88 research outputs found

    Meta-Heuristics for the Multiple Trip Vehicle Routing Problem with Backhauls

    Get PDF
    With the growing and more accessible computational power, the demand for robust and sophisticated computerised optimisation is increasing for logistical problems. By making good use of computational technologies, the research in this thesis concentrates on efficient fleet management by studying a class of vehicle routing problems and developing efficient solution algorithms. The literature review in this thesis looks at VRPs from various development angles. The search reveals that from the problem modelling side clear efforts are made to bring the classical VRP models closer to reality by developing various variants. However, apart from the real VRP applications (termed as 'rich' VRPs), it is also noticeable that these classical VRP based variants address merely one or two additional characteristics from the real routing problem issues, concentrating on either operational (fleet management) or tactical (fleet acquisition) aspects. This thesis certainly hopes to add to one of those good efforts which have helped in bringing the VRPs closer to reality through addressing both the operational as well as the tactical aspects. On the solution methodologies development side, the proposed research noted some considerable and impressive developments. Although, it is well established that the VRPs belong to the NP-hard combinatorial class of problems, there are considerable efforts on the development of exact methods. However the literature is full of a variety of heuristic methodologies including the classical and the most modern hybrid approaches. Among the hybrid approaches, the most recent one noted is mat-heuristics that combine heuristics and mathematical programming techniques to solve combinatorial optimisation problems. The mat-heuristics approaches appear to be comparatively in its infant age at this point in time. However this is an exciting area of research which seeks more attention in the literature. Hence, a good part of this research is devoted to the development of a hybrid approach that combines heuristics and mathematical programming techniques. When reviewing the specific literature on the VRP problems focused in this thesis, the vehicle routing problem with backhauls (VRPB) and the multiple trip vehicle routing problem (MT-VRP), there is not sufficient development on the problem modelling side in terms of bringing these two problems closer to the reality. Hence, to fill the gap this thesis introduces and investigates a new variant, the multiple trip vehicle routing problem with backhauls (MT-VRPB) that combines the above two variants of the VRP. The problem is first described thoroughly and a new ILP (Integer Linear Programming) mathematical formulation of the MT-VRPB along with its possible variations is presented. The MT-VRPB is then solved optimally by using CPLEX along with providing an illustrative example showing the validation of the mathematical formulation. As part of the contribution, a large set of MT-VRPB data instances is created which is made available for future benchmarking. The CPLEX implementation produced optimal solutions for a good number of small and medium size data instances of the MT-VRPB and generated lower bounds for all instances. The CPLEX success may be considered as modest, but the produced results proved very important for the validation of the heuristic results produced in the thesis. To solve the larger instances of the MT-VRPB, a two level VNS algorithm called 'Two-Level VNS' is developed. It was noticed from the literature that the choice of using VNS for the VRPs has increased in recent literature due to its simplicity and speed. However our initial experiments with the classical VNS indicated that the algorithm is more inclined towards the intensification side. Hence, the Two-Level VNS is designed to obtain a maximum balance of the diversification and the intensification during the search process. It is achieved by incorporating a sub-set of neighbourhood structures and a sus-set of local search refinement routines and hence, a full set of neighbourhood structures and a full set of local search refinement routines at two levels of the algorithm respectively. The algorithm found very encouraging results when compared with the solutions found by CPLEX. These findings in this thesis demonstrate the power of VNS yet again in terms of its speed, simplicity and efficiency. To investigate this new variant further, we developed an algorithm belonging to the new class of the hybrid methodologies, i.e., mat-heuristics. A hybrid collaborative sequential mat-heuristic approach called the CSMH to solve the MT-VRPB is developed. The exact method approach produced in Chapter 4 is then hybridised with the Two-Level VNS algorithm developed in Chapter 5. The overall performance of the CSMH remained very encouraging in terms of the solution quality and the time taken on average compared with the CPLEX and the Two-Level VNS meta-heuristic. To demonstrate the power and effectiveness of our methodologies, we tested the designed algorithms on the two special versions of the VRP (i.e., VRPB and MT-VRP) to assess whether they are efficient and dynamic enough to solve a range of VRP variants. Hence the Two-Level VNS and the CSMH algorithms developed to solve the MT-VRPB are adapted accordingly and implemented to solve the two above variants separately. The algorithms produced very competitive results for the benchmark data sets when compared to the best known solutions from the literature. The successful implementations of these algorithms on the three VRP models with only minor amendments prove their generalizability and their robustness. The results in this research show that significant cost savings could be obtained by choosing the right fleet size and better vehicle utilisations with multiple trips and backhauling. Hence, the research proved the justification of studying this interesting combination. Moreover, the problem modelling, efficient algorithm design and implementation, and the research results reveal some vital information and implications from the managerial point of view in terms of making the tactical (fleet acquisition) and the operational (fleet management) decisions in a more informative manner

    Heuristics and policies for online pickup and delivery problems

    Get PDF
    Master ThesisIn the last few decades, increased attention has been dedicated to a speci c subclass of Vehicle Routing Problems due to its signi cant importance in several transportation areas such as taxi companies, courier companies, transportation of people, organ transportation, etc. These problems are characterized by their dynamicity as the demands are, in general, unknown in advance and the corresponding locations are paired. This thesis addresses a version of such Dynamic Pickup and Delivery Problems, motivated by a problem arisen in an Australian courier company, which operates in Sydney, Melbourne and Brisbane, where almost every day more than a thousand transportation orders arrive and need to be accommodated. The rm has a eet of almost two hundred vehicles of various types, mostly operating within the city areas. Thus, whenever new orders arrive at the system the dispatchers face a complex decision regarding the allocation of the new customers within the distribution routes (already existing or new) taking into account a complex multi-level objective function. The thesis thus focuses on the process of learning simple dispatch heuristics, and lays the foundations of a recommendation system able to rank such heuristics. We implemented eight of these, observing di erent characteristics of the current eet and orders. It incorporates an arti cial neural network that is trained on two hundred days of past data, and is supervised by schedules produced by an oracle, Indigo, which is a system able to produce suboptimal solutions to problem instances. The system opens the possibility for many dispatch policies to be implemented that are based on this rule ranking, and helps dispatchers to manage the vehicles of the eet. It also provides results for the human resources required each single day and within the di erent periods of the day. We complement the quite promising results obtained with a discussion on future additions and improvements such as channel eet management, tra c consideration, and learning hyper-heuristics to control simple rule sequences.The thesis work was partially supported by the National ICT Australia according to the Visitor Research Agreement contract between NICTA and Martin Damyanov Aleksandro

    Heuristics and policies for online pickup and delivery problems

    Get PDF
    Master ThesisIn the last few decades, increased attention has been dedicated to a speci c subclass of Vehicle Routing Problems due to its signi cant importance in several transportation areas such as taxi companies, courier companies, transportation of people, organ transportation, etc. These problems are characterized by their dynamicity as the demands are, in general, unknown in advance and the corresponding locations are paired. This thesis addresses a version of such Dynamic Pickup and Delivery Problems, motivated by a problem arisen in an Australian courier company, which operates in Sydney, Melbourne and Brisbane, where almost every day more than a thousand transportation orders arrive and need to be accommodated. The rm has a eet of almost two hundred vehicles of various types, mostly operating within the city areas. Thus, whenever new orders arrive at the system the dispatchers face a complex decision regarding the allocation of the new customers within the distribution routes (already existing or new) taking into account a complex multi-level objective function. The thesis thus focuses on the process of learning simple dispatch heuristics, and lays the foundations of a recommendation system able to rank such heuristics. We implemented eight of these, observing di erent characteristics of the current eet and orders. It incorporates an arti cial neural network that is trained on two hundred days of past data, and is supervised by schedules produced by an oracle, Indigo, which is a system able to produce suboptimal solutions to problem instances. The system opens the possibility for many dispatch policies to be implemented that are based on this rule ranking, and helps dispatchers to manage the vehicles of the eet. It also provides results for the human resources required each single day and within the di erent periods of the day. We complement the quite promising results obtained with a discussion on future additions and improvements such as channel eet management, tra c consideration, and learning hyper-heuristics to control simple rule sequences.The thesis work was partially supported by the National ICT Australia according to the Visitor Research Agreement contract between NICTA and Martin Damyanov Aleksandro

    The multicommodity traveling salesman problem with priority prizes: a mathematical model and metaheuristics

    Get PDF
    Artigo científico.The classic Traveling Salesman Problem (TSP) only considers the costs involved in the routes and does not differentiate products or customers. Logistic companies face conflict between operational costs, customers with different categories of products, and customer satisfaction, which is directly related to delivery time. This paper presents a new mathematical model for a TSP with variable costs and priority prizes, taking into account the customer’s product and preference values. This problem is denoted as the Multicommodity Traveling Salesman Problem with Priority Prizes (MTSPPP). Two versions of the Biased Random-Key Genetic Algorithm (BRKGA) are proposed to solve medium and large instances of the MTSPPP. Computational tests were performed, using modified instances based on classical TSP instances. The proposed methods have proved to be efficient in solving the MTSPPP.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES

    Control of mobile networks using dynamic vehicle routing

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2007.Includes bibliographical references (p. 141-144).This thesis considers the Dynamic Pickup and Delivery Problem (DPDP), a dynamic multi-stage vehicle routing problem in which each demand requires two spatially separated services: pickup service at its source location and then delivery service at its destination location. The Dynamic Pickup and Delivery Problem arises in many practical applications, including taxi and courier services, manufacturing and inventory routing, emergency services, mobile sensor networks, Unmanned Aerial Vehicle (UAV) routing, and delay tolerant wireless networks. The main contribution of this thesis is the quantification of the delay performance of the Dynamic Pickup and Delivery Problem as a function of the number of vehicles, the total arrival rate of messages, the required message service times, the vehicle velocity, and the network area. Two lower bounds are derived. First, the Universal Lower Bound quantifies the impact of spatially separated service locations and system loading on average delay. The second lower bound is derived by reducing the two-stage Dynamic Pickup and Delivery Problem to the single-stage Dynamic Traveling Repairperson Problem (DTRP). Policies are then presented for which these lower bounds are tight as a function of the system scaling parameters (up to a constant). The impact of information and inter-vehicle relays is also studied. The last part of this thesis examines the application of the Dynamic Pickup and Delivery Problem to mobile multi-agent wireless networks from a physical layer perspective, seeking insights for the control of the network to achieve trade-offs between throughput and delay.by Holly A. Waisanen-Hatipoglu.Ph.D

    Improvements on Column-Generation-Based Algorithms for Vehicle Routing and Other Combinatorial Problems

    Get PDF
    RÉSUMÉ : Plusieurs applications dans le contexte de la logistique et de la planification de la production peuvent être modélisées comme des problèmes d’optimisation combinatoire (POC). En particulier,l’un des problèmes les plus étudiés dans ce domaine est le problème de tournées de véhicules (PTV). Le PTV consiste à trouver des tournées de véhicules qui minimisent le coût total de transport pour visiter un ensemble de clients, de telle sorte que leur demande soit complètement satisfaite en une seule visite, et que la capacité des véhicules ne soit jamais dépassée. Présentement, la principale méthode de résolution exacte pour les PTVs est la génération de colonnes. Dans cette thèse, nous nous intéressons à l’étude des algorithmes de génération de colonnes et proposons de nouvelles idées pour améliorer leur efficacité. Dans le Chapitre 4, nous présentons une revue de littérature très exhaustive dans laquelle nous mettons en évidence les principales contributions algorithmiques et de modélisation apportées au cours des dernières années dans la cadre du développent des algorithmes de génération de colonnes et de plans coupants intégrés à des méthodes d’énumération implicite pour le PTV. Notre étude est divisée en deux parties principales. Dans la première partie, nous présentons des aspects qui peuvent s’appliquer à la plupart des variantes de PTV, à savoir : des algorithmes de résolution du sous-problème de la génération de colonnes, la séparation de plans coupants, les stratégies de branchement et la stabilisation des variables duales dans le problème-maître. La deuxième partie est dédiée à la résolution de problèmes spécifiques. Dans cette partie, nous discutons comment les spécificités de chaque problème peuvent êtres traitées lors du développement des algorithmes d’énumération implicite combinant génération de colonnes et plans coupants. On étude les attributs suivants : l’existence d’une flotte hétérogène et des dépôts multiples, la considération de fenêtres de temps souples chez les clients, la possibilité d’effectuer des livraisons fractionnées, les coûts dépendant du temps, la réalisation de cueillettes et livraisons, la présence d’incertitude dans les données et des aspects environnementaux. Dans le Chapitre 5, nous proposons un algorithme sélectif pour résoudre des sous-problèmes de la génération de colonnes afin de générer des routes relaxées de type arc-ng. Notre méthode considère une généralisation de la dominance par ensemble proposée par Bulhões et al. [1]. Les résultats numériques obtenus sur des instances du PTV avec fenêtres de temps montrent que le nouveau mécanisme aide à réduire le nombre d’étiquettes non-dominées dans l’algorithme d’étiquetage utilisé pour résoudre le sous-problème et, par conséquent, le temps de calcul. Enfin, dans le Chapitre 6, nous présentons une nouvelle méthode de stabilisation pour des POCs avec des structures qui favorisent l’parution de dégénérescence. Le nouvel algorithme de stabilisation, appelé dyn-SAR, est basé sur la séparation dynamique de contraintes agrégées, qui sont obtenues en additionnant des contraintes du problème maître de génération de colonnes. L’effet de stabilisation induit par dyn-SAR provient des fortes interactions qui surviennent entre les variables duales, ce qui n’est pas observé lors de la résolution explicite d’une formulation de partition d’ensemble (recouvrement / empaquetage). L’intérêt principal pour l’utilisation du dyn-SAR est dû à sa simplicité et généralité. Ce dernier aspect est confirmé dans nos expériences, où nous considérons des problèmes dont la fonction objectif et le sous-problème de génération de colonnes sont considérablement différents. Les résultats numériques montrent un avantage important du dyn-SAR par rapport à une méthode de génération de colonnes standard en termes de nombre d’itérations et de temps de calcul.----------ABSTRACT : Several applications arising in the context of logistics and production planning can be modeled as combinatorial optimization problems (COPs). In particular, one of the most studied problems in this field is the vehicle routing problem (VRP). The VRP is the problem of finding least-cost routes to visit a set of customers in such a way that their demand is completely satisfied in a single visit, and the capacity of vehicles is not exceeded. Nowadays, the leading exact method to cope with different classes of VRPs is column generation (CG). In this thesis, we are interested in studying CG algorithms and propose new ideas to enhance their efficiency. In Chapter 4, we present a methodological survey in which we highlight and discuss the main algorithmic and modeling contributions made over the years in the context of branch-priceand-cut methods for VRPs. Our study is divided into two main parts. In the first part, we discuss topics that may apply to most VRPs variants, namely: pricing algorithms, cut separation, branching strategies, and dual variable stabilization. The second part is more problem-oriented and describes how aspects such as heterogeneous fleet, multi-depots, soft time windows, split deliveries, time dependency, pickups and deliveries, uncertainty, and environmental aspects can be handled in devising branch-price-and-cut algorithms. In Chapter 5, we propose a selective pricing algorithm to solve pricing subproblems defined in terms of arc-ng-route relaxations. Our method extends the set-based dominance rule proposed by Bulhões et al. [1], making it more general and stronger. Computational experiments performed over instances of the VRP with time windows show that the proposed mechanism helps in reducing the number of non-dominated labels kept by the labeling algorithm and, as a consequence, the CPU time. Finally, in Chapter 6, we develop a new stabilization framework to tackle COPs with degenerate structures. The new stabilization method, called dyn-SAR, relies on the dynamic separation of aggregated constraints, which are obtained by summing up constraints from the CG master problem. The stabilization effect induced by dyn-SAR is due to strong interactions that arise from dual variables, which is not observed when solving explicitly a set-partitioning (covering/packing) formulation. The main interests in using the dyn-SAR method are its simplicity and generality. The latter aspect is confirmed in our experiments, where we solve instances from problems differing considerably in their objective function and pricing subproblem. Numerical results show a clear advantage of dyn-SAR over a standard CG method in terms of both the number of iterations and running time

    A dynamic pickup and delivery problem in mobile networks under information constraints,

    Get PDF
    Abstract-This paper considers a network in which a set of vehicles is responsible for picking up and delivering messages that arrive according to a Poisson process. Message pickup and delivery locations are uniformly distributed in a convex region. The vehicles are required to pickup and deliver the messages so that the average delay is minimized. It is required that the vehicle that picks up a message must be the one to deliver it. This problem is called the dynamic pickup and delivery problem (DPDP) and has applications in the context of autonomous vehicles and wireless ad hoc networks. The control policies considered are separable into two parts: an assignment policy used by a centralized controller to assign arriving messages to the vehicles for service and a service policy used by each vehicle to determine the service routes through its assigned messages. Lower bounds are provided on the delay achievable by separable control policies that depend on the information constraints in place. It is proved that the optimal average delay scaling can be reduced when message destination information is available to the centralized controller in addition to the message source information. The paper also provides policies that achieve these scaling bounds, proving that these bounds are tight. Index Terms-Dial-a-ride problem (DARP), dynamic pickup and delivery problem (DPDP), dynamic traveling repair-person problem (DTRP), less-than-truckload (LTL), unmanned aerial vehicle (UAV)

    Exact and Heuristic Methods for Emerging Vehicle Routing Problems

    Get PDF
    The rise of global supply chains and e-commerce in recent decades have intensified the relevance of the transportation industry to both the individual and the economy. With rising consumer expectations and slim profit margins, the various sectors within the transportation industry rely on the development of carefully designed routes to remain competitive. Despite the wealth of research on route design, and the responsiveness of the research community to practical considerations, there remain gaps between the work done in practice and that appearing in the literature. Correspondingly, the work in this dissertation is directly in response to conversations had with contacts from real-world companies within the transportation domain. We consider problems presented, verbally, by companies representing three distinct segments of the industry: freight routing, last-mile delivery, and on-demand passenger transport. Each problem is centered around an innovative strategy with the potential to dramatically disrupt its corresponding domain. First, we consider the Shared Truckload (STL) freight shipping model, an alternative to the dominant Less-than-Truckload (LTL) model. Both models pool shipments from multiple customers into a single trailer, but, in the latter, consolidation is facilitated by a hub-and-spoke routing network, whereas, in the the former, freight moves directly from origin to destination. This strategy minimizes travel times and the risk of damage. We then investigate a novel strategy to facilitate last-mile, last-minute delivery, through coordinating a fleet of trucks and a fleet of smaller vehicles, referred to as shuttles. In order to accommodate requests which come in after trucks have been dispatched, shuttles are allowed to pick up packages from a depot and intercept trucks along their routes. This strategy can enable a shipper to make highly competitive service guarantees. Finally, we consider the emerging field of Urban Air Mobility (UAM), a vision of air taxis conveying passengers at lower altitudes throughout urban areas as an efficient alternative to gridlock traffic. In particular, we consider a UAM service company in the early stages of its development, where the chief goal is to maximize market share. These innovations represent significant deviations from the status quo in their respective fields, and, thus, the existing research for each is slim, if existent. Therefore, we introduce precise mathematical formulations of each of the problems to the research community. We then develop both exact and heuristic approaches to solve the problems, and carry out extensive computational studies comparing the solution methodologies. Furthermore, for each of the problems, we offer a sensitivity analysis and managerial insights. Among our contributions are original algorithms based on solving a set-partitioning formulations via column generation, a highly successful paradigm for solving large linear programs. Among the advantages of this approach is the ability to include highly general route costs and constraints. We illustrate this expressiveness by demonstrating its application to each of the three highly distinct problems we consider

    Ant colony optimization and the vehicle routing problem

    Get PDF
    Ant Colony Optimization algorithms are swarm intelligence algorithms, and they are inspired by the behavior of real ants. They are well suited to solving computational problems which involve traversing graphs. The Vehicle Routing Problem is a combinatorial optimization problem which is studied in the eld of operations research. Its numerous variants have several real-life applications. In this thesis, I will present how Ant Colony Optimization algorithms have been used to solve a particular variant of the Vehicle Routing Problem - the Vehicle Routing Problem with Time Windows
    • …
    corecore