
POLYTECHNIQUE MONTRÉAL
affiliée à l’Université de Montréal

Improvements on Column-Generation-Based Algorithms for Vehicle Routing
and Other Combinatorial Problems

LUCIANO CARLOS AZEVEDO DA COSTA
Département de mathématiques et de génie industriel

Thèse présentée en vue de l’obtention du diplôme de Philosophiæ Doctor
Mathématiques

Mars 2020

c© Luciano Carlos Azevedo da Costa, 2020.

POLYTECHNIQUE MONTRÉAL
affiliée à l’Université de Montréal

Cette thèse intitulée :

Improvements on Column-Generation-Based Algorithms for Vehicle Routing
and Other Combinatorial Problems

présentée par Luciano Carlos AZEVEDO DA COSTA
en vue de l’obtention du diplôme de Philosophiæ Doctor
a été dûment acceptée par le jury d’examen constitué de :

Issmaïl EL HALLAOUI, président
Guy DESAULNIERS, membre et directeur de recherche
Claudio CONTARDO, membre et codirecteur de recherche
Jean-François CORDEAU, membre
Jean-François CÔTÉ, membre externe

iii

DEDICATION

To my parents, Carlos and Luciane,
to my sister, Lays, and to the

love of my life, Renally. . .

iv

ACKNOWLEDGEMENTS

The completion of this thesis was only possible due to the support of numerous people. They
have directly or indirectly assisted me during some moment of this long journey, that was this
Ph.D. To all of them, I extend my deepest gratitude. In particular, I would like to sincerely
thank:

• My advisors professors Guy Desaulniers and Claudio Contardo. Thanks a lot for hav-
ing given me the opportunity of pursuing my Ph.D. at Polytechnique Montreal and for
having believed in my work. I do not have words to express my gratitude for the count-
less hours that you have spent teaching, guiding, and mentoring me, not to mention
all the time correcting my long texts. You have always been very kind and supportive
during all these years. I am very fortunate to have worked under the supervision of
such inspiring and brilliant professors.

• My family back in Brazil, especially, my parents Carlos and Luciane, and my sister,
Lays, for their unconditional love and support. Thanks for having always been my safe
haven in all the moments of anguish, anxiety, and suffering. Thanks for having taught
me to be the person I have become, which always strives to make dreams come true. I
love you.

• My girlfriend, soon to be fiancé, Renally. For the past ten years, you have been my
best friend and you have taken part in most of my accomplishments. Thanks for your
support, love, and friendship. Thanks for understanding the reason of my absence.
Thanks for having changed the plans of your life and having come to spend some time
in Canada so that we could be together. I love you.

• The collaborators in the works composing this thesis: Diego Pecin and Julian Yarkony.
Thanks for your work, patience, availability, and for always having found the time to
answer my long e-mails and several questions.

• The professors composing the jury: Daniel Aloise, Issmail El Hallaoui, Jean-François
Cordeau, and Jean-François Côté. Thanks for having accepted to be in my jury and
for all the comments, suggestions, and detailed corrections that you gave me.

• My flatmates, along all these years, who have become friends: Bruno, Emanuel, Gabriel,
Larissa, Leandro, Raphael, and Roosevelt. Thank you for putting up with me and all

v

my stress. Thanks for the moments of de-stress and board-game nights. You have
made these years in Montreal more bearable.

• My Brazilian and Colombian friends: Aldair, Alfredo, Breno, Camila, Diego Fiorotto,
Diego Pecin, Gislaine, Karim, Larissa, Luiza, Pedro, Renata, and Vinicius. Thanks for
having always helped me to feel closer to home.

• The wonderful people that I had the opportunity to meet in Montreal, especially:
Carlos, Claudio Sole, Clement, David, Eglantine, Filippo, Gianluca, Giulia, Greta,
Jaime, Julian, Kenjy, Lucie, Maria, Mathieu Tanneau, Matthieu Gruson, Michael,
Paul, Rodrigo, Rosemarie, Serena, and Vilmar. All of you played an important role
in all of this. Your friendship and great affection toward me were essential for me to
endure all the hardships during the Ph.D. Thanks for all the great moments that we
have spent together.

• My officemates: Mahsa, Sebastian, Utsav, Nadia, and Rachid.

• The GERAD staff: Marie, Marilyne, Karine, Carole, Edoh, and Pierre. Thanks for
always being so kind and assistive. Thanks for all your availability and for always
having rendered me daily assistance, especially during my period as a GERAD student
representative.

• If today I am about to finish my Ph.D., I own all my gratitude to Professor Anand
Subramanian that introduced me to the field of Operations Research. Thanks for all
the guidance and for having always believed in me. Also, despite the long-distance,
thank you for all your encouragement and support during the time that I spent in
Montreal.

• I could never forget my friends: Raphael, Walton, and Teobaldo. Thanks for the
numerous consultations and the countless hours on Skype/Hangout/WhatsApp calls
for discussing some research related topics or just for talking non-sense. During all my
time abroad, but especially in the last months, your support was fundamental.

• Last, but not least, the Natural Sciences and Engineering Research Council of Canada
(NSERC) and the Fonds de recherche du Québec – Nature et technologies (FQRNT)
for their financial support, which made this thesis possible.

vi

RÉSUMÉ

Plusieurs applications dans le contexte de la logistique et de la planification de la production
peuvent être modélisées comme des problèmes d’optimisation combinatoire (POC). En par-
ticulier, l’un des problèmes les plus étudiés dans ce domaine est le problème de tournées de
véhicules (PTV). Le PTV consiste à trouver des tournées de véhicules qui minimisent le coût
total de transport pour visiter un ensemble de clients, de telle sorte que leur demande soit
complètement satisfaite en une seule visite, et que la capacité des véhicules ne soit jamais
dépassée. Présentement, la principale méthode de résolution exacte pour les PTVs est la
génération de colonnes. Dans cette thèse, nous nous intéressons à l’étude des algorithmes de
génération de colonnes et proposons de nouvelles idées pour améliorer leur efficacité.

Dans le Chapitre 4, nous présentons une revue de littérature très exhaustive dans laquelle nous
mettons en évidence les principales contributions algorithmiques et de modélisation apportées
au cours des dernières années dans la cadre du développent des algorithmes de génération
de colonnes et de plans coupants intégrés à des méthodes d’énumération implicite pour le
PTV. Notre étude est divisée en deux parties principales. Dans la première partie, nous
présentons des aspects qui peuvent s’appliquer à la plupart des variantes de PTV, à savoir :
des algorithmes de résolution du sous-problème de la génération de colonnes, la séparation
de plans coupants, les stratégies de branchement et la stabilisation des variables duales dans
le problème-maître. La deuxième partie est dédiée à la résolution de problèmes spécifiques.
Dans cette partie, nous discutons comment les spécificités de chaque problème peuvent êtres
traitées lors du développement des algorithmes d’énumération implicite combinant génération
de colonnes et plans coupants. On étude les attributs suivants : l’existence d’une flotte
hétérogène et des dépôts multiples, la considération de fenêtres de temps souples chez les
clients, la possibilité d’effectuer des livraisons fractionnées, les coûts dépendant du temps,
la réalisation de cueillettes et livraisons, la présence d’incertitude dans les données et des
aspects environnementaux.

Dans le Chapitre 5, nous proposons un algorithme sélectif pour résoudre des sous-problèmes
de la génération de colonnes afin de générer des routes relaxées de type arc-ng. Notre méthode
considère une généralisation de la dominance par ensemble proposée par Bulhões et al. [1]. Les
résultats numériques obtenus sur des instances du PTV avec fenêtres de temps montrent que
le nouveau mécanisme aide à réduire le nombre d’étiquettes non-dominées dans l’algorithme
d’étiquetage utilisé pour résoudre le sous-problème et, par conséquent, le temps de calcul.

Enfin, dans le Chapitre 6, nous présentons une nouvelle méthode de stabilisation pour

vii

des POCs avec des structures qui favorisent l’parution de dégénérescence. Le nouvel algo-
rithme de stabilisation, appelé dyn-SAR, est basé sur la séparation dynamique de contraintes
agrégées, qui sont obtenues en additionnant des contraintes du problème maître de génération
de colonnes. L’effet de stabilisation induit par dyn-SAR provient des fortes interactions qui
surviennent entre les variables duales, ce qui n’est pas observé lors de la résolution explicite
d’une formulation de partition d’ensemble (recouvrement / empaquetage). L’intérêt princi-
pal pour l’utilisation du dyn-SAR est dû à sa simplicité et généralité. Ce dernier aspect est
confirmé dans nos expériences, où nous considérons des problèmes dont la fonction objectif
et le sous-problème de génération de colonnes sont considérablement différents. Les résultats
numériques montrent un avantage important du dyn-SAR par rapport à une méthode de
génération de colonnes standard en termes de nombre d’itérations et de temps de calcul.

viii

ABSTRACT

Several applications arising in the context of logistics and production planning can be modeled
as combinatorial optimization problems (COPs). In particular, one of the most studied
problems in this field is the vehicle routing problem (VRP). The VRP is the problem of
finding least-cost routes to visit a set of customers in such a way that their demand is
completely satisfied in a single visit, and the capacity of vehicles is not exceeded. Nowadays,
the leading exact method to cope with different classes of VRPs is column generation (CG).
In this thesis, we are interested in studying CG algorithms and propose new ideas to enhance
their efficiency.

In Chapter 4, we present a methodological survey in which we highlight and discuss the main
algorithmic and modeling contributions made over the years in the context of branch-price-
and-cut methods for VRPs. Our study is divided into two main parts. In the first part,
we discuss topics that may apply to most VRPs variants, namely: pricing algorithms, cut
separation, branching strategies, and dual variable stabilization. The second part is more
problem-oriented and describes how aspects such as heterogeneous fleet, multi-depots, soft
time windows, split deliveries, time dependency, pickups and deliveries, uncertainty, and
environmental aspects can be handled in devising branch-price-and-cut algorithms.

In Chapter 5, we propose a selective pricing algorithm to solve pricing subproblems defined
in terms of arc-ng-route relaxations. Our method extends the set-based dominance rule pro-
posed by Bulhões et al. [1], making it more general and stronger. Computational experiments
performed over instances of the VRP with time windows show that the proposed mechanism
helps in reducing the number of non-dominated labels kept by the labeling algorithm and,
as a consequence, the CPU time.

Finally, in Chapter 6, we develop a new stabilization framework to tackle COPs with de-
generate structures. The new stabilization method, called dyn-SAR, relies on the dynamic
separation of aggregated constraints, which are obtained by summing up constraints from
the CG master problem. The stabilization effect induced by dyn-SAR is due to strong in-
teractions that arise from dual variables, which is not observed when solving explicitly a
set-partitioning (covering/packing) formulation. The main interests in using the dyn-SAR
method are its simplicity and generality. The latter aspect is confirmed in our experiments,
where we solve instances from problems differing considerably in their objective function and
pricing subproblem. Numerical results show a clear advantage of dyn-SAR over a standard
CG method in terms of both the number of iterations and running time.

ix

TABLE OF CONTENTS

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

RÉSUMÉ . vi

ABSTRACT . viii

TABLE OF CONTENTS . ix

LIST OF TABLES . xii

LIST OF FIGURES . xiv

LIST OF SYMBOLS AND ACRONYMS . xv

LIST OF APPENDICES . xviii

CHAPTER 1 INTRODUCTION . 1
1.1 Problem setting and motivation . 1
1.2 Objectives . 3
1.3 Thesis outline . 3

CHAPTER 2 CRITICAL LITERATURE REVIEW 4
2.1 Column generation for combinatorial optimization problems 4

2.1.1 Dantzig-Wolfe decomposition . 4
2.1.2 Column generation . 7
2.1.3 Branch-price-and-cut algorithms . 9
2.1.4 Cuts separation . 10

2.2 Complexity of solving the pricing subproblem 12
2.3 Convergence issues . 13

CHAPTER 3 ORGANIZATION OF THE THESIS 17

CHAPTER 4 ARTICLE 1: EXACT BRANCH-PRICE-AND-CUT ALGORITHMS
FOR VEHICLE ROUTING . 19
4.1 Introduction . 19

x

4.1.1 Problem description . 21
4.1.2 Set partitioning formulation . 22

4.2 Components of a basic BPC algorithm . 23
4.2.1 The master problem . 23
4.2.2 The pricing problem . 24
4.2.3 Cutting planes . 25
4.2.4 Branching decisions . 27

4.3 Generic tools . 27
4.3.1 Pricing . 27
4.3.2 Cutting . 38
4.3.3 Branching . 47
4.3.4 Using upper bounds . 51
4.3.5 Stabilizing dual variable values . 54

4.4 Contributions to specific VRPs . 55
4.4.1 Heterogeneous fleet and multiple depots 56
4.4.2 Profits (optional customers) . 58
4.4.3 Soft time windows . 60
4.4.4 Multiple trips . 61
4.4.5 Split services . 64
4.4.6 Time dependency . 68
4.4.7 Cumulative costs . 68
4.4.8 Environmental aspects . 69
4.4.9 Uncertainty . 71
4.4.10 Pickups and deliveries . 77

4.5 Conclusion . 87

CHAPTER 5 ARTICLE 2: SELECTIVE ARC-NG PRICING FOR VEHICLE ROUT-
ING . 88
5.1 Introduction . 88
5.2 Route relaxations . 91

5.2.1 The SPPRC . 92
5.2.2 The ng-SPPRC of Baldacci et al. [2] 93
5.2.3 The arc-ng-SPPRC of Bulhões et al. [1] 93

5.3 Selective arc-ng-SPPRC . 97
5.4 Computational experiments . 100

5.4.1 Column-and-cut-generation framework 101

xi

5.4.2 Experiments design . 102
5.4.3 Computational results . 104

5.5 Concluding remarks . 108

CHAPTER 6 STABILIZED COLUMN GENERATION VIA AGGREGATED ROWS
SEPARATION . 109
6.1 Introduction . 109
6.2 The dynamic aggregated-rows separation method 111

6.2.1 Problem description . 111
6.2.2 The dyn-SAR method . 113
6.2.3 Description of the method . 115

6.3 Computational experiments . 117
6.3.1 Vehicle routing problem with time windows 117
6.3.2 Multi-person pose estimation . 119
6.3.3 Bin Packing Problem with Conflicts 124

6.4 Conclusions . 128

CHAPTER 7 GENERAL DISCUSSION . 129

CHAPTER 8 CONCLUSION AND RECOMMENDATIONS 131
8.1 Summary of Works . 131
8.2 Limitations and future research . 132

REFERENCES . 134

APPENDICES . 155

xii

LIST OF TABLES

Table 5.1 Aggregated results using the only-cycle DSSR strategy before adding
non-robust cuts . 105

Table 5.2 Aggregated results using the all-arcs DSSR strategy before adding
non-robust cuts . 105

Table 5.3 Aggregated results using the only-cycle DSSR strategy after adding
non-robust cuts . 106

Table 5.4 Aggregated results using the all-arcs DSSR strategy after adding
non-robust cuts . 107

Table 6.1 Summary results for instances with 200 customers 119
Table 6.2 Summary results for instances with 400 customers 120
Table 6.3 Results for the Multi-Person Pose Estimation 123
Table 6.4 Summary results – Bin Packing Problem with Conflicts – Triplet in-

stances . 127
Table 6.5 Summary results – Bin Packing Problem with Conflicts – Uniform in-

stances . 127
Table A.1 Detailed results for comparing Default vs SetBased settings using

only-cycle DSSR before adding non-robust cuts 155
Table A.2 Detailed results for comparing Default vs SetBased settings using

only-cycle DSSR after adding non-robust cuts 156
Table A.3 Detailed results for comparing Default vs Pairwise settings using

only-cycle DSSR before adding non-robust cuts 156
Table A.4 Detailed results for comparing Default vs Pairwise settings using

only-cycle DSSR after adding non-robust cuts 156
Table A.5 Detailed results for comparing Default vs SetPair settings using

only-cycle DSSR before adding non-robust cuts 157
Table A.6 Detailed results for comparing Default vs SetPair settings using

only-cycle DSSR after adding non-robust cuts 157
Table A.7 Detailed results for comparing Default vs SetBased settings using

all-arcs DSSR before adding non-robust cuts 157
Table A.8 Detailed results for comparing Default vs SetBased settings using

all-arcs DSSR after adding non-robust cuts 158
Table A.9 Detailed results for comparing Default vs Pairwise settings using

all-arcs DSSR before adding non-robust cuts 158

xiii

Table A.10 Detailed results for comparing Default vs Pairwise settings using
all-arcs DSSR after adding non-robust cuts 158

Table A.11 Detailed results for comparing Default vs SetPair settings using
all-arcs DSSR before adding non-robust cuts 159

Table A.12 Detailed results for comparing Default vs SetPair settings using
all-arcs DSSR after adding non-robust cuts 159

Table A.13 Detailed results for comparing Default vs SetBased settings using
only-cycle DSSR before adding non-robust cuts 160

Table A.14 Detailed results for comparing Default vs SetBased settings using
only-cycle DSSR after adding non-robust cuts 161

Table A.15 Detailed results for comparing Default vs Pairwise settings using
only-cycle DSSR before adding non-robust cuts 162

Table A.16 Detailed results for comparing Default vs Pairwise settings using
only-cycle DSSR after adding non-robust cuts 163

Table A.17 Detailed results for comparing Default vs SetPair settings using
only-cycle DSSR before adding non-robust cuts 164

Table A.18 Detailed results for comparing Default vs SetPair settings using
only-cycle DSSR after adding non-robust cuts 165

Table A.19 Detailed results for comparing Default vs SetBased settings using
all-arcs DSSR before adding non-robust cuts 166

Table A.20 Detailed results for comparing Default vs SetBased settings using
all-arcs DSSR after adding non-robust cuts 167

Table A.21 Detailed results for comparing Default vs Pairwise settings using
all-arcs DSSR before adding non-robust cuts 168

Table A.22 Detailed results for comparing Default vs Pairwise settings using
all-arcs DSSR after adding non-robust cuts 169

Table A.23 Detailed results for comparing Default vs SetPair settings using
all-arcs DSSR before adding non-robust cuts 170

Table A.24 Detailed results for comparing Default vs SetPair settings using
all-arcs DSSR after adding non-robust cuts 171

xiv

LIST OF FIGURES

Figure 5.1 Standard dominance . 98
Figure 5.2 Selective dominance . 98
Figure 5.3 Selective set-based comparison . 99
Figure 5.4 Bulhões et al.’s mechanism . 99
Figure 5.5 Time profiles for all instances before adding non-robust cuts 107
Figure 5.6 Time profiles for all instances after adding non-robust cuts 108

xv

LIST OF SYMBOLS AND ACRONYMS

2-cyc-SPPRC 2-cycle-elimination Shortest Path Problem with Resource Constraints
2PC 2-Path Cut
arc-ng-SPPRC arc-ng-Shortest Path Problem with Resource Constraints
BB Branch-and-Bound
BC Branch-and-Cut
BP Branch-and-Price
BPC Branch-Price-and-Cut
BPP Bin Packing Problem
BPPC Bin-Packing Problem with Conflicts
C-SDVRP Commodity-Constrained Split Delivery Vehicle Routing Problem
CCP Chance-Constrained Program
CCVRPSD Chance-Constrained VRP with Stochastic Demands
CG Column Generation
CI Capacity-Indexed
CLRP Capacitated Location-Routing Problem
COP Combinatorial Optimization Problem
CPTP Capacitated Profitable Tour Problem
CS Cutting-Stock
CTOP Capacitated Team Orienting Problem
CumVRP Cumulative Vehicle Routing Problem
CVRP Capacitated Vehicle Routing Problem
DARP Dial-a-Ride Problem
DARPSRP Dial-a-Ride Problem with Split Requests and Profits
DDOI Deep Dual-Optimal Inequality
DI Dual Inequality
DOI Dual-Optimal Inequality
DP Dynamic Programming
DSDVRPTW Discrete Split Delivery Vehicle Routing Problem with Time Windows
DSSR Decremental State-Space Relaxation
DTI Delivery Triangle Inequality
DW Dantzig-Wolfe
Dyn-SAR Dynamic Separation of Aggregated Constraints
EFC Expected Failure Cost

xvi

EMP Extended Master Problem
EMVRP Energy Minimization Vehicle Routing Problem
ERMP Extended Restricted Master Problem
ESPPRC Elementary Shortest Path Problem with Resource Constraints
EVRP Electric Vehicle Routing Problem
EVRPTW Electric Vehicle Routing Problem with Time Windows
FIFO First-in-First-out
GVRP Green Vehicle Routing Problem
HFVRP Heterogeneous Fleet Vehicle Routing Problem
IP Integer Programming
IPEC Infeasible Path Elimination Constraints
IPS Improved Primal Simplex
ISUD Integral Simplex Using Decomposition
k-CEC k-cycle Elimination Cut
k-cyc-SPPRC k-cycle-elimination Shortest Path Problem with Resource Constraints
KPC Knapsack Problem with Conflicts
kPCs k-path Cuts
lam-SRC Limited-arc-memory Subset-Row Cut
LDS Limited Discrepancy Search
lm-SRC Limited-memory Subset-Row Cut
LP Linear Programming
LP-BKP Linear Relaxation of Bounded Knapsack Problem
lvm-SRC Limited-vertex-memory Subset-Row Cut
MDVRP Multi-Depot Vehicle Routing Problem
MDVRPI Multi-Depot Vehicle Routing Problem with Inter-depot Routes
MEC Mutual Exclusion Constraint
MIP Mixed-Integer Programming
MP Master Problem
MPPE Multi-Person Pose Estimation
MTVRP Multi-Trip Vehicle Routing Problem
MTVRPTW-LD Multi-Trip VRPwith Time Windows and Limited Trip Duration
MWSP Minimum Weight Set Packing
ng-SPPRC ng-Shortest Path Problem with Resource Constraints
PDP Pickup and Delivery Problem
PDP-SL Pickup and Delivery Problem with Scheduled Lines
PDPS Pickup and Delivery Problem with Shuttles

xvii

PDPT Pickup and Delivery Problem with Transfers
PDPTW Pickup and Delivery Problem with Time Windows
PDPTWL PDP with Time Windows and LIFO constraints
PDPTWMS Pickup and Delivery Problem with Time Windows and Multiple Stacks
PRP Pollution Routing Problem
PS Pricing Subproblem
R-DARP Rich-DARP
RCC Rounded Capacity Cut
REF Resource Extension Function
RMP Restricted Master Problem
RVRP Robust Vehicle Routing Problem
SCC Strengthened Capacity Cut
SDC Strong Degree Cut
SDCTOP Split Delivery Capacitated Team Orienting Problem
SDVRP Split Delivery Vector Packing Problem
SDVRPTW Split Delivery Vehicle Routing Problem with Time Windows
SkPC Strong k-Path Cuts
SMVC Strong Minimum Number of Vehicles Inequality
SPDP Synchronized Pickup and Delivery Problem
SPPRC Shortest Path Problem with Resource Constraints
SPR Stochastic Program with Recourse
SRC Subset-Row Cut
SVRP Stochastic Vehicle Routing Problem
SVRPTW Selective Vehicle Routing Problem with Time Windows
TDVRPTW Time Dependent Vehicle Routing Problem with Time Windows
TOP Team Orienting Problem
TSP Travelling Salesman Problem
TSPTW Travelling Salesman Problem with Time Windows
VPP Vector Packing Problem
VRP-SL Vehicle Routing Problem with Service Level constraints
VRPDSTW VRP with Deliveries, Selective Pickups and Time Windows
VRPP Vehicle Routing Problem with Profits
VRPSD Vehicle Routing Problem with Stochastic Demands
VRPSPD Vehicle Routing Problem with Simultaneous Pickup and Deliveries
VRPTW Vehicle Routing Problem with Time Windows
VRPTW-ST VRP with Time Windows and Stochastic Service Times

xviii

LIST OF APPENDICES

Appendix A DETAILED RESULTS – SELECTIVE ARC-NG PRICING FOR VE-
HICLE ROUTING . 155

1

CHAPTER 1 INTRODUCTION

1.1 Problem setting and motivation

Several problems arising in the context of logistics and production planning can be modeled
as combinatorial optimization problems (COPs). A COP can be formally defined as follows.
Let N = {1, . . . , n} be a finite set of items. A feasible solution can be associated with a
set S = {S1, . . . , Sk}, where each Si is a subset of N . With each solution S is associated a
cost cS , and the set of all feasible solutions S is denoted F . The structure of set F varies
according to the problem at hand, as different feasibility rules may arise. In the case of
the vehicle routing problem (VRP) [3], N corresponds to the set of customers that must be
visited. In turn, a solution S is associated with a set of routes {S1, . . . , Sk}. A COP consists
of finding a solution S ∈ F in such a way that the total cost is minimized or maximized.
More formally:

min
S∈F

cS (1.1)

Notice that, performing an exhaustive enumeration of all subsets S ∈ F may be computa-
tionally prohibitive, due to the cardinality of F , that is typically exponential on the size of
N . For example, if we consider a VRP where 100 customers must be visited, the number of
possible routes is 100! (≈ 9.33× 10157), which is much larger than the number of stars in the
Universe! [4]. Thus, developing efficient methods to deal with COPs is crucial.

Over the years, a variety of strategies has been proposed to cope with COPs, among which we
can find exact and heuristic/metaheuristic methods, or even hybrid methods, that combine
both [5]. Heuristic algorithms are suitable for tackling real-life applications. In general,
these methods can be easily implemented and are capable of providing good solutions in
reasonable amounts of time. Nevertheless, they do not give any guarantee about the quality
of the solutions obtained. Heuristic methods are out of the scope of this thesis, and for this
reason, are not discussed in this document. A very recent and detailed discussion about
metaheuristics can be found in [6].

In contrast, exact algorithms are capable of providing proven optimal solutions, but at a
higher computational effort. In this thesis, we focus on the exact methods that are based on
column generation (CG) [7]. These methods are known to be the state-of-the-art strategy
to solve several COPs, such as vehicle routing and scheduling [8, 9], packing [10], machine
scheduling [11], computer vision problems [12,13], among others.

2

When applying CG, COPs are expressed through extended formulations, i.e., formulations
containing a large number of variables. In this context, a COP is typically expressed as a set-
partitioning (covering/packing) problem, where each variable is associated with a subset S
induced by the problem structure. For example, when modeling a vehicle routing/scheduling
problem as a set-partitioning problem, each variable corresponds to a feasible route. For
bin-packing problems or cutting stock problems [10], each variable corresponds to a pack-
ing/cutting pattern. The same characteristic may be found in several other COPs.

As will be discussed with more details in Chapter 2, CG is an iterative algorithm to deal
with linear problems containing a large number of variables (see [7, 14, 15]). It follows the
principle of the simplex method, i.e., at each iteration, a basic solution is found, and then
variables with negative reduced costs are searched to enter the basis. However, given the
massive number of variables that may be associated with the problems being solved, looking
explicitly for all the columns to enter the basis may be computationally prohibitive. Thus, CG
algorithms consider at each time only a subset of variables, i.e., a restricted master problem
(RMP). Then, at each iteration of the method, variables are generated by solving a pricing
subproblem (PS). Solving these subproblems typically corresponds to finding combinatorial
objects like paths, sets, or permutations [15]. Hence, state-of-the-art algorithms can be used
to solve the subproblems. The PS considers dual information from the RMP and returns,
if possible, a variable with a negative reduced cost. This process continues iteratively until
no more variables with a negative reduced cost can be found, which means that an optimal
solution to the problem has been found.

In this thesis, special attention is dedicated to the VRP, this problem being the central theme
of Chapters 4 and 5. The VRP is one of the most studied problems in the field of operations
research (OR). It was proposed by Dantzig and Ramser [16] when solving a practical problem
arising in the context of gasoline delivery from the bulk terminal to service stations. In the
classic VRP, the so-called Capacitated VRP (CVRP), a homogeneous fleet of capacitated
vehicles is available at a central depot to visit a set of customers. Every customer must be
visited exactly once, and their demand must be completely satisfied. The CVRP consists
of designing a set of routes, starting and ending at the same and unique depot, in such a
way that the capacity of the vehicles is never exceeded. The most common objective related
to this problem is the minimization of the traveling costs, which are usually proportional to
the traveling distances. In the literature, a variety of VRP variants has been proposed to
model different aspects of real-life problems [3, 17]. Other COPs, such as the bin-packing
with conflicts [18, 19] and the multi-person pose estimation [13], are also considered in this
thesis. Their definitions are given in Chapter 6.

3

1.2 Objectives

In recent years, CG has been the leading technique to cope with many classes of VRPs. Since
the seminal work by Desrosiers et al. [20], several methods and strategies have been proposed
and considered in the design of CG methods for VRPs. Specifically, CG has been success-
fully employed to develop branch-price-and-cut (BPC) algorithms. Yet, performing a proper
implementation of a CG (branch-and-price) algorithm or even being able to understand it,
is often a hard task [21]. Additionally, despite the success achieved by CG algorithms when
tackling COPs, they may face some issues related to its bad convergence behavior and to
the computational burden of solving the CG pricing subproblem. The latter is particularly
critical when solving VRPs.

Given the above, the objective of this thesis is to discuss and propose techniques that can be
used to enhance the performance of CG based algorithms. More specifically:

• Highlight and discuss the main methodological and modeling contributions made over
the years in the context of BPC for VRPs;

• Design less restrictive dominance rules to allow pricing subproblems arising from VRPs
to be solved more efficiently;

• Propose a stabilization framework to reduce the impact of dual instability and degen-
erate structures when applying CG to COPs.

1.3 Thesis outline

The remainder of this document is organized as follows: in Chapter 2, we give some back-
ground and notions on how a CG algorithm works and how a BPC algorithm can be im-
plemented. Moreover, we present a concise literature review concerning the main topics to
be discussed in this thesis. Chapter 3 describes the structure of this document. Chapter
4 consists of a methodological survey, where a detailed study about the different aspects
involving the design of BPC algorithms for VRPs is performed. Chapter 5 describes a new
pricing algorithm to be applied to VRPs. Chapter 6 presents a new stabilization framework
that is based on the dynamic separation of aggregated constraints of the RMP. Finally, in
Chapter 7, we provide a general discussion regarding the three objectives of this thesis, and
in Chapter 8, we draw some conclusions.

4

CHAPTER 2 CRITICAL LITERATURE REVIEW

Although this thesis is composed of self-contained chapters, in this introductory chapter, we
explain some important definitions and concepts related to CG based algorithms. Moreover,
we provide a concise literature review regarding the main strategies designed to address some
of the issues faced by CG algorithms.

2.1 Column generation for combinatorial optimization problems

In this section, we give a general description of a CG algorithm. Initially, we discuss the
underlying structure of combinatorial optimization problems (COPs) favoring the application
of CG algorithms. Later, we present the main components of a CG algorithm.

2.1.1 Dantzig-Wolfe decomposition

Because integer programming (IP) problems are also defined over a discrete domain, they
are closely linked to COPs. As a consequence, practically all COPs can be expressed as an
IP problem in its compact form [22]:

min cᵀx
s.t. Ax ≥ b

Dx ≥ d

x ∈ Zn+,

(2.1)

where c ∈ Rn, A ∈ Zm×n+ , and D ∈ Zl×n+ , with n being the number of decision variables, and
m and l denoting the number of constraints to which matrices of coefficients A and D are
respectively associated with. From now on, the terms COPs and IP problems will be used
interchangeably in this text. The previous formulation is said to be compact because the
number of variables and constraints is polynomial in the size of the problem.

In practical situations, solving a COP such as (2.1) may not be an easy task. Even if the
problem (2.1) is a linear programming (LP) problem, due to the domain over which the
variables of the problem are defined, all the theory and algorithms that have been developed
in the literature to solve LP problems may not be applied directly to solve COPs.

Nevertheless, some COPs have a particular structure that makes them suitable for the appli-
cation of the Dantzig-Wolfe (DW) decomposition. DW decomposition is a technique proposed

5

by Dantzig and Wolfe [23] that can be applied to reformulate problems containing sparse and
well-structured constraint matrices. This structure allows them to be decomposed into inde-
pendent blocks (sub-systems/subproblems), each one corresponding to a subset of variables
and constraints from the original problem. These blocks can be treated separately and then
combined afterward by a coordinating problem (also called master problem), to obtain the
solution for the original problem. In this reformulation, the solution of each subproblem is
expressed in the coordinating problem using new variables. The idea behind this approach
is to reduce the complexity of large-scale problems through the solution of smaller problems.

From problem (2.1), it is possible to define the discrete set X = {x ∈ Zn+ |Dx ≥ d}. Because
X is assumed to be finite, problem (2.1) can be equivalently written as:

min cᵀx
s.t. Ax ≥ b

x ∈ conv(X),
(2.2)

where conv(X) is the convex hull of X.

For the sake of simplicity, we assume conv(X) to be a bounded set. Let q be the number
of its extreme points. Hence, we may express the feasible set of problem (2.1) as being
X = {x1, . . . , xq}, where each element of X corresponds to a feasible solution of the problem.
As a consequence, one may write any point in X as the convex combination of all extreme
points {x1, . . . , xq}. More formally,

x =
q∑
j=1

xjλj

q∑
j=1

λj = 1

λi ≥ 0 i = 1, . . . , q (2.3)

It is important to remark that, in a more general case, set X might be unbounded. Hence,
x in (2.3) would need to be written as the linear combination of extreme points and extreme
rays. However, because all problems discussed in this thesis are associated with a bounded
conv(X), we limit our discussion to the simplest case.

By replacing (2.3) into (2.2), and by denoting cj = cᵀxj, and aj = Axj, problem (2.1) can be
reformulated as:

min
q∑
j=1

cjλj (2.4)

6

s.t.
q∑
j=1

ajλj ≥ b (2.5)

q∑
j=1

λj = 1 (2.6)

λj ≥ 0 j = 1, . . . , q (2.7)

x =
q∑
j=1

xjλj (2.8)

x ∈ Zn+. (2.9)

This new problem is the so-called master problem of the DW decomposition.

DW decomposition allows the development of efficient algorithms to solve COPs. Provided
that the structure of the sub-systems Dx ≥ d does not possess the integrality property,
i.e., the solution of the linear relaxation of the problem is integer, bounds generated when
solving the linear relaxation of (2.4)–(2.9) are stronger than those obtained from the linear
relaxation of (2.1) [24]. This is due to the fact that by employing a DW reformulation, one
works with a partial representation of the convex hull of the original problem, leading to
a reduction in the degree of infeasibility of the problem. Moreover, extended formulations
like (2.4)–(2.9) help breaking symmetries in the formulation [25], and allow concealing some
potential complex aspects arising from a given problem definition (e.g., its non-linearity [8])
by encoding it within the vector aj. Nevertheless, a disadvantage of reformulating a problem
employing DW decomposition is that the coordinating problem may contain an exponentially
large number of variables. Thus, handling all the variables at once may be computationally
prohibitive. Therefore, the use of a technique such as CG, which is discussed in the next
section, is suitable to address these problems.

The effectiveness of DW decomposition in enabling the design of efficient algorithms is even
higher if the matrix D has a block diagonal structure, i.e., the matrix D may be rearranged
in such a way to be represented as:

D =

D1 0 . . . 0
0 D2 . . . 0
...
0 0 . . . D`

 . (2.10)

As a consequence, problem (2.1) can be rewritten as:

7

min cᵀx
s.t. Ax ≥ b

Dkxk ≥ dk, k = 1, . . . , `
xk ∈ Znk+ , k = 1, . . . , `

(2.11)

where xk, k = 1, . . . , `, are disjoint vectors such that x = (x1, x2, . . . , xk).

The block diagonal structure allows the set X to be partitioned into disjoint sets Xk = {xk ∈
Znk+ |Dkx

k ≥ dk}, k = 1, . . . , `. In this case, relation (2.3) becomes:

xk =
qk∑
j=1

xkjλ
k
j k = 1, . . . , `

qk∑
j=1

λkj = 1 k = 1, . . . , `

λki ≥ 0 k = 1, . . . , `, i = 1, . . . , qk, (2.12)

where qk corresponds to the number of extreme points in Xk.

In turn, the COP (2.11) can be presented as follows:

min
∑̀
k=1

qk∑
j=1

ckjλ
k
j (2.13)

s.t.
∑̀
k=1

qk∑
j=1

akjλ
k
j ≥ b (2.14)

qk∑
j=1

λj = 1 k = 1, . . . , ` (2.15)

λkj ≥ 0 k = 1, . . . , `, i = 1, . . . , qk (2.16)

xk =
qk∑
j=1

xkjλj k = 1, . . . , ` (2.17)

xk ∈ Znk+ k = 1, . . . , `. (2.18)

2.1.2 Column generation

CG is an iterative approach to deal with (linear) problems containing a vast number of
variables (see [7, 14, 15]), like the ones obtained via DW decomposition. The basis for this
technique has been conceived in [23,26,27].

To explain the principle of CG, let us consider the reformulation (2.4)–(2.9) of problem (2.1).

8

Its linear relaxation can be obtained by dropping the integrality of x variables. Additionally,
let Ω be the set of indices {1, . . . , q}. CG follows the principle of the simplex method, i.e.,
at each iteration, a basic solution is found, and then variables with a negative reduced costs
are searched to enter the basis. However, because the size of set Ω is typically very large,
looking explicitly for all the variables to enter the basis may not be possible. For this reason,
CG algorithms consider at each time only a reasonably small subset Ω′ ⊆ Ω, defining the
so-called restricted master problem (RMP). By working with a row-wise representation of
constraints (2.5), with set M containing their indices, the RMP is expressed as follows:

min
∑
j∈Ω′

cjλj (2.19)

s.t.
∑
j∈Ω′

aijλj ≥ bi i ∈M (2.20)

∑
j∈Ω′

λj = 1 (2.21)

λj ≥ 0 j ∈ Ω′. (2.22)

In a CG algorithm, at each iteration, new variables are generated by solving a pricing sub-
problem (PS). The PS considers dual information from the RMP and returns, if possible,
a variable with a negative reduced cost. This process continues iteratively until no more
variables with a negative reduced cost can be found, meaning than an optimal solution for
the problem has been found. From problem (2.1), the PS would be formulated as follows:

min (cᵀ − πᵀA)ᵀx− γ
s.t. Dx ≥ d

x ∈ Zn+,
(2.23)

where π and γ are the dual variables associated, respectively, with constraints (2.20) and
(2.21). The term (c − πᵀA) corresponds to the reduced cost associated with the vector of
variables x. If we consider the variables individually, and adopt the notation from (2.19)–
(2.22), the PS could be expressed as:

j∗ ∈ arg min
j ∈Ω
{c∗ := cj − πᵀaj − γ}, (2.24)

which returns a variable in Ω with the least reduced cost (most negative). When c∗ is such
that c∗ > 0, the search for new variables ends.

For several COPs, the PS (2.23) arising from the DW decomposition may correspond to
problems with some rich structure. Thus, it may be possible to benefit from families of

9

algorithms in the literature to solve these problems efficiently. For instance, the VRP and
the bin packing problem have their PSs respectively formulated as the elementary shortest
path problem with resource constraints (ESPPRC) and the 0-1 knapsack problem. Despite
being NP-hard problems, these two problems can be efficiently solved or approximated
using pseudo-polynomial algorithms. This topic is further discussed in Section 2.2. For other
problems, however, it may be necessary to solve mixed-integer programming (MIP) problems
as their PS.

Note that the CG algorithm described in this section is not employed to tackle COPs directly,
but rather their linear relaxation. In this case, it is necessary to apply additional procedures
to restore the integrality of the obtained solutions. This subject is discussed in the next
section. Note that, more recently, some effort has been made toward the development of CG
algorithms that are capable of solving the problem without the need for relaxing integrality
requirements [28,29]. This subject is briefly discussed in Section 2.3.

2.1.3 Branch-price-and-cut algorithms

Branch-and-bound (BB) algorithms are one of the most popular methods for solving COPs.
BB consists of solving (linear) relaxations of the original problem to explore the solution
space. The method enumerates feasible solutions by employing a tree data structure. Each
node (branch) of the tree represents a region of the solution space. However, not all feasible
solutions are enumerated. By using lower and upper bounds (bound), which are updated
while exploring the tree, some of the nodes (regions) are discarded when they are deemed
not to lead to solutions better than the ones currently available. A good tutorial about BB
algorithms is given in Chapter 7 of Wolsey [30].

The success of BB algorithms relies on their capacity of computing efficiently tight lower
and upper bounds for the problem at hand. The smaller the gap between these bounds,
the smaller the number of nodes in the BB tree. For this reason, over the years, enhanced
algorithms have been designed by embedding more sophisticated bounding procedures into
the BB methods. The better bounds provided by these new methods allow larger instances
to be solved. One technique widely used in the late 1990s is the addition of cutting planes
(valid inequalities) to the relaxations being solved at each node of the search tree. In this
approach, each time a problem relaxation is solved, if the solution is not feasible for the
original problem, valid inequalities are generated to cut this solution off. This process is
repeated until either a feasible solution is found or no violated cuts are identified. BB
algorithms solving linear relaxations strengthened by cutting planes constitute the so-called
branch-and-cut (BC) algorithms. More details about these procedures can be found in [31].

10

Despite the huge success accomplished by BC when solving COPs, decomposition methods
are currently the leading techniques to cope with some complex COPs. As discussed in the
previous section, formulations obtained via DW decomposition are known to provide bounds
tighter than those obtained with compact formulations, provided that PSs do not have the
integrality property. Therefore, researchers have started to take advantage of this aspect
by using extended formulations to produce bounds for BB algorithms. Methods combining
CG and BB frameworks are called branch-and-price (BP) algorithms. When they were first
proposed at the beginning of the 1960s, CG methods were mostly employed to solve LP
problems with specific structures. However, after the work by Desrosiers et al. [20], who
proposed the first non-trivial BP algorithm, CG started to be seen as a powerful ally to tackle
hard COPs. Later, starting with Nemhauser and Park [32], researchers started combining
both BC and BP, leading to branch-price-and-cut (BPC) algorithms.

2.1.4 Cuts separation

In this section, we briefly discuss the use of cutting planes to reinforce formulations obtained
using DW decomposition. There are two main strategies to devise cuts to be incorporated
into the CG RMP: 1) by employing variables x from the compact formulation, or 2) by
considering directly variables λ from the extended formulation. According to Poggi de Aragão
and Uchoa [33], depending on the choice for 1) or 2), cuts can be classified, respectively, as
robust cuts and non-robust cuts. The distinction between these two types of cuts arises from
the impact that they will have on the structure of the PS being solved.

Let us first consider the generic COP (2.1) expressed in its compact form reinforced with
valid inequalities Gx ≥ f ,

min cᵀx
s.t. Ax ≥ b

Dx ≥ d

Gx ≥ f

x ∈ Zn+.

(2.25)

By performing variable change (2.3) over Gx ≥ f , and by applying the same decomposition
employed in the previous section, we obtain the following RMP, where gj = Gxj:

min
∑
j∈Ω′

cjλj (2.19 revisited)

s.t.
∑
j∈Ω′

aijλj ≥ bi i ∈M (2.20 revisited)

11

∑
j∈Ω′

gijλj ≥ fi i ∈ H (2.26)

∑
j∈Ω′

λj = 1 (2.21 revisited)

λj ≥ 0 j ∈ Ω′, (2.22 revisited)

where H corresponds to the set of indices of robust constraints (2.26).

Consequently, similarly to what is done in (2.23), the PS can be written as follows:

min (cᵀ − πᵀA− αᵀG)ᵀx− γ
s.t. Dx ≥ d

x ∈ Zn+,
(2.27)

where α is the vector of dual variables associated with constraints (2.26). Notice that the
dual variables associated with the additional constraints (2.26) can be directly transferred
to the matrix of costs considered when solving the PS. Hence, the structure of the PS is
not affected. For this reason, the same algorithm employed to solve (2.23) can also be used
to solve (2.27). Another way to devise robust cuts is by considering formulations in which
variables are indexed according to some attributes considered in the problem such as load [34]
or time [35] consumption. Even if these formulations may have a pseudo-polynomially large
number of variables, they can be efficiently handled in the PS.

Now, let us consider the RMP reinforced with inequality (2.28) written directly in terms of
the λ variables:

min
∑
j∈Ω′

cjλj (2.19 revisited)

s.t.
∑
j∈Ω′

aijλj ≥ bi i ∈M (2.20 revisited)

∑
j∈Ω′

tijλj ≥ vi i ∈ W (2.28)

∑
j∈Ω′

λj = 1 (2.21 revisited)

λj ≥ 0, j ∈ Ω′ (2.22 revisited)

where W corresponds to the set of indices of non-robust constraints (2.28).

Because constraints (2.28) are not necessarily defined as linear functions of the coefficients
of x, it is not possible to incorporate their dual variable σ to the cost structure of the PS, as

12

done in (2.27). Thus, the PS is formulated as follows:

min (cᵀ − πᵀA)ᵀx− γ − T (Ax) σ
s.t. Dx ≥ d

x ∈ Zn+,
(2.29)

where T is the matrix associated with coefficients t in (2.28), which are function of the
columns (extreme points) generated so far. Contrarily to what happens with γ, the impact
of σ on the value of (2.29) is not constant, i.e., it varies in terms of the solution at hand. Due
to the non-linear relation induced by the use of non-robust cuts, the complexity of solving
the PS may increase considerably.

In Section 4.2.3 and 4.3.2 we present the main robust and non-robust cuts designed in the
context of BPC algorithms to solve VRPs. Desaulniers et al. [36], in turn, provide further
explanations about the use of cutting planes in the context of generic BPC algorithms.

2.2 Complexity of solving the pricing subproblem

As mentioned in subsection 2.1.1, when CG PSs do not possess the integrality property, DW
reformulation yields bounds better than those obtained by solving the corresponding compact
formulations. Nevertheless, subproblems with such structure are typically NP-hard, which
makes solving them already a challenging task. Since PSs must be solved numerous times
during a CG algorithm, devising efficient algorithms to solve them has been one crucial
concern for researchers in the field.

Solving these PSs typically corresponds to finding combinatorial objects like paths, sets, or
permutations [15]. Therefore, one may exploit the structure of these objects and employ effi-
cient algorithms that have been proposed in the literature to solve them. One technique that
has been successfully applied in the literature to solve CG pricing subproblems is dynamic
programming (DP). Depending on the problem at hand, DP enables the design of efficient
algorithms to tackle hard problems. For example, when solving bin packing problems and
VRPs using CG, their PSs are formulated as a knapsack problem and an ESPPRC, respec-
tively. Both the knapsack problem and the ESPPRC are classical NP-hard problems [37,38]
that may be solved or approximated using DP with pseudo-polynomial worst-case complexity
algorithms [39,40].

Yet, using DP alone does not guarantee that solving the CG PS subproblem will become an
easy task. As a matter of fact, in the last years, a huge effort has been made toward the
development of strategies to alleviate the difficulty of solving CG PSs. In the case of the

13

VRP, for instance, depending on the variant being considered, the ESPPRC arising may be
very complex. The elementarity requirements, the use of non-robust cuts, the consideration
of alternative objectives (e.g., minimization of greenhouse gas emission), to name a few at-
tributes, has motivated the conception of several strategies to enhance CG algorithms to solve
VRPs. Some of the strategies to cope with the complicating attributes listed previously are:
consideration of state-space relaxation [41,42] and route-relaxations [1,2]; use of heuristics to
accelerate the solution of the PS [43,44]; development of memory mechanisms to reduce the
impact of non-robust cuts in the PS [45–47], among others. In Chapter 4, we present a de-
tailed discussion concerning all the major strategies proposed in the literature to improve the
implementation of CG-based algorithms to solve VRPs. Finally, it is important to mention
that having a complex PS is not a particularity of VRPs. Other complex problems such as
crew scheduling [48], machine scheduling [11], and computer vision problems [13] also require
enhancements in their PS solver to be addressed efficiently.

2.3 Convergence issues

Another major concern associated with CG algorithms is their poor convergence. This aspect
is mainly due to the presence of degeneracy in the RMP and to the instability of the dual
variables. From a primal point of view, degeneracy typically appears in applications where
the columns in the matrix of coefficients of the RMP are dense, i.e., when the number of non-
zeros per column is relatively high (e.g., more than 10 on average [35, 49]). This structure
leads to primal bases composed of several zero-valued variables. Degenerate RMPs entail
multiple optimal dual solutions, which may cause the algorithm to converge slowly (tailing-
off effect), and the value of the RMP to remain constant for several iterations throughout
the process (plateau effect). In turn, when starting a CG algorithm, only a few variables
are present in the RMP, which yields a poor representation of the feasible dual space [50]
and, hence, dual solutions of bad quality. As a consequence, dual variables tend to oscillate
intensively before they converge to their optimal values (bang-bang effect). In fact, from one
iteration to another, dual variables might move from a good dual point to a worse one, thus
affecting the convergence of the algorithm.

A first family of methods devised to face degenerate problems relies on reduced forms of
the RMP containing fewer constraints. The idea is to reduce the size of the primal basis,
hence alleviating degeneracy. In this context, Elhallaoui et al. [49] develop the dynamic
constraint aggregation (DCA) method that reduces the number of constraints in the RMP,
by dynamically aggregating them. This aggregation is updated throughout the process to
ensure the exactness of the algorithm. The DCA relies on the observation that, in applications

14

such as vehicle scheduling/routing, some of the tasks/customers often appear together in the
generated columns. Later, Elhallaoui et al. [51] extend the DCA by proposing reductions at
the master and pricing problem levels. From the DCA, a family of methods was derived,
namely: the improved primal simplex (IPS) [28]; the row-reduced CG [52]; and the integral
simplex using decomposition algorithm (ISUD) [29,53]. The IPS considers a reduced version
of the problem where degeneracy in the RMP is exploited by removing constraints deemed
redundant. In the row-reduced CG, the number of constraints in the RMP is limited to the
number of strictly positive basic variables in the current RMP. Gauthier et al. [54] provide
further analysis and insights on the DCA and the IPS, as well as on the positive edge rule, a
technique that allows identifying non-degenerate pivots in the IPS. Finally, ISUD seeks to find
a sequence of adjacent basic integer solutions of nonincreasing costs by performing a series of
degenerate pivots before moving to a better adjacent extreme point. A limitation of all these
methods is that they are limited to the solution of problems with set partitioning constraints.
The recent work by Tahir et al. [53] apply ISUD to devise an integral CG heuristic capable
of generating optimal or near-optimal solutions in reasonable computational time.

Another strategy described in the literature to keep the size of the RMP reasonable is to
generate the constraints of the problem dynamically [55, 56]. It is noteworthy that these
techniques do not constitute cutting plane algorithms since the generated constraints are not
used to reinforce the formulation but rather to ensure the feasibility of the problem. The
idea is to avoid redundant constraints in the formulation.

Degeneracy in the primal may also be addressed from a dual perspective. While being mostly
concerned in controlling the oscillation of dual variables, stabilization techniques also help in
reducing the degeneracy in CG algorithms. As discussed in the next paragraphs, most of the
strategies employed to handle dual instability impact on the structure of primal problems.

An intuitive strategy to control the oscillation of dual variables is to restrain their movements
to a specific region in the dual space. In the literature, this has been achieved by either 1)
imposing bounds on the values of dual variables to force them to remain in the neighborhood
of the incumbent dual solution [57], or 2) considering a piecewise-linear function to penalize
the dual objective for moving far away from the stability center [58–60]. Algorithmically,
this method consists in modifying the RMP to add artificial variables, whose costs in the
objective function model the shape of the piecewise-function chosen. The changes incurred
to the RMP help overcoming degeneracy as they correspond to perturbations applied to the
RMP constraints [59]. Similarly, the existence of some good estimator of the optimal dual
solution may be considered to alleviate the impact of bad dual values in an attempt to guide
the CG process. Smoothing techniques employ dual information from previous iterations

15

to correct the dual variables obtained from the RMP at each iteration. The weighted DW
decomposition proposed by Wentges [61] consists in solving the PS by considering a modified
dual vector π̃ = απ̂ + (1 − α)π, where π̂ corresponds to the best dual vector obtained so
far, and α ∈ [0, 1) is a parameter indicating the smoothing level. Neame [62] suggests to
use the weighted sum over dual vectors obtained from previous iterations as the smoothing
component and Pessoa et al. [63] propose self-adjusting schemes for the parameter α.

Alternatively, Rousseau et al. [64] and Gondzio et al. [65] suggest favoring the use of points
located in the interior of the dual convex hull as an attempt to alleviate the harm caused
by dual instability to the convergence of CG algorithms. Extreme dual values may yield
columns very unlikely to be selected in an optimal solution, which may bring some noise
to the algorithm convergence. Rousseau et al. [64] consider dual interior points defined as
convex combinations of dual extreme points obtained by solving several randomly modified
RMPs. In turn, Gondzio et al. [65] apply a primal-dual CG method in which non-optimal
and well-centered solutions of the RMP are considered throughout the CG process.

In addition to modifying the implementation of a standard CG algorithm to incorporate
stabilization mechanisms, one may consider some prior knowledge about the domain of the
dual variables to devise inequalities to restrain the feasible dual space. A straightforward way
of doing this is to replace equality constraints by inequality constraints in the RMP [21,27,64],
provided that the bound of the linear relaxation is preserved. This practice reduces by half
the dual space since dual variables will only assume non-negative (non-positive) values.

The concept of dual inequality (DI) has been explicitly introduced in the literature by Valério
de Carvalho [66] and was later extended by Ben Amor et al. [67]. Ben Amor et al. classify DIs
as dual-optimal inequalities (DOIs) and deep dual-optimal inequalities (DDOIs), depending on
whether they discard any dual-optimal solution, or not. In his work, Valério de Carvalho [66]
exploits the structure of bin packing (BP) and cutting stock (CS) problems to derive dual
pair and subset inequalities (PIs, SIs). Gschwind and Irnich [68] come up with the notion
of dynamic (D)DOIs. Instead of separating (D)DOIs statically, and incorporating them into
the RMP before starting the CG process, the authors propose to separate violated (D)DOIs
on the fly as a by-product of the pricing algorithm. Additionally, it is suggested to employ
valid DIs that might not constitute DOIs, nor DDOIs for a given problem at hand. Although
this overstabilization may cause (all) dual optimal solutions to be discarded, in practice,
it helps in the convergence of the algorithm. Hessler et al. [69] and Gschwind et al. [70]
have employed the concepts of overstabilization and dynamic/static separation of DOIs and
(D)DOIs to devise tailored CG algorithms to solve vector packing problems (VPPs) and the
commodity-constrained split delivery vehicle routing problem (C-SDVRP), respectively.

16

More recently, some authors have developed ideas in the spirit of making the use of DOIs less
of a static approach. Yarkony et al. [12] propose variant DOIs in the context of computer
vision problems. These DOIs differ from invariant (static) ones because the bounds for dual
variables are computed at each iteration of CG before solving the RMP. Finally, in seeking
to overcome one of the main drawbacks associated with the use of DOIs, i.e., its lack of
generality to be applied to different families of problem, Lokhande et al. [71] introduce the
notion of flexible dual inequalities when solving set-packing problems. These new DOIs do
not require a full knowledge about the problem structure, but rather on the columns that
are currently available at the RMP. Haghani et al. [72] extend the work by Lokhande et al.
to address facility location problems modeled using set-covering formulations.

17

CHAPTER 3 ORGANIZATION OF THE THESIS

The objective of this thesis is to discuss and propose techniques that can be used to enhance
the performance of CG-based algorithms. In this chapter, we present how this document is
organized and explain how each chapter contributes to achieving the objectives described in
Chapter 1.

Chapters 4, 5, and 6 form the main contributions of this thesis. Chapters 4 and 5 correspond
to the two papers that have been produced during the Ph.D. Chapter 6, in turn, consists of
an investigation on the use of a new stabilization technique to improve the convergence of
CG algorithms.

Chapter 4 consists of a methodological survey on branch-price-and-cut (BPC) algorithms to
solve different VRP variants. The motivation for this work comes from the fact that CG has
been intensively applied in the last years to solve a variety of VRP variants. Yet, sometimes,
it can be quite challenging for a CG practitioner to have a holistic understanding of all the
tools and techniques available in the literature. In our study, we do not limit ourselves to
make of a list of papers as would be more common in a literature review paper. Instead, we
synthesize and highlight some of the main modeling and methodological strategies developed
over the years in the context of BPCs for VRPs. The survey contains two main parts.
The first part is dedicated to generic tools, i.e., ideas and techniques that apply to different
variants of VRPs. Concepts like pricing, cutting, branching, the use of upper bounds, and
stabilization techniques are discussed in this part. The second part is more problem-oriented.
We focus on the specific contributions that have been proposed in the literature to deal with
the different attributes associated with distinct VRP variants. We discuss how a general BPC
algorithm can be adapted to handle characteristics such as heterogeneous fleet and multiple
depots, profits, soft time windows, multiple trips, split services, time dependency, cumulative
costs, environmental aspects, uncertainty, and pickups and deliveries. The content of this
chapter has been recently published in Transportation Science [9].

In the subsequent parts of this thesis, two important issues associated with general CG
algorithms are addressed: the computational burden of solving the CG pricing subproblems,
and the bad convergence behavior due to the aggressive oscillation of RMP dual variables.
In Chapter 5, we develop a selective pricing algorithm relying on the arc-ng-route relaxation
proposed by Bulhões et al. [1]. This technique employs a memory mechanism to remember
nodes that have been visited recently within a route. Compared to the method described
in [1], the new selective algorithm allows the consideration of less restrictive dominance

18

rules. These new rules yield a considerable reduction in the number of non-dominated labels
kept by the labeling algorithm applied to solve the pricing problem arising from the vehicle
routing problem with time windows (VRPTW). The findings of this work have been recently
submitted to International Transactions in Operational Research.

In Chapter 6, we present a new stabilization technique that helps to reduce the dual oscillation
occurring in some highly degenerate COPs. The new stabilization framework employs a
dynamic separation of aggregated constraints of the original RMP. The performance of the
technique is tested on three different problems: vehicle routing problem with time windows,
bin packing with conflicts, and multi-person pose estimation. Despite its simplicity and the
structural difference between the problems, the new strategy yields significant speedups when
compared with standard CG algorithms.

In Chapter 7, a general discussion is provided, where we place our results regarding other
works in the literature. Finally, in Chapter 8, we summarize our work and discuss some of the
limitations associated with the proposed methods. Also, we indicate some future research
avenues that are compatible with the ideas developed during the execution of the Ph.D.
project.

19

CHAPTER 4 ARTICLE 1: EXACT BRANCH-PRICE-AND-CUT
ALGORITHMS FOR VEHICLE ROUTING

Authors: Luciano Costa, Claudio Contardo, and Guy Desaulniers
Published in Transportation Science, 2019 1.

Abstract. Vehicle routing problems (VRPs) are among the most studied problems in opera-
tions research. Nowadays, the leading exact algorithms for solving many classes of VRPs are
branch-price-and-cut algorithms. In this survey paper, we highlight the main methodological
and modeling contributions made over the years on branch-and-price(-and-cut) algorithms for
VRPs, whether they are generic or specific to a VRP variant. We focus on problems related
to the classical VRP, i.e., problems in which customers must be served by several capacitated
trucks, and which are not combinations of a VRP and another optimization problem.

Keywords. Branch-price-and-cut; vehicle routing; survey; generic tools; variant-specific
contributions.

4.1 Introduction

The vehicle routing problem (VRP) is one of the most studied problems in operations re-
search. It was introduced by Dantzig and Ramser [16] to solve a practical problem of de-
livering gasoline from a bulk terminal to service stations. Its basic version, the capacitated
VRP (CVRP), consists of finding feasible routes to visit a set of customers in such a way that
each customer is visited exactly once to completely satisfy its demand. A route is said to be
feasible if it starts and ends at a given depot and if the sum of the demands of the visited
customers does not exceed vehicle capacity. The most common objective for this problem
is the minimization of the traveling costs, which is often assumed to be proportional to the
total traveled distance.

Over the years, several extensions to the CVRP have been proposed. Most of them are
inspired by real-life applications and consider different attributes, namely: start of service
time windows at the customers, pickup and delivery requests, split deliveries, multiple depots,
heterogeneous fleet, etc. For a detailed classification of the VRP variants, see Eksioglu et
al. [73]; Irnich et al. [74]; and Braekers et al. [75].

VRPs have been tackled by (meta)heuristics and exact algorithms. Despite the important
1Available at [9].

20

role played by heuristics when dealing with real-life problems, we do not review them in
this survey. Most of the exact algorithms in the VRP literature rely on branch-and-bound
(BB) to explore implicitly the solution space. Because the performance of the BB algorithms
depends on the quality of the bounds obtained throughout the tree, it is common practice
to employ some techniques to improve the quality of these bounds. BB algorithms can be
combined with the generation of cutting planes, forming the so-called branch-and-cut (BC)
algorithms, or with column generation (CG), resulting in branch-and-price (BP) algorithms.
When both techniques are exploited simultaneously, this leads to branch-price-and-cut (BPC)
algorithms.

For many years, BC algorithms were deemed the best algorithms to address VRPs [76, 77].
However, since the seminal work of Desrosiers el al. [20], a lot of effort has been put into the
development of efficient BP and BPC algorithms, which made them, nowadays, the leading
algorithms for solving many classes of VRPs. BP algorithms are BB algorithms in which the
linear relaxations are solved by means of CG. CG is an iterative procedure that can tackle
linear programs containing a huge number of variables (see [7, 14, 15]). In the context of
VRPs, it relies on a subproblem (called the pricing problem) to generate routes dynamically
and on a master problem (MP) to select the best ones.

BPC can be seen as a generic framework to solve VRPs. In this respect, several works
have proposed generic algorithmic enhancements that are applicable to most VRPs. On
the other hand, tailored BPC algorithms, including specific tools/procedures to handle the
particularities of a VRP variant, have also been devised. In this context, Feillet [21] illustrates
the importance of methodological studies on CG-based algorithms by pointing out some
reasons that can make these algorithms hard to understand and reproduce, namely: 1) the
inherent complexity associated with the methodology and the large literature in this field; 2)
the variety of perspectives from which these algorithms can be explored; and 3) the lack of
comprehensive descriptions of these algorithms.

To the best of our knowledge, there is no work in the literature discussing specificities of
the BP/BPC algorithms designed for different classes of VRPs. The only paper providing
a related analysis is that of Baldacci et al. [78]. Nevertheless, they limit their analysis to
the CVRP and the VRP with time windows (VRPTW). The present paper is broader in the
sense that it provides a survey of the methodological developments proposed for BP/BPC
algorithms applied to a wide variety of VRPs. Even if several transportation problems can
be modeled/addressed as routing problems, we limit our discussion to problems related to
the CVRP, i.e., problems in which customers/requests must be served by several capacitated
trucks, and that are not combinations of a VRP and another optimization problem. There-

21

fore, problems such as vehicle scheduling, inventory routing, ship routing, location-routing,
etc., are out of scope.

Our goal for this survey is to highlight the main methodological and modeling contributions
made over the years on BP/BPC algorithms for VRPs, whether they are generic or specific to
a VRP variant. Consequently, we do not provide an exhaustive review of all papers presenting
a BP/BPC algorithm for a VRP. Given the large number of VRP variants covered and papers
cited, we have also chosen to present and discuss no computational results.

This paper is structured as follows. The remainder of this section defines the VRPTW
that will serve as our main VRP example and provides a mathematical formulation for it.
Section 4.2 presents the main components of a basic BPC algorithm. Generic tools for
improving the performance of BPC algorithms are discussed in Section 4.3. Contributions
specific to VRP variants are reviewed in Section 4.4. Finally, in Section 4.5, we draw some
conclusions.

4.1.1 Problem description

For the sake of simplicity, when presenting the main concepts and ingredients of BPC algo-
rithms, the VRPTW is used as an example. The choice of this problem comes from the fact
that, while it is a relatively simple problem, solving it by BPC is still quite challenging. In
fact, many state-of-the-art techniques incorporated into BPC algorithms have been proposed
for the VRPTW.

The VRPTW can be formally defined as follows. Let G = (V,A) be a complete and directed
graph, where V = V ′ ∪ {0, n+ 1} is the set of vertices and A the set of arcs. V ′ is the set of
n customers. Vertices 0 and n + 1 represent the depot at the start and the end of a route,
respectively. Each customer i ∈ V ′ is associated with a demand qi > 0, a service time si > 0
and a time window [ei, li], with 0 ≤ ei ≤ li, which specifies the earliest and the latest time at
which service can start at customer i. We consider q0 = s0 = e0 = qn+1 = sn+1 = en+1 = 0
and l0 = ln+1 = T , where T represents the horizon length. The traveling cost and the
traveling time associated with each arc (i, j) ∈ A are denoted by cij and tij, respectively.
Besides, an unlimited fleet of homogeneous vehicles with capacity Q is available at the depot.
The VRPTW consists of designing feasible routes such that each customer i ∈ V ′ is visited
exactly once by a route and the sum of the costs of the routes is minimized. A feasible route
corresponds to an elementary path r = (i0 = 0, i1, . . . , ik−1, ik = n + 1) in G such that the
vehicle capacity is not exceeded, i.e., ∑k

j=0 qij ≤ Q, and the time windows at the visited
vertices are met. The latter conditions can be verified by computing recursively the start of

22

service time tij at every visited vertex ij, j ∈ {0, 1, . . . , k}, as follows

ti0 = ei0

tij+1 = max{eij+1 , tij + sj + tij ,ij+1}, ∀j ∈ {0, 1, . . . , k − 1},

where the maximum function is used to model the possibility that a vehicle arrives before
the opening of a time window and waits until its opening to start service. The time windows
are met if tij ∈ [eij , lij], ∀j ∈ {0, 1, . . . , k}. Given these feasibility conditions, some arcs
in A can be discarded to yield arc set A = {(i, j) ∈ V × V | qi + qj ≤ Q, ei + si + tij ≤
lj} \ {(0, n+ 1), (n+ 1, 0)}. Finally, the cost cr of route r is given by cr = ∑k−1

j=0 cij ,ij+1 .

The VRPTW can be formulated in terms of binary arc-flow variables xij to indicate whether a
vehicle travels or not along a given arc (i, j) ∈ A (for more details, see Desaulniers et al. [79]).
Arc-flow formulations have the advantage of containing a polynomial number of variables,
but they provide, in general, weak linear relaxations. An alternative way of modeling the
VRPTW is by means of a set partitioning formulation [80], which we present in the next
section. Arc-flow and set partitioning formulations are often referred to as compact and
extended formulations, respectively.

As discussed previously, the VRPTW is defined over the directed graph G. Nevertheless,
other VRP variants such as the CVRP can be formulated using an undirected graph. For
the sake of clarity, we will assume a directed graph G throughout this paper unless otherwise
specified.

4.1.2 Set partitioning formulation

Let Ω be the set of all feasible routes, i.e., elementary routes that satisfy vehicle capacity and
time windows. A binary parameter ari specifies whether or not customer i ∈ V ′ is visited on
a route r ∈ Ω. For each route r ∈ Ω, define a binary variable λr which is equal to 1 if r is
selected in the solution and 0 otherwise.

The VRPTW can be formulated as the following set partitioning model:

min
∑
r∈Ω

crλr (4.1)

s.t.
∑
r∈Ω

ariλr = 1, ∀i ∈ V ′ (4.2)

λr ∈ {0, 1}, ∀r ∈ Ω. (4.3)

The objective function (4.1) aims at minimizing the total routing cost. Constraints (4.2)

23

ensure that each customer is visited exactly once. Finally, constraints (4.3) define the domain
of the variables.

A big advantage of formulating the VRPTW as (4.1)–(4.3) is that some of the constraints
(e.g., the time windows) do not need to be explicitly expressed in the formulation: they
are rather implicit from the definition of set Ω. Consequently, set partitioning formulations
typically provide better lower bounds than those obtained with compact formulations. Nev-
ertheless, they admit a huge number of variables, which makes it impossible to handle them
all at once. Fortunately, BPC is a suitable technique to overcome this drawback.

4.2 Components of a basic BPC algorithm

In this section, we present the components of a basic BPC algorithm. For further details on
BPC algorithms, the reader is referred to Barnhart et al. [14], Desaulniers et al. [7], Lübbecke
and Desrosiers [15], and Feillet [21], where important insights about the development of BPC
algorithms are highlighted.

As stated in the introduction, a BPC algorithm is a BB algorithm where the lower bounds
are computed by CG and the cutting planes are added to strengthen the linear relaxations
encountered in the search tree. In this context, such a linear relaxation is called a MP which
is solved by CG. CG is an iterative algorithm that solves at each iteration a restricted MP
(RMP) and a pricing problem. The RMP is a linear program defined as the MP restricted to
a subset of its route variables. The pricing problem can be an arbitrary optimization problem
which is solved either to find new variables to add to the current RMP or to prove that the
current RMP solution can be extended (by setting all non-generated variables to zero) to
yield an optimal solution to the MP.

Below, we discuss the MP, the pricing problem, cutting planes, and branching decisions when
BPC is used to solve model (4.1)–(4.3) of the VRPTW.

4.2.1 The master problem

At the root node of the BB search tree, the MP is given by:

min
∑
r∈Ω

crλr (4.4)

s.t.
∑
r∈Ω

ariλr = 1, ∀i ∈ V ′ (4.5)

λr ≥ 0, ∀r ∈ Ω′. (4.6)

24

In model (4.4)-(4.6), the variables λr, r ∈ Ω, are implicitly upper bounded by one through
constraints (4.5). Note that cuts can be added to this MP (see Section 4.2.3) and that, at
other nodes of the search tree, branching decisions can modify it (see Section 4.2.4).

An optimal solution to (4.4)-(4.6) provides a lower bound at the root node of the search
tree. When applying CG to solve the MP, a RMP, obtained by replacing Ω with a relatively
small subset Ω′ ⊆ Ω in (4.4)–(4.6), is solved at each iteration. The solution process yields
an optimal primal solution for this RMP and a complementary dual solution (πi)i∈V ′ , where
πi is the dual variable associated with constraint (4.5) indexed by i ∈ V ′. Extending this
primal solution to the MP (i.e., by setting λr = 0 for all r ∈ Ω\Ω′) results in an optimal MP
solution if the reduced cost c̄r = cr−

∑
i∈V ′ a

r
iπi of λr is nonnegative for every route r ∈ Ω\Ω′.

The role of the pricing problem (see Section 4.2.2) is to find routes with a negative reduced
cost or to prove that none exist. When negative reduced cost routes are identified, they are
added to subset Ω′ before starting a new iteration. Otherwise, the CG process stops with an
optimal solution to the MP.

In their BPC algorithms, many authors have employed branching rules and cutting planes
defined from arc flows (xij)(i,j)∈A. These arc flows can be easily computed from a solution to
the MP using the following expression

xij =
∑
r∈Ω

brijλr, (4.7)

where brij is a binary parameter indicating whether or not arc (i, j) ∈ A is traversed by route
r ∈ Ω.

4.2.2 The pricing problem

The pricing problem consists of finding a feasible route r ∈ Ω with a negative reduced cost
c̄r. This problem can be modeled as an elementary shortest path problem with resource
constraints (ESPPRC) on graph G. Resources are quantities (e.g. time, load, etc.) that are
used to assess the feasibility of a route or to compute the cost of a route. Their values vary
along a path according to so-called resource extension functions (REFs), which are defined for
each resource and each arc in G. In addition, at each vertex of G, resource windows restrict
the values that can be taken by the resources. Efficient dynamic programming algorithms
for solving the pricing problem might be designed when the REFs present the following two
properties: 1) they only depend on the resource consumptions and on the values associated
with the arc and its tail vertex, allowing the computation of resource values at each vertex;
and 2) they are non-decreasing with respect to the resource values, ensuring the possible

25

application of a dominance rule to reduce route enumeration [8, 81, 82]. Irnich [82] shows
how REFs can be used to model complex route costs and constraints arising in VRPs and
how they allow some algorithmic procedures to be employed, namely: path representations,
efficient cost computations, and constant time feasibility checking performed while build-
ing/concatenating paths. More general REFs are presented in Section 4.4, where problems
with many attributes are discussed.

When solving the ESPPRC, a modified cost c̄ij = cij − πi is associated with each arc (i, j)
in G, with π0 = 0. This ensures that the cost of a path in G corresponds to the reduced cost
of the corresponding route r ∈ Ω:

c̄r = cr −
∑
i∈V ′

ariπi =
∑

(i,j)∈A
cijb

r
ij −

∑
i∈V ′

ariπi =
∑

(i,j)∈A
c̄ijb

r
ij. (4.8)

Unlike the classical shortest path problem [83], which is polynomially solvable, solving the
ESPPRC is not an easy task. Because the arc costs c̄ij may be negative, there might exist
negative cost cycles. Dror [38] showed that the ESPPRC is NP-hard in the strong sense.
For this reason, when developing BPC algorithms, some authors have replaced the ESPPRC
by the shortest path problem with resource constraints (SPPRC) as the pricing problem
(see [81]). The SPPRC is a relaxation of the ESPPRC that allows the generation of paths
with cycles (i.e., routes with multiple visits to the same customer). In this case, the set
Ω of feasible routes is enlarged to include these routes and the meaning of parameter ari
(resp. brij) changes to represent the number of times customer i ∈ V ′ is visited (resp. arc
(i, j) ∈ A is traversed) by a route r ∈ Ω. Note that, when the coefficients ari can take
positive integer values, formulation (4.1)–(4.3) remains valid because constraints (4.2) exclude
integer solutions containing non-elementary routes. On the one hand, the SPPRC is easier
to solve than the ESPPRC as it can be solved by a pseudo-polynomial algorithm as shown
by Desrochers et al. [84] who devised the first BP algorithm for a VRP. On the other hand,
solving a SPPRC as the pricing problem may significantly reduce the quality of the lower
bounds provided by the MP. We discuss in Section 4.3 other relaxations that have been
proposed in the literature, seeking a better compromise between bound quality and total
computational time.

4.2.3 Cutting planes

Despite the fact that extended formulations can provide better lower bounds than those
obtained with compact formulations, these bounds might still be too weak to yield an efficient
algorithm. Thus, when designing BP algorithms for tackling complex VRPs, it is common

26

practice to reinforce the MP with valid inequalities.

As discussed in Section 4.2.1, any feasible solution to an extended model can be converted
into a solution to a corresponding compact model. Thus, by applying (4.7) to a cutting plane
of the form ∑

(i,j)∈A βijxij ≤ β0, one can rewrite this inequality in terms of the route variables
as follows:

∑
r∈Ω

∑
(i,j)∈A

βijb
r
ijλr ≤ β0, (4.9)

and use it to strengthen the MP.

According to the classification of Poggi de Aragão and Uchoa [33], cuts of the form (4.9)
are called robust cuts because they do not increase the complexity of the pricing problem.
Indeed, because they can be expressed in terms of the arc-flow variables, their dual values
can be directly incorporated into the modified cost c̄ij of each arc (i, j) ∈ A as follows. Let
ρ be the dual variable associated with (4.9). The reduced cost c̄r of a variable λr, r ∈ Ω,
becomes:

c̄r = cr −
∑
i∈V ′

ariπi − ρ
∑

(i,j)∈A
βijb

r
ij =

∑
(i,j)∈A

(cij − πj − ρβij)brij =
∑

(i,j)∈A
c̄ijb

r
ij, (4.10)

by setting c̄ij = cij−πj−ρβij for all arcs (i, j) ∈ A. Note that several robust cuts, each with
a dual value, can be handled simultaneously. Note also that not all cuts defined in terms
of the arc-flow variables are useful in a BPC algorithm because many families of cuts are
implied by the definition of the routes.

Valid inequalities can also be defined directly in terms of the route variables. Let∑r∈Ω βrλr ≤
β0 be such a generic cut and σ < 0 the dual variable associated with it. Then, the reduced
cost of a route r ∈ Ω rewrites as follows:

c̄r =
∑

(i,j)∈A
c̄ijb

r
ij − βrσ. (4.11)

Since the variable coefficients βr, r ∈ Ω, are not necessarily defined as linear functions of the
arc flows, the dual value σ may not be directly transferred to the modified arc costs. Such cuts
are, thus, said to be non-robust and handling their dual values increases the complexity of the
pricing problem as additional unrestricted resources are required in the ESPPRC (see [36]).
It is important to note that, regardless of this increased complexity, non-robust cuts have a
great potential for reducing the integrality gaps.

In Sections 4.3 and 4.4, we discuss various families of cuts that were incorporated in BPC

27

algorithms for solving VRPs. For more details about cutting planes in BPC algorithms, see
the general framework introduced by Desaulniers et al. [36].

4.2.4 Branching decisions

To derive integer solutions, branching is the ultimate operation to perform in a BPC algo-
rithm. In this section, we give an overview of branching decisions in BPC algorithms for
VRPs. Details on the most common ones are discussed in Section 4.3.3.

If we consider model (4.1)–(4.3), it seems natural to branch on the route variables, that is,
to choose a variable λr ∈ Ω such that λr ∈ (0, 1) in the current MP solution and to impose
λr = 0 on one branch and λr = 1 on the other. Imposing the latter decision is straightforward.
On the other hand, imposing λr = 0 is not easy and often ineffective. Indeed, one must also
prevent route r to be re-generated by the pricing problem which becomes a more complex
ESPPRC, namely, a ESPPRC with forbidden paths [85]. Furthermore, fixing a unique route
variable to zero does not restrict much the solution space and typically yields an unbalanced
search tree.

To alleviate this drawback, more aggressive branching decisions can be devised by consider-
ing the arc-flow variables of the compact formulation, instead of the route variables of the
extended formulation. These branching decisions are defined through relation (4.7), and have
the advantage of involving many route variables simultaneously beside being robust. Exam-
ples of branching decisions performed with respect to the arc-flow variables are: branching
directly on the flow on an arc, branching on the number of vehicles leaving the depot, and
branching on the flow into/out of a set of vertices (see Section 4.3.3).

4.3 Generic tools

In this section, we present ideas applicable to different variants of VRPs. The topics discussed
are classified as follows: pricing, cutting, branching, using upper bounds, and stabilizing dual
values.

4.3.1 Pricing

For most VRPs, the pricing problem is an ESPPRC or a relaxation of it that is typically
solved by a labeling algorithm. We start by presenting basic labeling algorithms before
discussing various ESPPRC relaxations and speed up tools.

28

Basic labeling algorithms.

For clarity reasons, let us start by describing a labeling algorithm for the SPPRC pricing
problem arising for the VRPTW. In this algorithm, labels represent partial paths in G which
all begin at the origin depot, i.e., vertex 0. Starting from vertex 0, labels are extended
through the network, passing by some of the customers, until the destination depot (vertex
n+1) is reached. In its basic version, a label L representing a path p is a tuple L = (v, c̄, q, t),
where v ∈ V is the last vertex in p; c̄ the reduced cost of p; q the cumulated load along p; and
t the earliest time at which service can start at vertex v if p is used to reach v. A label L also
stores its predecessor label to allow to build complete paths once the algorithm is finished.

Let L0 = (0, 0, 0, 0) be the initial label at vertex 0 and denote by v(L), c̄(L), q(L), t(L)
the components of a label L associated with a path p(L) ending at vertex v(L) = i. If one
performs a label extension along an arc (i, j), a new label L′ is obtained by applying the
following relations:

v(L′) = j (4.12)

c̄(L′) = c̄(L) + c̄ij (4.13)

q(L′) = q(L) + qj (4.14)

t(L′) = max{t(L) + tij, aj}. (4.15)

This new label represents path p(L′) = p(L) ⊕ (i, j), where we use ⊕ as a concatenation
symbol. After performing this extension, the feasibility of path p(L′) is verified by checking
if the cumulated resources are within the resource windows at vertex j. Path p(L′) is feasible
if q(L′) ∈ [0, Q] and t(L′) ∈ [aj, bj]. Otherwise, it is infeasible and label L′ is discarded.

The efficiency of a labeling algorithm depends on its ability to eliminate non-useful paths. For
this reason, labels are compared through a dominance rule in order to identify and remove
unnecessary labels. Let L be a label and E (L) be the set of feasible path extensions of path
p(L), i.e., a path w in G starting at vertex v(L) belongs to E (L) if p(L)⊕w is a feasible path.
A label L′ can be discarded if there exists a set of labels L = {L1, L2, . . . , L|L|} such that, for
all feasible extensions ω ∈ E (L′), there exists a label L ∈ L for which: i) p(L)⊕ ω is feasible
and ii) the reduced cost of p(L) ⊕ ω is less than or equal to that of p(L′) ⊕ ω. These two
conditions specify that L′ is not required to describe the set of Pareto-optimal paths ending
at any vertex v 6= v(L) and can, thus, be discarded. Note that conditions i) and ii) are too
difficult to be assessed because it would require an enumeration of all paths and extensions.
Therefore, these two conditions are replaced by the following sufficient conditions. Let L1

29

and L2 be two labels such that v(L1) = v(L2). L1 is said to dominate L2 if:

c̄(L1) ≤ c̄(L2) (4.16)

q(L1) ≤ q(L2) (4.17)

t(L1) ≤ t(L2). (4.18)

This dominance rule is valid because the REFs defined by the right-hand side of (4.13)-(4.15)
are non-decreasing with respect to c̄(L), q(L) and t(L), respectively (see [8]). As discussed
in the next sections, this dominance rule needs to be modified to accommodate specificities
related to different pricing problems.

Depending on the data structure used to store the labels and the order in which the labels
are extended, the above labeling algorithm can have a pseudo-polynomial time complexity
(see, e.g., [40, 81]). This is an important advantage over the algorithms that can solve the
ESPPRC which is NP-hard in the strong sense [38].

Despite the success achieved by BPC algorithms using a SPPRC pricing problem, elemen-
tarity constraints may have a huge impact on the quality of the bounds generated by the
MP [86]. For this reason, authors have turned their attention to the development of efficient
algorithms that can either solve the ESPPRC or provide the so-called elementary bounds.
One of the first attempts in this direction was made by Beasley and Christofides [87], who
propose a dynamic programming algorithm that manages elementarity through a customer
resource vector (E) which stores the customers visited along a path. With this new label
definition, the dominance rule must also include:

E(L1) ⊆ E(L2) (4.19)

in addition to relations (4.16)–(4.18). Condition (4.19) stipulates that label L1 cannot
dominate label L2 if p(L1) contains a vertex j that has not been visited in p(L2), i.e.,
j ∈ E(L1) \ E(L2). In this case, there might exist feasible extensions in E (L2) which in-
clude vertex j and decrease the reduced cost. Given that these extensions are not in E (L1),
L2 cannot be discarded. Improvements on this dominance rule are proposed by Chabrier [88].

Feillet et al. [86] present another exact algorithm to solve the ESPPRC. They extend the idea
of Beasley and Christofides [87] by introducing a new label definition that replaces set E with
a set of unreachable vertices U . A vertex j is added to U(L) if it is visited along path p(L)
or if it becomes unreachable due to resource limitations, i.e., q(L) + qj > Q or t(L) + tij > bj.

30

Condition (4.19) then becomes:

U(L1) ⊆ U(L2). (4.20)

Through computational tests, Feillet et al. [86] show that using elementary routes can yield
much better lower bounds at the root node of the search tree.

ESPPRC relaxations.

Given the complexity of the ESPPRC, many authors have designed BPC algorithms that
rely on relaxations of the ESPPRC. In most cases, the elementarity requirements are totally
or partially relaxed. Totally relaxing them gives the SPPRC which allows any cycle to be
part of a generated path. We discuss below several stronger relaxations that differ by the
families of cycles they forbid. Note that, although elementarity can also be enforced via
cuts (e.g., strong degree and k-cycle-elimination cuts), we focus here on strategies applied
to labeling algorithms. Cutting planes are discussed in Section 4.3.2. The reader is referred
to Contardo et al. [89] for a complete analysis on different ways to reach the lower bound
achieved with only elementary routes. Christofides et al. [90] introduce a technique, called
k-cycle elimination, that has been largely employed to avoid cycles. It consists of forbidding
cycles of length k or less to be formed while solving the SPPRC. This relaxation is known
as the k-cyc-SPPRC. Solving it not only increases the lower bound quality but can also
accelerate the algorithm running time. For the sake of clarity, we present separately the
case k = 2. In fact, the 2-cyc-SPPRC has been largely applied in the literature, as well as
combined with state-of-the-art techniques.

2-cycle elimination: In the 2-cyc-SPPRC, cycles of the form i− j − i are forbidden. The
use of 2-cycle elimination is particularly interesting because it yields stronger bounds without
changing the complexity of the labeling algorithm (see [91]).

In fact, Christofides et al. [90] show that to prevent cycles of length two, it is sufficient
to keep, for each possible resource state, at most two least-cost labels L1 and L2 whose
predecessor labels are associated with different vertices. Two examples on the use of 2-cycle
elimination can be found in: Desrochers et al. [84], who introduce the first exact algorithm
capable of solving 100-customer VRPTW instances, and Fukasawa et al. [43], who propose
a BPC algorithm to solve the CVRP and generated q-routes with the pricing problem. A
q-route is a path that respects vehicle capacity but may contain cycles.

31

k-cycle elimination: To the best of our knowledge, k-cycle elimination with k ≥ 3 has
only been tested by Irnich and Villeneuve [92] and Fukasawa et al. [43]. Irnich and Villeneuve
propose a new representation of partial paths which is based on the notion of set form. The
idea is to use a vector to represent all the paths in which a given customer i ∈ V ′ is placed at
the jth position in the path. In the case of the k-cyc-SPPRC, one uses a vector of length k to
store the k last vertices of a path. Then, a set H formed by the union of all required set forms
is defined to represent all k-cycle elimination constraints. For example, for the 4-cyc-SPPRC,
consider a label L such that the four last visited vertices are (a, b, c, v). Then, H(L) contains
the set forms: (v, ·, ·, ·), (·, v, ·, ·), (·, ·, v, ·), (·, ·, ·, v), (c, ·, ·, ·), (·, c, ·, ·), (·, ·, c, ·), (b, ·, ·, ·),
(·, b, ·, ·), (a, ·, ·, ·). Any extension of p(L) whose beginning matches one of these forms is
forbidden as it would create a cycle of length four or less. Given that the cardinality of H(L)
is quadratic in k, this approach may rapidly become prohibitive as k increases. Fukasawa
et al. [43] use this path representation to assess the impact of eliminating cycles with length
four or less in their BPC algorithm for the CVRP.

Partial elementarity: Desaulniers et al. [44] introduce another ESPPRC relaxation called
the partially ESPPRC. It can be seen as an ESPPRC that requires elementarity only for a
subset Emax of customers, whose maximal cardinality is determined a priori. Set Emax is built
dynamically from scratch by adding customers that are visited more than once in a route of
a MP optimal solution. Each time that a customer i is added to Emax, the labeling algorithm
is adjusted to forbid multiple visits to customer i and all columns visiting multiple times
this customer are removed from the current RMP. The MP is then re-optimized and other
customers might be added to Emax. Note that, if the maximal cardinality of Emax is less than
n, there is no guarantee that elementary routes will be obtained at the end of the algorithm.

ng-path relaxation: Currently, state-of-the-art BPC algorithms use the ng-path relax-
ation in their pricing procedures. The ng-path concept proposed by Baldacci et al. [2] relies
on the definition of a neighborhood (also called ng-set) Ni for each customer i ∈ V ′. For a
given integer parameter ∆ ≥ 0, a neighborhood Ni ⊆ V ′ contains the ∆ closest customers to i
and vertex i itself. Different criteria (e.g., distance, time) can be used to define the proximity
of the customers. An ng-path is not necessarily elementary: it can contain a cycle starting
and ending at a vertex j if and only if there exists a vertex i in this cycle such that j /∈ Ni.
Hence, such a cycle is disallowed if and only if j ∈ Ni for every vertex i it contains. In a label-
ing algorithm, the neighborhoods of the customers visited along a path p(L) = (0, i1, . . . , ik)
represented by a label L are used to form a set Π(L) ⊆ V ′ of customers to which L cannot
be extended without violating the ng-path cycling restrictions. Let V (L) = {i1, . . . , ik} be

32

the customers visited in p(L). Then, Π(L) is given by:

Π(L) = {iu ∈ V (L) : iu ∈
k⋂
s=u
Nis} (4.21)

and is called the memory of p(L). Contrarily to sets E(L) and U(L), once a vertex j enters
a set Π(L), it may leave the memory when p(L) is extended, i.e., j can be forgotten and
revisited.

The labeling algorithm for the ESPPRC described in Subsection 4.3.1 can be adapted to
solve this new relaxation denoted ng-SPPRC. In the label definition, set E is replaced by set
Π. A label L is only extended over an arc (i, j) if j /∈ Π(L). When a new label L′ is created,
set Π(L′) is computed as follows:

Π(L′) = (Π(L) ∩Nj) ∪ {j}. (4.22)

In the dominance rule, condition (4.19) is replaced by:

Π(L1) ⊆ Π(L2). (4.23)

Note that set Π can be enriched by adding unreachable vertices with regard to vehicle ca-
pacity, time windows, or other side constraints. Thus, if F is the set of all customers where
an extension is not feasible, relation (4.23) can also be replaced by:

F(L1) ⊆ F(L2). (4.24)

Because the cardinality of Π is less than or equal to ∆, condition (4.24) is less restrictive
than (4.20) and, consequently, more labels might be discarded than in the labeling algorithm
for the ESPPRC. When used as a pricing problem, the ng-SPPRC produces lower bounds
that are between those derived with the SPPRC and the ESPPRC: if ∆ = 0, then Ni = {i},
∀i ∈ V ′, and the ng-SPPRC is the SPPRC; if ∆ = |V ′| − 1, then Ni = V ′, ∀i ∈ V ′, and
the ng-SPPRC is the ESPPRC. Note that, although unlikely, cycles of length two can be
formed when solving the ng-SPPRC except when Ni = V ′, ∀i ∈ V ′. According to Contardo
and Martinelli [93], the advantage of solving the ng-SPPRC as an alternative to the k-cyc-
SPPRC can be attributed to the fact that in the former, cycles are measured in terms of
distance, while in the latter, they are measured according to the number of visited customers.
Given that long cycles in terms of distance have not much chance to appear in a MP optimal
solution, the ng-SPPRC represents a powerful relaxation. In fact, Poggi and Uchoa [94] show
empirically on some difficult CVRP instances that using the ng-SPPRC with ∆ = 8 as the

33

pricing problem yields lower bounds similar to those achieved with the 5-cyc-SPPRC, but
requires computational times that are comparable to those obtained with the 4-cyc-SPPRC.

An important parameter in the ng-SPPRC is ∆, the size of the neighborhoods, which is nor-
mally defined a priori and interferes on the labeling algorithm complexity. On the one hand,
the larger the value of ∆, the closer to the ESPPRC the ng-SPPRC becomes. On the other
hand, the algorithm complexity increases exponentially with the value of ∆. Baldacci et al. [2]
show that ∆ = 8 represents a good trade-off between lower bound quality and computing
time for the VRPTW, whereas Pecin et al. [46] use ∆ ∈ {10, 20} for Solomon’s and Gehring
and Homberger’s VRPTW datasets. Finally, note that better-tailored neighborhoods can be
defined in terms of arcs as suggested by Bulhões et al. [1].

Speed up tools.

Given that the pricing problem is solved many times in a BPC algorithm, accelerating the
solution of the pricing problem is a critical aspect for improving the performance of the algo-
rithm [95]. For this reason, the following techniques are proposed to accelerate its solution.

Decremental state-space relaxation: Christofides et al. [96] introduce the concept of
state-space relaxation which consists of relaxing some constraints of a problem and devising
an efficient algorithm for solving the resulting relaxation to produce lower bounds. When
applied to the pricing problem, this approach tends to generate infeasible paths that may
yield poor lower bounds. Seeking to improve the bounds provided in this way, some au-
thors observe that by dynamically increasing the set of customers subject to elementarity
restrictions, elementary routes might be obtained in reduced computational times. In this
context, Boland et al. [41] and Righini and Salani [42] propose independently a technique
called decremental state-space relaxation (DSSR) which includes a mechanism for re-inserting
dynamically constraints that were previously relaxed.

For the ESPPRC, a DSSR algorithm provides at each iteration a lower bound on its optimal
value and works as follows. Initially, a SPPRC is solved and, if the least-cost path is cycle-
free, it is optimal for the ESPPRC. Otherwise, the customer(s) visited more than once in
this path are added to a set Ê . In the next iteration, one solves a more restricted SPPRC
where elementary conditions are only imposed to the vertices in Ê . This procedure continues
until an elementary route is found or the optimal path has a non negative (reduced) cost.
Moreover, in the context of a CG algorithm, the procedure can be stopped if the labeling
algorithm produces several paths and at least one of them is elementary and has a negative
cost. To improve the performance of DSSR, Desaulniers et al. [44] initialize the set Ê at a

34

CG iteration to the final set of the previous iteration as they observed during their tests a
large intersection between the sets Ê generated in consecutive CG iterations.

Martinelli et al. [97] combine the concept of ng-paths and DSSR. In their algorithm, neigh-
borhoods Ni, i ∈ V ′, are computed a priori, but are not directly used. Instead, subsets
Ñi ⊆ Ni, i ∈ V ′, are considered in the labeling algorithm. These subsets are initially empty
and augmented when the labeling algorithm returns an optimal path that contains a for-
bidden cycle with respect to the neighborhoods Ni i ∈ V ′. Contardo and Martinelli [93]
reinforce the sets Ñi by enlarging them with the addition of vertices forming cycles of length
two, even if they were not in the original sets Ni. This approach ensures that the bounds
obtained are at least as strong as those of the ng-SPPRC with 2-cycle elimination. Contardo
et al. [89] devise a similar approach where there are no initial sets Ni, i ∈ V ′, the sets Ñi,
i ∈ V ′, are initialized with a small number of closest customers and they are updated (up
to a maximum size per neighborhood) only once the MP is solved, using customers that are
visited more than once in a route that is part of the MP optimal solution. Finally, dynamic
neighborhoods whose size can increase or decrease are proposed in Bulhões et al. [1].

Bidirectional labeling.

Proposed by Righini and Salani [98], bidirectional labeling consists of propagating labels in
both directions (from vertex 0 to its successors and from vertex n+1 to its predecessors) and
then joining forward and backward labels to produce complete feasible routes. Basically, all
the theory described thus far for a (forward) labeling algorithm can be applied to a backward
algorithm thanks to the results in Irnich [82] showing that REFs can be inverted. To avoid
producing twice as many labels as in a monodirectional labeling algorithm, the extension of a
path in one direction is stopped when it is guaranteed that its remaining part can be generated
in the other direction. This can be done in two ways: by arc bounding or by resource
bounding. Arc bounding consists of computing an upper bound (in polynomial time) on the
number of vertices that can still be visited by the path without exceeding resource constraints.
If this number is less than the number of vertices already visited by the path, the extension
is stopped. Resource bounding considers a critical resource, whose consumption is monotone
along a path, to stop the path extension. A path is only extended if the accumulated amount
of the critical resource does not exceed the half-way of its availability. For example, if the
load is chosen to be the critical resource, only labels whose load consumption is less than
Q/2 can be extended. Since the number of generated labels can grow exponentially with the
number of arcs in the paths, keeping the length of the paths short in both directions reduce
the total number of labels and speed up the labeling process, especially when the feasible

35

paths can contain a large number of vertices.

Note that, with bidirectional labeling, the same path can sometimes be obtained multiple
times by concatenating more than one pair of forward and backward labels. To reduce as
much as possible the concatenation process and avoid generating the same path multiple
times, several rules may be considered. One example is given by Baldacci et al. [99] who only
allow the concatenation of a pair of forward and backward labels if their critical resource
consumptions differ by the smallest amount possible along the resulting path.

A final aspect that is worth discussing is the potentially unbalanced numbers of labels gener-
ated by the forward and backward algorithms, i.e., one direction generates much more labels
than the other, even if the half-way point is carefully chosen. This can be caused by asym-
metric data coming from the VRP instances or by the dual information obtained over the CG
iterations. Trying to balance the workload between the forward and backward algorithms,
Tilk et al. [100] propose a dynamic half-way point strategy that is applied at each iteration.
Let HF and HB be resource limits associated with the forward and the backward algorithm,
respectively. In a standard algorithm, HF = HB = Q/2 if load is the critical resource, and
all forward extensions are performed before the backward extensions. In a dynamic half-way
point algorithm, the values of HF and HB are updated dynamically during the algorithm
execution, always ensuring that HF ≥ HB to guarantee optimality. Moreover, forward and
backward labels are extended in an alternate way. To determine which label to extend next,
the algorithm chooses first the direction with the least number of generated labels, number
of processed labels, or number of unprocessed labels. It then chooses the label in the selected
direction according to a standard rule (e.g., least load) and extends it before updating HF

or HB based on the critical resource values in the newly created labels. A similar strategy is
conceived by Pecin et al. [45].

Completion bounds.

Depending on the dominance rule used, some unpromising labels may be unnecessarily kept
in a labeling algorithm. It is, however, possible to reinforce a dominance rule with the use
of completion bounds. Let L be a label associated with path p(L). A completion bound for
p(L) can be obtained by computing a lower bound lb(L) on the reduced cost of all feasible
extensions in E (L) that reach vertex n+1. If c̄(L)+ lb(L) ≥ 0, then label L can be discarded
without losing any negative reduced cost route. Completion bounds are used in several
papers, including [2, 45,46,93,97,99,101].

Computing the best completion bound for every generated label would make the labeling
algorithm too time consuming. Consequently, good approximations, such as the following

36

ones, are rather used. Martinelli et al. [97] compute completion bounds inside a DSSR proce-
dure. They use the labels computed at the previous DSSR iteration to estimate completion
bounds. When they solve symmetric CVRP instances, completion bounds are extracted di-
rectly from a best reduced cost matrix (see [2]). On the other hand, when solving asymmetric
problems, they change the direction (forward or backward) of the labeling algorithm from
one iteration to the other in the DSSR algorithm. When non-robust cuts are employed to
strengthen the MP, completion bounds can be computed like in Contardo et al. [102] and
Contardo and Martinelli [93]. They only consider at most 20% of the largest dual values
associated with these cuts and to under- or overestimate the impact of the remaining ones,
ensuring the bound validity. Finally, Pecin et al. [45, 46] extend the approach of Contardo
and Martinelli [93] to apply completion bounds in bidirectional algorithms.

Heuristic pricing.

Despite the fact that many speed up techniques have been proposed to accelerate exact
dynamic programming algorithms, they can still remain very time consuming. Because there
is no need to solve the pricing problem exactly, except to prove the optimality of the current
solution in the last CG iteration, fast and effective heuristics have been developed to find
negative reduced cost variables. Their purpose is to reduce the number of calls to the exact
labeling algorithm, often yielding a substantial reduction of the total computational time.

In most cases, pricing heuristics are adaptations of exact labeling algorithms. They can be
obtained by either relaxing certain dominance rules or by heuristically reducing the size of
the network. Some authors only keep a few labels for each pair of time and load values at
each node [43, 45, 46, 97]. This implies that several non-dominated labels may be discarded,
including those leading to optimal solutions. To generate q-routes, Fukasawa et al. [43] scale
down customer demands and vehicle capacity by some factor ρ > 1, i.e., q′i = dqi/ρe, ∀i ∈ V ′,
and Q′ = dQ/ρe.

Another way of eliminating labels is by employing aggressive dominance rules. For instance,
Desaulniers et al. [44] only consider a (possibly empty) restricted subset of customer resources
when applying dominance test (4.19). When performing graph reduction, several criteria may
be used to remove arcs from the network. If one decides to eliminate unpromising arcs based
on their current reduced cost, it can be done by only keeping the best incoming and outcoming
arcs at each customer with respect to their reduced costs [43–45] or by reducing graph
density using the same ranking approach [93]. Alternatively, Chabrier [88] removes from
the network the arcs presenting a high resource consumption. Although heuristic labeling
algorithms are largely employed, some BPC algorithms benefit from well-known heuristics.

37

As an example, Desaulniers et al. [44] and Archetti et al. [103] use tabu search to generate
routes with a negative reduced cost. Finally, note that, as suggested by Desaulniers et al. [44],
different pricing heuristics can be invoked at each CG iteration and throughout the whole
CG process depending on the current phase of the process (beginning, middle or end). To
ensure optimality, an exact algorithm must always be executed at least once, in the last CG
iteration.

Miscellaneous approaches.

We start this subsection by discussing a trick that can be used for the VRPTW. For some
instances, vehicle capacity may not be really restrictive. For this reason, it can be neglected
in the pricing problem while rounded capacity inequalities (see Subsection 4.3.2) may be
added to the MP whenever necessary [46]. This practice facilitates the solution of the pricing
problem and can make the BPC algorithm more efficient.

Instead of using a labeling algorithm for solving the pricing problem of the VRPTW,
Rousseau et al. [104] devise a constraint programming algorithm which allows to generate ele-
mentary routes. This algorithm includes arc elimination constraints, a dynamic programming
search strategy, and a lower bounding procedure based on an assignment problem.

Feillet et al. [105] incorporate concepts from constraint programming such as limited discrep-
ancy search (LDS), label loading and meta extensions to dynamic programming algorithms
as an attempt to quickly generate paths with negative reduced cost. LDS is a tree search
method that employs a heuristic criterion to define, for each vertex, which outgoing arcs are
the most promising. Each other arc yields a discrepancy and an upper bound on the number
of discrepancies that a path can contain is imposed to limit the search. This upper bound
is initialized to a small value and increased as needed. Label loading and meta extensions,
in turn, use information from the current RMP solution to accelerate the route generation
process. A metavertex is created for each vertex of each route in this solution and loaded
with a label representing the end of the corresponding route. During the labeling process,
these new labels can be added to partial paths to generate complete routes or can be used
to compute completion bounds.

Contrarily to other authors who try to accelerate labeling algorithms, Lozano et al. [95]
develop a pulse algorithm to solve the ESPPRC by extending the work of Lozano and
Medaglia [106]. In a pulse algorithm, paths connecting two vertices in a graph are found
by propagating pulses through the network. It can be seen as a graph exploration proce-
dure that follows a depth-first search strategy, where pruning is used to discard unpromising
paths. Three pruning strategies are developed: infeasibility pruning, that checks for a vi-

38

olation of the structural constraints (vehicle capacity, time windows, elementarity); bound
pruning, that uses primal solutions and lower bounds to discard sub-optimal solutions; and
rollback pruning, that compares two pulses differing only by the last vertex visited. The pulse
algorithm differs from a labeling algorithm in many aspects, namely: a dominance rule is
not required because it does not need to handle long lists of labels; many pruning strategies
in addition to pruning by infeasibility can be devised; and bidirectional search cannot be
applied due its recursive nature. Finally, because recursive pulses explore one vertex at a
time until it reaches the destination vertex, the algorithm can perform searches over different
vertices in parallel.

Very recently, Desaulniers et al. [107] introduce a new paradigm for the pricing problem,
called selective pricing. Selective pricing stems from the observation that, when an ESPPRC
relaxation is used as a pricing problem, the CG algorithm can be stopped when there is a
proof that no elementary routes with a negative reduced cost exist, even if there are still some
non-elementary routes with a negative reduced cost. Consequently, the labeling algorithm can
be selective and discards cautiously non-elementary routes even if they are not dominated.
As an example, the authors implement selective pricing by modifying a labeling algorithm
used to solve the ng-SPPRC. Note that this strategy has the potential to yield better lower
bounds.

Finally, Boschetti et al. [108] observe that, because labeling algorithms work in a stage-wise
way, ESPPRC relaxations can be solved more efficiently in a GPU environment. Therefore,
they investigate the impact of using parallelization procedures to achieve time reduction for
route relaxations such as q-routes and ng-routes. In particular, they develop parallel label
extension procedures and a strategy to efficiently manage the sets Π(L) of vertices that cannot
be reached by extending the corresponding label L without violating the ng-restrictions.

4.3.2 Cutting

This section describes cutting strategies used in BPC algorithms for VRPs. Here, we limit
our discussion to the CVRP and the VRPTW. Valid inequalities for other VRPs are discussed
in Section 4.4. For the sake of clarity, we present robust and non-robust cuts separately.

Robust cuts.

Robust cuts, as defined by Fukasawa et al. [43], have the advantage of not changing the
structure of the pricing problem. For VRPs, these cuts are often defined directly in terms of
the arc-flow variables. They are effective at closing the integrality gap for some easy instances,

39

but are not sufficient for harder ones. Note that many cuts used in BC frameworks are
already implied by the structure of the routes considered in the MP. For example, Letchford
and Salazar-González [109] prove for the CVRP that all generalized large multistar cuts are
implied by model (4.1)–(4.3), even if the set of routes contains q-routes. This aspect is
illustrated by comparing the families of cuts used in the successful algorithms of Fukasawa et
al. [43] and Pecin et al. [45] for the CVRP. After solving the root node relaxation, Fukasawa
et al.’s algorithm chooses between a BC and a BPC algorithm to solve the problem. The BC
algorithm considers many valid inequalities used by Lysgaard et al. [77], namely: Rounded
capacity, framed capacity, strengthened comb, multistar, and extended hypotour cuts. In
the BPC algorithm, only rounded capacity cuts contribute effectively to improving the lower
bound obtained at the root node. On its side, the BPC algorithm of Pecin et al. [45] only
applies rounded capacity and strengthened comb cuts.

Robust cuts can also be defined via capacity-indexed (CI) variables (see their definition
below). Because these variables can be expressed by means of q-routes, the dual variables
associated with cuts defined in terms of CI variables can be directly incorporated into the
reduced cost of q-routes when solving a pricing problem allowing these routes.

k-path cuts, subtour elimination constraints, and rounded capacity cuts: Cutting
planes belonging to the family of k-path cuts (kPCs) are applied in many algorithms to solve
VRPs. The kPCs assume that, given a subset S ⊆ V ′ of customers, one can estimate a lower
bound k(S) on the number of vehicles required to serve all customers in S. In this case, at
least k(S) paths must enter set S in any feasible solution. The following inequality is valid
for the CVRP and the VRPTW:

X(S) =
∑

(i,j)∈δ−(S)
xij ≥ k(S), (4.25)

where δ−(S) = {(i, j) ∈ A | i ∈ V \ S, j ∈ S} ⊂ A is the subset of arcs entering S and X(S)
is the total flow entering S. Note that, because a route may enter S more than once, the
left-hand side of (4.25) expressed in terms of the routing variables provides an upper bound
on the number of vehicles used to serve the demand of set S. A strengthened version of these
cuts is introduced by Baldacci et al. [99] and discussed in Subsection 4.3.2.

How k(S) is computed varies depending on the problem at hand. For the CVRP, k(S)
corresponds to the solution of a bin packing problem (BPP), where the bins have capacity Q
and the weights of the items are given by the demands of the customers in S. Because the
BPP is NP-hard, the right-hand side of (4.25) can be replaced by k(S) = dd(S)/Qe with

40

d(S) = ∑
i∈S qi, yielding the subtour elimination constraints [76, 110] if k(S) = 1 and the

rounded capacity cuts (RCCs) [76,111] if k(S) ≥ 2.

For the VRPTW, computing k(S) is not an easy task because it requires solving a VRPTW
restricted to subset S. Kohl et al. [112], however, show that determining only if k(S) >
1 can be manageable as this corresponds to solving a traveling salesman problem (TSP)
with time windows (TSPTW), which can be done in pseudo-polynomial time using dynamic
programming. If the TSPTW is infeasible for a subset S such that X(S) < 2, one obtains
a so-called 2-path cut (2PC). In [112], the 2PCs are separated by enumeration. Desaulniers
et al. [44] propose a generalization of the kPCs that may assign different coefficients to the
arc-flow variables in (4.25) depending on the customers that can be visited by a path entering
subset S through the corresponding arc.

Cuts defined with capacity-indexed variables: Another way of deriving robust cuts
for VRPs is by using CI variables. These variables are introduced by Pessoa et al. [113] and
successfully employed by Pessoa et al. [114] to derive robust cuts for their BPC algorithms.
CI variables can be defined over a multigraph GQ = (V,AQ), where AQ is a set containing
arcs (i, j)κ, ∀ (i, j) ∈ A, κ = 0, . . . , Q − di and (0, i)Q, ∀i ∈ V ′. With each arc (i, j)κ is
associated a binary variable yκij that indicates if a vehicle traverses (i, j) with a residual
capacity κ or equivalently with a load Q−κ. The CI variables can be easily written in terms
of route variables when they are generated by a pricing problem involving a load resource
(e.g., q-route variables). Let brκij be a binary coefficient that indicates if arc (i, j) is traversed
by route r carrying a load Q− κ. Then, one can write:

yκij =
∑
r∈Ω

brκij λr, ∀(i, j)κ ∈ AQ. (4.26)

In a formulation defined in terms of the CI variables, a generic constraint indexed by s has
the form ∑

(i,j)κ∈AQ β
κs
ij y

κ
ij ≥ βs. By applying (4.26), we obtain the following constraint for

the set partitioning model (4.1)–(4.3):

∑
r∈Ω

 ∑
(i,j)κ∈AQ

βκsij b
rκ
ij

λr ≥ βs. (4.27)

The dual variable associated with this constraint can be easily handled in a labeling algorithm
if condition (4.17) is replaced by q(L1) = q(L2). Note that this new condition does not change
the theoretical complexity of the labeling algorithm (see, e.g., [45] for details).

Let us present a family of cuts defined over CI variables introduced by Pessoa et al. [113].

41

Given a set S ⊆ V ′ of customers, denote by δ−Q(S) the subset of arcs in AQ, with any capacity
index, entering S. The associated RCC can be written:

∑
(i,j)κ∈δ−Q(S)

yκij ≥ dd(S)/Qe = k(S). (4.28)

Let κ∗ = d(S) − Q(k(S) − 1) − 1 be the largest load that a vehicle can deliver to the
customers in S such that the remaining demand d(S)− q∗ still requires at least k(S) vehicles
to be delivered. If less than k(S) vehicles with a residual capacity κ > κ∗ enters set S, then
at least one other vehicle must enter S. This statement yields the following strengthened
RCC defined in terms of the CI variables:

k(S)+1
k(S)

∑
(i,j)κ∈δ−Q(S) :κ>κ∗

yκij +
∑

(i,j)κ∈δ−Q(S) :κ≤κ∗
yκij ≥ k(S) + 1. (4.29)

This inequality dominates (4.28) and can be further strengthened by including arcs exiting
S (see [114]).

Other families of cuts defined in terms of CI variables are the homogeneous extended capacity
cuts and the triangle clique cuts. See [113,114] for details.

Non-robust cuts.

As mentioned in Section 4.2.3, handling the dual value of a non-robust cut in the pricing
problem increases its complexity. In this section, we discuss some families of non-robust cuts
developed in the context of VRPs and how their dual values can be handled in the labeling
algorithms.

Subset row cuts: The subset-row cuts (SRCs) proposed by Jepsen et al. [115] are Chvátal-
Gomory cuts of rank 1 derived from a subset of constraints (4.2). Given an index subset
C ⊆ V ′ of these rows, a SRC is defined as:

∑
r∈Ω

⌊
γ
∑
i∈C

ari

⌋
λr ≤ bγ|C|c, (4.30)

where γ = 1/k, with k ∈ {1, . . . , |C|}. A given route variable λr has a non-zero coefficient in
(4.30) if ∑i∈C a

r
i ≥ k, i.e., if route r visits more than k customers in C. Some recent research

works [45, 46, 116, 117] investigate the impact of using other values of k ∈]0, |C|[. Moreover,
Petersen et al. [118] and Pecin et al. [117] consider more general rank-1 Chvátal-Gomory cuts

42

by allowing a specific multiplier γi for each customer i ∈ C. In the following, we focus on
the case with identical multipliers and integer k values unless otherwise specified.

By varying the cardinality of C and the value of γ, different families of SRCs can be derived.
However, most BPC algorithms consider SRCs obtained with |C| ≤ 5. Larger sets C would
be harder to separate and thus be only marginally useful. According to Pecin et al. [45], the
interesting SRCs are:

• 3-SRCs: |C| = 3 and γ = 1/2. These are the most popular SRCs which are employed
in [115], [44], [2], [93] and [45];

• 4-SRCs: |C| = 4 and γ = 2/3. Used by Pecin et al. [45];

• 5,2-SRCs: |C| = 5 and γ = 1/2. Used by Pecin et al. [45];

• 5,1-SRCs: |C| = 5 and γ = 1/3. Used by Pecin et al. [45];

• 1-SRCs: |C| = 1 and γ = 1/2. These inequalities, also called strong degree cuts, are
applied by Contardo et al. [93] and Pecin et al. [45]. We discuss them later in this
section.

From (4.11) and (4.30), the reduced cost of a route r in which one SRC s has been added
to the MP is c̄r = ∑

(i,j)∈A c̄ijb
r
ij − σsν

r
s , where νrs = bγ∑i∈Cs a

r
i c, Cs is the set of vertices

(customers) defining SRC s, and σs ≤ 0 is the associated dual variable. The last term of
this reduced cost can be seen as paying a penalty σs for every k visits to the customers in set
Cs. To handle such a penalty, the following modifications to the basic labeling algorithms
described in Section 4.3.1 are proposed by Jepsen et al. [115].

Let Θ be the set of all SRCs s in the MP such that σs < 0. For every s ∈ Θ, a new resource
νs(L) is added to the definition of a label L to count the number of times (mod k) that a
customer in Cs has been visited in the associated path. Consequently, when extending a
label L along an arc (i, j) ∈ A to create a new label L′, νs(L′) is set equal to νs(L) if j 6∈ Cs
and to νs(L) + 1 (mod k) otherwise. In the latter case, if νs(L′) = 0, then σs is subtracted
from c̄(L′).

The dominance rule also needs to be modified. As mentioned in [36], one way to do so is to
add conditions

νs(L1) ≤ νs(L2), ∀s ∈ Θ, (4.31)

when checking if a label L1 dominates a label L2. Indeed, if νs(L1) > νs(L2) for a given SRC
s, then it might be possible that, for a feasible extension of L1 and L2, the dual value σs is

43

subtracted from the reduced cost when extending L1 but not when extending L2. Jepsen et
al. [115] develop a stronger dominance rule which replaces conditions (4.16) and (4.31) by:

c̄(L1)−
∑

s∈Θ1,2

σs ≤ c̄(L2), (4.32)

where Θ1,2 ⊆ Θ is the subset of SRCs for which νs(L1) > νs(L2).

Because Jepsen et al. [115] showed that separating the SRCs is NP-hard, SRCs are separated
by full or restricted enumeration depending on the maximum cardinality of the sets C.

Finally, note that Baldacci et al. [2] implement a weak version of the 3-SRCs (weak-SRCs).
For a given set C, a weak-SRC only contains variables for which the associated route traverses
at least one arc (i, j) ∈ A such that i, j ∈ C. The weak-SRCs have the advantage of being
robust.

Limited-memory SRCs: One way to reduce the impact of the SRCs on the labeling
algorithms would be to re-define the cuts such that, for a larger number of labels L and
SRCs s, νs(L) = 0. Pecin et al. [45] exploit this observation to introduce a weaker version
of the SRCs called the limited-memory SRCs (lm-SRCs). A lm-SRC is defined by a set C, a
multiplier γ and a memory set M (C ⊆M ⊆ V ′). It writes as:

∑
r∈Ω

α(C,M, γ, r)λr ≤ bγ|C|c, (4.33)

where each coefficient α is computed as a function of (C,M, γ, r) and satisfies α(C,M, γ, r) ≤
bγ∑i∈C a

r
i c. On the one hand, ifM = V ′, the lm-SRC is identical to the corresponding SRC.

On the other hand, if M ⊂ V ′, the lm-SRC s defined by (Cs,Ms, γ) may be weaker but its
dual value σs can be handled more easily in the pricing problem. In this case, the value of
α(CS,Ms, γ, r) is determined by applying along route r a modified version of the labeling
algorithm that handles the SRCs’ dual values described above. Every time that a vertex
j ∈ Cs is visited and νs(L′) = 0, the value of α increases by one and σs is subtracted
from the reduced cost. However, every time that a vertex j 6∈ Ms is visited, the resource
value νs(L′) is reset to 0, i.e., the previous visits to customers in Cs are forgotten. In this
case, the value of α has less chances to increase than in the full-memory case and, thus,
α(Cs,Ms, γ, r) ≤ bγ

∑
i∈Cs a

r
i c.

Observe that the smaller the setsM are, the faster the labeling algorithm and the weaker the
cuts will be. Given a regular SRC associated with a set C and a multiplier γ that is violated
by the current solution of the MP, Pecin et al. [45] convert this SRC into a lm-SRC by finding

44

a small-sized set M that yields the same violation. This set M contains all vertices in C and
some of the subsets of vertices that are visited between two customers in C in a route r for
which bγ∑i∈C a

r
i c > 0 and λr > 0 in the MP solution. See [45] for details.

Despite the success achieved by lm-SRCs in the solution of the CVRP, they still present
scalability issues for solving large-scale instances with loose structural constraints. In such
instances, long feasible routes are generated, leading to large memory sets and intractable
pricing problems. To address this issue, Pecin et al. [46] introduce new lm-SRCs where their
memory is defined in terms of arcs instead of vertices. This gives rise to two families of
lm-SRCs, namely, limited-vertex-memory SRCs (lvm-SRCs) and limited-arc-memory SRCs
(lam-SRCs). A lam-SRC is expressed as in (4.33) except that the vertex memory M is
replaced by an arc memory AM . A coefficient α(C,AM, γ, r) in a lam-SRC is computed
similarly to a coefficient α(C,M, γ, r) in a lvm-SRC: previous visits to customers in C are
forgotten when an arc (i, j) 6∈ AM is traversed. Consequently, when comparing a lvm-
SRC defined for a triplet (C,M, γ) and a lam-SRC defined for a triplet (C,AM, γ) with
AM ⊂ {(i, j) ∈ A | i, j ∈ M}, the latter should have less impact on the labeling algorithm
but be weaker. Note that a lvm-SRC defined for a customer set C, a vertex memory M and
a multiplier γ can be seen as a special case of the lam-SRC with the same C and γ, and the
arc memory AM = {(i, j) ∈ A | i, j ∈M}.

Like for the lvm-SRCs, Pecin et al. [46] define the arc memory AM of a lam-SRC such that
it is of small size size and preserves the level of violation of the corresponding SRC. Set AM
is composed of some of the subsets of arcs traversed between two visits to customers in C

in a route r for which bγ∑i∈C a
r
i c > 0 and λr > 0 in the MP solution (see [46]). During

the separation of the lam-SRC cuts, it may happen that a violated cut is found for the same
set C and multiplier γ of a previously generated cut but with different arc memories AM
and AM ′. These two memories can be merged for defining a unique cut with arc memory
AM ∪ AM ′. A similar strategy can be applied for the lvm-SRCs.

Elementary cuts: Balas [119] introduces the elementary cuts as logical implications of
the set partitioning constraints (4.2). These cuts ensure that, if a route r ∈ Ω is chosen
in a solution and does not visit a customer i ∈ V ′, then no route visiting i as well as at
least one customer visited by r can be choosen. Pecin et al. [46] propose a new family of
valid inequalities that dominate those of Balas [119]. When the set of routes contains only
elementary ones, this dominance is strict. Given a customer subset C ⊂ V ′, a customer
i ∈ V ′ \ C, and multipliers γCi = (|C| − 1)/|C| and γCj = 1/|C|, ∀j ∈ C, these new rank-1

45

Chvátal-Gomory inequalities, also called elementary cuts in Pecin et al. [46], are given by:

∑
r∈Ω

γCi ari +
∑
j∈C

γCj a
r
j

λr ≤ 1. (4.34)

Another advantage of these rank-1 Chvátal-Gomory cuts over those proposed by Balas [119]
is that all the theory developed for the other families of rank-1 Chvátal-Gomory inequalities
can be re-applied, namely, the label definition, the dominance rule, and the limited memory
mechanisms. Furthermore, the elementary cuts with |C| ∈ {2, 3, 4} correspond to general
rank-1 Chvátal-Gomory cuts [118] with |C| ∈ {3, 4, 5} and respective vector γ of multipli-
ers (1/2, 1/2, 1/2), (2/3, 1/3, 1/3, 1/3) and (3/4, 1/4, 1/4, 1/4, 1/4) (and their permutations).
The latter are among the optimal multipliers identified by Pecin et al. [117]. Contrarily to
the other rank-1 Chvátal-Gomory cuts presented so far, a heuristic procedure based on local
search is developed by Pecin et al. [46] for separating the elementary cuts.

Strengthened capacity cuts: Baldacci et al. [99] introduce the strengthened capac-
ity cuts (SCCs) as a strengthened version of the RCCs. If one applies relation (4.7) to
inequality (4.25), a robust inequality of the form ∑

r∈Ω ρ
r
Sλr ≥ k(S) is obtained, where

ρrS = ∑
(i,j)∈δ−(S) b

r
ij is the number of times that route r ∈ Ω enters set S. Note that, even if

Ω contains only elementary routes, ρrS may be greater than 1 because a route may enter and
leave S more than once. Baldacci et al. [120] redefine ρrS as a binary parameter indicating
whether route r visits at least one customer in S. With this new definition, a SCC can be
expressed as: ∑

r∈Ω
ρrSλr ≥ k(S). (4.35)

When compared to RCCs (4.25), SCCs are stronger because they are not negatively affected
by routes entering set S more than once. They are, however, non-robust cuts which require
one additional binary resource in the label definition for each cut to indicate whether a route
has already entered into the corresponding set S. When a route visits a customer in S for
the first time, the dual value of the associated cut is subtracted from the reduced cost. The
dominance rule must take these additional resources into account in a similar fashion as the
resources for the SRCs.

To generate violated SCCs, Baldacci et al. [99] call the heuristic CVRPSEP separation rou-
tines [121] to identify violated RCCs that are converted into SCCs. Poggi and Uchoa [94]
observe that, if there exists a set S ′ such that S ′ ⊂ S and k(S ′) = k(S), the SCC defined
over S ′ dominates the one defined for S and, thus, only the cut associated with the former

46

set needs to be added to the MP. This aspect is important in an attempt to limit the number
of non-robust cuts added to the MP.

Clique cuts: The clique inequalities are well-known valid inequalities for the set partition-
ing problem [122] which induce facets. They are defined over an undirected conflict graph
G′ = (Ω, E ′), in which an edge between two vertices r1, r2 ∈ Ω exists if r1 and r2 visit both
a customer i ∈ V ′, i.e., ar1

i ≥ 1 and ar2
i ≥ 1. A clique Ω̂ in G′ is a set of vertices that are

conflicting pairwise and, thus, the corresponding routes are not allowed to appear simulta-
neously in a feasible solution to the problem. Therefore, a clique Ω̂ yields the following valid
inequality:

∑
r∈Ω̂

λr ≤ 1. (4.36)

Spoorendonk and Desaulniers [123] explore the application of clique cuts in a BPC algorithm
for the VRPTW. They devise a modified labeling algorithm that handles the dual values of
the clique cuts. This new labeling algorithm relies on an approximate clique representation
that employs a minimal set χmin(Ω̂) of conflicting rows. It requires adding for each clique
cut defined for a set Ω̂ ⊆ Ω, |χmin(Ω̂)| + 1 binary resources to the definition of a label to
detect when a route contributes to this cut. The dominance rule also needs to be modified.
A greedy heuristic is used to separate the cuts.

k-cycle elimination cuts and strong degree cuts: If set Ω contains non-elementary
routes, some valid inequalities may be used to impose elementarity. Indeed, Contardo and
Martinelli [93] present the k-cycle elimination cuts (k-CECs) that aim at preventing routes
containing cycles of length k ≥ 2 to be part of a MP solution. Given a route r ∈ Ω and
a vertex j ∈ V ′, let αkrj be a parameter indicating the number of times that route r visits
vertex j either for the first time or after at least k vertices since the last visit to j. A k-CEC
associated with vertex j is expressed as:

∑
r∈Ω

αkrj λr ≥ 1. (4.37)

The k-CECs ensure that no route r ∈ Ω visiting a vertex j ∈ V ′ more than once and such
that αkrj < arj will be in the solution of the MP. To deal with the dual values of the generated
k-CECs in the labeling algorithm, a new resource is added to the label definition for each
generated k-CEC. For a cut associated with vertex j, this resource takes value k until reaching

47

j for the first time. It is reset to 0 at every visit to j. Then, it counts the number of vertices
different from j that are visited consecutively. The dual value associated with this cut is
subtracted from the reduced cost every time that vertex j is visited and the value of this
resource is greater than or equal to k. As explained in Contardo and Martinelli [93], the
dominance rule must be modified. These cuts are separated by inspection.

If one considers k = ∞, we obtain the strongest k-CECs, called strong degree cuts (SDCs),
which are introduced by Contardo et al. [102] for the capacitated location-routing problem
(CLRP). Let αrj be a binary parameter equal to 1 if route r ∈ Ω visits vertex j ∈ V ′ at least
once and 0 otherwise. The SDC for a vertex j is:

∑
r∈Ω

αrjλr ≥ 1. (4.38)

For this case, the additional resource for a SDC associated with a customer j simply indicates
whether or not vertex j has already been visited. The associated dual value is subtracted
from the reduced cost only at the first visit to customer j.

Contardo et al. [102] show that, even when non-elementary routes can be generated by
the pricing problem, adding SDCs yields a lower bound equal to the lower bound obtained
when considering only elementary routes. Contardo et al. [89] further show empirically that
combining SDCs and ng-routes is a very effective strategy to reach this bound.

4.3.3 Branching

Here, we present the most commonly used branching strategies in BPC algorithms for VRPs.

Branching on arcs/edges.

Desrosiers et al. [20] introduce branching on arc-flow variables xij, (i, j) ∈ A, for the VRPTW.
It is probably the most popular strategy due to its simplicity, ease of implementation, and
robustness. In BPC algorithms, setting xij = 0 can be imposed by removing all variables λr,
r ∈ Ω, with brij > 0 that are present in the current RMP, and arc (i, j) from arc set A to
avoid generating such route variables. Any other decision made on an arc-flow variable xij
can be re-written using relation (4.7) in terms of the route variables λr, r ∈ Ω, and added to
the MP. Then, the associated dual variable can be incorporated in the modified cost of the
arc (i, j) when solving the pricing problem.

When arc (i, j) is associated with a set partitioning constraint (4.2), i.e., i ∈ V ′ or j ∈ V ′, the
addition of a new constraint to the MP can be avoided. Indeed, in this case, xij is binary and

48

the associated branching decisions are xij = 0 and xij = 1. The former decision is treated
as mentioned above. The latter decision means that arc (i, j) must be in the solution. To
enforce this, we remove from the current RMP, all route variables associated with a route
traversing an arc (i, k), with k 6= j, if i ∈ V ′, and an arc (k, j), with k 6= i, if j ∈ V ′. All
these arcs must be removed from arc set A to ensure that vertex j will always be visited
immediately after vertex i in any route generated by the pricing problem.

When the problem is defined over an undirected graph like the CVRP, branching on edge-
flow variables can be applied. Indeed, most of the theory described above can be employed.
However, given that, for such a problem, the pricing problem is often better defined as a
ESPPRC on a directed graph, the flow x′ij on an edge {i, j} is computed as x′ij = xij + xji,
where xij and xji are the flows on the arcs (i, j) and (j, i) in this directed graph. In this
case, setting x′ij = 0 can be imposed as above. However, imposing x′ij = 1 requires adding a
constraint in the MP.

Branching on the number of vehicles.

When the number of vehicles used in a solution to the MP is fractional, one can branch on
this number which can be expressed as ∑j∈V ′ x0j, i.e., the total flow on the arcs leaving the
origin depot. Note that this quantity is also equal to the sum of all the route variables when
there is a single depot. Such a branching decision is implemented through the addition of a
constraint in the MP. In the pricing problem, its dual value needs to be considered in the
modified cost of all the arcs leaving the depot.

This branching strategy has often a significant impact on the size of the search tree. Given
that there can exist fractional solutions in which the number of vehicles used is integer, it is
not sufficient to explore to whole search tree and must be combined with another branching
strategy. In fact, Desrochers et al. [84] branch in priority on the number of vehicles used and
to branch on the arc-flow variables when this number is integer.

Branching on cutsets.

Even if branching on arcs/edges has been largely used in BPC algorithms for VRPs, it has
the disadvantage of inducing only local changes to the current fractional solution. For this
reason, when implementing a BC algorithm to solve the CVRP, Augerat et al. [124] branch
on cutsets as an attempt to obtain larger perturbations. Let us define this branching strategy
in terms of the edge-flow variables xe, e ∈ E, where E is the edge set. Let S ⊆ V ′ be a subset
of customers, called a cutset. The total flow entering S is given by ∑e∈δ(S) xe, where δ(S)

49

denotes the set of edges containing exactly one extremity in S. Assuming that at least one
route enters S, we can write ∑e∈δ(S) xe = 2κ(S) +φ(S), where κ(S) is a non-negative integer
and 0 ≤ φ(S) < 2. In an integer solution, φ(S) = 0. Consequently, if φ(S) > 0, then one can
branch on cutset S by imposing∑e∈δ(S) xe ≤ 2κ(S) on one branch and ∑e∈δ(S) xe ≥ 2κ(S)+2
on the other. These decisions can be imposed as constraints in the MP. Note that most works
focus on sets S with κ(S) = 1. Note also that, in their BPC algorithm, Pecin et al. [45] apply
equivalent branching decisions by considering only the arcs entering into a cutset in a directed
graph.

The challenge with this branching strategy is the exponential number of cutsets that can be
used to define the branching decisions. In this regard, several simple heuristics are designed
by Augerat et al. [124], Naddef and Rinaldi [111], Lysgaard et al. [77], Fukasawa et al. [43]
and Pecin et al. [45] to select the cutsets to branch on. In general, these heuristics seek to
yield balanced search trees and a higher impact on the generated lower bounds.

Branching on resource windows.

Assuming that travel and service times are integer, Gelinas et al. [125] branch on time
windows but a similar branching scheme can be devised for other resources such as load. In
a fractional solution to the MP, there might exist several routes visiting the same customer
i ∈ V ′ but with different start of service times. Under certain conditions, splitting the time
window [ei, li] of customer i in two disjoint time windows [ei, t] and [t+1, li], with t ∈ [ei, li−1],
can make some of these routes infeasible for window [ei, t] and others infeasible for [t+ 1, li].
Branching on time windows consists of finding a customer for which splitting its time window
in two sub-windows would eliminate the current fractional solution in both branches, and of
determining how it should be split. These two intertwined choices must be carefully made
to devise an efficient branching strategy. Once customer i and time t are identified, the
branching decisions are applied as follows. In the branch associated with [ei, t], we replace
time window [ei, li] by [ei, t] in the pricing problem and eliminate from the current RMP all
routes in which customer i is visited outside [ei, t]. In the other branch, we proceed similarly
but with the new time window [t+ 1, li].

Dell’Amico et al. [126] devise a similar branching technique on resources that are used to
handle the vehicle capacity in a VRP with simultaneous pickups and deliveries (see Sec-
tion 4.4.10). Finally, Christiansen and Lysgaard [127] branch on the expected cumulative
demand in the context of the VRP with stochastic demands (Section 4.4.9).

50

Strong branching.

Some recent successful BPC algorithms rely on strong branching [43,45,46]. The idea behind
strong branching is to quickly evaluate the impact of a set of branching candidates (arcs,
time windows, subset of customers, etc.) on the lower bounds that would be obtained in
each child node and to select the best one according to some criterion. For example, when
applying arc branching at a given node, a subset of arcs AC ⊂ A that are candidates for
branching is determined and, for each arc a in AC , the corresponding branching decisions
are successively applied to compute the lower bounds lb−a and lb+

a that would be achieved in
both child nodes if this arc was selected for branching. Then, after computing all these lower
bounds, one can choose the best candidate as an arc a∗ ∈ arg maxa∈AC min{lb−a , lb+

a } and
add to the search tree only the child nodes associated with the decisions for arc a∗.

Strong branching can reduce significantly the number of nodes to explore in the search tree
but often at the expense of increasing the time to select the branching candidate at each node.
Consequently, it is common practice to limit the size of the set of candidates to evaluate and
to compute approximate lower bounds in the strong branching selection process. Similar to
the strong branching scheme of Lysgaard et al. [77] involving branching decisions on cutsets,
Fukasawa et al. [43] select, at each node of the search tree requiring branching, between 5
and 10 candidate cutsets S according to a criterion based on the flow entering S. Then, the
lower bounds for each candidate is evaluated heuristically by performing a few CG iterations.

In Irnich [128], the size of the candidate set is defined dynamically during the exploration
of the search tree and is proportional to the relative optimality gap. Therefore, it is more
selective at the beginning of the algorithm when no good solutions have been found and at
the top of the search tree when the optimality gap is still high, and evaluates less candidates
when the gap gets smaller. The lower bounds for each candidate are, however, computed by
an exact CG algorithm.

For the CVRP, Pecin et al. [45] assess the impact of branching on cutsets by proposing an
aggressive hierarchical hybrid strong/pseudocost branching, that consists of three phases: i)
candidate set construction, ii) refinement, and iii) strong branching. In the first phase, a set
of candidate cutsets is found. Half of them are chosen based on their pseudocosts (average
lower bound increases when the cutset was previously selected for evaluation) and the other
half are new cutsets. As in Irnich [128], the size of the candidate set depends on the relative
optimality gap. During the refinement phase, lower bound values lb− and lb+ are heuristically
estimated for each candidate by only considering the variables in the current RMP. These
quick evaluations allow to select a smaller set of candidates which are then better evaluated
in the last phase using a heuristic CG algorithm.

51

4.3.4 Using upper bounds

In this section, we discuss two techniques that can be exploited in BPC algorithms for VRPs
when good lower and upper bounds are available. The first technique consists of fixing to
zero the value of certain variables in order to reduce the size of the model. The second is
based on the enumeration of elementary routes to help close the integrality gap at a node of
the search tree. This latter technique can be seen as an alternative to branching.

Variable fixing by reduced cost.

Variable fixing can be performed in different ways. Here, we concentrate on variable fixing by
reduced cost which requires a lower and an upper bound on the optimal value of the problem.
The general idea behind variable fixing is as follows (see, e.g., [31]). Let P := {min c>x :
Ex = b, x ∈ Zn+} be an integer linear program, and z̄ an upper bound on its optimal value,
derived from a feasible solution. Also, let D := {max π>b : πE ≤ c} be the dual problem
associated with the linear relaxation of P and π a feasible dual solution to D of cost z = π>b.
The reduced cost c̄j of a generic variable xj with respect to π is given by c̄j = cj − π>Ej,
where Ej denotes the coefficient column of xj in matrix E. Variable xj can be fixed to zero
if c̄j > z̄ − z and can thus be removed from the problem.

In BPC algorithms, variable fixing is usually applied after solving the MP at each node
of the search tree, when an optimal dual solution π becomes available. However, it is not
directly applied to route variables λr, r ∈ Ω, because, as discussed in Section 4.2.4, it would
require employing complex mechanisms to forbid in the pricing problem the (re-)generation
of the routes associated with the removed variables. For this reason, variable fixing is rather
applied to implicit arc variables [93, 129, 130], yielding the simultaneous elimination of a
large number of route variables, namely, all those associated with a route traversing an arc
to be removed. Besides, removing arcs from the network makes the pricing problem easier
to solve. However, there is an inconvenient to this practice: the reduced costs of the arc-flow
variables xij are not directly available in a CG algorithm. Some approaches such as the
addition of coupling constraints of the form (4.7) to the MP [15, 33] and the solution of the
pricing problem directly as a linear problem [131] have been proposed in the literature to
overcome this difficulty. In the following, we highlight the approaches of Irnich et al. [130]
and Contardo and Martinelli [93], which are designed for VRPs.

Irnich et al. [130] fix arc-flow variables to zero as follows. Let Ωij ⊂ Ω be the subset of
feasible routes traversing arc (i, j) ∈ A. The reduced cost c̄ij of arc-flow variable xij can then
be computed as c̄ij = minr∈Ωij c̄r −minr′∈Ω c̄r′ . Because minr′∈Ω c̄r′ ≤ 0 at any CG iteration,

52

this result implies that, if c̃ij = minr∈Ωij c̄r > z̄ − z, then arc (i, j) can be removed from
G. Alternatively, if lbij is a lower bound on c̃ij, then lbij > z̄ − z is a sufficient condition
to remove arc (i, j). Such a lower bound can be computed for all arcs at once by solving
the pricing problem using an exact monodirectional labeling algorithm (see [129, 130]). To
compute c̃ij exactly and remove the maximum number of arcs, Irnich et al. [130] find feasible
shortest paths from vertex 0 to all other vertices using an exact forward labeling algorithm as
well as feasible shortest paths for all vertices to vertex n+1 using an exact backward labeling
algorithm. Given that two full labeling passes need to be performed, this process might be
time-consuming. Instead, relaxed shortest paths such as ng-paths can be computed, yielding
only lower bounds on the arc reduced costs and possibly less removed arcs depending on the
quality of these bounds. The state-of-the-art BPC algorithm of Pecin et al. [46] eliminates
arc-flow variables in the same fashion.

As suggested by Pecin et al. [45], this technique can also be applied for fixing CI variables yκij
instead of arc-flow variables xij when the BPC algorithm exploits an underlying CI compact
formulation (see Section 4.3.2). In this case, the reduced costs c̃κij of these CI variables
(defined as c̃κij = minr∈Ωκij c̄r−minr′∈Ω c̄r′ , where Ωκ

ij is the set of all feasible routes traversing
arc (i, j)κ in GQ) are also computed by executing complete forward and backward labeling
algorithms. The advantage of this new technique is that it allows to fix to zero more route
variables. Indeed, when variable fixing is only based on the arc-flow variables xij, none of
the route variables traversing an arc (i, j) can be fixed to zero if c̃ij ≤ z̄ − z. However, some
of them might be fixed when CI variables are involved, i.e., for all κ ∈ {0, 1, . . . , Q−di} such
that c̃κij > c̃ij = minκ∈{0,1,...,Q−di} c̃κij and c̃κij > z̄ − z.

Although Contardo and Martinelli [93] developed a BPC algorithm for the multi-depot VRP
under capacity and route length constraints, their algorithm is also very effective at solving
CVRP instances. It proceeds in two phases and variable fixing is performed in each phase.
First, the algorithm solves the linear relaxation of an edge-flow formulation to quickly gen-
erate a lower bound on the optimal value of the problem. This bound is then improved
by generating cutting planes. When no more cuts are found, variable fixing is performed
on the edge-flow variables, i.e., edges are removed from the network. In the second phase,
a BPC algorithm is applied to solve the problem using the reduced network in the pricing
problem. In this algorithm, variable fixing is performed as in Irnich et al. [130], except that
the arc reduced costs are underestimated because the duals of the non-robust cuts are not
fully considered in the labeling process.

53

Route enumeration.

Ideally, one would like to be able to enumerate all feasible routes and solve directly
model (4.1)–(4.3) using a mixed integer programming solver. This is unpractical given that
the number of feasible routes grows exponentially with the size of the instance. However,
given an upper bound z̄ on the optimal value obtained from a feasible solution s∗ and a dual
solution π providing a lower bound z like in variable fixing, enumerating the subset Ω′′ of
all the routes r ∈ Ω such that c̄r < z̄ − z and solving model (4.1)–(4.3) restricted to the
routes in Ω′′ is sufficient to either prove that s∗ is optimal or find an optimal solution with
a cost less than z̄. This approach, called route enumeration, is presented by Baldacci et
al. [99] and Baldacci et al. [2], who propose exact algorithms for solving the CVRP and the
VRPTW. These algorithms are not BPC algorithms, as no branching is performed. In both
algorithms, an additive bounding procedure which relies, among others, on CG and cutting
planes is used to compute a high-quality lower bound. Route enumeration is then performed
using a labeling algorithm similar to the ones applied for solving the pricing problem. Finally,
if all routes can be enumerated, the MIP restricted to the subset of enumerated routes is
solved by a commercial MIP solver, thus benefitting from all cutting-edge tools offered by
this solver and tailored cutting planes such as SCCs and clique cuts (see, e.g., [45,46,93,99]).
These algorithms are very efficient when the gap z̄ − z is small. Otherwise, they might fail
to enumerate all required routes and simply abort during the enumeration process due to a
lack of memory.

To overcome this drawback, it is possible to employ a hybrid strategy which combines route
enumeration and branching [45, 46, 93, 113]. In the BPC algorithm of Pessoa et al. [113],
route enumeration is performed at each node of the BB search tree. Every time that the
MP is solved, possibly after adding cuts, route enumeration is attempted. If the number of
generated labels or the number of generated routes exceeds a predefined threshold at a node,
enumeration is stopped and branching is performed. Otherwise, the model associated with
this node and restricted to the set of enumerated routes is solved using a MIP solver, and
no branching is necessary. Because the optimality gap tends to decrease with the depth in
the tree, route enumeration can eventually work, reducing the size of the tree and the total
computational time.

Contardo and Martinelli [93] perform route enumeration in a more aggressive way. Indeed,
they allow to generate a large number of routes (e.g., up to 5 millions) that cannot be handled
directly by a MIP solver. Once the MP is solved at a node of the search tree, the algorithm
proceeds to route enumeration. If too many labels or too many routes are generated, the
process is aborted. If the number of enumerated routes is small enough, the resulting model

54

is solved by a MIP solver. Otherwise, the routes are stored in a pool and the algorithm
continues by adding cuts and fixing variables. At this point, when cuts are added, the MP is
re-optimized by CG but the pricing problem is solved by inspecting the pool of routes. This
allows to separate more non-robust cuts without impacting dramatically the complexity of
the pricing algorithm. Pecin et al. [45,46] implement route enumeration as in Contardo and
Martinelli [93]. They, however, resort to branching when route enumeration is not possible.

4.3.5 Stabilizing dual variable values

CG algorithms are well known to suffer from convergence issues, which are mainly due to
the degenerate nature of the MP and to the instability of the dual variable values from one
iteration to the next [15,50]. On the one hand, degenerate MPs often yield multiple optimal
dual solutions and make it difficult to prove the optimality of the primal solution. Moreover,
the algorithm may perform many iterations without any or almost any improvement of the
objective function value (tailing-off effect). On the other hand, dual variable instability
causes the algorithm to generate columns unlikely to be in an optimal solution, even if some
good columns have already been generated.

Simple modifications to the MP may help the convergence of a CG algorithm. For instance,
by avoiding redundant constraints in the MP or removing non-active constraints, the degree
of degeneracy may be reduced. In addition, if one formulates the VRP as a set-covering
problem instead of a set-partitioning problem, i.e., replacing equalities (4.5) in the MP by
inequalities, the dual solution space is cut in half (the corresponding dual variables become
non-negative) and the dual variables are typically more stable [21,64].

Dual variable stabilization strategies have also been developed to overcome these convergence
issues. In general, stabilization techniques seek to: i) limit the distance traveled by the vari-
ables in the dual space, either by restricting the dual space or penalizing long displacements
of the dual points (see, e.g. [57, 60]); ii) avoid the generation of extreme dual solutions [64];
or iii) alleviate the impact of bad dual values [63]. The first family of stabilization strategies
either force the dual variables to remain within relatively small intervals around the current
dual values or allow to go outside these intervals at the expense of paying a penalty. The in-
tervals and penalties are adjusted dynamically throughout the CG algorithm. Such methods
can yield substantial speedups if good initial dual information is available. However, this is
not the case, in general, for VRPs.

Extreme dual solutions may be harmful to CG algorithms because they can lead to unrealistic
route reduced costs and the generation of routes that have little chance to be part of an
optimal MP solution. Thus, it may be preferable to use interior dual points to reduce the

55

number of CG iterations. Naturally, these points can be obtained directly by solving at each
iteration the RMP using an interior point method. Instead, Rousseau et al. [64] generate
dual interior points by using convex combinations of several dual extreme points. At a
given iteration, these extreme points are computed by solving the RMP several times after
perturbing the right-hand side vector each time.

To reduce the impact of poor dual values and avoid large dual variable oscillations, Pessoa et
al. [63] devise a dual price smoothing technique, which considers a transformed dual vector
π̃ = απ̂+(1−α)π when solving the pricing problem. In this expression, parameter α ∈ (0, 1]
indicates the level of smoothing, and vectors π and π̂ are, respectively, the current dual vector
and a vector containing dual information from previous iterations. Vector π̂ can be the best
dual vector obtained so far [61] or a weighted sum of dual vectors computed in previous
iterations [62]. This stabilization technique proceeds by solving at each CG iteration the
pricing problem defined with the vector π̃ of dual values. Three outcomes may happen: the
labeling algorithm finds 1) routes that have a negative reduced cost with respect to both π̃
and π; 2) routes that have a negative reduced cost with respect to π but not with respect
to π̃; 3) no routes with a negative reduced cost with respect to π. In the first two cases,
the computed routes can be added to the current RMP. In the second case, the value of α is
decreased as the algorithm converges towards optimal dual values. Finally, in the third case,
the value of α is also decreased and the pricing problem is solved again with the updated
vector π̃.

As mentioned in Rousseau et al. [64] and Pessoa et al. [63], the use of a stabilization technique
tends to increase the difficulty of solving the pricing problem, especially in the first CG
iterations. Indeed, when no stabilization is used, the dual values are often badly distributed
among the customers, yielding non-attractive customers that are rapidly disregarded during
the search for negative reduced cost routes. In practice, this aspect is not a major issue
because the quality of the generated routes outweighs this disadvantage.

4.4 Contributions to specific VRPs

In this section, we describe contributions that are specific to some VRP variants. Given
the large number of contributions, we have chosen to summarize the general ideas of these
specific contributions and to avoid mentioning every feature of each algorithm.

This section is divided according to the following problem features: heterogeneous fleet and
multiple depots (Section 4.4.1), profits (Section 4.4.2), soft time windows (Section 4.4.3),
multiple trips (Section 4.4.4), split services (Section 4.4.5), time dependency (Section 4.4.6),

56

cumulative costs (Section 4.4.7), environmental aspects (Section 4.4.8), uncertainty (Sec-
tion 4.4.9), and pickups and deliveries (Section 4.4.10).

4.4.1 Heterogeneous fleet and multiple depots

One of the most direct variants of the CVRP is the heterogeneous fleet VRP (HFVRP) in
which vehicles of different types are available. Let K be the set of vehicle types. These
types may differ by their capacity, fixed cost and traveling costs. The HFVRP consists of
determining the fleet of vehicles to use and designing feasible routes for them so as to service
a set of customers at minimum total cost. This cost is given by the sum of the vehicle fixed
costs and the variable traveling costs.

Given the differences between the vehicle types, a basic BP algorithm for the HFVRP requires
one pricing problem for each type k ∈ K, increasing the complexity of the pricing step. Choi
and Tcha [132] develop the first CG-based algorithm for this problem which relies on the
following procedure to reduce the number of pricing problems. Let z∗ be the cost of a
feasible solution obtained, e.g., by a heuristic. For each vehicle type k ∈ K, compute a lower
bound zk on the optimal value of the problem when forcing the utilization of at least one
vehicle of type k. If zk > z∗, then no vehicle of type k can be used in an optimal solution and
the corresponding pricing problem can be discarded. To compute rapidly a lower bound zk,
the authors solve a small-sized integer program that aims at minimizing the total fixed cost
incurred by a fleet that has sufficient capacity to cover the total demand. This lower bound
might be useful to discard some vehicle types only if the fixed costs are very large compared
to the traveling costs.

Pessoa et al. [114] design a BPC algorithm for the HFVRP. When vehicle types may incur
different traveling costs, multiple pricing problems are necessary. Otherwise, the authors show
how to use a single pricing problem. They also introduce new families of robust cuts defined
over CI variables, namely, homogeneous extended capacity cuts and strengthened RCCs,
and also applied robust triangle clique cuts. Even if the HFVRP is usually defined over an
undirected graph, the proposed algorithm relies on directed graphs in the pricing problems
which are needed to handle the cuts defined over the CI variables. These networks introduce
symmetry while solving the pricing problems because the same route can be traversed in
both directions at the same reduced cost unless the contributions to the cuts differ with the
direction. To break this symmetry, Pessoa et al. [114] impose that the index of the first
customer visited along a route must be less than that of its last customer and adapt their
labeling algorithm to handle this requirement.

Pessoa et al. [47] propose a new BPC algorithm for the HFVRP that combines the most re-

57

cent methodological advances for the CVRP and the VRPTW. By employing a new pseudo-
polynomially large extended formulation, stronger extended capacity cuts are devised. Fur-
thermore, they exploit the structure of the HFVRP to propose the concept of vehicle-type-
dependent memory for the SRCs (see Section 4.3.2). This new idea yields a sharper definition
of the concept of lm-SRCs by defining the coefficients of the route variables in the cuts accord-
ing to their associated vehicle type. Each cut has, thus, a different memory for each vehicle
type and this memory is smaller than the memory that would not depend on the vehicle
type. Consequently, the impact on the time required to solve each pricing problem is more
limited. On the other hand, these cuts are weaker and additional rounds of cut separation
may be required to achieve the same final lower bound. Finally, Pessoa et al. [47] also exploit
the structure of the HFVRP to develop a progressive route enumeration scheme. Indeed,
given that enumerating routes for small-capacitated vehicles is easier, in general, than for
large-capacitated vehicles, enumeration can be possible only for a subset of the vehicle types.
Thus, when enumeration is successful for a type, the enumerated routes are added to the
RMP or stored in a pool (see Section 4.3.4), the corresponding pricing problem is removed,
and all the generated cuts can be lifted with respect to these route variables.

The multi-depot VRP (MDVRP) is also a direct extension of the CVRP, where the available
vehicles are assigned to a set of depots. A route for a vehicle of a given depot must start and
end at this depot. The MDVRP can be seen as a special case of the HFVRP by associating
each depot with a vehicle type.

Baldacci and Mingozzi [133] design a general solution method for solving the HFVRP and
several of its special cases including the MDVRP. This method extends the framework in-
troduced by [99] for the CVRP (see Section 4.3.4) to deal with different vehicle types. It
also incorporates mechanisms designed for the HFVRP, namely, a relaxation involving binary
variables assigning customers to vehicle types and rules to resize the vehicle fleet (i.e., to up-
date lower and upper bounds on the number of vehicles of each type). The first mechanism
is especially effective when the fixed cost contribution to the total cost is significant. The
overall algorithm consists of solving three different relaxations and keep the best lower bound
obtained to perform route enumeration.

Bettinelli et al. [134] tackle a multi-depot heterogeneous VRPTWwith limited route duration,
where the duration of a route is computed as the difference between the return time to the
depot and the departure time from it. The latter is a decision variable, as some waiting
time along the route may be avoided by delaying the departure from the depot. To solve
this problem, Bettinelli et al. [134] conceive a BPC algorithm with one pricing problem per
vehicle type and depot. All pricing problems are, however, solved at once using a single

58

bidirectional labeling algorithm which handles two additional resources to impose a maximal
route duration. This labeling algorithm relies on labels that contains, in theory, duplicated
components for each depot. Given that two paths associated with different depots and
covering the same customers in the same order only differ by their initial arcs, each label
rather contains components for a single depot and, for each depot, a pointer to the initial
arc of the path if it were to start at this depot. Since it is easy to retrieve the component
values for each depot with these pointers, label storage requires much less memory. To deal
with the multiple vehicle types that only differ by the fixed cost and the vehicle capacity,
the labeling process is performed considering the largest vehicle capacity. Then, during the
joining phase of the bidirectional search algorithm, the feasibility rules are verified for each
vehicle type and the reduced cost is adjusted accordingly.

To solve the MDVRP with a route length constraint, Contardo and Martinelli [93] devise a
BPC algorithm which includes variable fixing and route enumeration. In a post-processing
phase, variable fixing is first performed based on the solution of the linear relaxation of a
two-index arc-flow formulation augmented by cutting planes. Once the BPC algorithm is
started, variable fixing is also carried out in the fashion of Irnich et al. [130]. Contrarily
to Bettinelli et al. [134], Contardo and Martinelli [93] solve one pricing problem per depot.
Their BPC algorithm comprises several families of robust and non-robust cuts. In particular,
they exploit the similarity between the MDVRP and the CLRP to adapt non-robust CLRP
cuts for the MDVRP, namely, the y-strong capacity cuts and the strong framed capacity
cuts.

4.4.2 Profits (optional customers)

In some applications, it may not be possible to visit all the customers due to vehicle fleet
limitations (e.g. a limited number of vehicles with limited capacity is available) or to a short
planning horizon. In this case, the customers to serve are part of the decisions to make and
some of them might not be serviced. To determine which ones to serve, a profit is associated
with each customer and profit maximization is sought. For this class of routing problems,
called VRPs with profits (VRPPs), only a few BP algorithms have been designed.

The team orienteering problem (TOP) is the simplest multi-vehicle variant of the VRPP.
It consists of designing routes for a homogeneous fleet of vehicles in such a way that the
total profit collected is maximized and the length (duration) of the routes does not exceed
a given threshold. No routing costs are considered. When solving the TOP by means of a
CG algorithm, the MP is defined as the linear relaxation of a set-packing model, with an
additional constraint to limit the number of routes in the solution. The pricing problem is an

59

ESPPRC which has been solved by a labeling algorithm, except in [135] where it is solved by
a procedure that enumerates subsets of customers and checks for each subset the existence
of a feasible route by solving a TSP.

Boussier et al. [136] present a generic BP algorithm for the TOP and the selective VRPTW
(SVRPTW). The SVRPTW is a generalized TOP where vehicle capacity and customer time
windows are considered. To derive integer solutions, Boussier et al. [136] apply two branching
strategies. They branch first on a customer i ∈ V ′ that is visited a fractional number of times.
If this is not possible, i.e., the flow through each customer vertex is integer, an alternative
branching on an arc (i, j) is performed. Two cases are considered. If one of the customers
i or j has been constrained to be served, two branches are created: one imposing arc (i, j)
to be traversed, and the other forbidding it. Otherwise, three branches are created: one
forbidding the visit to i, and two enforcing the visit to i followed or not by j. Keshtkaran
et al. [137] enhanced the algorithm of Boussier et al. [136] by incorporating to the pricing
algorithm several acceleration techniques discussed in Section 4.3 and by including SRCs to
reinforce the MP. These cuts are also valid for a set-packing formulation.

Archetti et al. [138] introduce the capacitated TOP (CTOP), a variant of the TOP that
involves a vehicle capacity constraint. They also study the capacitated profitable tour prob-
lem (CPTP) which aims at minimizing the difference between the total collected profits and
the total traveling cost and considers a vehicle capacity constraint but no maximum route
duration constraint. To solve both the CTOP and the CPTP, the authors adapt the BP
algorithm of Boussier et al. [136]. Archetti et al. [139] enhance the BP algorithm of Archetti
et al. [138] by improving the pricing labeling algorithm with some acceleration techniques
and revising the branching strategies used. The new branching scheme involves branching
on the number of vehicles used, on the flow through a customer, and on the flow on an arc.
In the latter case, imposing a flow of one on an arc is performed by adding a constraint in
the MP. This new algorithm employs a column-based restricted master heuristic to generate
primal solutions throughout the search tree. Finally, Archetti et al. [140] address the CTOP
with incomplete services, where a customer may be partially served. The problem is then
formulated as a set-packing problem. The routes, possibly performing incomplete services,
are generated by means of the labeling algorithm described in Archetti et al. [141], which
exploits an expanded network that contains vertices associated with every possible pair of
customer and quantity that can be delivered to this customer.

Another problem belonging to the class of VRPPs is investigated by Bulhões et al. [142], who
introduce the VRP with service level constraints (VRP-SL). This problem arises in situations
where the total customer demand exceeds the general capacity of supply. However, due to

60

commercial agreements, a minimum service level to the customers must be ensured as follows.
The set of customers V ′ is partitioned into m disjoint groups Vk (i.e., V ′ = ∪mk=1Vk and
Vk ∩ Vk′ = ∅ for any k 6= k′) where a group may represent the deliveries to a same company.
Moreover, with each customer i ∈ V ′ are associated a demand qi, a profit ρi and a service
weight wi. This latter represents the importance of the customer in its group. The VRP-SL
consists of designing profitable routes that visit some of the customers in V ′ (to deliver their
full demands) such that, for each subset Vk, k = 1, . . . ,m, a minimum service level φk ∈ [0, 1]
is reached. The service level of a group k is computed as ∑i∈V∗

k
wi/

∑
i∈Vk wi, where V∗k ⊆ Vk

denotes the subset of customers in V∗k that are serviced in the solution. The objective function
aims at minimizing the total cost and the lost profits incurred by not servicing some of the
customers. Bulhões et al. [142] formulate the VRP-SL using a set partitioning model that
contains binary slack variables to identify which customers are not serviced and the service
level constraints. For solving the problem, they devise a rather straightforward BP algorithm.

Other VRPP variants are studied by Azi et al. [143], Archetti et al. [141, 144], Parragh et
al. [145], Luo et al. [146], and Gutierrez-Jarpa et al. [147]. Given that the focus of these
works is on the treatment of multiple trips, split services or pickups and deliveries, they are
reviewed in Sections 4.4.4, 4.4.5 and 4.4.10.

4.4.3 Soft time windows

Soft time windows, unlike traditional time windows that pose structural restrictions on the
feasible solution space, do not impact the feasibility of the routes. These restrictions are thus
relaxed in the soft variant and transferred as penalties in the objective function [148]. More
precisely, in the VRP with soft time windows, a vehicle can serve a customer i ∈ V ′ without
paying a penalty if the service is performed within [ei, li], but it can also serve a customer
before ei, or after li by paying a linear penalty proportional to the anticipation or the delay.

From a computational viewpoint, soft time windows are harder to handle than the hard time
windows because the feasible solution space in the former is larger. Liberatore et al. [148]
present the first exact BP algorithm that handles soft time windows in an efficient manner.
In their algorithm, the labeling algorithm considers in each label a piecewise linear reduced
cost function c̄(t) of the start of service time t. This function is equal to 0 at the source
vertex and updated with each extension. When performing an extension along an arc (i, j),
the reduced cost function of the new label is obtained by summing up the function from the
previous label and the penalty function associated with the possible start of service times at
j. In order to reduce the number of feasible extensions, the authors introduce the notion of
profitable time windows, which are the reduced intervals of time in which a visit to a customer

61

may be beneficial. Arrival times out of this interval are deemed unpromising for the current
pricing problem and discarded.

Bettinelli et al. [149] adapt this algorithm to solve the multi-depot heterogeneous fleet pickup
and delivery problem with soft time windows. Abdallah and Jang [150] consider a hybrid
variant of this problem in which penalties are accepted only in a limited zone around the
hard time windows, out of which arrivals are deemed infeasible. Thus, structural constraints
are not completely lost. These authors develop a tailored labeling algorithm that is shown
to be efficient to limit the number of non-dominated labels.

Taş et al. [151] study the VRP with soft time windows and stochastic travel times. This
work is reviewed in Section 4.4.9.

4.4.4 Multiple trips

In some applications, vehicles may return to the depot in the middle of their route to be
replenished before performing additional deliveries. Such returns may be caused by a limited
vehicle capacity compared to the volume of the demands, by some duration constraints
imposed by the drivers’ regulations or because the products delivered/collected are perishable.
This feature gives rise to a class of problems, called the multi-trip VRPs (MTVRPs), where
a trip is defined by a sequence of visits to customers between two visits to the depot and a
route contains one or several trips. These problems are worthy of investigation if the number
of vehicles is limited (or they incur fixed costs) and some constraints (such as a maximal
route length or time windows) restrict the feasibility of the trip sequences. Otherwise, there
exists an optimal solution with only single-trip routes and the problem becomes equivalent
to the VRP.

Despite the practical importance of the MTVRP, no exact solution algorithms have been
proposed for this problem prior to the recent work of Mingozzi et al. [152]. The MTVRP
they consider is a direct extension of the CVRP with a limited number of vehicles and a
maximum driving time per route. Their algorithm extends the one of Baldacci et al. [99],
as it relies on bounding procedures to solve relaxations of two set-partitioning formulations
and trip/route enumeration. In the first set-partitioning formulation, denoted SPF1, the
variables are associated with feasible trips; in the second, denoted SPF2, they represent
feasible routes. The proposed algorithm exploits the strengths of both formulations. On
the one hand, generating trips is easier than generating routes. On the other hand, the
bounds provided by SPF2 are better than those yielded by SPF1. The algorithm starts by
computing a lower bound from SPF1 by CG before performing trip enumeration and solving
the resulting reduced model. If this approach does not succeed (e.g., when too many trips are

62

enumerated), a lower bound from SPF2 is computed by CG using only the trips enumerated
in the first phase. Route enumeration is then performed to derive a reduced SPF2 model that
is solved by a MIP solver. Both set partitioning formulations are reinforced with non-robust
cuts. In particular, a strengthened version of the knapsack inequalities, called working time
inequalities, is introduced for SPF1.

Considering the delivery of perishable products, Azi et al. [143] tackle a MTVRP with time
windows and a limited trip duration (MTVRPTW-LD) in which customers’ service is op-
tional. The problem can also be seen as a VRPP variant. It is formulated as a set packing
problem where the variables are associated with feasible routes and the objective consists of
minimizing the total profit collected from the serviced customers minus the total traveling
cost. To solve this problem, the authors propose a two-phase method where a complete
enumeration of all the feasible trips is carried out in the first phase and routes obtained by
concatenating feasible trips are generated by CG in the second phase. Complete trip enumer-
ation is achievable in the first phase because the number of customers in a trip is small due
to the maximum trip duration. This enumeration is performed using the algorithm of Azi
et al. [153] for the single-vehicle case and in which a dominance rule is applied to eliminate
non-Pareto-optimal trips. Each trip is associated with a (minimum) duration, a loading time
that needs to be taken into account before starting the trip, and a starting time window
which preserves the trip duration. A BP algorithm is applied in the second phase. The
pricing problem is an ESPPRC defined over a directed graph where the vertices represent
the trips enumerated in the first phase.

Hernandez et al. [154] address the MTVRPTW-LD with mandatory services to the customers.
They model the problem as a set-covering problem where the variables are associated with
feasible trips and so-called mutual exclusion constraints (MECs) ensure that the number of
available vehicles is met at all times. If the discretization of the planning horizon is too fine-
grained, the number of MECs explodes and the model becomes intractable. In the proposed
BP algorithm, this issue is dealt with by solving first a relaxation that considers a coarser
discretization (thus, less MECs) and, if necessary, subsequent stronger relaxations obtained
by refining the discretization. The pricing problem consists of finding trips with negative
reduced costs or proving that none exist. This includes determining the exact schedule
of each trip. To solve this problem, Hernandez et al. [154] devise a two-phase algorithm.
In the first phase, trips without schedule are enumerated using a corrected version of the
enumeration algorithm of Azi et al. [143]. Each trip is defined by a sequence of customers,
a minimum duration, a loading time, and a starting time window. In the second phase, a
minimal reduced cost schedule is determined for each enumerated trip. Given that imposing
integrality requirements on the arc flow between two customers is not sufficient to derive an

63

optimal integer solution (a convex combination of schedules can be chosen for a given trip),
the authors also develop a specific branching scheme. Given a fractional solution, branching
on the arc flow between two customers is favored. If this is not possible (i.e., all arc flows
are integer), then a special case of a VRPTW is defined from this solution (each trip in the
solution represents a customer) and solved by an ad hoc BP algorithm to find a feasible
solution to the MTVRPTW-LD if one exists. If so, the cost of this solution is equal to the
current RMP solution cost and the node can be pruned. Otherwise, multiple branching nodes
are created, each forbidding the usage of an arc in the current solution.

Contrarily to the previous works, Hernandez et al. [155] study the MTVRP with time win-
dows in which no limitation on the trip duration is imposed. They present two different
formulations and two BP algorithms. In the first formulation, variables are associated with
routes, whereas in the second, they are associated with trips. Despite the similarity with
previous methods, Hernandez et al. [155] do not benefit from trips with limited duration
and, therefore, complete trip enumeration becomes impractical. Thus, the authors develop
tailored labeling algorithms to solve the pricing problem ensuing from each formulation. In
the BP algorithm for the first model, routes are generated by solving an ESPPRC with pos-
sible returns to the depot. Mono-directional backward labeling is performed to handle the
loading time before each trip which depends on the total quantity to be delivered along the
trip. In the BP algorithm for the second model which includes MECs in the MP, trips are
also generated by solving an ESPPRC but, in this case, the trip schedule impacts its reduced
cost because of the dual values of the MECs. To reduce the number of generated labels,
Hernandez et al. [155] establish some theoretical results which allow to group together labels
corresponding to the same sequence of visited customers and keep a single representative
label for each group. Here again, backward labeling is used.

Finally, Muter et al. [156] consider a generalization of the MTVRP and the MDVRP called
the MDVRP with inter-depot routes (MDVRPI). In the MDVRPI, a route starts and ends
at the same depot, and can also stop at any intermediate depot to replenish. The routes
can be seen again as sequences of trips where the starting depot of a trip may differ from its
ending depot. Route duration is limited but not trip duration. Route duration is computed
as the sum of the traveling times, customer service times and fixed loading times required
before starting the trips. The MDVRPI is modeled as a set covering problem where the
variables are associated with routes and two different BP algorithms are developed to solve
it. They differ by the algorithm used to solve the ESPPRC pricing problems, one for each
depot. The first algorithm is a labeling algorithm similar to that of Feillet et al. [86], which
is applied on a network that contains additional vertices to represent intermediate visits at a
depot. Because a vehicle can be replenished along its route, a customer can be temporarily

64

considered unreachable if this status is only due to vehicle capacity. The second algorithm is
a two-phase algorithm. In the first phase, all non-dominated trips are enumerated like in the
work of Azi et al. [143]. Furthermore, among the trips that link the same depot, only those
with a negative reduced cost are kept. In the second phase, a labeling algorithm is applied
on a network where the vertices represent the depots and the arcs the enumerated trips.

In Section 4.4.10, we review the work of Luo et al. [146] that considers a rich dial-a-ride
problem in which multiple trips per route are possible.

4.4.5 Split services

In routing problems with split services (split deliveries or split pickups), customers are al-
lowed to be visited more than once in order to have their demand satisfied. The fact that
each demand can be split among several vehicles can yield substantial economic savings, op-
erational flexibility, not to mention, the possibility of customers with a demand larger than
a vehicle capacity to be served Archetti and Speranza [157]. Taking this option into account,
the split delivery VRP (SDVRP) and the split delivery VRPTW (SDVRPTW) extend the
CVRP and the VRPTW, respectively. The design of BP algorithms for these problems is
not straightforward because the amount to deliver at each customer visit is also a variable
decision. In the following, we start by discussing works on the SDVRPTW which is the
first split delivery VRP variant to be solved by means of a BP algorithm. Note that, unless
otherwise specified, the service time at a customer does not depend on the quantity delivered.

Gendreau et al. [158] propose the first BPC algorithm for the SDVRPTW and, assuming
that travel costs and times satisfy the triangle inequality, prove the following properties
for the SDVRPTW (the first two ensue from identical properties for the SDVRP): 1) two
routes cannot have more than two customers in common; 2) no arc can appear more than
once in a solution; and 3) each route visits a customer at most once. In the proposed
BPC algorithm, the pricing problem only determines the vehicles routes, not the quantities
to deliver. These decisions are made at the MP level using additional quantity variables
and constraints, which depend on the routes generated. Therefore, the MP involves an
exponential number of constraints that are generated dynamically with the generated route
variables. The authors develop sufficient conditions on the optimality of a MP solution in this
context. These conditions are used to define the objective function of the pricing problem
which is an ESPPRC that is solved by an adapted version of the labeling algorithm of Feillet
et al. [86]. To speed up the solution process, Gendreau et al. [158] solve first a relaxed MP
which allows to generate columns more rapidly. Because customers may be visited more
than once in the SDVRPTW, a solution may be fractional even if the arc flows are integer.

65

When this occurs, a sophisticated branching rule on a subset of variables described in Feillet
et al. [159] is applied. Two other branching rules can be applied, namely, on the number of
visits to a customer and on an arc flow.

Desaulniers [160] designs a BPC algorithm for the SDVRPTW where the quantities to be
delivered to the customers visited in a route (forming a so-called delivery pattern) are deter-
mined in the pricing problem, which corresponds to an ESPPRC combined with the linear
relaxation of a bounded knapsack problem (LP-BKP). To solve this pricing problem, a tai-
lored labeling algorithm is developed. It exploits the property of an optimal basic solution
to the LP-BKP: all variables are either at their lower or upper bound except possibly one.
In the SDVRPTW context, this property translates to: in a delivery pattern of a route
yielding an optimal solution to the pricing problem (called an extreme delivery pattern), all
customers receive a full or a zero delivery, except at most one customer that can receive
a partial delivery. Because convex combinations of extreme delivery patterns for the same
route are allowed in the MP, all customers in a route receive a positive quantity in an optimal
solution and multiple partial deliveries are possible. In the labeling algorithm, a label can
be extended up to three times along an arc reaching a customer, namely, for a full delivery
at this customer, a zero delivery, or a partial delivery. Because the quantity delivered in
a partial delivery is a decision variable that is computed only once the route is completed,
the reduced cost of a partial path is a linear function of this quantity and the dominance
rule is devised to handle such reduced cost components. The MP is reinforced with adapted
kPCs exploiting the structure of the SDVRPTW and with edge-flow cuts which ensue from
the application to a single edge of the first property stated by Gendreau et al. [158]. Four
branching strategies are applied, namely: on the total number of vehicles, on the number
of times a customer is visited, on an arc flow, and on the possibility of using or not two
arcs consecutively. Decisions of this last type are non robust in the sense that they require
additional resources in the labeling algorithm. They are, however, necessary to ensure an
exhaustive exploration of the search tree.

Archetti et al. [103] improve the BPC algorithm of Desaulniers [160]. They design a tabu
search algorithm that combines the procedure of Desaulniers et al. [44] with an LP-BKP
solver to generate negative reduced cost columns. They also develop three efficient separation
heuristics for the kPCs. Finally, to further strengthen the MP lower bounds, they introduce
three new classes of non-robust valid inequalities for the SDVRPTW: strong k-path cuts
(SkPCs), strong minimum number of vehicles inequalities (SMVCs), and adapted SRCs. The
SkPCs are a strengthened version of the kPCs which are not weakened by paths entering
a given subset of customers more than once. The SMVCs are based on the idea that, if a
customer does not receive a full delivery, it has to be visited at least twice. Finally, even if

66

the MP does not include set partitioning constraints, SRCs can be defined by observing that
each customer cannot receive more than one full delivery.

Salani and Vacca [161] study an extension of the SDVRPTW, called the discrete SDVRPTW
(DSDVRPTW), in which the demand of the customers is composed of a discrete set of items
which can be delivered separately. The items delivered by a vehicle to a customer form an
order and the service time at a customer depends on the delivered order. Because of this
feature, several properties defined for the SDVRP(TW) are no longer valid for the DSD-
VRPTW. For instance, two routes can have more than one split customer in common. The
authors formulate the DSDVRPTW as a set partitioning model where the set partitioning
constraints are associated with the items of each customer. The pricing problem is an ESP-
PRC defined on a network identical to that used for the VRPTW except that the vertices
are associated with feasible orders instead of customers. This network structure permits to
include the service time for each possible order on the arcs.

Luo et al. [162] introduce an extension of the SDVRPTW called the SDVRPTW with lin-
ear weight-related cost, in which the travel costs per unit distance are charged based on a
linear function of the load weight. To solve this problem, they devise a BPC algorithm that
borrows ideas from Desaulniers [160] and Archetti et al. [103] and relies on an efficient label-
ing algorithm involving an aggressive dominance rule. In this labeling algorithm, each label
contains a reduced cost component, which is also a function of the vehicle load but encodes
information regarding the extreme delivery patterns for the corresponding route. With this
reduced cost function, each label is extended once along each arc contrarily to the algorithm
of Desaulniers [160] that extends it up to three times. The proposed dominance rule allows
to dominate partially or fully a label by comparing it with a set of labels. In fact, all labels
are stored in a dominance graph that permits efficient label comparisons.

Archetti et al. [163] present the first BPC algorithm for solving the SDVRP. The approach
is similar to the one proposed by Desaulniers [160] since the pricing problem generates si-
multaneously the routes and their delivery patterns. The main difference is that the pricing
problem is defined over an expanded network, where each customer is represented by a set
of vertices, one for each possible quantity that can be delivered to it. With this network,
the dual values of the customer demand constraints can be easily incorporated into the arc
costs and the labeling algorithm is much simpler than that of Desaulniers [160], especially a
standard dominance rule can be used. On the other hand, the performance of the algorithm
heavily depends on the size of the customer demands.

Moreno et al. [164] focus on improving the lower bounds for the SDVRP. They design a
robust CG algorithm that employs cutting planes defined in terms of CI variables. The

67

algorithm considers three families of valid inequalities: the homogeneous extended capacity
cuts of Pessoa et al. [114], edge-flow cuts and split delivery cuts. The edge-flow cuts are
the same as those proposed independently in Desaulniers [160]. The split delivery cuts are
Chvátal-Gomory cuts derived from a single customer demand cut. The authors point out
that, by formulating the SDVRP using CI variables, the knapsack structure of the problem
can be exploited, enabling stronger cuts to be devised.

Archetti et al. [165] address the commodity constrained SDVRP (C-SDVRP) in which a
customer can be visited more than once if its demand is composed by multiple commodities
that must be treated separately. This situation occurs, for example, when different products
require specific temperatures (e.g., frozen, fresh and dry food), or when different commodities
must be transported in separated compartments (e.g., food and hazardous products). Like
in the DSDVRPTW, the C-SDVRP allows multiple visits to a customer, but does not allow
a specific commodity to be split. The authors model the C-SDVRP as a CVRP where
the set of customers is replaced by the set of all requested commodities for all customers.
They design a BPC algorithm where the MP ensures that all commodities are delivered and
the pricing problem is defined over an expanded network, where most vertices represent a
commodity/customer pair. In fact, for each customer, a subnetwork containing the related
vertices is created to reduce symmetry. Furthermore, at each column generation iteration,
a preprocessing step is applied to each subnetwork to deduce non-dominated subpaths with
respect to vehicle capacity and the current dual values. Besides the branching strategies
proposed by Desaulniers [160], a new strategy inspired by Ryan and Foster [166]’s rule is
presented. It branches on whether or not two pairs of commodity/customer must be delivered
in the same route. Each such decision requires adding a new resource in the label definition.

Some authors study the impact of split services in VRPP variants. Archetti et al. [141]
develop a BP algorithm to solve the split delivery CTOP (SDCTOP), where each customer
can be visited multiples times in order to have its demand completely fulfilled. This algorithm
incorporates features from the algorithms of Archetti et al. [138] and Archetti et al. [103], in
particular, it uses the expanded network defined in Archetti et al. [103]. Archetti et al. [144]
investigate the SDCTOP with incomplete service, where a customer may be served only
partially and can be visited by more than one vehicle. This problem can be modeled as
the SDCTOP except that the constraints enforcing the complete service of the customers
are replaced by constraints bounding the total quantity delivered to each customer by its
demand. Therefore, the authors present an algorithm similar to the one described in Archetti
et al. [141].

Parragh et al. [145] address a pickup and delivery routing problem with split services that is

68

discussed in Section 4.4.10.

4.4.6 Time dependency

Classical VRP variants do not capture some important features related to real-life problems
such as the presence of congested routes at different times of a day. In the literature, road
congestion has been represented by the consideration of time-dependent travel times, i.e., by
making the travel time on an arc depend on the moment at which it is traversed. In this
context arises the time-dependent VRPTW (TDVRPTW) in which the planning horizon is
divided into time zones (e.g., morning, afternoon, and night) and, for each time zone, travel
times are assumed to be constant on every arc, leading to a stepwise speed function over the
horizon. This speed function is then used to determine a travel time piecewise linear function
that satisfies the first-in-first-out (FIFO) principle [167].

Dabia et al. [168] propose the only BP algorithm to solve a variant of the TDVRPTW that
minimizes the total duration of the routes. Given that the cost of a route is its duration, the
reduced cost of a route cannot be computed as the sum of arc costs in the pricing problem.
Therefore, in the labeling algorithm developed by Dabia et al. [168], a label associated with
a customer vertex i ∈ V ′ stores a piecewise linear function δi(t) to represent the time at
which the service is completed (ready time) at i if the vehicle leaves the depot at time t.
This function is non-decreasing and allows to compute the route duration in function of this
departure time as δi(t)− t as well as the route reduced cost as δi(t)− t− cπ, where cπ is the
sum of the dual variables associated with each vertex visited along the route. The authors
introduce a sharp dominance rule that takes into account the possibility to use different
departure times from the depot for each compared label.

4.4.7 Cumulative costs

The real cost of a vehicle traversing an arc depends on many variables. Several of them
are proportional to the arc distance (or travel time). Some others like the elapsed time up
to each customer and the vehicle load, which impacts the fuel consumption rate, cannot be
represented by the distance. In some cases, they are, however, proportional to a flow on the
arc, e.g., the remaining quantity to deliver and the number of customers still to be visited,
and the cost function can be defined as a product of this flow and the distance traveled. This
gives rise to a class of VRPs, called the cumulative VRPs (CumVRPs) [169].

Lysgaard and Wøhlk [170] design a BPC algorithm to solve a CumVRP in which the objective
aims at minimizing the sum of the arrival times at the customers. In fact, their algorithm is

69

very similar to the algorithm of Fukasawa et al. [43] for the CVRP. However, to assess the
cost of traversing an edge e, one not only needs to know the traveling time te along e but also
the number of customers remaining to visit after e, because te contributes to the arrival time
of all the remaining customers. Given that this information is unavailable when building a
route from the source vertex, Lysgaard and Wøhlk [170] use a backward labeling algorithm
to solve the pricing problem. In this way, the customers remaining to service after traversing
an edge are those that have been visited in the current backward path and, thus, the reduced
cost of traversing an edge can easily be computed.

Another CumVRP variant where the cost of traversing an arc depends on the vehicle load is
tackled by Fukasawa et al. [171]. This work is reviewed in the next section.

4.4.8 Environmental aspects

Recently, it has become critical to make transportation and logistics environmentally sustain-
able, and thus VRPs that include environmental aspects have gained considerable attention
in the literature. These VRP variants often aim at minimizing greenhouse gas emissions/fuel
consumption [172], or at managing the use of electric vehicles [173]. Green VRPs (GVRPs)
denote VRP variants in which greenhouse gas emission or fuel consumption is considered
either in the objective function or in the operational constraints [172].

Fukasawa et al. [171] design a BPC algorithm to solve the energy minimization vehicle routing
problem (EMVRP). This problem belongs to the class of CumVRPs [169] and extends the
CVRP by defining the arc cost as the product between the arc length and the current vehicle
weight when traversing the arc. The proposed algorithm is similar to that of Fukasawa et
al. [43]. These algorithms differ by the network used to generate q-routes. Because in the
EMVRP, the cost of traversing an arc depends on the carried load, Fukasawa et al. [171] use
an expanded network GQ where each arc appears Q+ 1 times in the network. In GQ, an arc
(i, j, q) represents a traversal of the arc (i, j) with a load of q units. The labeling algorithm
is adapted to be executed on GQ.

The pollution routing problem (PRP, [174]) is a GVRP variant in which one must not only
design vehicle routes but also determine at which speed each arc in each selected route should
be traveled. The problem aims at minimizing the vehicle consumption and the drivers’ wages
that are proportional to route duration. Both objectives are conflicting since higher speeds
yield shorter routes but larger fuel consumptions. To address a variant of the PRP which
assumes constant speed along a route and variable departure time from the depot, Dabia et
al. [175] adapt the BP algorithm of Dabia et al. [168] (see Section 4.4.6). The modifications
concern the labeling algorithm which also considers a piecewise linear function to represent

70

the ready time δi(t, v) at a customer i ∈ V ′, that does not only depend on the departure
time t from the depot, but also on the vehicle speed v along the route. Because computing
this function dynamically is not straightforward, the authors rather generate two functions,
obtained by fixing t = 0 and v = vmax (the maximum speed), that can be combined to
provide all necessary information. The labeling algorithm requires new resources to compute
the fuel consumption and a tailored dominance rule.

In addition to the GVRPs discussed above, another VRP variant that has environmental
motivations is the electric VRP (EVRP), in which vehicles are powered by electricity and
suffer from limited battery autonomy constraints [173]. When time windows are associated
with the customers, the EVRP with time windows (EVRPTW) arises. In the EVRPTW, one
considers all features of the VRPTW plus the following ones: additional vertices representing
recharging stations, a recharging time depending on the amount of energy recharged, a battery
capacity for each vehicle and, for each arc, the energy consumed by a vehicle traversing it.

Depending on the number of allowed visits to the recharging stations in each route —single (S)
or multiple (M)—, and the type of battery recharging policy —full (F) or partial (P)—, four
VRP variants of the EVRPTW may arise, namely, the EVRPTW-SF, the EVRPTW-MF,
the EVRPTW-SP, and the EVRPTW-MP. Desaulniers et al. [176] study all these variants
and propose different BPC algorithms that differ by the labeling algorithm used to generate
routes. Assuming that the energy consumed along each arc of a route can be converted into
a required recharging time, the battery capacity constraint is expressed in terms of the time
required to recharge the consumed energy. For the EVRPTW-SF and the EVRPTW-MF,
the labeling algorithms are similar (the former problem requires an additional resource to
impose at most one recharge per route). In the forward algorithms, a single resource is
needed to cumulate the required recharging time which also monitors the battery capacity.
Given that the time required for a recharge at a station depends on the energy consumed,
this time is unknown in a backward labeling algorithm. Nevertheless, Desaulniers et al. [176]
devise a bidirectional labeling algorithm where the backward algorithm relies on additional
resources to ensure that this time is well computed. When partial recharges are allowed in
the EVRPTW-SP and the EVRPTW-MP, the trade-off between the amount recharged and
the time spent for recharging leads to express the start of service time at a customer visited
after a recharge as a linear function of the recharging time. This relation is modeled using
three resources and requires an ad hoc dominance rule. In this case, a backward labeling
algorithm symmetric to the forward one can be devised and used in a bidirectional search.

Another VRP variant that incorporates environmental aspects and exhibits similarities with
the EVRPTW is studied in Andelmin and Bartolini [177]. In this variant, the vehicles

71

are powered by an alternative fuel (e.g., biodiesel or electricity), have limited fuel/battery
autonomy, and might need to stop for refueling/recharging along their route. Each refueling
stop has a fixed duration and each route is subject to a maximum duration. To model this
problem, the authors use a multi-graph which contains additional arcs between every pair
of vertices. For a given pair of vertices i, j ∈ V ′, these extra arcs represent non-dominated
refueling paths (containing one or multiple refueling stops) between i and j. The proposed
solution algorithm follows the scheme of Baldacci et al. [2] (see Section 4.3.4).

4.4.9 Uncertainty

All VRPs discussed so far assume that all required input data is known in advance. However,
when solving real-life problems, this is not always the case as several data may be subject to
different sources of uncertainty coming from expected variations and/or unexpected events.
The demands, the service times, the traveling times, and the presence of the customers are
commonly considered to be stochastic according to Gendreau et al. [178]. In the last two
decades (see, e.g., [179]), many researchers have turned their attention to the exact solution
of stochastic VRPs (SVRPs) and robust VRPs (RVRPs).

Stochastic VRPs.

SVRPs are often considered as a priori optimization (or two-stage optimization) problems.
In the first stage when complete information is unknown, a priori decisions (e.g., planned
routes) must be taken. Once the uncertain information is revealed in the second stage,
the planned routes may become infeasible in which case they can be revised according to
predefined recourse actions or they can simply be deemed failures. In the literature, two main
modeling approaches have been proposed for the SDVRPs: chance-constrained programs
(CCP) or stochastic programs with recourse (SPR) [179, 180]. In a CCP, a lower bound on
the probability that a given plan will be feasible once the stochastic information becomes
known is imposed. This probability can be considered while solving the pricing problem [181]
or by adding chance constraints directly in the MP [178]. In turn, in a SPR, the objective
function consists of minimizing the expected costs, namely, the travel costs of the planned
routes plus the expected recourse costs ensuing from the application of recourse actions when
the routes become infeasible in the second stage. Note that the recourse actions are not
arbitrary as they must obey to the chosen recourse policy for the problem at hand. Even if
the SPRs are typically more difficult to solve than the CCPs, their objective function is more
meaningful [180], as it considers the cost of turning the infeasible planned routes into feasible
ones. On the other hand, the main advantage of the CCPs is that they allow to control

72

directly the probability of failure which may be important in certain cases to maintain the
image of the company.

The most studied SVRP variant is the VRP with stochastic demands (VRPSD, [180]), where
the demand of each customer i ∈ V ′ is expressed by a random variable with an expected
value ξ(qi) and a variance ϑ(qi). Normally, the demands are assumed to be independent and
to follow an additive probability distribution such as the Normal or the Poisson distribution
[179]. For a route r = (0, i1, . . . , ik, n + 1), one can thus define the cumulative expected
demand µh = ∑h

`=1 ξ(qi`) and the cumulated variance σ2
h = ∑h

`=1 ϑ(qi`) at any given customer
ih, h ∈ {1, . . . , k}. In the VRPSD, route r is said to be feasible if it is elementary and µh ≤ Q

for all h ∈ {1, . . . , k}. This latter condition prevents routes from systematically failing when
their feasibility is assessed. By considering a cumulative probability distribution with mean
µh and variance σ2

h for customer ih, one can determine the probability P (µh > Q) that a
failure occurs at this customer. In this case, if the problem is modeled as an SPR, a recourse
action (e.g., returning to the depot before continuing the route) should be applied. The
objective of the VRPSD consists of minimizing the total expected cost of the routes, that
can be decomposed in two parts: the deterministic cost and the expected failure cost (EFC).
This latter is given by the probability that a route fails at a customer multiplied by the cost
of returning to the depot before continuing the route (or of another recourse action).

Christiansen and Lysgaard [127] introduce the first BP algorithm for a SVRP, namely, the
VRPSD. The pricing problem is a shortest path problem with 2-cycle elimination defined
on an expanded network GS = (VS, AS). The vertex set VS is defined as VS = {(0, 0, 0)} ∪
{(µ, σ2, i) : i ∈ V ∪ {0}, µ = 1, . . . , Q, σ2 = 1, . . . , ϑmax}, where (0, 0, 0) is the source vertex
and each vertex (µ, σ2, i) can only be reached by paths representing a (partial) route ending
at customer i (or at the depot if i = 0) and whose expected cumulative demand and variance
are µ and σ2, respectively. In this definition, ϑmax is the maximum total variance of a feasible
route, i.e., with a mean demand µ ≤ Q, which is pre-computed by solving a knapsack problem.
In arc set AS, there exists an arc between two vertices (µi, σ2

i , i) and (µj, σ2
j , j) only if µj =

µi + ξ(qj) and σ2
j = σ2

i +ϑ(qj) with ξ(qj) = ϑ(qj) = 0 if j = 0. This network structure allows
to incorporate the EFCs directly in the arc costs, giving a huge advantage over the approaches
requiring dynamic calculations of the EFCs. Note, however, that the construction of network
GS requires a finite number of possible expected cumulative demands and variances. For
their computational tests, Christiansen and Lysgaard [127] assume that the demands are
Poisson distributed, which implies µ = σ2. This allows to considerably reduce the size of
the network GS by eliminating all vertices (µ, σ2, i) for which µ 6= σ2. The authors propose
a branching strategy inspired by that of Gelinas et al. [125] (see Section 4.3.3). Instead of
branching on time windows, they branch on the expected cumulative demand at a customer

73

i ∈ V ′ that is visited by two routes containing the vertices (µ1, σ
2
1, i) and (µ2, σ

2
2, i), where

µ1 < µ2. Choosing a value δ ∈ [µ1, µ2), one can impose that expected cumulative demand µ
at customer i is such that µ > δ in one branch and µ ≤ δ in the other.

Addressing the same VRPSD, Gauvin et al. [182] develop a BPC algorithm that improves the
algorithm of Christiansen and Lysgaard [127] by adding several features (ng-routes, heuristic
pricing, bidirectional labeling, cuts) found in state-of-the-art algorithms for VRPs. Moreover,
they introduce a new dominance rule which allows the comparison of labels associated with
two different vertices, as long as these vertices represent the same customer i. Finally, to
derive integer solutions, they branch on customer sequences or cutsets (see Section 4.3.3).

Dinh et al. [181] study the chance-constrained VRPSD (CCVRPSD) and develop a BPC
algorithm for solving it which is derived from that of Fukasawa et al. [43]. They introduce
the concept of chance-constraint feasible route (CC route), which is a route for which the
probability of satisfying the capacity constraint is greater than or equal to a threshold 1− ε
for a given ε ∈ (0, 1). Contrary to previous methods used to solve the VRPSD, the algorithm
of Dinh et al. [181] does not require the customer demands to be independent, though it
needs the quantiles of the random variable defined by the sum of the demands in any subset
of customers. Because the pricing problem remains strongly NP-hard, even if the q-route
relaxation is used, the application of the BPC algorithm of Fukasawa et al. [43] to solve the
CCVRPSD is not straightforward. To circumvent this issue, the authors propose to relax
the capacity chance constraint in the pricing problem and to handle it through capacity
constraints in the MP. To strengthen the relaxed pricing problem, they add a knapsack con-
straint which ensures that all CC routes remain feasible. Regarding the capacity inequalities
added to the MP, Dinh et al. [181] discuss how strong lower bounds on the number of vehicles
required to serve a subset of customers can be computed cheaply considering the quantiles
of the probability distribution of the total demand for this customer subset.

Noorizadegan and Bo [183] devise a BP algorithm for the CCVRPSD, assuming that every
customer demand follows a Poisson distribution. They, however, mention that, if verifying
the satisfaction of the chance capacity constraint for a route is possible, the algorithm can
be adapted to other distributions for which the sum of their random variables follows a
known distribution. These requirements are necessary because the pricing problem is solved
by means of a labeling algorithm, in which the chance capacity constraint is verified after
every label extension. In the case of the Poisson distribution, a single additional resource
specifying the average demand along the route (which is equal to its variance) is required.
Other resources may be required for other distributions. Standard dominance rule is then
applied.

74

Taş et al. [151] address a VRP with soft time windows and stochastic travel times. In this
problem, the travel times follow Gamma probability distributions and the customers may be
served outside their time windows under the payment of a penalty. The objective consists of
minimizing a weighted cost function of the total transportation costs and the service costs.
The transportation costs depend on the total distance traveled, the number of vehicles used,
and the total expected overtime of the drivers, whereas the service costs are due to early and
late arrivals at the customers. Waiting at customers is forbidden. The authors developed
a BP algorithm where the pricing problem is solved by a labeling algorithm derived from
that of Feillet et al. [86] and in which routes cannot be deemed infeasible because of a time
window violation. A label includes an expected reduced cost component which is computed
by adjusting the departure time from the depot using a golden section search method. The
dominance rule is standard except that it includes an additional condition which compares
the expected reduced cost of the routes if they were both starting from the depot at the
optimal departure time of the potentially dominated route.

Errico et al. [184,185] study the VRPTW with stochastic service times (VRPTW-ST) which
is defined like the VRPTW except that the customer service times are expressed by mutu-
ally independent probability distributions. Both works address the problem of dispatching
technicians to perform maintenance operations, where vehicle capacity is not a concern. Nev-
ertheless, the proposed BPC algorithms can easily be adapted to handle vehicle capacity if
required. The works of Errico et al. [184,185] differ in the way the VRPTW-ST is modeled,
namely, as a CCP in the former and as a SPR in the latter.

In Errico et al. [184], the VRPTW-ST is formulated as a set partitioning model with an addi-
tional constraint imposing a lower bound on the success probability of the whole route plan.
Applying logarithm properties and by taking advantage of the service times being mutually
independent, the authors show how this non-linear constraint can be linearized. Errico et
al. [184] develop a BPC algorithm where the pricing algorithm must handle the dual from
this additional constraint considering a stochastic time component. Indeed, the coefficient
of a route variable λr in this constraint depends on its success probability. To determine
this probability as the route is being built in the labeling algorithm, the mass function of
the earliest start of service time at each vertex along the route must be computed. Conse-
quently, the authors replace the usual time component in a label associated with a vertex
i ∈ V ′ by li−ei+1 components, namely, one for each integer time t in the time window [ei, li]
which is denoted M̄i(t). These components define the cumulative probability distribution of
the earliest start of service time at i restricted to [ei, li]. They also allow to decompose the
reduced cost of a route into single arc contributions obtained from conditional probabilities.
In the labeling algorithm, the dominance rule combines the traditional dominance criteria

75

with the concept of stochastic dominance which compares the components M̄i(t) for each
time t ∈ [ei, li].

When formulating the VRPTW-ST as a SPR, Errico et al. [185] propose two alternative
recourse policies. Both policies assume that the real service time at a customer is first
evaluated just before starting the service at a customer. If this evaluation indicates that
the time window at the next customer will be missed, then the service is skipped at the
current customer in the first policy, denoted C, or at the next customer in the second one,
denoted N. In both policies, a penalty is paid for skipping the service at a customer. To
ensure a high-level service, a route is considered feasible if it requires at most one recourse
action and its success probability is larger than or equal to a given threshold. Each recourse
policy induces a different pricing problem, which is solved by a tailored labeling algorithm
adapted from that devised in Errico et al. [184]. To handle policy C, two new resources are
added to the label definition. Policy N is more complex because skipping the service at the
next customer iN due to a long service time at a customer iC implies taking a shortcut in
the route from iC to the customer iF (or depot) visited after iN , yielding a smaller traveling
cost. Given that this situation is observed at vertex iN in the labeling algorithm, vertex iF is
unknown at that time and the cost saving realized by cutting short from iC to iF cannot be
evaluated at vertex iN . Consequently, Errico et al. [185] replace the reduced cost component
of a label by an incomplete reduced cost component, and compute lower and upper bounds
on the expected reduced cost of any extension of the corresponding route that reaches the
depot. In the dominance rule, these bounds are used to modify the reduced cost criterion.
The rest of the labeling algorithm is similar to the algorithm used for policy C.

Robust VRPs.

Stochastic programming approaches require the knowledge of the probability distributions
of the uncertain data. These distributions are not always available and, when they are,
they must respect certain assumptions to yield tractable SVRPs. Robust optimization is an
alternative approach that expresses the uncertainty of the data by means of an uncertainty
set Ψ. This set is generally parameterized by a perturbation vector that indicates how the
problem data diverge from their nominal values. It can be defined by taking into account
past observations or considering some existing knowledge about the probability distributions.
Given a set Ψ, a solution is said to be robust feasible if it satisfies all the realizations of
the constraints defined over the uncertainty set. The problem of finding the best robust
feasible solution is called the robust counterpart problem [186]. It is shown by Bertsimas et
al. [187] that the robust counterpart problem of a linear problem is also a linear problem of

76

polynomially-bounded size.

Very few BP algorithms exist for solving RVRPs. Lee et al. [188] consider the VRP with
customer deadlines and travel time/demand uncertainty, and develop a BP algorithm in
which the robust aspect is embedded in the pricing problem. Two uncertainty sets Ψt and
Ψd associated with the travel times and the demands, respectively, are defined as follows. For
each arc (i, j) ∈ A, the travel time can take a value in the interval [t̂ij, t̂ij+δij], where t̂ij is the
nominal travel time along this arc and δij is the maximum deviation from this nominal value.
Because it is unlikely that a vehicle will be delayed on every arc of a route, the uncertainty
set is limited by the maximum number of delayed segments Γt which ensures a certain degree
of robustness of the routes. Set Ψt is defined as: Ψt = {

(
t̃ij
)

(i,j)∈A
| t̃ij = t̂ij + δijνij, 0 ≤

νij ≤ 1, ∀(i, j) ∈ A,
∑

(i,j)∈A νij ≤ Γt}. Set Ψd is defined similarly. To ensure that the
generated routes are feasible for all possible realizations of the travel times and demands in
these uncertainty sets, the labeling algorithm relies on Γt + Γd additional resources. The Γt
resources store the sums of the k largest travel time deviations δij associated with the arcs
traversed in a route, for k = 1, . . . ,Γt. The other Γd resources play the same role for the
demands. With these resources, a standard dominance rule can be used.

Souyris et al. [189] also suggest a robust approach to tackle a real-life problem of designing
routes for maintenance technicians where the customer service times are uncertain and a soft
start of service time deadline is imposed at each customer. Furthermore, it is assumed that
the technicians have different initial locations and do not have to return to a depot at the end
of the day. Given that the routes are subject to a maximum duration, some customers might
not be serviced. The objective function is a weighted sum of the traveling costs, penalties
for delayed customer service, and penalties for unserviced customers. The authors present
two models. The first assumes that the customer service times are independent, resulting in
a VRP with soft time windows where all service times are replaced by their worst case. The
second model assumes that the service times of the customers visited by each technician are
correlated, i.e., deviations will not occur at all customers visited along a route. Assuming
that the service time at a customer i ∈ V ′ belongs to the interval [ŝi, ŝi + δi], the uncertainty
set is given by Ψk = {

(
s̃i
)
i∈V ′
| s̃i = ŝ + νi, 0 ≤ νi ≤ δi, ∀i ∈ V ′,

∑
i∈V ′ νi ≤ Γk}, where Γk

is an upper bound on the total service time deviation for technician k. To solve this RVRP,
Souyris et al. [189] develop a BP algorithm. They formulate the resulting pricing problem as
a mixed integer linear program but solve it using constraint programming.

Dinh et al. [181] and Noorizadegan and Bo [183] mention how their BP algorithms discussed
in Section 4.4.9 can be adapted to solve a distributionally robust extension of the CCVRPSD
for which the probability distributions are not known precisely, but they are assumed to

77

belong to an ambiguity set of possible distributions. Routes must be robust in the sense that
they must satisfy the chance capacity constraint for all probability distributions in this set.

4.4.10 Pickups and deliveries

Pickup and delivery problems (PDPs) consist of finding least-cost vehicle routes to satisfy a
set of requests. Each request is defined by a pickup location, a delivery location, and a volume
of merchandise (or a number of persons) to be transported from the pickup location to the
delivery location. Several requests can be transported simultaneously by a vehicle as long
as the onboard load does not exceed vehicle capacity. A large number of PDP variants have
been studied in the literature and classified by Berbeglia et al. [190]. So far, BP algorithms
have been devised for one-to-one PDPs and one-to-many-to-one PDPs. In the former class,
each request corresponds to a specific commodity and, in general, the pickup and delivery
locations differ from the depot. In the latter class, commodities originating from the depot
(e.g., filled beer bottles) must be delivered to a set of customers, while other commodities
destined to the depot (e.g., empty beer bottles) must be picked up at a possibly different set
of customers.

Given the large number of works on PDPs, we divide our review in the following five subsec-
tions: time windows (Subsection 4.4.10), ride time constraints (Subsection 4.4.10), transfers
(Subsection 4.4.10), loading constraints (Subsection 4.4.10), and simultaneous pickups and
deliveries (Subsection 4.4.10). The first four subsections are devoted to one-to-one PDPs,
whereas the last one concerns one-to-many-to-one PDPs.

Time windows.

Most BP algorithms for PDPs have been developed for PDPs subject to time window con-
straints. Here, we focus our attention on the one-to-one PDP with time windows (PDPTW),
which can be defined on the following network G = (V,A). Let n be the number of requests
to satisfy. Let P = {1, . . . , n} be the set of pickups and D = {n + 1, . . . , 2n} the set of
deliveries such that i ∈ P and n+ i ∈ D are associated with the same request. Set V is then
given by V = P ∪D ∪ {0, 2n+ 1}, where the vertices 0 and 2n+ 1 denote the origin and the
destination depot, respectively. Set A is formed by the feasible links connecting the vertices
in V . In particular, for i ∈ P , there is no arc (n + i, i) given that the pickup of a request
must be performed before its delivery. Note that set P is often used to represent the set of
requests. When designing BP algorithms to solve the PDPTW, one of the most complicating
aspects is the presence of pairing and precedence constraints. The pairing constraints specify
that, if a vehicle performs the pickup of a request, it must also perform its delivery. The

78

precedence constraints impose that pickups be performed before the corresponding deliveries.
These constraints must be dealt with when constructing the routes in the pricing problem.
Note that the MP does not need to include a set partitioning constraint for each pickup and
each delivery, as one for each request suffices. This allows some flexibility when defining the
modified arc costs. Indeed, the dual cost for fulfilling a request can be associated with its
pickup vertex i, its delivery vertex n + i, or be arbitrarily distributed among both of them
(see [191]).

The first BP algorithm for the PDPTW is due to Dumas et al. [192] who design a labeling
algorithm in which the label definition is extended by adding a set of visited vertices V (L)
and a set of open requests O(L), i.e., pickup vertices whose corresponding delivery vertices
have not been visited yet. Strong dominance rules can be obtained if one assumes that
the arc modified cost matrix in the pricing problem respects the delivery triangle inequality
(DTI), i.e., a visit to a delivery vertex never lowers the path reduced cost. To ensure that this
condition is satisfied, the dual variables of the request covering constraints are transferred to
the arcs exiting a pickup vertex. When comparing two labels L1 and L2 for dominance, the
previous property allows to discard label L2 if the condition O(L1) ⊆ O(L2) holds (together
with the usual conditions), rather than O(L1) = O(L2). Dumas et al. [192] also propose
preprocessing techniques to tighten the time windows and eliminate infeasible arcs, as well
as unreachability criteria that can be applied while solving the pricing problem. Finally, they
devise a branching strategy based on request ordering. Savelsbergh and Sol [193] improve
this BP algorithm by developing two heuristics for generating feasible routes: one considering
a reduced network and another based on construction and improvement algorithms.

Ropke and Cordeau [194] present the first BPC algorithm for the PDPTW that adds valid
inequalities to the algorithm of Dumas et al. [192]. This practice, however, yields a modified
cost matrix that no longer satisfies the DTI, which is required to apply the enhanced dom-
inance rule. The authors then propose a procedure to transform any arbitrary cost matrix
into an equivalent matrix where the DTI is ensured.

Baldacci et al. [195] extend the exact solution framework of Baldacci et al. [99] to deal with
the PDPTW. They develop two new bounding procedures that exploit the properties of the
PDPTW.

The application of bidirectional search in the context of the PDPTW is not straightforward.
The strong dominance rules of Dumas et al. [192] are not compatible with a backward labeling.
When the direction of the labeling changes from forward to backward, the cost matrix must
respect the pickup triangle inequality (PTI). Two techniques are suggested to overcome this
issue. First, Bettinelli et al. [149] redistribute the weights over the arcs of the network, so

79

that the two above properties hold simultaneously. It requires solving a linear program for
every label extension in the labeling algorithm, which is computationally costly. Second,
Gschwind et al. [191] use two modified cost matrices when employing bidirectional search:
one for the forward labeling, that respects the DTI, and another for the backward labeling,
where the PTI holds. With these matrices, the bidirectional search is performed normally
except that, when merging the partial paths, the reduced cost of the complete route must be
adjusted.

Ride time constraints.

The dial-a-ride problem (DARP) is an important variant of the PDP in which the hard
time windows are replaced totally or partially by ride time constraints that prevent the
commodities from staying too long inside the vehicle [196]. These constraints are also called
dynamic time windows, in contrast to the static time windows used in the PDPTW. Important
applications of the DARP can be found in the context of people transportation, or in the
delivery of perishable products. Ropke [197] proposes a simple way to adapt a BPC algorithm
for the PDPTW to the DARP. It consists of adding infeasible path elimination constraints
(IPECs) to the MP to handle the ride time constraints.

Gschwind and Irnich [198] develop a BPC algorithm for the DARP that handles the ride
time constraints in the pricing problem. They observe that although harder subproblems
need to be solved, much better bounds can be achieved, resulting in a positive trade-off.
The additional burden in the pricing problem arises from the following two observations: 1)
to ensure time window feasibility, every vertex should be visited as early as possible; 2) to
ensure ride time feasibility, every pickup vertex should be visited as late as possible. These
two observations are clearly in conflict with each other. To address this issue, the authors
design two labeling algorithms. In the first, the label definition is the same as for the PDPTW
but a label L1 can dominate another label L2 only if |O(L1)| ≤ 1. In the second labeling
algorithm, each label keeps track of the latest possible delivery time for each open request in
function of the start of service time at the vertex associated with the label. This allows to
define a strong dominance rule that can be applied for any value of |O(L1)|. Several valid
inequalities devised for the PDPTW [199] and for the DARP [200] are used to reinforce the
MP.

Gschwind [201] introduces the synchronized PDP (SPDP), a generalization of the DARP in
which a delivery vertex must be visited within a time interval defined in terms of minimum
and maximum ride times associated with its corresponding pickup vertex. Because the pickup
and the delivery vertices have to be visited by the same vehicle, these additional constraints

80

are also called intra-route synchronization constraints (general synchronization aspects are
discussed in [202]). Due to the complexity of the resulting pricing problems when considering
simultaneously minimum and maximum ride times, the author proposes four BPC algorithm
variants which consider different pricing problems obtained by relaxing none or some features:
the PPmax

min that handles all the route constraints of the SPDP; the PPmin that only addresses
minimum ride times; the PPmax that is similar to the one proposed by Gschwind [198] and
consider only maximum ride times; and the PPrelax that relaxes both ride time constraints.
Contrarily to the PPmax, in which maximum ride times may yield conflicting decisions with
customer starting service times, minimum ride times are in conformity with the decisions of
visiting customers as early as possible in the PPmin. Thus, the proposed labeling algorithm
is similar to the one used to solve the pricing problem of the PDPTW. Regarding the PPmax

min ,
the presence of both minimum and maximum ride time constraints complicates considerably
the pricing problem and a complex dominance rule is devised for the labeling algorithm.
Except for the first BPC algorithm in which all routing constraints are handled in the pricing
problem, the other three algorithms use IPECs in the MP to enforce the relaxed constraints
as proposed by Ropke [197].

Parragh et al. [145] tackle the DARP with split requests and profits (DARPSRP) in the
context of people transportation. In the DARPSRP, a revenue is associated with each request
i ∈ P which might remain unserved. If served, all the associated people must be transported
to their destination, though they can be split into different vehicles. The objective aims
at maximizing the total profit which is expressed by the total revenues collected minus the
traveling costs. Due to the presence of paired pickups and deliveries in the DARPSRP,
some of the known SDVRP solution properties [158, 160] are no longer valid and cannot
be exploited. In particular, an optimal solution might necessarily contain a route which
visits more than once the same pickup vertex. In the BP algorithm of Parragh et al. [145],
the pricing problem consists of generating routes with positive reduced cost, in which all
route feasibility constraints are respected, namely: vehicle capacity, customer time windows,
maximum ride time, precedence and pairing. The authors devise a labeling algorithm inspired
by that of Ropke and Cordeau [194]. A set of resources is defined to take into account the
number of people associated with the onboard requests. Besides, two additional resources
are used to compute the minimum possible duration of a route that would complete all open
requests and, consequently, to check the feasibility of a label extension. When performing
an extension over an arc (i, j), two cases are analyzed: if j ∈ P (pickup vertex), as many
labels as different possible splits of the people remaining to pick up at j may be generated.
If j ∈ D, only a label associated with the number of people to be delivered is created.
Moreover, unpromising extensions are avoided by applying a tailored dominance rule along

81

with completion bounds.

Qu and Bard [203] study a variant of the PDPTW that arises in the context of people
transportation and considers a heterogeneous fleet, multiple shipment types and configurable
vehicle capacities. No ride time constraint are imposed but the objective function penalizes
each minute of ride time and of waiting before a pickup. In this problem, each pickup point
(customer) is associated with a set of load requirements, i.e., specific conditions for trans-
porting the items. For example, such requirements may ask for enough space for transporting
a passenger and its wheelchair or walker. In turn, each vehicle type can be set a priori in
different configurations to accommodate different types of demand. For example, a given
vehicle can transport three seating passengers or only two if they bring wheelchairs. The
problem consists of designing feasible routes such that the number of used vehicles, the total
traveled distance and the customers traveling times are minimized. The decisions also include
selecting the configuration of each vehicle to be set up before starting its route. There is a
pricing problem for each vehicle type. Each problem is solved by a labeling algorithm where
a label includes the list of feasible vehicle configurations. To determine the list of feasible
configurations, a generalized assignment problem is solved.

Finally, Luo et al. [146] solve a rich variant of the DARP (R–DARP) that considers, among
other attributes, multiple trips, heterogeneous vehicles, multiple request types, configurable
vehicle capacities, optional services, and manpower planning. The R-DARP consists of de-
signing routes such that the number of satisfied requests is maximized, the total distance
traveled by the vehicles is minimized, and work regulations are respected. To solve this prob-
lem, the authors develop a BPC algorithm that relies on a new trip-based model similar to
that of Azi et al. [143] and Hernandez et al. [154] (see Section 4.4.4). In this model which
considers only non-dominated trips that are identified a priori by a label-setting algorithm,
trips are combined to generate working shifts for the drivers. The proposed BPC algorithm
includes two types of cuts, namely, IPECs and Benders cuts that forbid vehicle routes for
which no feasible worker schedules exist.

Transfers.

Classic PDPs are subject to pairing and precedence relations which impose that the pickup
and the delivery of a request be performed by the same vehicle. However, in some applica-
tions, some requests can be transferred from one vehicle to another at predetermined locations
called transfer points. This extension of the PDP is called the PDP with transfers (PDPT)
and is particularly challenging when the pickup and delivery points have time windows. In-
deed, in this case, the PDPT involves a new type of precedence constraint stipulating that

82

any transferred request must be delivered to its transfer point by a first vehicle before being
picked up by a second vehicle which will transport it to its final destination.

Masson et al. [204] address a special case of the PDTP with time windows called the PDP
with shuttle routes (PDPS), where it is assumed that the requests have individual pickup
points but they share a limited number of delivery points. In the PDPS, pickup routes visit
first pickup locations and end by a visit to a single delivery point which may not be the
final destination of the picked up requests, i.e., it may be a transfer point for some of these
requests. In this case, direct shuttle routes are used to transport the transferred requests
to their delivery point. The PDPS arises when, e.g., people need to be transported from
their home to schools or rehabilitation centers. Masson et al. [204] design two different
set partitioning formulations with additional constraints for the PDPS. Both formulations
involve binary variables associated with the pickup routes. In the first, nonnegative integer
variables indicate the number of shuttles required between each pair of delivery points without
specifying the transported requests. In the second which provides better lower bounds,
binary variables associated with shuttle routes and their transported requests are used. A
BPC algorithm is designed for each formulation. In both algorithms, there is one pricing
problem for each possible delivery (transfer) point. It is an ESPPRC that involves a resource
indicating the latest time at which the vehicle can arrive at the delivery vertex without
violating the time windows of the picked up requests. In the second algorithm, a pricing
problem is also needed to generate the shuttle routes. This problem corresponds, in general,
to a binary knapsack problem. However, if a single person is associated with each request, it
can be solved more efficiently using a sorting algorithm for each pair of delivery points.

Motivated by situations in which part of the operations can be performed at a certain cost
by the public transit available, Ghilas et al. [205] introduce a generalization of the PDPT
called the PDPTW with scheduled lines (PDPTW-SL). In this problem, each request can
be served directly by a single vehicle or indirectly using two vehicles and a scheduled public
transit line. In the former case, the request is picked up by a vehicle which brings it to a
transfer point that is serviced by a scheduled line. This request is then transported by the
public transit to another transfer point. Finally, a second vehicle picks up the request at
this second transfer point to deliver it to its final destination. Such indirect trips may be
beneficial for transportation companies when pickup nodes are located far from the delivery
nodes. To solve the PDPTW-SL, Ghilas et al. [205] present a BPC algorithm that relies on a
set partitioning MP with several sets of additional constraints that enforce the capacity of the
scheduled lines and proper synchronization between the vehicle routes and the scheduled lines
transporting the transferred requests. Furthermore, the authors develop a forward labeling
algorithm for solving the ESPPRC pricing problems, one for each vehicle type and depot.

83

This labeling algorithm uses labels that store three sets of requests: the open requests that
have been picked up but not yet delivered, the completed requests, and the requests that
have been pickup up at a transfer point. Note that a picked up request may be delivered to
its final destination or to a transfer point. Finally, the authors devise a bidirectional search
labeling algorithm for these pricing problems.

Loading constraints.

In some contexts, the order in which the requests are collected or the shape (volume and/or
size) of their items may have operational implications that must be taken into account by the
models and algorithms. This feature is, in general, referred to as loading constraints. The
following works concern loading constraints induced by the order of the collected requests.

Cherkesly et al. [206] address a PDPTW subject to a LIFO (last-in-first-out) loading con-
straint, denoted PDPTWL, which arises when handling operations should be avoided, for
instance, in the transportation of heavy, dangerous or large items. This LIFO constraint
assumes that, in a vehicle, the items of the requests are stored in a single stack (e.g., from
the front of the vehicle towards the access door at the back). Consequently, when requests
are picked up, they are put on top of the stack. Furthermore, a delivery point can only be
visited if its corresponding request is on top of the stack. The authors propose three BPC
algorithms that differ in the way the LIFO constraint is handled. In the first, the LIFO
constraint is imposed through LIFO-infeasible path cuts in the MP. In the second algorithm,
this constraint is enforced directly in the pricing problem which requires the development of
a new labeling algorithm. In particular, new label components indicating the position in the
stack of each onboard request are considered and a specialized dominance rule is devised.
This second approach yields better lower bounds than the first one, but the pricing problem
is much harder to solve. Seeking a trade-off between these two algorithms, the authors in-
troduce a third algorithm that incorporates LIFO-infeasible path cuts in the MP whenever
needed and a labeling algorithm which partially imposes the LIFO policy. Indeed, given a
positive integer κ, the LIFO constraint must be respected by all onboard requests that have
remained in the top κ positions in the stack. Consequently, as soon as a request falls below
the top κ positions, it is ejected from the stack and can be delivered in any order with respect
to the other requests that have also been ejected.

The last two algorithms of Cherkesly et al. [206] mentioned above are adapted by Cherkesly
et al. [207] to solve the PDPTW with multiple stacks (PDPTWMS). In this problem, each
stack has a limited capacity and the LIFO loading constraint applies to each individual
stack. The presence of multiple stacks is addressed in the labeling algorithms by means of

84

components that indicate: the accumulated load under each request in a given stack, the
relative position between requests inside the same stack, and the simultaneous presence of
two requests in the same vehicle, but not in the same stack. Besides handling the loading
constraints correctly, the use of these label components favors the elimination of symmetry
between the identical stacks as a stack can be identified by its top request. When extending a
label to a delivery vertex, a single label is created. However, when it is extended to a pickup
vertex, multiple labels can be created, namely, one for each stack on which the request can
be put. In the algorithm where the LIFO loading constraints are partially imposed in the
pricing problem, it is possible to generate a path that does not respect these constraints with
the proposed loading plan (assignments of the requests to the stacks). Nevertheless, with a
different loading plan, the path may be feasible. Therefore, once a path with an infeasible
loading plan is generated, the algorithm first checks if there exists a feasible loading plan
for this path by solving a shortest path problem with resource constraints. This allows to
reduce the number of LIFO-infeasible path cuts added to the MP. Finally, let us mention
that these algorithms rely on valid inequalities including the RCCs that were adapted by
Côté et al. [208] for the pickup and delivery TSP with multiple stacks.

Introduced by Iori and Riera-Ledesma [209], the double VRP with multiple stacks differs
from the PDPTWMS by the fact that pickups and deliveries are carried out in two different
regions which are far apart. Therefore, one can assume that, in each route of an optimal
solution, all pickups are performed before the deliveries. Nevertheless, the routes are still
subject to the pairing constraints between the pickup and the delivery points as well as
the LIFO policy for each stack. For this problem, the authors devise two set partitioning
formulations: one that considers complete routes, i.e., routes containing pickup and delivery
operations; and another that relies on partial routes dedicated to a single region (either all
pickups or all deliveries) and ensures the compatibility of the selected partial routes through
additional constraints. The former formulation is solved by means of a BP algorithm that
employs a pricing algorithm similar to that of Ropke and Cordeau [194]. In this labeling
algorithm, however, the arcs traversed by a route in each region are stored in the label and
are later considered when performing dominance. The FIFO policy is only checked once a
route is completed. For the latter formulation, a BPC algorithm is developed in which only
the capacity constraint is handled in the pricing problem and the pairing and LIFO loading
constraints are managed by adding IPECs in the MP when needed.

It may be beneficial in some cases to allow the rehandling of the load at intermediate points
of a route, if this brings extra savings when compared with a strict LIFO policy. In this
context, Veenstra et al. [210] introduce the PDPTW with handling operations as an extension
of the PDPTWL. In their study, rehandling operations are only allowed at delivery points.

85

Two rehandling policies are analyzed: one that only allows compulsory rehandling, i.e., only
the requests on top of the delivered request must be rehandled; and another that accepts
compulsory and preventive rehandlings, meaning that all the requests in a vehicle can be
rehandled at once. No cost is incurred for rehandling but extra service time, which depends
on the number of items rehandled, must be accounted for each rehandling operation, yielding
infeasible extensions due to the time windows. Veenstra et al. [210] propose a BPC algorithm
for each handling policy. In both cases, the labeling algorithm takes into account the relative
position between any pair of requests like in Cherkesly et al. [207]. However, two requests are
considered to be at the same position if their most recent rehandling operation was carried
out at the same location.

Simultaneous pickups and deliveries.

The VRP with simultaneous pickups and deliveries (VRPSPD) is an extension of the CVRP,
where each customer requires a delivery, a pickup, or both. This problem belongs to the class
of one-to-many-to-one PDPs because all delivered items originate from the depot, whereas
all picked up items must be transported to the depot. It models real-life situations related to
reverse logistics activities such as the distribution of beverages and the collection of empty
cans and bottles.

Angelelli and Mansini [211] develop the first BP algorithm to tackle the VRSPD with time
windows (VRPTWSPD). They assume that each customer i ∈ V ′ is associated with a non-
negative delivery demand qDi and a nonnegative pickup demand qPi . They notice that, if
either qDi > qPi , ∀i ∈ V ′, or qPi > qDi , ∀i ∈ V ′, then an optimal solution to the VRPTWSPD
can be found by solving a VRPTW in which the demand of every customer is given by its
net demand. In the algorithm proposed for the general case, the pricing problem is solved by
a labeling algorithm which relies on two dependent resources to enforce vehicle capacity: one
stores the total demand collected in the route and another indicates the minimum capacity
required along the route, i.e., the maximum load carried simultaneously. These resources
were previously stated in [8].

Dell’Amico et al. [126] design a BP algorithm to solve the VRPSPD, where the pricing
problem is also solved by a labeling algorithm. To manage vehicle capacity in this algorithm,
they rely on two resources that are different but equivalent to those used by Angelelli and
Mansini [211]. Dell’Amico et al. [126] propose various strategies to accelerate the search
for negative reduced cost routes. In particular, they apply bidirectional search and limit
the number of customers that can be visited in each forward and backward route to dσ̄/2e,
where σ̄ is an upper bound on the number of customers that can be visited in a route. This

86

upper bound is computed by solving two binary knapsack problems, namely, one for the
pickup demands and one for the delivery demands. Furthermore, they use a state-space
relaxation obtained by replacing in the label definition the customer resource vector E with
a single component |E| counting the number of customers visited. This relaxation allows
the generation of routes with cycles. To keep the RMP tractable, variables associated with
routes having a reduced cost greater than a given threshold are removed from the RMP
when it reaches a maximum size. These columns are then stored in a pool for a maximum
number of iterations. While in the pool, these routes are priced directly and added to the
RMP if their reduced cost becomes negative. Finally, two new branching strategies are
proposed: branching on cycles and branching on resource windows. When a cycle occurs
in a fractional solution, it can be eliminated by creating multiple child nodes obtained by
imposing/forbidding the use of some arcs in the cycle. The second type of branching is only
applied when a customer vertex is involved in two cycles of two different routes. It is an
adaptation of the branching proposed by Gelinas et al. [125] and corresponds to branching
on the resource windows of the two resources handling the vehicle capacity constraint. Using
a label definition similar to the one considered in Dell’Amico et al. [126], [42] show how to
apply bidirectional search for solving the pricing problem arising in the VRPSPD.

Subramanian et al. [212] extend the BPC algorithm of Fukasawa et al. [43] for the CVRP to
the VRPSPD. They introduce the concept of pd-routes. A pd-route starts and ends at the
depot, and at any visited customer, the sum of all collected items plus the sum of all items
to be delivered does not exceed vehicle capacity. In the BPC algorithm, the pricing problem
consists of finding pq-routes with negative reduced cost. To speed up the labeling algorithm,
the authors use completion bounds that are computed by finding the least-cost path from
each customer to the depot, but only considering deliveries.

Finally, Gutierrez-Jarpa et al. [147] study the VRP with deliveries, selective pickups and time
windows (VRPDSPTW), where all deliveries are mandatory whereas pickups are optional
and partial pickups are not allowed. Performing a pickup at a customer yields a revenue.
The authors propose a BP algorithm that not only solves the VRPDSPTW, but also five
other variants of the problem involving: single or combined (pickup and delivery) demands,
single or multiple visits; and backhauls. The MP includes set partitioning constraints for
the deliveries and set packing constraints for the pickups. The labeling algorithm handles
the vehicle capacity using the two resources proposed in Desaulniers et al. [8]. To address
the variants allowing combined demands and backhauls, changes in the underlying network
are required: in particular, one pickup and one delivery vertex is created for each customer
with a combined demand. In the variants where the combined demands of a customer may
be satisfied with multiple visits, the elementarity of the routes is ensured by considering two

87

resources for each customer, i.e., one per vertex.

4.5 Conclusion

The VRP was introduced in 1959 by Dantzig and Ramser [16]. Since then, a large number
of VRPs have been studied, leading to one of the most prolific research areas in operations
research. VRPs are, in general, NP-hard and large-sized practical instances are usually
solved using heuristics. Nevertheless, the advances achieved in the past decades on the exact
BPC algorithms have led to the exact solutions of instances with more than 300 customers for
the CVRP and 200 customers for the VRPTW. In this paper, we surveyed the methodological
and modeling contributions made on the BP/BPC algorithms for VRPs since the 1990s. In
Section 4.3, we discussed in details the proposed generic tools that can be applied for most
VRP variants. In Section 4.4, we reviewed the main contributions that are specific to a
VRP variant. We believe that this survey paper will help the researchers to identify more
easily the contributions made on BP/BPC algorithms for vehicle routing so that they can
further improve state-of-the-art algorithms and work on unexplored ideas and topics. Given
the large number of papers that have recently been published on this subject, we can only
expect that the literature will continue to grow in this domain, especially to address complex
VRP variants including, e.g., synchronization constraints or further uncertainty factors.

Acknowledgments

This work was supported by Fonds de recherche du Québec – Nature et technologies
(FRQNT) under the grant 181909 and the Natural Sciences and Engineering Research Coun-
cil (NSERC) of Canada under the grants 2017-05683 and 2013-435824. This support is
gratefully acknowledged.

88

CHAPTER 5 ARTICLE 2: SELECTIVE ARC-NG PRICING FOR
VEHICLE ROUTING

Authors: Luciano Costa, Claudio Contardo, Guy Desaulniers, and Diego Pecin
Submitted to International Transactions in Operational Research, 2020 2.

Abstract. Column generation algorithms for solving vehicle routing problems often rely
on a relaxed pricing subproblem where routes may be non-elementary and which is solved
by a labeling algorithm. This pricing algorithm is said to be selective if it can discard
non-elementary paths that may be Pareto-optimal but guarantees finding at least one (not
necessarily elementary) path of negative reduced cost when there exists at least one elemen-
tary path of negative reduced cost. In this paper, we propose a selective pricing mechanism
for a recently introduced variant of the ng-route relaxation, in which the neighborhoods are
associated with arcs instead of nodes. We extend a state-of-the-art set-based dominance
criterion for this problem and show, by means of an exhaustive computational campaign,
that the resulting mechanism is effective at reducing the number of non-dominated labels
as compared to the original pricing algorithm for the same problem. As a result, typically
shorter computing times are required to compute similar lower bounds when the proposed
mechanism is embedded within a column generation solver.

Keywords. Column generation, shortest path problem with resource constraints, selective
pricing, vehicle routing.

5.1 Introduction

The vehicle routing problem (VRP) is a classic optimization problem arising in many appli-
cations in logistics. Since the seminal work of Dantzig and Ramser [16], many researchers
and practitioners have attempted to tackle this problem as efficiently as possible. Unfortu-
nately, solving the VRP is NP-hard as the traveling salesman problem (TSP, [110]) can be
reduced to a VRP in polynomial time. Over the years, several variants of the VRP have
been proposed to model the different attributes associated with real-life problems, namely:
heterogeneous fleet, multiple depots, combined pickup and delivery, split services, and vehi-
cles with special capabilities (e.g., electric vehicles), among others. For recent compendiums
and a broad view of the recent trends in vehicle routing applications, the reader is referred

2Available at [213].

89

to [3] and [17].

Nowadays, the dominant methodology for solving many variants of the VRP is branch-price-
and-cut applied to a set-partitioning-type formulation [9], which can be described generically
as follows. Let N+ be a set of customers that need to be serviced by exactly one vehicle each.
Let Ω be the set of feasible vehicle routes, where the feasibility of a route depends on the
VRP variant considered. With each route r ∈ Ω, associate a cost cr and, for each customer
i ∈ N+, a binary parameter ari that indicates whether or not customer i is visited in route
r. Furthermore, define a binary variable ωr, which is equal to 1 if route r is selected in the
solution, or 0 otherwise. With this notation, a pure set-partitioning formulation for a VRP
is as follows:

min
∑
r∈Ω

crωr (5.1)

s.t.
∑
r∈Ω

ariωr = 1 ∀i ∈ N+ (5.2)

ωr ∈ {0, 1} ∀r ∈ Ω. (5.3)

The objective function (5.1) aims at minimizing the total routing cost. Constraints (5.2)
impose a single visit to each customer i ∈ N+. Finally, constraints (5.3) define the domain
of the variables. For certain problem variants, additional constraints and variables may be
required, yielding a set-partitioning-type model. Note also that, under certain conditions,
model (5.1)–(5.2) can be replaced by a set-covering model, obtained by replacing the equality
in (5.2) by a greater-than-or-equal relation.

Formulations like (5.1)–(5.3) have an exponential number of variables with respect to the
number of customers. Handling these variables all at once may be computationally pro-
hibitive. This drawback can be overcome using branch-and-price, that is a branch-and-bound
algorithm applying column generation to solve the linear relaxations encountered throughout
the search tree. Column generation is an iterative algorithm that solves at each iteration a
restricted master problem (RMP) and a pricing subproblem. The RMP is defined as the lin-
ear relaxation of (5.1)–(5.3) considering only a subset of its variables. It is solved by a linear
programming solver to yield a pair of primal and dual solutions. The pricing subproblem
looks for negative reduced cost variables to add to the RMP. For most VRPs, it is cast as
an elementary shortest path problem with resource constraints (ESPPRC) defined over an
application-dependent network and solved by a labeling algorithm. When negative reduced
cost columns are identified, they are added to the RMP before starting a new iteration. Oth-
erwise, the column generation algorithm stops and the current RMP solution yields a lower
bound. To strengthen the linear relaxations, cutting planes can be added dynamically to

90

yield a branch-price-and-cut algorithm.

As mentioned above, the pricing subproblem is often an ESPPRC, which is strongly NP-
hard [38]. At the opposite, the subproblem arising from completely dropping the elementarity
constraints, called the shortest path problem with resource constraints (SPPRC), is solvable
in pseudo-polynomial time [20], but proves to be weak when the resource constraints are not
sufficiently tight. To overcome this issue, several authors have focused their attention on
strengthening the bounds by partially imposing path elementarity. Two main frameworks
can be found in the literature to deal with the issue of partially addressing the elementarity
constraints in an efficient manner: decremental state-space relaxation (DSSR, [41, 98]); and
cycle elimination [1, 2, 84,92].

In DSSR, the elementarity constraints are imposed gradually. Starting from a pure SPPRC,
the path with the least reduced cost is checked for elementarity . If it is, an optimal solu-
tion has been found; otherwise, a cycle is detected and the elementarity requirements are
strengthened for the subsequent iterations. Cycle elimination techniques, in turn, are closely
related to the notion of route relaxations. In the seminal article of Desrochers et al. [84],
the authors presented the first successful application of column generation for VRPs. They
considered the vehicle routing problem with times windows (VRPTW, [79]) and solved by
branch-and-price. The authors recognized the difficulty of the underlying pricing subproblem
and described for the first time the SPPRC without cycles of length 2 (2-cyc-SPPRC). Un-
like the ESPPRC, this problem can be solved in pseudo-polynomial time. Later, Irnich and
Villeneuve [92] studied the k-cyc-SPPRC, for values of k that range between 3 and 5, which
provides bounds that are much stronger than those obtained by the 2-cyc-SPPRC, yet, in
longer computing times. Baldacci et al. [2] introduced the ng-route relaxation (ng-SPPRC),
which relies on a memory mechanism to allow/disallow revisiting nodes that have been vis-
ited recently within a route. Thus, a feasible path may still contain cycles, but those cycles
should be long and have a limited negative impact on the resulting bounds. Some hybrid
strategies have been proposed by Martinelli et al. [97], who successfully achieved improved
results by adapting DSSR to tackle the ng-SPPRC, and Contardo et al. [89], who showed
that elementary paths can be obtained by imposing partial elementarity in an escalated way
within a column-generation-based solver for routing problems.

More recently, Bulhões et al. [1] proposed the arc-ng-SPPRC, an extension of the classical ng-
SPPRC, in which the neighborhoods are associated with arcs instead of nodes. The authors
proposed a novel set-based dominance mechanism. Arc-based neighborhoods allow a better
management of the undesirable cycles. However, when embedded into a DSSR framework,
they usually induce many more iterations compared to a traditional node-based ng-SPPRC.

91

Desaulniers et al. [107] introduced the concept of selective pricing when the elementarity
constraints are dropped at least partially. A pricing algorithm (associated with a column
generation pricing subproblem) is said to be selective if it can discard non-elementary paths
that may be Pareto-optimal but guarantees finding at least one path (possibly with cycles) of
negative reduced cost when there exists at least one elementary path with a negative reduced
cost. Such an algorithm can stop when it proves that no such elementary paths exist, even
if there are still some non-elementary paths with a negative reduced cost. A selective pricing
strategy can be used to derive valid dual bounds, and those bounds have the potential of
being stronger than those that would be achieved using a non-selective pricing strategy. The
authors illustrate the selective pricing strategy on the ng-SPPRC, but the algorithm is quite
demanding and requires the addition of several data structures and sub-procedures, whose
overhead is not always beneficial in the long run.

In this article, we extend the set-based dominance criterion of Bulhões et al. [1] for the
arc-ng-SPPRC by making it selective. Unlike the original approach of using additional data
structures to keep track of the non-dominated labels [107], the proposed mechanism requires
minimal modifications of the labeling algorithm and is therefore easy to implement. As a
result, the proposed selective pricing strategy proves to be faster in practice than the original
(non-selective) arc-ng-SPPRC when embedded within a column generation algorithm for
solving benchmark instances of the VRPTW.

The remainder of this article is organized as follows: Section 5.2 presents some of the main
route relaxations proposed in the literature, with an emphasis on the arc-ng-SPPRC. In
Section 5.3, we describe the selective arc-ng-SPPRC, provide some theoretical proofs of its
correctness, and discuss how this new framework extends the traditional arc-ng-SPPRC. In
Section 5.4, we report the results of our computational experiments to show the impact of
considering the new framework when tackling some hard VRPTW instances. Finally, some
conclusions are drawn in Section 5.5.

5.2 Route relaxations

As discussed in the previous section, the natural way of modeling pricing subproblems aris-
ing from most VRP applications is by considering an ESPPRC. However, due to the high
computational complexity of this problem, route relaxations have been preferred to design
efficient column-generation-based algorithms. In this section, we discuss some of the main
route relaxations proposed in the literature, namely: the SPPRC, which is obtained when
all elementarity requirements are relaxed; and the ng-SPPRC and arc-ng-SPPRC, which
tend to avoid the formation of cycles containing nodes that might be located close to each

92

other. To simplify the exposition, we consider that the pricing subproblem is defined over a
digraph G = (N,A), where N = {0, . . . , n, n + 1} is its set of nodes and A ⊆ N × N its
set of arcs. Nodes 0 (source) and n + 1 (sink) represent the origin and the destination of a
path, respectively, whereas N+ = N \ {0, n+ 1} is the set of customer nodes. The following
discussion can be easily extended to other networks.

5.2.1 The SPPRC

The SPPRC can be formally described as follows. Consider network G and let R be a set of
resources, which are used to model some route feasibility rules for the problem at hand, such
as vehicle capacity, time windows, or precedence, among others [81]. The objective of the
SPPRC is to find a least-cost path, not necessarily elementary, from node 0 to node n + 1,
in such a way that the path respects the following resource constraints.

With each node v ∈ N and resource r ∈ R, define resource windows [erv, lrv], with 0 ≤ erv ≤ lrv,
representing the allowed limits on the consumption of each resource r by a path ending at
node v. Specifically, it is assumed that lr0 = 0 and lrn+1 = Hr, where Hr represents the
maximum consumption allowed for resource r when arriving at the sink.

With each arc (u, v) ∈ A, we associate a modified routing cost c̄uv ∈ R that depends on
the RMP dual values such that the sum of the modified costs of the arcs composing a path
between nodes 0 and n+ 1 is equal to the reduced cost of the corresponding route variable.
For example, if we denote by αi, i ∈ N+, the dual variables associated with constraints (5.2),
then the modified cost of arc (u, v) ∈ A is given by:

c̄uv =

 cuv − αu if u ∈ N+

cuv otherwise (i.e., u = 0),
(5.4)

where cuv is the routing cost along arc (u, v). With each arc (u, v), we also associate a vector
of resource consumptions (γruv)r∈R ∈ N|R|+ (e.g., travel time, load delivered, etc.). In many
classical SPPRC variants, it is assumed that, if a path ending at node v uses less than erv

for some resource r ∈ R, it is still possible to consume the extra amount of resource, so as
to respect the lower bound erv. In other words, when a path is extended along an arc (u, v),
assuming the resource consumptions at node u given by ξru, ∀r ∈ R, they are updated at
node v with the resource extension functions ξrv ← max{erv, ξru+γruv}, ∀r ∈ R. The extension
is deemed resource-feasible (i.e., it satisfies the resource constraints) if erv ≤ ξrv ≤ lrv, ∀r ∈ R,
otherwise it is deemed infeasible. Note that, depending on the problem at hand, the resources
may vary along the paths according to more complex resource extension functions [82]. For
the sake of simplicity and without loss of generality, we limit our discussion to the above

93

resource extension functions.

5.2.2 The ng-SPPRC of Baldacci et al. [2]

Currently, the state-of-the-art –and widely adopted– framework to eliminate cycles is the ng-
route relaxation (ng-SPPRC) proposed by Baldacci et al. [2]. The ng-SPPRC differs from the
2-cyc-SPPRC and k-cyc-SPPRC because the notion of length of a cycle does not depend on
the number of arcs (or edges) traversed along the cycle, but rather on the notion of proximity
between the nodes that belong to it. In the ng-SPPRC, cycles are forbidden whenever they
contain customers that are close to each other. For every customer v ∈ N+, one considers a
ng-set (neighborhood) Nv ⊆ N+. Because the goal is to prevent short cycles, it is common to
define the ng-set Nv as containing the ∆ geographically closest customers to v, and the vertex
v itself, where ∆ > 0 is a predefined parameter. Let P = {v1, . . . , vh = v, . . . , vh′ = v, . . . , v`}
be a path generated while solving the ng-SPPRC. The cycle H = {vh = v, . . . , vh′ = v} is
feasible if and only if v /∈ ∩h′−1

i=h+1Nvi , i.e., v does not belong to the ng-set of at least one
intermediate node in the cycle. The theoretical complexity of the ng-SPPRC is also pseudo-
polynomial if |Nv| ≤ ∆ + 1 for every v ∈ N+. In this case, a labeling algorithm can solve the
ng-SPPRC in pseudo-polynomial time with a multiplying constant that depends on 22∆. The
ng-SPPRC normally provides much tighter bounds than those provided by the k-cyc-SPPRC
in comparable CPU times. In fact, experiments carried out by Poggi and Uchoa [94] using
some hard capacitated VRP instances have shown that ng-sets with ∆ = 8 yield bounds
similar to those obtained by the 5-cyc-SPPRC, but spending a time comparable to the 4-
cyc-SPPRC. For this reason, the ng-SPPRC has become the route relaxation of preference
ever since.

5.2.3 The arc-ng-SPPRC of Bulhões et al. [1]

In a recent article by Bulhões et al. [1], the ng-SPPRC is extended to consider neighborhoods
associated with arcs instead of nodes. We call this problem the ng-SPPRC with arc-based
neighborhoods, and denote it arc-ng-SPPRC. The arc-ng-SPPRC can be defined as follows.
With every arc a = (u, v) ∈ A, we associate a ng-set Na ⊆ N+ that corresponds to the set of
customer nodes that can be remembered by arc a. The ng-sets Na may be defined according
to any suitable criterion. Most successful implementations use some notion of distance to
favor neighborhoods containing nodes that are close to each other. An example is to consider
the set of nodes which are close to both extremities of the arcs, i.e., Na ⊆ Nu ∩Nv, with Nu
and Nv defined as for the ng-SPPRC. Let P = (a0, a1, . . . , ap) be a partial path, composed
of arcs a0 = (0, v1), a1 = (v1, v2), . . . , ap = (vp, vp+1) and π(vp) be the memory of this path

94

upon arrival at node vp. An extension using arc a = (vp, vp+1) is deemed arc-ng-feasible
only if vp+1 /∈ π(vp). The memory upon arrival to vp+1 is updated according to the formula
π(vp+1) ← (π(vp) ∩ Na) ∪ {vp+1}. If Na = Nu ∩ Nv, for every arc a = (u, v) ∈ A, the
arc-ng-SPPRC coincides with the classical ng-SPPRC, and, therefore, it is more general.

By considering the notions presented in Section 5.2.1, a path P ′ = (v1 = 0, . . . , vp+1 = n+ 1)
is said to be feasible only if every prefix P ′i = (v1, . . . , vi), i ∈ {2, . . . , p+ 1} is both resource-
and ng-feasible. The cost of P ′ is given by c(P ′) = ∑

1≤q≤p cvq ,vq+1 . The arc-ng-SPPRC
consists of finding a feasible path P ′ of minimum total cost.

Not only this mechanism allows a better management of the undesired cycles, but also yields
a sharper dominance rule. Indeed, while the traditional dominance rule for the ng-SPPRC
allows only pairwise comparisons, Bulhões et al. [1] introduce a novel set-based dominance
criterion that includes the former as a particular case.

Labeling algorithm

A general description of a labeling algorithm similar to the one adopted by Bulhões et al. [1]
to solve the arc-ng-SPPRC is as follows. A label L encodes a partial path (v1 = 0, . . . , vp)
from the source until reaching a node vp through the following data structures: a terminal
node v(L) = vp; resource consumptions ξr(L), r ∈ R; a (reduced) cost c̄(L); a memory Π(L);
and a pointer pred(L), which indicates the predecessor of label L′.

An extension to a node w over an arc a = (vp, w) yields a label L′ with the associated data
structures computed as follows:

v(L′)← w (5.5)

ξr(L′)← max{erw, ξr(L) + γra} ∀r ∈ R (5.6)

c̄(L′)← c̄(L) + c̄vpw (5.7)

Π(L′)← (Π(L) ∩Na) ∪ {w} (5.8)

pred(L′)← L. (5.9)

Label L′ is deemed feasible if and only if it is both resource- and ng-feasible. For the sake of
conciseness, we denote from now on an extension of label L to a node w by L⊕ w.

A generic representation of a labeling algorithm analogous to the one considered by Bulhões
et al. [1] is outlined in Algorithm 1. Although they have implemented a bi-directional labeling
algorithm [98], we present a mono-directional (forward) labeling algorithm for the sake of
simplicity and because it illustrates the main parts of their algorithm. Similarly to what

95

is done in most of the recent implementations (e.g., [45, 46]), Bulhões et al. [1] adopt label
buckets to store non-dominated labels. This data structure allows a more efficient application
of dominance rules. For each node v ∈ N and possible consumption ξr∗ of a given resource
r∗ ∈ R, one defines a bucket B(v, ξr∗) that stores all the non-dominated labels associated
with node v and having consumption ξr

∗ for resource r∗. It is initialized as empty and
enlarged dynamically. The choice for the resource defining the buckets may vary according
to the problem at hand (e.g., load or time). In Algorithm 1, the set V keeps the unextended
labels waiting in a queue. This set is kept sorted at all times in lexicographic order with
regard to the consumption of resource r∗, i.e., the labels with lowest consumptions of r∗ are
positioned before those with larger consumptions [40]. As mentioned before, the maximum
consumption allowed for resource r∗ is Hr∗ . The set A(L) = {a = (u, v) ∈ A : u = v(L), v ∈
N \Π(L) and L⊕ v is resource-feasible} contains the arcs that can be used to extend L. For
two labels L and L′, L ≺ L′ means that L dominates L′ (according to the rules defined
in Sections 5.2.3 and 5.3). Let L0 be the label encoding an empty path of cost zero, with
zero resource consumptions, empty memory and such that pred(L0) = nil. Algorithm 1
returns the label Lbest representing a path with lowest cost. This labeling algorithm extends
non-dominated labels to create new labels (line 8), coupled with a dominance rule to discard
non-promising labels (lines 13 and 15). The dominance procedure prevents a combinatorial
explosion and, therefore, keeps the computational burden within reasonable limits.

Multiple partial label dominance

Dominance in Bulhões et al. [1] is not only performed pairwise. The authors use a sharper
multiple partial label dominance rule similar to that introduced by Irnich and Villeneuve [92]
for the k-cyc-SPPRC. To formalize this idea in the context of the arc-ng-SPPRC, we use the
notion of weak and strong dominance described in Irnich and Villeneuve [92]. Let L and L′

be two feasible labels. Label L is said to weakly dominate L′ if all the following conditions
hold:

v(L) = v(L′), (5.10)

ξr(L) ≤ ξr(L′), ∀r ∈ R (5.11)

c̄(L) ≤ c̄(L′). (5.12)

Conditions (5.10)–(5.12), however, do not ensure a proper dominance of L′ by L. In fact,
depending on the label memories Π(L) and Π(L′), it may still be possible for L′ to be extended
to a node w that would not be a ng-feasible extension of L. This would happen for every

96

Algorithm 1: Labeling algorithm
1: V ← {L0}, Lbest ← nil, c̄min ← +∞,
2: B(v, ξr∗)← ∅, ∀v ∈ N, ∀ξr∗ ∈ {0, 1, . . . , Hr∗}
3: while V 6= ∅ do
4: Let L be the first label in V
5: Set V ← V \ {L}
6: Set B(v(L), ξr∗(L))← B(v(L), ξr∗(L)) ∪ {L}
7: for all a ∈ A(L) do
8: Let L′ be the label resulting from extending L along arc a using (5.5)–(5.9)
9: if v(L′) = n+ 1 then

10: if c̄(L′) < c̄min then
11: Set Lbest ← L′, c̄min ← c̄(L′)
12: end if
13: else if there exists no label L′′ ∈ B(v(L′), ξr∗(L′)) such that L′′ ≺ L′ then
14: Set B(v(L′), ξr∗(L′))← B(v(L′), ξr∗(L′)) ∪ {L′}
15: Remove from V all labels L′′ such that L′ ≺ L′′

16: end if
17: end for
18: end while
19: return Lbest

node w ∈ Π(L) \ Π(L′). The additional condition

Π(L) ⊆ Π(L′) (5.13)

ensures the correctness of the pairwise dominance.

Bulhões et al. [1] realized that condition (5.13) may be unnecessarily too restrictive. In fact,
if a label L weakly dominates another label L′, one may restrict the extensions of L′ only to
the nodes w ∈ Π(L) \Π(L′)∪ {j ∈ N \Π(L′) | N(v(L),j) ∩ (Π(L) \Π(L′)) 6= ∅}, i.e., the nodes
where L′ can be directly extended but not L or the nodes that remember at least one such
node. This brings out the following set-based dominance criterion. Let L be a collection of
labels (Li)i∈L. It is said to strongly dominate a label L′ 6∈ L if the two following conditions
hold:

i. Li weakly dominates L′ for all i ∈ L,

ii. for every ng-feasible extension of L′ to a node w, there exists i ∈ L such that Li can
also be extended to w and Π(Li ⊕ w) ⊆ Π(L′ ⊕ w).

Conditions (i.) and (ii.) combined assure that any path obtained by feasibly extending label L′

would be dominated. Hence, L′ can be discarded. Moreover, the authors also demonstrate

97

that, whenever a weakly dominating label Li is identified, one can immediately restrict
feasible extensions of L′, by discarding those that would be dominated by subpath Li ⊕ w
for all w ∈ N \ Π(Li) such that Li ⊕ w is resource-feasible. As a result, not only full
dominance reduces the number of labels, but also partial dominance contributes to avoiding
certain extensions. On the other hand, their computational experiments showed that it
may be computationally expensive to store the set of dominated extensions for each label.
Consequently, as a compromise, instead of representing this set explicitly, they rely on an
implicit representation which requires to only extend the memory Π(L′) of a dominated label
L′ along a dominated extension, thus, avoiding the extension of the label cost and resource
components.

5.3 Selective arc-ng-SPPRC

In this section, we redefine strong dominance. For the sake of readability, we present the
mechanism in two steps. First of all, we show that the pairwise comparison criterion (5.13)
can be replaced by:

Π(L) ⊆ Π(pred(L′)) ∪ {v(L′)}, (5.14)

Proposition 1 below formalizes the correctness of this criterion. Its proof relies on the fol-
lowing lemma.

Lemma 1. A labeling algorithm using conditions (5.10)–(5.12), (5.14) to establish pairwise
dominance produces, for every label E representing an elementary partial path P , at least
one non-dominated label L such that v(L) = v(E), ξr(L) ≤ ξr(E), ∀r ∈ R, c̄(L) ≤ c̄(E), and
Π(L) ⊆ V (E), where V (E) denotes the set of customer nodes visited by P .

Proof. The proof works by induction on the size p of P = {v1 = 0, . . . , vp}. If p = 1, then
E is non-dominated and L = E. If p ≥ 2, let us assume that E is obtained by extending
another label E ′ over an arc (vp, vp+1) ∈ A, with vp = v(E ′) and vp+1 /∈ V (E ′). Using
the induction hypothesis, the labeling algorithm generates a non-dominated label L′ such
that v(L′) = v(E ′), ξr(L′) ≤ ξr(E ′), ∀r ∈ R, c(L′) ≤ c(E ′), Π(L′) ⊆ V (E ′). Denote
by L′′ the label produced by extending L′ along arc (vp, vp+1). It is easy to see that L′′

is a feasible extension of L′, and that v(L′′) = v(E), c(L′′) ≤ c(E) and ξr(L′′) ≤ ξr(E),
∀r ∈ R, hold. In addition, Π(L′′) ⊆ Π(L′) ∪ {vp+1} ⊆ V (E ′) ∪ {vp+1} = V (E). If L′′ is not
dominated, then L = L′′. Otherwise, if L′′ is dominated by a non-dominated label L′′′, then
L′′′ satisfies v(L′′′) = v(E), c(L′′′) ≤ c(L′′) ≤ c(E), ξr(L′′′) ≤ ξr(L′′) ≤ ξr(E), ∀r ∈ R, and

98

Π(L′′′) ⊆ Π(pred(L′′)) ∪ {vp+1} = Π(L′) ∪ {vp+1} ⊆ V (E ′) ∪ {vp+1} = V (E). In this case,
L = L′′′.

From this lemma, we deduce the following result.

Proposition 1. If there exists an elementary path P from 0 to n+ 1 with a negative reduced
cost, then a labeling algorithm based on the dominance rule (5.10)–(5.12) and (5.14) finds at
least one (possibly non-elementary) path P ′ from 0 to n+ 1 with a negative reduced cost.

Proof. Assume that there exists such a path P which is represented by a label E. If E is not
dominated, then P ′ = P . Otherwise, according to Lemma 1, there exists a non-dominated
label L such that v(L) = v(E) and c̄(L) ≤ c̄(E). This label represents path P ′.

To illustrate the strength of this new dominance rule, let us consider the following example.
Let L1 and L2 be two labels such that v(L1) = v(L2) = 1, c̄(L1) ≤ c̄(L2), ξr(L1) ≤ ξr(L2),
∀r ∈ R, and let us assume that Π(L1) = {1, 2, 3} and Π(L2) = {1, 2, 4}. Although L1 weakly
dominates L2, the latter cannot be discarded according to (5.10)–(5.13) because Π(L1) *
Π(L2) (Figure 5.1). Now, let us assume that label L2 was extended from label pred(L2) with
v(pred(L2)) = 2, over the arc a = (2, 1), and such that Na = {1, 2, 4} and Π(pred(L2)) =
{2, 3, 4}. We now have that Π(L1) = {1, 2, 3} ⊆ {1, 2, 3, 4} = Π(pred(L2)) ∪ {1}, and label
L2 can be safely discarded according to condition (5.14) (Figure 5.2).

3

2

1
L1 Π(L1) = {1, 2, 3}

*
L2

Π(L2) = {1, 2, 4}

Figure 5.1 Standard dominance

3

2

1
L1 Π(L1) = {1, 2, 3}

⊆
L2

Π(pred(L2)) ∪ {1} = {1, 2, 3, 4}

Π(pred(L2)) = {2, 3, 4}

N(2,1) = {1, 2
, 4}

Figure 5.2 Selective dominance

Observe that, in this example, it might be feasible to extend label L2 to node 3 and that this
extension might subsequently yield non-dominated ng-paths between 0 and n + 1, possibly
an optimal one. Nevertheless, when label L2 is dominated according to conditions (5.10)–
(5.12) and (5.14), this extension is not possible and the algorithm remains valid because the
discarded ng-paths are not elementary (they visit node 3 more than once). The pricing is,
thus, selective.

99

The second step in the presentation of our selective set-based dominance rule is stated in a
corollary of the pairwise dominance condition, and extends the strong dominance criterion
given by conditions (i.)-(ii.).

Corollary 1. For a given label L?, an extension to a node w ∈ N+ \ Π(L?) can be safely
omitted if there exists a label L such that all the following conditions hold:

v(L) = v(L? ⊕ w) = w, (5.15)

c̄(L) ≤ c̄(L? ⊕ w), (5.16)

ξr(L) ≤ ξr(L? ⊕ w), ∀r ∈ R (5.17)

Π(L) ⊆ Π(L?) ∪ {w}. (5.18)

In fact, one can observe that (5.15)–(5.18) correspond to (5.10)–(5.12) and (5.14) when setting
L′ = L?⊕w, showing that, if L exists and L? was extended along arc (v(L?), w), the resulting
label L′ = L? ⊕ w would be dominated by L.

Similarly to the idea proposed by Bulhões et al. [1], the dominance rule given by conditions
(5.15)–(5.18) intends to consider some available information to identify dominated label ex-
tensions. Yet, the dominance rule described in Corollary 1 is stronger than the one proposed
by Bulhões et al. [1] because it uses the selection mechanism given by condition (5.18), which
is stronger than condition (5.13) (with L′ = L? ⊕ w). Another difference between the two
algorithms is that our set-based dominance rule does not assume L and L?⊕w to be extended
from the same node (see Figure 5.3), unlike that of Bulhões et al. [1] (see Figure 5.4). In
these cases, label L? ⊕ w can be identified as dominated by L without extending the cost
and resource components of L? in the algorithm of Bulhões et al. [1] and without extending
the memory of L? in our selective algorithm. Therefore, if the cardinality size of vectors Π
is much larger than |R| (the number of resources), the selective dominance rule proposed in
our algorithm can yield an additional speedup.

w

L

L? L? ⊕ w

Figure 5.3 Selective set-based comparison

w

L

L?

L? ⊕ w

Figure 5.4 Bulhões et al.’s mechanism

100

One way to reinforce dominance relations (5.14) and (5.18) is by adding to the set Π of
the dominating label, the unreachable nodes, i.e., the nodes to which extending the path
would not be resource-feasible (equivalently, it is possible to do the same for relation (5.13)).
Assuming that the resource consumptions γrij, (i, j) ∈ A satisfy the triangle inequality for
each resource r ∈ R, the set of unreachable nodes of a label L is defined as U(L) = {w ∈
N+| ∃r ∈ R such that ξr(L) + γrv(L),w > lrw}. Given that L and L? ⊕ w cannot be feasibly
extended to any node in U(L) and U(L? ⊕ w), respectively, these sets can be included in
the right-hand side of their respective dominance conditions (5.14) and (5.18), which can be
rewritten as:

Π(L) ⊆ Π(pred(L′)) ∪ {v(L′)} ∪ U(L′) (5.19)

Π(L) ⊆ Π(L?) ∪ {w} ∪ U(L? ⊕ w). (5.20)

To avoid computing the unreachable set of labels L∗ ⊕ w before testing dominance condi-
tion (5.20), the following slightly weaker condition can be used:

Π(L) ⊆ Π(L?) ∪ U(L?) ∪ {w}. (5.21)

5.4 Computational experiments

To assess the effectiveness of the proposed selective dominance rules, we performed a series
of computational experiments on well-known benchmark instances of the VRPTW which can
be defined as follows. Consider the network G = (N,A) described in Section 5.2.1, where N
is the set of nodes, A is the set of arcs, and N+ is the set of customer nodes. Each customer
i ∈ N+ is associated with a demand qi, a service time si, and a time window [ei, li] within
which the service must start. Moreover, we set q0 = s0 = e0 = qn+1 = sn+1 = en+1 = 0 and
l0 = ln+1 = H, where H is the planning horizon duration. Each arc (i, j) ∈ A is associated
with a routing cost cij and a traveling time tij. An unlimited fleet of homogeneous vehicles
with capacity Q is available at a single depot. The VRPTW consists of finding feasible routes
visiting all customers i ∈ N+ exactly once such that the total routing cost is minimized. A
route is deemed feasible if: it is elementary; all visited customers are served within their
time windows; the total demand of these customers does not exceed the vehicle capacity Q.
Furthermore, the cost of a route is computed as the sum of the costs of the arcs traversed by
the route.

For the VRPTW, the pricing subproblem involves a set R of two resources, namely, time and
load. At a node i ∈ N , the resource windows [eri , lri], r ∈ R, are defined by their time window

101

[ei, li] and by the load window [0, Q]. Along an arc (i, j) ∈ A, the resource consumptions γrij,
r ∈ R, are given by tij + si for the time resource and by qj for the load resource.

In this section, we provide some details on how we conducted our computational experiments
and report the results obtained. The performance of the selective arc-ng-SPPRC pricing is
compared against the default arc-ng-SPPRC pricing. Both of these settings are implemented
over the same column-and-cut generation framework, which is described in Section 5.4.1. In
Section 5.4.2, we provide details on the experiments design. Finally, in Section 5.4.3, we
report and discuss the computational results obtained.

5.4.1 Column-and-cut-generation framework

In our experiments, we consider a column-and-cut-generation framework very similar to the
one developed by Pecin et al. [46] for the VRPTW. The algorithm includes several refinements
that enhance its performance. The labeling algorithm used to solve the pricing subproblem
relies on a bidirectional DSSR procedure (without completion bounds [45]), having the time
as the critical resource [98]. The maximum size of ng-sets in the algorithm vary according
to the instance being solved as discussed below. Furthermore, three fast heuristic labeling
algorithms are always executed before any execution of the exact pricing algorithm. The
first heuristic keeps only the least-cost label associated with a given time arriving at each
customer node. The second and third heuristics rely on a reduced version of the network G,
where around 7 and 12 (for the second and third, respectively) arcs entering and leaving each
customer node are kept (see [44] for details on how these arcs are selected). At each column
generation iteration, these three heuristic labeling algorithms are called in sequence until one
of them finds negative reduced cost columns. If they all fail, the cut separation routines (see
below) are invoked. When cuts are found, they are added to the RMP and column generation
is re-started. Otherwise, the exact pricing algorithm is called. If it finds negative reduced
cost columns, the process starts over again. Otherwise, the algorithm stops.

Because we wanted to make the implementation of our column generation algorithm as simple
as possible, we decided not to consider the dynamic mechanism described by Bulhões et al. to
increase and reduce the size of the ng-sets when needed. We judged that this procedure would
make the implementation of the algorithm very cumbersome. Hence, we decided to rely on
Martinelli et al. [97]’s framework to handle the size of the ng-sets. In our implementation, ng-
sets are initially empty and are updated throughout the solution process. Two strategies were
considered to update the arc ng-sets: i) only-cycle, where only ng-sets associated with arcs
appearing in an infeasible cycle are increased; and ii) all-arcs, where all the arcs induced
by the customer nodes in an infeasible cycle have their ng-sets increased. The strategy

102

only-cycle is the same considered by Bulhões et al. [1]. As pointed out by the authors, and
also as we have observed in our preliminary experiments, the only-cycle strategy produces
a higher number of DSSR iterations. However, the computational complexity of each such
iteration remains lower (this is more notorious towards the end).

The baseline algorithm also includes the separation of several cuts, namely: rounded capacity
cuts (RCCs, [76]), limited-memory rank-1 cuts Pecin et al. [45,46], and elementary cuts [46].
Except for the RCCs, all the other cuts are non-robust, i.e., their dual variables cannot
be considered directly in the modified arc costs when solving the pricing subproblem. The
explicit handling of these dual variables increases the difficulty of solving it. Consequently,
the solution process is divided in two phases, called the robust and non-robust phases. In
the robust phase, the search for violated cuts is restricted to the RCCs. This phase ends
with a call to the exact pricing algorithm that yielded no new columns and the application
of variable arc fixing [130]. The non-robust phase then starts by searching for non-robust
violated cuts. If some are found, the solution process is re-started. This phase also ends with
a final unsuccessful call to the exact pricing algorithm, ensuring that the value of the current
RMP optimal solution provides a valid lower bound.

5.4.2 Experiments design

Our tests were performed on two datasets: 1) the 14 hardest 100-customer VRPTW instances
from Solomon [214]; and 2) the 200-customer instances of Gehring and Homberger [215] that
are reported to be solved in less than 5 hours by Sadykov et al. [216]. These instances
are called hereafter the S and the GH instances. Both datasets contain instances whose
node locations are chosen at random, clustered, and mixed (random and clustered). This is
denoted in the S and GH instances, respectively, as: S-C, S-R, and S-RC; and GH-C1, GH-
C2, GH-R1, GH-R2, GH-RC1 and GH-RC2. For the GH instances, specifically, instances
in sets GH-C1, GH-R1, and GH-RC1 have tight time windows and vehicle capacity, and
typically admit optimal solutions with short vehicle routes. On the other hand, sets GH-C2,
GH-R2, and GH-RC2 have large time windows and loose vehicle capacity and, typically,
admit optimal solutions with fewer but longer vehicle routes.

Similarly to what is done in Pecin et al. [46], for all S instances except S-R208, and all
GH-C1, GH-RC1, and GH-R1 instances, the cardinality of ng-sets Ni, i ∈ N+ are limited
to 10. For the other instances, where allowing more cycles can be very harmful to the lower
bound, we consider |Ni| = 20. These node ng-sets are used to generate the arc ng-sets Na,
a = (u, v) ∈ A, by using the formula Na ← Nu ∩ Nv. Furthermore, for all instances except
the GH-C1, GH-RC1, and GH-R1 instances, we observed that the capacity constraint is not

103

binding. Therefore, to alleviate the solution of the pricing subproblem, we did not consider
this constraint, which is later enforced using RCCs whenever needed.

Given that our goal is not to solve to optimality the considered instances but rather to
illustrate the impact of applying the selective arc-ng-SPPRC pricing, we focus only on the
root node results. The algorithm described in Section 5.4.1 was coded in C++, and IBM
ILOG CPLEX Optimizer 12.8 was used as the LP solver. The experiments were carried out
on an Intel Xeon ES-2637 3.5GHz with 128GB RAM, running Linux Oracle Server 7.6. A
time limit of 24h was set to solve all instances.

In our experiments, we compare the performance of the default arc-ng-SPPRC pricing against
three versions of the selective arc-ng-SPPRC pricing, which differ by the dominance rule
employed. All settings considered in our study are detailed below:

1. Default: The baseline algorithm that considers relations (5.10)–(5.13) as dominance
rule. Relation (5.13) is reinforced by including the set U(L′) of unreachable nodes in
its right-hand side (which becomes Π(L′) ∪ U(L′)).

2. SetBased: Considers relations (5.10)–(5.12) and the set-based relation (5.21) as domi-
nance rule.

3. Pairwise: Considers relations (5.10)–(5.12) and the pairwise relation (5.19) as domi-
nance rule.

4. SetPair: Considers relations (5.10)–(5.12), both pairwise (5.19) and set-based (5.21)
relations as dominance rule.

Additionally, each pricing setting is executed twice, each time considering a different DSSR
strategy, i.e., only-cycle or all-arcs. Hence, in total, we test eight distinct configurations.

Notice that the Default setting applies a pairwise comparison on sets Π. We do not consider
in our analysis the set-based dominance rule of the default arc-ng-SPPRC pricing developed
by Bulhões et al. [1] because it would have required major changes to our implementation.
Because our set-based dominance rule encompasses that of Bulhões et al., it is expected to
yield better results.

For each instance, we retrieve the following information: lower bound (lb), number of column
generation iterations performed by each algorithm (#iters), CPU time in seconds (T(s)),
average number of DSSR iterations per column generation iteration performed by each al-
gorithm (#DSSR), and average number of labels generated per iteration (#labels). This
information is collected before (robust phase) and after (non-robust phase) the addition of
non-robust cuts. Yet, because the main indicators for evaluating the efficiency of the selective
algorithm are computational time and average number of labels generated per iteration, in

104

Section 5.4.3, we focus our analysis on these two measures. Detailed results for all indicators
are presented in Appendix A.

5.4.3 Computational results

In this section, we discuss the results obtained during our experiments. For the sake of
conciseness, we only report summary results (see Appendix A for complete results). In
Tables 5.1–5.4, we provide the average and the median for T(s) and #labels per instance
class. In each table, we compare the performance of settings Default, SetBased, Pairwise,
and SetPair. We analyze separately the performance of the algorithms with respect to
the DSSR strategy employed (only-cycle and all-arcs). We provide distinct tables for
the algorithms before and after separating non-robust cuts. Finally, line #Best shows the
number of times that each setting provides the best results for each indicator and line#OPD
displays the number of times that the corresponding setting outperforms the Default setting.
Notice that, in the case where both algorithms produce equal results for a given instance,
this instance is counted for both algorithms. As a consequence, the sum of the #Best values
can exceed the number of instances.

In Tables 5.1 and 5.2, we present the summary results produced by the algorithms before the
separation of non-robust cuts. These results show a clear advantage of the selective settings
over the default algorithm in terms of running time and the number of labels produced. This
statement is supported by the #OPD values. Settings SetPair and SetBased are the ones
yielding the best gains in terms of running time for only-cycle and all-arcs, respectively.
Regarding the number of labels, for both DSSR strategies, the setting Pairwise is the most
effective at reducing the number of non-dominated labels kept for both DSSR strategies.
Moreover, as one can see from detailed results in Appendix A, during the robust phase of the
algorithm, the selective algorithms allow better bounds to be achieved. This observation is
more notable when solving GH instances using the only-cycle DSSR strategy. The selective
strategies also tend to require less DSSR iterations.

When comparing the performance of the selective algorithms employing different DSSR
strategies, the results confirm what has already been hinted by Bulhões et al. [1], i.e., the
algorithms employing only-cycle produce a larger number of DSSR iterations. Also, they
tend to keep more non-dominated labels. On the other hand, these algorithms seem to require
ng-sets of smaller sizes.

Tables 5.3 and 5.4 show the results obtained during the non-robust phase of the algorithms.
In the presence of non-robust cuts, the selective algorithms can become more time-consuming.
Nevertheless, they are still faster than the default algorithm for the majority of the instances.

105

Table 5.1 Aggregated results using the only-cycle DSSR strategy before adding non-robust
cuts

Classes T(s) #labels
Default SetBased Pairwise SetPair Default SetBased Pairwise SetPair

S-C Average 14,830 8,723 10,232 9,247 44,428 38,831 39,232 43,842
Median 14,830 8,723 10,232 9,247 44,428 38,831 39,232 43,842

S-R Average 1,581 1,254 1,168 1,230 76,292 56,785 57,885 61,668
Median 641 551 531 515 38,749 32,613 33,084 37,482

S-RC Average 7,015 4,733 4,517 4,894 502,004 343,281 319,508 328,526
Median 3,071 2,473 2,425 2,476 632,136 463,053 425,550 443,300

GH-C1 Average 604 525 541 494 319,713 258,680 246,711 261,399
Median 566 503 492 479 296,760 236,845 237,015 245,659

GH-C2 Average 6,136 5,386 4,763 4,826 21,571 20,257 17,651 18,199
Median 6,342 6,322 5,605 5,688 15,499 13,644 14,472 12,457

GH-R1 Average 175 142 175 147 209,212 187,153 196,498 183,037
Median 153 134 157 135 190,129 170,515 191,588 179,043

GH-R2 Average 4,789 4,342 4,399 4,250 13,845 11,459 11,717 12,536
Median 4,217 3,836 3,639 3,938 11,431 9,902 10,221 9,247

GH-RC1 Average 201 167 192 174 438,176 369,259 390,951 379,880
Median 144 128 137 129 253,216 218,390 228,745 214,626

GH-RC2 Average 6,689 5,757 5,887 5,816 46,391 36,427 40,806 41,672
Median 6,621 5,665 5,793 5,739 45,338 36,552 36,654 36,959

#Best 2/45 11/45 15/45 17/45 3/45 19/45 20/45 9/45
#OPD – 42/45 38/45 42/45 – 38/45 42/45 40/45

Table 5.2 Aggregated results using the all-arcs DSSR strategy before adding non-robust
cuts

Classes T(s) #labels
Default SetBased Pairwise SetPair Default SetBased Pairwise SetPair

S-C Average 5,143 11,198 4,897 8,214 36,339 29,880 30,321 29,100
Median 5,143 11,198 4,897 8,214 36,339 29,880 30,321 29,100

S-R Average 815 749 747 773 46,854 41,961 43,092 42,001
Median 390 365 348 375 24,038 25,711 21,949 24,779

S-RC Average 1,812 1,526 1,496 1,452 163,293 135,035 136,881 121,865
Median 904 786 826 814 218,110 163,647 178,990 163,170

GH-C1 Average 378 323 326 329 170,063 164,153 148,659 160,393
Median 400 317 342 329 147,946 127,657 115,431 126,360

GH-C2 Average 3,156 3,068 3,030 2,891 13,658 14,850 12,871 13,136
Median 3,564 3,412 3,405 3,144 11,771 13,276 12,090 11,894

GH-R1 Average 139 119 136 121 133,901 128,970 118,771 122,280
Median 132 123 128 121 117,367 124,032 122,804 106,912

GH-R2 Average 3,738 3,436 3,508 3,467 9,810 10,231 8,693 8,666
Median 3,616 3,471 3,339 3,352 7,647 8,488 8,044 7,994

GH-RC1 Average 131 112 128 116 225,358 217,014 213,540 222,278
Median 116 102 117 108 170,003 164,044 154,841 171,926

GH-RC2 Average 3,959 3,777 3,580 3,653 25,770 25,056 23,105 25,354
Median 3,411 3,372 3,314 3,289 25,309 23,846 23,324 22,316

#Best 4/45 16/45 13/45 12/45 11/45 11/45 18/45 12/45
#OPD – 36/45 34/45 38/45 – 23/45 37/45 32/45

106

The better performance of the selective algorithms is confirmed when we analyze the perfor-
mance of the algorithms pairwise in Appendix A. The somewhat high average times associated
with some selective settings are due to the poor performance of the selective algorithms when
solving particular instances. However, when analyzing a less biased indicator such as the me-
dian, the performance of the algorithms tend to be more similar. Sometimes, the selective
algorithms can even yield better results, as it is the case for the setting SetBased when
solving instances from classes GH-R2 and GH-RC2 in Table 5.3. Regarding the number of
labels, the selective algorithms remain more effective in reducing the number of generated
labels in each algorithm.

Table 5.3 Aggregated results using the only-cycle DSSR strategy after adding non-robust
cuts

Classes T(s) #labels
Default SetBased Pairwise SetPair Default SetBased Pairwise SetPair

S-C Average 14,831 8,723 10,232 9,248 44,428 38,831 39,232 43,842
Median 14,831 8,723 10,232 9,248 44,428 38,831 39,232 43,842

S-R Average 24,607 28,713 23,606 25,376 161,918 161,095 151,546 134,202
Median 3,034 2,219 2,682 2,374 30,501 29,865 30,571 27,684

S-RC Average 8,342 6,231 5,926 6,442 265,520 188,351 175,184 182,177
Median 4,626 4,107 3,940 4,172 347,683 249,233 233,377 244,941

GH-C1 Average 31,590 10,321 14,917 60,826 211,779 186,186 173,657 181,226
Median 1,090 967 1,006 911 209,024 188,646 168,723 179,803

GH-C2 Average 8,575 7,606 7,172 7,114 14,852 13,912 12,893 12,495
Median 7,449 7,748 6,624 7,322 8,996 9,145 7,490 7,256

GH-R1 Average 6,769 4,550 5,270 8,425 162,425 155,355 154,977 155,259
Median 2,041 2,014 2,377 2,497 86,138 81,608 79,223 82,495

GH-R2 Average 7,356 7,563 7,343 6,994 5,939 5,014 5,208 5,153
Median 5,808 5,294 5,232 5,487 5,578 4,926 4,638 4,622

GH-RC1 Average 39,091 37,398 43,179 50,820 292,527 297,061 302,914 285,138
Median 15,333 19,823 17,230 33,158 114,444 113,465 115,899 113,536

RC2 Average 19,399 20,420 19,846 23,343 15,501 13,658 13,924 12,968
Median 13,046 11,836 9,761 11,356 14,820 13,225 12,231 11,468

#Best 6/45 18/45 14/45 7/45 4/45 12/45 14/45 18/45
#OPD – 33/45 32/45 23/45 – 34/45 31/45 39/45

Finally, we present time profiles Dolan and More [217] to compare the performance of the
algorithms, which are generated as follows. Let A be a set of algorithms, namely, A =
{Default, SetBased, Pairwise, SetPair} in our case. Let I be a set of instances, namely,
the 45 instances considered in our experiments. For each algorithm A ∈ A and each instance
i ∈ I, denote by T iA the time spent by A to solve instance i and let T iBest = minA∈A{T iA} be
the best time achieved by an algorithm in A to solve this instance. For an algorithm A ∈ A,
a time profile is a function ρA(τ) of a ratio τ ≥ 1 that is equal to the percentage of instances
such that T iA

T iBest
≤ τ , i.e.,

ρA(τ) = 100
|{i ∈ I | T iA

T iBest
≤ τ}|

|I|
. (5.22)

In particular, ρA(1) represents the percentage of instances for which algorithm A was the

107

Table 5.4 Aggregated results using the all-arcs DSSR strategy after adding non-robust cuts

Classes T(s) #labels
Default SetBased Pairwise SetPair Default SetBased Pairwise SetPair

S-C Average 5,144 11,199 4,897 8,215 36,339 29,880 30,321 29,100
Median 5,144 11,199 4,897 8,215 36,339 29,880 30,321 29,100

S-R Average 24,899 22,678 23,555 24,346 116,572 113,544 120,109 103,872
Median 1,784 1,631 2,035 1,739 21,936 27,285 25,382 28,997

S-RC Average 2,847 2,554 2,515 2,613 93,557 78,568 77,082 73,720
Median 1,961 1,746 1,766 1,852 128,015 95,283 96,170 90,537

GH-C1 Average 8,893 11,382 11,834 24,217 23,675 23,930 23,447 23,065
Median 670 573 576 572 25,871 26,420 24,454 25,218

GH-C2 Average 5,730 4,790 4,498 4,643 4,444 4,497 4,072 4,135
Median 4,633 4,390 4,494 4,234 4,033 4,423 3,986 3,850

GH-R1 Average 4,447 3,942 4,402 6,188 51,827 52,685 51,153 52,042
Median 2,140 2,074 1,940 1,923 29,849 31,203 29,589 29,301

GH-R2 Average 6,032 5,883 5,855 6,247 2,782 2,903 2,767 2,742
Median 4,994 4,842 4,653 4,747 2,213 2,287 2,287 2,233

GH-RC1 Average 23,394 18,850 27,210 27,301 55,442 58,633 58,564 55,439
Median 16,704 14,473 13,318 25,329 39,128 40,898 38,055 40,736

GH-RC2 Average 12,091 11,194 10,633 10,593 7,473 8,120 6,662 7,342
Median 7,410 7,946 7,370 7,212 7,422 7,932 6,863 7,360

#Best 5/45 17/45 15/45 8/45 9/45 15/45 11/45 13/45
#OPD – 37/45 30/45 29/45 – 25/45 33/45 30/45

fastest. Figures 5.5 and 5.6 display the time profiles of the four algorithms for the robust
and the non-robust phases, respectively. From these profiles, one can see that the selective
algorithms yield considerable speed-ups when compared to the Default algorithm. The
acceleration is more notable when comparing algorithms employing the only-cycle DSSR
strategy. Additionally, we remark that setting SetPair is the fastest during the robust phase,
but becomes time consuming once the separation of non-robust cuts starts.

Using only-cycle DSSR Using all-arcs DSSR

Figure 5.5 Time profiles for all instances before adding non-robust cuts

108

Using only-cycle DSSR Using all-arcs DSSR

Figure 5.6 Time profiles for all instances after adding non-robust cuts

5.5 Concluding remarks

In this paper, we have presented two new selective dominance rules for the arc-ng-SPPRC,
namely, one that applies pairwise label comparison and one that extends the set-based rule
of [1]. The latter rule is stronger than the one proposed by Bulhõest et al. [1] as it considers
the selective mechanism expressed by condition (5.18), which increases the chances that a
label L dominates a label L′ = L?⊕w. Furthermore, an additional speedup may be observed
if the average memory size is much larger than the number of cost and resource components
in a label. Our computational experiments on VRPTW benchmark instances showed that, in
general, the new mechanism allows a reduction in terms of the number of treated labels and,
consequently, of the computational time. Note also that one of the main interests for using
this mechanism is that it does not rely on complex data structures like the ones described
in [1] (Section 4.2) and [107] (Section 3.2) to work satisfactorily.

An extension of our idea would be to investigate the impact of generalizing relation (5.14)
to consider other predecessors further down in the path. Theoretically, this generalization
would strengthen even more the dominance rule. However, it seems that an elaborated data
structure would be required to address the overhead incurred by the new relations.

Acknowledgments

This work was supported by the Natural Sciences and Engineering Research Council
(NSERC) of Canada [Grant 2017-05683]. This support is gratefully acknowledged.

109

CHAPTER 6 STABILIZED COLUMN GENERATION VIA
AGGREGATED ROWS SEPARATION

6.1 Introduction

In the last years, CG has been the leading technique to cope with large-scale problems arising
from several contexts, namely: vehicle scheduling and routing problems [8, 9], crew schedul-
ing problems [218], cutting and packing problems [10], computer vision problems [12], among
others. Due to the underlying structure of the problems above, Dantzig-Wolfe (DW) decom-
position [23] allows modeling them as set-partitioning (covering / packing) formulations, in
which their variables often encode combinatorial objects as paths, sets, or permutations [15].

Without loss of generality, by applying DW decomposition, a generic set-covering formulation
for the problems listed above can be expressed as follows:

min
∑
j∈Ω

cjθj (6.1)

subject to:
∑
j∈Ω

ajθj ≥ b (6.2)

θj ∈ Z+ ∀j ∈ Ω, (6.3)

where Ω is a finite set of indices, scalar cj, and vectors aj and b are associated with the
problem structure, and θj are decision variables. Notice that, in (6.2), the sign ≥ might
be replaced by = or ≤ for the set-partitioning and set-packing, respectively. Formulations
defined as (6.1)–(6.3) are likely to present an exponential number of variables, which makes
it prohibitive to handle them all at once. Hence, CG arises as the suitable technique to
overcome this inconvenient.

Despite its efficiency in dealing with problems containing a large number of variables, CG
may suffer from convergence issues due, mainly, to the degenerate structure of the RMP and
the instability associated with its dual variables [15,50]. As discussed in Chapter 2 (Section
2.3), several techniques have been proposed to tackle degeneracy and the instability of the
dual variables. Some attempts have been made in trying to overcome or even exploit the
degeneracy associated with CG algorithms [49,52,54]. However, the implementation of these
methods may not be straightforward, as they may require changes in the CG process [49],
or yield harder pricing subproblems (PSs) [52]. Moreover, these techniques are limited to
solving set partitioning problems.

110

Regarding dual oscillation, prior knowledge about the domain of the dual variables may be
used to derive valid inequalities for restraining the dual feasible space [66–68]. A restricted
dual space helps the convergence of CG algorithms because it may reduce the number of dual
optimal solutions potentially yielding attractive columns to be added to the RMP. Moreover,
it may break the degenerate structure of the RMP, as fewer dual optimal solutions may
be associated with the degenerate extreme points [66]. Typically, this practice is problem-
dependent and relies a lot on problem-specific knowledge, which limits its use to the problem
at hand or problems with a very similar structure [12,66–70]. More recent studies, however,
have started to present more general approaches in this direction [71,72].

Alternatively, it is possible to modify the implementation of a standard CG algorithm and
consider center-based methods [58, 60, 63] or interior-point methods [64, 65] to alleviate the
impact of bad quality dual solutions on the CG process and accelerate the algorithm con-
vergence. These methods, however, may present some drawbacks such as making the pricing
process harder [63,64], increasing the size of the RMP [60], and requiring several parameters
to be tuned [60].

In this chapter, we present a new stabilization framework that relies on the dynamic sep-
aration of aggregated rows for the CG RMP. The aggregation of the constraints relies on
neighborhoods that are defined in terms of similarities between the items to be covered in the
RMP. Unlike other problems based on the aggregation of constraints in the RMP [49, 66],
our method is very generic. It can be used to solve problems formulated as set-partitioning,
covering, or packing formulations. As a matter of fact, the applications considered in our
experiments arise from different contexts and differ considerably in terms of objective func-
tion and PS. Furthermore, no changes in the structure of the problem are required, which
makes the implementation of the method very straightforward. Our computational exper-
iments show that the new stabilization scheme allows gains in terms of the number of CG
iterations performed and total running time when compared to a standard column generation
algorithm.

The remainder of this chapter is structured as follows: In Section 6.2, we present our stabi-
lization framework and discuss how it relates to other stabilization methods. In Section 6.3,
we present our computational experiments. For the sake of clarity, each one of the applica-
tions that we solve is presented in separate subsections. Each one of the sections contains a
short definition of the problem being solved, a description of the instances considered in the
experiments, and the numerical results obtained. Finally, some conclusions and insights are
drawn in Section 6.4.

111

6.2 The dynamic aggregated-rows separation method

In this section, we provide a general description of the stabilization method based on a
dynamic separation of aggregated rows (dyn–SAR). For the sake of simplicity, we describe
the dyn-SAR algorithm using a set-covering formulation. However, as it will become clear
throughout this section, extending the method to address set-packing or set-partitioning
problems is straightforward. To make this section self-contained, we re-visit the formulation
(6.1)–(6.3), and we take the opportunity to define some concepts and terms that will be
useful when describing the method. The dyn-SAR algorithm implicitly relies on an extended
version of the RMP, which contains as many variables as the original RMP, and an exponential
number of constraints. The new formulation is presented in Section 6.2.1 and the new method
is described in Section 6.2.2.

6.2.1 Problem description

In this section, we provide a formal description of the set-covering problem and present the
RMP arising from this problem. Additionally, we derive the new extended RMP over which
our method implicitly depends.

Set-covering problem

Let N be a set of items to be covered. Let Ω be the set of all feasible patterns containing
items i ∈ N . A binary parameter aij specifies whether an item i belongs to a pattern j. For
each pattern j ∈ Ω, a binary variable θj takes value 1 if a pattern j is chosen to be in the
solution or 0, otherwise. Finally, cj corresponds to the cost incurred from selecting a pattern
j in the solution. The set-covering problem can be modeled as follows:

min
∑
j∈Ω

cjθj (6.4)

suject to:
∑
j∈Ω

aijθj ≥ 1 ∀i ∈ N (6.5)

θj ∈ {0, 1} ∀j ∈ Ω. (6.6)

The objective function (6.4) aims at minimizing the total cost incurred from covering all
the items. Constraints (6.5) impose that every item will be covered by at least one pattern.
Finally, constraints (6.6) define the domain of the variables.

112

Restricted master problem of column generation

As stated in Section 6.1, CG is the suitable technique to tackle extended formulations like
(6.4)–(6.6). From (6.4)–(6.6), the RMP of the CG algorithm is obtained by considering only
a subset Ω′ ⊆ Ω of patterns, and by dropping the integrality requirements. The remaining
parameters assume the same meaning as described in the previous section.

min
∑
j∈Ω′

cjθj (6.7)

suject to:
∑
j∈Ω′

aijθj ≥ 1 ∀i ∈ N (6.8)

θj ≥ 0 ∀j ∈ Ω′. (6.9)

If we consider the complete set Ω instead of just the set Ω′, the master problem (MP) of the
CG is defined.

Extended restricted master problem

We introduce the extended RMP (ERMP), which contains a constraint for each subset ∅ (
S ⊆ N . In practice, constraints (6.11) in ERMP are obtained by simply summing up
constraints (6.8) from RMP corresponding to each item i ∈ S. Therefore, the coefficient
aSj associated with aggregated constraints are computed as aSj = ∑

i∈S a
i
j, and indicates how

many times items in S are covered by a pattern j. The ERMP is expressed as follows:

min
∑
j∈Ω′

cjθj (6.10)

suject to:
∑
j∈Ω′

aSj θj ≥ |S| ∀S ⊆ N, |S| > 0 (6.11)

θj ≥ 0 ∀j ∈ Ω′, (6.12)

The remaining parameters and variables have the same meaning as described previously in
this section. Similarly to what is done for the RMP, if we replace set Ω by set Ω′ in the
formulation, the extended MP (EMP) is obtained. Notice that all constraints in (6.8) are
also in (6.11). Hence, all constraints for |S| ≥ 2 are redundant with the ones for |S| = 1.
Since columns in RMP and ERMP are the same, formulations (6.7)–(6.9) and (6.10)–(6.12)
are equivalent.

Because the ERMP is obtained directly from (6.7)–(6.9), it also has an exponential number
of variables. At the same time, it contains an exponentially large number of constraints. As a

113

consequence, employing a standard CG method, in which all the constraints of the RMP are
known in advance, and handled at once, may not be doable because of the formulation size. To
overcome this issue, we develop a new method that not only generates variables dynamically
but also separates constraints when needed. Notice that our method does not characterize a
typical column-and-constraint generation algorithm as the ones embedded in branch-price-
and-cut methods. The constraints generated throughout the method are necessary to ensure
the feasibility of the problem instead of reinforcing the formulation.

6.2.2 The dyn-SAR method

This section is divided into two parts. First, we provide some theoretical foundations to
support the use of the dyn-SAR method. Second, we describe dyn-SAR algorithmically.

Foundations

The dyn-SAR is an iterative method that uses CG to solve to optimality a sequence of
relaxations R1,R2, . . . ,Rk arising from EMP, where k is the number of problems solved.
R1,R2, . . . ,Rk are defined when new constraints of type (6.11) are sequentially incorporated
into the formulation throughout the method. Even if singleton sets S (sets with a single
element) are among the sets, as it will be described later in this section, the method starts
with constraints corresponding to much larger sets S. Despite being applied to a formulation
containing aggregated constraints (obtained by summing up constraints of type (6.8)), dyn-
SAR relies on the original RMP to identify violated constraints to be added to the relaxations
of ERMP. When a relaxation R is solved, one verifies if the solution found is also feasible for
the original RMP, i.e., if all the items i ∈ N are covered. Otherwise, aggregated constraints
involving non-covered items are generated and incorporated into the current problem. These
relaxations are such that z(R1) ≤ z(R2) ≤ . . . ≤ z(Rk), where z indicates the lower bound
attained once a CG algorithm has been applied to solve the problem to optimality.

Contrarily to other methods relying on a modified RMP, our method does not require the
problem to have any specific structure [49, 67], which allows it to be applied to a variety of
problems. Moreover, it does not rely on a partition of the RMP constraints, which may entail
more complicated PSs [52]. Despite relying on a simultaneous generation of variables and
constraints, our method is different from the ones described in [55] and [56], where only partial
dual information is available. In our case, due to the reformulation (6.10)–(6.12), all the
aggregated constraints are (implicitly) defined. Therefore, the dual information coming from
constraints (6.11) is complete and may be easily translated into the dual variables associated
with the constraints (6.8) in the original RMP, without the need of being estimated [55] or

114

projected [56]. Therefore, the same PS arising from (6.7)–(6.9) may also be considered when
tackling (6.10)–(6.12). Finally, some similarities between our method and the use of surrogate
relaxations [219, 220] may be found. However, in the literature, surrogate constraints are
typically employed to provide an approximation of the original problem.

For each subset S, let C (S) denote a constraint of type (6.11). Explicitly, we denote:

C (S)
∑
j∈Ω′

aSj θj ≥ |S|, (6.13)

where, as described in Section 6.2.1, aSj is an integer indicating the number of times the items
in S are covered by the pattern j. Let γS be the dual variable associated with a constraint
(6.13), and let πi, ∀i ∈ N , be the dual variables associated with constraints (6.8). A relation
between the two variables γ and π is given by:

πi =
∑
S⊆N

bSi γS ∀i ∈ N, (6.14)

where bSi is a binary parameter indicating if item i belongs to set S. Note that while relation
(6.14) is valid way to compute the dual vector π, it might not be the only valid assignment
of dual variables.

Therefore, when solving the PS, the reduced cost of a variable j ∈ Ω may be computed as
follows:

c̄j = cj −
∑
i∈N

aijπi, (6.15)

The stabilization effect induced by dyn-SAR appears at two levels. First, the idea of con-
sidering only a few aggregated constraints when starting the method helps to alleviate the
degeneracy. Because coefficients in constraints (6.11) are associated with the sets S rather
than with individual items, the number of non-zeros in the columns tends to be reduced. Yet,
working with the ERMP does not necessarily imply that a more compact version of the RMP
will be generated as in [49]. As the separation of the constraints happens, it is not guaran-
teed that the size of the working basis will remain smaller than that of the original RMP
throughout the whole process. In fact, we have observed that the number of constraints in
the ERMP when the method finishes is consistently larger than |N |. Second, the relationship
between the dual variables πi, i ∈ N , considered in the pricing algorithm is much stronger
than the one obtained via relation (6.14). When they are obtained directly from formulation
(6.8), dual variables are more susceptible to move freely around the dual space. In the case of

115

relation (6.14), dual variables πi, i ∈ N , are inter-related and better distributed, and hence
extreme dual values are less likely to appear.

6.2.3 Description of the method

The dyn-SAR method is very flexible and its validity does not depend on any specific structure
of the problem at hand. Yet, the method exploits the underlying structure of the problem to
guide the construction of sets S in an attempt to speed-up the convergence of the method.
In this context, we introduce the notion of neighborhood of a given item i, which we denote
H(i). When defining the neighborhoods of an item i ∈ N , we regroup items that share some
similarities among them. The measure of similarity varies according to the problem being
solved. For instance, it could be the geographic location, the weight, or any other attribute
associated with items i ∈ N .

A general representation of dyn-SAR is given in Algorithm 2. The dyn-SAR algorithm starts
by solving a relaxation R1 that consists of the objective function (6.10) and constraints
C (Sh), h = {1, . . . , `}, where ⋃`h=1 Sh = N and ⋂`

h=1 Sh = ∅ (Line 1). This grouping is
defined in terms of some criterion arising naturally from the problem structure. In Section
6.3, we explain how this partition is determined for each one of the problems solved in our
experiments. Once R1 is solved, one verifies if the computed solution X 1 is feasible for the
associated RMP, otherwise one proceeds with the separation of new constraints C (S).

The process of constructing sets S is simple and straightforward. Initially, one starts by
collecting all items in the current solution that are not fully covered (set-covering) by running
the procedure checkViolation(X 1), i.e., we build set U = {i ∈ N : viol(C ({i})) > 0} (Line
5). Notice that, if a set-partitioning problem is solved, it would be necessary to look for items
that are not fully covered or items that are over-covered. For a set-packing problem, in turn,
violated items are those which are over-covered. Procedure checkViolation(X) checks if
any of the items in N is not fully covered. If yes, additional constraints may be generated
to be added to the ERMP. The complexity of checkViolation(X) is polynomial and given
by: O(|Ω′> 0| × |N |), where Ω′> 0 is the set of basic variables and is such that |Ω′> 0| ≤ |N |.

Procedure buildViolatedSets(U) builds violated sets S by regrouping items in U . The
generated sets are stored in a pool V , which contains violated sets having the potential to
be added to the RMP. Initially, the items in U are sorted in non-increasing order according
to their violation. Then, for each i ∈ U , one creates a set Si containing i and at most
the maxNbItemsPerSet most violated items u ∈ Hi ∩ U . The parameter maxNbItemsPerSet
imposes the maximum cardinality of sets S. When all potential sets Si have been built, it can
happen that |V| is larger than a given parameter maxNbConstrsToAdd. When this happens,

116

one calls the procedure selectViolatedSets(V) to select maxNbConstrsToAdd violated sets
S ⊂ V by running a max-dispersion heuristic (Line 11). When only the most violated sets
from V are considered, i.e., when the dispersion heuristic is not executed, it is very likely
that the same items will be covered several times in the built sets. This would leave several
items uncovered, which would require additional calls to the separation procedure. The
newly generated constraints are then added to R1, defining a new relaxation R2 (Line 13).
The process continues iteratively until a given stopping criterion is satisfied. Typically, the
algorithm stops when all items in N are covered. However, one can also consider other criteria
such as: if the lower bound is not improved by at least a certain value after a given number
of iterations; if the number of constraints reaches a given threshold; if a given time limit is
exceeded; etc. When some of the alternative criteria are considered, the method provides an
approximate solution.

Algorithm 2: dyn-SAR
1: Initialize R1 with objective function (6.10) and constraints C (Sh), h = {1, . . . , `}, where⋃`

h=1 Sh = N and
⋂`
h=1 Sh = ∅.

2: k ← 1
3: while Stopping criterion not satisfied do
4: Solve Rk using CG to obtain solution X k

5: U ← checkViolation(X k)
6: if U = ∅ then
7: break
8: end if
9: V ← buildViolatedSets(U)

10: if |V| > maxNbConstrsToAdd then
11: V ← selectViolatedSets(V)
12: end if
13: Rk+1 = Rk ∪

⋃
S∈V C (S)

14: k ← k + 1
15: end while

As already mentioned, one of the main advantages of using dyn-SAR to tackle extended
formulations is its simplicity. No significant changes in terms of implementation on a standard
CG algorithm are required. Furthermore, because the dyn-SAR method consists of solving
a sequence of relaxations for the ERMP, and in turn for the RMP, it is possible to abort
the execution of the method whenever the optimal solution for a relaxation R1,R2, . . . ,Rh,
h = 1, . . . , k, is found. The value associated with this solution provides a valid lower bound
for the original RMP. This aspect may be particularly useful when embedding dyn-SAR into

117

a branch-price-and-cut framework.

6.3 Computational experiments

In this section, we present the numerical experiments carried out on instances of the VRPTW,
the multi-person pose estimation problem (MPPE), and the bin packing problem with con-
flicts (BPPC). Given that our goal is to illustrate the impact of applying the new stabilization
framework, we focus only on the root node results. Each one of the following subsections
contains: a brief definition of the problem being solved; a brief description of the algorithms
implemented in our experiments; a detailing of the benchmark dataset considered; and a
discussion of the numerical results obtained.

6.3.1 Vehicle routing problem with time windows

Because the VRPTW has already been largely discussed in this document, for the sake of
conciseness, we refer to other chapters in this thesis for more details on the problem. The
VRPTW is formally defined in Section 4.1.1. Here, however, the set of customers to be
covered is denoted N . When applying CG, we model the VRPTW as described in Section
5.4. Here, however, we do not consider the PS as being an arc-ng-SPPRC, but rather a ng-
SPPRC (Sections 4.3.1 and 5.2.2). For the experiments, we consider instances from Gehring
and Homberger [215]’s benchmark dataset with 200 and 400 customers, which are described
in Section 5.4.2.

Algorithm

The performance of the dyn-SAR method is compared against a standard CG (std-CG)
algorithm with no explicit stabilization technique. The CG master problem of the latter,
however, is formulated as a set-covering problem that restrains the feasible dual space [21].
For both algorithms, the RMP is initialized with singleton routes. Both algorithms dyn-SAR
and std-CG employ the same pricing algorithm. In our experiments, valid inequalities are
not employed to reinforce the RMP.

The PS is solved by means of a bidirectional labeling algorithm [98], having the time as the
critical resource. Moreover, decremental state-space relaxation (DSSR, [41,42]) and ng-route
relaxation, with neighborhoods formed by the ten closest customers [2], are employed to
handle elementarity constraints. To accelerate the CG process, three heuristics are always
executed before any execution of the exact pricing: the first consisting of a tabu search, and
the second and the third are labeling algorithms solved over reduced networks containing at

118

most, respectively, around 5 and 10 arcs entering and exiting each customer node. All these
heuristics are described in [44]. These heuristics are applied sequentially before any call to
the exact labeling algorithm.

With respect to dyn-SAR, the method starts by sorting the customers in nondecreasing
order according to their closeness to the depot. The customers are then separated into non-
overlaping sets S, which are built, sequentially, by selecting the κ, the 2κ , the 4κ, . . ., closest
customers to the depot, every time increasing the value of κ by two. This procedure continues
until all the customers in the instances are selected. Each set induces a constraint C (S) to
be added to the RMP. The parameter κ is set to 20.

For each customer i ∈ N , we build neighborhoods containing the η = |N |/4 closest customers
to i according to a biased distance d̂ij = (dij)β, where β = max{1, d0i

d0j
}. This correction in the

value of the distance aims at favoring customers located geographically far from the depot
to be covered earlier in the algorithm. During the separation of the constraints C (S), the
cardinality of sets S is limited to the average size of the current basic routes. Additionally,
the maximum number of constraints added to the RMP at each iteration of the dyn-SAR
method is limited to 5% of |N |. When performing the separation of the constraints, we only
apply the dispersion method to the 25%|N | most violated sets S. The dyn-SAR algorithm is
performed until all customers are fully covered, and no more columns with negative reduced
cost can be found.

Experiments

Both algorithms (std-CG and dyn-SAR) were implemented using GENCOL library version
4.5, having IBM CPLEX Optimizer version 12.6 as the LP solver. The experiments were
carried out on a machine Intel i7-8700 @ 3.20 GHz with 64 GB of RAM. A the limit of 24h
was set to solve each instance. In our tests, instances R2_4_4, R2_4_8, RC2_4_4, and
RC2_4_10 could not be solved within the time limit imposed.

For each one of the algorithms, we retrieve the number of column generation iterations
(#iters) and the CPU time (T(s)). We present average values for each instance class.
Additionally, we compute the ratio of #iters and T(s) for std-CG relative to dyn-SAR.
We report average, minimum and maximum values.

Tables 6.1 and 6.2 summarize our computational experiments for the std-CG and the dyn-
SAR. As a general observation, dyn-SAR helps in reducing the number of column generation
iterations. For all classes of instances except RC1 with 200 customers, on average, dyn-
SAR was capable of decreasing the number of iterations by at least 20%. Regarding the

119

computational time, dyn-SAR yields considerable speedups when solving instances with long
routes (C2, R2, and RC2). This observation is somehow expected, given that these instances
are associated with long routes. Long routes are associated with dense columns, which is one
of the sources of degeneracy [49]. Our method, in turn, is effective in tackling problems with
such structures.

When we analyze relative values by comparing the CPU times, it may seem that the gains
obtained for groups C2, R2, and RC2 are canceled by the losses in groups C1, R1, and RC1.
However, we point out that the speedups yielded by dyn-SAR in absolute values are very
significant. As described in Section 5.4.2, while routes associated with instances C1, R1, and
RC1 tend to be short, i.e., on average 10 customers per route, routes for instances C2, R2, and
RC2 tend to be long, i.e., around 20 customers per route. These structures impact on the
complexity of solving instances in each one of these groups. The fact that the routes in group
2 instances are long makes the number of variables with zero value in the primal bases higher,
which is an indication of a highly degenerate problems. Because the dyn-SAR algorithm is
suitable to couple with degeneracy, the good performance of the method is expected. On the
other hand, for solving instances that do not exhibit as much degeneracy, the overhead of
applying dyn-SAR may not pay off. In the cases where dyn-SAR is slower than std-CG, the
slowdown factor is never greater than 5 min. On the other hand, dyn-SAR may accelerate
the execution of the algorithm by a couple of hours when tackling hard instances.

Table 6.1 Summary results for instances with 200 customers

Group std-CG dyn-SAR Ratio #iters. Ratio T(s)
#iters. T(s) #iters T(s) avg. min max avg. min max

C1 302.0 30.2 162.5 30.3 2.05 1.41 2.91 1.49 0.65 3.35
C2 1476.0 557.5 401.9 179.6 3.86 2.64 4.89 4.22 2.07 5.92
R1 332.1 69.2 284.7 104.4 1.19 0.83 1.67 0.70 0.53 1.01
R2 2220.5 4078.1 814.3 2277.5 2.72 1.41 6.78 2.26 1.11 3.65
RC1 346.2 68.3 349.9 97.7 0.99 0.65 1.48 0.68 0.47 0.84
RC2 2656.2 6177.6 1055.5 5173.7 2.49 1.77 3.98 1.56 0.98 2.89

6.3.2 Multi-person pose estimation

MPPE is the problem of identifying each unique person in an image and annotating their
body parts. The MPPE has several applications in computer vision, including self-driving
vehicles, rehabilitation, and military uses. This task is very complicated, given that people’s
appearance may notably change due to their clothes, body position, or other images in the
background of the picture. Additionally, some parts of their body may be only partially

120

Table 6.2 Summary results for instances with 400 customers

Group std-CG dyn-SAR Ratio #iters. Ratio T(s)
#iters. T(s) #iters T(s) avg. min max avg. min max

C1 722.7 175.1 300.8 205.0 2.42 2.15 2.61 0.98 0.68 1.54
C2 3324.9 5044.3 760.6 2157.2 4.51 3.64 5.65 2.61 1.88 3.36
R1 760.3 447.2 486.4 636.1 1.59 0.85 2.24 0.68 0.42 0.94
R2 6046.0 18461.0 1171.6 8208.6 5.10 1.86 10.41 4.16 1.44 6.32
RC1 754.7 380.1 528.0 514.6 1.43 0.98 1.97 0.71 0.44 0.85
RC2 8402.4 27916.8 1438.9 21855.2 5.87 3.31 8.98 2.55 0.83 6.16

visible due to occlusion. In the MPPE, the set of items corresponds to body part detections
that are generated by deep neural networks [221,222]. The problem then aims at identifying
which detections are associated with a given person, where each person is modeled according
to a tree structure [223–225]. These detections are associated with fourteen human body
parts, namely: head, neck, left/right shoulders, elbows, wrists, hips, knees, and ankles.

Let N be the set of detections. For each detection i ∈ N , a parameter Ri indicates to which
body part a given detection is associated. Thus, we can define the set N r that corresponds
to the set of detections associated with a body part r. Let Ω be the potential set of persons,
which is defined as being the power set of N . It is important to mention that a person may
be associated with more than one detection of any given body part. Furthermore, a person
may not include any detection of a given body part due to occlusion. When modeling the
problem, a binary parameter aij indicates if a detection i ∈ N is assigned to a person j ∈ Ω.

The cost structure of the MPPE is defined as follows. For each detection i ∈ N , we define
a cost ϕ1

i that associates each detection to a person. Moreover, for each pair of detections
i1, i2 ∈ N , a cost ϕ2

i1,i2 indicates if both detections should be associated with the same person.
Positive/negative values discourage/encourage the presence of i1 and i2 jointly in the same
person. Because each person is modeled as being a tree, costs ϕ2

i1,i2 are non-zero if Ri1 = Ri2

or if Ri1 is adjacent to Ri2 . A cost ϕ0 measures a Bayesian belief that a given number
of persons will be in the image. Positive/negative values of ϕ0 discourage/encourage the
presence of more persons in the packing. The cost of a pose (person) is then computed as
follows:

cj = ϕ0 +
∑
i∈N

ϕ1
i a
i
j +

∑
i∈N

aijϕ
1
i

∑
i1∈N
i2∈N

ai1j a
i2
j ϕi1,i2 (6.16)

To solve the MPPE using CG, one models the problem as being a minimum weight set packing
(MWSP) problem. A MWSP can be represented by (6.4)–(6.6), except that in constraints

121

(6.5) the sign ≥ must be replaced by ≤. In this formulation, each constraint is associated
with a detection i ∈ N . When solving the PS for the MPPE, one starts by identifying neck
detections from N . The pricing problem then consists of finding least-cost poses (person)
rooted at each one of these neck detections. The reduced cost of a pose is computed as
c̄j = cj−

∑
i∈N a

i
jπi, where πi ∈ N are dual variables coming from the RMP. For more details

on how to model and solve computer vision problems using CG, and specifically the MPPE,
the interested reader is referred to [12,13].

Algorithm

With a view of evaluating the performance of dyn-SAR in solving the MPPE, we consider
two methods: a standard implementation of a CG algorithm (std-CG) and a CG method
that employs the varying dual optimal inequalities of Yarkony et al. [12] (DOI) as stabilization
method. For more details on the latter, the reader is referred to Section 2.3. To the best of our
knowledge, the latter is one of the state-of-the-art stabilization strategies for CG applied to
the MPPE. For all three settings – std-CG, DOI, and dyn-SAR – the dynamic programming
pricing subproblems are solved using the nested Benders decomposition algorithm of Wang
et al. [13].

More specifically for the dyn-SAR method, the algorithm starts by solving a relaxation of
(6.10)– (6.12) containing a single constraint (6.11) defined for S = N . When applying dyn-
SAR for the MPPE, we do not consider specific neighborhoods. Rather than relying on static
attributes of the detections, we look at the basic solution obtained once CG has been solved to
optimality. Every time a problem R is solved, for each active pose (basic variable), we create
a constraint for all the members (detections) of that pose that are over-included. No limits are
imposed on the number of items per constraint (maxNbItemsPerSet =∞), nor on the number
of constraints added to the RMP at each round of separation (maxNbConstrsToAdd = ∞).
As a consequence, the procedure maxDispersionHeuristic is not executed. The dyn-SAR
algorithm stops when any of the detections is over-included, and no more columns with
negative reduced cost can be found to be added to the ERMP.

Instances

To evaluate the performance of our method when solving MPPE instances, we consider
the MPII-multi-person dataset [226]. This dataset is composed of 418 instances, each one
containing approximately 10,000 detections each. The cost terms and the problem structure
are similar to the ones in [222], but they are modified to increase the convergence of the
algorithm. Details about this preprocessing step are given in [12].

122

Experiments

Experiments for the MPPE were carried out on a machine Intel i7-6850K @ 3.60 GHz.
Algorithms described in the previous section were coded in Matlab 2017 and employed the
built-in Matlab solver based on interior points as the LP solver. For each instance and
setting, we collect the total CPU time (T(s)) and the number of CG iterations (#iters).
Additionally, we report relative values of T(s) and #iters for std-CG relative to dyn-
SAR, and for dyn-SAR relative to DOI. The former allows us to identify speedups achieved
by dyn-SAR in comparison with std-CG, whereas the latter enables us to assess dyn-SAR
performance when compared to a CG algorithm tailored with dual optimal inequalities.

In our analysis, we decided to only consider instances for which the solution process imposed
some challenges to the methods. For this reason, we only report results for the 30 instances
for which std-CG took the longest to solve. Considering easy instances might affect negatively
the quality of the conclusions drawn.

The results in Table 6.3 show that dyn-SAR can yield considerable speedups when compared
to std-CG. On average, dyn-SAR is 16 times faster than the std-CG and can reduce the
number of iterations by half. When compared to the method based on the use of tailored
DOIs, dyn-SAR is, on average, 3 times slower and requires 5 times more iterations. This
worse performance is expected given that DOI is an approach tailored to solve the MPPE,
where dyn-SAR is a generic method and can be applied to solve different problems.

123

Table 6.3 Results for the Multi-Person Pose Estimation

Instance std-CG DOI dyn-SAR std-CG / dyn-SAR dyn-SAR / DOI
T(s) #iters T(s) #iters T(s) #iters T(s) #iters T(s) #iters

0051 43.6 90 3.3 10 10.1 58 4.3 1.6 3.1 5.8
0118 49.4 120 8.0 26 20.9 123 2.4 1.0 2.6 4.7
0551 52.1 70 8.6 14 18.4 53 2.8 1.3 2.1 3.8
0590 101.8 67 20.8 25 51.8 72 2.0 0.9 2.5 2.9
0807 43.8 71 6.4 19 24.0 92 1.8 0.8 3.7 4.8
0842 151.1 162 6.6 20 15.1 72 10.0 2.3 2.3 3.6
0858 74.3 78 12.2 16 40.2 68 1.8 1.1 3.3 4.3
0924 1833.6 394 6.2 17 18.4 65 99.8 6.1 3.0 3.8
1018 56.0 77 4.3 11 9.8 45 5.7 1.7 2.3 4.1
1027 75.5 149 6.0 17 15.1 87 5.0 1.7 2.5 5.1
1064 189.3 180 3.8 13 8.9 69 21.3 2.6 2.3 5.3
1341 792.6 317 5.3 14 14.3 72 55.4 4.4 2.7 5.1
1366 430.7 206 5.3 16 11.8 58 36.5 3.6 2.2 3.6
1547 43.5 50 15.3 17 39.0 88 1.1 0.6 2.6 5.2
1742 66.7 80 5.9 12 30.2 79 2.2 1.0 5.1 6.6
2290 131.0 99 8.5 23 44.2 124 3.0 0.8 5.2 5.4
2296 72.6 78 3.4 12 8.2 42 8.8 1.9 2.5 3.5
2311 98.0 82 4.9 9 20.0 72 4.9 1.1 4.1 8.0
2531 266.3 316 4.7 18 14.7 96 18.1 3.3 3.1 5.3
2606 63.3 117 2.8 10 5.1 31 12.4 3.8 1.8 3.1
3003 250.2 206 5.7 24 28.9 136 8.7 1.5 5.1 5.7
3079 120.9 219 4.6 18 5.9 46 20.3 4.8 1.3 2.6
3156 64.1 92 3.3 10 13.2 61 4.9 1.5 4.0 6.1
3322 399.0 319 2.0 12 4.9 50 81.8 6.4 2.5 4.2
3324 60.8 161 2.4 16 4.1 60 14.8 2.7 1.7 3.8
3328 52.3 111 3.7 19 6.3 63 8.3 1.8 1.7 3.3
3398 211.2 240 2.7 8 10.9 59 19.5 4.1 4.0 7.4
3466 47.9 72 4.9 11 14.5 72 3.3 1.0 3.0 6.5
3735 546.8 322 9.4 16 45.9 124 11.9 2.6 4.9 7.8
3774 87.9 137 3.1 10 8.1 44 10.9 3.1 2.6 4.4

Average 215.9 156.1 6.1 15.4 18.8 72.7 16.1 2.4 3.0 4.9

124

6.3.3 Bin Packing Problem with Conflicts

The BPPC can be defined as follows. Let N = {1, . . . , n} be a set of n items. With each
item i ∈ N it is associated a weight wi and a conflict set Ci ⊂ N , that contains all items
in conflict with i. Moreover, let B be an infinite set of bins, each one having capacity
W . In the BPPC, there is a conflict graph G = (N,E), where an edge (i, j) ∈ E exists
if items i and j are in conflict, i.e., i ∈ Cj and j ∈ Ci. From graph G, it is possible
to obtain an extended conflict graph G′ = (N,E ′), where the set of edges is defined as
E ′ = E ∪ {{i, j} : i, j ∈ N and wi + wj ≥ W}. The BPPC consists in finding an assignment
of the items to the bins such that: each item i ∈ N is assigned to exactly one bin; the number
of bins used is minimized; the total weight of the items in any given bin does not exceed W ;
and no pair items in a bin are in conflict.

CG algorithms designed to solve the BPPC may consider a set partitioning or covering formu-
lation [19, 68, 227, 228]. From formulation (6.7)–(6.9): Ω represents the set of all assignment
patterns (i.e., subsets of items assigned to a single bin); the binary parameter aij takes value 1
if item i ∈ N belongs to pattern j ∈ Ω, or 0, otherwise; and the cost of a pattern is such that
cj = 1. The PS from the BPPC is modeled as a knapsack problem with conflicts (KPC).
This problem is typically solved in the literature using a MIP solver [227, 228], but some
more efficient approaches have been recently devised [19]. The reduced cost of each variable
(pattern) is computed with expression (6.15).

Algorithm

To evaluate the performance of the dyn-SAR method, we compare our results with those
obtained by a standard CG algorithm (std-CG). The MP considered in the latter is modeled
using a set-covering formulation. When applying dyn-SAR to the BPPC, the EMP is derived
from a set-covering formulation as well. In both methods, the KPC defining the PS is solved
with the depth-first-search BB algorithm proposed by Sadykov and Vanderbeck [19]. This
method consists of a recursive approach that combines a classic BB framework, with the
solution of the continuous relaxation of 0-1 knapsack problems to derive bounds, and an
enumeration algorithm used to solve maximum clique problems. In our implementation,
only a single best-reduced cost column is added at each iteration.

Because we wanted to evaluate the impact of applying dyn-SAR when solving the BPPC, we
tried to keep the algorithm as simple as possible. For this reason, we do not implement the
prepossessing step described in [227], nor we consider any heuristic pricing algorithm to solve
the KPC. As a matter of fact, Sadykov and Vanderbeck [19] observed that in their implemen-

125

tation, using non-exact pricing tended to slow down the convergence of the CG procedure.
Furthermore, the BB algorithm has proven to scale well for the instances considered, which
does not justify the use of heuristic pricing methods.

Regarding the dyn-SAR algorithm, the initial relaxation solved in the method is defined by
partitioning the items as follows. Initially, we sort the items in non-increasing order according
to their weights. Then, we build sets S that contain, respectively, the first 2κ items, then
the following 4κ items, and so on, until all the items have been added to some set S. In
our implementation, κ = 1. During this first step, conflicts among items are not taken into
account.

The neighborhoods considered in method buildViolatedSets in the Algorithm 2 are gen-
erated as follows. For each item i ∈ N , neighborhoods are such that: H(i) = {∀j ∈ N :
i 6= j, |wi − wj| ≤ W/10 and |Ci ∆Cj| ≤ 3|N |/10}. That is, neighborhoods contain items
that are similar in weight, and for which the cardinality of the symmetric difference be-
tween the respective conflict sets is smaller than 30% of the size of the instance. We impose
|H(i)| ≤ |N |/10. Finally, in Algorithm 2 for the BPPC, maxNbItemsPerSet is set to the
average number of items in the bins associated with the basic variables in the previous it-
eration of the CG procedure, and maxNbConstrsToAdd is limited to |N |/10. The algorithm
is executed when all items in N have been fully covered and when no more columns with
negative reduced cost can be found to be added to the ERMP.

Instances

We tested the performance of our method on instances with arbitrary conflict graphs gen-
erated according to the procedure described by Sadykov and Vanderbeck [19]. The choice
for instances with this type of graph is based on the conclusions drawn by Sadykov and
Vanderbeck, who state that instances with arbitrary conflict graphs are significantly harder
to solve than instances with interval conflict graphs [227,229].

The instances that we generate are based on the traditional dataset proposed by Gendreau
et al. [229]. There are eight classes of instances. The first four, denoted as u, have bins with
capacity 150, and items with integer weights that are obtained randomly from the interval
[20, 100]. The number of items n in each class of instances are, 120, 250, 500, and 1,000,
respectively. The remaining instances have a triplet structure, i.e., each bin contains exactly
three items. These instances are denoted t and have bins with capacity W = 1, 000. The
weight of items is generated as follows. At first, integer weights for two items i, j ∈ N

are randomly generated from [20, 100]. Then, the weight of a third item k is such that
wk = W − wi − wj. The four classes of instances with a triplet structure have, respectively,

126

60, 120, 249, 501 items. For each instance class – u120, u250, u500, u1000, t60, t120, t249,
t501 – we generate 10 instances. For each instance, nine different instances are produced,
each one associated with one density in D = {0.1, 0.2, . . . , 0.9}, resulting in 90 instances per
class. For each density d ∈ D, the procedure to generate conflict graphs consists in generating
pairs (i, j), such that i, j ∈ N and i < j, without repetition, until d n(n−1)

2 pairs have been
generated.

Experiments

In our experiments, both algorithms (std-CG and dyn-SAR) were coded in C++, and IBM
CPLEX Optimizer version 12.8 was employed as the LP solver. The tests were carried out
on a machine Intel Xeon E5-2637 v2 @ 3.50 GHz with 128 GB of RAM. A time limit of 10h
was set to solve each instance.

Tables 6.4 and 6.5 present average results for instances t and u, respectively. Each line in
these tables provides average values obtained over all instances in the class. To avoid noise in
our analysis, we only report results for instances for which std-CG required more than 15s.
For each instance, we collect the CPU time (T(s)) and the number of column generation
iterations (#iters). Additionally, for each instance class, we compute the ratio for #iters
and T(s) of std-CG relative to dyn-SAR. We report average, minimum and maximum values.

Numerical results show that, for some groups of instances, dyn-SAR can yield speedups su-
perior to an order of magnitude. This observation is more notable when addressing triplet
instances. These types of instances are among the hardest BPPC instances in the litera-
ture [227, 230]. Regarding the number of iterations, one may notice that dyn-SAR requires
consistently fewer iterations, but the reductions only neared 5%. This shows that the dyn-
SAR method tends to require, on average, less CPU time per iteration. Two aspects may
explain the better performance yielded by dyn-SAR. First, even if the ERMP may end with
more constraints than the original RMP, the number of constraints at the beginning of the
algorithm is considerably small. Hence, the overall CPU time required to solve the ERMP
is smaller. The second aspect to be taken into account concerns the distribution of dual
variables. It appears during our computational experiments that dyn-SAR produces dual
variables that yield easier-to-solve PSs. For the instances with weights uniformly distributed,
the superiority of dyn-SAR was less drastic, though still very significant.

127

Table 6.4 Summary results – Bin Packing Problem with Conflicts – Triplet instances

Group std-CG dyn-SAR ratio #iters. ratio T(s)
#iters. T(s) #iters T(s) avg. min max avg. min max

ta249_1 853 333.4 786 34.0 1.09 1.04 1.15 9.87 8.40 11.10
ta249_2 833 179.4 791 23.7 1.05 0.98 1.16 7.66 6.35 8.54
ta249_3 859 95.7 800 15.7 1.07 1.03 1.13 6.20 5.02 7.36
ta249_4 870 46.3 814 13.0 1.07 1.02 1.10 3.59 3.13 4.04
ta249_5 892 20.9 843 11.5 1.06 1.01 1.10 1.84 1.59 2.34
ta501_1 1637 11,409.3 1552 554.6 1.05 1.01 1.07 20.93 16.76 24.50
ta501_2 1619 6,268.4 1563 339.1 1.04 1.02 1.06 19.07 13.48 22.98
ta501_3 1619 3,169.5 1561 168.9 1.04 0.99 1.06 19.02 15.74 22.29
ta501_4 1644 1,423.1 1575 93.9 1.04 1.00 1.08 15.73 12.09 20.70
ta501_5 1684 573.6 1599 53.2 1.05 1.03 1.08 11.04 8.60 13.85
ta501_6 1731 209.8 1623 38.3 1.07 1.04 1.12 5.90 2.84 7.48
ta501_7 1636 68.0 1552 22.8 1.06 1.03 1.12 3.39 2.08 6.23
ta501_8 1595 28.4 1491 19.6 1.07 1.03 1.11 1.59 1.22 2.32

Table 6.5 Summary results – Bin Packing Problem with Conflicts – Uniform instances

Group std-CG dyn-SAR ratio #iters. ratio T(s)
#iters. T(s) #iters T(s) avg. min max avg. min max

ua500_1 1430 145.7 1385 36.6 1.07 1.03 1.11 3.24 1.19 8.78
ua500_2 1436 32.7 1357 20.2 1.06 1.00 1.09 1.69 0.88 2.40
ua500_3 1436 17.8 1355 13.7 1.06 1.02 1.10 1.35 1.10 1.72
ua1000_1 2822 11,693.2 2616 1,441.6 1.08 1.05 1.10 13.13 1.89 29.07
ua1000_2 2817 2,219.2 2598 266.3 1.08 1.04 1.11 9.47 3.00 19.98
ua1000_3 2792 322.5 2589 100.1 1.08 1.05 1.11 3.32 1.28 7.30
ua1000_4 2786 101.9 2574 68.9 1.08 1.06 1.11 1.48 1.16 1.75
ua1000_5 2804 74.5 2575 55.6 1.09 1.06 1.12 1.34 1.24 1.59
ua1000_6 2806 61.9 2589 51.3 1.08 1.06 1.12 1.21 1.11 1.37
ua1000_7 2830 57.0 2612 48.1 1.08 1.07 1.12 1.19 1.12 1.28
ua1000_8 2943 51.2 2717 48.1 1.08 1.05 1.14 1.07 0.97 1.16
ua1000_9 3196 51.0 2900 52.6 1.10 1.07 1.12 0.97 0.89 1.04

128

6.4 Conclusions

In this chapter, we have proposed a new generic stabilization framework, called dyn-SAR, to
tackle highly degenerate CG problems. Contrarily to other approaches in the literature, our
method has the advantage of being simple and easy to understand and implement. Moreover,
dyn-SAR has shown to be a general method. This observation is confirmed by the distinct
structures of the problems solved in our experiments. Computational tests have shown that
dyn-SAR can yield considerable gains in terms of running time and the number of iterations
performed by the algorithm. As future work, we intend to design a procedure to remove
constraints that are no longer useful in the algorithm. Moreover, we plan to investigate
the dyn-SAR method from a theoretical point of view. This will help us to understand the
theoretical foundations behind dyn-SAR, which may be useful in designing more general
stabilization methods.

129

CHAPTER 7 GENERAL DISCUSSION

The methodological survey on BPCs for VRPs represents an important tool for CG prac-
titioners. While it can serve the traditional purpose of a survey – which is to provide a
general overview of the literature to allow the identification of potential research avenues
–, it is not limited to the latter. The motivation behind our study was to provide a tuto-
rial/guide for researchers who intend to work on the development of CG-based algorithms for
VRPs. According to Feillet [21], studies with this nature are important because, in spite of
being popular, BPC methods are typically hard to understand and reproduce due to 1) their
complexity and the large literature in the field; 2) the variety of perspectives from which
the method can be explored; 3) the lack of comprehensible descriptions of the method. In
this context, our survey aimed at filling the gap in the literature regarding the existence of
works that explain with details the main components of BPC algorithms. To the best of our
knowledge, in the recent literature, there are no research works similar to ours. The studies
by Poggi and Uchoa [94] and Baldacci et al. [78] present general reviews on the development
of exact algorithms to classic VRP variants like the CVRP and the VRPTW. Our work is
broader in the sense that it highlights and discusses the main modeling and methodological
strategies proposed over the years to design BPC algorithms for different VRPs. In our study,
we not only describe each one of the strategies but also, when convenient, provide further
information regarding implementation aspects. Therefore, the survey can be useful for either
people who want to learn more about the development of BPC algorithms in general, or for
experienced researchers who may be interested in more technical details.

From our survey and also from the literature review presented in Chapter 2, we could identify
the two remaining aspects that motivated this thesis. First, despite the intense work in
the area in the last years, there is still a need for new mechanisms that allow designing
more efficient algorithms to solve VRPs. Second, there exists a lack of generic stabilization
techniques, i.e., methods that can be applied to problems with different structures. Regarding
the former aspect, our selective pricing algorithm devised to solve (E)SPPRCs defining pricing
subproblems in vehicle routing applications corresponds to one more attempt in this direction.
When compared to the algorithm for the arc-ng-SPPRC developed by Bulhões et al., the
dominance relations yielded by the selective pricing are stronger and more general. Moreover,
to have its potential fully exploited, Bulhões et al.’s strategy requires careful implementation
and the use of a cumbersome data structure. In turn, contrary to the selective pricing devised
by Desaulniers et al. [107], the new selective method is easier to implement. Whereas the
latter can be applied simply by modifying the dominance rule, the former requires the addition

130

of several data structures and sub-procedures, which may add some overhead to the method.

Finally, with respect to the development of more general stabilization techniques, our dyn-
SAR algorithm represents a good alternative. It does not require the matrix of coefficients
to have any particular structure [66–68], and can be applied to solve problems modeled as
set-partitioning, covering or packing problems [49,52]. Despite having constraints generated
dynamically, due to the extended formulation in which the method is implicitly based, all the
dual information is available at all times. For this reason, no changes at the pricing problem
level are required [52], nor the dual variables must be estimated [55] or projected [56]. The
dyn-SAR method is easy to understand because it does not require complex concepts [63],
and its implementation is straightforward. Indeed, it is possible to employ directly a pricing
algorithm that is used in a standard CG method.

131

CHAPTER 8 CONCLUSION AND RECOMMENDATIONS

In this thesis, we discussed and proposed techniques to enhance CG algorithms applied to
COPs. In Section 8.1 we summarize the works derived from this thesis. In Section 8.2, we
discuss the main limitations for each one of the ideas proposed and suggest potential research
avenues to be exploited.

8.1 Summary of Works

Motivated by the lack of studies concerning the existence of works with comprehensive ex-
planations about BPCs algorithms, we wrote a methodological survey that is presented in
Chapter 4. In this study, we highlight and discuss the main algorithmic and modeling contri-
butions made over the years in the context of BPCs for VRPs. Our survey is divided into two
main parts. In the first part, we present ideas that are applicable to different VRP variants.
We discuss topics related to pricing algorithms, cutting separation, branching strategies, and
stabilization. The second part is more problem-oriented. We describe how attributes such
as heterogeneous fleet, multi-depots, soft time windows, split deliveries, time dependency,
pickup and deliveries, uncertainty, and environmental aspects are handled when designing
BPC algorithms. We believe that this survey paper will help researchers to identify poten-
tial improvements to be made on BPC algorithms for VRPs, hence, helping to advance the
research in the domain.

In Chapter 5, we propose a selective pricing algorithm that is based on a new dominance
criterion for the arc-ng-SPPRC. This dominance rule extends the set-based dominance rule
proposed by Bulhões et al. [1], making it more general and stronger. One of the main
advantages of using the new strategy is that it can be easily implemented, once it does not
rely on complex data structures or sub-procedures [1,107]. Computational results performed
over VRPTW instances show that the proposed mechanism helps in reducing the number of
non-dominated labels kept by the labeling algorithm and, as a consequence, the CPU time.

Finally, in Chapter 6, we developed a stabilization method to tackle COPs with degenerate
structures. The new stabilization framework, called dyn-SAR, is based on the dynamic
separation of aggregated constraints, which are obtained by summing up constraints from
the RMP. The stabilization effect induced by the dyn-SAR method comes from the fact
that it yields stronger interactions between the dual variables, which is not observed when
solving explicitly a set-partitioning (covering/packing) formulation. The interest in using the

132

dyn-SAR algorithm is twofold. First, implementing dyn-SAR is straightforward. Second, dyn-
SAR is capable of solving problems with different structures. The latter aspect is illustrated
in our experiments, where we solve instances from problems differing considerably in terms
of objective function and pricing subproblem, namely: the VRPTW, the MPPE, and the
BPPC. Numerical results show a clear advantage of the dyn-SAR algorithm over a standard
CG method in reducing both the number of iterations and the CPU time.

8.2 Limitations and future research

In our survey, we focused on presenting ideas developed in the context of BPC algorithms
applied to problems that are related to the CVRP. As a consequence, numerous traditional
routing problems were left out, namely: vehicle scheduling problem, inventory routing, ship
routing, location routing, among others. Given that CG has become the leading technique for
solving different classes of COPs, tailored strategies have certainly been developed to exploit
the specific structure of these problems. For this reason, we believe that methodological
studies regarding BPC methods for different routing problems or even other COPs would
become a powerful research tool.

The selective pricing algorithm that we describe in Chapter 5 employs a dominance relation
that relies on the set of forbidden extensions associated with the predecessor of a label to
decide if keeping this label is beneficial or not. This strategy has the potential of yielding
sharper dominance rules and avoiding unpromising extensions. In our method, we only look
at the immediate predecessor of a label. An extension of our idea would be to investigate the
impact of considering the set of forbidden extensions of other predecessors further down in
the path. On the one hand, this generalization has the potential of strengthening even more
dominance rules. On the other hand, a more elaborate data structure would be required to
cope with the overhead incurred by the new relations. The proof that we provide holds only
for the case where the immediate predecessor is considered. In this context, some future
research may be done in two directions: 1) extend our proof to encompass the more general
case, and 2) devise tailored data structures to accommodate the additional computational
burden.

Regarding dyn-SAR, despite its efficiency in improving the convergence of CG algorithms
applied to degenerate problems, we are not entirely aware of the theoretical properties guid-
ing the method. All the intuition that we have developed so far was based on empirical
evidence. For some problems such as the classical bin packing problem [10], dyn-SAR can
be seen as an adapted (dynamic) version of the aggregation method applied to implement
static dual inequalities [67]. However, for more complex problems such as the ones that we

133

considered in our analysis, this equivalency is not clear. Yet, in our method, when decid-
ing which constraints from the RMP to aggregate, we tend to favor those which may have
similar (not necessarily equal) dual variables. An analogous requirement is also sought when
identifying dual inequalities to restrain the dual solution space. In light of this, we believe
that investigating more in-depth the theoretical foundations behind dyn-SAR can help to
gain some insights that may be useful when designing more general stabilization methods.
A potential research direction that we point out concerns the study of dual inequalities for
VRPs. The number of works in this field is scarce, not to say in-existent. To the best of
our knowledge, the only paper in the literature proposing dual inequalities for VRPs is the
one by Gschwind et al. [70]. However, the stabilization effect in this application comes from
the special relationship between the demands of the customers in the problem. Thus, the
method is very tailored to the problem being solved.

134

REFERENCES

[1] T. Bulhões, R. Sadykov, and E. Uchoa, “A branch-and-price algorithm for the minimum
latency problem,” Computers & Operations Research, vol. 93, pp. 66–78, 2018.

[2] R. Baldacci, A. Mingozzi, and R. Roberti, “New route relaxation and pricing strategies
for the vehicle routing problem,” Operations Research, vol. 59, no. 5, pp. 1269–1283,
2011.

[3] P. Toth and D. Vigo, Eds., Vehicle routing: problems, methods and applications.
MOS/SIAM Series on Optimization, 2014.

[4] European Space Agency, “How many stars are there in the universe?” Accessed:
January, 16, 2020. [Online]. Available: https://www.esa.int/Science_Exploration/
Space_Science/Herschel/How_many_stars_are_there_in_the_Universe

[5] V. Maniezzo, T. Stützle, and S. Voß, Eds., Matheuristics - Hybridizing Metaheuristics
and Mathematical Programming, ser. Annals of Information Systems. Springer, 2010,
vol. 10.

[6] M. Gendreau and J.-Y. Potvin, Eds., Handbook of Metaheuristics, 3rd ed., ser. Interna-
tional Series in Operations Research & Management Science. Springer International
Publishing, 2019.

[7] G. Desaulniers, J. Desrosiers, and M. M. Solomon, Eds., Column Generation, 1st ed.
Springer US, 2005.

[8] G. Desaulniers, J. Desrosiers, I. Ioachim, M. M. Solomon, F. Soumis, and D. Vil-
leneuve, “A unified framework for deterministic time constrained vehicle routing and
crew scheduling problems,” in Fleet Management and Logistics, T. G. Crainic and
G. Laporte, Eds. Boston, MA: Springer US, 1998, ch. 3, pp. 57–93.

[9] L. Costa, C. Contardo, and G. Desaulniers, “Exact branch-price-and-cut algorithms
for vehicle routing,” Transportation Science, vol. 53, no. 4, pp. 946–985, 2019.

[10] M. Delorme, M. Iori, and S. Martello, “Bin packing and cutting stock problems: Math-
ematical models and exact algorithms,” European Journal of Operational Research, vol.
255, no. 1, pp. 1–20, 2016.

https://www.esa.int/Science_Exploration/Space_Science/Herschel/How_many_stars_are_there_in_the_Universe
https://www.esa.int/Science_Exploration/Space_Science/Herschel/How_many_stars_are_there_in_the_Universe

135

[11] T. Bulhões, R. Sadykov, A. Subramanian, and E. Uchoa, “On the exact solution of
a large class of parallel machine scheduling problems,” Journal of Scheduling, 2020,
forthcoming.

[12] J. Yarkony, Y. Adulyasak, M. Singh, and G. Desaulniers, “Data association via set
packing for computer vision applications,” Montréal, Research report G-2019-42, Les
Cahiers du GERAD, HEC Montréal, 2019.

[13] S. Wang, A. Ihler, K. Kording, and J. Yarkony, “Accelerating dynamic programs via
nested benders decomposition with application to multi-person pose estimation,” in
Proc. 15th European Conference on Computer Vision, Munich, Germany, 2018, pp.
652–666.

[14] C. Barnhart, E. L. Johnson, G. L. Nemhauser, M. W. P. Savelsbergh, and P. H. Vance,
“Branch-and-price: Column generation for solving huge integer programs,” Operations
Research, vol. 46, no. 3, pp. 316–329, 1998.

[15] M. E. Lübbecke and J. Desrosiers, “Selected topics in column generation,” Operations
Research, vol. 53, no. 6, pp. 1007–1023, 2005.

[16] G. B. Dantzig and J. H. Ramser, “The truck dispatching problem,” Management Sci-
ence, vol. 6, no. 1, pp. 80–91, 1959.

[17] T. Vidal, G. Laporte, and P. Matl, “A concise guide to existing and emerging vehicle
routing problem variants,” European Journal of Operational Research, pp. 1–42, 2019,
forthcoming.

[18] K. Jansen, “An Approximation Scheme for Bin Packing with Conflicts,” Journal of
Combinatorial Optimization, vol. 3, no. 4, pp. 363–377, 1999.

[19] R. Sadykov and F. Vanderbeck, “Bin packing with conflicts: A generic branch-and-price
algorithm,” INFORMS Journal on Computing, vol. 25, no. 2, pp. 244–255, 2013.

[20] J. Desrosiers, F. Soumis, and M. Desrochers, “Routing with time windows by column
generation,” Networks, vol. 14, no. 4, pp. 545–565, 1984.

[21] D. Feillet, “A tutorial on column generation and branch-and-price for vehicle routing
problems,” 4OR, vol. 8, no. 4, pp. 407–424, 2010.

[22] B. Korte and J. Vygen, Combinatorial Optimization: Theory and Algorithms, 6th ed.,
ser. Algorithms and Combinatorics. Bonn, Germany: Springer-Verlag Berlin Heidel-
berg, 2018, vol. 21.

136

[23] G. B. Dantzig and P. Wolfe, “Decomposition principle for linear programs,” Operations
Research, vol. 8, no. 1, pp. 101–111, 1960.

[24] F. Vanderbeck and L. A. Wolsey, Reformulation and Decomposition of Integer Pro-
grams. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, ch. 13, pp. 431–502.

[25] F. Margot, Symmetry in Integer Linear Programming. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2010, ch. 17, pp. 647–686.

[26] L. R. Ford and D. R. Fulkerson, “A suggested computation for maximal multi-
commodity network flows,” Management Science, vol. 50, no. 12_supplement, pp.
1778–1780, 2004.

[27] P. C. Gilmore and R. E. Gomory, “Linear programming approach cutting stock,” Op-
erations Research, vol. 9, no. 6, pp. 849–859, 1961.

[28] I. Elhallaoui, A. Metrane, G. Desaulniers, and F. Soumis, “An improved primal simplex
algorithm for degenerate linear programs,” INFORMS Journal on Computing, vol. 23,
no. 4, pp. 569–577, 2011.

[29] A. Zaghrouti, F. Soumis, and I. El Hallaoui, “Integral simplex using decomposition for
the set partitioning problem,” Operations Research, vol. 62, no. 2, pp. 435–449, 2014.

[30] L. A. Wolsey, Integer Programming. New York, NY, USA: Wiley-Interscience, 1998.

[31] G. L. Nemhauser and L. A. Wolsey, Integer and combinatorial optimization. New
York, NY, USA: Wiley-Interscience, 1988.

[32] G. L. Nemhauser and S. Park, “A polyhedral approach to edge coloring,” Operations
Research Letters, vol. 10, no. 6, pp. 315–322, 1991.

[33] M. Poggi de Aragão and E. Uchoa, “Integer program reformulation for robust branch-
and-cut-and-price algorithms,” in Proceedings of the Conference Mathematical Pro-
gramming in Rio: A Conference in Honour of Nelson Maculan, 2003, pp. 56–61.

[34] E. Uchoa, R. Fukasawa, J. Lysgaard, A. Pessoa, M. P. De Aragão, and D. Andrade,
“Robust branch-cut-and-price for the Capacitated Minimum Spanning Tree problem
over a large extended formulation,” Mathematical Programming, vol. 112, no. 2, pp.
443–472, 2008.

[35] A. Pessoa, E. Uchoa, M. P. de Aragão, and R. Rodrigues, “Exact algorithm over an
arc-time-indexed formulation for parallel machine scheduling problems,” Mathematical
Programming Computation, vol. 2, no. 3, pp. 259–290, 2010.

137

[36] G. Desaulniers, J. Desrosiers, and S. Spoorendonk, “Cutting planes for branch-and-
price algorithms,” Networks, vol. 58, no. 4, pp. 301–310, 2011.

[37] L. Caccetta and A. Kulanoot, “Computational aspects of hard knapsack problems,” in
Proceedings of the Third World Congress of Nonlinear Analysts, vol. 47, no. 8, 2001,
pp. 5547–5558.

[38] M. Dror, “Note on the complexity of the shortest path models for column generation
in VRPTW,” Operations Research, vol. 42, no. 5, pp. 977–978, 1994.

[39] D. Pisinger, “A minimal algorithm for the 0-1 knapsack problem,” Operations Research,
vol. 45, no. 5, pp. 758–767, 1997.

[40] M. Desrochers and F. Soumis, “A generalized permanent labeling algorithm for the
shortest path problem with time windows,” INFOR, vol. 26, pp. 191–212, 1988.

[41] N. Boland, J. Dethridge, and I. Dumitrescu, “Accelerated label setting algorithms
for the elementary resource constrained shortest path problem,” Operations Research
Letters, vol. 34, no. 1, pp. 58–68, 2006.

[42] G. Righini and M. Salani, “New dynamic programming algorithms for the resource
constrained elementary shortest path problem,” Networks, vol. 51, no. 3, pp. 155–170,
2008.

[43] R. Fukasawa, H. Longo, J. Lysgaard, M. Poggi de Aragão, M. Reis, E. Uchoa, and
R. F. Werneck, “Robust branch-and-cut-and-price for the capacitated vehicle routing
problem,” Mathematical Programming, vol. 106, no. 3, pp. 491–511, 2006.

[44] G. Desaulniers, F. Lessard, and A. Hadjar, “Tabu search, partial elementarity, and
generalized k-path inequalities for the vehicle routing problem with time windows,”
Transportation Science, vol. 42, no. 3, pp. 387–404, 2008.

[45] D. Pecin, A. Pessoa, M. Poggi, and E. Uchoa, “Improved branch-cut-and-price for
capacitated vehicle routing,” Mathematical Programming Computation, vol. 9, no. 1,
pp. 61–100, 2017.

[46] D. Pecin, C. Contardo, G. Desaulniers, and E. Uchoa, “New enhancements for the
exact solution of the vehicle routing problem with time windows,” INFORMS Journal
on Computing, vol. 29, no. 3, pp. 489–502, 2017.

138

[47] A. Pessoa, R. Sadykov, and E. Uchoa, “Enhanced branch-cut-and-price algorithm for
heterogeneous fleet vehicle routing problems,” European Journal of Operational Re-
search, vol. 270, no. 2, pp. 530–543, 2018.

[48] F. Quesnel, G. Desaulniers, and F. Soumis, “Improving air crew rostering by considering
crew preferences in the crew pairing problem,” Transportation Science, pp. 1–18, 2019,
forthcoming.

[49] I. Elhallaoui, D. Villeneuve, F. Soumis, and G. Desaulniers, “Dynamic aggregation of
set-partitioning constraints in column generation,” Operations Research, vol. 53, no. 4,
pp. 632–645, 2005.

[50] F. Vanderbeck, “On Dantzig-Wolfe decomposition in integer programming and ways
to perform branching in a branch-and-price algorithm,” Operations Research, vol. 48,
no. 1, pp. 111–128, 2000.

[51] I. Elhallaoui, G. Desaulniers, A. Metrane, and F. Soumis, “Bi-dynamic constraint ag-
gregation and subproblem reduction,” Computers & Operations Research, vol. 35, no. 5,
pp. 1713–1724, 2008.

[52] J. Desrosiers, J. B. Gauthier, and M. E. Lübbecke, “Row-reduced column generation
for degenerate master problems,” European Journal of Operational Research, vol. 236,
no. 2, pp. 453–460, 2014.

[53] A. Tahir, G. Desaulniers, and I. El Hallaoui, “Integral column generation for the set
partitioning problem,” EURO Journal on Transportation and Logistics, vol. 8, no. 5,
pp. 713–744, 2019.

[54] J. B. Gauthier, J. Desrosiers, and M. E. Lübbecke, “Tools for primal degenerate linear
programs: IPS, DCA, and PE,” EURO Journal on Transportation and Logistics, vol. 5,
no. 2, pp. 161–204, 2016.

[55] İ. Muter, Ş. İ. Birbil, and K. Bülbül, “Simultaneous column-and-row generation for
large-scale linear programs with column-dependent-rows,” Mathematical Programming,
vol. 142, no. 1, pp. 47–82, 2013.

[56] R. Sadykov and F. Vanderbeck, “Column generation for extended formulations,” EURO
Journal on Computational Optimization, vol. 1, pp. 81–115, 2013.

[57] R. E. Marsten, W. W. Hogan, and J. W. Blankenship, “The boxstep method for large-
scale optimization,” Operations Research, vol. 23, no. 3, pp. 389–405, 1975.

139

[58] O. du Merle, D. Villeneuve, J. Desrosiers, and P. Hansen, “Stabilized column genera-
tion,” Discrete Mathematics, vol. 194, no. 1-3, pp. 229–237, 1999.

[59] A. Oukil, H. Ben Amor, J. Desrosiers, and H. El Gueddari, “Stabilized column gener-
ation for highly degenerate multiple-depot vehicle scheduling problems,” Computers &
Operations Research, vol. 34, no. 3, pp. 817–834, 2007.

[60] H. M. T. Ben Amor, J. Desrosiers, and A. Frangioni, “On the choice of explicit stabi-
lizing terms in column generation,” Discrete Applied Mathematics, vol. 157, no. 6, pp.
1167–1184, 2009.

[61] P. Wentges, “Weighted Dantzig-Wolfe decomposition for linear mixed-integer program-
ming,” International Transactions in Operational Research, vol. 4, no. 2, pp. 151–162,
1997.

[62] P. J. Neame, “Nonsmooth dual methods in integer programming,” Ph.D. dissertation,
University of Melbourne, Department of Mathematics and Statistics, 1999.

[63] A. Pessoa, R. Sadykov, E. Uchoa, and F. Vanderbeck, “Automation and combination of
linear-programming based stabilization techniques in column generation,” INFORMS
Journal on Computing, vol. 30, no. 2, pp. 339–360, 2018.

[64] L. M. Rousseau, M. Gendreau, and D. Feillet, “Interior point stabilization for column
generation,” Operations Research Letters, vol. 35, no. 5, pp. 660–668, 2007.

[65] J. Gondzio, P. González-Brevis, and P. Munari, “New developments in the primal-dual
column generation technique,” European Journal of Operational Research, vol. 224,
no. 1, pp. 41–51, 2013.

[66] J. M. Valério de Carvalho, “Using extra dual cuts to accelerate column generation,”
INFORMS Journal on Computing, vol. 17, no. 2, pp. 175–182, 2005.

[67] H. Ben Amor, J. Desrosiers, and J. M. Valério de Carvalho, “Dual-optimal inequalities
for stabilized column generation,” Operations Research, vol. 54, no. 3, pp. 454–463,
2006.

[68] T. Gschwind and S. Irnich, “Dual inequalities for stabilized column generation revis-
ited,” INFORMS Journal on Computing, vol. 28, no. 1, pp. 175–194, 2016.

[69] K. Heßler, T. Gschwind, and S. Irnich, “Stabilized branch-and-price algorithms for
vector packing problems,” European Journal of Operational Research, vol. 271, no. 2,
pp. 401–419, 2018.

140

[70] T. Gschwind, N. Bianchessi, and S. Irnich, “Stabilized branch-price-and-cut for the
commodity-constrained split delivery vehicle routing problem,” European Journal of
Operational Research, vol. 278, no. 1, pp. 91–104, 2019.

[71] V. S. Lokhande, S. Wang, M. Singh, and J. Yarkony, “Accelerating column generation
via flexible dual optimal inequalities with application to entity resolution,” Research
report, 2019. [Online]. Available: http://arxiv.org/abs/1909.05460

[72] N. Haghani, C. Contardo, and J. Yarkony, “Smooth and flexible dual optimal
inequalities,” Research report, 2020. [Online]. Available: http://arxiv.org/abs/2001.
02267

[73] B. Eksioglu, A. Volkan, and A. Reisman, “The vehicle routing problem : A taxonomic
review,” Computers & Industrial Engineering, vol. 57, no. 4, pp. 1472–1483, 2009.

[74] S. Irnich, P. Toth, and D. Vigo, “The family of vehicle routing problems,” in Vehicle
Routing: Problems, Methods and Applications, 2nd ed., P. Toth and D. Vigo, Eds.
Philadelphia, PA: Society for Industrial and Applied Mathematics, 2014, ch. 1, pp.
1–33.

[75] K. Braekers, K. Ramaekers, and I. V. Nieuwenhuyse, “The vehicle routing problem:
State of the art classification and review,” Computers & Industrial Engineering, vol. 99,
pp. 300–313, 2016.

[76] G. Laporte, Y. Nobert, and M. Desrochers, “Optimal routing under capacity and dis-
tance restrictions,” Operations Research, vol. 33, no. 5, pp. 1050–1073, 1985.

[77] J. Lysgaard, A. N. Letchford, and R. W. Eglese, “A new branch-and-cut algorithm for
the capacitated vehicle routing problem,” Mathematical Programming, vol. 100, no. 2,
pp. 423–445, 2004.

[78] R. Baldacci, A. Mingozzi, and R. Roberti, “Recent exact algorithms for solving the ve-
hicle routing problem under capacity and time window constraints,” European Journal
of Operational Research, vol. 218, no. 1, pp. 1–6, 2012.

[79] G. Desaulniers, O. B. G. Madsen, and S. Ropke, “The vehicle routing problem with time
windows,” in Vehicle Routing: Problems, Methods and Applications, 2nd ed., P. Toth
and D. Vigo, Eds. Philadelphia, PA: Society for Industrial and Applied Mathematics,
2014, ch. 5, pp. 119–159.

http://arxiv.org/abs/1909.05460
http://arxiv.org/abs/2001.02267
http://arxiv.org/abs/2001.02267

141

[80] M. L. Balinski and R. E. Quandt, “On an integer program for a delivery problem,”
Operations Research, vol. 12, no. 2, pp. 300–304, 1964.

[81] S. Irnich and G. Desaulniers, “Shortest path problems with resource constraints,” in
Column Generation, 1st ed., G. Desaulniers, J. Desrosiers, and M. M. Solomon, Eds.
Boston, MA: Springer US, 2005, ch. 2, pp. 33–65.

[82] S. Irnich, “Resource extension functions: Properties, inversion and generalization to
segments,” OR Spectrum, vol. 30, no. 1, pp. 113–148, 2008.

[83] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network flows: Theory, algorithms, and
applications. Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 1993.

[84] M. Desrochers, J. Desrosiers, and M. Solomon, “A new optimization algorithm for the
vehicle routing problem with time windows,” Operations Research, vol. 40, no. 2, pp.
342–354, 1992.

[85] D. Villeneuve and G. Desaulniers, “The shortest path problem with forbidden paths,”
European Journal of Operational Research, vol. 53, no. 4, pp. 97–107, 2005.

[86] D. Feillet, P. Dejax, M. Gendreau, and C. Gueguen, “An exact algorithm for the ele-
mentary shortest path problem with resource constraints: Application to some vehicle
routing problems,” Networks, vol. 44, no. 3, pp. 216–229, 2004.

[87] J. E. Beasley and N. Christofides, “An algorithm for the resource constrained shortest
path problem,” Networks, vol. 19, no. 4, pp. 379–394, 1989.

[88] A. Chabrier, “Vehicle routing problem with elementary shortest path based column
generation,” Computers & Operations Research, vol. 33, no. 10, pp. 2972–2990, 2006.

[89] C. Contardo, G. Desaulniers, and F. Lessard, “Reaching the elementary lower bound
in the vehicle routing problem with time windows,” Networks, vol. 65, no. 1, pp. 88–99,
2015.

[90] N. Christofides, A. Mingozzi, and P. Toth, “Exact algorithms for the vehicle routing
problem, based on spanning tree and shortest path relaxations,” Mathematical Pro-
gramming, vol. 20, no. 1, pp. 255–282, 1981.

[91] D. Houck, J. Picard, M. Queyranne, and R. Vemuganti, “The travelling salesman prob-
lem as a constrained shortest path problem: theory and computational experience,”
OPSEARCH, vol. 17, pp. 93–109, 1980.

142

[92] S. Irnich and D. Villeneuve, “The shortest path problem with resource constraints and
k-cycle elimination for k ≥ 3,” INFORMS Journal on Computing, vol. 18, no. 3, pp.
391–406, 2006.

[93] C. Contardo and R. Martinelli, “A new exact algorithm for the multi-depot vehicle
routing problem under capacity and route length constraints,” Discrete Optimization,
vol. 12, pp. 129–146, 2014.

[94] M. Poggi and E. Uchoa, “New exact algorithms for the capacitated vehicle routing
problem,” in Vehicle Routing: Problems, Methods and Applications, 2nd ed., P. Toth
and D. Vigo, Eds. Philadelphia, PA: Society for Industrial and Applied Mathematics,
2014, ch. 3, pp. 59–86.

[95] L. Lozano, D. Duque, and A. L. Medaglia, “An exact algorithm for the elementary
shortest path problem with resource constraints,” Transportation Science, vol. 50, no. 1,
pp. 348–357, 2016.

[96] N. Christofides, A. Mingozzi, and P. Toth, “State-space relaxation procedures for the
computation of bounds to routing problems,” Networks, vol. 11, pp. 145–164, 1981.

[97] R. Martinelli, D. Pecin, and M. Poggi, “Efficient elementary and restricted non-
elementary route pricing,” European Journal of Operational Research, vol. 239, no. 1,
pp. 102–111, 2014.

[98] G. Righini and M. Salani, “Symmetry helps: Bounded bi-directional dynamic program-
ming for the elementary shortest path problem with resource constraints,” Discrete
Optimization, vol. 3, no. 3, pp. 255–273, 2006.

[99] R. Baldacci, N. Christofides, and A. Mingozzi, “An exact algorithm for the vehicle
routing problem based on the set partitioning formulation with additional cuts,” Math-
ematical Programming, vol. 115, no. 2, pp. 351–385, 2008.

[100] C. Tilk, A.-K. Rothenbächer, T. Gschwind, and S. Irnich, “Asymmetry matters: Dy-
namic half-way points in bidirectional labeling for solving shortest path problems with
resource constraints faster,” European Journal of Operational Research, vol. 261, no. 2,
pp. 530–539, 2017.

[101] M. E. Lübbecke, “Dual variable based fathoming in dynamic programs for column
generation,” European Journal of Operational Research, vol. 162, no. 1, pp. 122–125,
2005.

143

[102] C. Contardo, J.-F. Cordeau, and B. Gendron, “An exact algorithm based on cut-and-
column generation for the capacitated location-routing problem,” INFORMS Journal
on Computing, vol. 26, no. 1, pp. 88–102, 2014.

[103] C. Archetti, M. Bouchard, and G. Desaulniers, “Enhanced branch and price and cut
for vehicle routing with split deliveries and time windows,” Transportation Science,
vol. 45, no. 3, pp. 285–298, 2011.

[104] L.-M. Rousseau, M. Gendreau, and G. Pesant, “Solving VRPTWs with constraint
programming based column generation,” Annals of Operations Research, vol. 130, no.
1–4, pp. 199–216, 2004.

[105] D. Feillet, M. Gendreau, and L.-M. Rousseau, “New refinements for the solution of
vehicle routing problems with branch and price,” INFOR: Information Systems and
Operational Research, vol. 45, no. 4, pp. 239–256, 2008.

[106] L. Lozano and A. L. Medaglia, “On an exact method for the constrained shortest path
problem,” Computers & Operations Research, vol. 40, no. 1, pp. 378–384, 2013.

[107] G. Desaulniers, D. Pecin, and C. Contardo, “Selective pricing in branch-price-and-cut
algorithms for vehicle routing,” EURO Journal on Transportation and Logistics, vol. 8,
no. 2, pp. 147–168, 2019.

[108] M. A. Boschetti, V. Maniezzo, and F. Strappaveccia, “Route relaxations on GPU for
vehicle routing problems,” European Journal of Operational Research, vol. 258, no. 2,
pp. 456–466, 2017.

[109] A. N. Letchford and J.-J. Salazar-González, “Projection results for vehicle routing,”
Mathematical Programming, vol. 105, no. 2, pp. 251–274, 2006.

[110] G. Dantzig, R. Fulkerson, and S. Johnson, “Solution of a large-scale travelling-salesman
problem,” Journal of the Operations Research Society of America, vol. 2, no. 4, pp. 393–
410, 1954.

[111] D. Naddef and G. Rinaldi, “Branch-and-cut algorithms for the capacitated vrp,” in
The vehicle routing problem, 1st ed., P. Toth and D. Vigo, Eds. Philadelphia, PA,
USA: Society for Industrial and Applied Mathematics, 2002, ch. 3, pp. 53–84.

[112] N. Kohl, J. Desrosiers, O. B. G. Madsen, M. M. Solomon, and F. Soumis, “2-path cuts
for the vehicle routing problem with time windows,” Transportation Science, vol. 33,
pp. 101–116, 1999.

144

[113] A. Pessoa, M. Poggi de Aragão, and E. Uchoa, “Robust branch-cut-and-price algorithms
for vehicle routing problems,” in The Vehicle Routing Problem: Latest Advances and
New Challenges, B. Golden, , S. Raghavan, , and E. Wasil, Eds. Boston, MA: Springer
US, 2008, pp. 297–325.

[114] ——, “A robust branch-cut-and-price algorithm for the heterogeneous fleet vehicle rout-
ing problem,” Networks, vol. 54, no. 4, pp. 167–177, 2009.

[115] M. Jepsen, B. Petersen, S. Spoorendonk, and D. Pisinger, “Subset-row inequalities ap-
plied to the vehicle routing problem with time windows,” Operations Research, vol. 56,
no. 2, pp. 497–511, 2008.

[116] D. G. Pecin, “Exact algorithms for the capacitated vehicle routing problem,” Ph.D.
dissertation, PUC-Rio, 2014.

[117] D. Pecin, A. Pessoa, M. Poggi, E. Uchoa, and H. Santos, “Limited memory rank-1 cuts
for vehicle routing problems,” Operations Research Letters, vol. 45, no. 3, pp. 206–209,
2017.

[118] B. Petersen, D. Pisinger, and S. Spoorendonk, “Chvátal-gomory rank-1 cuts used in
a dantzig-wolfe decomposition of the vehicle routing problem with time windows,”
in The Vehicle Routing Problem: Latest Advances and New Challenges, B. Golden,
S. Raghavan, and E. Wasil, Eds. Boston, MA: Springer US, 2008, pp. 397–419.

[119] E. Balas, “Some valid inequalities for the set partitioning problem,” Annals of Discrete
Mathematics, vol. 1, pp. 13–47, 1977.

[120] R. Baldacci, E. Hadjiconstantinou, and A. Mingozzi, “An exact algorithm for the capac-
itated vehicle routing problem based on a two-commodity network flow formulation,”
Operations Research, vol. 52, no. 5, pp. 723–738, 2004.

[121] J. Lysgaard, “CVRPSEP: A package of separation routines for the capacitated vehicle
routing problem,” Department of Management Science and Logistics, Aarhus School of
Business, Tech. Rep., 2003.

[122] E. Balas and M. W. Padberg, “Set partitioning: A survey,” SIAM Review, vol. 18,
no. 4, pp. 710–760, 1976.

[123] S. Spoorendonk and G. Desaulniers, “Clique inequalities applied to the vehicle routing
problem with time windows branch-cut-and-price,” INFOR Journal, vol. 48, no. 1, pp.
53–67, 2010.

145

[124] P. Augerat, J. Belenguer, E. Benavent, A. Coberan, D. Naddef, and G. Rinaldi,
“Computational results with a branch-and-cut code for the capacitated vehicle routing
problem,” Istituto di Analisi dei Sistemi ed Informatica, Tech. Rep., 1998. [Online].
Available: http://www.iasi.cnr.it/reports{_}html/R495

[125] S. Gélinas, M. Desrochers, J. Desrosiers, and M. M. Solomon, “A new branching strat-
egy for time constrained routing problems with application to backhauling,” Annals of
Operations Research, vol. 61, no. 1, pp. 91–109, 1995.

[126] M. Dell’Amico, G. Righini, and M. Salani, “A branch-and-price approach to the ve-
hicle routing problem with simultaneous distribution and collection,” Transportation
Science, vol. 40, no. 2, pp. 235–247, 2006.

[127] C. H. Christiansen and J. Lysgaard, “A branch-and-price algorithm for the capacitated
vehicle routing problem with stochastic demands,” Operations Research Letters, vol. 35,
no. 6, pp. 773–781, 2007.

[128] S. Irnich, “A new branch-and-price algorithm for the traveling tournament problem,”
European Journal of Operational Research, vol. 204, no. 2, pp. 218–228, 2010.

[129] A. Hadjar, O. Marcotte, and F. Soumis, “A branch-and-cut algorithm for the multiple
depot vehicle scheduling problem,” Operations Research, vol. 54, no. 1, pp. 130–149,
2006.

[130] S. Irnich, G. Desaulniers, J. Desrosiers, and A. Hadjar, “Path-reduced costs for elim-
inating arcs in routing and scheduling,” INFORMS Journal on Computing, vol. 22,
no. 2, pp. 297–313, 2010.

[131] W. E. Walker, “A method for obtaining the optimal dual solution to a linear program
using the Dantzig-Wolfe decomposition,” Operations Research, vol. 17, no. 2, pp. 368–
370, 1969.

[132] E. Choi and D. W. Tcha, “A column generation approach to the heterogeneous fleet
vehicle routing problem,” Computers & Operations Research, vol. 34, no. 7, pp. 2080–
2095, 2007.

[133] R. Baldacci and A. Mingozzi, “A unified exact method for solving different classes of
vehicle routing problems,” Mathematical Programming, vol. 120, no. 2, pp. 347–380,
2009.

http://www.iasi.cnr.it/reports{_}html/R495

146

[134] A. Bettinelli, A. Ceselli, and G. Righini, “A branch-and-cut-and-price algorithm for the
multi-depot heterogeneous vehicle routing problem with time windows,” Transportation
Research Part C: Emerging Technologies, vol. 19, no. 5, pp. 723–740, 2011.

[135] S. E. Butt and D. M. Ryan, “An optimal solution procedure for the multiple tour maxi-
mum collection problem using column generation,” Computers & Operations Research,
vol. 26, no. 4, pp. 427–441, 1999.

[136] S. Boussier, D. Feillet, and M. Gendreau, “An exact algorithm for team orienteering
problems,” 4OR, vol. 5, no. 3, pp. 211–230, 2007.

[137] M. Keshtkaran, K. Ziarati, A. Bettinelli, and D. Vigo, “Enhanced exact solution meth-
ods for the team orienteering problem,” International Journal of Production Research,
vol. 54, no. 2, pp. 591–601, 2015.

[138] C. Archetti, D. Feillet, A. Hertz, and M. G. Speranza, “The capacitated team orienter-
ing and profitable tour problems,” Journal of the Operational Research Society, vol. 60,
no. 6, pp. 831–842, 2009.

[139] C. Archetti, N. Bianchessi, and M. G. Speranza, “Optimal solutions for routing prob-
lems with profits,” Discrete Applied Mathematics, vol. 161, no. 4-5, pp. 547–557, 2013.

[140] ——, “The capacitated team orienteering problem with incomplete service,” Optimiza-
tion Letters, vol. 7, pp. 1405–1417, 2013.

[141] ——, “The split delivery capacitated team orienteering problem,” Networks, vol. 63,
no. 1, pp. 16–33, 2014.

[142] T. Bulhões, M. H. Hà, R. Martinelli, and T. Vidal, “The vehicle routing problem with
service level constraints,” European Journal of Operational Research, vol. 265, no. 2,
pp. 544–558, 2018.

[143] N. Azi, M. Gendreau, and J. Y. Potvin, “An exact algorithm for a vehicle routing prob-
lem with time windows and multiple use of vehicles,” European Journal of Operational
Research, vol. 202, no. 3, pp. 756–763, 2010.

[144] C. Archetti, N. Bianchessi, M. G. Speranza, and A. Hertz, “Incomplete service and split
deliveries in a routing problem with profits,” Networks, vol. 63, no. 2, pp. 135–145, 2014.

[145] S. N. Parragh, J. P. Sousa, and B. Almada-Lobo, “The dial-a-ride problem with split
requests and profits,” Transportation Science, vol. 49, no. 2, pp. 311–334, 2015.

147

[146] Z. Luo, M. Liu, and A. Lim, “A two-phase branch-and-price-and-cut for a dial-a-ride
problem in patient transportation,” Transportation Science, vol. Forthcoming, pp. 1–
18, 2018.

[147] G. Gutiérrez-Jarpa, G. Desaulniers, G. Laporte, and V. Marianov, “A branch-and-price
algorithm for the vehicle routing problem with deliveries, selective pickups and time
windows,” European Journal of Operational Research, vol. 206, no. 2, pp. 341–349,
2010.

[148] F. Liberatore, G. Righini, and M. Salani, “A column generation algorithm for the
vehicle routing problem with soft time windows,” 4OR, vol. 9, no. 1, pp. 49–82, 2011.

[149] A. Bettinelli, A. Ceselli, and G. Righini, “A branch-and-price algorithm for the multi-
depot heterogeneous-fleet pickup and delivery problem with soft time windows,” Math-
ematical Programming Computation, vol. 6, no. 2, pp. 171–197, 2014.

[150] K. S. Abdallah and J. Jang, “An exact solution for vehicle routing problems with semi-
hard resource constraints,” Computers & Industrial Engineering, vol. 76, pp. 366–377,
2014.

[151] D. Taş, M. Gendreau, N. Dellaert, T. Van Woensel, and A. G. de Kok, “Vehicle routing
with soft time windows and stochastic travel times: A column generation and branch-
and-price solution approach,” European Journal of Operational Research, vol. 236, no. 3,
pp. 789–799, 2014.

[152] A. Mingozzi, R. Roberti, and P. Toth, “An exact algorithm for the multitrip vehicle
routing problem,” INFORMS Journal on Computing, vol. 25, no. 2, pp. 193–207, 2013.

[153] N. Azi, M. Gendreau, and J. Y. Potvin, “An exact algorithm for a single-vehicle routing
problem with time windows and multiple routes,” European Journal of Operational
Research, vol. 178, no. 3, pp. 755–766, 2007.

[154] F. Hernandez, D. Feillet, R. Giroudeau, and O. Naud, “A new exact algorithm to solve
the multi-trip vehicle routing problem with time windows and limited duration,” 4OR,
vol. 12, no. 3, pp. 235–259, 2014.

[155] ——, “Branch-and-price algorithms for the solution of the multi-trip vehicle routing
problem with time windows,” European Journal of Operational Research, vol. 249, no. 2,
pp. 551–559, 2016.

148

[156] I. Muter, J.-F. Cordeau, and G. Laporte, “A branch-and-price algorithm for the multi-
depot vehicle routing problem with interdepot routes,” Transportation Science, vol. 48,
no. 3, pp. 425–441, 2014.

[157] C. Archetti and M. G. Speranza, “Vehicle routing problems with split deliveries,” In-
ternational Transactions in Operational Research, vol. 19, no. 1-2, pp. 3–22, 2012.

[158] M. Gendreau, P. Dejax, D. Feillet, and C. Gueguen, “Vehicle routing with time windows
and split deliveries,” Laboratoire Informatique d’Avignon, Avignon, France., Tech. Rep.
2006–851, 2006.

[159] D. Feillet, P. Dejax, and M. Gendreau, “The profitable arc tour problem: Solution
with a branch-and-price algorithm,” Transportation Science, vol. 39, no. 4, pp. 539–
552, 2005.

[160] G. Desaulniers, “Branch-and-price-and-cut for the split-delivery vehicle routing prob-
lem with time windows,” Operations Research, vol. 58, no. 1, pp. 179–192, 2010.

[161] M. Salani and I. Vacca, “Branch and price for the vehicle routing problem with discrete
split deliveries and time windows,” European Journal of Operational Research, vol. 213,
no. 3, pp. 470–477, 2011.

[162] Z. Luo, H. Qin, W. Zhu, and A. Lim, “Branch and price and cut for the split-delivery
vehicle routing problem with time windows and linear weight-related cost,” Transporta-
tion Science, vol. 51, no. 2, pp. 668–687, 2017.

[163] C. Archetti, N. Bianchessi, and M. G. Speranza, “A column generation approach for
the split delivery vehicle routing problem,” Networks, vol. 58, no. 4, pp. 241–254, 2011.

[164] L. Moreno, M. Poggi de Aragão, and E. Uchoa, “Improved lower bounds for the split
delivery vehicle routing problem,” Operations Research Letters, vol. 38, no. 4, pp. 302–
306, 2010.

[165] C. Archetti, N. Bianchessi, and M. G. Speranza, “A branch-price-and-cut algorithm
for the commodity constrained split delivery vehicle routing problem,” Computers &
Operations Research, vol. 64, pp. 1–10, 2015.

[166] D. M. Ryan and B. A. Foster, “An integer programming approach to scheduling,” in
Computer Scheduling of Public Transport: Urban Passenger Vehicle and Crew Schedul-
ing, A. Wren, Ed. North-Holland, 1981, pp. 269–280.

149

[167] S. Ichoua, M. Gendreau, and J.-Y. Potvin, “Vehicle dispatching with time-dependent
travel times,” European Journal of Operational Research, vol. 144, no. 2, pp. 379–396,
2003.

[168] S. Dabia, S. Ropke, T. Van Woensel, and T. de Kok, “Branch and price for the time-
dependent vehicle routing problem with time windows,” Transportation Science, vol. 47,
no. 3, pp. 380–396, 2013.

[169] I. Kara, B. Kara, and K. Yetis, “Cumulative vehicle routing problems,” in Vehicle
Routing Problem, T. Caric and H. Gold, Eds. Vienna: I-Tech Education and Publishing
KG, 2008, ch. 6, pp. 85–98.

[170] J. Lysgaard and S. Wøhlk, “A branch-and-cut-and-price algorithm for the cumulative
capacitated vehicle routing problem,” European Journal of Operational Research, vol.
236, no. 3, pp. 800–810, 2014.

[171] R. Fukasawa, Q. He, and Y. Song, “A branch-cut-and-price algorithm for the energy
minimization vehicle routing problem,” Transportation Science, vol. 50, no. 1, pp. 23–
34, 2016.

[172] C. Lin, K. Choy, G. Ho, S. Chung, and H. Lam, “Survey of green vehicle routing
problem: Past and future trends,” Expert Systems with Applications, vol. 41, no. 4,
Part 1, pp. 1118–1138, 2014.

[173] S. Pelletier, O. Jabali, and G. Laporte, “50th anniversary invited article - goods dis-
tribution with electric vehicles: Review and research perspectives,” Transportation
Science, vol. 50, no. 1, pp. 3–22, 2016.

[174] T. Bektaş and G. Laporte, “The pollution-routing problem,” Transportation Research
Part B: Methodological, vol. 45, no. 8, pp. 1232–1250, 2011, supply chain disruption
and risk management.

[175] S. Dabia, E. Demir, and T. Van Woensel, “An exact approach for a variant of the
pollution-routing problem,” Transportation Science, vol. 51, no. 2, pp. 607–628, 2017.

[176] G. Desaulniers, F. Errico, S. Irnich, and M. Schneider, “Exact algorithms for electric
vehicle-routing problems with time windows,” Operations Research, vol. 64, no. 6, pp.
1388–1405, 2016.

[177] J. Andelmin and E. Bartolini, “An exact algorithm for the green vehicle routing prob-
lem,” Transportation Science, vol. 51, no. 4, pp. 1288–1303, 2017.

150

[178] M. Gendreau, O. Jabali, and W. Rei, “Stochastic vehicle routing problems,” in Vehicle
Routing: Problems, Methods and Applications, 2nd ed., P. Toth and D. Vigo, Eds.
Philadelphia, PA: Society for Industrial and Applied Mathematics, 2014, ch. 8, pp.
213–239.

[179] J. Oyola, H. Arntzen, and D. L. Woodruff, “The stochastic vehicle routing problem,
a literature review, part I: Models,” EURO Journal on Transportation and Logistics,
vol. Forthcoming, pp. 1–29, 2016.

[180] M. Gendreau, G. Laporte, and R. Séguin, “Stochastic vehicle routing,” European Jour-
nal of Operational Research, vol. 7, no. 1992, pp. 3–12, 1996.

[181] T. Dinh, R. Fukasawa, and J. Luedtke, “Exact algorithms for the chance-constrained ve-
hicle routing problem,” Mathematical Programming, vol. Forthcoming, pp. 1–34, 2017.

[182] C. Gauvin, G. Desaulniers, and M. Gendreau, “A branch-cut-and-price algorithm for
the vehicle routing problem with stochastic demands,” Computers & Operations Re-
search, vol. 50, pp. 141–153, 2014.

[183] M. Noorizadegan and B. Chen, “Vehicle routing with probabilistic capacity con-
straints,” European Journal of Operational Research, vol. 270, no. 2, pp. 544–555,
2018.

[184] F. Errico, G. Desaulniers, G. Gendreau, W. Rei, and L.-M. Roussau, “The vehicle
routing problem with hard time windows and stochastic service times,” EURO Journal
on Transportation and Logistics, vol. Forthcoming, pp. 1–29, 2016.

[185] F. Errico, G. Desaulniers, M. Gendreau, W. Rei, and L. M. Rousseau, “A priori op-
timization with recourse for the vehicle routing problem with hard time windows and
stochastic service times,” European Journal of Operational Research, vol. 249, no. 1,
pp. 55–66, 2016.

[186] A. Ben-Tal, L. E. Ghaoui, and A. Nemirovski, Robust Optimization. Princeton Uni-
versity Press, 2009.

[187] D. Bertsimas, D. Pachamanova, and M. Sim, “Robust linear optimization under general
norms,” Operations Research Letters, vol. 32, no. 6, pp. 510–516, 2004.

[188] C. Lee, K. Lee, and S. Park, “Robust vehicle routing problem with deadlines and travel
time/demand uncertainty,” Journal of the Operational Research Society, vol. 63, pp.
1294–1306, 2012.

151

[189] S. Souyris, C. E. Cortés, F. Ordóñez, and A. Weintraub, “A robust optimization ap-
proach to dispatching technicians under stochastic service times,” Optimization Letters,
vol. 7, no. 7, pp. 1549–1568, 2013.

[190] G. Berbeglia, J.-F. Cordeau, I. Gribkovskaia, and G. Laporte, “Static pickup and
delivery problems: A classification scheme and survey,” TOP, vol. 15, no. 1, pp. 1–31,
2007.

[191] T. Gschwind, S. Irnich, A.-K. Rothenbächer, and C. Tilk, “Bidirectional labeling in
column-generation algorithms for pickup-and-delivery problems,” European Journal of
Operational Research, vol. 266, no. 1, pp. 521–530, 2018.

[192] Y. Dumas, J. Desrosiers, and F. Soumis, “The pickup and delivery problem with time
windows,” European Journal of Operational Research, vol. 54, no. 1, pp. 7–22, 1991.

[193] M. Savelsbergh and M. Sol, “Drive: Dynamic routing of independent vehicles,” Oper-
ations Research, vol. 46, no. 4, pp. 474–490, 1998.

[194] S. Ropke and J.-F. Cordeau, “Branch and cut and price for the pickup and delivery
problem with time windows,” Transportation Science, vol. 43, no. 3, pp. 267–286, 2009.

[195] R. Baldacci, E. Bartolini, and A. Mingozzi, “An exact algorithm for the pickup and
delivery problem with time windows,” Operations Research, vol. 59, no. 2, pp. 414–426,
2011.

[196] J.-F. Cordeau and G. Laporte, “The dial-a-ride problem: models and algorithms,”
Annals of Operations Research, vol. 153, no. 1, pp. 29–46, Sep 2007.

[197] S. Ropke, “Heuristic and exact algorithms for vehicle routing problems,”
Ph.D. dissertation, University of Copenhagen, 2005. [Online]. Available: http:
//www.diku.dk/{~}sropke/Papers/PHDThesis.pdf

[198] T. Gschwind and S. Irnich, “Effective handling of dynamic time windows and its appli-
cation to solving the dial-a-ride problem,” Transportation Science, vol. 49, no. 2, pp.
335–354, 2015.

[199] S. Ropke, J.-F. Cordeau, and G. Laporte, “Models and branch-and-cut algorithms
for pickup and delivery problems with time windows,” Networks, vol. 49, no. 4, pp.
258–272, 2007.

[200] J.-F. Cordeau, “A branch-and-cut algorithm for the dial-a-ride problem,” Operations
Research, vol. 54, no. 3, pp. 573–586, 2006.

http://www.diku.dk/{~}sropke/Papers/PHDThesis.pdf
http://www.diku.dk/{~}sropke/Papers/PHDThesis.pdf

152

[201] T. Gschwind, “A comparison of column-generation approaches to the synchronized
pickup and delivery problem,” European Journal of Operational Research, vol. 247,
no. 1, pp. 60–71, 2015.

[202] M. Drexl, “Synchronization in vehicle routing - a survey of vrps with multiple synchro-
nization constraints,” Transportation Science, vol. 46, no. 3, pp. 297–316, 2012.

[203] Y. Qu and J. F. Bard, “A branch-and-price-and-cut algorithm for heterogeneous pickup
and delivery problems with configurable vehicle capacity,” Transportation Science,
vol. 49, no. 2, pp. 254–270, 2015.

[204] R. Masson, S. Ropke, F. Lehuédé, and O. Péton, “A branch-and-cut-and-price ap-
proach for the pickup and delivery problem with shuttle routes,” European Journal of
Operational Research, vol. 236, no. 3, pp. 849–862, 2013.

[205] V. Ghilas, J.-F. Cordeau, E. Demir, and T. V. Woensel, “Branch-and-price for the
pickup and delivery problem with time windows and scheduled lines,” Transportation
Science, vol. 52, no. 5, pp. 1191–1210, 2018.

[206] M. Cherkesly, G. Desaulniers, and G. Laporte, “Branch-price-and-cut algorithms for the
pickup and delivery problem with time windows and last-in-first-out loading,” Trans-
portation Science, vol. 49, no. 4, pp. 752–766, 2015.

[207] M. Cherkesly, G. Desaulniers, S. Irnich, and G. Laporte, “Branch-price-and-cut algo-
rithms for the pickup and delivery problem with time windows and multiple stacks,”
European Journal of Operational Research, vol. 250, pp. 782–793, 2016.

[208] J.-F. Côté, C. Archetti, M. G. Speranza, M. Gendreau, and J.-Y. Potvin, “A branch-
and-cut algorithm for the pickup and delivery traveling salesman problem with multiple
stacks,” Networks, vol. 60, no. 4, pp. 212–226, 2012.

[209] M. Iori and J. Riera-Ledesma, “Exact algorithms for the double vehicle routing problem
with multiple stacks,” Computers & Operations Research, vol. 63, pp. 83–101, 2015.

[210] M. Veenstra, M. Cherkesly, G. Desaulniers, and G. Laporte, “The pickup and deliv-
ery problem with time windows and handling operations,” Computers & Operations
Research, vol. 77, pp. 127–140, 2017.

[211] E. Angelelli and R. Mansini, “The vehicle routing problem with time windows and si-
multaneous pick-up and delivery,” in Quantitative Approaches to Distribution Logistics

153

and Supply Chain Management, A. Klose, M. G. Speranza, and L. N. Van Wassenhove,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002, pp. 249–267.

[212] A. Subramanian, E. Uchoa, A. A. Pessoa, and L. S. Ochi, “Branch-cut-and-price for the
vehicle routing problem with simultaneous pickup and delivery,” Optimization Letters,
vol. 7, no. 7, pp. 1569–1581, 2013.

[213] L. Costa, C. Contardo, G. Desaulniers, and D. Pecin, “Selective arc-ng pricing for vehi-
cle routing,” GERAD, Montréal, Research report G-2020-07, Les Cahiers du GERAD,
HEC Montréal, 2020.

[214] M. M. Solomon, “Algorithms for the vehicle routing and scheduling problems with time
window constraints,” Operations Research, vol. 35, no. 2, pp. 254–265, 1987.

[215] H. Gehring and J. Homberger, “A parallel two-phase metaheuristic for routing problems
with time windows,” Asia-Pacific Journal of Operational Research, vol. 18, no. 1, p. 35,
2001.

[216] R. Sadykov, E. Uchoa, and A. A. Pessoa, “A bucket graph based labeling algorithm
with application to vehicle routing,” Universidade Federal Fluminense, Research Report
Cadernos do LOGIS 2017/7, 2017.

[217] E. D. Dolan and J. J. More, “Benchmarking optimization software with performance
profiles,” Mathematical Programming A, vol. 91, pp. 201–213, 2002.

[218] M. Deveci and N. Ç. Demirel, “A survey of the literature on airline crew scheduling,”
Engineering Applications of Artificial Intelligence, vol. 74, pp. 54–69, 2018.

[219] F. Glover, “Surrogate constraints,” Operations Research, vol. 16, no. 4, pp. 741–749,
1968.

[220] ——, “Tutorial on surrogate constraint approaches for optimization in graphs,” Journal
of Heuristics, vol. 9, no. 3, pp. 175–227, 2003.

[221] L. Pishchulin, E. Insafutdinov, S. Tang, B. Andres, M. Andriluka, P. V. Gehler, and
B. Schiele, “Deepcut: Joint subset partition and labeling for multi person pose esti-
mation,” in Proc. 22nd Conference on Computer Vision and Pattern Recognition, Las
Vegas, Nevada, 2016, pp. 4929–4937.

[222] E. Insafutdinov, L. Pishchulin, B. Andres, M. Andriluka, and B. Schiele, “Deepercut:
A deeper, stronger, and faster multi-person pose estimation model,” in Proc. 14th

154

European Conference on Computer Vision, Amsterdam, The Netherlands, 2016, pp.
34–50.

[223] P. Felzenszwalb, D. McAllester, and D. Ramanan, “A discriminatively trained, mul-
tiscale, deformable part model,” in Proc. 30th Conference on Computer Vision and
Pattern Recognition, Anchorage, Alaska, 2008, pp. 1–8.

[224] Y. Yang and D. Ramanan, “Articulated pose estimation with flexible mixtures-of-
parts,” in Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference
on. IEEE, 2011, pp. 1385–1392.

[225] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan, “Object detec-
tion with discriminatively trained part-based models,” IEEE transactions on pattern
analysis and machine intelligence, vol. 32, no. 9, pp. 1627–1645, 2010.

[226] M. Andriluka, L. Pishchulin, P. Gehler, and S. B, “2d human pose estimation: New
benchmark and state of the art analysis,” in Proc. 27th Conference on Computer Vision
and Pattern Recognition, Columbus, Ohio, 2014, pp. 3686–3693.

[227] A. E. Fernandes Muritiba, M. Iori, E. Malaguti, and P. Toth, “Algorithms for the bin
packing problem with conflicts,” INFORMS Journal on Computing, vol. 22, no. 3, pp.
401–415, 2010.

[228] S. Elhedhli, L. Li, M. Gzara, and J. Naoum-Sawaya, “A branch-and-price algorithm
for the bin packing problem with conflicts,” INFORMS Journal on Computing, vol. 23,
no. 3, pp. 404–415, 2011.

[229] M. Gendreau, G. Laporte, and F. Semet, “Heuristics and lower bounds for the bin
packing problem with conflicts,” Computers & Operations Research, vol. 31, no. 3, pp.
347–358, 2004.

[230] E. Falkenauer, “A hybrid grouping genetic algorithm for bin packing,” Journal of
Heuristics, vol. 2, pp. 5–30, 1996.

155

APPENDIX A DETAILED RESULTS – SELECTIVE ARC-NG PRICING
FOR VEHICLE ROUTING

In this section, we report detailed results for all instances solved by settings Default,
SetBased, Pairwise, and SetPair. We provide pairwise comparisons between the Default
algorithm and each of the selective settings. Sections A and A present results for S and GH
instances, respectively. For each instance, we report: the lower bound (lb) achieved, the
number of column generation iterations performed by each algorithm (#iters), the CPU
time in seconds (T(s)), the average number of DSSR iterations per column generation iter-
ation performed by each algorithm (#DSSR), and the average number of labels generated
per iteration (#labels). When comparing the performance of two algorithms, we highlight
in boldface the best results for each indicator. Line #Best shows the total number of in-
stances for which each algorithm was capable of achieving the best values. Notice that, in
the case where both algorithms produce equal results for a given instance, this instance is
counted for both algorithms.

Solomon’s instances

Table A.1 Detailed results for comparing Default vs SetBased settings using only-cycle
DSSR before adding non-robust cuts

Instance Default SetBased
lb T(s) #iters #DSSR #labels lb T(s) #iters #DSSR #labels

C203 5,887.0 4,454 800 2.1 13,516 5,887.0 2,841 517 2.3 12,527
C204 5,881.0 25,207 1,239 2.4 75,340 5,881.0 14,604 780 2.7 65,135
R202 10,164.8 290 130 4.2 10,223 10,164.8 268 136 3.6 8,169
R203 8,597.0 785 169 5.1 31,121 8,597.0 615 131 5.1 27,872
R204 7,201.6 2,434 175 6.9 121,553 7,201.6 1,704 171 5.3 78,889
R206 8,600.1 582 103 7.6 38,749 8,600.1 551 113 6.0 30,732
R207 7,805.0 1,152 152 5.9 54,037 7,805.0 881 117 6.1 52,027
R208 6,910.9 7,539 234 8.7 291,927 6,910.9 6,059 250 7.0 204,117
R209 8,371.8 340 81 7.2 29,284 8,371.8 303 86 5.8 22,617
R210 8,813.2 463 93 8.5 34,247 8,813.2 398 82 8.0 32,613
R211 7,311.0 641 115 7.8 75,489 7,311.0 503 115 6.2 54,027
RC204 7,764.9 17,166 269 11.9 789,806 7,764.9 11,096 256 10.8 463,053
RC207 9,415.8 808 112 14.3 84,070 9,415.8 630 94 14.8 73,374
RC208 7,636.4 3,071 148 22.0 632,136 7,636.4 2,472 139 21.9 493,415
#Best 14/14 0/14 5/14 5/14 0/14 14/14 14/14 10/14 10/14 14/14

156

Table A.2 Detailed results for comparing Default vs SetBased settings using only-cycle
DSSR after adding non-robust cuts

Instance Default SetBased
lb T(s) #iters #DSSR #labels lb T(s) #iters #DSSR #labels

C203 5,887.0 4,454 800 2.1 13,516 5,887.0 2,842 517 2.3 12,527
C204 5,881.0 25,207 1,239 2.4 75,340 5,881.0 14,605 780 2.7 65,135
R202 10,296.0 796 736 1.7 3,788 10,288.2 615 647 1.6 3,826
R203 8,708.0 1,239 725 2.1 11,040 8,708.0 998 554 2.1 10,953
R204 7,313.0 5,352 638 2.9 73,417 7,313.0 4,442 645 2.5 58,024
R206 8,759.0 1,435 519 2.6 18,251 8,759.0 1,362 515 2.4 17,473
R207 7,940.0 3,034 654 2.4 31,611 7,940.0 2,219 523 2.5 29,865
R208 6,994.1 196,397 594 5.3 1,125,610 7,000.3 234,324 710 4.3 1,124,685
R209 8,548.0 2,071 580 2.4 24,821 8,548.0 2,095 591 2.3 24,635
R210 9,005.0 4,354 674 2.3 30,501 9,005.0 3,812 635 2.3 30,887
R211 7,467.0 6,785 357 4.2 138,224 7,467.0 8,549 380 3.8 149,502
RC204 7,835.0 18,715 546 6.5 413,895 7,835.0 12,956 535 5.9 249,233
RC207 9,629.0 1,683 459 4.6 34,981 9,629.0 1,628 457 4.3 31,885
RC208 7,761.0 4,626 373 10.0 347,683 7,761.0 4,107 370 9.6 283,936
#Best 13/14 3/14 4/14 6/14 3/14 13/14 11/14 10/14 12/14 11/14

Table A.3 Detailed results for comparing Default vs Pairwise settings using only-cycle
DSSR before adding non-robust cuts

Instance Default Pairwise
lb T(s) #iters #DSSR #labels lb T(s) #iters #DSSR #labels

C203 5,887.0 4,454 800 2.1 13,516 5,887.0 2,504 360 3.0 15,993
C204 5,881.0 25,207 1,239 2.4 75,340 5,881.0 17,959 981 2.4 62,472
R202 10,164.8 290 130 4.2 10,223 10,164.8 271 130 3.9 7,618
R203 8,597.0 785 169 5.1 31,121 8,598.1 606 168 3.9 21,073
R204 7,201.6 2,434 175 6.9 121,553 7,201.6 1,791 174 5.4 82,007
R206 8,600.1 582 103 7.6 38,749 8,600.1 531 109 6.3 28,842
R207 7,805.0 1,152 152 5.9 54,037 7,805.0 907 117 6.3 53,843
R208 6,910.9 7,539 234 8.7 291,927 6,910.9 5,204 213 8.0 206,766
R209 8,371.8 340 81 7.2 29,284 8,371.8 300 73 6.8 25,270
R210 8,813.2 463 93 8.5 34,247 8,813.4 375 73 8.7 33,084
R211 7,311.0 641 115 7.8 75,489 7,311.1 529 105 7.1 62,460
RC204 7,764.9 17,166 269 11.9 789,806 7,764.9 10,507 279 10.1 425,550
RC207 9,415.8 808 112 14.3 84,070 9,415.8 620 104 13.0 62,470
RC208 7,636.4 3,071 148 22.0 632,136 7,636.4 2,425 141 21.1 470,504
#Best 11/14 0/14 3/14 4/14 1/14 14/14 14/14 12/14 11/14 13/14

Table A.4 Detailed results for comparing Default vs Pairwise settings using only-cycle
DSSR after adding non-robust cuts

Instance Default Pairwise
lb T(s) #iters #DSSR #labels lb T(s) #iters #DSSR #labels

C203 5,887.0 4,454 800 2.1 13,516 5,887.0 2,505 360 3.0 15,993
C204 5,881.0 25,207 1,239 2.4 75,340 5,881.0 17,960 981 2.4 62,472
R202 10,296.0 796 736 1.7 3,788 10,292.2 641 632 1.7 3,548
R203 8,708.0 1,239 725 2.1 11,040 8,708.0 1,011 652 1.8 9,182
R204 7,313.0 5,352 638 2.9 73,417 7,313.0 4,789 661 2.6 58,075
R206 8,759.0 1,435 519 2.6 18,251 8,759.0 1,441 503 2.5 18,458
R207 7,940.0 3,034 654 2.4 31,611 7,940.0 2,682 614 2.3 30,571
R208 6,994.1 196,397 594 5.3 1,125,610 6,998.3 186,267 636 4.7 1,027,970
R209 8,548.0 2,071 580 2.4 24,821 8,548.0 2,067 584 2.3 22,306
R210 9,005.0 4,354 674 2.3 30,501 9,005.0 4,504 612 2.3 32,925
R211 7,467.0 6,785 357 4.2 138,224 7,467.0 9,054 355 4.2 160,883
RC204 7,835.0 18,715 546 6.5 413,895 7,835.0 12,217 570 5.6 233,377
RC207 9,629.0 1,683 459 4.6 34,981 9,629.0 1,622 444 4.3 29,640
RC208 7,761.0 4,626 373 10.0 347,683 7,761.0 3,940 374 9.3 262,534
#Best 13/14 3/14 5/14 6/14 4/14 13/14 11/14 9/14 13/14 10/14

157

Table A.5 Detailed results for comparing Default vs SetPair settings using only-cycle
DSSR before adding non-robust cuts

Instance Default SetPair
lb T(s) #iters #DSSR #labels lb T(s) #iters #DSSR #labels

C203 5,887.0 4,454 800 2.1 13,516 5,887.0 2,782 529 2.0 12,556
C204 5,881.0 25,207 1,239 2.4 75,340 5,881.0 15,712 722 2.8 75,129
R202 10,164.8 290 130 4.2 10,223 10,164.8 264 120 4.2 8,734
R203 8,597.0 785 169 5.1 31,121 8,597.9 631 151 4.4 24,619
R204 7,201.6 2,434 175 6.9 121,553 7,201.6 1,662 157 5.8 85,759
R206 8,600.1 582 103 7.6 38,749 8,600.1 515 91 7.2 37,482
R207 7,805.0 1,152 152 5.9 54,037 7,806.1 874 116 6.2 51,982
R208 6,910.9 7,539 234 8.7 291,927 6,910.9 5,928 218 8.1 230,242
R209 8,371.8 340 81 7.2 29,284 8,371.8 301 79 6.6 24,265
R210 8,813.2 463 93 8.5 34,247 8,813.2 407 72 9.3 34,768
R211 7,311.0 641 115 7.8 75,489 7,311.5 491 107 6.7 57,156
RC204 7,764.9 17,166 269 11.9 789,806 7,764.9 11,550 277 10.0 443,300
RC207 9,415.8 808 112 14.3 84,070 9,415.8 655 102 13.6 64,651
RC208 7,636.4 3,071 148 22.0 632,136 7,636.4 2,476 140 21.3 477,627
#Best 11/14 0/14 1/14 4/14 1/14 14/14 14/14 13/14 11/14 13/14

Table A.6 Detailed results for comparing Default vs SetPair settings using only-cycle
DSSR after adding non-robust cuts

Instance Default SetPair
lb T(s) #iters #DSSR #labels lb T(s) #iters #DSSR #labels

C203 5,887.0 4,454 800 2.1 13,516 5,887.0 2,783 529 2.0 12,556
C204 5,881.0 25,207 1,239 2.4 75,340 5,881.0 15,712 722 2.8 75,129
R202 10,296.0 796 736 1.7 3,788 10,292.3 631 592 1.8 3,602
R203 8,708.0 1,239 725 2.1 11,040 8,708.0 1,053 663 1.9 9,486
R204 7,313.0 5,352 638 2.9 73,417 7,313.0 6,055 737 2.4 60,685
R206 8,759.0 1,435 519 2.6 18,251 8,759.0 1,541 503 2.4 18,905
R207 7,940.0 3,034 654 2.4 31,611 7,940.0 2,374 579 2.3 27,824
R208 6,994.1 196,397 594 5.3 1,125,610 6,989.0 199,145 574 4.9 897,083
R209 8,548.0 2,071 580 2.4 24,821 8,548.0 2,335 616 2.2 22,051
R210 9,005.0 4,354 674 2.3 30,501 9,005.0 4,487 631 2.3 27,684
R211 7,467.0 6,785 357 4.2 138,224 7,467.0 10,761 385 3.7 140,496
RC204 7,835.0 18,715 546 6.5 413,895 7,835.0 13,344 558 5.7 244,941
RC207 9,629.0 1,683 459 4.6 34,981 9,629.0 1,810 442 4.4 31,714
RC208 7,761.0 4,626 373 10.0 347,683 7,761.0 4,172 366 9.5 269,875
#Best 14/14 7/14 4/14 4/14 2/14 12/14 7/14 10/14 12/14 12/14

Table A.7 Detailed results for comparing Default vs SetBased settings using all-arcs
DSSR before adding non-robust cuts

Instance Default SetBased
lb T(s) #iters #DSSR #labels lb T(s) #iters #DSSR #labels

C203 5,887.0 1,416 247 2.2 12,776 5,887.0 1,364 324 1.7 8,603
C204 5,881.0 8,871 552 1.8 59,903 5,881.0 21,033 1,462 1.3 51,157
R202 10,164.8 228 116 3.2 7,485 10,164.8 205 96 3.4 7,641
R203 8,597.0 509 140 3.8 22,172 8,597.0 454 118 3.8 22,035
R204 7,202.0 1,221 147 4.0 64,842 7,202.0 1,075 147 3.6 58,091
R206 8,600.1 390 99 4.4 22,766 8,600.1 342 91 4.4 21,152
R207 7,805.0 686 120 4.1 37,176 7,851.4 851 134 4.8 50,241
R208 6,910.9 3,379 168 4.5 178,741 6,910.9 2,909 177 3.9 131,674
R209 8,371.8 260 90 4.2 16,451 8,371.8 242 79 4.4 17,052
R210 8,813.2 315 82 5.6 24,038 8,813.4 300 73 6.0 25,711
R211 7,311.0 343 85 5.2 48,010 7,311.0 365 97 4.8 44,054
RC204 7,764.9 4,193 178 4.6 237,054 7,764.9 3,474 212 3.6 163,647
RC207 9,415.8 338 90 6.6 34,715 9,415.8 319 81 7.0 37,632
RC208 7,636.4 904 111 8.1 218,110 7,636.4 786 95 8.5 203,826
#Best 12/14 3/14 7/14 8/14 5/14 14/14 11/14 8/14 8/14 9/14

158

Table A.8 Detailed results for comparing Default vs SetBased settings using all-arcs
DSSR after adding non-robust cuts

Instance Default SetBased
lb T(s) #iters #DSSR #labels lb T(s) #iters #DSSR #labels

C203 5,887.0 1,417 247 2.2 12,776 5,887.0 1,364 324 1.7 8,603
C204 5,881.0 8,871 552 1.8 59,903 5,881.0 21,033 1,462 1.3 51,157
R202 10,283.2 488 554 1.5 3,370 10,289.2 586 685 1.4 3,056
R203 8,708.0 856 574 1.7 9,160 8,708.0 828 568 1.6 8,764
R204 7,313.0 3,653 566 1.9 49,541 7,313.0 3,434 559 1.7 50,281
R206 8,759.0 1,056 429 1.9 14,763 8,759.0 995 436 1.8 14,239
R207 7,940.0 1,618 481 1.8 21,936 7,940.0 1,324 299 2.9 34,890
R208 7,002.0 203,902 480 2.4 806,409 7,005.1 187,043 503 2.2 782,421
R209 8,548.0 1,784 541 1.7 18,585 8,548.0 1,631 534 1.7 18,336
R210 9,005.0 4,918 598 1.7 29,395 9,005.0 4,244 620 1.7 27,285
R211 7,467.0 5,820 295 2.6 95,989 7,467.0 4,020 305 2.6 82,622
RC204 7,835.0 5,498 420 2.6 128,015 7,835.0 4,953 488 2.2 95,283
RC207 9,629.0 1,084 399 2.4 19,037 9,629.0 965 411 2.4 19,383
RC208 7,761.0 1,961 314 3.6 133,620 7,761.0 1,746 308 3.4 121,038
#Best 12/14 2/14 9/14 7/14 3/14 14/14 12/14 5/14 13/14 11/14

Table A.9 Detailed results for comparing Default vs Pairwise settings using all-arcs
DSSR before adding non-robust cuts

Instance Default Pairwise
lb T(s) #iters #DSSR #labels lb T(s) #iters #DSSR #labels

C203 5,887.0 1,416 247 2.2 12,776 5,887.0 1,518 309 1.8 10,577
C204 5,881.0 8,871 552 1.8 59,903 5,881.0 8,276 595 1.6 50,065
R202 10,164.8 228 116 3.2 7,485 10,164.8 211 98 3.3 6,732
R203 8,597.0 509 140 3.8 22,172 8,597.0 502 147 3.3 18,966
R204 7,202.0 1,221 147 4.0 64,842 7,201.7 1,065 142 3.8 60,584
R206 8,600.1 390 99 4.4 22,766 8,600.1 339 83 4.5 21,907
R207 7,805.0 686 120 4.1 37,176 7,851.4 933 145 4.7 51,794
R208 6,910.9 3,379 168 4.5 178,741 6,910.9 2,794 157 4.3 142,616
R209 8,371.8 260 90 4.2 16,451 8,371.8 229 69 4.9 18,478
R210 8,813.2 315 82 5.6 24,038 8,813.2 298 77 5.5 21,949
R211 7,311.0 343 85 5.2 48,010 7,311.0 348 89 5.0 44,801
RC204 7,764.9 4,193 178 4.6 237,054 7,764.9 3,351 181 4.4 178,990
RC207 9,415.8 338 90 6.6 34,715 9,415.8 313 71 7.9 39,903
RC208 7,636.4 904 111 8.1 218,110 7,636.4 826 101 8.1 191,750
#Best 13/14 3/14 6/14 6/14 3/14 13/14 11/14 8/14 9/14 11/14

Table A.10 Detailed results for comparing Default vs Pairwise settings using all-arcs
DSSR after adding non-robust cuts

Instance Default Pairwise
lb T(s) #iters #DSSR #labels lb T(s) #iters #DSSR #labels

C203 5,887.0 1,417 247 2.2 12,776 5,887.0 1,518 309 1.8 10,577
C204 5,881.0 8,871 552 1.8 59,903 5,881.0 8,276 595 1.6 50,065
R202 10,283.2 488 554 1.5 3,370 10,276.6 397 408 1.6 3,103
R203 8,708.0 856 574 1.7 9,160 8,708.0 920 701 1.5 7,577
R204 7,313.0 3,653 566 1.9 49,541 7,313.0 3,336 495 1.9 51,287
R206 8,759.0 1,056 429 1.9 14,763 8,759.0 943 430 1.7 12,851
R207 7,940.0 1,618 481 1.8 21,936 7,940.0 1,483 325 2.9 37,612
R208 7,002.0 203,902 480 2.4 806,409 7,006.0 194,571 492 2.3 839,060
R209 8,548.0 1,784 541 1.7 18,585 8,548.0 2,035 530 1.7 18,008
R210 9,005.0 4,918 598 1.7 29,395 9,005.0 3,394 561 1.7 25,382
R211 7,467.0 5,820 295 2.6 95,989 7,467.0 4,912 295 2.6 86,102
RC204 7,835.0 5,498 420 2.6 128,015 7,835.0 4,683 437 2.4 96,170
RC207 9,629.0 1,084 399 2.4 19,037 9,629.0 1,096 394 2.4 19,045
RC208 7,761.0 1,961 314 3.6 133,620 7,761.0 1,766 315 3.4 116,031
#Best 13/14 4/14 8/14 7/14 4/14 13/14 10/14 7/14 12/14 10/14

159

Table A.11 Detailed results for comparing Default vs SetPair settings using all-arcs
DSSR before adding non-robust cuts

Instance Default SetPair
lb T(s) #iters #DSSR #labels lb T(s) #iters #DSSR #labels

C203 5,887.0 1,416 247 2.2 12,776 5,887.0 1,620 395 1.5 9,900
C204 5,881.0 8,871 552 1.8 59,903 5,881.0 14,809 1,073 1.4 48,300
R202 10,164.8 228 116 3.2 7,485 10,164.8 208 101 3.4 7,441
R203 8,597.0 509 140 3.8 22,172 8,597.0 479 122 3.7 21,951
R204 7,202.0 1,221 147 4.0 64,842 7,202.0 1,104 142 3.8 60,708
R206 8,600.1 390 99 4.4 22,766 8,600.1 375 99 4.3 22,188
R207 7,805.0 686 120 4.1 37,176 7,851.4 1,023 154 4.6 53,288
R208 6,910.9 3,379 168 4.5 178,741 6,910.9 2,889 184 3.8 130,503
R209 8,371.8 260 90 4.2 16,451 8,371.8 227 75 4.5 16,458
R210 8,813.2 315 82 5.6 24,038 8,813.2 296 70 6.1 24,779
R211 7,311.0 343 85 5.2 48,010 7,311.0 357 101 4.5 40,691
RC204 7,764.9 4,193 178 4.6 237,054 7,764.9 3,212 185 4.3 163,170
RC207 9,415.8 338 90 6.6 34,715 9,415.8 331 87 6.6 33,335
RC208 7,636.4 904 111 8.1 218,110 7,636.4 814 113 7.2 169,089
#Best 13/14 4/14 8/14 6/14 3/14 14/14 10/14 7/14 10/14 11/14

Table A.12 Detailed results for comparing Default vs SetPair settings using all-arcs
DSSR after adding non-robust cuts

Instance Default SetPair
lb T(s) #iters #DSSR #labels lb T(s) #iters #DSSR #labels

C203 5,887.0 1,417 247 2.2 12,776 5,887.0 1,620 395 1.5 9,900
C204 5,881.0 8,871 552 1.8 59,903 5,881.0 14,810 1,073 1.4 48,300
R202 10,283.2 488 554 1.5 3,370 10,281.9 479 499 1.5 3,325
R203 8,708.0 856 574 1.7 9,160 8,708.0 832 563 1.6 8,416
R204 7,313.0 3,653 566 1.9 49,541 7,313.0 3,585 520 1.9 46,253
R206 8,759.0 1,056 429 1.9 14,763 8,759.0 1,026 421 1.9 14,288
R207 7,940.0 1,618 481 1.8 21,936 7,940.0 1,549 322 2.9 37,969
R208 7,002.0 203,902 480 2.4 806,409 6,998.6 197,787 466 2.3 691,352
R209 8,548.0 1,784 541 1.7 18,585 8,548.0 1,739 557 1.6 17,125
R210 9,005.0 4,918 598 1.7 29,395 9,005.0 6,411 599 1.7 28,997
R211 7,467.0 5,820 295 2.6 95,989 7,467.0 5,707 292 2.6 87,119
RC204 7,835.0 5,498 420 2.6 128,015 7,835.0 4,857 471 2.3 90,537
RC207 9,629.0 1,084 399 2.4 19,037 9,629.0 1,131 403 2.3 17,888
RC208 7,761.0 1,961 314 3.6 133,620 7,761.0 1,852 315 3.3 112,734
#Best 14/14 4/14 7/14 10/14 1/14 12/14 10/14 7/14 13/14 13/14

160

Gehring and Homberger’s instances

Table A.13 Detailed results for comparing Default vs SetBased settings using only-cycle
DSSR before adding non-robust cuts

Instance Default SetBased
lb T(s) #iters #DSSR #labels lb T(s) #iters #DSSR #labels

C1_210 26,197.3 655 72 29.3 560,811 26,196.9 602 83 22.8 454,343
C1_2_3 26,597.4 476 132 12.4 193,347 26,597.4 403 145 9.8 147,833
C1_2_4 26,197.7 1,066 220 13.9 400,174 26,197.7 885 209 12.3 325,856
C1_2_9 26,396.0 219 58 13.6 124,522 26,396.0 211 59 11.7 106,689
C2_2_1 19,150.3 349 8 1.0 388 19,150.3 355 8 1.0 388
C2_2_2 18,396.0 9,504 794 2.5 10,412 18,396.0 9,856 919 1.9 7,868
C2_2_5 18,607.1 1,339 165 3.4 3,829 18,607.1 1,300 150 3.5 4,049
C2_2_6 18,406.7 4,173 324 5.3 15,499 18,406.7 3,429 302 4.6 13,644
C2_2_7 18,356.4 6,342 429 5.3 22,082 18,356.4 6,322 454 4.9 20,152
C2_2_8 18,082.4 7,977 363 8.0 42,366 18,082.4 6,458 296 8.0 40,892
C2_2_9 18,011.7 13,272 486 6.7 56,421 18,011.9 9,980 366 7.2 54,808
R1_210 32,450.2 153 26 16.3 210,725 32,451.2 134 27 13.9 177,834
R1_2_4 30,010.4 270 43 13.2 357,645 30,009.9 215 40 13.4 364,716
R1_2_5 40,068.1 42 12 2.0 9,881 40,068.1 41 11 2.2 10,827
R1_2_6 34,930.6 101 41 4.6 53,930 34,930.6 92 37 4.4 54,508
R1_2_7 31,000.6 237 51 8.7 190,129 31,000.6 190 51 7.9 170,515
R1_2_8 29,032.2 356 34 19.8 589,966 29,032.3 261 36 17.0 487,423
R1_2_9 36,788.3 68 17 7.4 52,206 36,788.3 64 20 6.2 44,247
R2_2_1 34,625.1 1,645 88 2.7 1,232 34,625.1 1,734 110 2.4 1,097
R2_2_2 30,006.1 5,397 282 5.1 12,466 30,006.1 4,943 270 4.6 11,252
R2_2_5 30,290.3 2,946 188 3.9 4,670 30,290.3 2,798 144 4.2 4,843
R2_2_6 26,455.6 9,738 414 5.9 39,427 26,455.6 8,397 392 5.2 30,201
R2_2_9 28,206.0 4,217 252 4.7 11,431 28,206.0 3,836 207 4.5 9,902
RC1_2_1 34,595.9 54 18 7.4 43,828 34,595.9 52 17 7.6 44,773
RC1_2_2 31,774.7 127 44 7.7 103,660 31,774.8 118 43 8.0 111,973
RC1_2_6 32,554.7 160 20 34.2 402,772 32,554.8 137 23 26.7 324,806
RC1_2_8 30,216.1 462 34 45.3 1,202,445 30,216.1 361 38 38.2 995,481
RC2_2_1 27,891.0 1,927 104 7.3 6,676 27,892.7 1,913 115 5.6 5,196
RC2_2_2 24,588.6 11,588 529 7.5 41,155 24,588.7 9,785 511 6.2 31,888
RC2_2_5 24,788.5 7,383 493 8.3 88,212 24,788.5 6,263 475 7.5 67,406
RC2_2_6 24,724.4 5,859 433 8.2 49,520 24,724.4 5,067 388 7.7 41,217

#Best 26/31 3/31 14/31 9/31 8/31 29/31 28/31 19/31 25/31 24/31

161

Table A.14 Detailed results for comparing Default vs SetBased settings using only-cycle
DSSR after adding non-robust cuts

Instance Default SetBased
lb T(s) #iters #DSSR #labels lb T(s) #iters #DSSR #labels

C1_210 26,247.0 822 192 13.9 265,467 26,247.0 782 201 12.4 247,868
C1_2_3 26,719.2 123,963 433 5.8 152,581 26,721.9 39,138 505 4.7 129,423
C1_2_4 26,256.0 1,357 374 10.1 304,547 26,256.0 1,151 357 9.2 260,764
C1_2_9 26,396.0 220 58 13.6 124,522 26,396.0 212 59 11.7 106,689
C2_2_1 19,152.8 402 70 1.0 455 19,154.4 414 74 1.0 436
C2_2_2 18,514.0 13,515 1,637 1.8 7,683 18,492.1 13,421 1,699 1.5 6,113
C2_2_5 18,696.0 2,091 562 1.9 2,717 18,696.0 2,031 530 1.8 2,997
C2_2_6 18,448.0 5,729 852 2.8 8,996 18,448.0 4,328 619 2.9 9,145
C2_2_7 18,422.0 7,449 790 3.5 14,261 18,422.0 7,748 933 3.0 12,193
C2_2_8 18,137.0 9,221 696 4.8 25,811 18,135.8 7,987 654 4.5 23,848
C2_2_9 18,150.0 21,618 1,142 3.9 44,040 18,150.0 17,313 957 3.9 42,650
R1_210 32,792.4 2,041 390 3.1 86,138 32,793.1 1,958 390 2.9 81,608
R1_2_4 30,367.6 32,462 576 3.6 410,047 30,363.9 17,440 507 3.8 386,889
R1_2_5 40,457.1 423 253 1.1 7,508 40,457.0 411 258 1.1 7,360
R1_2_6 35,454.7 1,980 436 2.0 55,897 35,457.1 2,014 467 1.9 56,159
R1_2_7 31,393.5 3,589 452 3.2 175,536 31,390.9 2,872 412 3.3 164,077
R1_2_8 29,328.1 6,201 452 4.7 379,879 29,330.1 6,478 468 4.5 368,905
R1_2_9 37,267.4 688 291 1.7 21,969 37,268.2 676 301 1.7 22,490
R2_2_1 34,680.0 1,756 268 1.6 710 34,680.0 1,860 294 1.6 709
R2_2_2 30,082.0 6,215 568 3.1 7,089 30,082.0 6,069 665 2.6 5,664
R2_2_5 30,609.2 5,358 1,405 1.5 3,232 30,609.5 5,294 1,336 1.4 3,312
R2_2_6 26,750.2 17,642 2,167 2.0 13,086 26,750.5 19,404 2,765 1.7 10,458
R2_2_9 28,433.0 5,808 992 2.0 5,578 28,415.2 5,188 877 2.0 4,926
RC1_2_1 34,993.5 632 312 1.4 14,926 34,998.0 728 329 1.4 15,720
RC1_2_2 32,068.1 25,064 465 2.5 101,532 32,068.8 34,489 453 2.5 100,049
RC1_2_6 32,936.9 5,602 498 3.8 127,355 32,939.9 5,157 544 3.5 126,882
RC1_2_8 30,502.0 125,068 585 7.3 926,295 30,499.4 109,219 562 7.4 945,591
RC2_2_1 27,960.8 2,280 638 2.1 1,904 27,961.8 2,231 531 2.1 2,009
RC2_2_2 24,780.0 49,224 6,730 1.6 10,137 24,772.0 55,776 6,448 1.5 8,972
RC2_2_5 24,914.0 15,122 3,160 2.3 30,460 24,914.0 14,721 3,309 2.1 26,173
RC2_2_6 24,951.0 10,970 2,403 2.6 19,502 24,951.0 8,951 2,053 2.5 17,478

#Best 19/31 9/31 17/31 17/31 8/31 24/31 22/31 15/31 30/31 23/31

162

Table A.15 Detailed results for comparing Default vs Pairwise settings using only-cycle
DSSR before adding non-robust cuts

Instance Default Pairwise
lb T(s) #iters #DSSR #labels lb T(s) #iters #DSSR #labels

C1_210 26,197.3 655 72 29.3 560,811 26,197.3 595 80 23.9 427,899
C1_2_3 26,597.4 476 132 12.4 193,347 26,597.4 390 111 8.5 120,149
C1_2_4 26,197.7 1,066 220 13.9 400,174 26,197.7 965 196 13.8 353,881
C1_2_9 26,396.0 219 58 13.6 124,522 26,396.0 215 68 9.5 84,917
C2_2_1 19,150.3 349 8 1.0 388 19,150.3 350 8 1.0 388
C2_2_2 18,396.0 9,504 794 2.5 10,412 18,396.0 5,983 610 2.2 8,299
C2_2_5 18,607.1 1,339 165 3.4 3,829 18,607.1 1,258 158 3.3 3,662
C2_2_6 18,406.7 4,173 324 5.3 15,499 18,406.7 3,168 243 5.5 14,472
C2_2_7 18,356.4 6,342 429 5.3 22,082 18,356.4 5,605 436 4.7 17,806
C2_2_8 18,082.4 7,977 363 8.0 42,366 18,082.4 6,428 334 7.1 32,202
C2_2_9 18,011.7 13,272 486 6.7 56,421 18,011.8 10,553 417 6.5 46,727
R1_210 32,450.2 153 26 16.3 210,725 32,451.3 157 27 14.7 191,588
R1_2_4 30,010.4 270 43 13.2 357,645 30,010.6 291 38 14.1 386,546
R1_2_5 40,068.1 42 12 2.0 9,881 40,068.1 42 12 2.0 9,881
R1_2_6 34,930.6 101 41 4.6 53,930 34,930.6 98 42 4.3 49,923
R1_2_7 31,000.6 237 51 8.7 190,129 31,000.6 243 47 9.8 213,354
R1_2_8 29,032.2 356 34 19.8 589,966 29,032.1 327 38 16.8 476,911
R1_2_9 36,788.3 68 17 7.4 52,206 36,788.3 68 18 6.7 47,286
R2_2_1 34,625.1 1,645 88 2.7 1,232 34,625.1 1,718 92 2.5 1,156
R2_2_2 30,006.1 5,397 282 5.1 12,466 30,006.1 4,965 290 4.4 10,221
R2_2_5 30,290.3 2,946 188 3.9 4,670 30,290.3 2,764 163 3.8 4,325
R2_2_6 26,455.6 9,738 414 5.9 39,427 26,455.6 8,909 387 5.4 31,820
R2_2_9 28,206.0 4,217 252 4.7 11,431 28,206.1 3,639 187 5.0 11,062
RC1_2_1 34,595.9 54 18 7.4 43,828 34,595.9 54 18 7.4 43,828
RC1_2_2 31,774.7 127 44 7.7 103,660 31,774.7 123 44 7.2 96,327
RC1_2_6 32,554.7 160 20 34.2 402,772 32,554.7 152 20 31.2 361,162
RC1_2_8 30,216.1 462 34 45.3 1,202,445 30,216.1 439 36 41.7 1,062,486
RC2_2_1 27,891.0 1,927 104 7.3 6,676 27,892.7 1,890 111 5.9 5,281
RC2_2_2 24,588.6 11,588 529 7.5 41,155 24,592.5 10,071 549 6.0 29,763
RC2_2_5 24,788.5 7,383 493 8.3 88,212 24,788.5 6,327 387 9.6 84,634
RC2_2_6 24,724.4 5,859 433 8.2 49,520 24,724.5 5,259 381 8.0 43,544

#Best 27/31 7/31 17/31 10/31 5/31 31/31 24/31 19/31 26/31 29/31

163

Table A.16 Detailed results for comparing Default vs Pairwise settings using only-cycle
DSSR after adding non-robust cuts

Instance Default Pairwise
lb T(s) #iters #DSSR #labels lb T(s) #iters #DSSR #labels

C1_210 26,247.0 822 192 13.9 265,467 26,247.0 763 206 12.3 220,337
C1_2_3 26,719.2 123,963 433 5.8 152,581 26,720.1 57,438 458 4.5 117,110
C1_2_4 26,256.0 1,357 374 10.1 304,547 26,256.0 1,250 347 10.0 272,266
C1_2_9 26,396.0 220 58 13.6 124,522 26,396.0 216 68 9.5 84,917
C2_2_1 19,152.8 402 70 1.0 455 19,152.8 402 70 1.0 455
C2_2_2 18,514.0 13,515 1,637 1.8 7,683 18,514.0 9,767 1,393 1.6 7,116
C2_2_5 18,696.0 2,091 562 1.9 2,717 18,696.0 1,957 517 1.8 2,903
C2_2_6 18,448.0 5,729 852 2.8 8,996 18,448.0 4,559 761 2.6 7,490
C2_2_7 18,422.0 7,449 790 3.5 14,261 18,422.0 6,624 785 3.2 12,041
C2_2_8 18,137.0 9,221 696 4.8 25,811 18,137.0 8,008 781 3.8 18,482
C2_2_9 18,150.0 21,618 1,142 3.9 44,040 18,150.0 18,888 1,001 3.8 41,764
R1_210 32,792.4 2,041 390 3.1 86,138 32,794.6 2,377 410 2.8 79,223
R1_2_4 30,367.6 32,462 576 3.6 410,047 30,362.2 22,112 509 3.8 399,613
R1_2_5 40,457.1 423 253 1.1 7,508 40,457.1 422 253 1.1 7,508
R1_2_6 35,454.7 1,980 436 2.0 55,897 35,457.0 2,235 430 2.0 58,068
R1_2_7 31,393.5 3,589 452 3.2 175,536 31,392.3 3,379 413 3.4 177,490
R1_2_8 29,328.1 6,201 452 4.7 379,879 29,328.3 5,554 466 4.4 340,491
R1_2_9 37,267.4 688 291 1.7 21,969 37,271.3 807 307 1.6 22,444
R2_2_1 34,680.0 1,756 268 1.6 710 34,680.0 1,823 230 1.7 749
R2_2_2 30,082.0 6,215 568 3.1 7,089 30,088.0 5,687 561 2.8 6,153
R2_2_5 30,609.2 5,358 1,405 1.5 3,232 30,610.3 5,225 1,434 1.4 3,339
R2_2_6 26,750.2 17,642 2,167 2.0 13,086 26,748.6 18,751 2,462 1.8 11,163
R2_2_9 28,433.0 5,808 992 2.0 5,578 28,429.1 5,232 1,005 1.8 4,638
RC1_2_1 34,993.5 632 312 1.4 14,926 34,993.5 631 312 1.4 14,926
RC1_2_2 32,068.1 25,064 465 2.5 101,532 32,072.1 28,047 448 2.5 102,412
RC1_2_6 32,936.9 5,602 498 3.8 127,355 32,941.0 6,413 532 3.6 129,387
RC1_2_8 30,502.0 125,068 585 7.3 926,295 30,500.0 137,624 547 7.7 964,933
RC2_2_1 27,960.8 2,280 638 2.1 1,904 27,932.2 2,153 491 2.2 1,964
RC2_2_2 24,780.0 49,224 6,730 1.6 10,137 24,776.2 57,708 7,092 1.4 8,741
RC2_2_5 24,914.0 15,122 3,160 2.3 30,460 24,914.0 10,197 1,915 2.8 29,270
RC2_2_6 24,951.0 10,970 2,403 2.6 19,502 24,951.0 9,325 2,325 2.3 15,720

#Best 22/31 10/31 15/31 15/31 13/31 24/31 21/31 19/31 27/31 21/31

164

Table A.17 Detailed results for comparing Default vs SetPair settings using only-cycle
DSSR before adding non-robust cuts

Instance Default SetPair
lb T(s) #iters #DSSR #labels lb T(s) #iters #DSSR #labels

C1_210 26,197.3 655 72 29.3 560,811 26,197.3 546 74 24.9 445,636
C1_2_3 26,597.4 476 132 12.4 193,347 26,597.4 412 147 10.3 162,955
C1_2_4 26,197.7 1,066 220 13.9 400,174 26,197.7 821 209 12.5 328,362
C1_2_9 26,396.0 219 58 13.6 124,522 26,396.0 198 52 12.2 108,642
C2_2_1 19,150.3 349 8 1.0 388 19,150.3 357 8 1.0 388
C2_2_2 18,396.0 9,504 794 2.5 10,412 18,396.0 6,668 739 1.8 6,935
C2_2_5 18,607.1 1,339 165 3.4 3,829 18,607.1 1,257 155 3.4 3,698
C2_2_6 18,406.7 4,173 324 5.3 15,499 18,406.7 3,605 322 4.6 12,457
C2_2_7 18,356.4 6,342 429 5.3 22,082 18,356.4 5,688 496 4.1 15,732
C2_2_8 18,082.4 7,977 363 8.0 42,366 18,082.4 6,843 333 7.4 34,009
C2_2_9 18,011.7 13,272 486 6.7 56,421 18,011.9 9,361 340 7.6 54,178
R1_210 32,450.2 153 26 16.3 210,725 32,451.3 135 25 16.0 206,761
R1_2_4 30,010.4 270 43 13.2 357,645 30,009.9 213 41 12.6 330,678
R1_2_5 40,068.1 42 12 2.0 9,881 40,068.1 42 12 2.0 9,874
R1_2_6 34,930.6 101 41 4.6 53,930 34,930.6 97 40 4.7 56,384
R1_2_7 31,000.6 237 51 8.7 190,129 31,000.8 201 49 8.4 179,043
R1_2_8 29,032.2 356 34 19.8 589,966 29,032.2 276 39 15.7 448,479
R1_2_9 36,788.3 68 17 7.4 52,206 36,788.6 65 17 7.1 50,041
R2_2_1 34,625.1 1,645 88 2.7 1,232 34,625.1 1,679 70 3.0 1,396
R2_2_2 30,006.1 5,397 282 5.1 12,466 30,006.1 4,832 270 4.6 11,151
R2_2_5 30,290.3 2,946 188 3.9 4,670 30,290.3 2,657 131 4.5 5,092
R2_2_6 26,455.6 9,738 414 5.9 39,427 26,455.5 8,142 329 6.1 35,795
R2_2_9 28,206.0 4,217 252 4.7 11,431 28,206.0 3,938 223 4.3 9,247
RC1_2_1 34,595.9 54 18 7.4 43,828 34,595.9 52 17 7.8 45,483
RC1_2_2 31,774.7 127 44 7.7 103,660 31,774.7 115 44 7.6 97,615
RC1_2_6 32,554.7 160 20 34.2 402,772 32,554.8 143 23 28.1 331,637
RC1_2_8 30,216.1 462 34 45.3 1,202,445 30,215.7 384 35 41.9 1,044,786
RC2_2_1 27,891.0 1,927 104 7.3 6,676 27,892.7 1,956 127 5.1 4,572
RC2_2_2 24,588.6 11,588 529 7.5 41,155 24,590.9 9,829 499 6.6 31,844
RC2_2_5 24,788.5 7,383 493 8.3 88,212 24,797.9 6,244 384 9.8 88,198
RC2_2_6 24,724.4 5,859 433 8.2 49,520 24,724.4 5,233 374 8.1 42,073

#Best 24/31 3/31 11/31 11/31 5/31 29/31 28/31 24/31 25/31 27/31

165

Table A.18 Detailed results for comparing Default vs SetPair settings using only-cycle
DSSR after adding non-robust cuts

Instance Default SetPair
lb T(s) #iters #DSSR #labels lb T(s) #iters #DSSR #labels

C1_210 26,247.0 822 192 13.9 265,467 26,247.0 725 203 12.2 218,519
C1_2_3 26,719.2 123,963 433 5.8 152,581 26,721.5 241,285 481 5.0 141,088
C1_2_4 26,256.0 1,357 374 10.1 304,547 26,256.0 1,096 355 9.3 256,656
C1_2_9 26,396.0 220 58 13.6 124,522 26,396.0 199 52 12.2 108,642
C2_2_1 19,152.8 402 70 1.0 455 19,156.4 430 98 1.0 475
C2_2_2 18,514.0 13,515 1,637 1.8 7,683 18,514.0 10,401 1,630 1.4 5,195
C2_2_5 18,696.0 2,091 562 1.9 2,717 18,696.0 1,994 556 1.8 2,642
C2_2_6 18,448.0 5,729 852 2.8 8,996 18,448.0 4,944 831 2.6 7,256
C2_2_7 18,422.0 7,449 790 3.5 14,261 18,422.0 7,322 1,054 2.6 9,629
C2_2_8 18,137.0 9,221 696 4.8 25,811 18,137.0 8,071 674 4.3 20,740
C2_2_9 18,150.0 21,618 1,142 3.9 44,040 18,150.0 16,638 928 4.1 41,527
R1_210 32,792.4 2,041 390 3.1 86,138 32,794.9 2,365 418 2.9 82,495
R1_2_4 30,367.6 32,462 576 3.6 410,047 30,366.9 40,007 559 3.5 374,689
R1_2_5 40,457.1 423 253 1.1 7,508 40,451.6 328 221 1.1 7,251
R1_2_6 35,454.7 1,980 436 2.0 55,897 35,462.4 2,497 509 1.9 55,871
R1_2_7 31,393.5 3,589 452 3.2 175,536 31,392.5 4,044 430 3.3 172,441
R1_2_8 29,328.1 6,201 452 4.7 379,879 29,331.0 8,925 487 4.3 371,794
R1_2_9 37,267.4 688 291 1.7 21,969 37,272.2 806 323 1.6 22,272
R2_2_1 34,680.0 1,756 268 1.6 710 34,680.0 1,803 222 1.7 751
R2_2_2 30,082.0 6,215 568 3.1 7,089 30,082.0 5,723 563 2.8 6,366
R2_2_5 30,609.2 5,358 1,405 1.5 3,232 30,603.9 4,552 1,206 1.5 2,790
R2_2_6 26,750.2 17,642 2,167 2.0 13,086 26,749.5 17,406 2,348 1.8 11,234
R2_2_9 28,433.0 5,808 992 2.0 5,578 28,428.0 5,487 1,018 1.8 4,622
RC1_2_1 34,993.5 632 312 1.4 14,926 34,994.6 659 318 1.4 14,533
RC1_2_2 32,068.1 25,064 465 2.5 101,532 32,074.2 57,720 494 2.4 101,310
RC1_2_6 32,936.9 5,602 498 3.8 127,355 32,942.6 8,596 558 3.4 125,762
RC1_2_8 30,502.0 125,068 585 7.3 926,295 30,497.4 136,304 541 7.8 898,946
RC2_2_1 27,960.8 2,280 638 2.1 1,904 27,961.1 2,283 555 2.1 1,916
RC2_2_2 24,780.0 49,224 6,730 1.6 10,137 24,780.0 68,376 7,839 1.4 8,530
RC2_2_5 24,914.0 15,122 3,160 2.3 30,460 24,914.0 13,006 2,856 2.3 27,022
RC2_2_6 24,951.0 10,970 2,403 2.6 19,502 24,951.0 9,706 2,543 2.2 14,405

#Best 21/31 15/31 15/31 14/31 4/31 24/31 16/31 16/31 28/31 27/31

166

Table A.19 Detailed results for comparing Default vs SetBased settings using all-arcs
DSSR before adding non-robust cuts

Instance Default SetBased
lb T(s) #iters #DSSR #labels lb T(s) #iters #DSSR #labels

C1_210 26,197.3 477 74 16.1 310,753 26,197.2 381 61 16.5 319,202
C1_2_3 26,597.4 323 113 4.1 73,609 26,597.4 253 105 4.8 82,096
C1_2_4 26,197.7 525 157 6.2 197,897 26,197.7 459 177 4.9 152,005
C1_2_9 26,396.0 184 55 11.1 97,994 26,396.0 200 51 11.1 103,308
C2_2_1 19,150.3 359 8 1.0 388 19,150.3 362 8 1.0 388
C2_2_2 18,394.0 3,905 518 1.4 6,134 18,396.0 4,645 561 1.3 5,711
C2_2_5 18,607.1 1,259 151 3.3 3,707 18,607.1 1,272 165 2.9 3,512
C2_2_6 18,406.7 3,079 252 4.1 11,771 18,406.7 2,684 211 4.6 13,276
C2_2_7 18,356.4 3,905 360 3.4 13,757 18,356.4 3,612 360 3.2 13,574
C2_2_8 18,082.4 3,564 232 5.0 23,873 18,082.4 3,412 200 5.5 27,222
C2_2_9 18,011.9 6,020 306 4.5 35,977 18,011.2 5,490 268 4.8 40,270
R1_210 32,451.3 132 21 14.2 183,530 32,451.3 123 25 12.0 160,451
R1_2_4 30,010.5 198 36 8.7 238,385 30,009.9 158 40 7.5 193,054
R1_2_5 40,068.1 43 12 2.0 9,881 40,068.1 42 11 2.2 10,827
R1_2_6 34,930.6 93 44 3.5 39,224 34,930.6 88 36 3.9 48,222
R1_2_7 31,001.0 189 51 5.6 117,367 31,000.4 163 47 5.8 124,032
R1_2_8 29,032.3 250 35 10.2 302,465 29,032.3 194 31 11.0 318,416
R1_2_9 36,788.5 68 18 6.4 46,453 36,788.5 66 17 6.5 47,789
R2_2_1 34,625.1 1,751 106 2.3 1,060 34,625.1 1,682 115 2.1 979
R2_2_2 30,006.1 4,391 291 3.2 7,647 30,006.1 3,933 217 3.8 9,269
R2_2_5 30,290.3 2,681 146 3.4 4,062 30,290.3 2,713 150 3.2 3,787
R2_2_6 26,455.5 6,253 278 4.3 28,234 26,455.6 5,382 239 4.2 28,634
R2_2_9 28,206.0 3,616 205 3.4 8,047 28,206.0 3,471 173 3.6 8,488
RC1_2_1 34,595.9 54 18 7.4 43,828 34,595.9 51 17 7.6 44,773
RC1_2_2 31,774.7 112 41 6.5 84,161 31,774.7 101 42 6.3 84,595
RC1_2_6 32,554.8 121 20 21.9 255,845 32,554.9 103 20 20.8 243,494
RC1_2_8 30,216.1 236 30 19.3 517,598 30,216.1 194 29 18.9 495,194
RC2_2_1 27,891.0 1,873 117 4.9 4,509 27,891.0 1,831 111 4.5 4,382
RC2_2_2 24,588.6 7,141 490 3.7 22,238 24,588.8 6,532 450 3.6 21,101
RC2_2_5 24,788.5 3,338 263 4.9 47,954 24,788.5 3,432 273 4.9 48,149
RC2_2_6 24,724.4 3,484 276 4.7 28,380 24,724.4 3,311 269 4.7 26,591

#Best 28/31 6/31 12/31 19/31 18/31 27/31 25/31 22/31 19/31 14/31

167

Table A.20 Detailed results for comparing Default vs SetBased settings using all-arcs
DSSR after adding non-robust cuts

Instance Default SetBased
lb T(s) #iters #DSSR #labels lb T(s) #iters #DSSR #labels

C1_210 26,247.0 616 184 8.1 19,180 26,247.0 492 167 8.0 19,513
C1_2_3 26,723.2 34,047 498 2.0 32,563 26,717.7 44,182 410 2.3 33,328
C1_2_4 26,256.0 724 283 4.2 34,120 26,256.0 654 319 3.4 33,587
C1_2_9 26,396.0 185 55 11.1 8,836 26,396.0 201 51 11.1 9,292
C2_2_1 19,152.8 413 70 1.0 455 19,154.4 421 74 1.0 436
C2_2_2 18,514.0 12,368 1,415 1.2 5,863 18,489.1 7,611 1,234 1.2 4,423
C2_2_5 18,696.0 2,008 561 1.7 1,602 18,696.0 2,034 596 1.6 1,685
C2_2_6 18,448.0 4,111 628 2.3 3,102 18,448.0 3,768 653 2.2 3,104
C2_2_7 18,422.0 4,968 737 2.2 4,033 18,422.0 4,998 833 2.0 4,449
C2_2_8 18,137.0 4,633 577 2.7 5,321 18,137.0 4,390 513 2.8 5,038
C2_2_9 18,150.0 11,608 977 2.2 10,730 18,150.0 10,306 800 2.4 12,342
R1_210 32,794.9 2,140 417 2.2 29,849 32,793.0 1,836 415 2.2 30,208
R1_2_4 30,364.6 18,415 533 2.0 127,556 30,364.1 15,173 551 1.9 128,498
R1_2_5 40,457.1 427 253 1.1 7,141 40,457.0 418 258 1.1 7,007
R1_2_6 35,456.9 1,995 461 1.6 29,240 35,461.9 2,074 458 1.5 31,203
R1_2_7 31,392.8 2,506 422 2.1 54,672 31,391.1 2,333 406 2.1 54,599
R1_2_8 29,328.1 4,897 451 2.4 100,373 29,330.2 5,120 462 2.3 103,922
R1_2_9 37,270.4 750 308 1.5 13,958 37,266.9 640 285 1.6 13,359
R2_2_1 34,680.0 1,851 230 1.6 452 34,680.0 1,806 277 1.5 460
R2_2_2 30,082.0 5,271 594 2.1 2,213 30,102.2 4,501 464 2.3 2,287
R2_2_5 30,609.8 4,836 1,302 1.3 2,128 30,609.6 4,842 1,292 1.3 2,140
R2_2_6 26,748.4 13,208 1,972 1.5 6,390 26,747.2 13,188 2,240 1.4 6,780
R2_2_9 28,433.0 4,994 911 1.6 2,725 28,430.3 5,080 962 1.5 2,850
RC1_2_1 34,993.5 634 312 1.4 10,372 34,998.0 734 329 1.4 11,170
RC1_2_2 32,072.6 28,285 495 1.8 41,646 32,073.3 25,273 474 1.9 45,399
RC1_2_6 32,938.2 5,123 503 2.7 36,610 32,936.1 3,672 476 2.7 36,397
RC1_2_8 30,499.5 59,534 543 3.1 133,139 30,500.3 45,722 553 3.0 141,567
RC2_2_1 27,966.5 2,242 682 1.7 909 27,961.8 2,124 550 1.8 954
RC2_2_2 24,780.0 31,302 4,948 1.3 6,565 24,769.8 26,760 4,129 1.3 6,795
RC2_2_5 24,914.0 7,532 1,817 1.6 14,139 24,914.0 9,052 2,334 1.5 15,662
RC2_2_6 24,951.0 7,288 2,026 1.6 8,280 24,951.0 6,840 1,953 1.5 9,069

#Best 24/31 11/31 14/31 23/31 23/31 19/31 20/31 17/31 27/31 8/31

168

Table A.21 Detailed results for comparing Default vs Pairwise settings using all-arcs
DSSR before adding non-robust cuts

Instance Default Pairwise
lb T(s) #iters #DSSR #labels lb T(s) #iters #DSSR #labels

C1_210 26,197.3 477 74 16.1 310,753 26,197.3 432 66 16.4 295,977
C1_2_3 26,597.4 323 113 4.1 73,609 26,597.4 260 118 4.2 67,797
C1_2_4 26,197.7 525 157 6.2 197,897 26,197.7 423 167 5.2 147,922
C1_2_9 26,396.0 184 55 11.1 97,994 26,396.0 187 60 9.5 82,941
C2_2_1 19,150.3 359 8 1.0 388 19,150.3 351 8 1.0 388
C2_2_2 18,394.0 3,905 518 1.4 6,134 18,396.0 4,871 615 1.4 5,671
C2_2_5 18,607.1 1,259 151 3.3 3,707 18,607.1 1,167 141 3.1 3,436
C2_2_6 18,406.7 3,079 252 4.1 11,771 18,406.7 2,695 204 4.6 12,090
C2_2_7 18,356.4 3,905 360 3.4 13,757 18,356.4 4,026 339 3.6 13,981
C2_2_8 18,082.4 3,564 232 5.0 23,873 18,082.4 3,405 203 5.3 23,366
C2_2_9 18,011.9 6,020 306 4.5 35,977 18,012.0 4,696 285 4.3 31,165
R1_210 32,451.3 132 21 14.2 183,530 32,450.6 128 24 11.6 150,038
R1_2_4 30,010.5 198 36 8.7 238,385 30,009.9 188 43 6.9 178,591
R1_2_5 40,068.1 43 12 2.0 9,881 40,068.1 42 12 2.0 9,881
R1_2_6 34,930.6 93 44 3.5 39,224 34,930.6 94 42 3.5 40,691
R1_2_7 31,001.0 189 51 5.6 117,367 31,001.2 187 46 5.9 122,804
R1_2_8 29,032.3 250 35 10.2 302,465 29,032.3 245 36 9.8 286,602
R1_2_9 36,788.5 68 18 6.4 46,453 36,788.3 67 19 5.9 42,793
R2_2_1 34,625.1 1,751 106 2.3 1,060 34,625.1 1,782 124 2.0 899
R2_2_2 30,006.1 4,391 291 3.2 7,647 30,006.1 4,016 246 3.4 8,324
R2_2_5 30,290.3 2,681 146 3.4 4,062 30,290.3 2,640 153 3.1 3,579
R2_2_6 26,455.5 6,253 278 4.3 28,234 26,455.5 5,762 294 3.5 22,616
R2_2_9 28,206.0 3,616 205 3.4 8,047 28,206.0 3,339 162 3.6 8,044
RC1_2_1 34,595.9 54 18 7.4 43,828 34,595.9 55 18 7.4 43,828
RC1_2_2 31,774.7 112 41 6.5 84,161 31,774.7 117 45 5.8 76,159
RC1_2_6 32,554.8 121 20 21.9 255,845 32,554.9 116 21 20.3 233,524
RC1_2_8 30,216.1 236 30 19.3 517,598 30,215.7 224 29 19.4 500,651
RC2_2_1 27,891.0 1,873 117 4.9 4,509 27,892.7 1,761 126 4.0 3,736
RC2_2_2 24,588.6 7,141 490 3.7 22,238 24,589.0 5,930 421 3.8 20,558
RC2_2_5 24,788.5 3,338 263 4.9 47,954 24,788.5 3,435 306 4.5 42,039
RC2_2_6 24,724.4 3,484 276 4.7 28,380 24,724.4 3,193 242 5.0 26,089

#Best 26/31 8/31 18/31 16/31 8/31 27/31 23/31 16/31 21/31 26/31

169

Table A.22 Detailed results for comparing Default vs Pairwise settings using all-arcs
DSSR after adding non-robust cuts

Instance Default Pairwise
lb T(s) #iters #DSSR #labels lb T(s) #iters #DSSR #labels

C1_210 26,247.0 616 184 8.1 19,180 26,247.0 571 174 7.9 18,195
C1_2_3 26,723.2 34,047 498 2.0 32,563 26,722.6 45,995 446 2.2 36,151
C1_2_4 26,256.0 724 283 4.2 34,120 26,256.0 581 304 3.6 30,712
C1_2_9 26,396.0 185 55 11.1 8,836 26,396.0 187 60 9.5 8,731
C2_2_1 19,152.8 413 70 1.0 455 19,152.8 404 70 1.0 455
C2_2_2 18,514.0 12,368 1,415 1.2 5,863 18,471.6 6,580 1,060 1.2 4,238
C2_2_5 18,696.0 2,008 561 1.7 1,602 18,696.0 1,956 493 1.8 1,718
C2_2_6 18,448.0 4,111 628 2.3 3,102 18,448.0 3,730 638 2.2 2,783
C2_2_7 18,422.0 4,968 737 2.2 4,033 18,422.0 5,067 704 2.3 3,986
C2_2_8 18,137.0 4,633 577 2.7 5,321 18,137.0 4,494 569 2.6 4,814
C2_2_9 18,150.0 11,608 977 2.2 10,730 18,150.0 9,256 872 2.2 10,514
R1_210 32,794.9 2,140 417 2.2 29,849 32,794.1 1,940 388 2.2 29,589
R1_2_4 30,364.6 18,415 533 2.0 127,556 30,366.1 18,143 543 2.0 123,662
R1_2_5 40,457.1 427 253 1.1 7,141 40,457.1 421 253 1.1 7,141
R1_2_6 35,456.9 1,995 461 1.6 29,240 35,450.9 1,570 416 1.6 27,229
R1_2_7 31,392.8 2,506 422 2.1 54,672 31,393.2 2,935 462 2.0 57,162
R1_2_8 29,328.1 4,897 451 2.4 100,373 29,329.3 5,023 443 2.3 99,639
R1_2_9 37,270.4 750 308 1.5 13,958 37,270.1 779 316 1.5 13,649
R2_2_1 34,680.0 1,851 230 1.6 452 34,680.0 1,925 325 1.4 465
R2_2_2 30,082.0 5,271 594 2.1 2,213 30,086.1 4,653 516 2.1 2,287
R2_2_5 30,609.8 4,836 1,302 1.3 2,128 30,607.0 4,341 1,182 1.3 1,994
R2_2_6 26,748.4 13,208 1,972 1.5 6,390 26,750.5 13,681 2,188 1.4 6,464
R2_2_9 28,433.0 4,994 911 1.6 2,725 28,424.9 4,674 879 1.5 2,625
RC1_2_1 34,993.5 634 312 1.4 10,372 34,993.5 641 312 1.4 10,372
RC1_2_2 32,072.6 28,285 495 1.8 41,646 32,070.7 21,917 488 1.8 39,992
RC1_2_6 32,938.2 5,123 503 2.7 36,610 32,938.8 4,720 519 2.6 36,117
RC1_2_8 30,499.5 59,534 543 3.1 133,139 30,502.3 81,561 552 3.1 147,774
RC2_2_1 27,966.5 2,242 682 1.7 909 27,954.3 2,025 538 1.8 948
RC2_2_2 24,780.0 31,302 4,948 1.3 6,565 24,779.7 25,767 4,458 1.3 6,430
RC2_2_5 24,914.0 7,532 1,817 1.6 14,139 24,914.0 8,040 2,278 1.5 11,975
RC2_2_6 24,951.0 7,288 2,026 1.6 8,280 24,951.0 6,701 1,994 1.5 7,296

#Best 24/31 11/31 14/31 23/31 11/31 21/31 20/31 20/31 30/31 23/31

170

Table A.23 Detailed results for comparing Default vs SetPair settings using all-arcs
DSSR before adding non-robust cuts

Instance Default SetPair
lb T(s) #iters #DSSR #labels lb T(s) #iters #DSSR #labels

C1_210 26,197.3 477 74 16.1 310,753 26,197.2 383 56 18.2 324,638
C1_2_3 26,597.4 323 113 4.1 73,609 26,597.4 275 127 3.9 64,213
C1_2_4 26,197.7 525 157 6.2 197,897 26,197.7 468 166 5.1 158,242
C1_2_9 26,396.0 184 55 11.1 97,994 26,396.0 190 48 10.9 94,478
C2_2_1 19,150.3 359 8 1.0 388 19,150.3 361 8 1.0 388
C2_2_2 18,394.0 3,905 518 1.4 6,134 18,396.0 4,507 562 1.4 5,752
C2_2_5 18,607.1 1,259 151 3.3 3,707 18,607.1 1,229 154 2.9 3,209
C2_2_6 18,406.7 3,079 252 4.1 11,771 18,406.7 2,680 209 4.4 11,894
C2_2_7 18,356.4 3,905 360 3.4 13,757 18,356.4 3,495 323 3.6 13,573
C2_2_8 18,082.4 3,564 232 5.0 23,873 18,082.4 3,144 169 6.2 27,415
C2_2_9 18,011.9 6,020 306 4.5 35,977 18,010.9 4,818 289 4.1 29,724
R1_210 32,451.3 132 21 14.2 183,530 32,451.2 121 24 12.0 150,794
R1_2_4 30,010.5 198 36 8.7 238,385 30,010.3 161 40 7.6 201,241
R1_2_5 40,068.1 43 12 2.0 9,881 40,068.1 42 12 2.0 9,874
R1_2_6 34,930.6 93 44 3.5 39,224 34,930.6 88 36 3.9 46,483
R1_2_7 31,001.0 189 51 5.6 117,367 31,001.0 168 52 5.1 106,912
R1_2_8 29,032.3 250 35 10.2 302,465 29,032.4 202 32 10.5 297,856
R1_2_9 36,788.5 68 18 6.4 46,453 36,788.3 64 19 5.9 42,799
R2_2_1 34,625.1 1,751 106 2.3 1,060 34,625.1 1,668 105 2.3 1,032
R2_2_2 30,006.1 4,391 291 3.2 7,647 30,006.1 4,028 239 3.6 8,582
R2_2_5 30,290.3 2,681 146 3.4 4,062 30,290.3 2,514 137 3.4 3,998
R2_2_6 26,455.5 6,253 278 4.3 28,234 26,455.6 5,772 303 3.6 21,723
R2_2_9 28,206.0 3,616 205 3.4 8,047 28,206.0 3,352 163 3.6 7,994
RC1_2_1 34,595.9 54 18 7.4 43,828 34,595.9 52 17 7.8 45,483
RC1_2_2 31,774.7 112 41 6.5 84,161 31,774.7 108 41 6.4 86,447
RC1_2_6 32,554.8 121 20 21.9 255,845 32,554.8 108 19 22.2 257,405
RC1_2_8 30,216.1 236 30 19.3 517,598 30,215.7 195 30 19.2 499,774
RC2_2_1 27,891.0 1,873 117 4.9 4,509 27,891.0 1,864 77 6.3 5,872
RC2_2_2 24,588.6 7,141 490 3.7 22,238 24,588.7 6,172 428 3.7 19,722
RC2_2_5 24,788.5 3,338 263 4.9 47,954 24,788.5 3,297 242 5.3 50,913
RC2_2_6 24,724.4 3,484 276 4.7 28,380 24,724.4 3,281 259 4.8 24,910

#Best 29/31 3/31 13/31 21/31 11/31 27/31 28/31 22/31 19/31 21/31

171

Table A.24 Detailed results for comparing Default vs SetPair settings using all-arcs
DSSR after adding non-robust cuts

Instance Default SetPair
lb T(s) #iters #DSSR #labels lb T(s) #iters #DSSR #labels

C1_210 26,247.0 616 184 8.1 19,180 26,247.0 518 165 8.4 18,126
C1_2_3 26,723.2 34,047 498 2.0 32,563 26,721.7 95,535 458 2.2 33,154
C1_2_4 26,256.0 724 283 4.2 34,120 26,256.0 626 298 3.6 32,310
C1_2_9 26,396.0 185 55 11.1 8,836 26,396.0 191 48 10.9 8,671
C2_2_1 19,152.8 413 70 1.0 455 19,156.4 434 98 1.0 475
C2_2_2 18,514.0 12,368 1,415 1.2 5,863 18,495.7 7,666 1,285 1.2 4,424
C2_2_5 18,696.0 2,008 561 1.7 1,602 18,696.0 1,913 523 1.6 1,635
C2_2_6 18,448.0 4,111 628 2.3 3,102 18,448.0 3,372 498 2.5 2,756
C2_2_7 18,422.0 4,968 737 2.2 4,033 18,422.0 4,234 600 2.4 3,850
C2_2_8 18,137.0 4,633 577 2.7 5,321 18,137.0 4,282 561 2.6 4,752
C2_2_9 18,150.0 11,608 977 2.2 10,730 18,150.0 10,600 837 2.3 11,053
R1_210 32,794.9 2,140 417 2.2 29,849 32,793.1 1,923 399 2.2 28,930
R1_2_4 30,364.6 18,415 533 2.0 127,556 30,367.1 28,779 526 2.0 130,872
R1_2_5 40,457.1 427 253 1.1 7,141 40,451.6 331 221 1.1 6,848
R1_2_6 35,456.9 1,995 461 1.6 29,240 35,455.3 1,835 426 1.6 29,301
R1_2_7 31,392.8 2,506 422 2.1 54,672 31,393.6 3,797 442 2.0 55,468
R1_2_8 29,328.1 4,897 451 2.4 100,373 29,328.5 5,961 447 2.3 99,820
R1_2_9 37,270.4 750 308 1.5 13,958 37,267.6 691 294 1.6 13,053
R2_2_1 34,680.0 1,851 230 1.6 452 34,680.0 1,794 282 1.5 456
R2_2_2 30,082.0 5,271 594 2.1 2,213 30,082.0 4,735 508 2.2 2,229
R2_2_5 30,609.8 4,836 1,302 1.3 2,128 30,611.0 4,998 1,343 1.3 2,233
R2_2_6 26,748.4 13,208 1,972 1.5 6,390 26,750.5 14,960 2,536 1.3 6,206
R2_2_9 28,433.0 4,994 911 1.6 2,725 28,433.0 4,747 847 1.6 2,583
RC1_2_1 34,993.5 634 312 1.4 10,372 34,994.6 658 318 1.4 10,135
RC1_2_2 32,072.6 28,285 495 1.8 41,646 32,072.5 43,875 497 1.8 42,617
RC1_2_6 32,938.2 5,123 503 2.7 36,610 32,941.2 6,784 544 2.5 38,856
RC1_2_8 30,499.5 59,534 543 3.1 133,139 30,497.7 57,887 534 3.1 130,149
RC2_2_1 27,966.5 2,242 682 1.7 909 27,961.8 2,194 571 1.8 926
RC2_2_2 24,780.0 31,302 4,948 1.3 6,565 24,780.0 25,755 4,177 1.3 6,745
RC2_2_5 24,914.0 7,532 1,817 1.6 14,139 24,914.0 7,993 2,053 1.5 13,719
RC2_2_6 24,951.0 7,288 2,026 1.6 8,280 24,951.0 6,431 1,920 1.5 7,976

#Best 23/31 12/31 10/31 25/31 14/31 23/31 19/31 21/31 26/31 17/31

	DEDICATION
	ACKNOWLEDGEMENTS
	RÉSUMÉ
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF SYMBOLS AND ACRONYMS
	LIST OF APPENDICES
	1 INTRODUCTION
	1.1 Problem setting and motivation
	1.2 Objectives
	1.3 Thesis outline

	2 CRITICAL LITERATURE REVIEW
	2.1 Column generation for combinatorial optimization problems
	2.1.1 Dantzig-Wolfe decomposition
	2.1.2 Column generation
	2.1.3 Branch-price-and-cut algorithms
	2.1.4 Cuts separation

	2.2 Complexity of solving the pricing subproblem
	2.3 Convergence issues

	3 ORGANIZATION OF THE THESIS
	4 ARTICLE 1: EXACT BRANCH-PRICE-AND-CUT ALGORITHMS FOR VEHICLE ROUTING
	4.1 Introduction
	4.1.1 Problem description
	4.1.2 Set partitioning formulation

	4.2 Components of a basic BPC algorithm
	4.2.1 The master problem
	4.2.2 The pricing problem
	4.2.3 Cutting planes
	4.2.4 Branching decisions

	4.3 Generic tools
	4.3.1 Pricing
	4.3.2 Cutting
	4.3.3 Branching
	4.3.4 Using upper bounds
	4.3.5 Stabilizing dual variable values

	4.4 Contributions to specific VRPs
	4.4.1 Heterogeneous fleet and multiple depots
	4.4.2 Profits (optional customers)
	4.4.3 Soft time windows
	4.4.4 Multiple trips
	4.4.5 Split services
	4.4.6 Time dependency
	4.4.7 Cumulative costs
	4.4.8 Environmental aspects
	4.4.9 Uncertainty
	4.4.10 Pickups and deliveries

	4.5 Conclusion

	5 ARTICLE 2: SELECTIVE ARC-NG PRICING FOR VEHICLE ROUTING
	5.1 Introduction
	5.2 Route relaxations
	5.2.1 The SPPRC
	5.2.2 The ng-SPPRC of Baldacci et al. Baldacci2011
	5.2.3 The arc-ng-SPPRC of Bulhões et al. Bulhoes2018a

	5.3 Selective arc-ng-SPPRC
	5.4 Computational experiments
	5.4.1 Column-and-cut-generation framework
	5.4.2 Experiments design
	5.4.3 Computational results

	5.5 Concluding remarks

	6 STABILIZED COLUMN GENERATION VIA AGGREGATED ROWS SEPARATION
	6.1 Introduction
	6.2 The dynamic aggregated-rows separation method
	6.2.1 Problem description
	6.2.2 The dyn-SAR method
	6.2.3 Description of the method

	6.3 Computational experiments
	6.3.1 Vehicle routing problem with time windows
	6.3.2 Multi-person pose estimation
	6.3.3 Bin Packing Problem with Conflicts

	6.4 Conclusions

	7 GENERAL DISCUSSION
	8 CONCLUSION AND RECOMMENDATIONS
	8.1 Summary of Works
	8.2 Limitations and future research

	REFERENCES
	APPENDICES

