98 research outputs found

    Doctor of Philosophy

    Get PDF
    dissertationIn its report To Err is Human, The Institute of Medicine recommended the implementation of internal and external voluntary and mandatory automatic reporting systems to increase detection of adverse events. Knowledge Discovery in Databases (KDD) allows the detection of patterns and trends that would be hidden or less detectable if analyzed by conventional methods. The objective of this study was to examine novel KDD techniques used by other disciplines to create predictive models using healthcare data and validate the results through clinical domain expertise and performance measures. Patient records for the present study were extracted from the enterprise data warehouse (EDW) from Intermountain Healthcare. Patients with reported adverse events were identified from ICD9 codes. A clinical classification of the ICD9 codes was developed, and the clinical categories were analyzed for risk factors for adverse events including adverse drug events. Pharmacy data were categorized and used for detection of drugs administered in temporal sequence with antidote drugs. Data sampling and data boosting algorithms were used as signal amplification techniques. Decision trees, Naïve Bayes, Canonical Correlation Analysis, and Sequence Analysis were used as machine learning algorithms. iv Performance measures of the classification algorithms demonstrated statistically significant improvement after the transformation of the dataset through KDD techniques, data boosting and sampling. Domain expertise was applied to validate clinical significance of the results. KDD methodologies were applied successfully to a complex clinical dataset. The use of these methodologies was empirically proven effective in healthcare data through statistically significant measures and clinical validation. Although more research is required, we demonstrated the usefulness of KDD methodologies in knowledge extraction from complex clinical data

    Advance Artificial Neural Network Classification Techniques Using EHG for Detecting Preterm Births

    Get PDF
    Worldwide the rate of preterm birth is increasing, which presents significant health, developmental and economic problems. Current methods for predicting preterm births at an early stage are inadequate. Yet, there has been increasing evidence that the analysis of uterine electrical signals, from the abdominal surface, could provide an independent and easy way to diagnose true labour and predict preterm delivery. This analysis provides a heavy focus on the use of advanced machine learning techniques and Electrohysterography (EHG) signal processing. Most EHG studies have focused on true labour detection, in the window of around seven days before labour. However, this paper focuses on using such EHG signals to detect preterm births. In achieving this, the study uses an open dataset containing 262 records for women who delivered at term and 38 who delivered prematurely. The synthetic minority oversampling technique is utilized to overcome the issue with imbalanced datasets to produce a dataset containing 262 term records and 262 preterm records. Six different artificial neural networks were used to detect term and preterm records. The results show that the best performing classifier was the LMNC with 96% sensitivity, 92% specificity, 95% AUC and 6% mean error

    Artificial Intelligence for Detecting Preterm Uterine Activity in Gynacology and Obstertric Care

    Get PDF
    Preterm birth brings considerable emotional and economic costs to families and society. However, despite extensive research into understanding the risk factors, the prediction of patient mechanisms and improvements to obstetrical practice, the UK National Health Service still annually spends more than £2.95 billion on this issue. Diagnosis of labour in normal pregnancies is important for minimizing unnecessary hospitalisations, interventions and expenses. Moreover, accurate identification of spontaneous preterm labour would also allow clinicians to start necessary treatments early in women with true labour and avert unnecessary treatment and hospitalisation for women who are simply having preterm contractions, but who are not in true labour. In this research, the Electrohysterography signals have been used to detect preterm births, because Electrohysterography signals provide a strong basis for objective prediction and diagnosis of preterm birth. This has been achieved using an open dataset, which contains 262 records for women who delivered at term and 38 who delivered prematurely. Three different machine learning algorithm were used to identify these records. The results illustrate that the Random Forest performed the best of sensitivity 97%, specificity of 85%, Area under the Receiver Operator curve (AUROC) of 94% and mean square error rate of 14%

    Classification of Caesarean Section and Normal Vaginal Deliveries Using Foetal Heart Rate Signals and Advanced Machine Learning Algorithms

    Get PDF
    ABSTRACT – Background: Visual inspection of Cardiotocography traces by obstetricians and midwives is the gold standard for monitoring the wellbeing of the foetus during antenatal care. However, inter- and intra-observer variability is high with only a 30% positive predictive value for the classification of pathological outcomes. This has a significant negative impact on the perinatal foetus and often results in cardio-pulmonary arrest, brain and vital organ damage, cerebral palsy, hearing, visual and cognitive defects and in severe cases, death. This paper shows that using machine learning and foetal heart rate signals provides direct information about the foetal state and helps to filter the subjective opinions of medical practitioners when used as a decision support tool. The primary aim is to provide a proof-of-concept that demonstrates how machine learning can be used to objectively determine when medical intervention, such as caesarean section, is required and help avoid preventable perinatal deaths. Methodology: This is evidenced using an open dataset that comprises 506 controls (normal virginal deliveries) and 46 cases (caesarean due to pH ≤7.05 and pathological risk). Several machine-learning algorithms are trained, and validated, using binary classifier performance measures. Results: The findings show that deep learning classification achieves Sensitivity = 94%, Specificity = 91%, Area under the Curve = 99%, F-Score = 100%, and Mean Square Error = 1%. Conclusions: The results demonstrate that machine learning significantly improves the efficiency for the detection of caesarean section and normal vaginal deliveries using foetal heart rate signals compared with obstetrician and midwife predictions and systems reported in previous studies

    Human knee abnormality detection from imbalanced sEMG data

    Get PDF
    The classification of imbalanced datasets, especially in medicine, is a major problem in data mining. Such a problem is evident in analyzing normal and abnormal subjects about knee from data collected during walking. In this work, surface electromyography (sEMG) data were collected during walking from the lower limb of 22 individuals (11 with and 11 without knee abnormality). Subjects with a knee abnormality take longer to complete the walking task than healthy subjects. Therefore, the SEMG signal length of unhealthy subjects is longer than that of healthy subjects, resulting in a problem of imbalance in the collected sEMG signal data. Thus, the development of a classification model for such datasets is challenging due to the bias towards the majority class in the data. The collected sEMG signals are challenging due to the contribution of multiple motor units at a time and their dependency on neuromuscular activity, physiological and anatomical properties of the involved muscles. Hence, automated analysis of such sEMG signals is an arduous task. A multi-step classification scheme is proposed in this research to overcome this limitation. The wavelet denoising (WD) scheme is used to denoise the collected sEMG signals, followed by the extraction of eleven time-domain features. The oversampling techniques are then used to balance the data under analysis by increasing the training minority class. The competency of the proposed scheme was assessed using various computational classifiers with 10 fold cross-validation. It was found that the oversampling techniques improve the performance of all studied classifiers when applied to the studied imbalanced sEMG data. (c) 2021 Elsevier Lt

    A Machine Learning System for Automatic Detection of Preterm Activity Using Artificial Neural Networks and Uterine Electromyography Data

    Get PDF
    Preterm births are babies born before 37 weeks of gestation. The premature delivery of babies is a major global health issue with those affected at greater risk of developing short and long-term complications. Therefore, a better understanding of why preterm births occur is needed. Electromyography is used to capture electrical activity in the uterus to help treat and understand the condition, which is time consuming and expensive. This has led to a recent interest in automated detection of the electromyography correlates of preterm activity. This paper explores this idea further using artificial neural networks to classify term and preterm records, using an open dataset containing 300 records of uterine electromyography signals. Our approach shows an improvement on existing studies with 94.56% for sensitivity, 87.83% for specificity, and 94% for the area under the curve with 9% global error when using the multilayer perceptron neural network trained using the Levenberg-Marquardt algorithm

    Predictive Models for Bariatric Surgery Risks with Imbalanced Medical Datasets

    Get PDF
    Bariatric surgery (BAR) has become a popular treatment for type 2 diabetes mellitus (T2DM) which is among the most critical obesity-related comorbidities. Patients who have bariatric surgery, are exposed to complications after surgery. Furthermore, the mid- to long-term complications after bariatric surgery can be deadly and increase the complexity of managing safety of these operations and healthcare costs. Current studies on BAR complications have mainly used risk scoring for identifying patients who are more likely to have complications after surgery. Though, these studies do not take into considera-tion the imbalanced nature of the data where the size of the class of interest (patients who have complications after surgery) is relatively small. We propose the use of imbalanced classification techniques to tackle the imbalanced bariatric surgery data: synthetic minority oversampling technique (SMOTE), random undersampling, and en-semble learning classification methods including Random Forest, Bagging, and AdaBoost. Moreover, we improve classification performance through using Chi-Squared, Information Gain, and Correlation-based feature selection (CFS) techniques. We study the Premier Healthcare Database with focus on the most-frequent complications includ-ing Diabetes, Angina, Heart Failure, and Stroke. Our results show that the ensemble learning-based classification techniques using any feature selection method mentioned above are the best approach for handling the imbalanced nature of the bariatric surgical outcome data. In our evaluation, we find a slight preference toward using SMOTE method compared to the random undersampling method. These results demonstrate the potential of machine-learning tools as clinical decision support in identifying risks/outcomes associated with bariatric surgery and their effectiveness in reducing the surgery complications as well as improving patient care

    Improving sensitivity of machine learning methods for automated case identification from free-text electronic medical records

    Get PDF
    Background: Distinguishing cases from non-cases in free-text electronic medical records is an important initial step in observational epidemiological studies, but manual record validation is time-consuming and cumbersome. We compared different approaches to develop an automatic case identification system with high sensitivity to assist manual annotators. Methods. We used four different machine-learning algorithms to build case identification systems for two data sets, one comprising hepatobiliary disease patients, the other acute renal failure patients. To improve the sensitivity of the systems, we varied the imbalance ratio between positive cases and negative cases using under- and over-sampling techniques, and applied cost-sensitive learning with various misclassification costs. Results: For the hepatobiliary data set, we obtained a high sensitivity of 0.95 (on a par with manual annotators, as compared to 0.91 for a baseline classifier) with specificity 0.56. For the acute renal failure data set, sensitivity increased from 0.69 to 0.89, with specificity 0.59. Performance differences between the various machine-learning algorithms were not large. Classifiers performed best when trained on data sets with imbalance ratio below 10. Conclusions: We were able to achieve high sensitivity with moderate specificity for automatic case identification on two data sets of electronic medical records. Such a high-sensitive case identification system can be used as a pre-filter to significantly reduce the burden of manual record validation

    Prediction of Labor Induction Success from the Uterine Electrohysterogram

    Full text link
    [EN] Pharmacological agents are often used to induce labor. Failed inductions are associated with unnecessarily long waits and greater maternal-fetal risks, as well as higher costs. No reliable models are currently able to predict the induction outcome from common obstetric data (area under the ROC curve (AUC) between 0.6 and 0.7). The aim of this study was to design an early success-predictor system by extracting temporal, spectral, and complexity parameters from the uterine electromyogram (electrohysterogram (EHG)). Different types of feature sets were used to design and train artificial neural networks: Set_1: obstetrical features, Set_2: EHG features, and Set_3: EHG+obstetrical features. Predictor systems were built to classify three scenarios: (1) induced women who reached active phase of labor (APL) vs. women who did not achieve APL (non-APL), (2) APL and vaginal delivery vs. APL and cesarean section delivery, and (3) vaginal vs. cesarean delivery. For Scenario 3, we also proposed 2-step predictor systems consisting of the cascading predictor systems from Scenarios 1 and 2. EHG features outperformed traditional obstetrical features in all the scenarios. Little improvement was obtained by combining them (Set_3). The results show that the EHG can potentially be used to predict successful labor induction and outperforms the traditional obstetric features. Clinical use of this prediction system would help to improve maternal-fetal well-being and optimize hospital resources.This work received financial support from the Spanish Ministry of Economy and Competitiveness, the European Regional Development Fund (DPI2015-68397-R and RTI2018-094449-A-I00), Universitat Politècnica de València VLC/Campus (UPV-FE-2018-B02), Generalitat Valenciana (GV/2018/104), and Bial S.A.Benalcazar-Parra, C.; Ye Lin, Y.; Garcia-Casado, J.; Monfort-Ortiz, R.; Alberola Rubio, J.; Perales Marin, AJ.; Prats-Boluda, G. (2019). Prediction of Labor Induction Success from the Uterine Electrohysterogram. Journal of Sensors. 2019:1-12. https://doi.org/10.1155/2019/6916251S1122019Filho, O. B. M., Albuquerque, R. M., & Cecatti, J. G. (2010). A randomized controlled trial comparing vaginal misoprostol versus Foley catheter plus oxytocin for labor induction. Acta Obstetricia et Gynecologica Scandinavica, 89(8), 1045-1052. doi:10.3109/00016349.2010.499447Seyb, S. (1999). Risk of cesarean delivery with elective induction of labor at term in nulliparous women. Obstetrics & Gynecology, 94(4), 600-607. doi:10.1016/s0029-7844(99)00377-4Hou, L., Zhu, Y., Ma, X., Li, J., & Zhang, W. (2012). Clinical parameters for prediction of successful labor induction after application of intravaginal dinoprostone in nulliparous Chinese women. Medical Science Monitor, 18(8), CR518-CR522. doi:10.12659/msm.883273Pitarello, P. da R. P., Tadashi Yoshizaki, C., Ruano, R., & Zugaib, M. (2012). Prediction of successful labor induction using transvaginal sonographic cervical measurements. Journal of Clinical Ultrasound, 41(2), 76-83. doi:10.1002/jcu.21929Prado, C. A. de C., Araujo Júnior, E., Duarte, G., Quintana, S. M., Tonni, G., Cavalli, R. de C., & Marcolin, A. C. (2016). Predicting success of labor induction in singleton term pregnancies by combining maternal and ultrasound variables. The Journal of Maternal-Fetal & Neonatal Medicine, 1-35. doi:10.3109/14767058.2015.1135124Sievert, R. A., Kuper, S. G., Jauk, V. C., Parrish, M., Biggio, J. R., & Harper, L. M. (2017). Predictors of vaginal delivery in medically indicated early preterm induction of labor. American Journal of Obstetrics and Gynecology, 217(3), 375.e1-375.e7. doi:10.1016/j.ajog.2017.05.025Garfield, R. E., Maner, W. L., Maul, H., & Saade, G. R. (2005). Use of uterine EMG and cervical LIF in monitoring pregnant patients. BJOG: An International Journal of Obstetrics & Gynaecology, 112, 103-108. doi:10.1111/j.1471-0528.2005.00596.xFergus, P., Cheung, P., Hussain, A., Al-Jumeily, D., Dobbins, C., & Iram, S. (2013). Prediction of Preterm Deliveries from EHG Signals Using Machine Learning. PLoS ONE, 8(10), e77154. doi:10.1371/journal.pone.0077154Aviram, A., Melamed, N., Hadar, E., Raban, O., Hiersch, L., & Yogev, Y. (2013). Effect of Prostaglandin E2 on Myometrial Electrical Activity in Women Undergoing Induction of Labor. American Journal of Perinatology, 31(05), 413-418. doi:10.1055/s-0033-1352486Benalcazar-Parra, C., Ye-Lin, Y., Garcia-Casado, J., Monfort-Orti, R., Alberola-Rubio, J., Perales, A., & Prats-Boluda, G. (2018). Electrohysterographic characterization of the uterine myoelectrical response to labor induction drugs. Medical Engineering & Physics, 56, 27-35. doi:10.1016/j.medengphy.2018.04.002Benalcazar-Parra, C., Monfort-Orti, R., Ye-Lin, Y., Prats-Boluda, G., Alberola-Rubio, J., Perales, A., & Garcia-Casado, J. (2017). Comparison of labour induction with misoprostol and dinoprostone and characterization of uterine response based on electrohysterogram. The Journal of Maternal-Fetal & Neonatal Medicine, 32(10), 1586-1594. doi:10.1080/14767058.2017.1410791Maner, W. L., & Garfield, R. E. (2007). Identification of Human Term and Preterm Labor using Artificial Neural Networks on Uterine Electromyography Data. Annals of Biomedical Engineering, 35(3), 465-473. doi:10.1007/s10439-006-9248-8Diab, M. O., Marque, C., & Khalil, M. (2009). An unsupervised classification method of uterine electromyography signals: Classification for detection of preterm deliveries. Journal of Obstetrics and Gynaecology Research, 35(1), 9-19. doi:10.1111/j.1447-0756.2008.00981.xShi, S.-Q., Maner, W. L., Mackay, L. B., & Garfield, R. E. (2008). Identification of term and preterm labor in rats using artificial neural networks on uterine electromyography signals. American Journal of Obstetrics and Gynecology, 198(2), 235.e1-235.e4. doi:10.1016/j.ajog.2007.08.039Østborg, T. B., Romundstad, P. R., & Eggebø, T. M. (2016). Duration of the active phase of labor in spontaneous and induced labors. Acta Obstetricia et Gynecologica Scandinavica, 96(1), 120-127. doi:10.1111/aogs.13039Baños, N., Migliorelli, F., Posadas, E., Ferreri, J., & Palacio, M. (2015). Definition of Failed Induction of Labor and Its Predictive Factors: Two Unsolved Issues of an Everyday Clinical Situation. Fetal Diagnosis and Therapy, 38(3), 161-169. doi:10.1159/000433429Bueno, B., San-Frutos, L., Salazar, F., Pérez-Medina, T., Engels, V., Archilla, B., … Bajo, J. (2005). Variables that predict the success of labor induction. Acta Obstetricia et Gynecologica Scandinavica, 84(11), 1093-1097. doi:10.1111/j.0001-6349.2005.00881.xWare, V., & Raynor, B. D. (2000). Transvaginal ultrasonographic cervical measurement as a predictor of successful labor induction. American Journal of Obstetrics and Gynecology, 182(5), 1030-1032. doi:10.1067/mob.2000.105399Rooijakkers, M. J., Song, S., Rabotti, C., Oei, S. G., Bergmans, J. W. M., Cantatore, E., & Mischi, M. (2014). Influence of Electrode Placement on Signal Quality for Ambulatory Pregnancy Monitoring. Computational and Mathematical Methods in Medicine, 2014, 1-12. doi:10.1155/2014/960980Garfield, R. E., & Maner, W. L. (2007). Physiology and electrical activity of uterine contractions. Seminars in Cell & Developmental Biology, 18(3), 289-295. doi:10.1016/j.semcdb.2007.05.004Leman, H., Marque, C., & Gondry, J. (1999). Use of the electrohysterogram signal for characterization of contractions during pregnancy. IEEE Transactions on Biomedical Engineering, 46(10), 1222-1229. doi:10.1109/10.790499BUHIMSCHI, C., BOYLE, M., & GARFIELD, R. (1997). Electrical activity of the human uterus during pregnancy as recorded from the abdominal surface. Obstetrics & Gynecology, 90(1), 102-111. doi:10.1016/s0029-7844(97)83837-9Schlembach, D., Maner, W. L., Garfield, R. E., & Maul, H. (2009). Monitoring the progress of pregnancy and labor using electromyography. European Journal of Obstetrics & Gynecology and Reproductive Biology, 144, S33-S39. doi:10.1016/j.ejogrb.2009.02.016Alamedine, D., Diab, A., Muszynski, C., Karlsson, B., Khalil, M., & Marque, C. (2014). Selection algorithm for parameters to characterize uterine EHG signals for the detection of preterm labor. Signal, Image and Video Processing, 8(6), 1169-1178. doi:10.1007/s11760-014-0655-2Fele-Žorž, G., Kavšek, G., Novak-Antolič, Ž., & Jager, F. (2008). A comparison of various linear and non-linear signal processing techniques to separate uterine EMG records of term and pre-term delivery groups. Medical & Biological Engineering & Computing, 46(9), 911-922. doi:10.1007/s11517-008-0350-yTerrien, J., Marque, C., Gondry, J., Steingrimsdottir, T., & Karlsson, B. (2010). Uterine electromyogram database and processing function interface: An open standard analysis platform for electrohysterogram signals. Computers in Biology and Medicine, 40(2), 223-230. doi:10.1016/j.compbiomed.2009.11.019Hassan, M., Terrien, J., Marque, C., & Karlsson, B. (2011). Comparison between approximate entropy, correntropy and time reversibility: Application to uterine electromyogram signals. Medical Engineering & Physics, 33(8), 980-986. doi:10.1016/j.medengphy.2011.03.010Lemancewicz, A., Borowska, M., Kuć, P., Jasińska, E., Laudański, P., Laudański, T., & Oczeretko, E. (2016). Early diagnosis of threatened premature labor by electrohysterographic recordings – The use of digital signal processing. Biocybernetics and Biomedical Engineering, 36(1), 302-307. doi:10.1016/j.bbe.2015.11.005Weiting Chen, Zhizhong Wang, Hongbo Xie, & Wangxin Yu. (2007). Characterization of Surface EMG Signal Based on Fuzzy Entropy. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 15(2), 266-272. doi:10.1109/tnsre.2007.897025Zhang, X.-S., Roy, R. J., & Jensen, E. W. (2001). EEG complexity as a measure of depth of anesthesia for patients. IEEE Transactions on Biomedical Engineering, 48(12), 1424-1433. doi:10.1109/10.966601Blanco, S., Garay, A., & Coulombie, D. (2013). Comparison of Frequency Bands Using Spectral Entropy for Epileptic Seizure Prediction. ISRN Neurology, 2013, 1-5. doi:10.1155/2013/287327Brennan, M., Palaniswami, M., & Kamen, P. (2001). Do existing measures of Poincare plot geometry reflect nonlinear features of heart rate variability? IEEE Transactions on Biomedical Engineering, 48(11), 1342-1347. doi:10.1109/10.959330Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: Synthetic Minority Over-sampling Technique. Journal of Artificial Intelligence Research, 16, 321-357. doi:10.1613/jair.953Makond, B., Wang, K.-J., & Wang, K.-M. (2015). Probabilistic modeling of short survivability in patients with brain metastasis from lung cancer. Computer Methods and Programs in Biomedicine, 119(3), 142-162. doi:10.1016/j.cmpb.2015.02.005Gori, M., & Tesi, A. (1992). On the problem of local minima in backpropagation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14(1), 76-86. doi:10.1109/34.107014Zong, W., Huang, G.-B., & Chen, Y. (2013). Weighted extreme learning machine for imbalance learning. Neurocomputing, 101, 229-242. doi:10.1016/j.neucom.2012.08.010Acharya, U. R., Sudarshan, V. K., Rong, S. Q., Tan, Z., Lim, C. M., Koh, J. E., … Bhandary, S. V. (2017). Automated detection of premature delivery using empirical mode and wavelet packet decomposition techniques with uterine electromyogram signals. Computers in Biology and Medicine, 85, 33-42. doi:10.1016/j.compbiomed.2017.04.013Taft, L. M., Evans, R. S., Shyu, C. R., Egger, M. J., Chawla, N., Mitchell, J. A., … Varner, M. (2009). Countering imbalanced datasets to improve adverse drug event predictive models in labor and delivery. Journal of Biomedical Informatics, 42(2), 356-364. doi:10.1016/j.jbi.2008.09.001Smrdel, A., & Jager, F. (2015). Separating sets of term and pre-term uterine EMG records. Physiological Measurement, 36(2), 341-355. doi:10.1088/0967-3334/36/2/341Blagus, R., & Lusa, L. (2015). Joint use of over- and under-sampling techniques and cross-validation for the development and assessment of prediction models. BMC Bioinformatics, 16(1). doi:10.1186/s12859-015-0784-9Loughrey, J., & Cunningham, P. (s. f.). Overfitting in Wrapper-Based Feature Subset Selection: The Harder You Try the Worse it Gets. Research and Development in Intelligent Systems XXI, 33-43. doi:10.1007/1-84628-102-4_
    corecore