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Abstract

This thesis considers the Dynamic Pickup and Delivery Problem (DPDP), a dynamic
multi-stage vehicle routing problem in which each demand requires two spatially
separated services: pickup service at its source location and then delivery service
at its destination location. The Dynamic Pickup and Delivery Problem arises in
many practical applications, including taxi and courier services, manufacturing and
inventory routing, emergency services, mobile sensor networks, Unmanned Aerial
Vehicle (UAV) routing, and delay tolerant wireless networks.

The main contribution of this thesis is the quantification of the delay performance of
the Dynamic Pickup and Delivery Problem as a function of the number of vehicles,
the total arrival rate of messages, the required message service times, the vehicle
velocity, and the network area. Two lower bounds are derived. First, the Universal
Lower Bound quantifies the impact of spatially separated service locations and system
loading on average delay. The second lower bound is derived by reducing the two-
stage Dynamic Pickup and Delivery Problem to the single-stage Dynamic Traveling
Repairperson Problem (DTRP). Policies are then presented for which these lower
bounds are tight as a function of the system scaling parameters (up to a constant).
The impact of information and inter-vehicle relays is also studied.

The last part of this thesis examines the application of the Dynamic Pickup and
Delivery Problem to mobile multi-agent wireless networks from a physical layer per-
spective, seeking insights for the control of the network to achieve trade-offs between
throughput and delay.
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Title: Assistant Professor of Electrical Engineering

3



4



Acknowledgments

My doctoral experience has been less about research and more about living my life.

I have many to thank for taking me this far.

First, I thank my two advisors, Professors Munther Dahleh and Devavrat Shah. Their

advising styles and research interests have been complementary, and I could not have

progressed without them both. They are both genuinely kind people, and it has been

a pleasure to know them. I thank my committee as a whole for making it possible for

me to finish on time and for supporting my career interests, though they lie outside

of academic research for now.

Thanks also go to

" Professor Alexandre Megretski for setting a high academic standard.

" Professor Eytan Modiano for making my TA experience as fruitful as possible.

* Georgios Kotsalis and Erin Aylward for their enthusiasm for research.

" Other officemates and friends in the department: Keith Santarelli, Sleiman

Itani, Giola Katsargyri, Mike Rinehart, Hoho, Sridevi Sarma, Danielle Tarraf,

and Nuno Martins.

" My friends from first and second year: Zach Thomas, Shubham Mukherjee,

Vasanth Sarathy, Akshay Naheta, Keith Herring, and Alex Tsankov.

" Kishori Deshpande, my roommate and friend.

" Everyone I met in GW6, Graduate Student Council, and at Edgerton House.

Many thanks go to Laura Zager for providing me a friendly ear these last four years.

I value our friendship very much. I wish I could be around next year to support you

as you have supported me, but I'll only be a phone call or plane ride away.

Last but not least, for so many reasons, I would not be where I am today without

the loving support and sacrifice of Cem Hatipoglu. Seni gok seviyorum.

5



6



Contents

1 Introduction 15

1.1 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.1.1 Dynamic Vehicle Routing . . . . . . . . . . . . . . . . . . . . 17

1.1.2 Other Mobile Networks . . . . . . . . . . . . . . . . . . . . . . 21

1.1.3 Throughput and Delay in Wireless Networks . . . . . . . . . . 21

1.2 R esults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.2.1 Universal Lower Bounds for Dynamic Pickup and Delivery . . 24

1.2.2 Dynamic Pickup and Delivery with No Relays . . . . . . . . . 24

1.2.3 Dynamic Pickup and Delivery with Relays . . . . . . . . . . . 25

1.2.4 Throughput-Delay Tradeoff in Wireless Networks with Con-

trolled Mobility . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.3 Organization of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2 Problem Formulation 27

2.1 M odel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2 Control Policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2.1 Assignment Policies . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2.2 Service Policies . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.3 Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.3.1 Preliminary Definitions . . . . . . . . . . . . . . . . . . . . . . 34

2.3.2 Average Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.3.3 Arrival Rates and Alternative Representations of Delay . . . . 38

7



2.3.4 Number in System . . . . . . . . . . . . . . . . . . . . . . . . 41

2.3.5 System Utilization and Stability . . . . . . . . . . . . . . . . . 42

2.4 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3 Preliminary Technical Details 45

3.1 General Probability ............................ 45

3.1.1 Jensen's Inequality ...... ........................ 45

3.1.2 Implications of Positive Correlation . . . . . . . . . . . . . . . 45

3.1.3 Geometric Probability . . . . . . . . . . . . . . . . . . . . . . 46

3.2 Queueing Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2.1 Queueing Notation . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2.2 Stability of GI/G/1 Queues and Queuing Networks . . . . . . 47

3.2.3 Upper Bound on Waiting Time in GI/G/1 Queue . . . . . . . 47

3.2.4 Little's Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2.5 Arrival and Departure Distributions . . . . . . . . . . . . . . . 49

3.3 Euclidean TSP Tour Length . . . . . . . . . . . . . . . . . . . . . . . 49

3.3.1 Asymptotic Performance . . . . . . . . . . . . . . . . . . . . . 49

3.3.2 Worst-Case Performance . . . . . . . . . . . . . . . . . . . . . 50

3.4 Dynamic Traveling Repairperson Problem . . . . . . . . . . . . . . . 51

4 Universal Lower Bounds 53

4.1 Universal Lower Bound for Poisson Arrivals . . . . . . . . . . . . . . 54

4.1.1 Preliminary Lower Bound for Single Vehicle . . . . . . . . . . 54

4.1.2 Universal Lower Bound for Multi-Vehicle . . . . . . . . . . . . 56

4.2 Universal Lower Bound for Batching Policies . . . . . . . . . . . . . . 58

4.2.1 Batching Policies Preliminaries . . . . . . . . . . . . . . . . . 59

4.2.2 Preliminary Lower Bound for Single Vehicle . . . . . . . . . . 60

4.2.3 Universal Lower Bound for Multi-Vehicle, Batching Policies. . 64

4.2.4 Universal Lower Bound Corollary for Batching Policies . . . . 65

4.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

8



5 No Relay DPDP

5.1 Lower Bounds on Average Delay .........

5.1.1 A Relaxation of OPT ...........

5.1.2 Lower Bound: Source Only .......

5.1.3 Lower Bound: Source and Destination

5.2 Policies . . . . . . . . . . . . . . . . . . . . . .

5.2.1 Source Only Policy .............

5.2.2 Source and Destination Policy . . . . .

5.3 Conclusions . . . . . . . . . . . . . . . . . . .

6 Single Relay DPDP

6.1 Lower Bound on Average Delay . . . . . . . . . . .

6.2 Upper Bounds for Single-Relay Policies . . . . . . .

6.2.1 Synchronous Single-Relay Policy . . . . . . .

6.2.2 Other Relay Policies - The 1-Depot Policy .

6.3 Conclusions . . . . . . . . . . . . . . . . . . . . . .

6.3.1 Optimality of Single Relay . . . . . . . . . .

7 Wireless DPDP

7.1 Model and Problem Statement . . . . . . . . . . . .

7.1.1 Nodes, Messages, and Vehicles . . . . . . . .

7.1.2 Wireless Model . . . . . . . . . . . . . . . .

7.1.3 Control Policies . . . . . . . . . . . . . . . .

7.1.4 Performance Measures . . . . . . . . . . . .

7.1.5 Problem Statement . . . . . . . . . . . . . .

7.1.6 Organization . . . . . . . . . . . . . . . . .

7.2 Stability Analysis . . . . . . . . . . . . . . . . . . .

7.3 Optimal Batch Scaling and Delay for fixed r and A

7.3.1 Analytical Characterization of Tmin (r, A)

7.3.2 Graphical Characterization of Tmin(r, A)

7.4 Optimal Throughput/Delay Tradeoff . . . . . . . .

89

90

90

90

95

96

97

99

. . . . . . . . 100

. . . . . . . . 100

. . . . . . . . 101

. . . . . . . . 103

. . . . . . . . 104

. . . . . . . . 104

. . . . . . . . 105

. . . . . . . . 105

. . . . . . . . 108

. . . . . . . . 109

. . . . . . . . 111

.. .... 112

9

69

. . . . . . . . . . . . 70

. . . . . . . . . . . . 71

. . . . . . . . . . . . 72

. . . . . . . . . . . . 75

. . . . . . . . . . . . 79

. . . . . . . . . . . . 79

. . . . . . . . . . . . 85

. . . . . . . . . . . . 88



7.5 Conclusions . . . . . . . . . . . . .1

8 Discussion 117

8.1 Scaling Interpretation of Results . . . . . . . . . . . . . . . . . . . . . 117

8.2 Significance of Policy Restrictions . . . . . . . . . . . . . . . . . . . . 119

8.3 Extensions of Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 121

8.4 Future Work in Wireless . . . . . . . . . . . . . . . . . . . . . . . . . 121

8.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

A Extended proof of DTRP 123

B Proof of Little's Law for the onsite system 131

C Proof of batch queuing time 137

10

. . . . . . . . . . . . . . . . . . . 114



List of Figures

7-1 Stability Region for test case . . . . . . . . . . . . . . . . . . . . . . . 107

7-2 Stability Region for test case - a = 1,2,3,4 . . . . . . . . . . . . . . . 108

7-3 Delay as a function of r with optimal batch size . . . . . . . . . . . . 111

7-4 Delay as a function of r with optimal batch size, a = 1, 2,3,4 . . . . . 112

7-5 Optimal Delay as a function of A, Comparison . . . . . . . . . . . . . 113

7-6 Delay as a function of r, A near Stability Region Critical Point . . . . 114

11



12



List of Tables

7.1 Detailed Rate Profiles for Decoding Schemes . . . . . . . . . . . . . . 102

8.1 Average Delay scaling over various ranges of Scaling Parameters . . . 118

13



14



Chapter 1

Introduction

Mobile networks are characterized by a set of servers that travel throughout a given

region to collectively perform a set of tasks. The motion and service activity of the

mobile servers is to be controlled to optimize some performance measure based on

the completion of tasks and consumption of server resources. Several varieties of

tasks may be defined, including surveillance coverage of the region, convergence to

a fixed vehicle formation, and service of a series of externally generated demands.

This thesis focuses on the latter type of mobile network as an instance of a Dynamic

Vehicle Routing Problem.

Vehicle Routing Problems (VRPs) constitute a class of well-studied problems in the

Operations Research and Applied Mathematics literature. The classical example of a

VRP is the Traveling Salesperson Problem (TSP) in which a single server is to visit

each member of a fixed set of locations such that the total travel cost is minimized.

Each location may be viewed as a demand which is served when the server passes

through that location. Many vehicle routing problems may be viewed as extensions

of this classical static and deterministic VRP. Several extensions may be envisioned,

including more complex types of demand service, dynamic arrival of demands, and

the use of multiple servers.

In this thesis, we consider the Dynamic Pickup and Delivery Problem (DPDP), a
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dynamic multi-stage VRP in which each demand requires service at each of several

spatially separated locations, specifically pickup service at its source location and

then delivery service at its destination location elsewhere in region. The DPDP prob-

lem arises in many practical applications. For example, consider a scenario where

people are demands who telephone a cab-service exchange to request a ride. The

cab-service exchange is to decide which cab picks up (and delivers) each person and

at what time, such that each customer is completely served with minimum average de-

lay. This problem is also known as Dial-a-Ride problem (DARP). Other applications

include courier services, manufacturing and inventory routing, less-than-truckload

(LTL) trucking, emergency services, mobile sensor networks, and Unmanned Aerial

Vehicle (UAV) routing. Surveys [13] and [25] contain references to several of these

applications.

Of particular interest to this thesis is the quantification of the performance of the

network as a function of several scaling parameters, including the number of vehicles,

the total arrival rate of messages, the required service times, and to a lesser extent,

the vehicle velocity and network area. Such analysis exists for a single-stage problem

known as the Dynamic Traveling Repairperson Problem. Our results for the two-stage

DPDP and the four-stage DPDP (with Relays) are the first of their kind. Besides

analyzing system performance as a function of the scaling parameters, we also examine

the impact of several other system qualities, including information structure and

service type. Our results provide general methods which are different than those in

the existing literature.

1.1 Literature Review

We first review the previous research on dynamic vehicle routing problems, including

the DPDP, in the context of operations research. We then address existing research

on other types of mobile networks, including pickup and delivery networks in which

services may be performed remotely via wireless transmission.

16



1.1.1 Dynamic Vehicle Routing

The relevant research in dynamic vehicle routing may be grouped into three areas

that address specific aspects of the Dynamic Pickup and Delivery Problem as an

extension of the canonical vehicle routing problem, the Traveling Salesperson Problem

(TSP). After reviewing previous research on the TSP, we first consider the impact of

demand uncertainty in dynamic and stochastic problems. Next, we look at methods

for incorporating multiple vehicles via a demand assignment component. Finally, we

examine the impact of multi-stage demand service.

The Traveling Salesperson Problem (TSP)

In the classical static and deterministic vehicle routing problem, a fixed set of demands

is specified a priori and the solution is a route through these demands that minimizes

some collective cost of service, usually expected total travel time. The most well-

studied static and deterministic vehicle routing problem is the Traveling Salesperson

Problem, in which a salesman must determine the shortest route through a fixed set of

cities in his territory. Classically, the TSP is formulated on an undirected graph with

distances between cities denoted by edge weights between nodes. The TSP is known

to be NP-complete. Various heuristics have been developed to find approximately

optimal polynomial-time solutions to the TSP [19, 31) and its natural counterpart,

the directed TSP [291.

In the Euclidean TSP, cities are taken to be points arbitrarily distributed in R2

with distances corresponding to the Euclidean distance measure. In the case that

there are N cities uniformly distributed in a region of area A , the expected length

of the TSP tour scales as LN ; %/T4v/.N when N -+ oo. This asymptotic result

is originally due to Beardwood, Halton, and Hammersley [3], but has been more

recently studied in [17). This theorem will be important to our analysis and will

be stated precisely in Section 3.3. Heuristics for computing approximately optimal

polynomial-time solutions to the Euclidean TSP are presented in [2].

17



Static to Dynamic

In a static and deterministic VRP, the set of demands is fixed a priori, and the vehicle

control consists of computing a single route through these demands to optimize a given

cost function. In a dynamic and stochastic VRP, new demands arrive according to a

stochastic process over time, and the solution is a control policy that that determines

how the vehicles' routes evolve as a function of the demands in the system. A common

objective is to minimize the average message time in system over an infinite time

horizon rather than completion time of the fixed set.

Dynamic vehicle routing problems have received much less attention than their static

counterparts. Recent surveys on dynamic vehicle routing problems include [13, 24].

Common solution methods for the dynamic problem include the reduction of the

dynamic problem to a series of static problems via periodic reoptimization or batching.

From a theoretical standpoint, the most significant analysis of dynamic vehicle routing

problems is the the work on the single-stage Dynamic Traveling Repairperson Problem

(DTRP) by Bertsimas and van Ryzin [4, 5, 6]. These papers obtain several policies

which achieve order-optimal average delay for the problem.

Intuitively, the DPDP seems similar to the DTRP as both the pickup and delivery of

messages in the DPDP could be treated as separate requests in the DTRP problem

setup. This thesis shows that this is indeed the case when messages may be relayed

between vehicles. However, when we include the restriction that the vehicle that picks

up a message must also deliver it, the pickup and delivery services of a single mes-

sage are strongly linked, making our problem significantly distinct from the DTRP.

As we shall see, the optimal solutions to these problems are both qualitatively and

quantitatively different.
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Single-vehicle to Multi-vehicle

When there are multiple vehicles to perform the system services, the optimal solution

becomes more complex as not only service order but also service assignments to the

vehicles must be determined.

Typical assignment methods for the static single-stage problem rely on the intuition

that demands that are located close together ought to be served by the same vehi-

cle. Two popular algorithms incorporate this intuition via a two-step process. In

partitioning algorithms, an optimal TSP tour is found through all of the demands

and then the tour is partitioned such that each vehicle travels the TSP route through

a subset of the demands and the total vehicle travel cost is minimized. Clustering

algorithms take the reverse approach, first assigning each vehicle to a subset of points

and then leaving each vehicle to determine the TSP tour through just its own subset

[25].

This intuition does not extend to the Pickup and Delivery Problem when the vehicle

that picks up a message must also deliver it. Even if source locations are geograph-

ically close, destination locations may be spread throughout the region. Balancing

the clustering of source locations and destination locations served by a single vehicle

in a multi-vehicle setup will be an important intuitive insight in our work on the

multi-vehicle DPDP.

Repair to Pickup and Delivery

Recent survey papers on Pickup and Delivery Problems (PDPs), both static and

dynamic, include [9, 25]. We briefly summarize some of these results below.

The static single-vehicle pickup and delivery problem expands upon the TSP to in-

clude a delivery requirement. Not only does this delivery requirement double the

number of locations to be visited, but it also imposes a precedence constraint on

the order in which the locations may be visited. In the case that the objective is to
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minimize the completion time of a fixed set of demands, this may be formulated as

a directed TSP. A straightforward dynamic program may also be used to solve for

the optimal solution associated with other cost functions. Other solution methods

include branch and bound algorithms that incorporate the precedence constraints.

Approximations to the static PDP include clustering and routing algorithms similar

to those for the TSP, although the analysis is much more complex for the two-stage

problem (see [25]).

A problem similar to the Dynamic Pickup and Delivery Problem has been studied as

the Online Dial-a-Ride Problem (OLDARP). In this problem, like the DTRP problem,

demands arrive according to a Poisson process of time intensity A. The messages need

to be picked up by vehicles from a random arrival location and dropped off at random

destination location. This problem has been studied by [10, 21]. Vehicles are usually

assumed to have unit or finite capacity, that is, each vehicle can transport only one

or finitely many messages at a time. The goal of the OLDARP problem is usually

to minimize the service completion time of a collection of messages arriving during

a finite time interval. Recent analysis in this problem has focused on competitive

analysis to compare the performance of periodic reoptimization methods with static

and deterministic solutions subject to time constraints.

The single-vehicle Dynamic Pick-up and Delivery Problem (DPDP) was analyzed in

[32]. In this setup, a single service vehicle is responsible for picking up and delivering

all messages that arrive. The goal is to minimize the average delay experienced by

all messages. Analysis is performed for vehicles with both finite and infinite capacity,

and several policies are analyzed in both the heavily and lightly loaded cases, using

methods similar to those for the DTRP. In our work, we develop novel proof methods

to study the multi-vehicle Dynamic Pickup and Delivery Problem.

20



1.1.2 Other Mobile Networks

The single-stage, multi-vehicle dynamic vehicle routing problem (i.e. the DTRP)

has received attention in the controls community of late, motivated by applications

to Unmanned Aerial Vehicles (UAVs) and other mobile sensing networks. A decen-

tralized method for computing locally optimal solutions to the m-vehicle DTRP was

presented in [11]. This work applied previous research on decentralized algorithms

for the optimal placement of sensors to provide full coverage of a region with event

locations represented by a continuous distribution [7]. The optimal sensor placement

problem is closely related to the m-median problem and the optimal idle positioning

of the vehicles in a lightly-loaded DTRP system. Other work has considered the im-

pact of vehicle constraints, such as finite turning radius, on the solution of the static

and deterministic Repairperson Problem [26, 27].

In general, there are several possible extensions of the classical dynamic vehicle rout-

ing problem, the Dynamic Traveling Repairperson Problem. Likewise, the Dynamic

Pickup and Delivery Problem may be viewed as a two-stage extension of the single-

stage DTRP.

1.1.3 Throughput and Delay in Wireless Networks

For many wireless network applications, including video and voice transmission, the

goal is to provide a point-to-point path between each pair of nodes in the network

such that any message that arises may be routed immediately to its destination. In

contrast, in delay-tolerant networks, such a point-to-point path need not exist at each

time instant, but the nodes may store the messages and forward them to the required

connections over time as they move closer to other nodes in the network.

The main application we consider is a delay-tolerant communication network in which

messages orginating in a geographic region must be delivered to their destinations

elsewhere in the region. This service is carried out by a number of mobile nodes or
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vehicles. This differs from usual vehicle routing problems in that each node is capable

of transmitting messages wirelessly to the vehicle and to other nodes.

A distinct characteristic of wireless transmission is interference: a wireless transmis-

sion by one node may adversely affect other transmissions occuring simultaneously.

Interference generally implies that to allow the greatest number of nodes to transmit

simultaneously, wireless transmissions should only take place over short distances to

avoid creating interference over large regions. Since messages may be destined to loca-

tions far from their origin, several wireless transmissions may be required for delivery

unless there is another method of transport. If the nodes are mobile, messages may

also be physically carried over distances in the region. Physical transport of messages

has the advantage that it does not create interference and many messages may be

carried at one time by a single node. However, node velocity is typically much less

than the speed of electromagnetic propagation of wireless transmissions. Therefore,

physical transport is a much slower method of delivering messages.

Two important performance measures characterizing wireless networks are through-

put and delay. Delay is defined, as in the DPDP, to be the time from message arrival

to delivery. Throughput is defined to be the average number of bits to be delivered

to their destinations each time unit.

Several previous works have considered varying the amounts of wireless transmission

and physical transport of messages in communication networks to study the effect

of these methods of message delivery on the throughput and delay characteristics of

the network. Gupta and Kumar [16] introduced a random network model to study

throughput scaling of fixed wireless networks in which nodes are not mobile and thus

messages are delivered solely by wireless transmission. They showed that, under the

random network model, the maximal achievable throughput per node, T(n) scales

as E(1/V/nlogin) for a network of n nodes (see Section 2.1 for a definition of order

notation). That is, as the number of nodes and the traffic they bring to the network

increases, the throughput achievable by each node goes to 0. Subsequently, Gross-

glauser and Tse [15] showed that by using node mobility, it is possible to achieve
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optimal per node throughput scaling, T(n) = E(1). That is, by using physical trans-

port to carry messages without creating wireless interference, the throughput per

node remains constant regardless of the number of nodes.

These results, however did not address the issue of delay performance. El Gamal,

Mammen, Prabhakar and Shah [12] posed the question of achievable throughput and

delay tradeoff. They obtained the following optimal tradeoff: (a) for fixed random

networks, the throughput per node, T(n) and delay per packet, D(n) are related as

T(n) = e(D(n)/n) for T(n) = O(1/v/nlogn); and (b) for mobile networks with

each node performing independent random walk, for most of the throughput, the

delay scales D(n) = e(n log n). The result of [12] for mobile networks provides a

pessimistic conclusion: even at the loss of significant throughput, the delay can not

be reduced under a random walk based mobility model.

In search of better delay scaling, various authors [20, 22, 33] have suggested different

mobility models. While some of these models provide significant delay reduction at

the loss of throughput, they are far from being realistic. Many ignore the physical

constraint on the velocity of node. Most assume that node motion is completely

random, regardless of the current message delivery requirements. In summary, most

of the previous results assume a certain mobility model in order to study delay and

throughput of network. Because they consider specific models, they are not able to

make statements on optimal performance achievable under any mobility model.

The work of [28] has recently analyzed the minimum worst case delay in a delay-

tolerant network with controlled mobility. Other than that paper, little attention has

been given to the throughput/delay tradeoff problem with controlled mobility.

1.2 Results

The contributions of this thesis are divided into four main chapters. The first main

chapter provides a general lower bound on the delay performance of any Pickup and
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Delivery problem. The next two chapters are divided according to whether messages

can be relayed between vehicles. The no relay problem is more closely related to

classical vehicle routing as described above. Finally, the fourth main chapter contains

some preliminary work on the mobile wireless network problem.

The optimality of our results is stated in terms of order optimality, that is, optimal

scaling of performance as a function of the system parameters, such as arrival rate,

number of vehicles, and the area of the region. We do not seek the optimal solution for

a specific realization of the stochastic network. The nontriviality of the order optimal

bounds we derive reveals the complexity of finding complete optimal solutions.

1.2.1 Universal Lower Bounds for Dynamic Pickup and De-

livery

In the Dynamic Pickup and Delivery Problem, vehicles must pause at a service loca-

tion for the duration of the message pickup and delivery service times. This implies

that while vehicles are traveling, they are not performing work, in the sense of directly

servicing a single message. This restriction implies a lower bound on message delay

which we will call a Universal Lower Bound. This lower bound makes an impor-

tant connection between dynamic vehicle routing problems and non-work-conserving

queueing systems. This bound may also be generalized for analysis of other multi-

stage systems.

1.2.2 Dynamic Pickup and Delivery with No Relays

The Dynamic Pickup and Delivery Problem with No Relays refers to the case in which

the vehicle that picks up a message must be the one to deliver it. The goal is to find

bounds on the minimum average message delay achievable by any valid control policy

for the DPDP.

Control policies are divided into two categories based on the information structure in
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place for making the control decisions. In the Source Only structure, only message

source locations are known before the message is picked up. In the Source and Des-

tination structure, both the source and destination locations of messages are known

as soon as the message arrives. We will prove lower bounds on the average message

delays achieveable by control policies from these two groups. We will further propose

policies that adhere to these information structures and will show that the order of

the asymptotic delay scaling demonstrated by these policies matches that of the lower

bounds for all scaling ranges of the arrival rate A as a function of n. Therefore these

policies are order optimal and the lower bounds may be achieved.

The lower bound results are achieved by formulating the multi-vehicle control policies

as a collection of joint source and destination densities that capture the assignment

policy for each of the vehicles. Existing results in the single-stage Dynamic Traveling

Repairperson Problem (DTRP) and joint constraints on the probability densities of

valid control policies form an optimization problem which may then be used to lower

bound the delay for any control policy. The effects of the information are reflected in

the joint constraints. Upper bounds are computed by computing the average delay

for specific batching policies which are found to be order optimal. From a system

design standpoint, these scalings quantify the perfomance improvements achievable

by adding additional information gathering capabilities to the vehicles.

1.2.3 Dynamic Pickup and Delivery with Relays

As long as vehicles are required to perform physical pickups and deliveries at the

source and destination locations, the DTRP lower bound serves as a lower bound on

the DPDP problem. We show that this lower bound can be achieved by removing

the restriction that the same vehicle that picks up a message is the one that delivers

it. In fact, we show that this order optimal delay may be achieved with each message

being relayed only once, and therefore additional relays cannot improve performance.
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1.2.4 Throughput-Delay Tradeoff in Wireless Networks with

Controlled Mobility

Previous analysis in throughput scaling as a function of n, the number of nodes in

a wireless network, has focused on networks with fixed nodes or nodes with random

mobility. In practice, one expects nodes to have control of their movement, and in

fact, we might assume that the primary task of each node is to provide network

infrastructure. Thus, we may use some combination of wireless transmission and

dynamic vehicle routing to find an improved tradeoff. We consider using controlled

mobility models in which vehicles (nodes) decide how to service the arriving messages.

As preliminary work towards this problem, we consider controlling a single vehicle to

pick up streams of messages arriving at two locations. We answer several questions

regarding the impact of vehicle motion on delay and stability. This preliminary

analysis suggests a strong connection between the DPDP and the minimization of

delay for high throughput networks. Analysis of low throughput networks requires

an extension of the Dynamic Pickup and Delivery network model.

1.3 Organization of Thesis

The remainder of this thesis is organized as follows. Chapter 2 details the problem

formulation. Chapter 3 provides some results from the existing literature that will

be useful in the subsequent analysis. The main theorems of the Dynamic Pickup and

Delivery Problem are contained in Chapters 4-6. The wireless DPDP is addressed in

Chapter 7. Finally, discussion and conclusions are contained in Chapter 8.
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Chapter 2

Problem Formulation

2.1 Model

Let there be n vehicles, indexed by i, in a geographic area A C R2 , which is a

convex, compact set with area A. For simplicity, we consider A = [0, vr] 2, with the

understanding that these results may be extended to other convex environments with

the same area. Each vehicle may move in any direction at any time with a velo'ity

of magnitude < v.

Messages are generated according to a Poisson process with rate A(n). Each message,

indexed by j, requires a fixed deterministic onsite service time 9(n) at each of two

locations: pick up at its source s(j) and delivery at its destination d(j). Associated

with each message are source and destination locations denoted by s(j) E A and

d(j) E A respectively. Source locations are independently and identically distributed

(IID) in A according to the distribution density 0, : A - R+. Similarly, destination

locations are IID with density #d : A -+ R+. In this paper, we assume that both

source and destination locations have uniform distribution on [0, v/A]2, that is .(() =

kd(() = ,V( E A.

The task of the vehicles is to pick up messages from their source locations and deliver

them to their destinations. A vehicle picks up a message by spending 9(n) at the
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message's source location, after which it is said to be carrying the message. A vehicle

delivers a message that it is carrying when it spends another 9(n) at the message's

delivery location. Each vehicle can carry an unlimited number of messages at any

time.

For a given system, A(n) and 9(n) are fixed constants, but are expressed as a function

of n to emphasize the connection between the arrival rate A(n), the number of servers

n, and the maximum onsite service time that may be supported in a stable system.

Further discussion of the stability condition may be found in Section 2.3. We will use

the following order notation to express the scaling of A(n) and §(n) as a function of

n:

(i) f(n) = O(g(n)) means that 3 a constant c and integer N such that f(n) ;

cg(n),Vn > N.

(ii) f(n) = Q(g(n)) if g(n) = O(f (n)).

(iii) f(n) = E(g(n)) means that f(n) = O(g(n)) and g(n) = O(f(n)).

(iv) f(n) = o(g(n)) means that f(n) = O(g(n)) but g(n) $ O(f(n)), that is,

lima...o (n) = 0.lm oog(n)

For ease of notation, we will sometimes use A for A(n) and § for §(n).

A vehicle that is carrying a message may either carry the message all the way to its

destination or it may relay the message to another vehicle for delivery. To perform

a relay, both vehicles involved in the relay (sender and receiver) must be co-located

at an arbitrary service location for a full §(n) service time to complete the relay.

Assume that for safety or other reasons, the colocated pair may perform the relay

only if there are no other vehicle pairs within distance r of the relay service location.

In this thesis, we will consider two special cases of the relay problem.

No Relays Messages may not be transferred between vehicles after they have been

picked up. That is, the vehicle that picks up a message must be the one that delivers

it.
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Single Relay Each message may be transferred between vehicles exactly once be-

tween pickup and delivery. That is, exactly two vehicles are involved in the service

of each message.

2.2 Control Policies

A control policy, 7r, is a set of decision making rules that decides the pickup and

delivery schedule of arriving messages, based on a set of constraints on the information

available to the vehicle. In this thesis, we consider policies ir = (rA, irs) that can be

decomposed into two components, assignment and service. An assignment policy,

7rA, describes how a centralized controller assigns arriving messages to vehicles for

pickup, relay, and delivery on a real-time basis. A service policy, irs, describes how

each vehicle performs the pickup and delivery of its assigned messages. We assume

that neither the vehicles nor the centralized assignment controller have any knowledge

of individual messages before they arrive although the overall message arrival process

and source and destination distributions are known.

2.2.1 Assignment Policies

Upon the arrival of a message, the centralized controller immediately assigns it to a

single vehicle for pickup and also specifies which vehicle it will eventually be relayed

to, if any. The message is not officially assigned to the relay vehicle until the moment

the pickup and relay vehicles simultaneously begin the onsite relay service. The

below assignment policy descriptions are valid for policies with at most one relay per

message.

We limit our attention to time-invariant and spatially-based assignment policies where

7rA is described by a collection of scaled densities {pi,j(x, y)},",,_1 with the following

property:

Pi,I(X, y) = qs(x)OD(y) = ,Vx, y. (2.1)
= 1 =
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Informally, pi, (x, y) is the probability that a randomly selected message arrives at

x destined for y and is picked up by vehicle i and relayed to vehicle 1. The precise

operational meaning of {pj,1 (x, y)}"' = is defined below. First, we have the following

two definitions:

p,(i,l)(x) = Api,(x, y)dy,

Pd(i,l)(Y) = jpi(x, y)dx.

We restrict the set of assignment policies according to the information available to

the controller in making message assignments for pickup and delivery. In particular,

we consider two types of information structure: Source Only Information and Source

and Destination Information.

Source only information

When a message arrives, its source location is known to the centralized controller, but

vehicles do not know the destination of messages until they pick them up. When a

message arrives at location x, the centralized controller randomly assigns the message

to one of the pickup/relay pairs, with each assignment occuring with probability

P(arrives at x, assigned to i and relayed to 1) = psti,t)(x)/#s(x) = ps(jj)(x)A.

Each assignment is made independently of all previous assignments.

Because the message assignment is made independent of the message destination, the

source and destination locations served by a single vehicle are independent. That is,

there exist two marginal densities f,i (x) and gi,j(y) such that

pij(X, y) = fA,(x)gi,j(y).

Again, because destination information may not be exploited by the message assign-
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ments, the density of destination locations served by each vehicle pair must be the

same as the overall density of destinations, that is, the marginal density

Pd(il)(Y) = OD(Y) = A, Vy, Vi.

Using these facts, we may solve for fi, (x) and gi,l(y) as follows:

Pd(i,L)(Y) = j f i,i(x)gi,(y)dx = fi,l,(x)dxgi,1(y)

= gij(y) = kD(Y)

Ps(i,l)(x) = j fi,(x)gi,(y)dy = fi,(x) jgii(y)dy

= Al, (x).

Therefore, pi' (x, y) has the form

pji(x, y) = p,(i,)(x)0D(y) =ps(i,j)(x) , Vx, y E A, Vi, l.

Let IIso denote the set of all policies that satisfy the assignment properties above and

use Source Only information in making message assignments. Then lso is described

by

Iso= {(A, rs) pi,I(x, y) = , pi'i(X, y) = p8 (ml)(x) , Vxy,Vil}. (2.2)
1=1 i=1

Source-destination information

When a message arrives, both its source and also its destination location are known to

the centralized controller. The densities are used to make the message assignments in

the following way. When a message arrives at location x that is destined for location

y, the centralized controller randomly assigns the message to one of the vehicles, with
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each assignment occuring with the following probability:

P(arrives at x, destined for y, assigned to i, relayed to 1) = pi,I(x,y)/Os(x)OD(y)

pi,j (x, y) A'.

Each assignment is made independently of all previous assignments. Under the Source

and Destination information structure, destination information may be used to shape

the destination density and therefore Equation (2.1) remains the only restriction on

the assignment policy.

Let IISD denote the set of all policies satisfying the properties above and using only

information available in the Source and Destination information structure. Then 171SD

is described by

IIsD = 1(7rAS Is pi'l (X) y) V yl- (2.3)
i=1 1=1

Special Case - No Relay

When no relays are allowed between vehicles, we may say that pi, (x, y) = 0, Vx, y, Vi

1. Dropping the 1 notation, the above expressions (2.2) and (2.3) simplify to

Iso = {(1A, rs)IEpi(x,y) = ,pi(X, y) = p8 (i)(x) , Vx, y,Vi}, (2.4)

IISD ={(rA, XS) P(Xy) = ,Vx, y}. (2.5)
i=1

2.2.2 Service Policies

While many of the lower bounds presented in this thesis are independent of the service

policy specifics, some stronger results are available when a batching policy is used.

Definition 1 (Batch). A batch is a set of requests for service, such that 1) all service

requests within a single batch are assigned to a single vehicle, and 2) once a vehicle
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begins service of one of the requests in the batch, it completely serves all the requests

in the batch, oblivious to other demands in the system.

Definition 2 (Batching Policy). Under a batching policy, each request for service is

buffered at a batch processor upon arrival. Service requests are assigned to batches in

some arbitrary way, and a request remains at the batch processor until the batch it

is assigned to is released into the batch queue. Once a batch is released to the batch

queue, no new service requests may be added or removed from the batch. Vehicles

serve the batches from the batch queue one at a time.

Requests for service may include the full service of a message as it arrives externally

to the system, or the service policy may divide requests into a series of subrequests,

each of which are treated individually under the batching policy. The defining char-

acteristic of a batching policy is that a set of services is fixed and then carried out

without interruption, deletions, or additions.

Batches are numbered in order of the release of the batch to the batch queue and

are indexed by k. Let Bk be the number of requests contained in the kth batch. The

service of each batch has two components: 1) the onsite service of the Bk individual

messages, and 2) travel and overhead time required to complete the batch service.

Denote this overhead time by Ik. The total time to service the kth batch is denoted

as Tk, which is a function of Bk and Ik.

2.3 Performance Metrics

There are two main performance measures to be defined: stability and average delay.

Informally, a system is stable if the messages arriving to the system have finite average

delay between arrival and final delivery. The precise average delay differentiates the

performance between various stable policies. Before precisely defining average delay

and stability, we introduce some preliminary definitions.
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2.3.1 Preliminary Definitions

Message j arrives at time tj, completes pickup service at time vj, and completes

delivery service and departs the system at time y,. With this notation, the arrival

process is equivalent to

A(t) = max{jjt < t}, (2.6)

Further, we define counting processes associated with the cumulative pickup and

delivery services, respectively. Because messages are not always served in the order

in which they are received, these service counting processes are the cardinality of the

given sets.

V(t) = card{jv < t} (2.7)

D(t) = card{jjy < t} (2.8)

Message j is said to be assigned to vehicle i at time t if either 1) the message is

waiting for pickup by vehicle i or has already been picked up by vehicle i but not yet

relayed or delivered or 2) the relay transmission of the message to vehicle i has been

intiated and the message has not yet been completely serviced by that vehicle.

{ 1 if message j is assigned to vehicle i at time t

0 else

A vehicle is traveling if it is moving between service locations. A vehicle is in onsite

service when it is stopped at a service location and performing pickup, relay or delivery

service.

li,() = I if vehicle i is traveling at time t

0 else
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1 if vehicle i is in onsite service at time t
14, 0 (t) =

0 else

We assume that at any time there are messages in the system, the vehicle is either

traveling or in onsite service, i.e.

1ii(t) = 1j,i(t) [1iT(t) + li,O(t)].

These indicator functions may be used to define various measures of delay for an

individual message j, along with their limiting expectation.

We also introduce the following notation: let Ee[g(.)] denote the Lebesgue integral of

g(-) with respect to the variable 0. When g(-) has a single argument, the 9 notation

will be dropped. E[.] is defined for a function of nonrandom arguments. This notation

differs from E[g(.)] which will denote the expected value of a function of a random

variable.

2.3.2 Average Delay

The total time that message j is in the system is defined to be

W(j) = y3 - ti. (2.9)

We may define several notions of average delay. Let Q denote the set of all realizations

of the system behavior. For a given realization w E Q of the system, we may define

the following limit if it exists:

. = W(j, W)
W(W) = him.j-oo J

Under suitable assumptions, W(w) exists and is equal to W(w)= W with probability

1, and we have the following time average delay. The time average delay over all
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messages that pass through the system is defined to be

W = lim sup - 1 W(j) (2.10)
J-+oo i

Under a stronger set of assumptions, the following limiting distribution for the variable

W may be shown to exist,

P(W < w) = lim P(W(j) w), (2.11)

that is, W(j) converges in distribution to W. Under suitable conditions, such as

uniform integrability of the set {W(j)} this convergence in distribution implies

convergence in expectation when W = E[W] < cc exists (see [14], pp. 316 and 351).

W = E[W] = lim E[W(j)]. (2.12)

Under one more set of assumptions, W = E[W]. We shall assume that when W =

E[W] exists, it is equal to W. In general, we will assume that the distributional

expression for W is well defined and use this as our measure of average delay. Where

this assumption is not required, we will use the - notation to denote time average.

We will often be interested in the behavior of the above defined variables when the

limits are taken over only the messages that are served by a single vehicle i. In this

case, an additional subscript i will be used to denote the appropriate function for

vehicle i. Define the subsequence of messages served by vehicle i as { (ii, i2, ... , ii, ...) :

Wi(ij) > 0}. Then the time average delay at vehicle i for messages served by vehicle

i is:

W = lim W(i) (2.13)
J-*Oo J

when this limit exists. The limiting distributions and expected values W are defined

similar to W above.
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We will also be interested in differentiating the delay of a message while it is assigned

to a vehicle that is traveling from the delay while it is assigned to a vehicle performing

onsite service. The delay of message j at vehicle i while i is traveling is

WTi(j) = j 1j,(r)1i,T(r)dr.

Likewise, the delay of message j at vehicle i while i is in onsite service of the message

itself as well as any other services that occur while j is assigned to vehicle i is

Wo,i(j) = j 1,i(-r)1j,o(r)dr.

Therefore, the delay of a single message j while it is either in service or in queue for

vehicle i is

Wi(j) = WT, (j)+ Wo,i(j).

The total delay of a single message is then equivalent to

n

W(j) = Wi(j)

= WT(j) + WO(j),

where WT(j) = En 1 Wri (j) and Wo(j) = j W0 ,2(J). For the No Relay DPDP,

Wi(j) is nonzero for exactly one i.

With these definitions, we have the following main definition of average delay that

will be used in this thesis.

Definition 3 (Average Delay and Stability). If the time average limits in (2.10) and

(2.13) exist and are finite, the system is defined to be stable. Further, the total delay
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W is composed of two parts:

W=WT+WO

where

- . 1WT(j)
WT = rM

J-+o J

Wo = h m>ijiWoi)
J-.xO J

when these limits exist. Under suitable assumptions, W =W and we will drop the

notation.

2.3.3 Arrival Rates and Alternative Representations of De-

lay

With an assignment policy 7rA = {p=,i(X, y)}%"1,= 1 , a randomly selected message is

assigned to vehicle i and relayed to vehicle I with the following probability:

P(j, (i, 1)) = P(message j assigned to vehicle i and relayed to vehicle 1)

= L jpii(x, y)dxdy.

Because external arrivals are Poisson and assignments are independent, by the Poisson

splitting property, the assignment process to each pair of vehicles is an independent

Poisson process. Because the assignment to the pickup vehicle is immediate, messages

arrive for pickup via a Poisson process of rate A Ej=_ fA fApi,l(x, y)dxdy. For the No

Relay DPDP, this describes the complete arrival process and we define the arrival

rate to vehicle i as

No Relay: Aj(7r) = Ai(irA) = A f jpi(x, y)dxdy.
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Combining equations (2.1) and (2.14) for No Relays implies that for any valid set of

densities {pi(x, y)} =1,
n

No Relay: ZAi(Ir) = A. (2.14)
i=1

The single relay DPDP includes internal arrivals due to message relaying in addition

to the Poisson process of external arrivals described above. A more general definition

of Ai is required. Let Ai(t) be the number of arrivals to vehicle i in the interval [0, t],

including both external arrivals to the system at vehicle i (new pickups) and also

messages that are relayed to vehicle i for further service. Define the time average rate

of arrivals to vehicle i to be

Ai = lim . (2.15)
t-.+OO t

where this limit is assumed to exist. The total arrival rate to the system (not including

the internal arrivals) A may be similarly defined as

A = lim A(t) (2.16)
t-.+OO t

For the single relay system, it is possible for a message to be relayed from one vehicle

to itself if the same vehicle handles both the pickup and the delivery of the message.

For ease of exposition, this relay is counted as a new internal arrival to the vehicle

when the message relay is initiated. Messages which will eventually be relayed to I

arrive according to a Poisson process at rate AZ> fA fpi,(x, y)dxdy. Although

the timing of the assignment of the relayed messages to the vehicles depends on the

service policy in place, we assume that condition (2.15) holds for any policy under

consideration. Combining these two types of arrivals, messages arrive for either pickup

or delivery to a single vehicle with rate

Single Relay: Ai(7r) = Ai(IrA) = A [> L] (x, y)dxdy + p,i(x, y)dxdy]
S.)=1

(2.17)
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Because each message is handled by exactly two vehicles, combining (2.1) and (2.17)

yields
n

Single Relay: Ai = 2A. (2.18)
i=1

Noting that the limits and the definitions of A and A2 in (2.16) and (2.15) respectively

apply regardless of relay for Poisson processes as well, we have the following equivalent

representation for W.

lim =1 W(j) . Zim =W(j)
J-00 J t--00 A(t)

lm A (t) E l W(ig)
t-0 A(t) Ai(t)

Ant t Eil W(ij)
=lim A (t =

rn-+o i A(t) Ai(t)

= W1 . (2.19)
i=1

Similar expressions may also be obtained for WO and WT.

n

WO = WOs (2.20)
n A -i=1

WT = WT,i (2.21)

Assume that Wi and W2,0 are both increasing functions of A2. That is, Ai A1 =>

Wi Wi' and similarly for W2,o. When a vehicle serves proportionally more mes-

sages, the average delay seen by messages served by that vehicle also increases. This

is a natural assumption in the case where service locations are uniformly distributed

and all onsite service times are iid.
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2.3.4 Number in System

Define N(t) to be the number of the messages in the system at time t. Because each

message in the system is awaiting exactly one of two kinds of service at any time t,

we further define N1(t) be the number that have arrived but have not been picked up,

and let N2(t) be the number that have been picked up but not yet delivered. These

three processes are defined in terms of the arrival and service counting processes as

below.

N(t) = A(t) - D(t) = N1 (t) + N2(t) (2.22)

N1(t) = A(t) - V(t) (2.23)

N2(t) = V(t) - D(t) (2.24)

As above, there are multiple notions of delay for the number in system process. These

definitions are shown for N(t); N(t) and N2(t) are similar.

ft N(()d(
N= lim (2.25)t-+0 t

P(N = k) = lim P(N(t) = k) (2.26)
t-*oo0

N = E[N) = lim E[N(t)] (2.27)
t-400O

It will also be useful to define limiting distributions for the number in system seen by

an arrival or a departure where they exist:

P(N~ = k) = lim P(N(tj) = k),

P(N+ = k) = lim P(N(yj) = k).
j--+io

N7 ,Nj'l+, Nj-, 2 and their limiting expectations are defined similarly.
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2.3.5 System Utilization and Stability

We may view the network of vehicles as a non-work-conserving, n-server system with

service times defined to be onsite service only. A necessary stability condition is de-

rived by comparing each vehicle to a work-conserving GI/G/1 queue with arrival rate

Ai and expected total service time 29(n) (see Section 3.2.2). The average utilization

for this system is pi = Aj2(n), the product of the arrival rate and the service time per

message. If either the service times or the arrival process is non-deterministic, then

by classical queueing theory, a necessary condition for the stability of this system is

pi = A 22(n) < 1, Vi. (2.28)

We define the total system utilization as

pn- _ - =1  . (2.29)
n n

We demonstrate by construction in Section 5.2 that the following is a sufficient con-

dition for the existence of a stable policy for the DPDP with No Relays:

p = 2A(n)9(n) <1. (2.30)
n

For the single relay DPDP, due to the doubling of the total arrival rate, the equivalent

sufficient condition as proven in Section 6.2 is

p 4A(n)(n) <1. (2.31)
n

Note that while p is a function of the system parameters and the number of relays per

message, the individual pi are also a function of the specific control policy in effect.

As noted in the analysis of the DTRP in (4], the stability condition does not depend

on the geometry of the system, i.e. the placement of the message service locations,

but only on the net arrival rate of onsite workload. This stability condition extends
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for our case as well. Further, this sufficiency in independent of v as long as v > 0.

2.4 Problem Statement

We will call the above defined control problem the Dynamic Pickup and Delivery

Problem (DPDP). The goal is to compute a tight lower bound on the average message

delay, W, under any valid stable control policy for the DPDP for all ranges of the

scaling parameters, A(n), n, and 9(n).

The separable policies considered here may be described by a collection of densities

{ps,(x, y)},= 1 with the information constraints described in the set description,

plus the description of single vehicle service policies. The assignment policy is cap-

tured by the following optimization problem. For emphasis, the dependence of the

various terms on the assignment and service policies is given explicitly.

OPT : min W(ir) = min A(A) Wi(rArs)
(7rA,lrs)EflI (7rA,irs)EHA

The tightness of the lower bounds is demonstrated by the construction of a valid

control policy for each vehicle that decides the pickup, relay, and delivery schedule of

arriving messages such that the average message delay is of the same order as that of

the lower bound.
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Chapter 3

Preliminary Technical Details

In this chapter, we present several results from the existing literature in probabil-

ity, queuing theory and vehicle routing that will be used throughout the remaining

chapters.

3.1 General Probability

3.1.1 Jensen's Inequality

If g : Rd -+ R is a convex function and X is a random variable taking values in Rd,

then

E[g(X)] g(E[X]). (3.1)

3.1.2 Implications of Positive Correlation

The covariance of two random variables, X and Y, is defined as

cov(X, Y) = E [(X - E[X])(Y - E[Y])].
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X and Y are said to be positively correlated if cov(X, Y) > 0 and uncorrelated if

cov(X, Y) = 0. If X and Y are either positively correlated or uncorrelated, then

E[XY] E[X]E[Y]. (3.2)

Suppose we are given a finite sequence of n pairs of real numbers, {(Xi, Y)}! 1 , such

that X, ! X => Y > Y. Consider a random variable I which selects an index i,

each with probability 1/n. Then applying (3.2) to the positively correlated random

variables X, and Yr, the following general relation holds:

Xn i E ni Xi n liY.
i=1

(3.3)

3.1.3 Geometric Probability

Given two uniformly and independently distributed points, X 1, X 2 E [0, VA]2, the

expected distance between these points is

E[1X1 - X 2|1) = clv'Z (3.4)

where ci ~ 0.52 (see [18], p. 135).

3.2 Queueing Theory

Unless

[34].

otherwise noted, the definitions and results in this section may be found in

3.2.1 Queueing Notation

Define a GI/G/1 queuing system as follows. Messages are generated according to a

stationary renewal process A(t). That is, message interarrival times are i.i.d. with
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expected interarrival time 1/A and interarrival variance a1. All demands require an

i.i.d. service time with mean E[s] and variance a..

3.2.2 Stability of GI/G/1 Queues and Queuing Networks

The utilization of a single GI/G/1 server is defined to be

p = AE[s]. (3.5)

A necessary condition for the stability of the queue is p < 1. If either the arrival

process or the service times is non-deterministic, no queue can be stable when p = 1,

and therefore, the necessary condition becomes p < 1. If a work-conserving policy is

used (that is, the server is in service anytime there are demands in the system), then

p < 1 is also sufficient.

Now consider a network of n GI/G/1 queues such that server i has arrival rate A2

and service time mean Elsi]. A necessary condition for the stability of the queuing

network is

pi = AjE[s 2] < 1, Vi.

If service times are identically distributed across all servers, E[si] = E[s],Vi, the

following is a less restrictive necessary condition for the total network utilization:

a Z" - p2 _ AE[s]P =- n < 1. (3.6)

3.2.3 Upper Bound on Waiting Time in GI/G/1 Queue

There is no simple explicit bound on the system time for a general GI/G/1 queue.

However, Kingman's bound proves that

W < a -- a + E[s]. (3.7)2(1 - p)
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This bound is asymptotically exact as p -+ 1. Further, for the M/G/1 queue with

Poisson arrivals, the waiting time is exactly

AE[s2]W = + E[s]. (3.8)

This is known as the Pollacek-Khinchin formula. For the MID/I queue with Poisson

arrivals and deterministic service times, this simplifies to

_E[sjpW = lp + E[s]. (3.9)

3.2.4 Little's Law

Little's Law holds more generally than for a GI/G/1 queue with renewal arrivals. In

its most general form, all that is required is the existence of the following two limits

for a system realization w E Q:

A(t,wo)
A(w) = lim , (3.10)

t-+O t
W(t, W)

W(w) = A = Wi t . (3.11)

The sample path version Little's Law says that when (3.10) and (3.11) hold, N(w) =

limt_.. N(t, w) exists and is equal to

N(w) = A(w)W(w). (3.12)

When time averages exist with probability 1, then N = AW. If A(t), N(t) and Wj

are regenerative, then the expected value version of Little's Law says that

N = AW. (3.13)
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3.2.5 Arrival and Departure Distributions

If a stochastic counting process N(t) increases by one at times tj, j > 1 and decreases

by one at times yj, > ; 1 with probability 1, then for fixed k, if the limits P(L- =

k) = lim_.0o P(L(tj) = k) and P(L+ = k) = lim_.o,0 P(L(y) = k) exist, then

P(L- = k) = P(L+ = k). (3.14)

This is a general version of the Burke's Theorem and may be found in [231.

3.3 Euclidean TSP Tour Length

3.3.1 Asymptotic Performance

Let X1 ,..., XN be independendently and uniformly distributed in a square of area

A and let LN denote the length of an minimum length tour through these points. In

the case that N, the number of locations to be visited on the tour, is large, the length

of the TSP tour may be bounded with the following asymptotic result originally due

to Beardwood, Halton, and Hammersley [3] (see also [17]):

Theorem 1. Given N points uniformly distributed over a region of area A, and

denoting the expected length of the optimal TSP tour through these points as LN,

there exists a constant 0 < 0 < oo such that:

lim LN
N-+oo I

with probability 1. 8 has been estimated through simulation to be /3 ~ 0.72. Further-

more, the variance of the length of the optimal tours scales as

var(LN) = 0(1). (3.15)
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That is, for N large, E[LNI ~vfW1 and further, limN, var(LN

The following result is a generalization of Theorem 1 found in [301.

Theorem 2. If X 1 ,... , XN are identically and independently distributed (i.i.d.) ac-

cording to a general absolutely continuous distribution with density f(x) and compact

support A, then the following limit holds:

lim LN _. f1/2()dx
N-+ooVN- f A

3.3.2 Worst-Case Performance

In the case that N is not large, the average length of a TSP tour through N points

may be bounded by considering a fixed worst case tour through these points.

Lemma 1. Given N locations arbitrarily located in a square region of area B, there

exists a tour through these points of length at most 2v/27NB.

Proof. [Lemma 11 First note that if N = 1, the total time to visit the location and

then return to the starting point, starting from anywhere in the region, is at most

2v/2B, so the bound in the theorem holds. The following is for N > 2.

Divide the region into N cells of area B/N. Consider a tour that begins at an arbitary

location, then travels directly to the center of the upper-leftmost cell. The tour then

travels between the centers of all the cells in a row-by-row manner, working across

and then down through the region. Once all cell centers have been visited, the vehicle

returns to the starting point to complete the tour. Such a tour through the cell centers

takes at most time N i,+ V = /(N+2)B ; v2N-B for N > 2.

The tour through the N arbitrarily located points is performed by following the cell

tour above, but stopping in each cell to visit all of the required locations that are

located within that cell. To visit each location, the vehicle travels from the cell center

to the the location and then back to the cell center. Each of these visits takes at most

%/2B/N. Since there are N locations to visit in this way, the location visits take a
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total of at most 2BN in addition to the cell tour.

Combining this with the cell tour length above, the total tour through the N locations

takes at most 2v2NB.

That is, even when N is not large, the scaling of the TSP tour length is bounded

in terms of N and A in the same way as in Theorem 1, with the scaling constant 3

increased to 2vf2.

3.4 Dynamic Traveling Repairperson Problem

The DTRP considers the case in which demands arrive to a convex environment A

of area A according to some arrival process with demands being randomly located

in the region according to some distribution. A demand is serviced when a vehicle

arrives to the demand location and spends a random amount of onsite service time,

s, to service the demand. To perform these services, there are n vehicles that travel

with bounded velocity < v within A. The average system utilization is defined in the

standard queueing theory sense to be p = AE[s]/n. The demands are to be serviced

in such a way that all demands are eventually serviced and average delay between

arrival and service of the demands, W, is minimized.

In the case that demands arrive according to a Poisson process with rate A and

demand locations are independently and identically uniformly distributed in A, the

average delay of message in the system is:

Theorem 3. (Theorem 2 in [5])

2 AA _ n ( - 2p)
n2 v2 (1- p) 2  2A

for constant -y = 2/3v"2ir.

[6] treats the more general case of non-Poisson arrivals and nonuniform iid demand

distributions. They consider two classes of policies: spatially unbiased and spatially
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biased. Spatially unbiased policies require that the average expected delay of a mes-

sage is the same regardless of the demand location, and spatially biased policies simply

remove this restriction. Therefore, if we are not concerned about the notion of spatial

biasedness, the results on spatially biased policies provide the strongest result. Below

we state two versions of the result in [6] on the average delay over all messages that

arrive according to demand distribution f(() and are served under a spatially biased

policy. The first version is the theorem as stated in [6] for the limit as p -+ 1, and

the second version is a slightly modified proof that is valid for the limit as A/n -+ oo.

Theorem 4. (a) Theorem 2 from [6]

lim(1 - p) 2W > 2-2AE[f])
P--*1v 2n2

where y> -a.

(b) Theorem 2 from [6] (modified) If both o - 0 and so AE 2 -+ oo, thenvn n

W - A(E[f 2/3 1 3

V2(1 _ p)2n2j

Theorem 4(b) follows with a slight modification of the proof in [6], which may be

found in the appendix.
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Chapter 4

Universal Lower Bounds

With the preliminary details in place, we turn to the first major result of this thesis. In

the Dynamic Pickup and Delivery Problem, vehicles must pause at a service location

for the duration of the message pickup and delivery service times. This implies that

while vehicles are traveling, they are not performing work, in the sense of directly

servicing a single message. This restriction implies a lower bound on message delay.

This lower bound will be valid for any scaling of the parameters A(n), n and p and

therefore we call it a Universal Lower Bound.

Two versions of this Universal Lower Bound are presented in this chapter. Both

lower bounds take the same form, but the proofs are much different depending on

the assumptions required. The first version holds when the arrivals to each vehicle

are Poisson and various limiting distributions of delay and number in system hold.

Because the internal arrivals in the Single Relay system are not Poisson, the second

version was developed to hold for general arrivals. In fact, this results holds in the

absence of these limiting distributions for general arrivals, but requires the use of a

batching service policy.

The Universal Lower Bounds will be combined with lower bounds derived from the

DTRP and the onsite service time in the main theorems of this thesis in Chapters 5

and 6.
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4.1 Universal Lower Bound for Poisson Arrivals

Theorem 5. For any stable policy for the No Relay DPDP for which the following

properties hold:

1. Arrivals to each vehicle are independent Poisson processes,

2. onsite message service can only occur when a vehicle is stopped at the message

service location,

3. W, N-, N1', Nj-, N2 have limiting distributions for all i,

4. A Av == Wi > Wi', and

5. pi = 2A(n)g(n)/n < 1

the expected message delay W is lower bounded as follows:

c1V4
W > c A

- (1 - p)

where c1 ~ 0.52.

This proof requires two main steps. First, a lemma relating the delay while the

vehicle is in onsite service time to the total delay is proven. Then, this is combined

with travel delay to derive the result.

4.1.1 Preliminary Lower Bound for Single Vehicle

First, we have the follow Lemma bounding E[Wo,] for a single vehicle with arrivals

of rate A.

Lemma 2. When each of the following distributions exist for a single vehicle i: W,

Wo,i, NT~, Nj'., I, N, the onsite service time and total service time of messages

served by that vehicle are related as

Woi > piWi
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where pi = 2X9(n).

Proof. For this proof, we shall drop the reference to the vehicle index i and assume

that the limits over the message index j are taken only for j that are served by vehicle

i, that is, j E {(i 1 , i2 ... , ij, ... ) : W(ij) > 0}. First, we find the relation between

Wo(j) and W(j) for an individual message, and then we take the appropriate limits.

For a work-conserving system, these two measures are the same, that is, the system is

always in onsite service while there are messages in the system waiting to be served.

Wo, 2(j) is equal to the sum of three terms: 1) the time, denoted by R(tj), to complete

the service of the message (if any) in service when message j arrives, 2) the total

number of complete pickups and deliveries completed in the interval [tj, y,) of length

W(j), multiplied by the service time 9(n), and 3)the message's own final delivery

service. If R(tj) = 0, that is, there is no message in service at time tj, then in terms

of the service completion processes, V(t) and D(t), Wo(j) is defined as

Wo(j) = 9(n) [(V(yj) - V(tj)) + (D(yj) - D(tj)) + 1].

If R(t3 ) > 0, then the completion of the message in service at time t3 is already

included in the difference (V(yj) - V(tj)) + (D(yj) - D(tj)). To add R(tj), we must

first subtract this service. Adding in the final service of the selected message itself

yields

Wo(j) = 9(n) [(V(yj) - V(tj)) + (D(yj) - D(tj))] + R(t).

In either case, because we are looking for a lower bound, we may ignore the residual

terms and use the following bound:

Wo(j) ;> 9(n) [(V(yj) - V(t,)) + (D(yj) - D(tj))]. (4.1)

We may compute the number of services by relating them to the number in system
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processes and the arrival process.

V(yi) - V(t3 )

D(yj) - D(t)

= A(yj) - A(tj) - N(yj) - N(tj)

= V(yj) - V(tj) - N2 (yj) - N2 (ti)

Because N1 (t) and N2(t) are both unit increment/decrement processes, 9 t f+

(and likewise for N2 ) when these distributions exist. In particular, E[TI = E[91].

Further, the Poisson arrival rate implies that, for each interval [tj, yj1,

E[(A(y) - A(tj))] = AE[(y - tj)]. (4.4)

Combining these two facts, and taking limits, we have

lim E[(V(y) - V(tj))]
- [ ))

lim E[(D(yj) - D(tj))]
3--+00

= lim E[(A(yj) - A(tj))]

SA lim E[(y, - tj)] = AW

- lim E[(V(yj) - V(t))]

SA lim E[(y 3 - t)] = AW.
3--+00

Therefore, combining these with equation (4.1) and adding back in the i notation

Wo,j > 9(n) [AjW + AjW]

>i pWi (4.7)

El

4.1.2 Universal Lower Bound for Multi-Vehicle

With this Lemma in place, we complete the proof of Theorem 5.

Proof of Theorem 5. Consider the total waiting time W(j) of a randomly tagged

message j. Because onsite service can occur only when the vehicle is not traveling,
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the waiting time may be divided into two parts: WT(j), the time that the vehicle

is traveling between message locations, and Wo(j), the time the vehicle spends in

onsite service. Wo(j) includes the onsite service time of the tagged message as well

at the onsite service times of any other messages served between the tagged message's

arrival and final delivery service.

Recall that W = WT + Wo. The travel time may be bounded by the time to travel

the expected distance between the source and destination locations of the randomly

tagged message . The actual time in travel may include deviations from this straight

line distance, and so this term is a lower bound on WT(j). Because sources and des-

tinations are independently and uniformly distributed, this distance is clxi/, where

the constant ci ~ 0.52 (see equation (3.4)). Therefore

WT c1 /4
V

For the onsite waiting time, we have the following claim:

Wo : pW. (4.8)

This does not follow immediately from Lemma 2 which was proven for a single vehicle

only. However, taking the weighted sum of these terms for each vehicle and applying

the definitions in equations (2.19), (2.20), and (2.29),

W O,i A p W , (4.9)
i=1 i=1

Wo n AZ W (4.10)
ni1

>pW. (4.11)

The implication of (4.10) from (4.9) is given by the assumption that W and Wp are

both increasing functions of Ai (and therefore of pi).
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Combining these two formulas

W & VxA+ pW

> .v- (4.12)
-~v(1 - P),

4.2 Universal Lower Bound for Batching Policies

The above proof requires Poisson message arrivals and the existence of certain limiting

distributions. For the single relay DPDP, the arrival condition may not be met for

the internal arrivals that are relayed between vehicles. Modifications of this proof for

more general arrivals require the use of a batching service policy. This proof will also

be valid in the absence of limiting distributions.

Theorem 6. For any stable batching policy for either the No Relay DPDP or the

Single Relay DPDP for which all of the following properties hold:

1. onsite message service can only occur when a vehicle is stopped at the message

service location,

2. Ai : Ail ==* Wi > Wily

3. the number in the batch and the batch overhead time are related by ,

and

4. the appropriate stability condition holds:

(a) No Relay: p = 2A,(n) < 1,

(b) Single Relay: p = 4AW(n) < 1,

the time average system delay is bounded as

- c 1

2v(1 - p)
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where ci ~ 0.52.

4.2.1 Batching Policies Preliminaries

Assume that messages are assigned to batches in such a way that the time averages

of Bk, BA, BkIk, and Ik exist and are finite with probability 1, i.e.

K

lim - Bk < o, w.p.1
K-+oo K

k=1- 2lim - B < 0, w.p.1

K

FI A lim E BkIk < 00, W-P.1
K--+xK

k=1
k

S=lim - I, < 00, W.P.1.
K-+oK

k=1

For technical reasons, we will require the number in the batch and the idle time to

be related by
B2 BI
- > (4.13)
B 7

The proof of Theorem 6 rests on the analysis of a reduced batch system which is

coupled to the original DPDP system in that delay in the reduced system is a lower

bound on the delay in the DPDP system.

Definition 4 (Reduced Batch System). The reduced batch system is a system under

a batching policy in which messages at the batch processor or in the batch queue are

ignored. That is, in the reduced system, service requests do not arrive until just before

the batch to which they belong begins service. Comparing this to the original system,

delay between the time a message arrives and is assigned to a vehicle and the beginning

of its batch service is ignored.

The following proof comprises an analysis of the reduced system.
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4.2.2 Preliminary Lower Bound for Single Vehicle

Analogous to Lemma 2, we have the following Lemma bounding the time spent in

onsite service.

Lemma 3. If inequality (4.13) holds for a batching policy then for a single vehicle in

the reduced system

, O'i A Wi
2 - pi

with p = 2A(n),(n)/n < 1 for No Relay DPDP and p = 4A(n)§(n)/n < 1 for the

Single Relay DPDP.

Before proving Lemma 3, we present and prove Lemma 4 below which makes a state-

ment about the number in system at individual vehicles. The proof of Lemma 3 will

then relate the number in system to the delay at a single vehicle. First, define NO,

to be the time average number in the vehicle queue when the vehicle is in onsite

service and N,i to be the time average number when the vehicle is not in service of

an individual message (either traveling or idling). Assume that both averages exist

and are finite.

Lemma 4. The following inequality holds for the reduced system under any batching

policy which satisfies (4.13):

No,j > 2

for all vehicles i in the multi-vehicle system. That is, the average number assigned to

a vehicle when the vehicle is not in service is no more than twice the average number

when the vehicle is in service.

Proof. [Lemma 4] Examine a single batch k that is served by vehicle i with Bk,i

messages and Ik,i total travel time between service locations to fully serve the batch.

For ease of notation, we will drop the references to the vehicle i for the remainder of

the proof of this Lemma.

By the definition of the batching policy, all of the Bk messages must be assigned to the
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vehicle before any deliveries of these messages can occur. Because subsequent arrivals

are ignored in the reduced system, this implies that the number in the reduced system

is exactly Bk at the beginning of the batch and at most Bk for the duration of the

batch. Therefore, letting N,k be the number of messages in the system during the

travel time in this batch, Nk < Bk .

Further, during the delivery phase, the number in the system falls from exactly Bk

to 0 in unit decrements. The decrement from value Bk - j + 1 to Bk - j occurs

immediately after 9(n) time has been spent serving the jth message. Averaging over

each of these increments, the average value is exactly half of the peak value, that

is, NO,A = Bk/2. Therefore, the inequality (4.14) holds over each of the batches

individually.

Now compute the time averages of No and NI. Because 29(n) service time is required

for each message, the total time in onsite service is in each batch exactly No,02§(n).

Therefore, each batch in No sum is weighted by the number of messages served by

that batch, Bk.

NO lim K B Bk
k=1 k=1 kB

K 2~
- K~~oo2Z~Bk= limK

K-+ioo k=1 2 k=1 Bk

(4.14)
2B

On the other hand, in NI, the batches are weighted by the time spent traveling. N,

also includes idle time between batches that is not accounted for in the sums below.

Accounting for this idle time would only further reduce the actual value of N1 .

K Ik

N 1  lim E Bk EKK--+oo k=1 k=1 'k

=B= (4.15)-I
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Combining equations (4.14) and (4.15), and recalling the inequality (4.13), we have

-- 1 B2 BI N,
NO = => >-

=2~ B7 - 2

Therefore, we have proven that when (4.13) holds, (4.14) holds as well. E

Finally, we prove Lemma 3.

Proof. [Lemma 3] Define To,j to be the total time in the interval [0, T] in which the

vehicle i is in service.

N- im f N1(t )dt < Jim Ni(t) [1o,j(t) + 11,j(t)] dt
T-oo T T-oo T

f N N((t))1,((td)dt T (K Noi Jim ---+N1  +

0 Ni (t) 1 1,j(t) dt T-T~
T - TO,j T

< NO,j lim -- I + Ni lI~m ''.To~
T-oo T T--oo T

We have the following bounds on To,j:

(Ai(T) - Ni(T))29 < TOj K Ai(T)2,.

The left hand side bound is the total time spent to service all messages that have

already departed, and the right hand side is the time spent to service all messages

that have arrived. Dividing by T and taking limits on both sides yields

lim (Ai(T) - Ni(T))2 . To < Ai(T)2(n) (4.Ki lim < lim .2 T2~n (4.16)
T-+oo T T--+x T T- -* T

Because we assume that the limit Ni exists and each message is in the system for at

least 29 > 0 time, we must have limT,+oo Ni(T)/T = 0 (see Lemma 15 in Appendix B

for an equivalent proof). Therefore the left hand and right hand limits of (4.16) are
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equal and

lim u 'r = 2Aig(n) = pi. (4.17)
T-+oo T

Ni, the unconditioned average number assigned to vehicle i, is given by

Ni 5 piNo,2 + (1 - PIi.

Substituting in the result of Lemma 4 above yields

N~ pijNo,i + 2(1 - pi)No,i

S(2 - pj)NO,4,

and therefore

No,j 2 - p. (4.18)

Little's Law may be applied to the single vehicle system relating Ni and NO,i to W

and WO,j respectively. Given the definition of Ai in (2.15) and the assumption of the

existence of the time average Ni, then NT = AW. The application of Little's Law to

the onsite system formed by deleting all times in which the system is not in service

is less straightforward. See Appendix B for the full details of this proof. Briefly,

because messages are always being served in the onsite system, messages complete

service in the onsite system at a fixed rate of 1/9 with no idling. Because half of

these service completions are departures, this implies that the departure rate from

the onsite system is 1/29. For stability, the arrival rate to the onsite system must also

be 1/29, and the corresponding Little's Law result is NO,j = WO,j/29. Therefore, the

following is equivalent to equation (4.18):

1-- A2W21-WOi > A~
29 '- 2- pi

WO'i pi Wi

Wor a s2- pi

for a single vehicles i. E
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4.2.3 Universal Lower Bound for Multi-Vehicle, Batching

Policies

Similar to the final proof of Theorem 5, these single vehicle onsite service results may

be combined with the expected travel time to provide a lower bound on the overall

delay.

Proof. [Proof of Theorem 6] Again recall that because a vehicle is stationary whenever

it is performing onsite service, message delay may be partitioned into time spent

traveling plus time spent in onsite service, i.e. W = WT + Wo.

The average total travel time, WT, is lower bounded by the expected straight line

distance between the message's source and destination. As before,

WT =WT > c1
V

To compute Wo, take the weighted sum of the terms of Lemma 3 and apply the

definitions in equations (2.19), (2.20), and (2.29),

i=1
Awo'

p'' Li (We +WO,) ,i=1

En AWi + W _,i 

1
> -p(W+Wo)2

> 2 W.
- -p
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Combining this with the expected travel time we have

W > WT+WO

c19 vv+ PW
2 - p

2 -p civ I
2 v(1-p)

1 cv'A
2v(1 -p)

where p = 2A(n)s(n) or 4(n)s(n) as appropriate. The final equation is the desired resultn n

of Theorem 6.

4.2.4 Universal Lower Bound Corollary for Batching Policies

Before interpreting the previous results, we provide the following Corollary which

provides some more intuitive conditions under which (4.13) and Theorem 6 hold.

Corollary 1.

W civ'A
2v(1 - p)

for any batching policy such that p = 4< 1, the limiting expectations E[Bk], E[Bk2],

E[ BkIk], and E[Ik] exist, and at least one of the following conditions is satisfied:

(a) Ik and Bk are uncorrelated or negatively correlated random variables.

(b) E[Bk|Ik] is either a constant or a linear function of Ik, i.e. E[Bk|Ik] = J or

E [BkI k] = -yIk for some 6, y E [0, oo).

(c) E[IkI Bk] is an affine function of Bk for some a E [0,1], i.e. E[Ik Bk] = -tBk +6

for some 6, y E [0, oo), a E [0, 1].

Proof. [Corollary 1J If condition (a) holds, then E[BkIk] 5 E[Bk]E[I]. Then equa-

tion (4.13) is equivalent to

E[Bk] - E[Ik]
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since E[X 2] E[X]2 for any random variable X.

If condition (b) holds, then equation (4.13) is equivalent to either

N LB NBE[Ik]- > <= NB :!NB
NB - E[Ik]

(4.20)

or

7 2 E[Ik]
7E{Ik]

> -yE[Ik]
- E[Ik]

(4.21)

To show the proof when condition (c) holds, we first have the following set of equalities

implied by the bounds on E[Ik|Bkl:

E[Bk]E[Ik] = E[B IE[E[IklBk]] = yE[Bk]E[Bk] + E[B] 6

E[BkIk]E[Bk] = E[E[BkI|kBk]]E[Bk] = 7E[Bl+]E[Bk] + E[B] 26.

Again, because E[Bk] E[Bk] 2, the 5 terms cancel and it remains to show

E[B ]E[Ba] E[Bl+a]E[Bk]

for 0 < a < 1.

Let p, = P(Bk = q). Then, expanding (4.22) in terms of the pq yields

E[B E[Bk ] = q2p)~aq
q=1 (q=1

00 00

= E q2r pqpr
q=1 r=1

00 0= E ql+a P
q=1

o

q=1
00 00

= E q+arqpr-
q=1 r=1
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Matching the terms multiplied by pqp, = ppq, it remains to show

q2a +r2 a > +q 1+a

for all pairs (q, r) E Z+ x Z+. Without loss of generality, assume q > r. For a E [0, 1,

we have the following series of equivalent inequalities:

q(q 1-a  -a r(q1-a -r 1-a ,

2-a _ 1-a 1-a _ r2-a

q2-a + r2- rq1-a + gr1-,

qara (q2-a + r2-a) qara (rql-a + qr-) ,

q2r" + r2qa 1+r + r1+a

Therefore, the theorem holds when condition (c) is true.

Remark: Note that the corollary holds when Ik is affine in Bk. However this does not

hold if Bk is affine in Ik. In that case

E[(aIk + b) 2]E[Ik] = a2 E[Ik]E[Ik] + 2abE[Ik]2 + b2E[Ik]

E[(aIk + b)Ik](aE[Ik] + b) = a2 E[Ik]E[Ik] + abE[Ik]2 + abE[Ik] + b2 E[Ik]

but abE[k]2  ; abE[Ik].

4.3 Conclusions

In this chapter, we have proven two versions of a Universal Lower Bound for the

DPDP. The Poisson proof was fairly straightforward, but has relatively strong as-

sumptions, requiring Poisson arrivals and the existence of certain limiting distribu-

tions. The batching proof held under weaker system assumptions but required the use

of a specific type of service policy. A proof holding under these weaker assumptions
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is required for the Single Relay DPDP because the relay arrivals between vehicles

destroys the property of Poisson arrivals to a single vehicle.

Each of the two proofs was based on partitioning total delay into two parts: delay

while traveling and delay while in onsite service. In both bounds, the travel de-

lay is bounded by the time to travel the expected distance between the source and

destination locations of a given message. The onsite time was bounded in terms of

the system utilization and the total delay, but the specifics of this bound differed in

the two versions of the proof. In either case, this proof method linked the classical

analysis of work-conserving queues to the inherently non-work-conserving systems of

vehicle routing.

We call the lower bounds in this chapter universal because they hold for any scaling

of the arrival and message service parameters and under relatively weak requirements.

We will provide other lower bounds in the following chapter that are not universal in

the sense that they only apply for certain scalings of the system parameters. These

new lower bounds will be tighter than the universal lower bound in the regime in

which they apply, and so will be useful in constructing a tight lower bound over all

parameter scalings.
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Chapter 5

No Relay DPDP

In this chapter, we provide complete lower bounds on the Dynamic Pickup and De-

livery Problem in the case that the vehicle that picks up a message must be the one

to deliver it. In particular, we prove the following two theorems:

Theorem 7. (a) For any policy in Iso under the Source Only information struc-

ture, the average delay per message is finite only if p = 2A(n)g(n)/n < 1 and it

is lower bounded as

Wso max f2 A(n)A _ n(1 - 2p) cvfA 2
V2(1 - p)2n 2A(n) v(1 - p)

with constants -y = 2/3vf and ci ~ 0.52.

(b) Further, if p < 1 then there exists a policy using Source Only information, for

which the average delay is finite and is upper bounded as

W3OO( 2 (n)A )±01Wso = 0 An 2 + 0 NA + 0(9(n))V2(1 _) pn) v(1 - p)

for all A(n). Therefore the lower bound scaling is achievable, and p < 1 is

necessary and sufficent for stability.

Theorem 8. (a) For any policy in I1 SD under the Source-Destination information

structure, the average delay per message is finite only if p = 2A(n)§(n)/n < 1.
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In that case, the following lower bounds hold. If both -- oc and X$ -+

o, then

WSD ( A(n)A + Q ( "
v2(1 - p)2 n3/ 2  v(1 p P)

(b) Further, if p < 1 then there exists a policy using Source and Destination infor-

mation for which the average delay is finite and is upper bounded as

A(n)A ( v/__
WSD 0(V 2 (1 A p)2n3/2 + v(1 -)

for all A(n). Therefore the lower bound scaling is achievable and p < 1 is

necessary and sufficient for stabilty.

5.1 Lower Bounds on Average Delay

In this section we prove the claimed lower bounds of Theorems 7(a) and 8(a) for

arbitrary policies. Policies achieving these lower bounds will be described in section

5.2.

Each lower bound comprises three terms. The first term of each is proven in the

following sections. The second and third terms are the Poisson Universal Lower

Bound from Chapter 4 and the trivial lower bound provided by the service time of a

single message respectively.

Both lower bound proofs in this chapter follow the same general method based on

successive relaxations of the main optimization problem OPT. First, by fixing certain

qualities of the assignment distribution of an individual vehicles, we may lower bound

the delay over all valid service policies by relating the single-vehicle two-stage DPDP

to a corresponding single-vehicle single-stage DTRP. With these single vehicle lower

bounds, a new optimization problem may be defined over the collection of vehicles
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as a function of assignment policies only. This optimization problem may be further

reduced such that the optimization is in terms of A only, ignoring all other details of

the assignment distributions.

5.1.1 A Relaxation of OPT

We first formulate a relaxation of the main optimization problem, OPT, for the No

Relay DPDP. Every control policy 7r = (irA, 7rs) induces an average delay function

for each vehicle, Wi(rA, rs) : 1 A x Js -+ [0, oo). Now suppose we have another set

of single vehicle functions that are functions of the assignment policy only, W*( rA) :

HA -+ [0, oo), such that W*(7rA) 5 W(7rA, 7rs), Virs E 1 1s. W*(7rA) provides a lower

bound on the delay achievable by service policy for a given assignment policy. For

example, W* (7rA) = 0, VWrA satisfies these conditions, but we will use results on the

DTRP to construct tighter service lower bound functions.

Combining a given service lower bound function Wi*(7rA) with the constraints on irA

provided by the relevant information structure, we have the following relaxation of

the optimization OPT.

OPT*: min W*(7rA) (5.1)
1Pi(X'YMi=1

s.t. W*(7rA) Wi(7A, 7s), Virs
n

Ai(irA) = A
i=1

A2(lrA) = Ajjpt(x,y)ddy, Vi

1
Pi(7 ) 2,Vx, y EA

p (x, y) = >i(x), Vy, i (If Source Only)

OPT1 minimizes the weighted sum of lower bounds on the average delays over all

vehicles by the selection of a valid assignment policy. The weights are given according
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to a joint constraint on the policies used by the individual vehicles. The lower bounds

arise by bounding the delay that may be achieved by any service policy given the fixed

assignment policy. If the minimum is finite, each of the Wi(7r) must be finite as well

and the system is stable.

To compute lower bounds on delay at a single vehicle as a function of rA, we must

also take into account the constraints on pj(X, y) for a single vehicle i. Equations

(2.1) and (2.14) provide characterizations of valid collections of densities {pi(x, y)} U'

for the No Relay DPDP. These equations also provide useful bounds on the density

pi(x, y) for a single vehicle i.

Recall the following notation: let Ee[g(-)] denote the Lebesgue integral of g(-) with

respect to the variable 0. Assume that the arrival rate of messages to be served by

vehicle i is fixed to be Ai. Then, from the definition of A2 in equation (2.14) we have,

Ex[Ey(pi(xy)]] = k. (5.2)

That is, each pi(x, y) is a scaled probability density with scaling Ai/A.

By definition, pi(x, y) > 0, V(x, y). Further, from the defining equation (2.1),

pi(x, y) -. This implies
A2 x, y) E 1, (5.3)

In the following two sections, results from the DTRP will be used to bound Wi*(7rA)

as a function of the arrival rate A only, providing further relaxation of OPT1 . This

relaxation will lead directly to the derivation of the main lower bounds.

5.1.2 Lower Bound: Source Only

Because destination locations are not known immediately upon message arrival, this

information may not be exploited when assigning messages to vehicles. This implies

that the performance of each single vehicle system may be lower bounded by a single
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vehicle DTRP with uniform service locations corresponding to delivery only.

Proof of Theorem 7(a). Consider a fixed stable assignment and service policy in I1so.

Each message is assigned to its vehicle immediately upon arrival. Consider the queue

of message assigned to vehicle i which arrive according to a Poisson process of rate

Ai.

To lower bound the average delay of messages at vehicle i, we consider a simplified

system in which the same message assignment process holds, but messages arrive

directly at the vehicle. For consistency of the p notation, let the onsite service time

for delivering each message be 29(n). This delivery problem may be formulated as a

single-vehicle Dynamic Traveling Repairperson Problem with a Poisson arrival process

of rate A1 and onsite service time 2§(n) for delivery. Because vehicles do not spend any

time traveling to pickup messages, this simplified system naturally has lower delay

than the original DPDP system. To apply the DTRP results and compute Wi*(7rA), it

remains to compute the service location distribution associated with a single vehicle

under any policy in I1so.

Since the distribution of destination locations is independent of the source locations

and may not be exploited by the message assignment policy, the distribution of the

destination locations of the messages assigned to a single vehicle is the same as that

of the overall destination process for any assignment policy. That is, for any pol-

icy in IIso, each vehicle will service messages with destination locations distributed

uniformly in A. Thus, to obtain a lower bound on the single vehicle DPDP, it is

sufficient to compute a lower bound on the delay of a Dynamic Traveling Repairper-

son Problem with a Poisson arrival process of rate Aj, uniformly distributed service

locations, and onsite service time 29(n). Applying the DTRP results of Theorem 3 to

this formulation, we obtain the average delay for messages served by a single vehicle

with message arrival rate A1:

AjA 1 - 2p(W 2 ( - (5.4)
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This DTRP lower bound is a function of the message arrival rate A only; no other

details of the assignment distribution are required. Therefore, we may then bound

the solution of OPT* by further optimizing over the collection of {Ai}?=1 of valid

assignment policies:

OPTso: min -Wi > min - 2 _ _ _ I _(5.5)

{} _A {&}&1 A V2(1 -_ pT) 2Ai
n

i=1

The optimization over the set of all {pi(x, y)}!i has been replaced by the relaxed

restriction on the sum of the Ai.

Removing constant terms and noting that E pi = Zi=- 2Ais() = rp, this is

equivalent to:

min (5.6)
m =m (1 - p)2 (1 - 2Ai)2

S.t. ZAi =A.
i=1

This optimization is straightforward to solve. Briefly, this is a minimization of an

equally weighted sum of convex single vehicle functions, subject to an equally weighted

sum constraint. By the symmetry of the weights, we find that the optimal solution

is ) = ~,Vi. In this case, pi = 2A(n)9(n)/n,Vi. By the symmetry of this solution,

the weighted average lower bound is the same at the lower bound for an individual

vehicle. Substituting Ai = A(n)/n into (5.4), we have the following lower bound on

the average delay over all vehicles:

W A(n)A _n(1 - 2p)
WSo _Y v2(J - p)72n 2A(.) (5.7)

To complete the proof, we combine (5.7) with the universal lower bound in Theorem

5 and the trivial lower bound given by the total service time per message.
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El

5.1.3 Lower Bound: Source and Destination

If both the Source and Destination locations are known upon message arrival, assign-

ment policies may exploit this information to limit the area covered by each vehicle

in making its pickups and deliveries. This has the effect of reducing the minimum

average delay of messages in the system.

Proof of Theorem 8(a). Consider a fixed stable assignment and service policy in IISD.

As before, we will consider a simplified system in which the same message assignment

process holds and each message requires a single service of length 29(n). Now however,

we let the DTRP demand location associated with each message be selected uniformly

at random between the source s(j) and the destination d(j) of the message. That

is, instead of performing delivery only as above, this DTRP visits exactly one of the

pickup and delivery locations for each message, with either location being chosen with

probability 1/2. The distribution of demand locations arriving to this DTRP queue

is the uniform mixture of pickup and delivery locations served by vehicle i, f2(().

A 1A
MO(( = -[Ex[pj(-, ()]+ Ey[pj((, -)]]. (5.8)2 A1

This DTRP queue fits the framework of the single vehicle Dynamic Traveling Repair-

person Problem with generalized demand distributions. Then, according to Theorem

4, we have the following bound on minimum delay for a single vehicle policy with

demand distribution f2((), arrival rate A2, and p = 2Ajg. If both AiE[X/7] 2 --+ o and
AjE[ fi] -+ 00 then

V

Wi = 0 ( ( (5.9)
V2(1 -_ p)2

For now, we will assume that the scaling conditions hold and check for the required

conditions when we have derived a valid fi.
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Because W is dependent on the distribution of the service locations, not just the net

arrival rate, an extra step is required to define a relaxation of OPT in terms of Ai

only. The definition of fi(C) in (5.8) implies the following two lower bounds:

E[f/ 3] > 2/3 Ec[E [p,(X ()12/ 3] (5.10)
2Ai

> -- 2/ EC [Ey[pi ((, y)12/31. (5.11)
2Ai

Each of the individual pi(x, y) have the following basic constraints (see (5.2) and

(5.3)):

Pi(X, y) E 0, 7 (5.12)
SA2

Ex[Ey[pgi] = A. (5.13)

We may combine the two lower bounds above to form the following single vehicle

optimization problem OPT1 which will then be used to lower bound the delay of a

single vehicle policy with fixed arrival rate Ai:

OPT1 : min ( Ec (E[pi(x, ()])2/ 3] + E[(Evfpi((, y)])2/3])px,v) 2

subject to p2 (x, y) E 0, ],[ A2

Ex[Ey[pi(x, y)]] =Ej[Ex[pi(x, y)]] = Ai

We now show that OPT1 is a concave optimization over a convex set. Consider

a convex combination of two densities satisfying (5.12) and (5.13), i.e. pi(x, y) =

ap! (x, y) +(1- a)p? (x, y),Vx, y E A. It is easy to see that the set of valid probability
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distributions satisfying (5.12) and (5.13) is convex. Then, by the concavity of (-)2/3,

(Ex[p3(X, ()]) 2/ 3 = (aEx[pj(x, C)] + (1 - a)Ex[p (x, ()]) 2/3

> a(Ex[pj(x, ()]) 2/ 3 + (1 - a)(Ex[p2(x, ()]) 2/37

EC[(Ex[p3(x, ()]) 2/3] ;> aE([(Ex[pj(x, ()]) 2/3] + (1 - a)E([(Ex[p2 (x, ()]) 2/3].

Therefore both of the lower bounds (5.10) and (5.11) are concave in pi(x, y) and so is

their sum. Thus, OPT1 is a concave minimization over a convex set. Hence, it must

attain its optima on the boundary of the feasible bounded convex set.

The boundary of the constraint set defined by (5.12)-(5.13) implies that pi(X, y) E

{0, 1/A 2 } for all (x, y) (almost surely w.r.t. Lebesgue measure). Condition (5.13),

along with this implication, will provide the following complete characterization of

boundary:

p(X, y) = for all x E A, yEAI (5.14)
10 otherwise

for some regions A", At c A with areas such that A'A' = A .

To minimize the cost function in OPT2, we must select the boundary points where

the areas of A' and A' are equal, i.e. both are equal to A V .

For any pi satisfying the above properties we have:

Ex[p(x,)] A 1

and

EC[E[p,(x, ()]2/3] = A (2= A 1/3 Ai)!
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and therefore the bound (5.10) on E fi13 ] becomes

E[f2/ 3] >( Ec[Ex[pj(xj)] 2 /3] = A1/3  . (5.15)

Cubing this and then substituting this bound into equation (5.9), we thus have the

following scaling for W:

Wi = --- .i (5.16)

The condition required for this to hold is for both AjE[ _-+ co and also AiE[ __
V 1

oo. As above, we may bound

E[V/fi] > A1/2 ./ (5.17)

Squaring this, the conditions required for (5.16) to hold axe 1 - mc and also

This result lower bounds the delay achievable by any service policy for a single vehicle

in terms of Ai only. We may again lower bound the solution of OPT1 by further

optimizing over the collection of {Ai} 1.

n A
WSD A Wi. (5.18)

i=1

We then construct OPTSD.

" A. -Y2 AjA -
OPTSD: min 2 (1 _ p 2  (5.19)

{} A 4 v2(1 - p,) 2 A
n

S.t. ZAj =A.
i=1

Repeating the analysis that led to the optimization problem (5.6), the corresponding
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optimization here is:

min A5 2 (5.20)
=, (1 - 2Aj)2

n
S.t. ZAi= A.

i=1

For the same reasons as before, this average delay is minimized with all Ai equal to

A(n)/n and again pi = 2A(n)9(n)/n,Vi. The scaling condition is then " -+- 4

and A(n)A -- oo and the delay scaling is

WSD = Q ( (A. (5.21)
(V2(j - p)2n3/2

To complete the proof, we take a convex combination of (5.21), the universal lower

bound in Theorem 6, and the trivial lower bound given by the total service time per

message.

0

5.2 Policies

In this section, we describe two policies that achieve the delay performance claimed in

Theorems 7 and 8 for Source Only and Source Destination information respectively.

These policies provide additional insight into the effect of information structure on

achievable delay. Furthermore, both policies achieve the lower bounds presented in

the previous section.

5.2.1 Source Only Policy

Recall that in the Source Only information structure, vehicles do not know the desti-

nation of messages before they are picked up, thus this information may not be used
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by vehicles in deciding which messages to pick up. In fact, in the source only policy

described below, each message is assigned to any of the vehicles at random. We note

that "smarter" message assignments are possible to minimize the vehicles' time spent

in picking up messages. For example, a vehicle could be assigned all messages that

arrive in a given limited area. However, since the vehicles must still traverse the whole

region to deliver messages, regardless of assignment policy, the vehicle deliveries will

dominate the delay and no message assignment process with only source information

can improve the order of the performance for large arrival rates.

A complete description of the policy is given below.

(a) Message Assignment. Upon arrival, each message is assigned to one of the vehi-

cles uniformly at random. The message is not immediately picked up, but the

vehicle is notified of the message assignment and records the source location

information of this message. Since the message assignment is a uniform split-

ting of the Poisson message arrival process, the assignment of messages to each

vehicle is Poisson with an expected arrival rate of A/n. All messages assigned

to a single vehicle that arrive in the interval [kT, (k + 1)T) form a batch, where

T, the batch time interval, is a parameter to be determined. Each batch is

deposited into a queue for its assigned vehicle upon formation at time (k + 1)T

for appropriate k.

(b) Message Service. Batches for each vehicle are served in First Come, First Serve

order from the vehicle's batch queue. Pickups are performed along a TSP

tour through the source locations which is computed at the beginning of the

interval. Once pickups are complete and destination information is collected, a

TSP tour through the delivery locations is constructed and the deliveries are

performed accordingly. To perform each service, the vehicle stops at the source

(destination) location for §(n) time to pickup (deliver) the associated message.

Proof of Theorem 7(b). Consider the queue of batches assigned to an arbitrary vehicle

i. Note that by the symmetry of the vehicle policies, the average delay of messages
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at a single vehicle is the same as the average delay over all vehicles. Since the batch

interarrival time is fixed at T, the batches form a D/G/1 queue. This batching

protocol is stable if and only if the expected time to service each batch of messages,

TB, is less than T, the expected time between batch arrivals. The first part of the

proof bounds T in terms of the system parameters so that this stability condition is

met.

The batch service time requires two TSP tours, one for pickup and one for delivery,

plus the associated onsite service times to perform each service. Let NT be the number

of messages arriving in [kT, (k + 1)T) that are assigned to vehicle i. Therefore, using

Theorem 1 to bound the travel time required for each of the shortest paths (pickup and

delivery), the total expected service time required to service the messages accumulated

in [kT, (k + 1)T) is:

1E[TB] = 2E[1-E[LNT|N/] + NT(n)] (5.22)

V

< 2013-V E[NT] + 2E[NT]§(n) (5.24)
V

= 23-V1 - +2 AT§(n) (5.25)
V n n

where (5.23) is by Theorem 1, (5.24) is by concavity of j, and (5.25) is given by the

Poisson distribution of NT.

Therefore the following bound on T is sufficient for stability:

T > 28 [ T + pT ;> E[TBVv2rt

= T > 2  (5.26)V2(1 _ p)2,n

Because we are not interested in the tightness of the constants, we may upper bound

the TSP tour time by a worst case tour and let 8 = 2Vf.

The second part of the proof uses the batch interval time T to compute the average
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message delay. For the remainder of the proof, fix T to be:

_ 4#32AA
T = 2  A 2  (5.27)

for some r,> 1.

Message delay has four components: 1) time waiting for batch to form, 2) time batch

spends in queue, 3) time waiting for service of other vehicles in batch, and 4) time

of own service. Since batch interarrival time = T, each message waits at most T for

its batch to form, bounding 1). Letting TQ denote the expected amount of time the

batch spends in queue, 2) may be bounded using the following lemma:

4/32AALemma 5. For the policy in Theorem 7(b) with batch time T = K for some

K > 1, the delay of the batch in the queue is bounded by

TQ = O(T).

The proof uses Kingman's Bound from queueing theory and is largely a matter of

algebra. The proof can be found in Appendix C.

Now consider a randomly selected message. Delay components 3) and 4) may be

bounded by bounding the expected total batch service time for the batch in which

this message arrives. We might expect this batch service time to be upper bounded

by T > E[TB] as well, however this does not take into account that the expected

batch time includes the possibility of batches of size 0 when no messages arrive in

[kT, (k + 1)T) which do not contribute to the average delay over all messages that do

arrive. Therefore, we compute the expected batch service time by first conditioning

on the size of the batch in which a message arrives and then taking the expectation

over this batch size. The upper bound on batch service time will be divided in to two

cases: > 1 and ' \< 1. Both cases begin the same way as below.
n n b

If a message arrives in a batch of size B, according to the worst case TSP tour
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discussion in section 3.3.2, the total service time of the batch may be bounded by

SB : 2 (2Vv 7 VB + B) . (5.28)

By the law of random incidence, a randomly selected message arrives in a batch of

size B with probability

P{message arrives in batch of size B} BP{batch has size B} (5.29)

where the batch sizes axe Poisson distributed with parameter A.

Therefore, the expected batch service time is

4V/V ~k3/2 (A k e

k=1 7T

00

2§(n) Z
k=1

4v/2v' '0 (k+1)1/2 (T)k e- T
Ek!
k=0

2 E[(B + 1)1/2] + 2(n)E[B
V

(AT \N
-1- + 11

FAT

n +

+ 2,(n) +

+ pT + 2,§(n)

(_\T)ke Tk e-n

n
(5.30)

00 (k + 1) (LT-)k e- (531
+ 2,(n) k (Z.31)

k=O

1)

(5.32)

(5.33)

(5.34)

where the first term of (5.33) is by the concavity of (_)1/2.
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For -> 1, L +1 can be bounded by 2 . In that case, (5.34) can be bounded by

AAT
E [SB] < 8 -N + pT + 29(n) (5.35)

A2A2

= 8 V4/24(1 - p)2 n2 +pT+2s(n) (5.36)

AA
= 16/# 2  - + pT + 29(n) (5.37)

V2 (1 - p)n
= 0 ((1 - p)T) + pT + 29(n) (5.38)

= O(T) + 0(9(n)). (5.39)

Combining this with delay components 1) and 2) above, for > 1,

Wso = O(T) + O(9(n)). (5.40)

For " 1, LT + 1 is bounded above by 2. In that case, (5.34) is bounded by

E[SB] < 8V2- + pT + 2U(n). (5.41)
V

Since p < 1, < 'A. Note also that L < 1 implies that for some constants civ v(1-p) n

and c2

A2A < C2 (5.42)
v2(1 _ P)2n2 - 1

V- _ < C (5.43)
v(1 - p)n -
A < C, v(1 - p) (5.44)
n V 2

TA < 2 i-) c~v(1--pp) (5.45)
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Therefore, combining with delay components 1) and 2) above, for A ; 1

Wso = 0 '(A + 0(9(n)). (5.46)
V(1- P)

Therefore,

~.~=o A(n)A~ /ZVWso = 0 +(n)+ +0( + ))
(V2(j - p)2n ) V(1 - P)

for all A(n), and Theorem 7(b) is proven.

5.2.2 Source and Destination Policy

In the Source-Destination information structure, destination information may be used

by vehicles in deciding which messages to pick up. By exploiting this information,

vehicles need not traverse the entire geographical region when servicing messages, but

may instead only pick up messages that have both source and destination locations

in a limited area. In the source destination policy described below, each vehicle is

assigned a pickup region and a delivery region. Messages are not assigned to a random

vehicle as above, but are instead assigned to the vehicle that has the message's source

location in its pickup region and the message's destination location in its delivery

region. Even though the message service policy is similar to that used in the Source

Only policy above, Theorem 8(b) shows that the change in assignment policy made

possible by using both source and destination information has a significant effect on

message delay.

A more complete description of the policy is given below.

(a) Message Assignment. Divide the geographical region into an x grid

of subregions, each of area -A. To each of the n ordered pairs of subregions,

assign exactly one vehicle to service that pair. Each vehicle is assigned to

pickup all messages that originate in the first subregion of its assigned ordered
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pair that have a destination location in second assigned subregion. As before,

all messages assigned to a single vehicle that arrive in the interval [kT, (k + 1)T)

form a batch, where T, the batch time interval, is a parameter to be determined.

Each batch is deposited into a queue for its assigned vehicle upon formation at

time (k + 1)T for appropriate k.

(b) Message Service. As before, batches for each vehicle are served in First Come,

First Serve order from the vehicle's batch queue. Batch pickups and deliveries

are performed in the same way as in the policy with Source only information

with the notable addition of possible interregion travel time between source

region and destination region.

Proof of Theorem 8(b). Service of assigned messages is the same as in the Source

only policy described above except that the TSP tours are performed over possibly

distinct subregions of the environment. Each TSP tour now ranges over a subset of

the geographical region A with area A/4. Travel time between subregions must also

be included in the batch service time analysis. Since the total geographical region is

a square of area A, this interregion travel time may be upper bounded by 21V§4.

Therefore, as before, the total expected service time required to service the messages

accumulated in [kT, (k + 1)T] is:

E[TB] < 2E[1E[LNTINT]+NT9(n)+21V/A]
V V

1 A AT AT 1 (5.47)

F n n V

Again, we may upper bound the TSP tour time by a worst case tour and let / = 2V/.

Therefore the following bound on T is sufficient for stability:

TAA 1
T > fPl' 3

2 /T+ +4vVA [B.(.8
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This equation is quadratic in x/I and may be easily solved for T. Specifically, consider

the quadratic

a(VT)2 + b i+ X > 0 (5.49)

for some a, b and X. Using the quadratic equation, this is satisfied for

T > (-b+Vb2- 4aX) 2  (5.50)
~ 2a

Note that for any parameters a and p

a2 + y: (a + V/I-) 2 < 2(a 2 + L). (5.51)

Using this to bound the right hand side of (5.50) and simplifying

b2 2X
T > V+-- (5.52)

2 a

is sufficient for (5.50) to be satisfied.

Finally, substituting in for a, b and X in the original quadratic of equation (5.48)

T > +42 AA 2 (5.53)
v2 (1 - p) 2n3 /2  v(1 - p)

is sufficient for stability.

As before, the total message delay as a function of the batch time T may be bounded

by fixing a batch scaling constant K and then using Kingman's bound with A = A/l/n

and T = , _4,2 + L . Therefore, skipping several steps which parallel the

completion of the Source Only proof with the altered scaling of the area A and the

addition of the constant interregion travel time,

WSD =0 ( A 2 3/2+ 0 V+ O(). (5.54)
(V2(1 - P)2n /2 ( - P)
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5.3 Conclusions

In this chapter, we have obtained lower and upper bounds on the scaling of the average

message delay for the DPDP with No Relays. Each bound is the sum of three terms.

The three terms of the lower bounds were derived individually. The first term was

derived in this chapter by reducing each two-stage DPDP problem to a single-stage

DTRP with a given demand distribution depending on the information structure in

place. We saw that the information that is available in making assignment decisions

has a significant effect on the delay scaling. The second term, the Universal Lower

Bound, was derived in Chapter 4. The final term is the trivial lower bound given by

the total service time of a single message.

The upper bounds were derived by constructing appropriate policies and computing

upper bounds on their delay performance. Because the three terms of the upper

bounds had the same order as those of the lower bounds, we say that the lower

bounds derived in this chapter are tight.

Further discussion on the scaling behavior of the three bound terms as a function of

the system parameters may be found in Chapter 8.

We note that as long as vehicles are required to perform physical pickups and deliveries

at the source and destination locations, the DTRP lower bound serves as a lower

bound on the DPDP problem. Even with Source and Destination information, the

DTRP bound is still stronger than the DPDP bound by a factor of 1//nA. We will

see in the next chapter that the DTRP delay bound can be achieved by removing the

restriction that the same vehicle that picks up a message is the one that delivers it

via the use of relays.
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Chapter 6

Single Relay DPDP

In this chapter, we consider control policies in which each message may be relayed

exactly once. We will see that such policies approach the lower bound provided by

the single-stage DTRP.

Theorem 9. (a) For any Single Relay batching policy, the average delay per message

is finite only if p = 4A(n)g(n)/n < 1 and it is lower bounded as

W1R ! Max {2 ( (n)A n(1 - 2p) ClVT 2 ()Win2 ax72V2(1 _ p2F2 ~ 2A (n) ' v(1 - p'

with constants -y = 2/3v/2' and c1 ~ 0.52.

(b) Further, if p < 1 then there exists a synchronous single-relay batching policy for

which the average delay is finite and is bounded as

W1R=O( (n)A 22X) +0 (xFA+n3/2r+
V2 (1- _) n, v(1 -p)

Therefore, p < 1 is sufficient for stability. Further, if the interrelay distance

r = 0, the lower bound scaling is achievable.
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6.1 Lower Bound on Average Delay

For any instance of the Dynamic Pickup and Delivery Problem, with or without

relays, the result for the n-vehicle DTRP is a natural lower bound. For consistency

of the p notation, we let s = 49(n) and apply Theorem 3. The universal lower bound

and the straightforward lower bound of the total service time are lower bounds as

well. Combining these three results yields Theorem 9(a).

6.2 Upper Bounds for Single-Relay Policies

In this section, we demonstrate the tightness of the lower bound of Theorem 9(a)

for the four-stage single relay DPDP. We present and analyze a policy which uses a

synchronous vehicle rendezvous schedule to relay messages directly between vehicles.

Under certain assumptions on the vehicle rendezvous locations, this policy achieves

delay with the same order as that of the lower bound.

6.2.1 Synchronous Single-Relay Policy

This policy has two general components, Assignment and Service, with the Service

component being carried out in three phases. A spatially based assignment policy

is used to allow arriving messages to be assigned to vehicles without any real-time

communication between the vehicles. This assignment policy may be initialized by

a centralized controller and then implemented in a decentralized manner by each of

the vehicles.

(a) Message Assignment. The region is divided into a \ x V/ri grid of cells, each

of area A/n. Exactly one vehicle is assigned to each cell and is responsible

for performing all of the pickups and deliveries in that cell. Upon arrival from

outside the system, a message is assigned to the vehicle responsible for the cell

in which the message's source location lies. When a message is relayed from

90



the pickup to the delivery vehicle, it is immediately assigned to the vehicle

responsible for the cell containing the message's destination.

(b) Message Service. Each vehicle has the same basic service policy, differing only by

assignment region. The following service policy is described for a single vehicle.

This policy for each vehicle has three basic steps: Pickup Batching and Service,

Relay and Delivery Batching, and Delivery Service. Each vehicle cycles through

these steps as long as there are messages to be served. In cycle k, two kinds of

batches are defined: Bk, the pickup batch, and BZ, the delivery batch.

1. Pickup Batching and Service: In order to maintain a synchronous vehicle

rendezvous schedule, messages are batched in such a way that the total

time to service each batch may be deterministically upper bounded. For

this, each vehicle maintains n source-destination queues of messages, one

for each of the n cells in which the destination locations of arriving mes-

sages may occur. The kth pickup batch, Bk, is formed by collecting up to

the first Nn messages from each of the n queues to form a batch, where

Nn is a parameter to be determined. The total number of messages to be

serviced in each pickup batch is then at most Bk ; nNn.

To service a batch of messages, the vehicle computes and then traverses a

worst case Traveling Salesperson (TSP) tour through the source locations

of all of the messages contained in the batch, pausing at each service lo-

cation to pickup the corresponding message. A worst case tour is used to

maintain the deterministic synchronicity between the vehicles.

2. Relay and Delivery Batching: To relay messages to their delivery vehicles,

a pre-determined synchronous schedule is used such that each vehicle meets

up with every other vehicle during each batch service time to hand off the

appropriate messages (see Lemma 6). The rendezvous points at which the

vehicles meet are predetermined and are distributed throughout the region.

Assume that for safety or other reasons, the minimum interpoint distance

between valid rendezvous points is r.
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As the messages are being relayed, the delivery batch is collected by receiv-

ing at most N messages from each of the other vehicles. Therefore, the

number in the delivery batch is deterministically bounded by B <; nN,

as well.

3. Delivery Service: Once the inter-vehicle meetings are complete and all mes-

sages to be delivered have been received, another worst-case TSP tour is

performed through the destination locations of the messages in the pickup

batch.

These three stages of batch service occur within constant time-length T = T.

Nn and T are the policy parameters to be determined.

The following theorem bounds the delay of the above policy where T and N are

stated in terms of an arbitrary constant e. With appropriate selection of E, this upper

bound is of the same order as the lower bound in Theorem 9(a) for r = 0.

Theorem 10. For the No-Depot policy described above, the delay scales as

W =0( A(n)A ) +( /A-±n 3/2r ) 1
V2(1 - (1 + E)p)2n2 v(1 - (1 + 0))

for any e > 0.

Proof. [Theorem 10 To establish validity of the above described policy as well as

analyze its performance, we need the following Lemmas which establishes existence

of a synchronous schedule for rendevous between vehicles.

Lemma 6. Given n vehicles, there exists a schedule of length n such that each vehicle

visits all other n - 1 vehicles at least once.

Proof. Consider a complete bipartite graph of 2n nodes, where each vehicle is repre-

sented by one node on the left and one on the right. An edge between node i on left

and node j on right represents the requirement that vehicle i must meet vehicle j.

Now color the edges of this graph such that no two edges connected to the same node
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have the same color. By assigning color k to the edge between vehicle i on the left

and vehicle (i + k) mod n on the right, this may be accomplished using n colors.

The schedule is then constructed by letting each color represent a time slot in which

the two vehicles are assigned to meet and transfer messages. E

Next, we use these lemmas to obtain appropriate values of T, NT so that all the

arriving messages are eventually delivered to their destinations and we will evaluate

the induced delay. Given any e > 0, let

(1+ )A(n)T

Let TTSp be the worst-case travel time it takes to tour-through pickup or delivery

locations of nNn messages in cell of area A/n. Then by Lemma 1

TTSP 8nN A _ 8 (+)A(n)AT
n n

To complete the description of the rendezvous schedule guaranteed by Lemma 6, the

locations of the vehicle rendezvous must be specified. If there is no restriction on

the separation of rendezvous points, all vehicles may be assumed to travel to the

center of the region and perform the handoffs without any need for further travel. If

the pairs of vehicles must be separated by at least r, then the time for each vehicle

to visit each of the rendezvous points is at least nr/v. If r = 0, all vehicles may

perform the rendezvous at the center of the region for a total travel time upper-

bounded by v'2lA/v. At the other extreme, if the rendezvous point for each vehicle

pairing represented may be taken to the be the center of the cell assigned to the

vehicle on the left hand side in the graph, then the distance between points is at

most v/2 and the total travel may be upper-bounded by nv'2A/v, or r = vr/Z. If

each pairing must be separated by distance r, we may construct a VE x V/§ grid of

n rendezvous locationsn separated by r. The maximum distance between any two

locations is O(V/nr). Letting each vehicle pair be assigned arbitrarily to one of the
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rendezvous point in each of the n -1 relay steps, the maximum total distance traveled

through these grid points is 0 (n3/2r). Adding in the travel time to the grid at the

center of the region, 0 is an upper bound on the travel time through these

locations.

The total time to exchange the messages during the rendevous of vehicles (both

relaying and receiving) is 2nNjE(n). Hence, the total batch time T can be bounded

above as

T < 2TTsp + 4nNng(n) +
V

3U(1 + c)\(n)A T+ (1 + E)pT+ .v2Ai+n3 / 2 r (6.1)

From (6.1) and some manipulation similar to the solution of the quadratic in the

analysis of the Source and Destination policy will lead to the conclusion that it is

sufficient to have T such that

T = 0 + ±o( (jAj:3/). (6.2)
((1 - (1 + C)p)2n2 ) (1 - (I1+ E)p)

To complete the proof, we examine each of the arrival queues, show that they are

stable with Nn as given, and then compute the time a message spends waiting to be

collected into a batch. Note that in time T, in a given cell A(n)T/n 2 messages arrive

that are destined for any other cell. In the above described scheme with the selection

of T as in (6.2), each vehicle serves up to N, = (1 + E)A(n)T/n 2 messages for a given

pair of cells. Thus, we have a service rate higher than the arrival rate and hence by

standard queueing argument, each queue must be stable.

Finally, we compute the average delay per message in this scheme. To this end, note

that each message has the following types of delays: (a) waiting time to be serviced

in a cell after arrival and (b) the batch time T. Now, the T is bounded above as

(6.2). To bound (a), note that messages are queued separately depending on their

destination cells. Consider one particular queue for a destination cell. The arrivals
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to this queue happen at rate A(n)/n 2 while every T units of time, Nn = NT/n of

them get served. Delay through this queue can be upper bounded by T plus the

delay through an M/D/1 queue with arrival rate A(n)/n 2 and deterministic service

requirement of T/Nn = n

The Pollacek-Khinchin formula (3.9) may be applied to compute the average delay in

this M/D/1 queue to be 0(1/E). Therefore the average delay experienced by message

between arrival and delivery is O(T) + 0(1/E). E

To complete the proof of Theorem 9(b), note that the batching policy above meets

the criteria for Theorem 9 to apply. That is, E[IkI Bk] = civI/Afl+2V/2vA/v which

satisfies condition (c) of the Corollary.

Letting E = (1 - p)/2,
1 1 2
E 1-(1+E)p -p,

That is, this choice of E increases the upper bound on the delay performance by only

a constant factor with respect to the desired lower bound.

Finally, note that for r = 0, the delay of the policy above approaches that of the

lower bound (up to a constant).

6.2.2 Other Relay Policies - The 1-Depot Policy

In addition to the synchronous policy described above, we may also consider a policy

in which messages may be dropped at a depot for asynchronous relay service. For

this, we assume the existence of a fixed-location depot at which each vehicle may

drop an unlimited number of messages at any time. Messages remain at the depot

until they are picked up at the depot for delivery by other vehicles. It is assumed

that multiple vehicles may transmit simultaneously to and from the depot while at

the depot location.

The assignment and service components of the 1-Depot policy are similar to those of

95



the synchronous policy in Section 6.2 with r = 0 which we have already seen to be

order optimal. Allowing asynchrous relays implies that variable size batches may be

used and a-optimal TSP tours may be used to visit the service locations instead of

worst-case.

The asynchronous nature of the depot relay makes the analysis of this policy more

complicated, but the delay of this policy can only be smaller than that of the syn-

chronous policy in which worst case batching and tours are used. In practice, if

a depot is available, it can reduce the delay below that of the synchronous policy,

although both are of the same order as the lower bound.

6.3 Conclusions

In this chapter, we analyzed a synchronous single relay policy. The computed upper

bound on the delay achievable by this policy had three terms. The three terms of the

upper bound on the delay performance were of the same order as the DTRP lower

bound, the Universal Lower Bound (for r = 0), and the service time lower bound

respectively.

The main difference between the relay policies and the no relay policies is in the as-

signment subregion served by each vehicle. When no relays are allowed, each vehicle

must serve two regions: pickup and delivery. Because messages arriving to a sin-

gle subregion are destined throughout the entire region, vehicle pickup regions must

overlap. This implies that each vehicle must cover a region of area at least A/flu.

In the relay policy, pickup regions need not overlap, and each vehicle services only

a region of area A/n, decreasing the area that must be covered in the pickup and

delivery tours, thus decreasing delay.

However note that if p > 1/2 in the DPDP with no relays, the addition of even

a single relay will make the system unstable due to the additional onsite service

times induced by the relay and the corresponding change in effective p. That is
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2A(n),(n)/n > 1/2 for No Relay implies that 4A(n)§(n)/n > 1 for Single-Relay.

Therefore, in heavily loaded systems, relays may not be possible and the DTRP

bound may not be achievable.

6.3.1 Optimality of Single Relay

We may extend the analysis of the single-relay policies to multiple-relay systems

to show that a single-relay is sufficient to achieve the optimal order performance.

Assume that p = 4A(n)g(n)/n << 1, there are no stability concerns associated with

additional relays.

The lower bound of the multiple relay problem would be the same as for the single

relay problem, aside from a possible increase in p. To see this, note that the Universal

Lower Bound holds for any Dynamic Pickup and Delivery Problem with a general

batching policy, and the services associated with a single demand may be arbitrarily

split between several batches. The DTRP bound holds for any multi-stage problem

by simply ignoring all services except the delivery. Therefore, since all Pickup and

Delivery Problems have this same lower bound which the single relay policy achieves,

multiple relays cannot offer any improvement in terms of order.

The impact that multiple relays could have is in decreasing the total time each vehicle

has to travel in a single batch to perform a relay, for example if each vehicle needed

only to relay to nearby vehicles in each batch time. In the single relay problem,

this total relay time is represented by the numerator of the ULB-like upper bound,

v/4 + n3 /2r. For r = 0, this matches the Universal Lower Bound. However, in a

multiple-relay system, any savings in an individual batch time would be lost when

each message is required to go through multiple relays in multiple batch times to

reach its destination.
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Chapter 7

Wireless DPDP

One particular application of interest is the Wireless Dynamic Pickup and Delivery

Problem in which the vehicles may pickup and deliver the messages via a wireless

transmission. Wireless transmissions allow messages to be picked up and delivered

remotely, reducing the net amount of travel time per message. Wireless transmission

may also reduce the amount of service time required to pickup/deliver a message the

closer the vehicle approaches the node. A major question is that of interference: a

wireless transmission by one node may adversely affect other transmissions occuring

simultaneously. In the DPDP presented in the preceding chapters, vehicles perform

independently of each other, but interference may imply that not all vehicles can

perform service simulataneously.

This application is motivated by recent work in the communication field examining

the tradeoff between delay and throughput, where throughput is defined to be the

number of messages that are delivered each time unit. Fundamental bounds exist in

the case that vehicles are stationary or when vehicles have particular random walk

trajectories. Our interest is in deriving fundamental bounds for networks in which

vehicles have full control of their motion.

When adding control to vehicle mobility, we need to consider communication and

message models different than those usually studied. For example, in [15], messages
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arrive in a stream to a single node and this stream must be transmitted to exactly

one partner node. If node mobility is fully controlled, the trivial optimal solution is

to line the nodes up such that each is close to its transmission partner. This policy

may achieve a constant rate of throughput with delay only constrained by packet size

and rate of wireless transmission.

Besides the message origination model, many other modelling questions arise as well.

In particular, there are at least three very different types of wireless transmission:

node to vehicle (pickup), vehicle to vehicle (relay), and vehicle to node (delivery).

Because vehicles may be much different than the message-generating nodes, each

type of service may be characterized by different power and interference constraints.

The vehicle routing analysis we have performed thus far takes a network approach

to the pickup and delivery problem. Other vehicle routing problems that extend in

a network sense include application of the DPDP to the neighborhood or generalized

TSP. The main question is how to model the neighborhoods to capture a meaningful

notion of interference. In this chapter, we take a closer look at the Wireless DPDP

from a physical layer perspective, seeking bounds on performance for picking up

within a neighborhood of relatively few competing demands. We seek general results

on the nature of policies which achieve the throughput and delay tradeoff and examine

the impact of constructive interference which allows each vehicle to perform service

for multiple messages at once.

7.1 Model and Problem Statement

7.1.1 Nodes, Messages, and Vehicles

There is a single vehicle with position z(t) E [-A, A] C R at time t. The vehicle

velocity is bounded by v, that is, |i(t)| < v. There are two nodes located at -A and

A and labeled 1 and 2, respectively. Messages comprising a single bit arrive to each

node with a deterministic interarrival time of 1/A seconds per bit.
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The messages are to be transmitted to the vehicle. Assume that the vehicle may only

receive messages while it is stationary. When the vehicle is fixed at position z(t),

transmission occurs at rate R1(z(t)) from node 1 and R2(z(t)) from node 2 where

R1(z(t)) and R2(z(t)) are rate functions to be defined.

7.1.2 Wireless Model

Assume that nodes 1 and 2 transmit over a shared AWGN channel with noise variance

1. That is, at time t, node 1 (node 2) transmits a Gaussian codeword with power

pi (t) (respectively p2(t)). Assume a maximum power constraint, that is,

p3(t) 5 P, Vt, j = 1, 2.

The total signal received by the vehicle is Y(t) " Ej Xz (t) + W(t) where W(t) is

Gaussian white noise of variance 1. The received signal from nodes 1 and 2 are X1 z(t)

and X22(t) with power

Piz(t) = p (t) IA + z(t)1~,

P2z(t) = p2(t)|A - z(t)|-",

respectively where a > 1 is the power attenuation constant.

The messages are decoded by the vehicle in one of two ways: Independent Decoding

or Successive Interference Cancellation.

Independent Decoding: All transmitting nodes create interference for all of the

other nodes. The maximum information theoretic rates as a function of the received

powers are

Riz(t) = log (+ 1 i2z(t) )
1+P2z(t )

R2z(t) =log (11 + Pz(t)
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The rate maximizing solution for Independent Decoding at a fixed point is to only

allow the user with the largest received power to transmit at full power. The other

weaker user has zero transmission power. See [8], Chapter 10.

Successive Decoding and Cancellation: Users are decoded sequentially. The

signal used to decode a given user is the original signal minus the decoded signals

of users already decoded. The capacity region is the set of rates that satisfy the

following constraints:

Riz(t) < log (1 +Piz(t)),

R2Z (t) :5 109 (1 + P2z (t)),

Riz(t) + R2z(t) log (1 + Pz(t) + P2 (t)).

The rate maximizing solution in this case is for both nodes transmit at full power.

The information theoretic sum rate is achieved by decoding the strongest user first

while treating the weakest as interference. The decoded signal is subtracted off and

then the weakest user is decoded with no interference. See [8], pp. 378-9.

The following table collects the set of rates for each decoding scheme when the ca-

pacity maximizing solution is used.

Independent Decoding (ID) Successive Interference Cancellation (SIC)

z(t) <0 Riz(t) = log (1+ PIA + z(t)-c) Riz(t) = log (I + IAz()

R 2z(t) = 0 R 2z(t) = log (1 + PIA - z(t)I-c)
z(t) = 0 R1 ,o(t) = R2,o(t) R 1 ,o(t) = R 2,o(t)

= . log (1 + PA-') = log (1 + 2PA-c)
z(t) > 0 Riz(t) = 0 Riz(t) = log (1 + PIA + z(t)I- (t))

R2z(t) = log (1 + PIA - z(t)-) R 2z(t) = log 1+ Az(t)I
I____ I_ 1____________________ (1 + +PA+z(t)I-i7

Table 7.1: Detailed Rate Profiles for Decoding Schemes

The coding theorem for Gaussian channels states that the above capacity rates may

be achieved with arbitarily long block lengths. In this chapter, we would like to

examine the transmission rate over a finite fixed block length. For this, we note that

the converse to the coding theorem for Gaussian channels states that transmission
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rates greater than the above capacity rates are not achieveable, even for arbitrarily

long block lengths, that is, the capacity rate is an upper bound on any achievable

transmission rate. Therefore, performing the analysis with the capacity rates provides

a lower bound on the actual delay seen by a bit in a realistic system.

7.1.3 Control Policies

A control policy controls the vehicle position z(t), subject to the velocity constraint.

We assume that the node transmission powers p,(t) and p2(t), and the decoding order

for Successive Interference Cancellation are chosen as described above to maximize

instantaneous total capacity.

In this paper, we examine a particular control policy, the Symmetric Waypoint Policy,

which is characterized by two parameters r and K as follows: Assume that pickups

occur at two locations (for 2 nodes in 1D), r and -r, for some r E [0, A] to be

determined. Assume that the vehicle's initial condition is 0. Messages are served in

batches of K bits from each node. Each batch requires the following steps.

1. Vehicle travels from 0 to r,

2. Picks up from 1 with rate Ri(r), from 2 with rate R 2(r),

3. Vehicle travels from r to -r,

4. Picks up from 1 with rate Ri(-r), from 2 with rate R2(-r)), and

5. Vehicle returns to 0.

Let R(r) be the total pickup rate when the vehicle is fixed at location r (or equivalently

at -r). By the assumptions of symmetric traffic and service, when the vehicle may

switch infinitely quickly between r and -r, the average rate of service received by

each node is R(r)/2. When vehicles transmit with optimal powers,

RID(r) = log(1 + PJA - rl~a), (7.1)

RsIc(r) = log(1 + PJA - r|~* + PA + rI~*). (7.2)
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Let TK be the total time to collect a batch of K bits from each node and return to

the starting position A.
4r 2K

TK =~-
v R(r)

7.1.4 Performance Measures

Throughput A is said to achievable if the messages that are arriving at rate A to each

each node are served with finite delay.

Delay is the total time to serve a single batch of K messages from each node as

defined by TK. This delay ignores queuing delay at the node as well as any additional

decoding time required to achieve the capacity rate due to small batch sizes.

7.1.5 Problem Statement

We would like to answer several general questions: If it is possible to pickup without

moving, does not moving provide the minimum delay? If it is not possible to pickup

with out moving, what is the optimal distance from the node for pickup? When is it

best to travel directly to the node?

More specifically, we will examine the following three problems.

Problem 1 - Stabilizing Region Let R(A) c [0, A] be the set of all r such that

there exists a K such that a symmetric waypoint policy parameterized by r and K

achieves throughput A. Find R(A) as a function of the rate profile R(r).

Problem 2 - Optimal Batch Scaling and Delay as a function of r For a given

throughput A and r E R(A), find the minimum batch size K such that the symmetric

waypoint policy achieves throughput A. With the minimum batch size K, find a lower

bound on the minimum batch time, Tmin(r, A). Characterize Tin(r, A).

Problem 3 - Optimal Throughput-Delay Tradeoff For given throughput A,

find the minimum delay T* (A) such that there exists r E R(A) such that Tmin(r, A) =
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T* (A). This is this a lower bound on the minimum achievable delay for the given

throughput.

Test Cases Plots for various test cases will be used to illustrate the results. In

particular, we consider A = 2, P = 1 and v = 1 for a range of arrival rates A.

7.1.6 Organization

The remaining sections of this chapter will address Problems 1-3 above and Problem 4

will be addressed in the discussion. The stability analysis of Section 7.2 with provide

an analytical solution for R(A) for the two rate profiles: Independent Decoding (ID)

and Successive Interference Cancellation (SIC). The stability regions are also plotted

for the test case for illustration. Section 7.3 provides a solution for Tmin(r, A) in

terms of R(r). A few characterizations of Tmin('r, A) are derived analytically, but due

to its highly nonlinear form, further graphical characterizations are provided as well.

In particular, the a closed form solution for the minimum of Tmin(r, A) over r does

not exist, but this minimum may be computed graphically over a range of A to give

some intuition into the throughput and delay tradeoff of this system. This analysis

is performed in Section 7.4. Finally, the discussion may be found in Section 7.5.

7.2 Stability Analysis

Ignoring the travel constraints, the system may be viewed as a DID/i queue where

the demands are bits and the service is the vehicle's wireless reception of these bits.

In the case that the vehicle may only receive when stationary at r or -r, the service

rate of the vehicle is at most the wireless reception rate associated with that location,
i.e. R(r). For the stability of the queue, the service rate must exceed the arrival rate,
and therefore, the condition for stability is

R(A) = {rJR(r) > 2A, r E [0, A]}. (7.3)
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If R(O) > 2A, then 1Z = [0, A). If R(O) < 2A, then R(A) = [r*(A), A] where

r*(A) = 2A. (7.4)

Note this is only a necessary condition for stability, as some rate may be lost while

the vehicle is traveling between waypoints and is not receiving messages. Further,

for a more general G/G/1 queue with stochastic arrivals and/or service times, the

necessary condition becomes R(r) > p and the stability intervals are half-open to the

left.

Applying (7.3) to the rate profile for Independent Decoding,

R(r) = log(l + P(A - r)-) > 2A ==> r A( 2 2 _ l )

ID(A) [0, A]

(r*, A]

if A <

else, with r* = A - (4- .E

Similarly, for Successive Interference Cancellation,

R(r) = log(1 + P(A - r)-" + P(A + r)-") > 2A

== (A + r)~" + (A - r()- 2 2 .1

This is an implicit function of r. To check if the midpoint is in R, let r = 0. Then

7Zs (A) ={[0, A]

(r*, A]

if A ( (A )

else, with r* s.t. (A + r*)-cr + (A - r*-"= P

Note that the stability region is wider with SIC decoding, but that this benefit de-

creases as the power attenuation constant a increases. SIC decoding can receive

messages from both nodes simultaneously, but this benefit has less impact as the re-
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ceived power drops off more quickly with a larger attenuation constant. Large power

attenuations has the benefit of rapid rate increase as the vehicle approaches the node,

but small power attenuations permit meaningful rates to be achieved at the center of

the region.

In Figure 7-1, the boundary of the stability region is plotted for both decoding schemes

and a = 1 and 3. The stability region for each lies above the associated curve. This

highlights the increase in stability region for SIC decoding over ID. This difference is

more pronounced for small a.

A2
0

0.

2
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1.4
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0.4

0.2

0

Stability Region with A=2 and a = 1,3

0.1 0.2 0.3
Throughput X

0.4 0.5

Figure 7-1: Stability Region for test case

Figure 7-2 contains the same data as Figure 7-1 for a wider range of power atten-

uations. For small throughputs, the stability region is narrower for larger power

attenuation. This relation is reversed at higher throughputs.
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Stability Region with A=2 and a = 1:4
2
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Figure 7-2: Stability Region for test case - a = 1, 2, 3, 4

7.3 Optimal Batch Scaling and Delay for fixed r

and A

For a fixed batch size K and waypoint r, the total time to pickup K messages from

each node with waypoints r and -r is

4r 1
TK = - + 2K . (7.7)

v R(r)(

Since 2K total messages are picked up in this time, the average service rate for a

fixed K is
2K 2KvR(r)

average service rate = -K = .R(r) (7.8)
Tg ArR(r) +2Kv

Note that as K or v becomes large, this average service rate approaches R(r).

Similar to the queueing analysis above, for the system to be stable, this service rate

must be greater than the total arrival rate 2A. Some algebra reveals that the required
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condition on K is

K > max 4ArR(r)
>v(R(r) - 2A)'J

= max {Ar 1 }
1 (1 4Ar)

= max (1 (7.9)

where

p = 2A (7.10)

Because 1/R(r) is the average service time at the waypoint r to pickup a message, the

quantity 2 is the analogue of p for the DPDP or any G/G/i queue. K is bounded

below by 1 to prevent the computation of nonmeaningful delays when p, and the

resulting K, is small.

The minimum achievable batch delay for fixed r is achieved by substituting this bound

on K into the formula for TK.

{ 4r 4r 21
Tmin(r, A) = max , - + (7.11)

v(1 - p)' v R(r)

Note the relation to Little's Law where the K > 1, i.e. 2K = 2AT.

With this formula, we then have the following expression for R1r(A)

1T(A) = {r I Tmin(r, A) ; T}. (7.12)

7.3.1 Analytical Characterization of Tmin(r, A)

For either of the rate functions under consideration, (7.12) is a complicated function

due to the nonlinearity of R(r). To gain some insight into the general shape of this
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curve as a function of r, we may examine its derivative with respect to r:

dTme,,,(r, A) 4 2A 2Ar d1r
= - 1+ dr(7.13)

dr v R(r) - 2A (R(r) - 2A)2 -

We can gain some insight about the r at which the minimum delay is achieved by

examining the sign of the derivative at the endpoints of the stability region: r*(A)

and A.

Travel directly to node, r = A

First consider r -+ A, that is, the vehicle travels all the way to the node to perform the

pickup. The rate R(r) -> oo, which sends the second term (7.13) to 0, but additional

information about R(r) is required to evaluate the sign of the third term. Note that

for either of the rate profiles under consideration here R(r) P log((A - r)-c) for

r ; A. In this limiting case, dR(r)/dr = O(1/(A - r)) and the third term of (7.13)

goes to 1/[(A - r) log(A - r)] -+ -oo. This negative term dominates and A is a local

minimum. Once the vehicle has traveled far enough, it is best to continue traveling

directly to the node.

Remain stationary, r = 0 E R(A)

Examine the derivative at the other endpoint, r*(A). If r*(A) = 0, i.e. 0 E 7Z(A), R(r)

is finite, but since r = 0, the third term of (7.13) disappears. Since this was the only

negative term, the derivative is positive and 0 is at least a local minimum.

Travel to closest point in R(A), r = r*(A) / 0

If r*(A) > 0, then R(r*(A)) - 2A -+ 0. Assuming that dR(r)/dr is finite at r*(A), the

third term of (7.13) dominates. In fact, the derivative approaches -oo, so r*(A) is

definitely a local maximum. This makes sense because the batch sizes must become
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very large to compensate for the small amount of extra throughput alloted to travel

time.

Optima in R(A): Summary

We have established that when 0 E R(A), both 0 and A are local minima. It is easy

to test which of these extreme cases has lower delay by comparing Tmin(0, A) = 2R(r)

and Tmin(A, A) = LA. When 0 R (A), A is a local minima, but r * (A) is a maximum.

Because we are interested in finding a global maximum, the question remains as to

whether there are any other local minima. We see below that the answer to this

question is yes, sometimes.

7.3.2 Graphical Characterization of Tmin(r, A)

Figures 7-3 and 7-4 plot Tmin (r, A) as a function of r for some test cases of A. Test

cases were chosen to highlight the behavior when the various radii are within the

stability region.

X= 0.01 X= 0.1 = 0.5
20 20 200

1515 150 ' a=1,ID
- a = 1, SIC

10 10 100 ....... a=3,ID

S5- 5 50 a3 I

0 0 1 0
0 1 2 0 1 2 0 1 2

Waypoint Distance r Waypoint Distance r Waypoint Distance r

Figure 7-3: Delay as a function of r with optimal batch size

First examine 7-3. For A = .01, all four test cases have 0 E R(A), and therefore it is

feasible to pick up the messages without moving. For both a = 1 cases, staying at 0

is indeed optimal. For larger a however, although 0 is stable, the associated rate is

so slow (due to the larger power attenuation) that it is better to move towards the

node before picking up.
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01 - 00 0 0 1 2
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Figure 7-4: Delay as a function of r with optimal batch size, a = 1, 2, 3, 4

I

With a = 3, the optimum is just over halfway to the node and is approximately the

same for both decoding schemes. In general, using Independent Decoding results in

a longer delay than Successive Interference Cancellation because constructive inter-

ference is used in SIC to pick up messages from both nodes simultaneously. As the

power received from the more distant node decreases as the vehicle approaches the

dominant node, the performance of the ID and SIC schemes converge.

Moving to A = 0.1, 0 is no longer within the stability region for ID and larger a. As

expected, the delay is very large for r near r* (A) due to the large required batch sizes.

For A = 0.5, 0 V R(A) for any of the test cases. Lower delays are achieved for larger

a as the vehicle approaches the node. This is also highlighted in 7-4.

Though it is hard to see from these plots, both 0 and A are always local minima, but

neither is always a global minimum. Particularly for larger a, the optimal r may fall

somewhere in between the two extremes.

7.4 Optimal Throughput/Delay Tradeoff

We can repeat the above analysis over a range of A and compute the minimum delays

achievable for each throughput A and the r (and associated K) at which this minimum

is achieved. Define

Tmin(A) = min Tmin(r, A).
rEZ(A)

112

X = 0.01 X = 0.1 X = 0.19



The delay curves are plotted in Figure 7-5. Each delay curve is characterized by two

limiting values: the delay when picking with K 1 and the delay when traveling all

the way and picking up instantaneously. The lower limit is an artifact of the K > 1

bounding, but the upper limit represents the situation in which the vehicle travels to

the node and picks up messages infinitely quickly. Increased batch sizes for stability

have no impact on delay.

Throughput/Delay Tradeoff for A=2, P=1, v=1
9

0

8 -

7--

6 - -- .a=1, ID
a =1, SIC

5 -a= 3, ID
....a= 3, SIC

S4 -

2 --

1 --

0
0 0.1 0.2 0.3 0.4 0.5

Throughput X

Figure 7-5: Optimal Delay as a function of A, Comparison

As we saw in the figures above, for large a, the optimum with K = 1 is not neces-

sarily to remain at 0. The optimum delay includes both travel time and service time

components, but this point remains the minimum for a large range of A, including

some A for which 0 V R(A).

For large a, the optimum r changes slowly with A with a concave delay between

two limiting values. For small a, the change between the two step points is nearly

instantaneous when A increases to the point that 0 R(A). The reason for this step

change may be illustrated by Figure 7-6. This plot illustrates the behavior of the

delay as a function of r near the point A ~ 0.2 where 0 is no longer in the stability

region for the ID policy with a = 1. There is no significant minimum between 0 and
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A for this policy. For larger a, we have already seen that there is a minimum between

0 and A and that this minimum is approximately the same for both SIC and ID. This

also accounts for the similarity between SIC and ID for a = 3 in Figure 7-5.

Also note the linear scaling for small r. This is an artifact of the K > 1 bounding.

When K > 1 is not restricted to integer values, the increase in delay is strictly

concave, accounting for increase both in travel time and also batch size.

4=0.19 4=0.2 X=0.21
15 15 15

a=1,ID
S 10 10 10

S........ - a= 1, SIC

....- a = 3, ID

a = 3, SIC

01 0 0
0 1 2 0 1 2 0 1 2

Waypoint Distance r Waypoint Distance r Waypoint Distance r

Figure 7-6: Delay as a function of r, A near Stability Region Critical Point

7.5 Conclusions

Finally, a few comments are in order about the optimality of the above analysis.

First, in the above, messages were assumed to be continously arriving, and the batch

size K was varied to create batches of optimum size. If fixed-size batches are used

(for a static, one-time pickup, for example), this may weight the transmission time

more heavily than the travel time and the optima as a function of r may not hold.

Further, if arrivals are taken to be Poisson, there is an additional queuing time to be

taken into account, both in computing delay and also in constructing optimum batch

size. Batch sizes larger than the minimum batch size computed above can minimize

this impact.

Returning to our questions of Section 7.1.5, even when not moving provides a stable

solution, sometimes it is better to travel, especially if either the vehicle velocity or the

power attenuation constant is large. There is always a balance between linear travel
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time and exponential rate increase, but finding the right r to achieve this balance is

not trivial in general.

These results for the simplified two-node, one-vehicle network provide some intuition

for control of general m-node wireless networks. In this chapter, we have shown

that large throughputs may only be achieved when the vehicle travels directly to

each node. This suggests that the control of a high throughput m-node network is

equivalent to the Dynamic Pickup and Delivery Problem as studied in this thesis.

Very low throughput networks may be served by placing immobile receivers at fixed

locations throughout the network.

To tradeoff throughput with delay between these two extremes, different models of

the Dynamic Pickup and Delivery Problem are required. For example, we have seen

in this chapter that delay is minimized for moderate throughputs by traveling part-

way to the node and picking up remotely. Remote pickup may be incorporated into a

DPDP model using results on the Generalized TSP or TSP with Neighborhoods [1].

This is a subject for future work.
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Chapter 8

Discussion

In this final chapter, we provide an interpretation of the main results, explore the

significance of the control policy limitations, describe how our methods may be ex-

tended, and discuss other directions for future work.

8.1 Scaling Interpretation of Results

First, we interpret the results of the three main theorems of Chapters 5 and 6. Each

bound was made up of three terms:

w~ ( A(n)A ± ( VZW = 9 /\nA + + E)(§(n))
(i( _ P)2na ) (V(1 - p))

for some exponent a that was different for each DPDP setup. For the two No Relay

policies, a = 1 and u = 3/2 for Source Only and Source and Destination respectively.

For the Single Relay policy, a = 2. The individual terms of the theorems dominate

over different regions of the parameter scaling.

The service time term can dominate when V/14/v and A/nc are small and p is of

moderate size. When the onsite service times are modest and most of the delay is

due to travel time, one of the first two terms will dominate. The first term, the DTRP
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=0 ( 1 ) = Q(1) and AV =(1) and A =Q (1)
nv nv n 7-_ oV () = (1)

Source Only E)( VA E 2A 2AA e(AA\V(l-p) Vll-p2n 2(1-p)n I2(-p2

Source and v(1-p) V(-p V2(1-p)2n3/2 V 2(1-p) 2n3/2

Destination

Single Relay E(V/yP E) e ((A 2)(bAA)2f2)

f Requires also A(n)A/v 2n3/2

Table 8.1: Average Delay scaling over various ranges of Scaling Parameters

term, dominates when

AA v A AVA
v2(1- p)2na v(1 - p) v(1 - p)no

The results of the main theorems are provided in terms of the dominance of the first

two terms in Table 8.1.

To understand the scaling behavior of these terms, note that the delay of a message

is made up of three components: 1)time the vehicle to which the message is assigned

spends traveling to serve other messages, 2)time spent traveling directly to the source

and destination locations of the message , and 3) onsite service times. For ease

of exposition, assume v/A/v = Q(1), that is, the time to cross the entire region is

constant or increasing.

When A(n) = o(n) and 1-p is of moderate size, the onsite service time can dominate.

In all other cases, the impact of the onsite service times is generally captured by the

(1 - p) terms in the denominators of the other two terms. The scaling of A(n)

determines which of the other two travel time terms dominates.
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For A(n) = Q(n), the arrival rate of messages per vehicle, A(n)/n, shrinks as the

number of vehicle increases. Therefore, most of the delay is accumulated during

the travel associated with the message's own service. Roughly, this is captured by

the universal lower bound term, which is a straightforward function of the average

distance between the source and destination locations of an individual message. Note

that this scaling is not a function of the number of vehicles n but is intrinsic to the

pickup and delivery requirements of the messages.

For A(n) = o(n 3 /2) and A(n) = Q(n), the DTRP-based bound is increasing as a func-

tion of n for the Source Only policy, but shrinks for the Source and Destination policy.

Briefly, this is because the number of vehicles n can affect both the average rate of

messages arriving to the vehicle, A(n)/n, and also the area that a vehicle must cover

to service those messages. The Source and Destination case performs significantly

better, because as n increases, destination information may be exploited to shrink

the region over which each vehicle must travel (roughly A/V/5). The region shrinks

faster than the rate at which the number of messages to be served per vehicle is grow-

ing (A(n)/n). Due to this, again the travel time between the source and destination

of an individual message dominates. The Source Only policies cannot exploit this

information to reduce their travel time, and therefore the delay in traveling between

other messages dominates. For A(n) = o(n 2) and A(n) = Q(n 3/2), a similar argument

holds for the difference between the Single Relay policy (with area A/n) and the best

No Relay policy (with area A/5).

For A(n) = 9(n2), the number of messages per vehicle is always growing faster than

any valid policy can shrink the service regions for the vehicles. Therefore, in this

regime, the travel time for other messages dominates.

8.2 Significance of Policy Restrictions

Note that the set of policies under consideration is somewhat restrictive. We consider

only policies with separable assignment and service policies. Assignments are made
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by a centralized controller independent of the current service requirements associated

with each of the vehicles. Further, the use of the {pj(x, y)}i for the assignment

policy fails to include any policies in which batches of requests are collected into a

G/G/n queue at a centralized depot and served in FCFS order. Such policies were

proposed for the DTRP in [4]. The assignments of consecutive messages are likely to

be correlated due to their collection into a single batch, and therefore the independent

assignment property fails to hold. Comparing the delay of the G/G/n to the average

delay of a collection of n G/G/1 queues as in Section 6.2, the G/G/n assignment

and service policy actually has a lower average delay than the n G/G/1 queues. This

difference disappears as the traffic increases and the probability of vehicle idleness

approaches 0. Therefore, in the limit, our policy restriction does not seem to hurt us

in terms of finding the minimum delay scaling, at least for G/G/n policies.

We also note that the centralized assignment policies presented in Section 6.2 may

be decentralized given appropriate assumptions on inter-vehicle communication. In

the Source Only case, each message may be assigned the vehicle closest to it upon

its arrival. Each vehicle needs only to communicate with its neighboring vehicles to

resolve which vehicle will pick up each message. In the Source and Destination case,

message assignments are based only on the locations associated with each message.

After a centralized initialization period in which vehicles are assigned to pickup and

delivery regions, no centralized decision making or inter-vehicle communication is

required.

The restriction to a batching policy appears limiting, but the conditions required are

quite natural. First, most vehicle routing policies that are used in practice entail some

batching. Further, we have computed lower bounds without the batching assumption

and have shown that batching policies achieve these lower bounds. Finally, the time

average conditions for Theorem 6 are quite natural. Intuitively, condition (c) in

Corollary 1 means that the overhead time per batch does not grow faster than linearly

with the number in batch. This is a natural condition for batch service as it implies

that there is some economy of scale associated with grouping demands into batches
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for service.

8.3 Extensions of Methods

Under certain natural assumptions, the bound in Theorem 6 would hold for the

general multi-stage system with two differences. First, if f services are required per

demand, p would increase to p = pfA(n)§(n)/n. We have already seen this increase

in p seen in the progression from DTRP to DPDP to single relay DPDP. Second, the

numerator in equation (6) would be replaced by the appropriate minimum travel time

per message. This may be bounded by computing a minimum expected TSP time

through the service locations of a single demand. Therefore, with minor changes, the

lower bound methods presented in this paper may be adapted for other multi-stage

problems. Similar batching policies may also be implemented, although the nature

and performance of these policies naturally depend on the application involved.

The density optimization methods used to solve for a lower bound on the Source

and Destination problem may also be extended to non-uniform and non-independent

source and destination distributions as long as the locations associated with different

messages are still independent. More complicated distribution constraints would lead

to more complicated and possibly asymmetric assignment distributions, but would

be solvable in theory.

8.4 Future Work in Wireless

The preliminary wireless results may be extended to an arbitrary m-node network

in several different ways. First, it may be possible to develop heuristics for optimal

transmission distance based upon our analysis of the impact of transmission distance

on delay for a given throughput. Generally, we have shown that for high throughput,

the optimal solution is a DPDP problem. For low throughputs, fixed vehicle locations
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are optimal. For throughputs in between, remote pickup is optimal. It would be useful

to estimate the critical values differentiating high, low, and in-between throughput.

Further, remote pickups may be incorporated into the existing DPDP model using

the generalized TSP.

More rigorously, it may be possible to directly extend the analysis of the 2-node

problem to a generic m-node problem with a specific symmetric placement of nodes.

Similar results may extend to certain asymmetric networks as well.

8.5 Conclusion

In this thesis, we have presented a dynamic vehicle routing problem, the Dynamic

Pickup and Delivery Problem (DPDP), and obtained tight lower and upper bounds

on the scaling of the average message delay for three variants of the DPDP: No Relays

with Source Only information, No Relays with Source and Destination information,

and Single-Relay. These results are a significant extension of the existing results on

the DPDP.
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Appendix A

Extended proof of DTRP

In this appendix, we prove Theorem 4(b) which is a modified version of Theorem 2

in [6].

The Dynamic Traveling Repairperson (DTRP) problem refers to the following setup:

demands arrive to a closed and bounded region A of area A according to a stationary

renewal process. Demands are independently and identically distributed according

to the demand distribution f(x). There are n vehicles traveling in the region with

bounded velocity v to service these demands. A demand is serviced when a vehicle

arrives at the demand location and spends a random service time s at that location.

The goal is to service the demands with the minimum average delay W between

message arrival and service.

The following assumptions are required for the DTRP proof as written in this ap-

pendix.

1. A C R2 is closed and bounded.

2. Interarrival times are Poisson.

3. Onsite service times deterministic of length 9.

4. Demand locations are i.i.d. and distributed according to density f(x).
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5. f(x) is bounded from above and is K-Lipschitz, i.e.

o < f(x) f<oo, (A.1)

If(x) - f(y)I 5 Kjx - yI, Vx,y E A. (A.2)

6. The waiting time conditioned on message service location,

W(x) = [W(j)x(j) = x], exists and is bounded from above and K-Lipschitz.

XF (x) W(x) (A.3)

0 < Q(x) < oo, (A.4)

IF(x) - Q(y)l :! Klx -yl, Vx, yE A. (A.5)

In [6], the assumptions are slightly different in that general interarrival and service

times with finite first and second moments are allowed, and f(x) and T(x) are required

to be bounded away from 0.

Before proving lower bounds on this average delay, [6] provides a few additonal defini-

tions and assumptions. First, with every subset S e R2, associate a queue S, viewed

as a black box that has arrivals and departures according to the arrival and service

of demands in S. Let N(S) denote the time average number of customers in S and

assume that this time average exists for all S. Then N = N(A) denotes the time

average number of customers in the whole system. The queue occupancy density is

defined to be

(x) = f(x)I(x). (A.6)

Because service locations are i.i.d. and arrivals are Poisson, the arrival rate of mes-

sages to S is A(S) = A fS q(x)dx. Little's Law may be used to show that an equivalent

definition of the time average number in system is N(S) = N f O(x)dx.

The proof of Theorem 4 belows follows the same sequence of lemmas as in the proof

of Theorem 2 in (6]. While our proofs are modified appropriately, the full proof is
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given only where it differs significantly from that in [6].

Lemma 7. For any stable property satisfying the above properties, the queue occu-

pancy density function satisfies

IA (x)dx = 1,

O<q$(x) < #<5oo,

1#(x)-5(y)| 5 Kjx-y, Vx,yEA.

Proof. The proof follows directly from the properties of f(x) and T(x). E

Let BL(x) = {y| Ix - yI z} denote a closed ball of radius z around location x.

Lemma 8. For any stable policy satisfying the above properties,

N+(Bz(x)) = N#(x)7rz 2 + No(z 2)

for any x such that f (x) > 0.

Proof. Because arrivals are Poisson, by PASTA, N+(B,(x)) = N(Bz(x)). From the

queue occupancy interpretation of O(x), N(Bz(x)) = N f,. #(x)dx. Applying the

mean value theorem for integrals as well as the Lipschitz property of O(x) yields

N (x)dx < N (O(x) + Kz)irz2  (A.7)

= N(x)irz2 + NK7rz3  (A.8)

= N#(x)irz 2 + No(z 2). (A.9)

The last line follows because z 3 = o(z 2) for z -- 0. E

The total service time associated with a demand is defined to be the onsite service

time s plus the incremental travel time between the demand and the next demand

to be serviced. Denoting the distance to be traveled after the jth demand as d,, the

total service time associated with demand j is then dj/v + s.
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Lemma 9. The average interdemand travel time is related to E[Z*], the expected

minimum distance between any two active demands, according to

E[Z*] lim E[Z*(j)] :! jim E[dj] Ad
3-00 3-+00

Proof. Straightforward.

Lemma 10. E[Z*], the expected minimum distance between active demands, is related

to the system parameters as follows:

lim ViNE[Z*] > - Yj-1"(x)f (x)dx
N-+oo fA

where y> -p-

Proof. Because the number left behind by a departure is integer,

P(Z* < zlx(j) = x) N+(B.(x)). (A.10)

Integrating to find the expected value conditioned on x

E[Z*Ix(j) = x] A max{0,1 - N+(B.(x)}dz (A.11)

- Y-1/2(x)N-1/ 2 - o (N-1/ 2 ) . (A.12)

Unconditioning by integrating over df(x) and taking the limit as N -> oo yields the

result. E

Note that as there are more demands are in the queue on average, the interpoint

distance decreases, thus decreasing the service time associated with each demand. It

is this shrinking of the service time with increased queue occupancy that makes the

stability of the DTRP a function of the onsite utilizations only.

In [6], Lemma 5 is then stated as follows:
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Lemma 5 from [6]

2  A[fA -1/2(x)f(x)dx]2
lim W(1 - P)2 ! -Y 2 2p-l v2 n2

As we are interested in the case with scaling of parameters other than p, we instead

prove the following result:

Lemma 11. (Lemma 5 from [61 (modified)) If both A~ 7 ] -+ oo and also AE[V]-2v2 n

00, then

(A[f A-1/2(x)f x)dx]2

-V2(1 _ P) 2n2

Proof. Consider the following necessary condition for stability

(A.13)

Using the fact that E[Z*l d, multiplying the second term on the left hand side

above by \ and rearranging implies

AVWE[Z*]W/ > .
~~ v(1 - p)n

We show in Lemma 13 below that N -+ oo as both \
vn

Therefore, with this scaling,

(A.14)

-+oo and also \E[2 -+00.

(A.15)

Squaring both sides of (A.15) and applying Little's Theorem, N = AW, we then have

(A.16)

and the modified lemma is proven.

0
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V2(1 - P) 2n2
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To complete the proof of Theorem 4, we use the proof of Theorem 2 in [6] as originally

written. This proof solves for min[fA 0-'/ 2 (x)f(x)dx]2 as a function of f(x). Theorem

4 here differs from Theorem 2 in [6] only in the restatement of the limiting terms as

in the modified lemma.

To complete our modifed proof, we must show that N -- oo when both AE[V/flvn
AEV2

and also AEn - oo in the DTRP system. We first prove a preliminary lemma on

the scaling of the system workload in a DTRP queue where workload is defined as in

the standard definition of workload in the context of networks:

Definition 5 (Workload). The workload in the system at time t, V(t), is the amount

of time it takes the n vehicles to serve all of the messages currently in the system at

time t.

To show that the average work in system goes to oo as both AEJ, -> oo and also

AE[2 -* oo, we have the following lemma.

Lemma 12. For AE[VT -+ 0c, the average workload in the system V scales as:vn

(AE [Vrf]2)

v2n

Proof. Assume the vehicle started serving at time -oo. Now consider any time, say

0. Let V(0) denote the amount of workload in the system at time 0. Since time 0 is

arbitrary, V(0) is distributed like the stationary distribution of workload. Let A(s)

denote the minimal amount of time it takes to serve messages arriving in interval

[-t, 0]. Then, it is easy to see that

V(0) ;> (A(t) - nt) . (A.17)

That is, the work in system is greater than difference between the amount of arrived

work in an interval of length t and the maximum possible work completed by the n

vehicles in the interval. The equation (A.17) is true for all t. Further, the time 0 is

a randomly chosen time and hence represents the stationary time. Hence, we obtain
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the time average of workload in the system, E[V], is lower bounded as

E[V] E[A(t)] - nt, Vt > 0. (A.18)

Thus, to compute lower bound on average workload V, we need to compute E[A(t).

That is, we need to compute the average minimal time required to serve messages

arriving to the system in an interval of length t. Let A(t) be random number of

arrivals happening in time interval of length t. Then, A(t) can be lower bounded by

the length of shortest path connecting all source and destination locations of these A(t)

messages. The length of a shortest path through a set of locations is no longer than

twice the length of the shortest cycle through these points, the TSP tour. Similarly,

note that the TSP tour is no more than twice the length of the shortest path through

these points. Hence, to obtain lower bound A(t), it is sufficient to consider the length

of TSP tour through the source and destination location of A(t) points.

Recall the BHH Theorem of Theorem 2 which bounds the length of a TSP tour. Let

LN denote the length of the TSP tour through N points independently and identically

distributed according to probability density f(-). Then, for any E > 0, there exists a

N such that

E[LN] i2 TSPVHE[V/7] - EVN, (A.19)

where /rsp is a finite positive constant. In particular, choose E = 1/3SpE[VJ]. Then,

Theorem 1 implies that there exists a N such that for all N > N, the following holds:

E[LNI> 2TSPVIE[V] (A.20)

We would like to apply (A.20) to N = A(t) for t sufficiently large. Note that E[A(t)] =

At. Due to the Poisson property of the arrival process, A(t) At/2 with probability

at least 1/2 for large enough A. Therefore, P(/A'(t) s/At/2) 1/2 and

E[VA-(t)] - . (A.21)
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Assume that t is sufficiently large so that At> N and (A.20) holds. Substituting in

(A.21), we may lower bound A as

E[A(t)] (A.22)

where 13= P. From (A.18) and (A.22), we obtain

E[V] V i -'nt. (A.23)
V

Consider t* = .2 v 2  Note that the condition of the lemma that AE[v/fl/vn -+ oo

implies that At* -+ oo as required for (A.20) to hold. Then, from (A.23) we obtain

N/ -2- 1^2 E[V/7]2
E[V] vi::g0AE (A.24)

2 v2n

for AE[vfi/vn sufficiently large, and Lemma 12 is proven.

Lemma 13. If both AEJ 7 -- oo and also A2 -+ oo, the average number in queue

N -- oo as well.

Proof. The first condition of the Lemma 13, AE -+ 00 ,implies that Lemma 12

holds. With this lemma, the second condition, f - cc, implies E[V] -+ cc as

well.

The work associated with each message is upper bounded by the diameter of the

region plus the onsite service time, v iVAZ + 29(n). Therefore, because the average

work in the system is going to oo and the work associated with each message is finite,

the average number of messages in the system, N, must be going to oo as well.

This completes the proof of Theorem 4.
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Appendix B

Proof of Little's Law for the onsite

system

The onsite system for each vehicle is defined to be the system formed by deleting

all time in which the vehicle is not in onsite service. Messages that arrive while the

vehicle is in service arrive immediately to the onsite system. Messages that arrive

while the vehicle is not in service arrive to the onsite system as soon as a new message

begins service. Recall that each message requires two services by the vehicle, and so

messages depart the system when they receive their second service by the vehicle.

The following relation between the average number in the onsite system at vehicle i,

NO,j and the average waiting time in this system, Wo,j, is used in the proof of Lemma

3. Note that with No,j(r) and Wo,(r) regenerative, the theorem holds in expected

value as well.

Lemma 14 (Little's Law for the Onsite System.). For the reduced onsite system, the

following relation holds with probability 1:

' 29(n)'

The proof of the lemma is adapted directly from the proof of the sample path version

of Little's Law found in [34] (pp.286-8). The main change made here is to state
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Little's Law in terms of departure rate instead of arrival rate. In this appendix, the

reference to the vehicle index i is dropped. Further, we will use the time index r

instead of t to denote time in the onsite system.

Recall the definition of the onsite system time for a stable system:

Wo = him ZJ-1 WO()< 00. (B.1)
J->+Oo i

No(r) is defined to be the number in the onsite system at time r. We assume that

the time average number in the system while the system is in service, No, is also well

defined as

-- r No(()d(No = lim . (B.2)
7-3100

Further, we show that the following pointwise limit exists with probability 1:

Lemma 15.

lim No() =0.
r-oo 7

Proof. Suppose not. Then for any e > 0, there exists a -r such that No(r) > er for all

r > -e. Fix some E > 0. Let (7m)'=1 be a strictly increasing sequence of epochs such

that NO(rm) > erm,Vm. At most one message may leave the onsite system during

the interval [Tm, Tm + 9], therefore, No(T) > Ecm - 1 over the entire interval. That is,

associated with each rm we have the following integral:

frm+
8 N0(C )d (erm-1) __ 1
rm m

Because rm -+ oo as m -+ oo, the limit (B.2) is equivalent to

fT N+8 N id _ _No(C)d( 7-m f 1T.+ No(C)dc Tm
lim = lim

m-oo rm +S m-+oo Tm Tm + Tm Tm +S

NO = No + SE.

132



Since this is true for any E > 0, this is a contradiction, and (B.2) is proven. E

Let rj be the arrival time of the jth message to the onsite system. The departure

time of this message is then rj + Wo(j). Define the departure process, D(-r), to be

the number of messages that have departed the onsite system in the interval [0, r],

that is, D(r) = card({j I rj + Wo(j) 5 T}). Let V(r) be the number of messages

that have completed one full vehicle service, but have not yet left the system (recall

that each message must receive two services by the vehicle).

Because the vehicle is continuously serving messages, each requiring deterministic

service time 9(n), the total service rate is given by

lim D(-r)+V(r) 1
'r-x+ Ir s(n)"

Because every message must receive at least one service before departing, D(r)

V(r), Vr. Further, because the messages in the onsite system may include messages

that have not yet received any service, V(r) 5 D(r) + No(r), Vr. Combining these

and taking limits yields

lim sup 2D(<) D(-r) + V(ir) <liminf 2D(r) + No(r)
r-.o T 7_OO Tr TrOO 7'

From Lemma 15, No(r)/r -+ 0, and the right-hand and left-hand limits imply that

imD(T) _ 1lim = . (B.3)
T- r 23(n)

With the departure rate precisely established, we move to computing bounds on No.

Bound No = f' No(T)d-r in the following way:

D()fT

Z Wo(j) No(()d( < Wo(j). (B.4)
j=1 7j0-

The left-hand inequality counts those customers who have already departed the sys-
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tem whereas the right-hand inequality also includes those who have arrived by time

t but have not yet departed. Dividing the middle term by r and taking the limit as

r -+ oc yields NO.

First look at the left hand inequality. Combining (B.1) and the fact that D(r) -+ 00

as -r --> oo implies that

lim Zj=1 iWo(j) -_

r-+oo D(r)

With this and (B.3), we divide by -r, take the limit and derive the following result:

. ) W0 (j) D(T) E__Wo(j) _ _lim = lim DW )
r+oo r0oo r D(r) 29

If we can show that a similar bound holds for the right hand inequality, the proof is

complete. Again, the existence of the limit in (B.1) implies

Wo ( J . 1 W OWJ =) W O ( j ) J1 ] 
lim = [( = 0. (B.5)J-'0 J J-00 J J- J

The Lemma 15 on the number in system process implies

J D___) ____) ___

lim - < lim + = 1 (B.6)
J-ao r - J-0oo T' 3 29(n)

Combining (B.5) and (B.6) yields the following limit:

lim Wo(J) J lim LWo(i) 0.
J-+00 Tj J-oo rj J

This limit implies that for any E > 0, there exists a K such that Wo(j) 5 rjE

for all j > K. That is, a message arriving at time rj will have departed by time

7j +W/ (1 +E)rj. We may use this to further upper bound the right hand inequality

in (B.4).

D(r(1+c)) K

Wo(j) 5 Wo(j) + E Wo(j)
,rj<t j=K+l j=1
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Dividing by r and taking the limit, this upper bound converges to '(1 + e). Since

e may be arbitrarily small, the lemma is proven.

135



136



Appendix C

Proof of batch queuing time

In this appendix, we prove the following lemma, bounding TQ, the time a batch spends

in queue for the Source Only Policy given in Section 5.2.1.

Lemma 1: For the policy in Theorem 2(b) with batch time T = r for some

i > 1, the delay of the batch in the queue is bounded by

TQ = O(T).

Proof. TQ may be bounded by using Kingman's bound for the delay in a G/G/1

queue. That is:

TQ < AB (0+oA ) (C.1)
2(1 - PB)

where oA is the variance of the interarrival times and o is the variance of the service

times. In this context, the batch interarrival times are deterministic so o2 = 0 and

AB = 1/T, the arrival rate of batches. With T fixed as in (5.27), PB < 1/n.

Bounding o requires some additional effort. First note that 4B = E[T] - ETB]2 <

E[TB]. TB has two parts: 1) 2LNT = the interdemand travel times for the pickup

and delivery tours and 2) 2NT.(n) = the onsite service times for pickup and delivery.
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Then

E[T2 ] = E[(2LNT + 2NT§(n)) 2 1 (C.2)

= 4E[L 2] + 4(n)E[LNT NT] + 49(n)2E[NTI. (C.3)

Compute the terms of (C.3) individually. First,

E[L 2 var(LNT)+ E[LNT] 2  (C.4)

= var(E[LNTINTI) + E[var(LNTINT)I + E[E[LNTINT] 2  (C.5)

< 3 Avar(v ) + Z Tp(N)O(1)+#2 A E[NTI (C.6)
NT

< 2p2 AE[NrI +O(1) (C.7)

= ±22A + 0(1). (C.8)
n

where (C.5) uses the formulas for iterated variance and iterated expectation, (C.6) is

by the BHH theorem, Theorem 1, and (C.7) is by concavity of /.

Next, the second term in (C.3) is:

E[LNTNT) = E[E[LNTNTINT]] (C.9)

= 0 vfA E[NT2(C.10)

= 3vrA/(E[N 2] )3/4(C.11)

= V A + ((C.12)

< 2)3VA1- A ./2(C.13)
(n

where (C.11) is by concavity and (C.13) assumes that >1 => A = (n). Note

that if L < 1, the system is very lightly loaded and a policy based on the worst casen

TSP may be used to again bound TQ = O(T) in a similar way, without the variance

terms.
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The last term in (C.3) is just the second moment of a Poisson variable:

E[NT] =

Finally, put all of these terms together.

)2AAT 3T /2
E[TB2] < 8 n+ 0(1) + 4,§(n)20v/- (

/32AA=8 T +
n

Substituting this into Equation (C.1) above,

TQ :5 8 02AA
(1--)2 n2

+

( -)2 +

0(n

+ 4 2
.2 n

( _ 1 )2+

4p2 b

4K

Dr._

+(12 32 AA+ 0 (1 )\1p2 2A

+ 2 +(+0(1)
2) 2 AA +0O(1)

where (C.20) is given by p < 1.

4T2 AATherefore, given the batch time T = n V2(1-p) 2 n 7 we see that TQ = 0(T).

5
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n+

2 AT 2.

n

(C.14)

(C.15)

+ 49(n)2 2 --
(n

'02AA 32 2 014p T/2 + 4p2T2 + 0(1)
22

(C.16)

(C.17)

(C.18)

(C.19)

(C.20)

(C.21)

S8
1)2
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