shorter delays increase contention and can cause a lowering of PRR for dense 

enough cases, whereas extended delays cause more stations not to rebroadcast, 

also resulting in a reduction in PRR. Methods of optimising the choice of X for 

a given vehicle density can improve the performance of the geocast algorithm. 

Number of categories for belief vector 

Finally, Figure 7.5 shows the mean and the maximum values of stations’ final 

belief vectors. It is observed that at the completion of the simulation running 

the greedy distance-based forwarding algorithm, bins above 20 are almost never 

used. The figure also suggests that, at S = 0.25, some stations still have a small 
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Figure 7.6: The mean and max values of stations’ belief vectors. Results from 
centre-of-intersection scenarios, all stations transmitting and use interference-
aware geocast algorithm. S is the ratio of the maximum transmission range to 
required coverage radius. These results show that while categories above 20 are 
not used often, a number of stations still retain high estimates. The mean values 
for the high contention believes are nonetheless quite small. 

yet almost-negligible belief in the number of saturated stations being above 15. 

Stations exhibiting believes in high contention at S = 0.25 (which is intuitively 

a false belief) had only obtained a very small number (< 3) of valid idle period 

observations (slot count observed is within one contention window), therefore the 

estimator would not have collected sufficient samples, resulting in their belief 

vectors having a very wide spread. 

Final belief vectors for scenarios running the interference-aware geocast algo­

rithm is shown in Figure 7.6. Figure 7.6a shows that when the channel saturation 

is high enough, the distribution of belief vector values are similar to those for the 

greedy distance-based algorithm. An interesting distribution is observed in the 

not-as-congested scenarios, where a hump can be seen at the tail of the distri­

bution. The actual dataset shows that stations exhibiting similar distribution 

typically have more than 80% of the inter-frame slot count being higher than one 

contention window. This suggests that, similar to the observations in the greedy 
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Algorithm 7.1 Simple algorithm to predict good/bad PRR
 
function ESN Predict(ESN) 

return ESN ≤ ESNt 

end function 

algorithm, the belief in the high load is likely to be a false high. One possible 

explanation is that these stations are sparsely connected, leading to bursts of 

retransmission being observed (high observed contention during bursts, but then 

discards the longer than CW observations between bursts). 

7.2.3 Using ESN to predict/estimate packet reception 

This section presents further statistical analysis on the result set, and validates the 

use of the ESN to predict packet non-reception. Simulation results suggest that 

the step-like shape of the PRR-vs-ESN relationship (Figures 7.3e and 7.3f) may 

be useful in predicting whether PRR is acceptable based on the observed ESN. 

The utility of this behaviour can be assessed by first devising a simple threshold 

test on the ESN, then collect the basic test statistics of Positive Predictive Value 

(PPV), Negative Predictive Value (NPV), Sensitivity and Specificity. 

For this analysis, the test (Algorithm 7.1) returns positive if a station is pre­

dicted to have good PRR (above 80%), and negative otherwise. the test statistics 

can be interpreted as the following conditional probabilities: 

•	 Positive Predictive Value (PPV) — probability that a station has good 

PRR if the test returns positive. (i.e. trustworthiness of a positive result.) 

•	 Negative Predictive Value (NPV) — probability that a station has poor 

PRR if the test returns negative. (i.e. trustworthiness of a negative result.) 

•	 Sensitivity — probability that a test returns positive given a station has 

good PRR. (i.e. likelihood of correctly identifying a good station) 

•	 Specificity — probability that a test returns negative given a station has 

poor PRR. (i.e. likelihood of correctly identifying a poor station) 
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Table 7.2: Test statistics of PRR prediction — Greedy distance-based algorithm
 
S 1.00 0.75 0.50 0.25 

PPV 0.16433 0.17887 0.24715 0.17188 
NPV 0.99947 0.99374 0.99502 0.97470 

Sensitivity 0.98861 0.90372 0.95879 0.94809 
Specificity 0.81074 0.78658 0.73832 0.30445 

Reward 2.96315 2.86291 2.93929 2.39912 

Furthermore, the “optimal” threshold ESN (ESNtopt ) can be computed by 

running the test on all data points collected, and executing the following nonlinear 

program to find the optimum. 

W 
ESNtopt = arg max P P V + NP V + Sensitivity + Specificity 

ESNt S 

The nonlinear program is performed using Excel® Solver Add-on running an 

Evolutionary algorithm on the results obtained from the simulation. The optimal 

threshold ESN for the greedy distance-based forwarding algorithm is found to 

be 2. Table 7.2 shows the test statistics using the optimal threshold ESN. 

This result suggests that, as predicted, using a threshold ESN value can very 

accurately determine non-reception of packets (high NPV), but is almost useless 

in determining whether packets will be received (low PPV). This can be explained 

by the fact that at high load, the predominant cause of packet loss is packet 

collision — a high ESN can therefore predict poor PRR. On the other hand, 

when channel contention is low, the probability of collision due to contention is 

much reduced, therefore packet loss due to other factors such as shadowing, fast 

fading and hidden terminals become prominent. ESN does not account for these 

causes, thus the PPV of this test is low. 

The test has high sensitivity because high PRR in the presence of high channel 

contention is extremely unlikely, making false negatives uncommon. Specificity is 

also reasonable, but is more likely due to the skewed dataset than the properties 

of the test — it merely states that in the given dataset, most of the packet loss 

174
 



Table 7.3: Test statistics of PRR prediction — Interference-aware geocast
 
%≤ 2 ESN ESNtopt Total R

Optimal 
eward for 

2.0 
ESNt 

2.5 
Greedy 37.83% 2.000000 11.1645 11.1645 11.1541 
X = 0.5 
X = 1.0 
X = 2.0 
X = 3.0 
X = 4.0 
X = 5.0 
X = 6.0 
X = 7.0 
X = 8.0 
X = 9.0 
X = 10.0 

98.66% 
99.36% 
66.30% 
56.04% 
50.44% 
46.48% 
44.36% 
42.45% 
33.47% 
39.88% 
38.80% 

6.325872 
5.240879 
2.039410 
2.200228 
2.095224 
2.000000 
2.023405 
2.000000 
2.276144 
2.000000 
2.000000 

9.22484 
9.25348 
10.7448 
11.1215 
11.4464 
11.5421 
11.6311 
11.7410 
12.2306 
11.8561 
11.8639 

8.68678 
9.20124 
10.7394 
11.1159 
11.4429 
11.5421 
11.6370 
11.7410 
12.2293 
11.8561 
11.8639 

8.65548 
9.15830 
10.7409 
11.1182 
11.4383 
11.5314 
11.6245 
11.7306 
12.2286 
11.8471 
11.8536 

is caused by channel contention. 

Table 7.3 investigates the usefulness of the ESN contention measure for inter­

ference-aware geocast. This table details only the total reward value (sum of 

the four test statistics over the four transmission ranges). One can see that 

when the retransmission parameter X is high enough, the optimal threshold ESN 

approaches to the one found for the greedy algorithm. The total reward value 

is also similar to (and often exceeds) that of the greedy algorithm. Further 

investigation into the low X cases (which has much lower total reward value) 

shows that in these cases, while PPV is low and both NPV and sensitivity are 

high as in the high X cases, there is significant difference in specificity. The 

specificity is low at low X and high at high X. Together with the results from 

the low transmission range scenarios in the higher X cases, the highly variable 

specificity further supports the hypothesis that the observed specificity is simply 

an artefact of the dataset rather than an intrinsic property of the threshold ESN 

test. 

The implications of these test statistics on the use of ESN for predicting PRR 

can therefore be summarised in Figure 7.7. 
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Figure 7.7: Summary of test statistics on PRR prediction using threshold ESN
 
PPV NPV 
Low 0.9–1.0 

can’t predict success predicts failure 

Sensitivity Specificity 
0.9–1.0 Highly variable 

finds most successful cases is load dependent 

7.2.4 Channel use effeciency 

The analysis also shows that the interference-aware algorithm has a better PPV 

than the greedy distance-based forwarding algorithm, meaning that the percent­

age of true positives (stations with ESN ≤ 2 that also has good PRR) is much 

higher. This can either be due to the interference-aware algorithm generates 

higher overall load (shifting false negative data points to the right to become true 

negatives), or that the algorithm is more consistent in improving PRR at lower 

load (turning false positives into true positives by improving reception). 

In order to differentiate between the two possibilities, the PPV from the greedy 

algorithm can be compared to the interference-aware algorithm with parameter 

X set to produce the most similar proportion of stations that results in posi­

tive tests. Table 7.4 compares the greedy algorithm (37.83% positive tests) to 

the interference-aware geocast with X = 10 (38.80% positive tests), and shows 

that the interference-aware geocast indeed has a higher PPV than the greedy 

algorithm even controlling for the proportion of positive tests. This is therefore 

highly suggestive that the interference-aware geocast is more efficient in generat­

ing retransmissions that improves PRR. 

Table 7.4: Comparison of PPV values for the greedy distance-based forwarding 
algorithm and interference-aware geocast, X = 10 

Greedy Interference-aware 
S = 1.00 
S = 0.75 
S = 0.50 
S = 0.25 

0.1643 
0.1789 
0.2472 
0.1719 

0.4513 
0.3990 
0.3750 
0.2434 
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7.2.5 Summary
 

Through collecting measurements of channel contention using various metrics, it 

was shown that ESN values produced from idle slot-based contention estimator 

is able to accurately predict non-reception of packets. In networks with heavy 

enough contention, the optimal threshold ESN was determined to lie somewhere 

near 2 ESN, and the reward function decreases slowly between the range [2, 3). 

Furthermore, the channel estimators were found to need only 20 categories, re­

ducing both the memory and runtime cost of maintaining the channel estimates. 

Finally, the interference-aware geocast algorithm shows a higher PPV when 

using ESN threshold to predict packet reception even after controlling for the 

proportion of positive tests, implying that the algorithm is more efficient in im­

proving PRR than the greedy algorithm. 

7.3 Load-reactive geocast algorithm 

Having validated ESN as a useful measure of channel contention that is predictive 

of packet non-reception, it therefore follows that the ESN can be used to dynam­

ically adjust the retransmission parameter (X) of the interference-aware geocast 

algorithm. In this section, a simple function that couples the load estimator to 

the interference-aware geocast algorithm is described, moderating X based on 

the current channel contention. The performance of this closed-loop system is 

then evaluated through computer simulations using ns-3. 

7.3.1 System overview 

This load-reactive retransmission system comprises of two main components. 

First, the channel sensing and adaptation component that is responsible for ob­

serving the radio channel and subsequently adjusting the parameter of the second 

component; and second the interference-aware geocast component responsible for 

prioritising stations for rebroadcasting a packet, and is triggered by every cor­
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Figure 7.8: The design of the load-reactive system 

rectly received packet. The sensing and adaptation component is divided into 

two parts — a tracking load estimator that is primarily based on the idle slot 

observation algorithm, and a channel adaptation algorithm that takes the esti­

mated channel condition and compute an appropriate retransmission parameter 

X for the retransmission algorithm. The channel adaptation algorithm updates 

the X value every time an inter-frame slot count is available (i.e. at the start of 

every channel busy event), whereas the retransmission algorithm is activated only 

after a packet has been correctly received before expiry. The retransmission algo­

rithm only inspect the computed X value when it needs to make a retransmission 

decision. Figure 7.8 depicts the overall architecture of the system. 

7.3.2 Tracking channel load 

In order to implement this system, the first challenge is to estimate the instan­

taneous channel contention. The idle slot-based channel estimation technique 

presented in Chapter 5 uses Bayesian inference, and assumes the channel state 

does not change by weighing all observations equally. This causes the estimator 
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to retain infinite memory. When the underlying channel is constantly changing, 

the output of the estimator will converge to the long-term average and not the 

instantaneous value. This is undesirable when estimates for the current condition 

are required. Techniques for enabling tracking include sliding window, Partially 

Observable Markov Decision Process (POMDP), Hidden Markov Model (HMM) 

techniques, and attenuating the posterior probabilities before using it as the prior 

probability of the estimator (which is a special kind of HMM technique). 

Sliding window basically involves the estimator keeping track of the N most 

recent observations, and computing the current condition using only those ob­

servations within the sliding window. This requires each station to maintain not 

only its belief vector, but also a fixed sized buffer, greatly expanding the memory 

requirement of the simulation. Furthermore, since the operations of the estimator 

on the belief vector is not reversible (i.e. cannot undo the effect of an “expiring” 

observation), current estimates need to be recomputed from scratch after every 

observation. This slows the algorithm by a factor proportional to the size of the 

sliding window. 

Partially Observable Markov Decision Processes (POMDP) and Hidden Mar­

kov Model (HMM) techniques are alternatives to sliding window, but are also not 

applicable in general to this problem. HMM is a generalised version of Bayesian 

inference where stations may move between states (number of estimated satu­

rated stations) with some known probability (represented as a transition ma­

trix). POMDP further extends HMM such that the actions of the station (such 

as changes in retransmission probability) has known effects on the transmission 

matrix. In this case, both the transition matrix and the effects of the actions are 

difficult to ascertain, and are also highly dependent on the number of stations on 

the network (not modelled in the original derivation). For these reasons, POMDP 

and HMM techniques in general are not applicable for this purpose. 

The last technique is to add an attenuation factor to the previous estimate 

before using it as the prior probability to the next observation. This limits the 
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Algorithm 7.2 Algorithm to track network load

Let b be the belief vector for ESN.
for all bi ∈ b do

bi ← 1
length(b)

end for

loop
ô← observed number of idle slots.
Define p as the prior probability at the current time step.
p← γb + (1−γ)

len(b)
. γ ∈ [0, 1]

denominator ← 0
for all pi ∈ p do

denominator ← denominator + pi(Tô|N = i)
end for
for all pi ∈ p do

b′i ← pi(Tô|N=i)
denominator

end for
b← {b′i ∀i}

end loop

ESNest ←
∑

i ibi . Estimated ESN is the weighted sum of belief

influence old observations have on the current estimate, allowing the estimator to

eventually move to a new value as the underlying condition changes. The choice of

the attenuation factor (γ) controls the degree of influence by previous observations

— if γ is zero, previous observations has no influence on the current estimate,

whereas as γ approaches 1, the effects of the becomes infinite. Technically, this

is a special case of HMM methods, where it is assume with probability γ that

channel state does not change, and (1− γ) that it moves to any state with equal

probability. Algorithm 7.2 details the channel estimation algorithm that tracks

network load.

By inspecting the simulator traces generated for Section 7.2 it was found that

many stations’ estimated channel load have converged to within ±1ESN with

95% confidence within 30 observations. For this reason, the attenuation factor

(γ) for this experiment was chosen such that the influence of observations from

30 or more steps ago is minimal (attenuated by a factor of at least 1
1000

).
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1 
γ30 = 

1000 

γ = 1000− 1 
30 

∼ 0.8 (7.1) 

7.3.3 Reacting to network saturation 

Using the tracking channel estimator, stations can then attempt to influence the 

interference-aware geocast algorithm, hence channel contention, by adjusting the 

retransmission parameter X. An increase in X encourages retransmission, hence 

increases contention; decrease in X suppresses retransmission, hence reduces con­

tention. Section 7.2 shows that there exist a threshold ESN beyond which packet 

reception is highly unlikely. For this reason, the parameter adjustment algorithm 

aims to suppress retransmissions when the channel contention is sensed to be 

above the threshold value (ESNt). 

Furthermore, when X is set to a low value, transmission do not receive the 

benefits of retransmissions, especially when the network is sparse and needs multi-

hop forwarding. The adaptation algorithm therefore not only needs to suppresses 

retransmissions during heavy channel contention, it also should encourage re­

transmission when the channel load is sensed to be low. 

Finally, when the channel is below saturation, most of the observed interframe 

idle slot counts are greater than the contention window size. Since the estima­

tor is based on the theoretical model where all stations are saturated and these 

observations cannot happen, this causes the estimator to produce erroneous re­

sults. The algorithm therefore needs to account for this limitation, and encourage 

retransmissions when the inter-frame idle slot count is too high. 

Algorithm 7.3 is designed to achieve the desired load moderation behaviour 

while accounting for the under-saturation problem by increasing X by a constant 

when an observation is higher than one contention window and therefore dis­
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Algorithm 7.3 Algorithm to react to network load
 
function AdjustX(loadEst, discardedObs, lastX) 

if discardedObs then l Too many idle slots 
return lastX + k l k is some fixed constant 

end if 
ESNtreturn lastX × 
loadEst 

end function 

carded. If such parameter increases turn out to be unnecessary, the inflated X 

would quickly be reduced by the algorithm through its normal operation if the 

channel load is sensed to be high. 

7.3.4 Evaluation 

The load-reactive geocast system along with the selected algorithms described 

in Chapter 4 were evaluated using the network simulator ns-3.9. Parameters 

used are identical to those in Chapter 4 to ensure consistency, except the more 

fine-grained set of vehicle densities in Section 7.2 is used. 

Section 7.2 shows that the optimal threshold ESN is around 2.0 for busy 

enough scenarios. For less congested channels, the optimal threshold ESN is 

higher. The section also shows that, within the range [2.0, 3.0), the reward func­

tion is very close to optimal value, but quickly drops when the threshold is outside 

this range. Therefore in this simulation, the threshold ESN (ESNt) is set to 2.5, 

which is within the range [2.0, 3.0) and gives sufficient buffer in case the channel 

is not very congested. The additive constant (k) is set to 0.75, which appeared 

to provide a good outcome based on the results from a number of pilot runs 

using arbitrary values. As will be discussed later, the selection of both ESNt 

and k represents a trade off between performance at higher and lower contention 

situations. Table 7.5 lists the simulation parameters used. 

Both the scenarios with only a single tagged transmitter and the scenarios 

with all stations transmitting are simulated. The single transmitter scenarios are 

used to determine performance in a known near-optimal (uncongested) situations, 

whereas the scenarios with all stations regularly transmitting approximate the in­
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Table 7.5: Simulation parameters — Load-reactive system performance
 
Vehicle densities {10, 15, 20, 25, 30, 40, 50, 60, 75, 90, 100}

veh/km/lane 
Proportion of HV 10% 

Lanes per road 6 
Road length 900 m 

Intended coverage radius 200 m 
Position of source Centre of intersection 

80 m south of intersection 
Centre of straight road 

Antenna Gain (Tx and Rx) 
Rx Threshold 
CS Threshold 

Log-Distant Exponent (γ) 
Log-Distant Ref Loss (at 1 m) 

Nakagami parameter (m) 
Receiver Noise 

Attenuation across HV 
Building Shadow 

Max transmission range 
Transmission rate 

Transmission bandwidth 
SIFS 

Slot Time 

2.512 dB 
-95 dBm 
-99 dBm 
2.0 
-47.8588 dB (Friis loss, 5.9 GHz) 
5.0 
0 dB 
-20 dB 
-30 dB 
{50, 100, 150, 200}m 
6 Mbps 
10 MHz 
32 µs 
13 µs 

Packet Rate 
Packet lifetime 

Packet size 
Retransmission parameter X 

Number of transmitters 

10 Hz 
100 ms 
54 octets (incl. all headers) 
{0.5, 1, 2, 3, ..., 10}
{Single station, All stations}

Additive Constant (K) 
Threshold ESN (ESNt) 

0.75 
2.5 
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tended use-case of Cooperative Collision Avoidance systems (CCA). In the CCA
 

use-cases, even though all stations transmit packets, only the packets generated 

by one tagged station are tracked in the simulation. Background CCA beacons 

are generated at 10 pkt/s (as proposed for many VANET applications), and in 

the CCA use-cases, stations are assigned different random start times drawn from 

a uniform distribution over [0, 100) ms. For each vehicle density setting, 10 sit­

uations are tested with results presented being the average of these situations. 

A sample of 20 tagged packets is taken for each algorithm under test. The per­

formance measure taken is the proportion of packets successfully received before 

expiry and relevant to the receiving station. Other measures are also recorded 

but are not relevant to the evaluation. Furthermore, the mean value of X used 

at each station for determining retransmissions is also logged. 

The load-reactive geocast system is compared with the following existing al­

gorithms introduced in Chapter 4: 

•	 No forwarding (“No ReTx”) 

•	 Briesemeister et al. [84] (greedy furthest successful station — “Furthest”) 

•	 Fixed X interference-aware (as presented in Chapter 4), using the best 

parameter X found. (“Metric”) 

It should be noted that this load-reactive geocast system would behave sig­

nificantly differently to the fixed parameter interference-aware geocast algorithm 

due to the distributed nature of the sensing algorithm. The interference-aware al­

gorithm uses the same parameter X for all stations regardless of the local vehicle 

density and channel condition, whereas the load-reactive system is expected to 

cause each station to use a different X. The fixed-parameter interference-aware 

algorithm can give an indication whether X should increase of decrease as vehicle 

density changes, but the values of X are not directly comparable. 
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7.3.5 Results
 

Reception Performance 

Figure 7.9 shows the PRR performance of the load-reactive system (marked as 

“MetricDyn” in the figure) compared to the other algorithms in the centre-of­

intersection scenarios. These scenarios represent the cases where the highest con­

tention occurs closest to the tagged transmitter. The single transmitter scenarios 

(left hand figures) show that, for busy enough channels, the load-reactive system 

is able to achieve PRR performance approximately equals that of the best fixed 

parameter case. (The plots show the PRR for only the best choice of X from the 

fixed parameter results. The choice of X may be different in each vehicle density 

setting.) For the not-very-congested channels (10 vehicles/km/lane and where 

S = 0.25), there is an observable difference of approximately 5% between the 

load-reactive system and the corresponding fixed parameter one, suggesting that 

the algorithm is not operating as effectively for these low contention scenarios. 

The graphs on the right-hand side of Figure 7.9 show the system perfor­

mance under simulated “real world” load. Here, the difference between the load-

reactive system and the others are more pronounced. The results show that the 

load-reactive system is not aggressive enough in encouraging forwarding at low 

vehicle densities (density ≤ 40 vehicles/km/lane). However, at higher channel 

contentions, the load-reactive system is sometimes able to outperform the fixed-

parameter interference-aware geocast algorithm. When the channel contention 

becomes very high (e.g. ≥ 75 vehicles/km/lane at S = 1.00), the reactive sys­

tem once again underperformed. One interpretation of this would be that the 

load adaptation algorithm is both not aggressive enough at low contention in 

encouraging retransmission, and does not suppress forwarding enough at very 

high contention cases. Having said this, the load-reactive system performed at 

least as well as the no-retransmission case except in one scenario tested (100 ve­

hicles/km/lane). This limitation of the reactive system is also observed for other 

vehicle layout scenarios (Figure 7.10). 
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Figure 7.9: Results of centre-of-intersection scenario, error bars represents two 
standard deviations, S ∈ {1.00, 0.75, 0.50, 0.25} is the ratio of the maximum 
transmission range to required coverage radius. Parameter X for the metric 
cases are chosen to give the best PRR. Single transmitter scenarios on the left, 
all stations transmitting on the right. 
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Mean PRR vs Density (S=0.50, 80m South) 
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Figure 7.10: Results of the tagged transmitter either 80 m south of intersec­
tion scenario or on a straight road, with all stations transmitting, error bars 
represents two standard deviations, S ∈ {1.00, 0.75, 0.50, 0.25} is the ratio of 
the maximum transmission range to required coverage radius. Parameter X for 
the interference-aware algorithm is chosen to give the best PRR for each vehicle 
density. Intersection scenarios on the left, straight road on the right. 

187
 



Choice of Retransmission Parameter
 

In order to investigate how the retransmission parameter is chosen by the load-

reactive system, the median X value used is first tabulated, and then compared 

to the “best” choice of X in the fixed parameter algorithm (Table 7.6). Again, it 

must be noted that the absolute value of X is not directly comparable between 

the two algorithms — only the general trend can be compared. 

One can see from Table 7.6 that, compared to the algorithm that uses a 

globally fixed X parameter, the load-reactive system increases X from a rather 

small value at low vehicle densities before suppressing X again at high vehicle 

densities. It can be argued that the computed values of X is below the optima 

at low vehicle densities, while at high vehicle densities, is higher than optimal. 

Since X is updated every time the channel ceases to be idle, but the computed 

value is only used for determining retransmission if the packet was correctly 

received, the median value of X that is actually used can be different to the 

computed values. The computed value represents the long-term average of what 

X should be according to the load adaptation algorithm, while the actual X used 

would depend on other factors. It is observed that, on average, low vehicle density 

causes the system to use a value that is more likely to be higher than computed, 

while high vehicle density triggers the opposite effect. 

Figure 7.11 plots the median computed and used X values against the median 

of measured channel load for each scenario. The plot shows that the majority of 

the points lie near the threshold ESN, suggesting that the load-reactive system 

is able to control the load to around ESTt for most cases. The data points that 

are above ESNt suggest that, as expected, the system chooses lower values of X 

as the median load increases in attempt to suppress retransmission for the sensed 

high load. 

Another way to visualise the discrepancy would be to look at the ratio of the 

actual values of X used for retransmission decision to the computed X. Table 7.7 

shows that for low vehicle densities, the actual value of X used tends to be 
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Table 7.6: Choice of X by reactive and fixed algorithm (Centre-of-intersection)
 

Density 
PRR 

Fixed Reactive 
Fixed X Reactive X (Median) 

Computed Used Difference Load 
10 45.67% 37.36% 10 4.47 4.77 +0.30 11.54 
15 53.24% 41.80% 10 7.77 7.86 +0.10 7.05 
20 55.28% 40.79% 10 8.88 9.18 +0.30 5.68 
25 59.29% 42.05% 8 9.09 9.00 -0.09 7.45 

S
 =

 0
.2
5 30 

40 
50 

56.82% 40.94% 
44.89% 40.31% 
30.92% 37.86% 

5 
3 
1 

10.37 10.30 -0.07 
10.66 10.35 -0.31 
7.97 7.50 -0.47 

3.21 
2.71 
3.14 

60 20.20% 33.30% 1 6.91 6.38 -0.53 2.66 
75 23.59% 28.98% 1 6.53 5.51 -1.02 2.29 
90 17.78% 28.50% 0.5 5.35 4.37 -0.99 2.34 
100 17.53% 27.04% 0.5 4.59 3.58 -1.01 2.39 
10 83.00% 75.61% 8 6.18 6.24 +0.06 6.82 
15 85.63% 74.20% 10 9.89 9.52 -0.38 3.10 
20 82.41% 72.94% 4 9.75 9.21 -0.54 3.14 
25 72.26% 69.21% 2 6.12 5.88 -0.24 2.13 

S
 =

 0
.5
0 30 

40 
50 

69.92% 67.93% 
56.31% 61.17% 
41.31% 57.08% 

2 
1 
0.5 

6.53 6.33 -0.20 
5.97 5.22 -0.74 
3.94 3.20 -0.74 

4.63 
5.20 
2.54 

60 35.30% 51.46% 0.5 3.51 2.65 -0.86 1.92 
75 31.68% 38.46% 0.5 3.35 2.23 -1.12 1.89 
90 30.63% 36.23% 0.5 2.55 1.68 -0.86 2.20 
100 29.40% 32.31% 0.5 2.29 1.30 -0.98 2.13 
10 90.43% 80.33% 10 4.07 4.36 +0.30 11.55 
15 91.42% 80.69% 10 5.88 5.85 -0.03 10.54 
20 83.75% 79.48% 3 6.49 6.51 +0.01 4.62 
25 78.25% 78.79% 2 4.79 4.49 -0.30 5.71 

S
 =

 0
.7
5 30 

40 
50 

72.77% 73.31% 
59.97% 67.57% 
56.68% 61.69% 

2 
1 
0.5 

5.04 4.85 -0.19 
5.11 4.20 -0.91 
3.05 2.40 -0.65 

6.31 
2.61 
2.66 

60 49.49% 53.99% 0.5 2.72 1.93 -0.79 2.37 
75 42.24% 42.99% 0.5 3.00 1.74 -1.26 2.02 
90 31.98% 35.43% 0 2.05 1.15 -0.91 1.90 
100 32.91% 31.49% 0 1.86 0.92 -0.94 1.77 
10 91.68% 87.07% 10 2.84 3.12 +0.29 13.60 
15 89.99% 85.07% 9 4.46 4.80 +0.34 11.99 
20 88.92% 81.19% 7 5.54 5.63 +0.08 12.59 
25 84.42% 81.00% 3 4.84 4.69 -0.16 10.99 

S
 =

 1
.0
0 30 

40 
50 

80.03% 75.38% 
64.28% 68.61% 
64.25% 64.45% 

3 
1 
1 

6.36 6.09 -0.26 
6.56 5.56 -1.00 
4.32 3.52 -0.80 

4.76 
2.58 
2.30 

60 55.92% 55.52% 0.5 4.33 2.88 -1.44 2.39 
75 47.93% 43.52% 0.5 3.96 2.41 -1.55 2.36 
90 39.54% 35.56% 0 2.87 1.61 -1.27 1.83 
100 35.29% 33.86% 0 2.47 1.26 -1.21 1.82 
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Figure 7.11: Diagram plots the median X value against median load for each 
scenario of the centre-of-intersection layout. The plot shows that at low load, 
the actual value of X used for determining forwarding decision is lower than the 
long-term mean, while at higher measured load, the actual used X value is higher 
than calculated. 

slightly higher than the value computed by the load adaptation algorithm. At 

high vehicle densities, the values used can be much smaller than those computed 

by the algorithm. This discrepancy is further discussed in the next section. 

Finally, the rightmost column of Table 7.6 contains the median of the final 

channel load measurement at each station. This value influenced the final choice 

of X at that station according to the reactive system. Ideally, the load-reactive 

system should set X such that the final load measure is near 2.5 ESN, the thresh­

old ESN configured. Instead, the final value of load measure is extremely high at 

low vehicle densities, then almost abruptly drop to a slightly higher-than-desired 

value before settling at a value around 1.8 to 2.3 ESN. 

7.3.6 Discussions and future work 

Performance of load adaptation algorithm 

Overall, based on the results obtained, one can see that the load-reactive geocast 

system is able to adapt to the channel load with no manual intervention. However, 
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Table 7.7: Ratio of actual X used to X computed by the algorithm
 
Density Mean SD Min Q1 Median Q3 Max 

10 1.112 0.255 0.519 1.018 1.104 1.167 4.675 
15 1.064 0.246 0.154 0.950 1.063 1.170 2.455 
20 1.062 0.276 0.063 0.933 1.064 1.177 2.976 
25 1.034 0.300 0.044 0.874 1.026 1.171 3.373 

S
 =

 0
.2
5 30 

40 
50 

1.053 
1.030 
0.992 

0.336 
0.352 
0.344 

0.084 
0.052 
0.001 

0.873 
0.821 
0.799 

1.018 
1.009 
0.974 

1.183 
1.197 
1.162 

3.176 
3.332 
3.017 

60 0.977 0.340 0.004 0.791 0.963 1.140 3.546 
75 0.937 0.333 0.003 0.741 0.930 1.109 2.917 
90 0.907 0.357 0.003 0.710 0.899 1.086 4.089 
100 0.873 0.347 0.003 0.675 0.865 1.052 3.760 
10 1.059 0.244 0.158 0.947 1.059 1.160 2.926 
15 1.033 0.292 0.197 0.866 1.013 1.161 3.492 
20 1.009 0.354 0.059 0.826 0.995 1.151 4.259 
25 1.013 0.313 0.042 0.844 0.990 1.139 3.541 

S
 =

 0
.5
0 30 

40 
50 

1.005 
0.950 
0.895 

0.304 
0.317 
0.339 

0.070 
0.001 
0.007 

0.828 
0.780 
0.699 

0.988 
0.944 
0.905 

1.145 
1.113 
1.073 

2.594 
2.843 
3.076 

60 0.833 0.335 1.3e-4 0.644 0.841 1.030 2.547 
75 0.792 0.362 1.5e-4 0.568 0.801 0.992 3.256 
90 0.754 0.364 1.3e-4 0.520 0.758 0.964 3.806 
100 0.706 0.366 3.3e-4 0.459 0.706 0.924 3.819 
10 1.079 0.154 0.452 0.996 1.094 1.168 1.566 
15 1.024 0.228 0.072 0.908 1.032 1.138 1.985 
20 1.031 0.268 0.191 0.897 1.028 1.156 3.209 
25 0.981 0.286 0.051 0.828 0.979 1.114 3.247 

S
 =

 0
.7
5 30 

40 
50 

0.996 
0.900 
0.852 

0.285 
0.327 
0.327 

0.756 
0.001 
0.003 

0.856 
0.730 
0.672 

0.991 
0.903 
0.864 

1.139 
1.077 
1.028 

3.128 
3.255 
3.250 

60 0.818 0.337 0.003 0.628 0.830 1.006 3.453 
75 0.728 0.371 1.2e-5 0.478 0.739 0.950 3.200 
90 0.689 0.357 7.4e-6 0.439 0.691 0.910 3.319 
100 0.630 0.361 4.5e-6 0.364 0.622 0.854 2.871 
10 1.105 0.133 0.449 1.051 1.113 1.168 1.959 
15 1.057 0.200 0.197 0.977 1.069 1.144 2.851 
20 1.028 0.225 0.268 0.900 1.028 1.143 2.490 
25 1.022 0.231 0.249 0.896 1.017 1.134 2.498 

S
 =

 1
.0
0 30 
40 
50 

0.988 
0.940 
0.873 

0.265 
0.308 
0.318 

0.058 
0.017 
0.002 

0.846 
0.784 
0.713 

0.994 
0.942 
0.892 

1.123 
1.100 
1.045 

2.533 
3.943 
4.377 

60 0.815 0.338 0.001 0.628 0.842 1.006 2.286 
75 0.745 0.364 2.5e-4 0.497 0.757 0.973 2.899 
90 0.686 0.366 1.7e-4 0.419 0.685 0.923 2.728 
100 0.654 0.358 1.8e-4 0.393 0.655 0.879 3.172 
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the load adaptation algorithm is not aggressive enough in encouraging rebroadcast
 

in low vehicle density situations while also not aggressive enough in suppressing 

retransmissions at high vehicle densities. 

It is noted that the parameters of the load adaptation algorithm had not been 

completely optimised. The load adaptation algorithm uses three parameters — an 

additive constant (k) that encourages retransmission at low contention, a target 

threshold ESN (ESNt), and the function has implicitly an exponent of 1. 

The additive constant (k) is required in order to overcome the limitation of the 

theoretical model the algorithm is based on. The underlying theoretical model 

for estimating channel contention assumes all stations are saturated (always have 

something to send). This assumption allows solutions to the theoretical model 

to be computed in reasonable time — relaxing that assumption requires an pro­

hibitively long computation time, with high inaccuracies caused by floating point 

precision (see Chapter 6). Unfortunately, this assumption implied that all inter-

frame idle periods would be at most one contention window long, which is not 

the case in this simulation. 

The additive constant (k) applies if an observed inter-frame period is over 

one contention window. In this situation, one would assume that the channel 

is below saturation, which means retransmissions can be promoted (i.e. increase 

X). In order to increase the aggressiveness in promoting retransmission at low 

saturations, multiplicative factors don’t react fast enough, hence a constant k is 

used. 

The other branch of the algorithm aims to suppress retransmissions at high 

load. Here, a factor inversely proportional to the sensed load (ESNt/load) is 

multiplied to the last parameter value to try and push the sensed load to a 

predetermined threshold (ESNt) with ESNt having already been optimised in the 

first section of this Chapter. The distributed nature of this algorithm means that 

this measure only controls the current station. By assuming homogeneity, one 

reasons that other stations in the proximity also would have a similar estimate of 
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channel load, and thus act similarly, resulting in a reduction of channel contention
 

as a whole. This factor also encourages retransmission at low load, however, an 

additive constant is more effective because it can increase X quicker when X 

is very low. To improve the responsiveness of this load-suppression aspect of 

the algorithm, one could raise the multiplicative factor to a higher exponent. 

However, increasing the exponent would decrease system stability by causing 

potentially very large variation in the X value at each step. 

Currently, the channel estimation algorithm discards observations that are 

over one contention window long. This artificially inflates the estimated channel 

load especially at low contention scenarios. The behaviour can be observed in 

Table 7.6 where the low vehicle density scenarios returns a very high estimated 

load. This plays havoc on the multiplicative factor, causing the algorithm to 

retard retransmission instead of promoting them (evident from the high-load tail 

of Figure 7.11 — the depressed X does not appear to actually reduce the final 

sensed load). This effect is partially overcome by the additive constant, but it 

appears that the constant by itself is not currently enough. 

The additive constant is a factor that would always limit the performance 

of the algorithm. Even though a high k would make the algorithm more re­

sponsive at low load, it will cause the algorithm to not retard retransmissions as 

aggressively at high load. This is because even in very high load, unsaturated 

stations means that there is a non-zero probability of an inter-frame idle period 

being longer than one contention window. Hidden terminals further compound 

the problem. 

Optimising the additive constant and the factor exponent would simply be 

trading off between the high-load and the low-load performance as well as system 

stability. Higher constant improve low-load performance but reduces high-load 

performance. 
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Discrepancies between computed and used X
 

Simulation results also shows a discrepancy between the value of X used for 

making retransmission decisions and the mean value of X computed by the al­

gorithm. In order to understand this behaviour, it is important to remember 

the load-reactive geocast system is actually two separate components coupled 

together. 

The load sensing and adaptation component takes channel measurements as 

an input, and calculates a control variable (X) that is most appropriate at a spe­

cific point in time. The time-average mean computed X value therefore represents 

the value of X the algorithm had determined to be most appropriate for that sta­

tion. Looking at this component statistically and assuming steady state, one can 

view this component as a random process that generates an output distribution 

with a certain mean. 

The second component of this system is the geocasting algorithm. In this 

component, valid and unexpired packets that had been received correctly are 

prioritised for retransmission. When such packets arrive, this algorithm inspects 

the computed X value at that point in time, and then makes a retransmission 

decision. One can view this as a process that samples the load sensing and 

adaptation component. In the steady state, both the computed and used X 

would be optimal, thus would not alter the channel condition. In the simulation, 

retransmissions are not always triggered — station distances, hidden terminals, 

packet expiry and other random factors can all cause packets to not be received 

correctly or in time. The mean value of the “used” X is therefore a sample mean 

of the load sensing and adaptation output distribution. 

The difference between the sample mean and the distribution mean is called 

sampling error, and is typically caused by two main factors — sample size and 

sample bias. When sampling a probability distribution, it is likely that the sample 

mean will be different to the distribution mean. As the sample size increases, the 

expected sample mean should approach the distribution mean. The sampling size 
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problem refers to the situation where insufficient number of samples was taken,
 

increasing the likelihood of having large discrepancies between the two means. 

Sampling bias refers to the dependence between how samples are obtained and 

the actual value being measured. In this context, the sample size problem implies 

that the computed X has significant outliers that was by chance not used for 

retransmission decision making; the bias problem implies that certain computed 

X causes the retransmission algorithm not to be triggered. 

First, the possible sample size problem is considered, and it is found that the 

discrepancy cannot be fully explained by random sampling error. The number 

of retransmission a station makes must be the lower bound of the number of 

times that the station has looked up the computed X value. This is because for 

every retransmission that stations made, the retransmission algorithm must have 

looked up the computed X value in order to make the decision. Using that as 

a lower bound, the maximum standard error of the sample mean for any given 

confidence interval (e.g. 99% CI) can be determined. 

The test uses the claim that the discrepancy can be explained by random 

sampling error (the sample mean is within the standard error of the true dis­

tribution mean) as the null hypothesis (H0). This null hypothesis is rejected if 

the normalised difference between the true distribution mean (which is known) 

is greater than the calculated standard error. 

Computing the standard error for every station within the target area of each 

scenario simulated results in 156,110 out of the 236,804 stations (66%) rejecting 

this null hypothesis. It is therefore reasonable to conclude that sampling error 

alone is insufficient to explain the discrepancy between the mean computed X 

value and the mean used X value. 

Next, the potential dependence between the triggering of the retransmission 

algorithm and the computed X is explored, and thereby exploring the insight this 

discrepancy brings. As previously discussed, the retransmission may not always 

be triggered after every non-idle period. Non-idle states include when a station 
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is transmitting, receiving, as well as has sensed a carrier on the channel but the
 

signal’s preamble was not detected. Of these states, retransmission decision can 

only be triggered by the receiving state, and only if the packet was correctly 

decoded. A sampling bias here means that the system preferentially sample at 

certain X, which occurs if the correct reception of a single packet (original or 

rebroadcasted, and from any source) as a ratio of non-busy states is influenced 

by the retransmission parameter X. 

Suppose the mean computed X is higher than the optimal value, i.e. the 

computed value will cause too much contention. Since the instantaneous X values 

is dependent on the last observed inter-frame idle period (which is random), the 

individual computed X values will be distributed around the mean. Consider 

the case where the X value used is even higher than the mean — the channel 

contention will be worse, resulting in an increased probability of packet collision 

(i.e. packet non-reception but carrier present). Retransmission decision cannot 

be triggered by a packet not being correctly received, therefore the retransmission 

algorithm is less likely to sample X when X is too high. On the other hand, if the 

instantaneous X value is lower than the mean (i.e. closer to the optimal), collision 

is less likely, thus the retransmission algorithm is more likely to be triggered. This 

creates a bias towards the X values that are closer to the true optima when the 

mean computed X is higher than optimal. 

On the other hand, the reason for the system self-correcting at low contention 

(mean computed X is lower than optimal) needs to be better understood. The 

results seem to indicate that the system indeed does use an X value that is higher 

than the average computed value. However, similar arguments to the higher 

than optimal case cannot be constructed. Increasing X towards the optimal 

value increases redundancies, which increases the probability that a station will 

eventually receive the message. The act of retransmission increases both the 

number of correctly received packet and total number of non-busy events for 

stations that is close enough to the retransmitter (thus increases the proportion 
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of samples), but for those further away such that they can only sense the carrier
 

but is unable to decode, it increases only the total number of non-busy events (i.e. 

reduces the proportion). This is insufficient to conclusively argue for sampling 

bias that favours the more optimal X without also making assumption on the 

ratio of stations that can receive the packet to the those that senses carrier only. 

Therefore, due to the interaction with the environment, the retransmission 

algorithm can self-correct suboptimal retransmission parameter from the load 

sensing and adaptation component if the computed parameter is too high. Fur­

thermore, the system is also observed to self-correct when the computed parame­

ter too low. This is evident from Table 7.7 where the mean and the median value 

of X used tends to be in the direction of the optimum value (at low contention, 

the ratio is greater 1, whereas at high contention, the value tends to be much 

smaller than 1). The cause of the preference when the computed X is lower than 

optimal still needs to be better understood. 

Future work 

As stated, the dependence between the retransmission parameter and packet error 

rate, especially at the low contention levels, needs to be better understood. A 

better understanding of this behaviour will allow the load adaptation component 

to better decide the retransmission parameter, utilising not just the instantaneous 

channel load estimates, but also some measure of the optimality of the last chosen 

X value. 

7.4 Conclusion 

In this chapter, one design of load-reactive geocast system that combined the 

load estimation and retransmission techniques presented in previous chapters is 

investigated. 

The existing metric, channel busy time, is found to be incapable of predicting 

whether a packet can or cannot be received, whereas the ESN metric is able to 
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predict with high accuracy packet non-reception. The test to predict packet non-


reception is a simple comparison to a threshold value, and despite its simplicity, 

is shown to be highly accurate in predicting non-reception as well as being able 

to identify most of the cases that has high reception ratio. 

Compared to the greedy distance-based forwarding algorithm, the interference-

aware geocast algorithm has more efficient channel use. This inference is based on 

the better positive predictive value of this test on the interference-aware geocast 

algorithm. 

A design of a load-reactive geocast system that coupled the output of the load 

sensing algorithm to the geocast algorithm is then presented, allowing the geocast 

algorithm to adapt to the channel load in order to optimise packet reception. 

Through computer simulation, the geocast algorithm is shown to be effective in 

moderating channel load. It was identified that a trade-off needs to be made in 

relation to system performance under high or low channel load. An emergent 

behaviour was observed where the two-part system, to a certain extent, self-

corrects sub-optimal output from the load adaptation component. 

In the next chapter, the issue of simulator accuracy in wireless network re­

search is raised. First, it is shown that simulation outcomes differ greatly amongst 

the various well known and commonly used simulator packages, none of which 

conforms to theoretical predictions. Looking in depth into one specific simulator, 

the nature of the misbehaviour is identified, leading to a set of workarounds that 

allows the outcomes from that simulator to be interpreted and used correctly. 
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Overview 

This chapter investigates the validity of using existing computer simulation 

packages for broadcast-mode communications. 

Contributions 

•	 I have identified high discrepancies between outputs of differ­

ent commonly-used network simulator packages. The discrep­

ancies amongst the simulators are likely to be caused by errors in the 

implementation of the IEEE 802.11 MAC-layer broadcast behaviour. 

•	 I have evaluated the impact of ns-3 broadcast-mode misbe­

haviour. By comparing the simulation results to theoretical predic­

tions, I have shown that the misbehaviour observed from ns-3 simula­

tions of broadcast mode IEEE 802.11 transmissions has a small impact 

in terms of application-layer performance, but has major effects on al­

gorithms that rely on MAC-layer observations such as collision proba­

bilities and idle slot counts. The observations and analysis is applicable 

to all versions of ns-3 at least from ns-3.4 to ns-3.15. (It is most prob­

able that the workarounds are also applicable to releases after ns-3.0.4 

when the YANS Wifi model [1] is first introduced.) 
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Chapter 8 

Variability between Network 

Simulators 

8.1 Introduction 

This chapter investigates the accuracy and validity of network simulation packages 

for broadcast mode IEEE 802.11 communications. Compared to other methods 

of validating and evaluating network algorithms and theories, such as real-world 

experiments and experimental testbeds, computer simulations are inexpensive 

and very flexible. This results in the extensive use of computer simulations in 

networking research, hence their accuracy is critical. 

There are many different network simulators available, ranging from complex 

general purpose simulators such as OMNet++, ns-2 and ns-3, to more specific 

simulation engines including JiST/SWAN, to highly specific simulations that are 

typically developed specifically for a single experiment by the experimenter such 

as the simple DCF simulation in Chapters 5 and 6. During the course of the work 

in this thesis, many simulators were tried, and it was found that the results from 

these simulators differ greatly at times. 

First, the MAC-layer outcomes from a range of commonly used network sim­

ulation packages are compared to theoretical predictions, showing huge variances 
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exist amongst simulators, and each showing different non standard compliant be­

haviours. Next, the discrepancies observed in ns-3.9 are investigated, focusing on 

how the discrepancies affect simulation outcomes. The analysis observed in ns-3.9 

should be applicable to all versions of ns-3 from ns-3.4 (and is most likely to be 

also applicable to version from ns-3.0.4, i.e. when the IEEE 802.11 model was first 

introduced into the simulator) and up to ns-3.15. A set of “workarounds” that 

allows users of ns-3 to correctly interpret and use the results from the simulator 

notwithstanding its non-standard behaviour is also discussed. 

8.2 Comparing network simulators 

To compare the behaviours of the different simulators in the broadcast context, 

the same network scenario is simulated using each simulator separately. For a 

range of saturated station counts, the distribution of idle slots observed on the 

channel is compared to the theoretical predictions. Where possible, confounding 

physical layer “enhancements” implemented by the simulators (e.g. packet cap­

ture effect, shadowing and fading, hidden terminals) are turned off in order to 

investigate only the MAC layer implementation. 

Networks containing some specified number of saturated stations is simulated. 

Each station on the network is kept saturated either by a loop-back that causes 

a frame to be added to the transmit queue when a frame is sent by the station, 

or by higher layer queuing more packets for transmission than the capacity of 

the channel allows. The frames transmitted are all broadcast mode frames. The 

following subsections describe the implementations and configurations of each 

simulator used. 

8.2.1 Simple DCF model 

The simple DCF model used in Chapter 5 is used here as the baseline to compare 

the various models with. The model implements the relevant backoff mechanism 
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for broadcast model exactly as specified in IEEE 802.11 standard, abstracting
 

out all timing and physical layer effects. The model simulates a simplified DCF 

backoff counter that merely decrements at each time slot and reset when reaching 

zero. This model simulates the following: 

•	 Fixed size contention window (CW) for each station. 

•	 backoff counter reinitialise to a uniformly distributed value within the CW 

after transmission by the station. This models the DCF broadcast be­

haviour (i.e. no ACKs) and assumes all stations are saturated. 

•	 Global (shared) timeline in “slots”. Data transmission, IFS, etc. occur 

between slots and the actual wall time for the action is ignored. 

•	 Transmission is lost if and only if there is a collision (two or more stations 

scheduled to transmit in the same slot) 

•	 Model assumes all stations are synchronised (propagation and processing 

times are zero and no hidden stations). Without assuming synchronisation, 

the time between slots cannot be ignored as stations that are not synchro­

nised will see different slot boundaries. 

When this model is executed, each station simulated is assigned a random 

backoff counter value uniformly distributed over the contention window. At each 

time step, all backoff counters are decremented by one if the counter value is 

greater than zero. If the counter is zero, it is assumed that the station will initiate 

a transmission, and the counter is reset to a backoff counter uniformly distributed 

over the contention window. The transmission is assumed to be successful if only 

one station initiated a transmission, and assumed to have failed due to collision if 

more than one station transmitted. If no station initiated a transmission at that 

timeslot, then the channel is considered idle at that time, otherwise, the channel 

is considered busy. In this simulation, statistics on idle periods, probability of 

channel being busy and packet success ratio are collected. Further information 

on this model is located in Chapter 5. 
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8.2.2 OMNet++ INET model 

OMNet++ offers two main general-purpose wireless communication modules: 

INET and MiXiM. Only the INET module was investigated in this study. In this 

simulation, the standard Ieee80211Mac model in the INET module is extended 

to provide extra feedback without changing its original behaviour. Specifically, 

extra feedback is added to the MAC model to notify the application layer when 

transmissions are completed via a side channel and not as a MAC-layer control 

signal. Extra logging facility is added to the MAC model to count the frequency 

of the various observed interframe idle slot counts. 

In addition to the extension to the MAC-layer model, a new MAC-layer packet 

generator is implemented. This packet generator simulates a saturated station 

by subscribing to the transmission completion event (generated by the extended 

MAC layer) and pushing a new MAC SDU onto the MAC layer as soon as the 

previous frame had completed transmission. This packet generator removes the 

need to use a constant-bit-rate packet source that generates more packets than 

the channel can support (thus overflowing the transmit queue). This greatly 

reduced memory use and the size of the log file as the packets are no longer being 

dropped at the MAC transmit queue. 

Each scenario is run 10 times using different seeds for the pseudo-random 

number generator. A 50 m × 50 m area with the specified number of non-moving 

stations is simulated. All stations simulated are within reception range of each 

other (no hidden stations) and uses the packet generator to generate broadcast 

MAC frames (destination address “ff:ff:ff:ff:ff:ff”). The simulation is 

allowed to warm up for one simulated second before data is collected for 60 sim­

ulated seconds. Table 8.1 summarises the parameters used. 

Two variants of station layouts are tested due to complications resulting from 

these non-realistic scenarios. First variant — all stations are uniformly distributed 

in the field. In these tests, the distances between stations introduced propaga­

tion delays, affecting the accuracy of idle slot observations. Second variant — all 
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Table 8.1: Simulation parameters — OMNet++
 
Parameter Value 

repeat 10 
sim-time-limit 60 s 
warmup-period 1 s 

∗.playgroundSizeX 50 
∗.playgroundSizeY 50 
∗∗.radio.bitrate 2 Mbps 

∗∗.radio.transmitterPower 2.0 mW 
∗∗.radio.thermalNoise -110 dBm 
∗∗.radio.sensitivity -85 mW 

∗∗.radio.pathLossAlpha 2 
∗∗.radio.snirThreshold 4 dB 

∗.channelcontrol.carrierFrequency 
∗.channelcontrol.sat 

∗.channelcontrol.alpha 

2.4 GHz 
-110 dBm 
2 

∗∗.mac.maxQueueSize 14 
∗∗.mac.rtsThresholdBytes 3000 B 

∗∗.mac.bitrate 2 Mbps 
∗∗.mac.retryLimit 7 

∗∗.host[∗].mobilityType NullMobility 
∗∗.trafficGen.destAddress 
∗∗.trafficGen.startTime 
∗∗.trafficGen.waitTime 

ff:ff:ff:ff:ff:ff 
0 s 
0.0005 s 

∗∗.cwMinBroadcast 
Lan80211.numHosts 

[3, 7, 15, 31, 63, 127, 255] 
up to 450 

stations are placed in exactly the same position. In these tests, the idle slot ob­

servations observed falls directly on slot boundaries (as expected), and thus gives 

an accurate measurement of idle slot distribution. However, in the second set of 

tests, the INET model is unable to calculate the receive power correctly (division 

by zero error), causing all packet reception measurements to be registered as zero. 

For data analysis, the idle slot observation results from the second set of station 

layouts, and packet reception results from the first set of layouts are used. 

In order to determine the interframe idle slots, the time between a station 

switching from any busy state (CCA BUSY, TX, RX) to IDLE, and the same station 

switching from IDLE to any busy state are recorded. This time is then converted 

into the number of backoff slots by first subtracting DIFS and then dividing the 

difference by the slot time. 
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Only the trace from the first station in each experiment is used when aggre­

gating the results. This is because all other traces are identical as all stations 

are within range of each other and stochastic propagation loss (e.g. fast fading) 

is not used. 

It is important to note that the packet capture effect cannot be turned off. 

Therefore, the packet reception ratio observed may be higher than those observed 

from the simple DCF model even though the idle slot counts is expected to mirror 

the outcomes from the equivalently configured simple DCF model. 

8.2.3 Ns-2.34 CMU model 

The second simulator investigated is the ns-2 simulator. Version 2.34 of ns-2 and 

above provides a number of different wireless simulation models, of which two 

relates to ad-hoc simulations: “Mac/80211” (from Carnegie Mellon University, 

referred to as the “CMU model” in this chapter) and “Mac/80211Ext” (the newer 

model from Mercedes-Benz Research and Development North America and Karl­

sruhe University). The official documentation from ns-2 currently recommends 

that Mac/80211Ext be used in place of the old CMU model, but an abnormality 

observed when using the new model makes the use of the CMU model necessary. 

Initially, a wireless simulation model using Mac/80211Ext was constructed. 

However, when trying to determine the various constants to use to calculate idle 

slot count, it was observed that some values collected from the simulation does 

not make sense. The set of times observed between transmissions when there is 

only 1 active transmitter is completely different to those when there are multiple 

transmitters, with the time difference not being the sum of any integer multiple 

of PIFS and slot times. This suggests that the MAC layer calculation of the 

transmission time for the transmitting station is longer than the PHY layer’s cal­

culation. Assuming that PHY layer does not report the completion of broadcast 

transmission to the MAC layer, this discrepancy could have caused the MAC layer 

of the transmitting station to wait for longer than the actual transmission time 
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before starting the DCF process. This error would not affect non-transmitting
 

stations as they rely on the PHY layer to report the finishing of the packet re­

ception. This potential bug practically reduces the total number of saturated 

stations in the network as the stations that were previously transmitting may 

have its backoff counter desynchronised from the rest of the network. Therefore 

the old CMU model is used to construct the simulation instead. As an aside, this 

bug also means that the outcomes from the Mac/80211Ext simulation cannot be 

compared to the others as the number of idle slots cannot be determined. 

The simulation constructed using the CMU model involved creating simple 

extensions in TCL script. A simple constant-bit-rate traffic generator is im­

plemented on top of an UDP/IP stack, with the generator sending broadcast 

datagrams. The generator produces packets faster than the station could trans­

mit, creating a transmit queue that is always full (hence a saturated station). 

In addition, a flooding message passing agent is also attached to each station 

to ensure saturation. Each scenario is run 10 times using different seeds for the 

pseudo-random number generator. An area of 10 m × 10 m is simulated, with 

all stations positioned on the same spot (5 m, 5 m, 0 m), ensuring that all sta­

tions are within range of each other and the propagation time is zero. One extra 

observing (non-transmitting) station is placed to collect channel statistics. Each 

simulation is run for 60 simulated seconds. 

Data from these ns-2 simulations are harvested from the log files generated 

by the simulator. Only the entries from the observing station corresponding to 

packet reception and collision are processed. A collision event generates one entry 

in the log for each packet involved — one entry at the conclusion of the first packet 

involved in the collision, and one entry at the beginning of other transmissions 

in the collision. Since there are no hidden terminals in this simulation, collision 

occurs only if stations select the same backoff slot for transmission. Because all 

transmissions are of the same duration, the packet collision entries in the log 

mark the beginning and the end of a transmission. The packet reception entry 
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Table 8.2: Simulation parameters — Ns-2
 
Parameter Value 

Channel type 
Physical Layer 

Propagation model 
Antenna type 

Channel/WirelessChannel 
Phy/WirelessPhy 
Propagation/TwoRayGround 
Antenna/OmniAntenna 

MAC type 
Interface Queue type 

Interface Queue length 
Maximum contention window 

Mac/802 11 basicRate 
Mac/802 11 dataRate 

Mac/802 11 
Queue/DropTail/PriQueue 
50 
[3, 7, 15, 31, 63, 127, 255] 
3 Mb 
3 Mb 

Packet size 
Traffic generator period 

Lan80211.numHosts 

200 
0.0005 s 
up to 450 

is recorded when the packet had been completely received (end of transmission). 

Table 8.2 details the simulation parameters. 

Using the log files, statistics on the time difference between the end of a trans­

mission and the beginning of another (either explicitly indicated by a collision 

entry or implicitly by subtracting the frame duration from the packet reception 

entry) are collected. The number of interframe idle slots is calculated by first 

subtracting DIFS from the times recorded and then dividing the difference by 

slot time. If the remaining time after subtracting DIFS is not an integer multiple 

of slot time, the EIFS (instead of DIFS) is subtracted from the time recorded 

before the division. The validity of subtracting EIFS is confirmed by the fact 

that the interframe period that is not an integer multiple of slot time happens 

only after a collision entry where the IEEE 802.11 standards specify EIFS to be 

used. 

8.2.4 Ns-3.9 WiFi model 

The third simulator investigated is the ns-3 simulator. Ns-3 is a newer version 

of the network simulator, designed to replace ns-2. It comes with one standard im­

plementation of the IEEE 802.11 communication stack. The IEEE 802.11 implementation 

in ns-3 is redesigned from ns-2 with the internal mechanics simplified. The sim­
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Table 8.3: Simulation Configurations — Ns-3.9
 
Parameter Value 

WiFi PHY model ns3::YansWifiPhy 
Mobility model ns3::ConstantPositionMobilityModel 

stations’ positions (0, 0, 0) 
Channel model ns3::YansWifiChannel 

Propagation loss model ns3::RangePropagationLossModel (unit disc) 
Unit disc radius 9 × 109 

Propagation delay model ns3::ConstantSpeedPropagationDelayModel 
WiFi MAC model 

WiFi protocol 
EIFS - DIFS 

AIFSN 
Maximum contention window 

WiFi rate adaptation 

ns3::NqosWifiMac 
WIFI PHY STANDARD 80211a 
0 s 
2 
[3, 7, 15, 31, 63, 127, 255] 
ns3::ConstantRateWifiManager 

Network socket model ns3::PacketSocket 
Application model ns3::OnOffApplication 

Application On/Off Time 1 s/0 s (i.e. Always on) 
Application data rate 60 Mbps 

Packet size 800 bytes 
Number of IFS observed 50,000 

ulation is known to produce valid results when simulating unicast packets [177], 

but there is a known (and long-standing) bug [186] that affects broadcast mode 

transmissions. This investigation looked at ns-3.9’s behaviour, including the ef­

fects of the bug. Since the internal mechanics of the IEEE 802.11 implementation 

had not change since at least ns-3.4 (and possible since ns-3.0.4) until the bug 

was partially fixed in ns-3.16, the observations here is applicable to all releases 

between ns-3.4 and ns-3.15. 

In the ns-3 simulations, the required number of saturated stations are created 

as specified. An extra observer station is added to the simulation in order to de­

termine packet reception ratio. In these simulations, all stations are positioned in 

the same location (0, 0, 0) using ListPositionAllocator. All stations are set to 

be static (non-moving). The saturated stations are installed with PacketSockets, 

with an OnOffApplication attached. The application is configured to be always 

on, generating constant bit rate traffic at 60 MBps, divided into 800-byte pack­

ets. This configuration is well above the maximum throughput supported by the 
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underlying layers, thereby creating a saturated station. Furthermore, all stations 

are configured such that the timing for EIFS is the same as DIFS. The simu­

lated channel is a 20 MHz-wide channel at 5.9 GHz, with unit disc propagation 

loss (RangePropagationLossModel) and a maximum range of 9 × 109 metres. 

This is sufficient to ensure all stations are within range of each other. Data rate 

adaptation on the stations are switched off by setting the data rate management 

function to ConstantRateWifiManager. 

Table 8.3 shows the configurations for these simulations. Parameters not listed 

uses their default values. 

8.3 Results 

Similar to Chapter 5, statistics collected from these simulators are the overall 

interframe idle slots counts, packet error ratio, and the distribution of observed 

idle slot counts. Figure 8.1 plots the statistics observed from the simulations 

(columns represents the predicted values from theoretical model). 

Comparing the lines in Figure 8.1 visually, one can see that all simulators 

show similar trends as the number of saturated stations increases. Of the four 

simulators tested, the simple DCF model shows the closest match with the theory. 

This is due to the fact that the assumptions used in the model matched the 

assumptions used in the theoretical model closely. Once “real world” effects are 

added into the simulation (as in the other simulators), the results start to deviate. 

OMNet++ simulations produce result curves that do not decay as fast as 

the model predicted, even when all stations are positioned in the same location. 

This higher spread in idle slots contributed to the lower packet error rate than 

predicted. 

The result curves from ns-2 simulations match the idle slot predictions closer 

than the OMNet++ simulations. However, the ns-2 CMU model produces much 

higher packet error probability than predicted. 

Of the three complex network simulators tested, ns-3 produces results that 
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Figure 8.1: Overall network statistics for a contention window size of 64 as a 
function of the total number of concurrent saturated stations, in the absence 
of hidden terminals as observed from simulations of OMNet++ INET model, 
ns-2 CMU model, ns-3 WiFi Model, and the simple DCF model, compared to 
theoretical predictions. 
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Table 8.4: Goodness-of-fit for overall statistics across different simulators, 
CW=63, comparing to theoretical predictions 

DCF ns-2 ns-3 OMNet++ 

Idle Slots 
R2 

RMSE 
0.99993 
0.00310 

0.93623 
1.48866 

0.98290 
0.05886 

0.86798 
2.48288 

Packet Error 
R2 

RMSE 
0.99986 
0.00020 

0.80895 
0.13124 

0.99934 
0.00036 

0.65578 
0.11247 

match the predicted values most closely, notwithstanding the known bug in the 

simulator. The simulator produces idle slot observations that are fairly consis­

tently one higher than expected, while the packet error rate is almost as expected. 

Table 8.4 calculates goodness-of-fit values for these simulators, quantifying 

how well the theoretical model fits the output from these simulators. As expected, 

the theoretical model shows high correlation with the simple DCF model output 

in terms of both mean idle slots and error probabilities. The model also fits 

ns-3 output fairly well, registering both a high R2 value and low RMS error. 

Both OMNet++ and ns-2 output deviates from the predicted values, and do 

not resemble each other, demonstrating the high variability amongst the different 

network simulators. Figure 8.2 further investigates the reason for the discrepancy, 

plotting the observed distribution of idle slots (dashed lines) and compares them 

to theoretical predictions (solid line). 

Looking at the distribution of observed idle slots, the high variability amongst 

network simulators are obvious. Notably, both ns-2 and ns-3 generate a much 

lower than expected probability for immediate transmission (i.e. no backoff after 

DIFS is rare), whereas OMNet++ produces a distribution that has a much higher 

spread. For both ns-2 and ns-3, other than their lower than expected probabil­

ity for immediate transmission, their plots match the predictions fairly closely. 

Figures 8.2d and 8.2e suggest that ns-3 shifts the plot to the right by one slot. 

This behaviour can be explained by the known bug [186]. The causes of ns-2 

and OMNet++’s discrepancies are unknown. Table 8.5 shows the goodness-of-fit 

values for these plots. It should however be noted that both the R2 values and 

RMS errors for ns-2 and ns-3 had been heavily skewed by the anomaly at low slot 
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Figure 8.2: Distribution of idle slots between transmissions for a contention win­
dow size of 64, as observed from simulations of OMNet++ INET model, ns-2 
CMU model, ns-3 WiFi Model and the simple DCF model, compared to the­
oretical values from Chapter 5. All simulation results are aggregated over 10 
executions of the simulation using different random seeds. Error bars denote two 
standard deviations from the mean of the values observed, and most are too small 
to be visible. Error bars omitted for (a) for sake of clarity — values observed 
ranges between 0.014 and 0.018 for both ns-3.9 and ns-2 models, and between 
0.015 and 0.016 for the simple DCF model. 
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Table 8.5: Goodness-of-fit for idle slot distribution across different simulators, 
CW=63, comparing to theoretical predictions 

DCF ns-2 ns-3 OMNet++ 

1 
R2 

RMSE 
1.4 × 10−11 

6.7 × 10−6 
0 

0.00081 
0 

7.9 × 10−5 
0 

0.00018 

5 
R2 

RMSE 
0.99984 

1.5 × 10−5 
0.62176 
0.01867 

0.65292 
0.00097 

0.64537 
0.01273 

15 
R2 

RMSE 
0.99989 

2.4 × 10−5 
< 0 

0.07956 
0.10529 
0.00627 

0.63557 
0.03263 

50 
R2 

RMSE 
0.99994 

3.0 × 10−5 
< 0 

0.29223 
< 0 

0.03943 
0.75065 
0.08048 

150 
R2 

RMSE 
1.00000 

4.7 × 10−6 
< 0 

0.58857 
< 0 

0.11009 
0.97805 
0.05638 

counts. 

It is also observed that the OMNet++ INET module does not trigger EIFS 

backoff after a packet collision (making the implementation standards non-compli­

ant, however this observation is irrelevant to this study). 

8.4 Discussion 

Based on the results obtained, it is obvious that the simulators’ broadcast be­

haviours all deviate from the specifications in the standards. Even though it is 

acknowledged that the additional “real world effect” such as fading, packet cap­

ture, etc. can explain some of the deviations observed, the procedures adopted in 

Section 8.3 should have minimised these effects. 

In terms of the results from OMNet++ simulation, the plots obtained form a 

reasonable curve that is never-the-less different to the expected behaviour. The 

extra spread in the idle slot distribution (lower maximum probabilities and longer 

tail), explains the higher than expected mean idle slot count and lower error 

probability. 

On the other hand, the ns-2 mean idle slot count curve matches the expected 

values closer than OMNet++ at low load, but subsequently deviates from the ex­

pected values further than OMNet++. This behaviour can be explained by the 

214
 



idle slots distribution plots observed — ns-2 results, for some unknown reasons,
 

shifted the peak from 0 idle slots (which is expected), to 2 slots, with the remain­

der of the distribution quickly fall back towards the expected values. This heavy 

concentration of distribution at 2 slots also partially explains the poor reception 

ratio — higher contention at slot 2. However, the observed error probability is 

still too high for this to be the sole cause. 

The third simulator, ns-3 produces curves that are most consistent with the 

expected behaviour. The anomaly observed in the output is consistent with 

the long-standing bug [186]. This bug has the effect of rescheduling almost all 

broadcast packets that are scheduled to be transmitted at the slot after DIFS 

(i.e. those frames in the transmit queue with a backoff counter of 0). Effectively, 

this bug manifests in the idle slot behaviour such that it is rare for packets 

to be transmitted with no backoff, and the backoff counter is mostly uniformly 

distributed between [1, aCWmin]. Other than this rescheduling (which happens 

without delay) ns-3 exhibits the correct behaviour. This off-by-one behaviour 

is observable in Figure 8.2, and explains the slightly higher than normal packet 

error ratio (slightly higher channel contention due to the unavailability of slot 0), 

and the slightly higher mean idle slot count (basically off by one). 

Besides the behaviour of the simulators, the ease of customising and discov­

ering the simulation parameters is also important. The ease of discovering and 

changing these parameters is vital to these discussions as the discrepancies may 

have been caused by misconfiguration. Simulators whose parameters are difficult 

to find and/or change would lead to easier misconfiguration. In the process of 

conducting this study, ns-2 appeared to be the most difficult to configure, with 

some settings needing to be set in multiple parameters. However settings are not 

explicitly stated in available easily accessible documentation, therefore it is easy 

to change one setting but not changing another. Definitive listing of parameters 

and associated documentation for the ns-2 CMU model is not easy to find, even 

though there are many tutorials on the internet. 

215
 



On the other hand, both OMNet++ and ns-3 are fairly easy to discover pa­

rameters and are relatively easy to configure. OMNet++ provides a graphical 

(tabular) listing of all relevant parameters, and are easy to modify. However, 

values of some of the parameters are not straightforward to retreieve during the 

simulation. The newest simulator, ns-3, does not provide a graphical editor for 

configurations. However, a comprehensive listing of the parameters is readily 

available from the documentations (assuming the model authors follows program­

ming guidelines). Setting and retrieving model parameters programmatically in 

runtime as well as in the form of configuration files are straightforward once the 

verbose syntax to do so is understood. (The API documentation provides a listing 

of all possible variations of the syntax.) On the flip side, ns-3 misconfiguration 

are often not easy to discover during runtime and debugging is often difficult as 

there are many ways to modify the parameters, with each parameter also have 

many aliases. 

8.5 Further characterisation of ns-3 behaviour 

In order to gain better understand of the behaviour of the ns-3 WiFi model, to 

assess the impact of the immediate access bug [186] and to ascertain the validity 

of broadcast mode WiFi simulations in ns-3, further measurements are made us­

ing ns-3. A more in-depth understanding of this bug allows a set of workarounds 

to be derived, which not only allows retrospective analysis of previous results, 

but also to guide future use of this simulator. In short, the ns-3 bug bogusly 

generates a “collision event” during broadcast mode operations (where no end-

of-transmission event is implemented) when a packet is queued for transmission 

with no contention backoff while another concurrent broadcast mode transmis­

sion has just completed (in simulation-time, but the end-of-transmission status is 

not yet been processed). The end result in a single saturated station scenario is 

that the idle slots count observed is almost uniformly distributed over the range 

[1, aCWmin] instead of [0, aCWmin] as specified in the standards. Bug investiga­
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tion results reported in the bug tracker [186] suggest that the packets bogusly
 

collided are not dropped, but are resubmitted at the head of the transmit queue, 

resulting in slightly lower throughput due to the extra backoff, but with no extra 

packet loss. 

Even though the ns-3 community had investigated the bug, the main empha­

sis of their investigation was to reduce the number of bogusly reported “virtual 

collisions” on individual stations only. The effects of this bug on how stations 

interact was not investigated. Conceptually, the bug could manifest in one of the 

following ways — (i) observations follows the distribution predicted if all stations 

individually chooses a backoff counter in the range [1, aCWmin] (i.e. bug affects 

stations individually and does not affect how stations interacts); or (ii) observa­

tions follows the distribution predicted if all stations chooses a counter value in 

the range [0, aCWmin − 1], then right-shift by one (i.e. bug affects station inter­

actions globally, and the individual station behaviour observed is a consequence 

of the global interaction misbehaviour). 

For this investigation, the simple DCF model (and a modified version) is used 

as a proxy for the “correct behaviour” to be compare to the ns-3 simulation. 

The simple DCF code is used in preference to the theoretical model because 

the theoretical model is computationally much more expensive than the simple 

DCF model, and the previous section had shown that the model is very accurate. 

The simple DCF models (and modifications) tested are — (i) modified DCF 

model with same size contention window such that stations never choose slot 0 

(corresponds to behaviour (i)), (ii) normal DCF model with contention window 

size one smaller than simulation parameters then manually right-shift the result 

(corresponds to behaviour (ii)), and (iii) normal DCF model with no adjustments 

(the standard behaviour). 
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8.5.1 Results 

The idle slot count and packet error probabilities are collected from the ns-3 

simulations using a range of contention window sizes, and then compared to the 

expected results based on the candidate models. 

Figure 8.3 shows that the model where all stations are affected globally (all 

stations adopts a contention window of one smaller than specified, and right-

shifts the chosen slot by one) most closely matches the observations. This model 

accurately predicts the expected average idle slot counts, and only slightly over­

estimates the error probability at higher channel load. Figure 8.4 further inves­

tigates the expected behaviour based on this model in terms of the distribution 

of observed idle slots. 

The observed idle slot distributions suggest that the right-shift model can 

accurately predict the observed distribution, even though it does underestimate 

slightly the probability of immediate DCF transmissions. As the channel load 

increases, the probability of observing immediate DCF transmission in the faulty 

implementation decreases (i.e. follows the right-shift model more closely), im­

proving the accuracy of the adjusted model. 

8.5.2 Discussion and potential workaround 

These results show that even though a known bug exists in ns-3’s implementation 

of the IEEE 802.11 broadcast behaviour, the simulation model is still useful for 

broadcast communication research like VANETs. When the contention window 

used is large enough, the effect of the bug in terms of the overall statistics di­

minishes as expected. The off-by-one error when the contention window is large 

enough would only increase the overall network contention slightly. Since the 

error rate experienced and the extra delay of one slot is almost negligible, the 

overall throughput predicted by the model should be accurate enough for most 

research. 

In terms of the algorithms that rely on MAC-layer statistics such as the ob­
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Figure 8.3: Overall statistics from ns-3 simulations. Comparing various theoreti­
cal models (estimated from equivalent simple DCF simulations) to ns-3 observa­
tions. All simulation results are aggregated over 10 executions of the simulation 
using different random seeds. Error bars represent two standard deviations from 
the mean values. 
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Figure 8.4: Observed and predicted distribution of idle slots between transmis­
sions for a contention window size of 15. Theoretical predictions computed using 
the simulation of the simplified DCF model of contention window size 15, with 
results right-shifted by one. All simulation results are aggregated over 10 exe­
cutions of the simulation using different random seeds. Error bars represent two 
standard deviations from the mean. 
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servation of idle slots (e.g. Idle Sense [141], both Bianchi and Tinnirello’s [136] 

and the idle slot based channel contention sensing methods), implementations of 

these algorithms need to be slightly modified to account for the bug. Alterations 

to the existing methods would be very minor because the bug only manifests 

as a right-shifted idle slot distribution of a slightly smaller contention window 

size. As a workaround for these algorithms relying on MAC-layer statistics, the 

algorithms and/or implementations should be changed to: 

1. Reduce the contention window size by 1 in the theoretical analysis (or in­

crease the simulated contention window size by 1). 

2. Increase DIFS by 1 slot time in the analysis (or subtract 1 slot time from 

the interframe idle period before interpreting the results). 

For example, to simulate the operation of Idle Sense for aCWmin = 15, one 

would increase the “optimum idle slot count” by one in the algorithm (work­

around 1), and run set aCWmin to 16 in the simulation (workaround 2). Similarly, 

for Bianchi and Tinnirello’s sensing algorithm to work almost as expected, one 

would sense the channel busy status at slot 1 (i.e. skip one slot time after DIFS 

before continuing with the algorithm), which can be achieved by the sensing algo­

rithm using an AIFSN of 3 (instead of 2, which is DIFS). Finally, the contention 

detection work in Chapter 5 would also operate correctly (and thus use ns-3 to 

test the algorithm) if the scheme is configured for a contention window size of 

one less than specified for the simulation, and uses an AIFSN of 3 instead of 2. 

8.6 A note on ns-3.16 

The patch that supposedly fixed the “Immediate DCF Access” issue had been 

incorporated into the ns-3.16 release. The patch implemented explicit end-of­

transmission event for broadcast transmissions, which should resolve the problem 

regarding the bogus “virtual collisions”. To investigate the correctness of the 
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Figure 8.5: Distribution of interframe idle slots for a contention window size of 
64, as observed from simulations of ns-3.16 and ns-3.9 WiFi Models, compared 
to theoretical values from Chapter 5. All simulation results are aggregated over 
10 executions of the simulation using different random seeds. Error bars denote 
two standard deviations from the mean. 
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new simulation model and the applicability of the workarounds, test cases used
 

in ns-3.9 are ported into ns-3.16 and then run. 

Results from the tests conducted show that ns-3.16 still suffers from problems 

with its DCF behaviour, and the new behaviour is different in nature to the one 

in ns-3.9. Figure 8.5a shows that when only a single saturated station is on the 

network, the station behaves as expected, with interframe idle slot counts uni­

formly distributed across the contention window. However, when the number of 

saturated stations is increased, the behaviour differs from the theoretical expec­

tations. Figure 8.5 plots the distribution of idle slot counts for varying numbers 

of saturated stations. It shows that the observed distribution sits somewhere 

between those observed from ns-3.9 and their respective theoretical predictions. 

The probability that slot 0 is used is non-zero in ns-3.16, increases to a maximum 

at slot 1 with the maximum value between the theoretical expectation and the 

observed value in ns-3.9, and then subsequently decays as expected. Quick in­

spection of these results suggests that ns-3.16 may have corrected the individual 

station behaviour, but the interaction between stations remains incorrect. 

8.7 Conclusion 

In this chapter, the IEEE 802.11 broadcast behaviour is investigated in three com­

monly used network simulator packages (ns-2, ns-3 and OMNet++). All three 

simulator packages exhibit behaviours that deviate from the IEEE 802.11 specifi­

cations, and each deviates in a different way. OMNet++ INET model produces a 

wider spread of observed idle slots than expected from theory, and subsequently 

results in lower packet error probability than expected for a given channel load. 

Ns-2 CMU model right-shifts idle slot distribution by two slots, but no corre­

sponding bug report is found at the time of writing. Ns-2 also generates a higher­

than-expected packet error rate, even if the unusual idle slot distribution had 

been taken into account. Ns-3 contains a known bug that shifts the idle slot 
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distribution to the right by one slot, but otherwise produces a result that closely
 

matches the theoretical expectations. 

The abnormal behaviour of ns-3 was characterised further, and one can see 

that the results from ns-3 broadcast mode simulations are plausible notwith­

standing the known bug in the system. For simulations that investigate only 

the large-scale effects, the simulation results are fairly accurate if a large enough 

contention window (or low enough channel contention) is used. For simulations 

requiring MAC-layer statistics, a two-part workaround that allows ns-3 results be 

correctly interpreted was presented. 

Based on the simulation outcomes obtained for ns-3.16, it is advisable that, un­

til the causes and consequences of the new misbehaviour are understood, this ver­

sion (and ns-3.17, which contains no changes to the IEEE 802.11 implementation) 

not be used for simulations that rely heavily on MAC layer statistics. For sim­

ulations where MAC layer statistics is not critical, any version could be used as 

long as the contention window is set large enough. 
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Chapter 9 

Conclusion and Future Work 

This thesis presented works aimed to improve packet reception for broadcast 

messages in vehicular ad hoc networks. It first considered the inherent channel 

congestion problem in VANET multi-hop geocasts by presenting an efficient coop­

erative retransmission algorithm. The algorithm takes into account the amount 

of redundant or irrelevant packets received by vehicles both within and outside 

the intended target area, in addition to the amount of additional coverage the 

relay offers. Using computer simulations that also take into account attenua­

tion caused by obstructions along the line-of-sight between vehicles, it is shown 

that interference-aware algorithm is effective in improving reception of multi-hop 

geocasts. Results show that the interference-aware geocast algorithm can outper­

form other geocast algorithms while exposes a parameter can be used by another 

algorithm to further control the amount of packet redundancy the algorithm gen­

erates. The algorithm’s efficiency in channel use is further demonstrated through 

statistical analysis. 

It was argued that the optimal choice of the retransmission algorithm parame­

ter is a function of the local vehicle density, specifically, the number of contending 

stations within range of the potential relay. In order to ascertain a measure of 

local density, this thesis presented a passive method to estimate the number of 

saturated stations on the network. This technique involves constantly listen­

ing to the channel, observing the number of idle slots between transmissions, 
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and subsequently applying Bayesian inference to estimate the number of con­

tending stations on the network. A Markov model of the IEEE 802.11 DCF for 

broadcasts was presented, and by solving the model, the theoretical relationship 

between channel contention and inter-frame idle slot counts can be determined. 

This technique was compared to existing work, showing that the idle slot-based 

technique not only converges to steady state quicker, but also produces a smaller 

error in its estimate. 

The effects of unsaturated stations on idle slot observations and collision 

probabilities are then explored. This thesis introduces a measure called “Equiva­

lent Saturated Node” (ESN) to describe both a station’s saturation level and the 

contention of a network. Through simulations, it was demonstrated that while 

the saturation level of a station does not form a linear relationship with either 

the idle slot counts or collision probabilities, the channel contention estimator is 

still capable of estimating the total channel saturation (in ESN) with only slight 

modification. It can be seen that the idle slot-based technique is more resilient 

to errors caused by unsaturated stations than the existing method. Statistical 

analysis conducted shows that the ESN measure is highly accurate in predicting 

packet non-reception. 

Furthermore, an extended DCF model to account for unsaturated stations 

was presented in attempt to improve the performance of the estimator. However, 

this extended DCF model is found to be unviable, both due to inaccuracies in its 

predictions and extremely high complexity in solving the system of equations. 

Based on the interference-aware geocast algorithm and the idle slot-based 

channel estimator, this thesis presented and evaluated a geocast system that can 

automatically adapt to channel contention. Channel estimates are fed into a 

load adaptation algorithm, which adjusts the retransmission parameter of the 

interference-aware geocast algorithm. Computer simulations show that this new, 

load-reactive geocast system is able to efficiently adapt to channel contention, 

and is able to self-correct suboptimal retransmission parameters calculated by 
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the load adaptation algorithm.
 

Finally, the discrepancies amongst the well known network simulators were 

outlined, with the impact of the bug in the ns-3 simulator evaluated. The 

simulators ns-2, ns-3 and OMNet++ all showed non-standard behaviour for 

IEEE 802.11 broadcast mode transmissions, with the error potentially skewing 

the outcomes of simulations. The non-standard behaviour in ns-3 is attributed 

to a longstanding reported bug. By comparing simulation data to theoretical 

predictions, it is demonstrated that this bug has a limited effect on the higher 

communication layers (above MAC layer). For simulations that rely on MAC 

layer statistics, a workaround that can be used to account for the misbehaviour 

was presented. This thesis also showed that similar misbehaviours still exist in 

ns-3.16 despite a code patch having been released that is supposed to have cor­

rected the bug. Furthermore, the workaround proposed for the previous versions 

no longer applies to the misbehaviour in the new version. 

9.1 Future work 

The works presented in this thesis is merely a tip of the iceberg in the field of 

VANET communications. Potential extensions to the work in this thesis may 

include: 

•	 Investigate piggybacking/gossiping variants of retransmission pro­

tocol. The retransmission metric presented in this thesis forms a useful 

metric to prioritise packets for retransmission. It is highly probable that 

the metric can be used for prioritising packets in the piggybacking proto­

col [125] or in setting the forwarding probabilities of gossiping protocols. 

•	 Investigate non-circular target areas. The concept of taking into ac­

count areas being interfered with can be applied to non-circular areas such 

as rectangles in the case of road segments. When applied to non-circular 

areas, the effectiveness and behaviour of the algorithm may change. In ad­
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dition the choice of parameter X will likely need to change. (Consider a
 

long and narrow rectangle and a large circular transmission disc.) It may 

be possible that the parameter X may be insufficient for determining the 

desirability of a relay. 

•	 Derive analytical results for the geocast algorithms. This thesis 

presented simulation results showing benefit of both the interference-aware 

algorithm and the adaptive geocast system. Analysis of these works can 

strengthen the claims in this thesis. Furthermore, graph-theoretic approx­

imations of these algorithms that may arise from such investigations are 

likely to improve the scalability of the evaluation of similar algorithms. 

•	 Test the performance of the algorithms using vehicle layouts de­

rived from realistic traffic simulators. The works in this thesis investi­

gated the performance of the algorithms using vehicle layouts that may not 

be very realistic due to the lack of software coupling ns-3 to realistic traffic 

simulators at that time. More realistic vehicle scenarios will allow stronger 

claims be made on the “real world” performance of these algorithms. 

•	 Alternative representation/analysis of unsaturated traffic. This 

thesis represented unsaturated stations in a way that is difficult to apply 

practically. It would be useful to investigate the applicability of other exist­

ing (or develop alternative) methods of parameterising unsaturated stations 

in order to gain more insight into the DCF broadcast behaviour. This may 

also allow the load estimator to be more accurate at very low contention lev­

els when the likelihood of extremely long inter-frame spaces may be present. 

•	 Investigate the validity of broadcast mode simulation in the most 

up-to-date versions of the simulators. Despite the ns-3 simulator hav­

ing been patched, misbehaviour in broadcast-mode transmissions is still 

present and the cause unknown. Other simulators are also continuously 

being improved. Given the importance of these simulators, a more in depth 
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understanding of these misbehaviours is needed both to correct the error
 

and to accurately interpret simulation outcomes. 

•	 Investigate the cause of the self-correction behaviour in the load-

reactive geocast algorithm. The emergent behaviour observed had not 

yet been fully explained. An enhanced understanding of the cause can lead 

to this behaviour being exploited to improve the load adaptation algorithm. 

•	 Feasibility of multi-hop beacon forwarding. Notwithstanding the 

methods presented in this thesis, it was observed that multi-hop beacon 

forwarding without explicit coordination (e.g. routing tree) is very expen­

sive. It would be important to investigate the feasibility of such geocasting 

in the context of VANETs — Is it affordable? How would packet losses in 

single-hop beacons impact on safety applications? 
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