54,432 research outputs found

    Reticular Chemistry in All Dimensions.

    Get PDF

    Development of covalent triazine frameworks as heterogeneous catalytic supports

    Get PDF
    Covalent triazine frameworks (CTFs) are established as an emerging class of porous organic polymers with remarkable features such as large surface area and permanent porosity, high thermal and chemical stability, and convenient functionalization that promotes great potential in heterogeneous catalysis. In this article, we systematically present the structural design of CTFs as a versatile scaffold to develop heterogeneous catalysts for a variety of chemical reactions. We mainly focus on the functionalization of CTFs, including their use for incorporating and stabilization of nanoparticles and immobilization of molecular complexes onto the frameworks

    Two-dimensional amine and hydroxy functionalized fused aromatic covalent organic framework

    Get PDF
    Ordered two-dimensional covalent organic frameworks (COFs) have generally been synthesized using reversible reactions. It has been difficult to synthesize a similar degree of ordered COFs using irreversible reactions. Developing COFs with a fused aromatic ring system via an irreversible reaction is highly desirable but has remained a significant challenge. Here we demonstrate a COF that can be synthesized from organic building blocks via irreversible condensation (aromatization). The as-synthesized robust fused aromatic COF (F-COF) exhibits high crystallinity. Its lattice structure is characterized by scanning tunneling microscopy and X-ray diffraction pattern. Because of its fused aromatic ring system, the F-COF structure possesses high physiochemical stability, due to the absence of hydrolysable weak covalent bonds

    Adsorption Mechanism and Uptake of Methane in Covalent Organic Frameworks: Theory and Experiment

    Get PDF
    We determined the methane (CH_4) uptake (at 298 K and 1 to 100 bar pressure) for a variety of covalent organic frameworks (COFs), including both two-dimensional (COF-1, COF-5, COF-6, COF-8, and COF-10) and three-dimensional (COF-102, COF-103, COF-105, and COF-108) systems. For all COFs, the CH_4 uptake was predicted from grand canonical Monte Carlo (GCMC) simulations based on force fields (FF) developed to fit accurate quantum mechanics (QM) [second order Møller−Plesset (MP2) perturbation theory using doubly polarized quadruple-ζ (QZVPP) basis sets]. This FF was validated by comparison with the equation of state for CH_4 and by comparison with the experimental uptake isotherms at 298 K (reported here for COF-5 and COF-8), which agrees well (within 2% for 1−100 bar) with the GCMC simulations. From our simulations we have been able to observe, for the first time, multilayer formation coexisting with a pore filling mechanism. The best COF in terms of total volume of CH_4 per unit volume COF absorbent is COF-1, which can store 195 v/v at 298 K and 30 bar, exceeding the U.S. Department of Energy target for CH_4 storage of 180 v/v at 298 K and 35 bar. The best COFs on a delivery amount basis (volume adsorbed from 5 to 100 bar) are COF-102 and COF-103 with values of 230 and 234 v(STP: 298 K, 1.01 bar)/v, respectively, making these promising materials for practical methane storage

    Vinylene-Linked Covalent Organic Frameworks by Base-Catalyzed Aldol Condensation

    Get PDF
    Two 2D covalent organic frameworks (COFs) linked by vinylene (−CH=CH−) groups (V‐COF‐1 and V‐COF‐2) are synthesized by exploiting the electron deficient nature of the aromatic s‐triazine unit of C3‐symmetric 2,4,6‐trimethyl‐s‐triazine (TMT). The acidic terminal methyl hydrogens of TMT can easily be abstracted by a base, resulting in a stabilized carbanion, which further undergoes aldol condensation with multitopic aryl aldehydes to be reticulated into extended crystalline frameworks (V‐COFs). Both V‐COF‐1 (with terepthalaldehyde (TA)) and V‐COF‐2 (with 1,3,5‐tris(p‐formylphenyl)benzene (TFPB)) are polycrystalline and exhibit permanent porosity and BET surface areas of 1341 m2 g−1 and 627 m2 g−1, respectively. Owing to the close proximity (3.52 Å) of the pre‐organized vinylene linkages within adjacent 2D layers stacked in eclipsed fashion, [2+2] photo‐cycloadditon in V‐COF‐1 formed covalent crosslinks between the COF layers.TU Berlin, Open-Access-Mittel - 2019DFG, 390540038, EXC 2008: UniSysCa
    corecore