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ABSTRACT 

In its report To Err is Human, The Institute of Medicine recommended the 

implementation of internal and external voluntary and mandatory automatic reporting 

systems to increase detection of adverse events. Knowledge Discovery in Databases 

(KDD) allows the detection of patterns and trends that would be hidden or less detectable 

if analyzed by conventional methods.  

The objective of this study was to examine novel KDD techniques used by other 

disciplines to create predictive models using healthcare data and validate the results 

through clinical domain expertise and performance measures. 

Patient records for the present study were extracted from the enterprise data 

warehouse (EDW) from Intermountain Healthcare. Patients with reported adverse events 

were identified from ICD9 codes. A clinical classification of the ICD9 codes was 

developed, and the clinical categories were analyzed for risk factors for adverse events 

including adverse drug events. Pharmacy data were categorized and used for detection of 

drugs administered in temporal sequence with antidote drugs. Data sampling and data 

boosting algorithms were used as signal amplification techniques. Decision trees, Naïve 

Bayes, Canonical Correlation Analysis, and Sequence Analysis were used as machine 

learning algorithms. 
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Performance measures of the classification algorithms demonstrated statistically 

significant improvement after the transformation of the dataset through KDD techniques, 

data boosting and sampling. Domain expertise was applied to validate clinical 

significance of the results. 

KDD methodologies were applied successfully to a complex clinical dataset. The 

use of these methodologies was empirically proven effective in healthcare data through 

statistically significant measures and clinical validation. Although more research is 

required, we demonstrated the usefulness of KDD methodologies in knowledge 

extraction from complex clinical data. 
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CHAPTER 1 

INTRODUCTION 



   

 

Background 

In its report To Err is Human [1], the Institute of Medicine (IOM) recommended 

the implementation of internal and external voluntary and mandatory reporting systems to 

increase the detection of adverse events (AE). A more recent IOM report, Preventing

Medication Errors [2] states that most medication errors (ME) occur in operating rooms, 

emergency departments, and intensive care units. Operating rooms, emergency 

departments, and intensive care units are known to have a high incidence of Adverse 

Drug Events (ADE) [3]. Labor and Delivery (L&D) areas are considered by quality 

assurance groups as special care units, and pregnant women are considered by the Federal 

Drug Administration (FDA) as a vulnerable group for ADE [2]. L&D provides 

emergency care and therefore should also be treated as a high-risk area.  

The IOM defines “medical errors” as the failure of a planned action to be 

completed as intended or the use of a wrong plan to achieve an aim [1]. A common type 

of ME is an adverse drug event (ADE). ADEs are harm caused by use of medications 

including medication errors and adverse drug reactions. Medication errors are 

preventable and occur in the medication administration process: prescription, dispensing, 

administration. Errors can be reduced with the implementation of electronic tools in the 

medication administration process. Electronic tools allow the detection of duplicate 

prescriptions and incorrect doses and aid in the detection of drugs that can potentially 

cause adverse drug events or drug-drug interactions [2]. Our work demonstrates the 

possibility of utilizing electronic algorithms to detect those drugs with higher probability 

of causing ADE by identifying associations of the use of such drugs and clinical 

diagnosis. Likewise, drugs with a higher probability of causing ADE can be identified 
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through the detection of the use of antidote drugs, providing additional means to increase 

detection and accurate reporting.  

Sentinel events for adverse event monitoring are defined by JCACHO and by 

some state Health Departments [4, 5]. The list of sentinel events from the Utah 

Department of Health was used in this study for the identification process of adverse 

events in labor and delivery [6]. The JCACHO defines a severe AE as  

an unexpected occurrence involving death or serious physical or 
psychological injury, or the risk thereof. Serious injury specifically 
includes loss of limb or function. The phrase, "or the risk thereof" includes 
any process variation for which a recurrence would carry a significant 
chance of a serious adverse outcome. Such events are called "sentinel" 
because they signal the need for immediate investigation and response [4]. 

Advances in computer technology have made it possible to store large amounts of 

data. Examination of these data has the potential to detect adverse events. The 

commercial industry has used available data to understand the relationships among 

multiple variables and help manage businesses. The most important successes have been 

in fraud detection, marketing, and customer retention, where millions of dollars are saved 

by identification of associated events and the promotion of policies derived from these 

techniques. Healthcare providers and decision makers are faced with vast quantities of 

data and need an effective way to extract information from relationships and trends. 

Although advancements have been made, the complexity of clinical data remains a 

challenge in current research. KDD has dealt successfully with complex data from other 

fields, and the methods could potentially be applied in healthcare. To apply models from 

other disciplines, it is necessary to validate the methodologies with successful metrics of 

prediction and through the application of clinical domain knowledge [7, 8]. Prediction 

metrics from different methods are evaluated through the comparison of statistical 
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significance, true positive rates, and positive predictive values that each algorithm has to 

detect the target outcome. The study dataset is sampled utilizing different methodologies 

to avoid overfitting. The ultimate purpose is to determine if the application of a machine 

learning algorithm is capable of increasing the predictive value of the outcome [9].  

The Joint Commission (JCACHO) [4] requests sentinel event reporting in an 

effort to standardize and increase the detection of adverse events. In spite of multiple 

attempts, the reported incidence has been shown to be underestimated. It is necessary to 

incorporate automatic detection systems that can help detect the occurrence of adverse 

events without human intervention [1, 2]. To incorporate changes and improve patient 

safety, the real incidence of adverse events and risk factors needs to be identified [10]. To 

help solve these problems, we have examined the use of Knowledge Discovery in 

Databases (KDD) techniques used by other disciplines such as business analysis, 

industry, and other scientific research [11, 12]. 

Fayyad defines KDD as “the nontrivial process of identifying valid, novel, 

potentially useful, and ultimately understandable patterns in data” [13]. The process is 

comprised of several steps. Data transformation includes feature selection, dimensionality 

reduction, normalization, and data subsetting. Data mining is the extraction of trends and 

patterns from data. It includes the application of descriptive and predictive algorithms. 

Post processing is the final step in the KDD process in which patterns are filtered, 

analyzed, and interpreted. “Closing the loop” is the phrase used to describe the 

integration of data mining results into decision support systems [13, 14].  

Data transformation is a preliminary step in the KDD process; the objective is to 

create variables more suitable for analysis. It involves transformation of continuous 
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variables into categories and creating changes in the distribution through sampling 

techniques. The objective of creating categorical variables is to achieve dimensionality 

reduction and to generate datasets that can be handled by computerized classification 

algorithms and interpreted by domain experts.  

Techniques used to create new variables are commonly known as categorization 

or mapping. The use of age categories instead of continuous numbers is an example of 

categorization. Categorization techniques also allow the representation of data in 

graphical form that facilitate the interpretation and understanding of the structure of the 

data. Techniques involved in dimensionality reduction and data cleansing also include 

preliminary steps that aid in the understanding of the data. In these preliminary steps, a 

combination of domain expertise and the use of descriptive statistics is necessary. A clear 

understanding of the structure of the data, the composition of the variables, and the 

evaluation of the impact of each variable on the object of study are also part of the data 

transformation phase. Likewise, the use of statistical procedures such as correlation 

matrices, principal components, and factor analysis allows dimensionality reduction. 

These techniques are designed to detect variables that are highly correlated and to select 

only those with a higher significance in explaining the outcome without loss of 

information.  

Dimensionality reduction techniques used in the present study included 

correlation matrices, principal components, and factor analysis. A correlation matrix 

measures the correlation coefficient and indicates the strength and direction of a linear 

relationship between two random variables. Highly correlated independent variables are 

to be avoided in predictive models since they will yield falsely inflated results of the 
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prediction metrics. Principal components analysis is a method of transforming the 

original variables into new uncorrelated variables. The new variables are called the 

principal components; they are a linear combination of the original variables. The 

variance and the Eigen values are the measures that evaluate the amount of information 

of each individual variable. Principal components also allow the selection of the 

components of the dataset that explain the highest variances. A further step in 

dimensionality reduction is factor analysis; it provides the explanation of the 

relationships among the original variables and aids in the extraction of those that convey 

the essential information contained in the original set of variables. Factor analysis aids in 

the detection of variables that might have similar effect on the variance and therefore 

helps in selection of the variables to be used in the model and in multicollinearity 

reduction [15, 16].  

The data transformation step also involves creating changes in the distribution of 

the data through procedures such as sampling, oversampling, bagging, and boosting. 

These techniques are methods for reutilizing and reorganizing the data in order to 

optimize the selection of cases used for prediction. The reutilization of data is perhaps the 

most difficult step in the KDD process. Inadequate handling of this step can create 

changes in the data structure that optimize the prediction results but cannot be 

generalized when testing the models in a real-life setting. Inadequate sampling can create 

models that yield ideal predictive results but are not feasible to apply. Model overfitting 

is the optimization that yields optimal classification results but cannot be generalized. 

KDD studies include a validation step of the performance measures of the classification 

algorithms in training and testing sets. Training sets are those in which the classification 
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model is created and optimized. Testing sets are those in which the resulting model is 

evaluated to determine its value [9, 14]. Data sampling techniques are valid as long as it 

can be proven that they are representative of the distribution of the original datasets.  

Bagging, also known as bootstrapping, is the iterative process of utilizing the data 

on different samples always maintaining the original sample size. In contrast, boosting 

iteratively uses those samples that are difficult to classify; it is a form of signal 

amplification. In this study, a boosting technique known as Synthetic Minority 

Oversampling Technique (SMOTE) was used. Unlike other boosting algorithms, SMOTE 

creates new outcome synthetic cases by computation of the values of the variables from 

the record with the outcome variable and its k-nearest neighbors. As a result, the 

synthetic cases share variable values from both sample cases and the rest of the cases in 

the dataset. The resulting oversampled cases are not simple duplication of the data but an 

expression of the variable values of the complete dataset [17]. 

The second step in the KDD process is the application of classification 

algorithms, also known as data mining. Machine learning algorithms are techniques used 

to create the prediction models that allow the selection of variables that have the most 

significant value in the prediction of an outcome. The most common of these techniques 

is statistical regression analysis in which a set of predictive variables are studied against 

an outcome variable. Classification algorithms used in KDD are Decision Trees, Naïve 

Bayes, Canonical Correlation Analysis, Association Rules, Sequence Analysis, and 

Regressions, among others.  

Described by Hotelling (1936), the Canonical Correlation Analysis (CCA) 

algorithm applies an extension of multiple regression and correlation analysis. CCA is 
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useful in situations where regression techniques are applicable and the outcome set 

consists of several related dependent variables. The technique calculates the linear 

functions of the two sets of variables; the linear combinations of both sets of variables are 

the explanation of the correlations between the two sets. The evaluation is done by 

determining the statistically significant correlation (canonical correlation) from the two 

linear functions and by determining if a reasonable interpretation can be made from the 

correlations [15].  

Decision Trees are predictive models that allow the selection of a variable that 

will serve as the root node for prediction. The leaves, or branching nodes, are created 

based on the probability distribution of the chance of occurrence and gain or utility of the 

root nodes. Decision Trees are inductive learners that have proven to perform well in 

clinical research. As an added advantage, decision trees can be displayed in graphical 

form; this facilitates the interpretation of the results by domain experts [9].  

Naïve Bayes is a simple probabilistic classifier based on Bayes’ theorem with 

strong (naive) independence assumptions. Bayes’ theorem is based on the conditional 

probability theory: “the posterior probability is proportional to the product of the prior 

probability and likelihood.” [18] With the independence assumption, the Naïve Bayes 

classifier oversimplifies the models, avoids the complexity of producing joint 

probabilities across features, and reduces the number of variables. Large numbers of 

features can be overwhelming and difficult to analyze. While the assumption of 

independence is “naïve,” it has been shown to perform exceptionally well in the medical 

field [9, 19].  
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The performance measures for evaluation of the Decision Trees and Naïve Bayes 

are True Positive Rate (TPD), Area under the Curve (AUC), and Kappa Statistics for 

agreement of classification between the different models. 

The association rules are a statement of conditional probability X�Y where X is 

the antecedent (product 1) and Y the consequence (product 2). The significance of the 

rules are measured based on the number of times each item appears in the dataset and the 

number of times the two items appear as an item set. Sequence discovery is an extension 

of association rules. It incorporates a time variable that makes it possible to determine the 

temporal association between the antecedent and the consequence [20-22].  

The most valuable aspect of KDD techniques in medical applications relates to 

the possibility of discovering hidden relationships among risk factors and the possibility 

of designing predictive models and hypothesis-generating theories. Predictive models 

obtained by KDD allow the possibility to predict outcomes of future events. The 

prediction rules can be used to develop decision support systems applicable to clinical 

care and patient counseling [23]. The high complexity of clinical data, especially in the 

obstetrical setting where both maternal and fetal factors should be considered, is an ideal 

setting to apply machine learning algorithms. Existing electronic healthcare datasets can 

provide a wealth of information. The challenge is to apply KDD techniques that provide 

the transformation of raw data into formats that allow analysis from which useful 

information can be extracted.  

 
Clinical Domain 

Clinical data sets are large, complex, and only in rare occasions stored in coded 

form. Patients in Labor and Delivery (L&D) have physiologic characteristics unique to 



  10 

 

the situation. The study of maternal perinatal events includes maternal and fetal factors. 

Such is the case of perineal laceration, a sentinel event [24, 25]. Reported risk factors for 

perineal laceration can be maternal such as nutrition, prenatal care, and infectious 

diseases. Fetal factors such as size and presentation also play an important role in the 

severity and extension of maternal perineal lacerations [26-28]. Likewise, the 

pharmacopeia utilized in L&D patients is unique and different from other medical 

disciplines. Off-label use of medications is frequent in pregnant and laboring patients. 

Drugs such as steroids are often used for fetal lung maturity induction. Maneuvers such 

as rapid change of position from supine to decubitus to control maternal hypotension are 

frequent and yet not considered as a traditional antidote to an adverse event [29, 30] but 

clearly serve this purpose in L&D. The complexity and uniqueness data of L&D patients 

provided the opportunity to experiment with KDD methods. 

 
Selection of Sentinel Events 

 
Perinatal sentinel events focus on maternal mortality and morbidity. The most 

common causes of maternal morbidity are infections, hemorrhage, maternal hypertension, 

perineal laceration, thromboembolic events, and adverse drug events [31]. Multiple 

studies on risk factors for perineal laceration have been published; however, the studies 

are divided into maternal and fetal factors and studied separately. Aside from the clinical 

importance of identifying risk factors and preventive measures for perineal laceration, our 

task was to use computerized algorithms that would allow incorporation of both maternal 

and fetal factors in a multivariate model.  

As noted above, Adverse Drug Events (ADE) are underreported, and 

computerized tools offer an opportunity to improve detection. The application of 
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oversampling techniques to existing data may facilitate the improvement of the prediction 

of data mining models. Oversampling techniques are used in disciplines outside of 

medicine to create predictive models for risk detection in sparse datasets. These data 

sampling techniques have been proven useful in the analysis of fraud detection, oil spill 

prediction, and web crawling. [11, 32].  

ADE studies have used the order of antidote drugs as triggering signals in 

reporting and prevention applications [33-35]. The pharmacological action of antidote 

drugs is clinically known. For the most part, antidotes are substances with 

pharmacological actions not exclusive of antidotal purpose. To determine if a drug was 

used as an antidote or was used for a different clinical indication, one must determine the 

sequence in which it was administered in relation to the drug that caused the ADE. There 

are multiple algorithms that allow association analysis; these algorithms have been used 

in industry to apply marketing strategies. Sequence analysis includes a time sequence 

variable; it finds frequent associations among items treating them as item sets in the 

database. Simultaneously the algorithm identifies the order in which the events happened 

and determines if the association is also that of an antecedent and a consequence. The 

application of the algorithm would allow the use of antidotes as signal triggers for 

detection of those drugs that have stronger associations with ADE. The application of the 

association algorithms helps to avoid false positives; it identifies only those cases in 

which the antidote drug was used after the drug causing the ADE and not those cases in 

which the antidote could have been used for other purposes different from the ADE. 

Existing reports have studied the administration of Vitamin K to detect Coumadin 

overdose as well as the subsequent use of antidiarrheals, anthihistamines, epinephrine, 
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and steroids to detect ADE from antibiotics and other substances. System performance is 

variable and customization for medical specialties is necessary [35]. The detection of 

ADE could be possible with the application of sequence analysis. Sequence analysis 

allowed the detection of associations between an antecedent and a consequence. The 

automatic detection of associations between antidotes and drugs administered 

immediately prior to the antidote could improve ADE reporting and decrease false 

positive alerts.  

 
Hypothesis 

 
The application of data analysis and data sampling algorithms developed in 

disciplines outside of medicine can aid in the development of predictive models to detect 

adverse events in women admitted for Labor and Delivery.  

 
Objective 

 
The goals of this project were to (1) investigate the potential of novel KDD 

techniques to develop electronic predictive models for reportable adverse events and (2) 

demonstrate the applicability of the use of these models to healthcare data. 

Methods 

Patient records analyzed in this study were extracted from the Enterprise Data 

Warehouse (EDW) of Intermountain Healthcare in Salt Lake City, Utah. The EDW 

contains clinical care and coded data for billing and reporting. Data from 154,000 

individual patients admitted for L&D during years 2002-2005 were extracted. The dataset 

contained continuous and categorical variables both from clinical and billing records. The 



  13 

 

variables selected included demographic characteristics, ICD9 discharge diagnosis, 

maternal and fetal outcomes, and maternal comorbidities. 

The Intermountain Data Warehouse data dictionary was used to gain 

understanding of the variables and structure of the dataset. Descriptive statistics on 

demographic variables were performed and the results validated through clinical domain 

knowledge and literature review. Descriptive statistics were done on maternal age, 

expected fetal weight, incidence of cesarean section, use of forceps, postpartum 

hemorrhage, pregnancy-induced hypertension, and maternal mortality. At this point, a 

manual review of the electronic patient records was done to verify the accuracy of the 

ICD9 coding system. It soon became apparent that the structure of the ICD9 coding 

system for clinical diagnosis had limited value unless the ICD9 codes could be 

transformed into a categorical clinical classification. The categorical clinical 

classification allowed analysis of the discharge diagnosis by groups. This classification 

would also avoid a dataset with multiple variable values that was subject to create a 

combinatorial explosion from which no valuable information could be extracted. 

Moreover, clinical classification of the ICD9 codes would allow the identification of 

variables that could be used as risk factors such as surgical interventions and fetal 

characteristics. Through a manual review of the ICD9 codes, a clinical diagnosis 

classification was created. Simultaneously, a paper on accuracy of discharge data for 

clinical diagnosis was published [36]. This publication made it possible for us to validate 

the ICD9 clinical classification that we had created. The result was a comprehensive table 

that included all the ICD9 codes and the clinical diagnosis found in the dataset subject of 

study and in the publication mentioned above. A Structured Query Language (SQL) 
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process was then used to create the categorical variables in the dataset records. Values of 

1 for present and 0 for not present for each clinical category were assigned to the 

individual records. With the clinical classification in place, more descriptive statistical 

analyses were performed and the inclusion and exclusion criteria were created. Records 

included were those women who gave birth between 20 and 44 weeks gestation and birth 

weight between 500 and 4800 grams. Two patients’ records with maternal age above 55 

were excluded as they were confirmed to be data entry errors. To avoid duplicate 

maternal records in patients with multifetal pregnancies, the outcome data of the first-

born infant was selected for inclusion. After these eliminations, the resulting dataset had 

104,000 study cases from the original 154,000. 

As stated in the introduction, the selection of the sentinel events to be included for 

analysis was based on clinical relevance, the possibility of clinical intervention based on 

the results, and the necessity to develop automated systems to aid in early detection and 

reporting.  

The descriptive statistics revealed a low incidence of perineal laceration and ADE 

which were the sentinel events of interest. In these preliminary stages, predictive data 

mining algorithms such as decision trees, regression, and Bayes were applied. The results 

demonstrated very low classification metrics. It was understood that unless further data 

manipulation, dimensionality reduction, and data transformation algorithms were used, it 

would be impossible to extract any meaningful information from the dataset. 

 
Results of the Analysis of Risk Factors for Perineal Laceration 

 
Our purpose was to incorporate maternal and fetal variables to construct a model 

that allowed simultaneous evaluation for both sets of variables. The original data set had 
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84 variables. The correlation matrix demonstrated a high multicollinearity of the 

variables. To reduce the multicollinearity in the dataset, the principal components 

algorithm was applied. This algorithm allowed the identification of highly correlated 

variables; from those, the most clinically significant variables were preserved. Even with 

the application of the principal components algorithm, there was still a significant degree 

of multicollinearity in the dataset. As suggested by the literature, the data were 

transformed with Factor Analysis, and the resulting transformed values were used for 

analysis.[15] The outcome variable, perineal laceration was a categorical variable with 

four degrees of severity. The intent was to do a simultaneous analysis of the four 

categories of the outcome variable with concomitant inclusion of maternal and fetal 

factors as predictive variables. Classification algorithms such as Decision Trees, Bayes, 

Regression Analysis, and Multinomial regression did not allow the multidimensional 

model that we had intended. On the other hand, Canonical Correlation Analysis (CAA) 

allowed a multivariate model. The drawback of CAA was that it had only been used in 

psychological contexts and, at the time, there was only one report in the literature for its 

application in healthcare [37]. However, the algorithm was designed to take two sets of 

variables and find the commonalities among the two sets. A literature review of the 

algorithm, consultation with the graduate committee, and personal communications with 

the author of the paper mentioned above encouraged the use of the algorithm.  

The primary findings of this study identified risk factors for perineal laceration as 

the use of obstetrical interventions during delivery (forceps and episiotomy) as well as 

abnormal fetal positions and antecedent of maternal trauma. Detailed findings are 

discussed on page 33.  
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Analysis of Risk Factors for Adverse Drug Events 

 
The descriptive statistical study showed a ratio of ADE in the dataset of 0.348% 

records. Variable selection algorithms were performed as well as preliminary 

classification algorithms, decision trees, regression analysis, and Naïve Bayes. The 

evaluation metrics of these classification algorithms were discouraging. The dataset was 

clearly imbalanced with a low incidence of the outcome variable. Boosting algorithms 

such as ADA boosting and oversampling techniques were applied in the attempt to 

increase the number of cases of the outcome variable. The results of the predictive 

metrics after boosting and oversampling were extremely low and inconclusive. Further 

review of the literature revealed a new boosting algorithm (SMOTE) published by 

Chawla [11]. The SMOTE algorithm had been tested on experimental datasets with 

promising results. Through personal communication, the author authorized and 

encouraged the use of the algorithm in our dataset. The classification algorithms were 

then applied to the boosted datasets. The results demonstrated drastic improvement of the 

predictive metrics. The study was published in the Journal of Biomedical Informatics in 

the paper entitled “Countering Imbalanced Datasets To Improve Adverse Drug Event 

Predictive Models In Labor And Delivery” [38]. 

The primary findings of this study were the identification of maternal external 

trauma, infection, history of previous cesarean and preterm birth as the main risk factors 

for ADE. Detailed findings are discussed on page 95. 

Sequence Analysis for Detection of ADE 
  

Sequence analysis has been used in marketing and web-mining. It has also been 

used by other authors with healthcare data for detection of gene sequence associations 
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and in public health surveillance systems [39, 40]. The main purpose of the study was to 

find means for automatic detection of AE in the clinical setting. As in the previous 

studies, the main obstacle was the sparse number of outcome cases in the dataset. In order 

to improve the results, random sampling was used to modify the distribution, this time 

without oversampling techniques. Reduction of the number of cases in the group of 

records without ADE through random selection and preserving the ADE cases in each 

sample was used. Descriptive statistics of the number of drugs used in the ADE and non-

ADE group showed that the samples from groups are representative of the complete 

dataset. A statistically significant different number of drugs and drug categories were 

found between the two groups, as expected. The results validated the use of the algorithm 

in this clinical setting by generating significant association rules in patients treated with 

antidote drugs in the ADE group. Likewise, the results generated no, or a fewer number 

of association rules in patients treated with antidote drugs in the group with no ADE.  

Results 

The results of the study on the dataset from patients admitted for L&D with 

different KDD methodologies show statistically and clinically significant conclusions.  

The study entitled “The Use of Data Mining to Identify Risk Factors in Perineal 

Laceration” identified significant risk factors for different degrees of severity of perineal 

laceration. The risk factors included use of forceps, episiotomy, fetal occipito-posterior 

position, trauma, and ADE. These clinical findings had been reported in previous studies. 

We were able to validate the use of the technique through clinically significant 

conclusions. 
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The study entitled “Countering Imbalanced Datasets to Improve Adverse Drug 

Event Predictive Models in Labor and Delivery” identified external trauma, anomalies of 

the cervix, genito-urinary infections, chorioamnionitis, and history of previous cesarean 

and preterm birth as the main risk factors for ADE. The results from the boosted datasets, 

aside from being statistically significant and demonstrating enhanced performance of the 

classification algorithms, are also validated from the clinical perspective. Patients with 

the previously noted diseases are subject to receiving a larger number of drugs more 

likely to cause ADE. 

The study entitled “Sequence Discovery Techniques in the Labor and Delivery 

Setting” successfully identified association rules between drugs used as antidotes and 

drugs given to patients with pregnancy complications.  

The results of our studies demonstrate improved measures of performance of 

computerized classification algorithms through the application of KDD methodologies. 

Also, the models obtained from the classification algorithms were proven to have clinical 

significance. 

Discussion 

The experimentation with clinical data and algorithms used in fields outside of the 

clinical setting might have seemed aimless at first, especially the use of algorithms like 

CCA, which was published in the early 1900s and had not been applied to clinical data. 

However, recent publications demonstrate the application of CCA to clinical data. Two 

independent authors used the algorithm for multivariate analysis, and both authors have 

opening statements in reference to the importance of the possibility to analyze complex 

multivariate outcomes [41, 42]. Likewise, recent publications note the utilization of 
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boosting algorithms with clinical data [43-46]. The authors agree on the need of signal 

amplification to improve the predictive models when the outcome variable is infrequent. 

Sequence analysis associations have been used in the study of epidemiological data in 

public health surveillance, in gene sequence analysis, and to evaluate therapeutic 

outcomes [20, 47]. However, we were unable to find recent publications utilizing the 

technique with clinical data.  

The methodologies used in this dissertation can be applied in different clinical 

settings and with different purposes. One aspect can be the application of boosting 

techniques to uncover unknown relationships among risk factors and outcomes in current 

research for diseases of low incidence. As medical science evolves and advances are 

made in fields such as genetics and pharmacology, it becomes apparent that not all the 

causative factors of disease are known. Multivariate algorithms can be of value when 

analyzing complex structures such as the impact of the genetic component and the 

environment and developmental variables affecting the health of the individual. An 

example application of multivariate models is the National Children’s Study where the 

study design focuses on a multitude of variables associated with different aspects of the 

individual from conception through the development of life [48, 49]. The algorithms can 

also be applied in real-time settings to develop logic for decision support systems. Logic 

can be applied either to decrease noise in the alerts by isolating those events that have 

been deemed relevant through application of sequence analysis. Another clinical 

application could be to detect events of rare occurrence which are likely to be missed. 

Examples of alerting on events of rare occurrence are adverse drug reactions of rare 

incidence and drug-drug interactions in patients in multipharmacopeia in which the 
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complexity of the underlying disease can mask the drug effects. Logic can be developed 

to detect mandatory reporting events in a process that can be semiautomated to help the 

clinician fill out the required forms. Developing computer logic that can aid the clinician 

in detecting potential adverse events, either to prevent them or to foster prompt action can 

improve patient outcomes and reduce the overall healthcare costs.  

 
Limitations 

 
Limitations of the study include the use of ICD9 codes for identification of AE 

and clinical diagnosis. The ICD9 coding system is used for billing and healthcare 

reporting, but ICD9 is broad and lacking the specifics of clinical granularity. 

Unfortunately, ICD-10 coding will not solve these problems as it is not used for 

reporting. There are multiple codes for similar diseases, signs, symptoms, and 

interventions. We attempted to overcome this limitation by creating a clinical 

categorization that allowed us to group similar clinical events into broad categories. A 

detailed description of the methodologies can be found in the publication “Countering 

imbalanced datasets to improve adverse drug event predictive models in labor and 

delivery” [38]. The lack of granularity makes it impossible to discriminate among 

patients with similar diagnosis but with different scales of severity of the disease. An 

example of discrimination difficulty is patients with pregnancy-induced hypertension in 

which different scales of severity are possible in clinical practice but impossible to 

differentiate with ICD9 codes.. Another example is post-partum hemorrhage; several 

degrees are included in the same group of ICD9 codes. Likewise, ICD9 coding is done a

posteriori and is based on the overall patient record, making it is impossible to determine 

the timing for occurrence of an event within the hospitalization period. 
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Abstract 

Objective 
  

 The purpose of this study was to investigate the use of canonical correlation 

methodology to develop a predictive model for severe perineal laceration. 

 
Study Design  

 
 We studied 5857 patients with third- or fourth-degree perineal laceration in a 

retrospective cohort study. Variable reduction was achieved with the use of factor 

analysis and principal components. A multivariate canonical correlation model was used 

to identify maternal and fetal risk factors and four degrees of severity outcomes. 

 
Results 

  
 The methodology reduced the predictor variables from 127 initial variables to 5 

variables in the final model. Significant risk factors included use of forceps, episiotomy, 

fetal occipito-posterior position, trauma, and adverse drug events.  

 
Conclusion 

 
 Canonical correlation analysis allowed simultaneous identification of maternal 

and fetal risk factors for severe perineal laceration and can aid in the identification of 

preventive measures at all levels. Simultaneous analysis of numerous risk factors was 

done without loss of information. The study demonstrates the use of two multivariate sets 

of data which in turn allows the development of complex models for analysis and 

interventions. This is one of the first uses of this multivariate method in the obstetrical 

clinical domain. 

Key Words: Perineal laceration, vaginal delivery, canonical correlation analysis 
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Introduction 

Severe perineal damage in a vaginal delivery can have serious lifelong 

consequences on a woman’s health. Immediate post-partum effects include infection, 

hemorrhage, severe pain, and prolonged hospital stay. Long-term effects include various 

degrees of urinary and fecal incontinence, chronic pain, dyspareunia, and genital organ 

prolapse. The Joint Commission [1] includes third- and fourth-degree perineal lacerations 

as reportable adverse events for evaluation of quality of care [2]. 

Published studies have analyzed third- and fourth-degree perineal lacerations as a 

combined outcome and, for the most part, do not include cervico-vaginal lacerations and 

vaginal hematoma [3-9]. Cervico-vaginal lacerations and vaginal hematomas can also 

play a role in pelvic floor damage through neurological compromise of the levator ani 

muscle and the pudendal nerve [10]. In addition, the dynamics of labor and, thus, any 

perineal damage, can be affected by fetal size and position [11, 12].  

 A comprehensive analytical predictive model for perineal laceration that could be 

used for pelvic floor damage evaluation should include maternal and fetal characteristics 

that influence labor as predicting factors. It should also include cervico-vaginal 

lacerations and vaginal hematomas as part of the outcome. Using knowledge discovery in 

databases (KDD) could help provide this model.  

Knowledge discovery in databases, commonly known as data mining, allows 

analysis of large datasets capable of including hundreds of thousands of cases in 

combination with large numbers of attributes [13]. The most valuable feature of the 

technique in medical applications is the possibility of discovering hidden relationships 
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among risk factors and the possibility of designing predictive models that include new 

hypotheses.  

Described by Hotelling in 1936, the Canonical Correlation Analysis (CCA) 

algorithm applies an extension of multiple regression and correlation analysis.  CCA is 

useful in situations where regression techniques are applicable and the outcome set 

consists of several related dependent variables. 

Disciplines outside medicine, such as marketing, agriculture, and human 

behavior, have used multivariate outcome algorithms for prediction and hypothesis 

generation. While multiple reports are published using data mining algorithms and data 

dimensionality reduction techniques such as principal components and factor analysis, 

few have applied canonical correlation in the clinical field [14]. Canonical correlation 

analysis had been used primarily in the analysis of behavioral data. In recent years, 

studies with clinical data have been published in the literature. Its application has been 

proven useful in the identification of significant associations of multivariate models of 

phenotypic and genotypic variables in genomic studies [15]. Likewise, CCA has been 

demonstrated useful in the analysis of multivariate models of findings in images and 

clinical findings in areas such as ophthalmology, orthopedics, and neurology [16-18]. 

The complexity of obstetric clinical data provides an ideal setting to apply 

machine learning algorithms. Obstetrical data as presented in the present study include 

both maternal and fetal factors that together play a role in the final outcomes of the 

mother and the newborn. The possibility of simultaneously analyzing maternal and fetal 

factors and developing combined models increase the opportunity of developing 

interventions that are likely to have a higher impact on the outcomes.  
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Commonly used prediction algorithms concentrate on the relationship between 

multiple predictor variables and a single outcome variable. The model proposed in this 

report allows a comprehensive evaluation of maternal and fetal characteristics as risk 

factors for different degrees of perineal laceration as a multivariate outcome variable.  

Methods 

Subjects  
 

Data used in this study were extracted from the Intermountain Healthcare Labor 

and Delivery electronic data warehouse. Intermountain Healthcare is a nonprofit 

healthcare organization serving Utah and southeastern Idaho [19]. Patient selection 

criteria included discharge years 2002-2005, live singleton vaginal births, gestational age 

between 20 and 44 weeks, and birth weight between 500 and 4800 grams. De-identified 

patient data were extracted through a Virtual Private Network connection using Oracle© 

client version 9.1. The resulting dataset was exported to MySQL database management 

system for transformation and data preparation.  

 
Risk Factor Identification  

 
Based on the classification of pregnancy-related comorbid diagnoses published by 

Yasmeen et al. [20], a controlled medical vocabulary was created. Billing and discharge 

codes from the International Classification of Diseases Coding System version 9 (ICD9) 

[21] were transformed into dichotomous variables. The outcomes, risk factors, and 

comorbidities were identified and used as predictor and outcome variables. 
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Statistical Procedures  

 
A normal distribution for risk factors and comorbidities was assumed based on the 

Central Limit Theorem [22-24]. Because multidimensional models such as the maternal-

fetal unit are difficult to visualize and analyze with mathematical models, and because 

multicollinearity among the predictor variables generates unstable canonical correlation 

coefficients [24], the following three dimensionality reduction techniques were used: 

Pearson correlation, principal components analysis (PCA), and factor analysis (FA). The 

resulting model included a linear combination of the original variables. The correlation 

coefficients, the original variable names, the new variables names, and the factors 

obtained by the procedure are shown in Table 2.1. 

To create the CCA model, third- and fourth-degree perineal laceration, vaginal 

hematoma, and cervico-vaginal laceration were used as the set of outcome variables. The 

variables included in the outcome set, severe perineal laceration, where identified 

utilizing the same methodologies as the risk factors by extracting the ICD9 codes from 

the clinical classification mentioned above and creating dichotomous variables.  The 

coefficients generated by the FA procedure were stored in a new dataset and used as the 

predictor set. 

The final step for the correlation model was the CCA. Canonical correlation 

coefficients were interpreted as significant if the value was >= 0.3 or <= -0.3 and p values 

< .0001 as suggested by other studies [23, 24].  

The overall significance of the model was assured by executing the procedures in 

random samples of the dataset. SAS software Release 9.1 was used for the statistical 

analysis. Institutional Review Board approval was obtained from both Intermountain 
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Healthcare and the University of Utah. The study was determined to be exempt from 

review; it included no human interventions. 

Results 

There were 104,867 patient records of which 85,426 (82%) met the study criteria 

for vaginal singleton deliveries.  

Table 2.2 shows the number of patients in each group of the set outcomes and the 

most relevant predictor variables. The incidence of severe perineal laceration was 

distributed as follows: third-degree perineal laceration (3.61%), fourth-degree perineal 

laceration (0.97%), cervico-vaginal laceration (2.17%), and vaginal hematoma (0.14%).  

The CCA results are shown in Table 2.3. The table shows the first three 

significant canonical correlations with p values < 0.001 along with the canonical 

coefficients in both predictor and outcome sets of variables V1-V4 and W1-W4. The 

cumulative proportion of variation explained in the outcomes was 99.23% for the first 

three canonical correlations.  

The results of the standardized canonical coefficients show that for the first 

canonical correlation the most important outcomes are third- and fourth-degree perineal 

laceration (correlation coefficients of 0.81 and 0.51, respectively). The most important 

predictors were the use of forceps, episiotomy, occipito-posterior fetal head position in 

respect to the pelvis, and maternal anemia (correlation coefficients of 0.68, 0.41, 0.37 and 

0.31, respectively). Due to the nature of the data, it is impossible to discern if the anemia 

was caused by severe bleeding from perineal laceration, or if it was present before 

delivery and was a contributing factor to the laceration. The second canonical correlation 

identified the most relevant outcomes to be cervico-vaginal laceration (coefficient 0.88) 
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and vaginal hematoma (coefficient 0.30). The relevant predictor factors were anemia 

(coefficient 0.39), use of forceps (coefficient 0.34), episiotomy (-0.67), and shoulder 

dystocia (-0.31). We interpreted the negative values of episiotomy and shoulder dystocia 

in this canonical correlation as positive significance because these two variables were 

highly correlated. The third significant canonical correlation had a significant coefficient 

only for vaginal hematoma (0.94), and the relevant predictors were external trauma and 

adverse drug events (0.49), deep venous thrombosis (0.37), endometritis (0.33), and ante-

partum hemorrhage (0.30).  

Discussion 

To the best of our knowledge, studies addressing multivariate linear dependencies 

in labor and delivery data have not been previously reported. This approach provides a 

better understanding of the causes of variation in the population and the association with 

adverse pregnancy events. Further implementation of the methodology could allow 

concomitant identification of predisposing factors to other obstetric complications. Such 

is the case of diseases in which both genetic and environmental factors are present but the 

degree in which each contributes is still unclear.  

Clinicians can be reluctant to use electronic databases to conduct clinical studies 

[20]. Although the use of coded administrative and discharge data is not ideal for clinical 

studies, it can be useful when appropriate statistical and data validation methods are 

applied. The approach taken in the present study allowed mathematical confirmation of 

data integrity and validation of the results. We used five different methods of indirect 

data validation that showed statistically significant agreement between the medical record 

and the ICD9 coding system. 
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The current analysis identified areas where changes in screening and practice 

can influence outcomes. One such example is determination of fetal position during 

labor. Friedman's initial descriptions of labor progress have been universally accepted in 

obstetric practice for the past 50 years, albeit often without rigorous attention to some 

important details [25-27]. For example, the importance of fetal position has again been 

recently addressed by Wu et al. [28] and again confirmed by this report.  

The use of forceps has been reported by other investigators as a predisposition to 

perineal trauma, and the current analysis confirms this finding [29-32]. Although epidural 

anesthesia during the active phase of labor has been reported in some studies to decrease 

labor progress and increase operative deliveries that, in turn, can increase the risk of 

perineal trauma, it was not one of the significant predictive factors identified in our 

model. This suggests that epidural anesthesia could be a confounding factor rather than a 

direct risk factor. 

Previous clinical studies have looked for independent risk factors that contribute 

to perineal laceration such as bone fractures associated with adverse perineal outcomes 

[33]. Those studies focused on the combined outcome as severe laceration, an approach 

that simplifies the statistical analysis and allows the use of statistical regression models 

[34]. The important contribution of the methodology used in the present study is the 

ability to analyze at once both maternal and fetal factors and understand how each one is 

a contributing factor rather than an isolated circumstance.  

Additional non-intrapartum maternal risk factors such as obesity, hypertension, 

infection, mental state, alcohol and drug abuse, and history of tobacco use have not been 

found to have a significant influence on perineal laceration rates. However, our results 
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conclude that the above-mentioned factors have an important impact in the variation of 

the dataset and should be considered in the study of other adverse outcomes.  

Medical research often relies on hypothesis testing experiments to generate 

evidence-based conclusions. However, important hypotheses and associations can be 

identified using algorithms not widely applied in medical research. Such approaches can 

improve the possibility of finding multivariate cause-effect relationships that can be 

important in clinical care.  

In a recent report, El Kady et al found the association of maternal fractures with 

adverse perinatal outcomes. The study also found a higher incidence of maternal 

morbidity, including abruption, deep venous thrombosis, and transfusions in women with 

trauma [35]. Our results also found an important correlation between maternal non-

obstetrical related trauma and adverse drug events and perineal outcome. The question 

that remains to be answered is whether the increased risk of adverse drug events can be 

explained by an increase in use of medications in patients with medical complications, 

such as severe perineal laceration, or if there is a different underlying cause that increases 

the risk in such patients. An increased incidence of nonobstetrical maternal trauma 

associated with substance and alcohol abuse in association with motor vehicle accidents 

in a similar manner as in the nonpregnant population. The association with alcohol or 

substance abuse can also have consequences on maternal nutrition. Under-nourishment 

has been reported in the literature as a risk factor for severe perineal laceration. More 

research is required in order to explain and validate our results and understand the 

association of severe perineal laceration and maternal trauma. 
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A limitation of the canonical correlation algorithm is that the maximum number 

of canonical correlations and the set of canonical variables computed need to be equal to 

the minimum number of outcome or predictor variables. This creates an important 

constraint when the number of predictor variables to analyze is large. Due to this 

constraint, there might be other risk factors that were not identified in the present 

analysis. 

Conclusion 

This study confirms that canonical correlation algorithms could be a valuable 

method to analyze large, complex clinical databases. We can conclude from the results 

that both maternal and fetal factors are significant for severe perineal laceration. 

Likewise, the combined analysis allows us to foresee the development of maternal 

adverse events. The significant factors identified were: use of forceps, episiotomy, fetal 

occipito-posterior position, trauma, and adverse drug events. Complex medical settings 

such as the maternal-fetal combination, where the number of variables is large and 

associations difficult to find, can be approached with the use of these analytical tools. 

Although only applied to severe perineal lacerations in this report, these techniques can 

be applied to many other obstetric complications. 
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Table 2.1: Results of Factor Analysis with the corresponding loadings from each 
variable. Correlation coefficients >= 0.5 were included in the canonical correlation 
analysis. The 24 factors in the table explain 90% of the variation in the dataset. 

   Variables in Factor Analysis  New Factor 
Names used 
for CCA 

Correlation  
Coefficient 

Adverse Drug Event 0.88 Factor1 
Trauma 

Trauma_ADE 
0.89 

Substance Abuse 0.6 
Mental alteration 0.79 

Factor 2 

Alcohol use 

SA_Mental 

0.72 
Factor 3 Stillbirth  0.88 
Factor 4 Forceps  0.76 
Factor 5 Endometritis  0.82 
Factor 6 Premature rupture of membranes  0.66 
Factor 7 Deep venous thrombosis  0.79 
Factor 8 Herpes Infection  0.75 
Factor 9 Epidural  0.72 
Factor 10  Episiotomy  0.72 
Factor 11 Intrauterine growth restriction  0.72 

Ante partum Hemorrhage 0.65 Factor 12 
Ante partum Anemia 

Anemia 
0.68 

Factor 13 Cephalopelvic Disproportion  0.74 
Hypertension 0.65 Factor 14  
Obesity 

Hypertension 
0.63 

Factor 15 Previous Cesarean  0.69 
Factor 16 Cardiovascular Disease  0.62 
Factor 17 Pregnancy Induced Hypertension  0.69 
Factor 18 Occipito Posterior presentation  0.73 
Factor 19 Ante partum Hemorrhage  0.52 
Factor 20 Amniotomy  0.62 
Factor 21 Seizures  0.45 
Factor 22 Polyhydramnios  0.57 
Factor 23 Shoulder Dystocia  0.53 

Congenital Uterine Anomaly 0.6 Factor 24 
Uterine Anomaly 

Uterine 
Anomaly 0.6 
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Table 2.2: Incidence of comorbidities, risk factors, and outcomes in the study 
population.  

Variable  Not present Percentage Present Percentage 
Outcomes 
3rd Degree Perineal Laceration 82342 96.39 3084 3.61 
4th Degree Perineal Laceration 84600 99.03 826 0.97 
Cervico Vaginal Laceration 83571 97.83 1855 2.17 
Vaginal Hematoma 85308 99.86 118 0.14 
Predictors 
Adverse Drug Event 85244 99.79 182 0.21 
Amniotomy 81978 95.96 3448 4.04 
Anemia 84561 98.99 865 1.01 
Ante partum Hemorrhage 85233 99.77 193 0.23 
Cardiovascular Disease 84825 99.3 601 0.7 
Cephalopelvic disproportion 85308 99.86 118 0.14 
Deep Venous Thrombosis 85371 99.94 55 0.06 
Drug Abuse 85138 99.66 288 0.34 
Elective Induction 65340 76.49 20086 23.51 
Endometritis 85342 99.9 84 0.1 
Epidural Anesthesia 18865 22.08 66561 77.92 
Episiotomy 57986 67.88 27440 32.12 
Failed Forceps 85332 99.89 94 0.11 
Forceps 83658 97.93 1768 2.07 
Herpes Infection 85305 99.86 121 0.14 
Hypertension 84630 99.07 796 0.93 
IUGR 84429 98.83 997 1.17 
Occipito Posterior Presentation 84800 99.27 626 0.73 
Pregnancy Induced Hypertension 81355 95.23 4071 4.77 
Previous Cesarean 82709 96.82 2717 3.18 
PROM 83916 98.23 1510 1.77 
Seizure 85256 99.8 170 0.2 
Shoulder Dystocia 83796 98.09 1630 1.91 
Stillbirth 85192 99.73 234 0.27 
Uterine Anomaly 85287 99.84 139 0.16 
Venous Complication 84655 99.1 771 0.9 
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Table 2.3: Canonical Correlation Analysis between risk factors and four degrees of 
perineal laceration. Significant canonical correlation significant coefficients (< or > +/- 
0.3) are highlighted. W1-W4 = outcome set V1-V4= predictor set 
Canonical
Correlation

R Eigenvalues 
 (R2)

Cumulative 
Proportion 

Likelihood 
Ratio

F value df P value 

1 0.232515 0.054063 0.0572 0.9067 0.94040007 55.09 96 <.0001 
2 0.066628 0.004439 0.0045 0.9774 0.99414698 7.27 69 <.0001 
3 0.030626 0.000938 0.0009 0.9923 0.99857999 2.76 44 <.0001 
4 0.021966 0.000483 0.0005 1.0000 0.99951748 1.96 21 0.0053 
Risk Factor Variables  W1 W2 W3 W4 
Amniotomy -0.1473 -0.0670 -0.0121 0.5266 
Anemia 0.3375 0.3908 0.1936 -0.2565 
Ante-partum Hemorrhage -0.0783 0.0074 0.3058 0.1513 
DVT -0.0084 0.0250 0.3710 0.0177 
Endometritis 0.0318 0.1736 0.3372 0.1154 
Episiotomy 0.4114 -0.6695 0.1676 -0.1606 
Forceps 0.6800 0.3436 -0.2146 0.1423 
Occipito Posterior 0.3707 -0.0981 0.0568 0.5186 
Shoulder Dystocia 0.0956 -0.3130 0.0694 0.1037 
Trauma ADE 0.0024 0.1934 0.4939 0.1094 
Outcome Variables V1 V2 V3 V4 
3rd Degree Laceration 0.8100 -0.1741 -0.0119 -0.5602

4th Degree Laceration 0.5198 -0.2780 0.0146 0.8079 
Cervico Vaginal Laceration 0.2907 0.8853 -0.3367 0.1381 
Vaginal Hematoma 0.0921 0.3035 0.9483 0.0243 
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Abstract 

Background 

 The IOM report, Preventing Medication Errors, emphasizes the overall lack of 

knowledge of the incidence of Adverse Drug Events (ADE). Operating rooms, 

emergency departments and intensive care units are known to have a higher incidence of 

ADE . Labor and Delivery (L&D) is an emergency care unit that could have an increased 

risk of ADE, where reported rates remain low and under-reporting is suspected. Risk 

factor identification with electronic pattern recognition techniques could improve ADE 

detection rates. 

 
Objective 

 The objective of the present study is to apply Synthetic Minority Over Sampling 

Technique (SMOTE) as an enhanced sampling method in a sparse dataset to generate 

prediction models to identify ADE in women admitted for Labor and Delivery based on 

patient risk factors, and comorbidities. 

 
Results 

 By creating synthetic cases with the SMOTE algorithm and using a 10-Fold Cross 

validation technique, we demonstrated improved performance of the Naïve Bayes, and 

the decision tree algorithms. The true positive rate (TPR) of 0.32 in the raw dataset 

increased to 0.67 in the 800% over-sampled dataset. CONCLUSION: Enhanced 

performance from classification algorithms can be attained with the use of synthetic 

minority class oversampling techniques in sparse clinical datasets. Predictive models 

created in this manner can be used to develop evidence based ADE monitoring systems.  
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Background 

The Institute of Medicine (IOM) in the report, Preventing Medication Errors [1] 

recommended the implementation of decision support tools derived from evidence based 

knowledge and patient information as part of the strategies to prevent medication errors 

(ME). The report also recommended the active monitoring of medication use to promote 

prevention strategies. Although medical research has actively pursued these problems, the 

reported incidence of ME is suspected to be under-estimated[1-3].  

These IOM reports [1,2] define ME as avoidable errors occurring in the 

medication use process. Adverse drug event (ADE) is a more inclusive definition that 

covers both ME, and adverse drug reactions. 

Operating rooms, emergency departments and intensive care units are known to 

have a higher incidence of ADE [4]. Labor and Delivery (L&D) areas are considered by 

quality assurance groups as special care units and pregnant women are considered by the 

FDA as a vulnerable group for ADE[1]. L&D provides emergency care and therefore 

should also be treated as a high risk area  Studies published in the literature focus on 

specific drugs, and anesthesiology events. [5-9] To the best of our knowledge there are no 

published studies of ADE as a general category in pregnant women.  Our findings 

indicate an incidence of 0.34% of ADE in women admitted to L&D. This incidence is 

surprisingly low in a population that includes at least 10% of high risk pregnancies that 

require poly-pharmacy[10].  
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One of the most complex tasks in the design and development of automated 

decision support tools is evidence based rule generation and knowledge extraction from 

existing data[11]. The task is even more challenging in those cases where the class label 

of interest or ADE patients as in this case, has an incidence of 1% or less[12]. Datasets 

with these characteristics are also known as skewed or imbalanced datasets. The class of 

interest is relatively rare and there are important trade-offs in the decision between false 

negatives, and/or false positives. Overall, it is more costly to have a false negative versus 

a false positive . More so in a medical application where the interest is detecting patients 

with adverse outcomes that can be prevented. Without loss of generality, we will assume 

that the larger class or the majority class is the negative class and the class of interest is 

the minority (smaller) or positive class. We will use these terms interchangeably in the 

paper. The use of machine learning algorithms in sparse datasets with class imbalance 

causes suboptimal classification performance as these techniques get overwhelmed by the 

majority class. Recent work has focused on sampling techniques that counter the problem 

of class imbalance by either oversampling the minority class or under-sampling the 

majority class [12-15]. 

In this paper, we focus on the application of the Synthetic Minority Over 

sampling Technique (SMOTE). SMOTE works by generating new instances from the 

existing cases. SMOTE effectively counters the imbalance in data by not only solving the 

problem of high class skew but also the problem of high sparsity. It works in the ''feature 

space'' rather than ''data space''. The synthetic samples are created by taking each 

minority class sample and the k nearest neighbors. The synthetic sample shares features 

of both the chosen minority class sample and one or more of the nearest neighbors. This 
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approach effectively forces the decision region of the minority class to become more 

general. The synthetic cases will not only increase the data space but will also amplify the 

features of the minority class without duplicating the original data. SMOTE’s 

effectiveness has been shown in a variety of domains and with a variety of classifiers [15, 

16]. 

The objective of the present study was to apply SMOTE as an enhanced sampling 

method using a sparse dataset and to identify a prediction model for ADE in women 

admitted for L&D based on patient risk factors, and comorbidities. We would like to note 

here that we tried other of oversampling methods like replication and random under-

sampling but none of them resulted in improvement. Hence, for clarity of presentation in 

the paper, we only focus our discussion, and results on using SMOTE. 

Description of Data Mining Techniques 
 

Machine learning techniques include both data sampling, and learning algorithms. 

Over sampling techniques are applied to reuse the available data by dividing the dataset 

into three or more sets. Once the data sampling step is completed, the classification 

algorithms are applied to the resulting datasets . Subsequently, the performance of the 

classifiers is evaluated by comparison of the results in the training, testing, and validation 

datasets. 

SMOTE was used to generate new synthetic cases for this study. The 

computations for the new synthetic sample variables are based on Euclidian distance for 

continuous variables, and the Value Distance Metric for the nominal features. The 

continuous variable values are created by taking the difference in distance between two 

existing minority class samples and multiplying that difference by a random number 
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between 0 and 1. The resulting number is added to the feature value of the original 

sample and the result will be the value of that variable in the new synthetic sample. For 

nominal variables, the variable value is assigned by majority vote of the K nearest 

neighbors. As a result, the synthetic cases will have attributes with values similar to the 

existing cases and not just replications as provided with oversampling. The objective is to 

increase the representation of the minority class in the resulting dataset, and reflect the 

structure of the original cases. By adding new samples of similar characteristics to the 

originals the decision region is amplified and there should be improvement of the 

evaluation measures: true positives and the Area Under the Curve (AUC). The newly 

created cases are appended to the original dataset in 100% increments. Thus the “second” 

dataset will have 100% more minority class cases, the third 200% more minority class 

cases, and so forth. This technique has proven to be useful in improving prediction of 

sparse datasets by other authors [14].  

 
Classification Algorithms  

 
Naïve Bayes is a simple probabilistic classifier based on Bayes’ theorem with 

strong (naive) independence assumptions. Bayes’ theorem is based on the conditional 

probability theory; the posterior probability is proportional to the product of the prior 

probability, and likelihood. With the independence assumption, the Naïve Bayes 

classifier over-simplifies the models. It avoids the complexity of producing the joint 

probabilities across features, which quickly becomes overwhelming by the large number 

of features. While the assumption of independence is ''naïve'', it has been shown to 

perform exceptionally well in classification in the medical field[17, 18]  
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Decision Trees are predictive models that allow the selection of an attribute that 

will serve as the root node for prediction. Based on the probability distribution chance of 

occurrence and gain or utility of the root nodes, the leaf nodes (or branching nodes) are 

created[17]. Decision Trees are inductive learners that have proven to perform well in 

clinical research. The interpretation is facilitated for domain knowledge experts by the 

display in graphical form. C4.5 is a popular decision tree learning algorithm used in a 

multitude of domains. We used the WEKA[17] (Waikato Environment for Knowledge 

Analysis) Open Source Software implementation of C4.5, namely JR48, in our 

experiments.  

Naïve Bayes and Decision Trees were chosen as the classification algorithms for 

the experiments because the results are in a format that facilitates interpretation by 

domain experts. The graphical representation of the Decision Trees and the simplicity of 

the Naïve Bayes model are easily understood as opposed to the “black box” that other 

algorithms such as Neural Networks, and Vector Machines generate [19].  

Methods 

Subjects 
 

Records for the present study came from the Enterprise Data Warehouse (EDW) 

of Intermountain Healthcare in Salt Lake City, Utah. The EDW contains clinical care, 

and coded data for billing and reporting. Data from 135,000 individual patients admitted 

for L&D during years 2002-2005 were extracted. The variables included demographic 

characteristics and discharge diagnosis as well as maternal and fetal outcomes, and 

maternal comorbidities.  
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Inclusion criteria were post partum women with gestational ages between 20 and 

44 weeks and birth weight between 500 and 4800 grams. Two patient’s records with 

maternal age above 55 were excluded as they were confirmed to be data entry errors. In 

patients with multifetal pregnancies, the outcome data of the first-born infant were 

selected for inclusion.  

 
Data Preprocessing  

 
A classification methodology for outcomes and comorbidities was created based 

on the clinical classification of ICD9 codes for labor and delivery published by 

Yasmeen[20] and on the reportable adverse events criteria published by the Joint 

Commission, and the Utah Department of Health[21, 22]. In interest of clarity we called 

these tables ''published classifications.'' 

The published classifications included ICD9 codes assigned to obstetrical 

diagnosis, pregnancy related comorbid diagnoses, procedures, and for sentinel events.  

For example the diagnosis “diabetes mellitus” includes ICD9 codes: 250.xx, 357.2, 

362.0, 648.0x. We created an electronic table called “classifications” with one column 

that included each one of the diagnosis, procedures and sentinel events and another 

column with the ICD9 code. The original ICD9 table included the ICD9 code, and the 

description. We then used SQL queries to join both tables on the ICD9 code and selected 

both the description from the ICD9 table, and the classification from the published 

classifications. One by one each row was verified to ensure that the ICD9 description 

matched the classifications. A column in the ICD9 table was added for class variables of 

diagnosis, procedures and risk factors to use in our study, e.g., ‘ADE’, ‘Cesarean’, 

‘pregnancy induced hypertension’, etc. Once the tables were joined by ICD9 and the 
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verification was made, we updated the class variable column assigning a category to each 

ICD9 code. Table 3.1 shows the resulting clinical classification and categories and the 

corresponding ICD9 codes. We found some factors not included in the published 

classifications, since those were of interest for prediction they were added to the table . 

The factors added by us were: demographic variables such as maternal age, fetal weight 

and fetal presentation during labor. 

The clinical classification attribute was added to the patient dataset as a 

dichotomous variable. Those records that had an ICD9 code corresponding to each 

comorbidity, risk factor or procedure were assigned a value of 1 or 0 if not present.  

The above procedure was done in order to ensure the accuracy of the 

classifications and include other codes that were in use at Intermountain Healthcare and 

were not in the publications. It also allowed us to assign a diagnosis to each patient and 

use it for the validation with the patient electronic record.  

 
Data Validation 

Despite shortcomings, numerous clinical and informatics researchers have proven 

the usefulness of ICD9 coding systems for clinical research [23]. Table 3.2 describes the 

different methodologies used to validate the accuracy of the clinical classification.. The 

patient electronic records were randomly selected and the validation for diagnosis was 

done on the clinicians interface of the medical record. Kappa statistic for agreement 

between the free text diagnosis in the clinical notes and the classification created based 

on the ICD9 codes was used.  

From the pharmacy database we extracted values for number of drugs 

administered to the patients with ADE, and to those with no-ADE. The mean values for 
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number of drugs for each group and the t-statistic for comparison are also included in 

Table 3.2. As expected from previous reports in the literature, patients with ADE had a 

statistical significant higher number of drugs [24].  

Comparison of disease incidence in the study population and the population 

disease incidence reported by the Utah Department of Health were performed. Similar 

incidences were found in the comparison for pregnancy induced hypertension, gestational 

diabetes, preterm birth, and fetal weight.  

 
Statistical Procedures 

 
Attribute selection or dimensionality reduction 

The original dataset consisted of 84 variables including maternal comorbidities, 

demographic information, fetal outcomes, and surgical procedures. Principal components 

analysis (PC), and Chi-Square ranking were used to determine the explained variability in 

the dataset. The methods were also used for variable selection of highly correlated 

variables and to avoid multicollinearity[1, 3]. We applied Chi-Square ranking and PC to 

each of the complete datasets after the SMOTE procedure. This approach allowed the 

comparison of the variance in each of the original, and resulting datasets. The intent was 

to verify if SMOTE altered the structure of the data. Variables with high collinearity 

(Eigenvectors > .5 ) were dropped in favor of those that preserved more specific 

information, e.g., puerperal fever vs surgical wound infection. After we ensured that the 

preserved variables had no collinearity, we selected the variables with Eigenvalues that 

explained 80% of the variability as advised in the literature[25].  
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Data Sampling 
 

The ratio of ADE to controls in the dataset was 0.348/100 and clearly qualifies as 

a highly imbalanced data set. We used 10-fold cross-validation as a vehicle to empirically 

validate the results. Ten-fold cross-validation divides the data into 10 mutually exclusive 

subsets, and then combines 9 of those at a time and evaluates the 10th left-out subset. 

Thus, a classifier is identified on ten different, but overlapping training sets, and 

evaluated on 10 completely unique testing sets. In preliminary experiments (results not 

included not included in this study), we applied a popular ensemble technique called 

AdaBoost that provides random oversampling of the minority class, and random under-

sampling of the majority class. None of these resulted in an improvement over the 

performance of the base classifier. The SMOTE algorithm was applied creating new 

synthetic cases of the class of interest in 100% increments. The first synthetic dataset had 

100% more ADE cases than the original one, the second synthetic dataset had 200% 

more synthetic cases, and so forth. 

The suite of classification algorithms were then applied to the datasets modified 

by SMOTE boosted datasets using the 10-fold cross validation sampling technique. The 

decision to use 10-fold cross validation sampling technique was based on the small 

number of cases with class label of interest (ADE). The literature reports risk of 

overfitting and therefore introducing bias to the evaluation of the performance of the 

classification algorithms with this technique. However, the standard evaluation technique 

in situations where a limited number of cases is available is stratified 10-fold cross 

validation[17, 26]. Stratified 10-fold cross validation implies averaging the results after 

invoking the algorithm 10 times 10-fold. In other words, each classification algorithm 



  53 

 

runs 100 times on each dataset. In our experiments, the Naïve Bayes classifier took 2 

hours for one instance of 10-fold and 4.5 hours for the Decision Tree. The total time to 

run the experiments reported was 136.5 hours. The computational expense for 21 datasets 

was beyond the capacity of our resources. Based on the literature 10 is the suggested 

number of folds for the best estimate of errors[17]. Likewise, SMOTE does not alter the 

original distribution of the data, therefore the problem of overfitting is avoided[27].  

 
Performance Measures  

 
The performance measures for evaluation of the classification algorithms were 

True Positive Rate (TPD), AUC (Area Under the Curve) and Kappa Statistics for 

agreement of classification between the different models.  

 
Validity of Results and Clinical Interpretation 

 
As previously noted, the justification for utilizing SMOTE as the data boosting 

algorithm is to increase the availability of cases with the class label of interest; patients 

with ADE. We decided not to use oversampling techniques that involve exact data 

replication and favored SMOTE as an alternative that creates new synthetic cases of the 

original class label of interest. In order to prove that SMOTE did not change the original 

data structure, we applied PC to compare the variance of the original dataset and that of 

synthetic datasets through the comparison of the eigenvalues. Likewise, PC is described 

as an exploratory technique useful to gain a better understanding of the interrelationships 

among the data[23].  

Domain expertise, in this case clinical interpretation of the results is necessary 

when applying novel techniques for predictive models [17, 25]. In order to determine if 
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the predictive models generated by our experiments can eventually be used to create 

electronic applications, the results were clinically analyzed by two of the authors both 

specialists in obstetrics, and gynecology. The purpose was to determine if the risk factors 

and comorbidities in the predictive models are likely to be associated with a higher risk 

of ADE.  

The statistical comparison for the performance of the classifiers was done with the 

results of the three tests in the SAS output of the univariate procedure: Student’s t test, 

Wilcoxon, and signed rank test. Although the t test is the most common one found in the 

data mining literature for this purpose, there is evidence that nonparametric tests are more 

reliable when the number of datasets to compare is 30 or less and there is no assumption 

of normal distribution [28]. The statistical reason in favor of nonparametric tests for this 

purpose is beyond the scope of the present report. We refer the reader to the paper 

published by Demsar on Statistical Comparison of Classifiers over Multiple Data Sets 

[28] for this purpose. 

 
Software Packages 

 
MySQL V5.0 Open Source database management system was used for data 

preparation, and transformation. WEKA Machine Learning Tools version 3.5.5. Open 

Source system and SAS software Release 9.1 and SAS Enterprise Miner Release 4.3 

were used for data analysis and construction of the predictive models. 

 
 IRB Approval 

 
Institutional Review Board approval was obtained from both Intermountain 

Health Care and the University of Utah. 
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Results  

There were 106,480 cases that met the inclusion criteria and 371 ADE were 

identified based on the clinical classification previously described.  

The demographic maternal characteristics as well as fetal outcomes showed no 

significant variation on ADE as indicated by the Eigenvalues of the PC. Surgical 

procedures (cesarean section and forceps) had the highest variation. Fifty five 

independent comorbidities were identified and accounted for explaining 80% of the 

variation in the dataset and were used in the final model. 

 
Performance Measures 

 
Figures 3.1 and 3.2 show the increments in the number of new synthetic ADE 

cases obtained after each SMOTE procedure. Each time the algorithm was applied 371 

new synthetic cases were added to the original dataset. Figure 3.1 shows the improved 

performance of the evaluation metrics with the minority class boosted datasets on the J48 

Decision Tree. The original dataset showed a TPR of .32 and an AUC of .78. In the first 

synthetic dataset the TPR increased to .59, and the AUC to .81. A small increment of the 

evaluation metrics was observed as the number of synthetic cases increased. Figure 3.2 

shows the results for the evaluation metrics for the Naïve Bayes classification algorithm. 

With the initial 100% boosting there was a slight decrease in the AUC and the TPR 

remained unchanged. However, after 200% boosting there was an immediate 

improvement of the performance measures. After the initial increment, the performance 

measures slightly improved until the 900% SMOTE point was reached. There was no 

further increased performance beyond the 1000% increase of the synthetic cases.  
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Validity of Results and Clinical Interpretation 

 
An analysis of the structure of the synthetic datasets was done by comparison of 

the principal components. The principal components of the original dataset and of those 

including synthetic cases remained the same. There was a nonsignificant variation in the 

eigenvalues and the percentage of variation explained by each principal components did 

not vary. Thus, we believe that SMOTE was effectively able to counter the highly sparse 

nature of the data by increasing the density of points that enabled the classifiers to 

discriminate between the two classes.  

The decision trees in all the models were similar in structure. The first split in the 

decision tree occurred in patients with external trauma followed by anomalies of the 

cervix, genito-urinary infections, and chorioamnionitis. The next split occurred at severe 

pregnancy induced hypertension followed by history of previous cesarean, and preterm 

birth labor. The main difference in the structure of the decision trees is in the number of 

leaves and granularity of the divisions for each rule. While a greater granularity in the 

decision trees is not necessarily a sign of improvement in the prediction model and can be 

attributed to overfitting, the increased number of leaves in the boosted models facilitates 

the ability of domain experts to determine if the comorbidities and risk factors found 

could be associated with patients with ADE. Figure 3.3 shows the difference in structure 

and decision paths obtained with the decision tree classification algorithm in the raw 

dataset and the 900% boosted dataset. 

Table 3.3 shows the results of the test statistics used for comparison of the 

performance of the two classifiers on the raw dataset, and the SMOTED datasets. The 

results indicate a statistical significant difference for the Kappa statistics both with 
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parametric, and nonparametric tests. The p value from the t Statistic for the comparison 

of the AUC shows a level of significance < 0.0321. However, the sign test, and the 

ranked signed test indicate a p <.0001. The number of datasets for evaluation was 21 and 

with a t Statistic within levels of significance we conclude that the evaluation metrics are 

indeed significantly different as confirmed by the nonparametric tests. 

Discussion 

The importance of developing automatic detection tools for ADE have been 

widely emphasized [29]. The current low ADE reporting rate creates unbalanced datasets 

that are very difficult to analyze and use for automatic rule extraction. Electronic methods 

used for knowledge extraction are likely to fail as demonstrated by the evaluation of the 

classifiers in the raw dataset. Alternative data manipulation methodologies are a subject 

of current research in disciplines outside of medicine where it is also necessary to 

develop knowledge bases to predict rare occurrences of an event [12]. Sparse data sets 

that would otherwise be useless can be used to create the starting point of evidence based 

electronic systems. Predictive models created in this manner can be used to develop 

evidence based ADE monitoring systems with the potential to increase ADE detection.. 

Increased detection of patients at risk for ADE can lead to changes in patient care 

protocols and improve patient safety and quality of care. One role of biomedical 

informatics is to evaluate these methodologies and determine the usability in the clinical 

arena [20, 30-33].  

The use of ICD9 coded data for clinical research has been controversial. 

However, multiple research studies have demonstrated its usefulness[14, 27]. In addition 

Yasmeen et al proved the reliability of reports of disease incidence using such 
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classification. It should be kept in mind that the resulting clinical classification is a 

general classification of risk factors and comorbidities with the limitations and short 

comings of a system as nonspecific as ICD9 . Nonetheless, it can be used to create useful 

predictive models to automatically detect those patients at higher risk for ADE and even 

as an automatic method to detect disease incidence or study populations for further 

research. 

Obstetric indicators report severe pregnancy induced hypertension, embolism and 

infection as the three leading causes for severe maternal morbidity, and mortality[34, 35]. 

Our results show severe hypertension and wound infection as two of the leading factors 

for variability in the dataset. It is unclear to us why “trauma” appears as the leading factor 

for variability since the incidence of trauma is extremely low. We can only speculate that 

it is because these patients are at higher risk for obstetrical complications such as 

embolism, infections and hemorrhage as reported in the literature[36]. 

As noted in the introduction, existing methodologies for detection of ADE and 

AE in general are insufficient, underreporting is suspected at all levels. We believe that 

the introduction of machine learning methods could have a promising future in this arena 

if we are able to create predictive models that could deal with clinical factors of low 

incidence like ADE. Machine learning methods are capable of detecting associations that 

are not evident when the prevalence is low. Clinical data are numerous, complex, can be 

confounding and noisy, as a consequence datasets of this nature are likely to be sparse, 

and difficult to analyze. The introduction of boosting algorithms like SMOTE where the 

original structure of the data is maintained is promising, and future research is necessary. 

However, for a real time automatic detection method to be reliable, the clinical data of 
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interest would have to be coded in real time. Existing real time reports of Natural 

Language processing and detection of antidote drugs for ADE are promising [37, 38]. 

  

Study Limitations 
 

In the present study, we found important discordance between the coded data and 

the text reports in the electronic medical record (Table 3.2). ICD9 coding for billing and 

reporting is done based on both electronic, and paper records. Therefore higher 

agreement could be expected if the validation of the ICD9 codes were done including 

both sources. Nonetheless, our data indicated similar disease incidence when comparing 

the study population to that of the State of Utah. Likewise, based on the validation study 

published by Yasmeen[20] we can conclude that the ICD9 coding system is accurate for 

clinical classification of obstetrical diagnosis.  

Another limitation of the ICD9 coding system and more so of the way it is used 

for billing and reporting, is the impossibility to determine the timing of the comorbidity 

in relation to the time of delivery, and patient admission. The ICD9 codes are included in 

the electronic record after patient discharge and account for all the events that 

accompanied the patient during the hospital stay and are not stratified by date or time. 

This could be a problem if specific comorbidity analysis is done. We can only conclude 

that patients with certain comorbidities are prone to ADE but we cannot determine the 

timing of the appearance of the comorbidity in relation to the maternity admission or the 

ADE. Also, the nature of the data makes it impossible to differentiate among those 

patients with preventable, and nonpreventable, ADE. The clinical classification used in 

the present study could be used to classify patients in general categories of comorbidities, 
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procedures, and to identify risk factors. A classification like this could be useful to 

identify groups of patients with shared clinical trends. However, a real time monitoring 

system could not be implemented since the ICD9 codes are not assigned until days after 

the patient is discharge from the hospital.  

The disadvantages of using sampling and classification techniques with all types 

of datasets are overfitting or overtraining. Oversampling leads to overfitting, while 

random undersampling does not necessarily provide new information. The data are 

optimized in such a way that the classifiers have an excellent performance in the training 

and testing sets but can have poor performance in the validation sets. In this case, the 

normal distribution of the individual variables is altered. Oversampling techniques often 

involve making exact copies of the majority class, resulting in overfitting and does not 

solve the problem of sparse data. It can on the other hand increase the computational 

expense without improving the performance in the validation sets. Undersampling can 

discard useful information and therefore decrease classifier performance [16, 17]. The 

SMOTE algorithm creates synthetic cases based on the values of the variables of the 

nearest neighbors. This approach maintains the original distribution and therefore the 

overfitting problem is avoided. In the present study, we were able to verify this t by 

comparison of the eigenvalues of the principal components in the raw dataset with those 

that included the synthetic cases.  

It could be argued that the improvement of the evaluation throughout the 

experiment is evident but that it does not show dramatic changes. We demonstrated 

statistical significant differences with the use of both parametric and nonparametric 

statistics in the evaluation metrics of both classifiers. The differences of the structure of 
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the decision trees does change and shows additional split areas that can be used in 

practical applications through identification of patients at higher risk for ADE. These 

models can be used as a starting point in future research to focus attention on factors that 

might be shared by the cases present in the models.  

Although precise clinical conclusions cannot be drawn from the results of the 

present study, the decision trees allow clinical validation of the results. The decision tree 

in the raw dataset has one split at the beginning and does not allow discrimination 

between different groups of patients that may have similar risk for ADE than others. By 

displaying the risk factors in this manner, it is impossible to discern if there are groups 

that could share a similar risk for ADE and not the same diagnosis. On the other hand, the 

tree resulting from the SMOTED datasets allowed the visualization of different groups at 

the same level of risk for ADE and that do not share diagnosis (Figure 3.3). The left hand 

side figure (tree resulting from the raw data) shows trauma, severe pregnancy induced 

hypertension, wound infection in decreasing levels of importance. The right side of the 

figure (tree resulting from 900% SMOTED dataset) shows trauma, severe pregnancy 

induced hypertension and wound infection as parent nodes at the same level. Through 

this graphical display we can see how patients with different diseases receiving 

completely different set of medication can share a similar risk for ADE.  

 
Future Studies 

 
The ICD9 classification system used in the present study is general and unspecific 

for the study of individual diseases. We believe that if a similar methodology to the ones 

used in this report were to be applied by replacing ICD9 codes with clinical events, signs, 

symptoms, and data from the actual medical record, there would be more success in 



  62 

 

developing predictive models that could be used in real time electronic systems.  It is also 

of importance to study the types of drugs associated with ADE in the pregnant 

population. The pharmacopeia in obstetrics is limited and it is likely that a sparse dataset 

can be encountered when analyzing drugs likely to cause ADE.  Further research is 

necessary in order to determine which drugs are associated with ADE and also to 

determine which drug combinations are likely to produce ADE and drug-drug 

interactions.  

In addition, it would be desirable to compare the performance of the classifiers 

among the subsets selected with additional variable selection techniques as advised by 

Hall[19]. 

Conclusions 

The use of knowledge extraction techniques in clinical applications with sparse 

data is prone to failure without further data manipulation. Enhanced performance from 

classification algorithms can be attained with the use of SMOTE in the clinical setting as 

demonstrated in this study, and previously reported by other clinical specialties[14]. 

Models obtained through this methodology can be used as starting points to develop 

prediction models for future experiments that will ultimately aid in the development of 

automatic reporting tools.  
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Table 3.1 Clinical Classification and ICD codes of Selected Comorbidities 

Comorbidity ICD9_DX_CD 
Abnormal Cervix 1808, 1809, 2331, 2333, 6150, 6160, 6168, 6221, 

62211, 62212, 6223, 6224, 6225, 6227, 6228, 65450, 
65451, 65453, 65461, 65462, 65463, 75240, 75249, 
7950, 79500, 79503, 79504, 79505, 79509, 7951, 
V1041, V6110 

Adverse Drug Event 2454, 2865, 4582, 62210, 6923, 6930, 7955, 9623, 
9681, 9750, 979, 98982, 995, 9952, 9958, 99589, 
9998, E8506, E8552, E8580, E8582, E8586, E876, 
E8768, E8789, E8798, E8799, E930, E9300, E9301, 
E9302, E9303, E9304, E9305, E9306, E9307, E9308, 
E9309, E931, E9310, E9311, E9312, E9313, E9314, 
E9315, E9316, E9317, E9318, E9319, E932, E9320, 
E9321, E9322, E9323, E9324, E9325, E9326, E9327, 
E9328, E9329, E933, E9330, E9331, E9332, E9333, 
E9334, E9335, E9338, E9339, E934, E9340, E9341, 
E9342, E9343, E9344, E9345, E9346, E9347, E9348, 
E9349, E935, E9351, E9352, E9353, E9354, E9355, 
E9356, E9357, E9358, E9359, E936, E9360, E9361, 
E9362, E9363, E9364, E937, E9370, E9371, E9372, 
E9373, E9374, E9375, E9376, E9378, E9379, E938, 
E9380, E9381, E9382, E9383, E9384, E9385, E9386, 
E9387, E9389, E939, E9390, E9391, E9392, E9393, 
E9394, E9395, E9396, E9397, E9398, E9399, E940, 
E9400, E9401, E9408, E9409, E941, E9410, E9411, 
E9412, E9413, E9419, E942, E9420, E9421, E9422, 
E9423, E9424, E9425, E9426, E9427, E9428, E9429, 
E943, E9430, E9431, E9432, E9433, E9434, E9435, 
E9436, E9438, E9439, E944, E9440, E9441, E9442, 
E9443, E9444, E9445, E9446, E9447, E945, E9450, 
E9451, E9452, E9453, E9454, E9455, E9456, E9457, 
E9458, E946, E9460, E9461, E9462, E9463, E9464, 
E9465, E9466, E9467, E9468, E9469, E947, E9470, 
E9471, E9472, E9473, E9474, E9478, E9479, E948, 
E9480, E9481, E9482, E9483, E9484, E9485, E9486, 
E9488, E9489, E949, E9490, E9491, E9492, E9493, 
E9494, E9495, E9496, E9497, E9499, E9800 

Alcohol Abuse 2948, 30390, 30391, 30393, 30500, 30501, 30502, 
30503, V113 

Amniotic Infection 65840, 65841, 65843, 65931 
Asthma 49302, 49381, 49390, 49392 
Breech Presentation 65220, 65221, 65223 
Prolonged Labor 66201, 66211, 66221, 66223 
Complicated Labor 65983 
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Table 3.1 Continued 

Comorbidity ICD9_DX_CD 
Congenital Uterine anomaly  65401, 65403, 7522, 7523 
Cardiovascular Disease 3004, 3643, 3940, 3941, 3942, 3949, 3963, 3968, 

3969, 3970, 3971, 3979, 39890, 39891, 4101, 4102, 
4111, 41411, 416, 4168, 4239, 4240, 4241, 4243, 
42490, 4254, 4258, 4260, 42613, 4263, 4264, 4266, 
4267, 42682, 4270, 4271, 42731, 42732, 42741, 
42742, 42761, 42769, 42781, 42789, 4279, 42831, 
42971, 42989, 4299, 5300, 64851, 64853, 64861, 
64862, 64863, 66811, 67321, 67322, 67323, 67451, 
67452, 7454, 7455, 74602, 7463, 7464, 74687, 74689, 
7469, 74710, 7473, 7475, 74762, 74763, 7593, 7603, 
785, 7851, 7852, 78551, 79431, 99674, 9971, V151, 
V422, V433, V4501, V4509, V452 

Diabetes 25000, 25001, 25002, 25003, 25010, 25011, 25040, 
25041, 25051, 25053, 25060, 25061, 25080, 25081, 
25083, 25090, 25091, 25092, 25093, 2535, 36201, 
36202, 64801, 64802, 64803, 64881, 64882, 64883, 
64884, 79029 

Maternal age > 35 65951, 65953, 65961, 65963, V2381, V2382 
Failed Induction 65901, 65910, 65911, 66061 
Fetal Distress 65571, 65631, 65633, 65970, 65971, 65973, 66321, 

76381 
Uterine Fibroids 2180, 2181, 2182, 2189, 65411, 65412, 65413 
Genito Urinary Infection 1121, 1122, 11289, 1129, 13101, 1319, 541, 5411, 

59010, 59080, 5909, 6142, 61610, 61611, 6162, 6164, 
6169, 64651, 64661, 64662, 64663, 64701, 64711, 
64723, 7810, 7811, 794, 7998, 920, 980, 9950, 9953, 
9954, 9955, 9959, 999 

Hemorrhage 2851, 2879, 4590, 64193, 66602, 66612, 66614, 
66624, 99811 

Herpex Infection 5410, 5412, 5419, 549 
Hypertension 36211, 4010, 4011, 4019, 40599, 4293, 4372, 64201, 

64202, 64203, 64211, 64213, 64221, 64222, 64223, 
64271, 64273, 64291, 64292, 64293, 7962 

Uterine Inertia 66101, 66103, 66121, 66123 
Infection 1103, 1105, 1120, 1123, 1125, 1140, 1190, 1309, 

1320, 1330, 1398, 3229, 340, 3570, 3682, 38010, 
38013, 3810, 3842, 388, 389, 4109, 4119, 412, 413, 
414, 4184, 4189, 419, 431, 460, 4619, 462, 4659, 
4660, 46619, 4732, 4733, 4739, 4781, 4822, 48230, 
48282, 4829, 4830, 4838, 485, 486, 490, 5400, 5401, 
5409, 542, 5551, 56722, 5990, 64731, 64733, 64761, 
64763, 64781, 64782, 64791, 64792, 65921, 65923, 
67202, 67511, 6868, 6869, 71, 73090, 7806, 7819, 
78552, 7907, 7988, 845, 9162, 9181, 958, 9951, 
99592, 99662, 998, 9993, V0259, V1200, V1209 

Intrauterine Death 65641, 65643, V271 
IUGR 65651, 65653 
Legal Abortion 63591, 63592 
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Table 3.1 Continued 

Comorbidity ICD9_DX_CD 
Macrosomia 65661, 65663, 7660 
Abnormal Fetal Presentation 65201, 65203,65231, 65233, 65241, 65243, 65271, 

65281, 65283, 65291, 65293, 66001, 66003, 66522, 
66961, 7617 

Benign Tumor 2141, 2158, 2166, 2168, 2169, 217, 220, 221, 326, 
61172 

Viral Infection 4809, 4871, 4878, 528, 529, 539, 5449, 5479, 548, 
5679, 64762, 7030, 7070, 75, 7799, 7989, 7999, 88 

Mental Alteration 29383, 29384, 29389, 29534, 29570, 29590, 29620, 
29623, 29626, 29630, 29632, 29633, 29634, 29640, 
29650, 29653, 29660, 2967, 29680, 29682, 29689, 
29690, 29699, 2979, 2989, 30000, 30001, 30002, 
30009, 30015, 30021, 30022, 30029, 3003, 3009, 
3010, 30113, 3017, 30183, 3019, 3061, 30651, 3069, 
3071, 30750, 30751, 3080, 3082, 3083, 3089, 3090, 
30921, 30924, 30928, 3094, 30981, 30989, 311, 
31400, 317, 319, 64841, 64842, 64843, 66901, 78050, 
78052, 78071, 7830, 7992, E9538, V110, V111, 
V119, V409, V610, V624, V6284, V6289 

Multiple Gestation 64513, 65101, 65103, 65111, 65113, 65121, 65131, 
65133, 65141, 65143, 65151, 65171, 65261, 65263, 
66231, V272, V273, V274, V275, V276, V277 

Obesity 27800, 27801, 64611, 64612, 64613, V8535, V854 
Obstructed Labor 3314, 65991, 66011, 66021, 66023, 66091, 66191 
Occiput Posterior 66031 
Oligohydramious 65801, 65803 
Severe Pregnancy Induced Hypertension 64261, 64262, 64263 
Placenta Previa 64100, 64101, 64103, 66351, 7620 
Polyhydramnios 65701, 65703 
Postdates 64511, 64521, 64523 
Precipitaded labor 66131, 66133 
Pregnancy Induced Hypertension 64231, 64232, 64233, 64234, 64241, 64242, 64243, 

64244, 64251, 64252, 64253 
Preterm Pregnancy 64400, 64403, 64413, 64420, 64421 
Previous Cesarean 65421, 65423 
Premature Rupture of Membranes (PROM) 65810, 65811, 65813 
Prolonged PROM 65821, 65823, 65831 
Shoulder Dystocia 66041 
Streptococcal Infection 380, 4100, 4104, V0251 
Tobacco Use 3051, V1582 
Thyroid Disease 2409, 2410, 2419, 24200, 24221, 24280, 24290, 

24291, 243, 2441, 2443, 2448, 2449, 2459, 2462, 
2468, 2469, 2749, 64811, 64812, 64813, 7945, V1087 
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Table 3.1 Continued 

Comorbidity ICD9_DX_CD 
Maternal Trauma  3543, 72210, 7605, 80500, 80505, 80506, 8054, 8088, 

81341, 81504, 81601, 8248, 83100, 83650, 8439, 
8449, 84500, 8460, 8470, 8472, 8479, 87341, 87364, 
8821, 9051, 9070, 9072, 9075, 9100, 9110, 9130, 
9221, 92321, 9243, 9331, 94203, 94213, 94423, 
94536, 9478, 94800, 9532, 9571, 95901, 95919, 9925, 
99581, E8120, E8121, E8129, E8147, E8160, E8161, 
E8190, E8191, E8198, E8199, E8490, E8495, E8496, 
E8497, E8498, E8499, E8809, E8844, E8859, E887, 
E8888, E8889, E9179, E918, E9248, E9288, E9289, 
E9290, E9293, E9298, E9299, E9600, E9670, V5417, 
V714 

Uterine Anomaly 2198, 6159, 6212, 6215, 6218, 65431, 65441, 65442, 
65443, 66143 

Venous Thrombotic Disease 4439, 45341, 4538, 4549, 4550, 4552, 4553, 4554, 
4555, 4556, 4557, 4558, 4565, 4568, 45981, 67101, 
67102, 67103, 67111, 67112, 67113, 67121, 67122, 
67131, 67133, 67142, 67151, 67152, 67181, 67182, 
67191, 67192, 67193, V1251, V1252 
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Table 3.2: Methods for validation of ICD9 codes 

Method Result 
Manual and electronic revision of ICD9 
codes included in the clinical 
classification 

All ICD9 codes found in the dataset were 
included in the clinical classification 

Comparison of disease incidence from 
ICD9 coding system and Utah 
Department of Health reporting system. 

The disease incidence found with both 
methods was the same 

Paired sample t test for comparison of 
number of drugs used in patients with 
identified codes for adverse drug events 
and the control population 

ADE group Mean number of drugs used 
14 no-ADE Mean 10 
P < .001 for number of drugs used in both 
groups.  

Use of Kappa statistic for agreement 
between ICD9 codes and text from the 
electronic medical record at the point of 
care 

Kappa statistic: .65-.73 for agreement 
between free text in the medical record 
and ICD9 codes 

Manual revision of free text notes from 
the electronic medical record and the 
ICD9 codes 

Kappa statistic: .55-.75 for agreement 
between free text in the medical record 
and ICD9 codes for ADE, trauma, 
hypertension. 

 

Table 3.3 Statistical comparison of Classifiers for Kappa statistic and AUC  

Kappa AUC 
Test Statistic Value P Value Test Statistic Value p Value 
Student's t T 29.66 <.0001 Student's t t -2.3 < 0.0321 
Sign M 10.5 <.0001 Sign M -10.5 <.0001 
Signed Rank S 115.5 <.0001 Signed 

Rank 
S -115.5 <.0001 

The results indicate the value for parametric and nonparametric tests. The p value 
indicates a statistical significant difference between the raw dataset and the SMOTED 
datasets. The table on the right shows the values for Kappa, the one on the left for AUC.  
The p values for non-parametric tests show greater significance for the Area Under the 
Curve Non-parametric tests are statistically safer in samples of 30 or less when the 
assumption of normal distribution is violated. 
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Figure 3.1.: Performance of evaluation metrics in the Decision Tree 

Decision Tree Evaluation
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True positive rate (TP rate) and value of the Receivers Operating Curve (ROC). The 
Kappa statistic shows the level of agreement for the 10-Fold Cross validation method.
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Figure 3.2: Performance of evaluation metrics in the Naive Bayes classification algorithm 
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True positive rate (TP rate) and value of the Receivers Operating Curve (ROC). The 
Kappa statistic shows the level of agreement for the 10-Fold Cross validation method.
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Figure 3.3 Comparison of the Structure of the Decision Trees before and after the 
SMOTE process 

 
 
The figure on the left hand side shows the decision tree structure on the raw dataset. The 
figure on the right hand side shows the additional branches in the decision process in the 
datasets with 900% more synthetic cases. The decision tree on the raw dataset shows a 
unique decision branch allowing no discrimination for other risk factor variables. The 
introduction of synthetic cases increases the granularity of the tree and allows the 
identification of other risk factors and comorbidities that might be equally associated with 
ADE. 



  71 

 

References 

[1] IOM. Preventing Medication Errors: Institute of Medicine; 2006. 

[2] Rothschild JM, Landrigan CP, Cronin JW, Kaushal R, Lockley SW, Burdick E, et 
al. The Critical Care Safety Study: The incidence and nature of adverse events and 
serious medical errors in intensive care. Critical care medicine. 2005 Aug;33(8):1694-
700. 

[3] IOM. To Err is Human: Building a Safer Health System; 1999. 

[4] Weingart SN, Mc LWR, Gibberd RW, Harrison B. Epidemiology of medical 
error. West J Med. 2000 Jun;172(6):390-3. 

[5] Tsai PS, Chen CP, Tsai MS. Perioperative vasovagal syncope with focus on 
obstetric anesthesia. Taiwan J Obstet Gynecol. 2006 Sep;45(3):208-14. 

[6] Cesario SK. Managing the second stage of labor: using evidence to guide practice. 
Worldviews Evid Based Nurs. 2004;1(4):230. 

[7] Shimo T, Nishiike S, Masuoka M, Seki S, Tsuchida H. [Intraoperative 
anaphylactic shock induced by methylergometrine and oxytocin]. Masui. 2006 
Apr;55(4):447-50. 

[8] Gaiser RR, McHugh M, Cheek TG, Gutsche BB. Predicting prolonged fetal heart 
rate deceleration following intrathecal fentanyl/bupivacaine. Int J Obstet Anesth. 2005 
Jul;14(3):208-11. 

[9] Bolukbasi D, Sener EB, Sarihasan B, Kocamanoglu S, Tur A. Comparison of 
maternal and neonatal outcomes with epidural bupivacaine plus fentanyl and ropivacaine 
plus fentanyl for labor analgesia. Int J Obstet Anesth. 2005 Oct;14(4):288-93. 

[10] Caughey AB, Bishop JT. Maternal complications of pregnancy increase beyond 
40 weeks of gestation in low-risk women. J Perinatol. 2006 Jul 13. 

[11] Zorman M, Podgorelec V, Kokol P, Peterson M, Sprogar M, Ojstersek M. Finding 
the right decision tree's induction strategy for a hard real world problem. International 
journal of medical informatics. 2001 Sep;63(1-2):109-21. 

[12] Weiss G M . Mining with rarity: a unifying framework. SIGKDD Explor Newsl. 
2004;6(1):7-19. 

[13] Chawla N V LA, Hall LO, Bowyer K,. SMOTEBoost: Improving Prediction of 
Minority Class in Boosting. 7th European Conference of Priciples and Practice of 
Knowledge Discovery in Databases (PKDD); 2003; Dubrovnik, Croatia; 2003. p. 107-19. 



  72 

 

[14] Liu F, Wets G. A neural network method for prediction of proteolytic cleavage 
sites in neuropeptide precursors. Conf Proc IEEE Eng Med Biol Soc. 2005;3:2805-8. 

[15] Chawla NV BKW, Hall LO ,Kegelmeyer WP, SMOTE: Synthetic Minority Over-
sampling Technique. Journal of Artificial Intelligence Research 2003 2002:341-78. 

[16] Chawla N V LA, Hall LO, Bowyer K,. SMOTEBoost: Improving Prediction of 
Minority Class in Boosting. Dubrovnik, Croatia 2004. 

[17] Witten IH, Frank E, Data mining : practical machine learning tools and 
techniques. 2nd ed. Amsterdam ; Boston, MA: Morgan Kaufman 2005. 

[18] Shortliffe EH, Cimino JJ, Biomedical informatics : computer applications in 
health care and biomedicine. 3rd ed. New York, NY: Springer 2006. 

[19] Hall MA HG. Benchmarking Attribute Selection Techniques for Discrete Class 
Data Mining. IEEE Transactions on Knowledge and Data Engineering. 2003 
November/December 2003;15:1-16. 

[20] Yasmeen S, Romano PS, Schembri ME, Keyzer JM, Gilbert WM. Accuracy of 
obstetric diagnoses and procedures in hospital discharge data. Am J Obstet Gynecol. 
2006 Apr;194(4):992-1001. 

[21] JCAHO. Joint Commission on Accreditation of Healthcare Organizations.  [cited 
2005; Available from: http://www.jcaho.org/ 

[22] Utah TUo, Gynecology DoOa. Joint OB/urogyn/gyn research meeting. Salt Lake 
City Utah 2006. 

[23] Afifi A.A CV. Multivariate Analysis, Canonical Correlation Analysis. Computer-
Aided Multivariate Analysis. Second ed. New York: Van Nostrand Reinhold 2004:252-
70. 

[24] Evans RS, Pestotnik SL, Classen DC, Burke JP. Evaluation of a computer-
assisted antibiotic-dose monitor. Ann Pharmacother. 1999 Oct;33(10):1026-31. 

[25] Fernandez G. Data mining using SAS applications. Boca Raton: Chapman & 
Hall/CRC 2003. 

[26] Tan P-N, Steinbach M, Kumar V. Introduction to data mining. 1st ed. Boston: 
Pearson Addison Wesley 2006. 

[27] Nitesh V. Chawla AL, Lawrence O. Hall and Kevin W. Bowyer. SMOTEBoost: 
Improving Prediction of the Minority Class in Boosting 2003. 

[28] Demsar J. Statistical Comparisons of Classifiers Over Multiple Data Sets. Journal 
of Machine Learning Research 2006;7:1-30. 



  73 

 

[29] Bates DW, Evans RS, Murff H, Stetson PD, Pizziferri L, Hripcsak G. Detecting 
adverse events using information technology. J Am Med Inform Assoc. 2003 Mar-
Apr;10(2):115-28. 

[30] Cannon-Albright LA, Farnham JM, Thomas A, Camp NJ. Identification and study 
of Utah pseudo-isolate populations-prospects for gene identification. American journal of 
medical genetics. 2005 Sep 1;137(3):269-75. 

[31] Romano PS, Yasmeen S, Schembri ME, Keyzer JM, Gilbert WM. Coding of 
perineal lacerations and other complications of obstetric care in hospital discharge data. 
Obstet Gynecol. 2005 Oct;106(4):717-25. 

[32] Geller SE, Rosenberg D, Cox S, Brown M, Simonson L, Kilpatrick S. A scoring 
system identified near-miss maternal morbidity during pregnancy. Journal of clinical 
epidemiology. 2004 Jul;57(7):716-20. 

[33] Allen-Brady K, Camp NJ, Ward JH, Cannon-Albright LA. Lobular breast cancer: 
excess familiality observed in the Utah Population Database. International journal of 
cancer. 2005 Nov 20;117(4):655-61. 

[34] Geller SE, Cox SM, Kilpatrick SJ. A descriptive model of preventability in 
maternal morbidity and mortality. J Perinatol. 2006 Feb;26(2):79-84. 

[35] Geller SE, Rosenberg D, Cox SM, Kilpatrick S. Defining a conceptual framework 
for near-miss maternal morbidity. Journal of the American Medical Women's Association 
(1972). 2002 Summer;57(3):135-9. 

[36] Holden DA, Quin M, Holden DP. Clinical risk management in obstetrics. Curr 
Opin Obstet Gynecol. 2004 Apr;16(2):137-42. 

[37] Evans RS, Pestotnik SL, Classen DC, Bass SB, Menlove RL, Gardner RM, et al. 
Development of a computerized adverse drug event monitor. Proc Annu Symp Comput 
Appl Med Care. 1991:23-7. 

[38] Bates DW, Cullen DJ, Laird N, Petersen LA, Small SD, Servi D, et al. Incidence 
of adverse drug events and potential adverse drug events. Implications for prevention. 
ADE Prevention Study Group. Jama. 1995 Jul 5;274(1):29-34. 

 



   

 

CHAPTER 4 

SEQUENCE DISCOVERY TECHNIQUES IN THE  

LABOR AND DELIVERY SETTING 

 
 

Taft LM1, Evans RS1, Shyu CR1, 3, Mitchell JA1, Thornton SN. 1, Bray BE. 1 , Varner M2, 
 
 

1Department of Biomedical Informatics 
2Department of Obstetrics and Gynecology 

 
University of Utah Health Sciences Center 

30 North 1900 East 
Salt Lake City, Utah 84132 

 
3Informatics Institute 

 
University of Missouri Columbia 

Columbia, MO 65211 
 
 
 

Address Correspondence to: 
 

Laritza Taft MD 
Department of Biomedical Informatics 

University of Utah Health Sciences Center 
 

Salt Lake City, Utah 
PH: 801.581.4080 

FAX: 801.581.4297 
Email: laritza.Taft@hsc.utah.edu 

 



   

 

Abstract 

Background 
 

Sequence discovery techniques have been utilized to find significant temporal 

association patterns. This technology has not been applied in the Labor and Delivery 

(L&D) setting to detect adverse drug events (ADE). 

 
Objective 

 
We assessed the applicability of sequence discovery techniques to clinical 

healthcare data. The experiments were conducted with records of women admitted to 

Labor and Delivery with discharge diagnoses of ADE.  

 
Methods 

 
Patient records for this study were extracted from the enterprise data warehouse 

from Intermountain Healthcare in Utah. Patients with reported ADE and no ADE were 

identified through ICD9 codes from billing and reporting data. Drug administration data 

for all patients were extracted from electronic pharmacy records. Clinical domain 

knowledge was applied to create condensed drug categories and to identify antidotes. 

SAS Enterprise Miner was used to generate sequence analysis and to generate electronic 

association rules.  

Results 
 

The average number of drugs received by patients with identified ADE was 14 

and the average number of drugs received by control patients was 10 (p < .001). The 

number of different drug categories found in the ADE group was 123 compared to 93 in 
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the non-ADE (p < .001). As expected, a significant difference was found in the use of 

antidote drugs (antihistamines and ephedrine) between patients with and without ADE. 

 
Conclusion  

 
Episode mining techniques can be used to create electronic rules to detect 

infrequent healthcare events such as ADE. 

Word Count: 223 

Key Words: Adverse Drug Events, Pregnancy, Temporal, Episode, Data mining 

 Adverse Event (AE) reporting has been a predominant focus point for quality 

assurance and patient safety. As a response to the IOM report To Err is Human [1] and 

through the recommendations of the Quality Interagency Coordination Task Force 

(QuIC), a series of strategies have been recommended [2]. In addition to other 

requirements, voluntary and mandatory adverse event reporting using the sentinel event 

policy is required by the Joint Commission [3]. The Institute of Medicine (IOM) in the 

report, Preventing Medication Errors [4], reviewed existing processes and emphasized 

the low reported rate of Adverse Drug Events (ADE). The report recommends the need to 

develop and install automatic detecting systems to improve the detection rate of ADE.  

The greatest obstacle in the development of an ADE electronic reporting system is 

the availability of data in an electronic and coded form. For this reason, computerized 

ADE monitoring systems have focused on the use of administrative coded data for 

diagnosis and procedures, laboratory, and pharmacy data [5]. However, coded data are 

for the most part unavailable in real time and therefore can be used only for reporting.  

Natural Language Processing tools have been used to detect events in real time 

and have been demonstrated to improve patient safety [6, 7]. However, the installation of 
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such systems can be cumbersome and the performance evaluation is difficult. Laboratory 

data and pharmacy data, on the other hand, are available in real time and have been used 

successfully as triggers in reporting and prevention applications [5, 8-10].  

When pharmacy data have been used for ADE detection, the focus has been on 

identification of antidotes following specific drug administration as a marker for ADE. 

Existing reports have studied the administration of Vitamin K to detect Coumadin 

overdose as well as the subsequent use of antidiarrheals, anthihistamines, epinephrine, 

and steroids to detect ADE from antibiotics and other substances. System performance is 

variable and customization for medical specialties is necessary [9, 11, 12].  

The unique physiologic characteristics of patients in Labor and Delivery (L&D) 

require the use of drugs and measures that are not used as antidotes for AE and ADE in 

other specialties. For example, a pregnant woman may experience acute hypotension 

following administration of a regional anesthetic and then be instructed to change from 

the supine to lateral decubitus position. This change in position, or even the 

administration of an intravenous fluid bolus to counteract this sudden hypotension, is 

often not considered an antidote. Likewise, off-label use of medications is very common 

in the L&D setting. Thus, in order to develop an automatic ADE detecting system for 

L&D patients, creation of domain-specific electronic rules is necessary [13, 14].  

Creation of domain specific rules generally involves the creation of association 

logic and use of sequence discovery techniques. The most common business application 

is the market basket analysis, where items are grouped into item sets to identify those that 

are purchased together. With the identification of frequent item association sets, it is 

possible to launch marketing and advertising campaigns and increase sales [15, 16]. The 
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technique has also been demonstrated useful for detection of gene sequence associations 

and in public health surveillance systems [17-20]. 

In the present study, we studied the application of sequence discovery techniques 

with clinical healthcare data. The experiments were conducted by comparing patients 

records of women admitted to Labor and Delivery (L&D) with and without a discharge 

diagnosis of ADE.  

Background 

The association rule is a statement of conditional probability X�Y where X is the 

antecedent (product 1) and Y the consequence (product 2). The significance of the rules 

is measured based on the number of times each item appears in the dataset and the 

number of times the two items appear as an item set. The support of the rule is the ratio 

of transactions that include all items in the antecedent and the consequence to the number 

of transactions that include all items in the antecedent; in other words, the number of 

times that the combination appears in all the transactions. The confidence (incidence) of 

the rule is the ratio of transactions that include all items in the antecedent and the 

consequence to the number of transactions that include all items in the antecedent. The 

expected confidence is the number of the consequent transactions divided by the total 

number of transactions. The lift is the ratio of the confidence to the expected confidence 

or the strength of the association [21, 22]. Another interesting statistic that can be 

calculated is the Z-score, which indicates if the confidence is significantly greater than 

the expected confidence.  

Association rules with high support and confidence are significant and therefore 

used to construct marketing strategies. However, high support and high confidence rules 



  79 

 

can lack practical interest when the consequence occurs every time the antecedent is 

present. An example of high support, high confidence rules would be a patient with fever 

is likely to have an infection. In clinical practice, these associations are known as 

pathognomonic signs of a given disease. Moreover, if an infrequent association of the 

consequence and the antecedent is found, the rule becomes interesting and would likely 

have been missed by conventional methods and not easily detected even with extensive 

domain knowledge. Thus, for the rules to be interesting and useful in practice, we should 

seek those with low support, high confidence, and a lift value of 1 or higher [16, 23]. 

One of the difficulties with association rules is the number of items to consider. A 

large number of categories require lengthy computing time and memory often exceeding 

server capacity. In addition, the process generates large number of rules that will in turn 

be difficult to analyze and might not be relevant (interesting). To avoid this complication, 

it is necessary to combine the items into broad categories that will require less computing 

resources and yield fewer and more meaningful rules. The literature reports several 

approaches; the most common one is a combination of mapping item sets to a 

classification system and domain expertise [21].  

 
Sequence Discovery 

Sometimes it is of interest to know the order in which items are used, or the 

antecedent and the consequence. Such is the case of a pharmacological application where 

the purpose is to identify the use of antidote drugs to treat an ADE. In this context, the 

drug that caused the ADE is the antecedent, and the antidote is the consequence [9, 21, 

24-26]. Sequence discovery requires a time variable computed based on the order in 

which the events happen. 
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Methods 

Subjects 
  

Records for the present study were extracted from the Enterprise Data Warehouse 

(EDW) of Intermountain Healthcare in Salt Lake City, Utah. The EDW contains clinical 

care and coded data for billing and reporting. Data from 106,480 individual patients 

admitted for L&D during years 2002-2005 were extracted. 

Included in the study were patient records with gestational age between 20 and 44 

weeks and birth weight between 500 and 4800 grams. Two patient records with maternal 

age above 55 were excluded as they were determined to be data entry errors. In patients 

with multifetal pregnancies, the first maternal record was selected for inclusion.  

Three hundred seventy-one patient records were identified with an ADE based on 

ICD9 codes. A control set of 371 patients with no ADE was randomly selected from the 

remaining pool of records. The random selection function of the Structured Query 

Language Open Source version (MySQL V.5.1) was used for this purpose.  

Pharmacy data including the medication name, delivery route, and the date/time 

of administration were extracted for each patient in both the ADE and non-ADE groups.  

 
Drug Category Reduction 

 
To reduce the number of categories, the drugs were grouped by main component. 

Separate categories were created for those containing multiple components. For 

identification purposes, names were assigned to the categories based on the active 

ingredients and, for those with multiple ingredients, the name of the main ingredient was 

used. A low incidence of use of antihistamines and antidepressants in diverse 

pharmacological forms was found. To include these drugs without increasing the number 
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of categories, a broad class was created for both of these groups and labeled by the 

pharmacological action. The drug category reduction process included both identifying 

similar ingredients with different spellings or abbreviations and similar ingredients with 

different brand names.  

The classification was verified with the Unified Medical Language System 

(UMLS) by one of the authors (LMT). A second author (MV) validated the drug 

classification. Each of these clinicians individually has over 15 years of clinical obstetric 

experience.  

The drug categories were then divided into two broad groups: those to be used in 

the analysis as antecedent and those to be considered as consequence. The consequence 

or antidote group included antihistamines, ephedrine, external use nasal decongestants, 

and topical steroids. Medications that could be considered as antidotes in other clinical 

specialties were discarded from the analysis for reasons explained elsewhere in this 

paper. 

Parenteral and oral steroids are used as antidotes in presence of ADE in other 

specialties; however, in pregnant patients, parenteral steroids are used as inductors of 

fetal lung maturity, and, therefore, they were not included in the antidote list. Also 

excluded from analysis were items that, although found in the pharmacology list, 1) do 

not have pharmacological action, 2) are used unavoidably in the laboring patient, or 3) 

are not known to cause ADE (for example, enemas, laxatives, and tucks).  The antidote 

drugs have been previously used as triggers in ADE systems, and their action was 

validated by the two obstetricians involved in the study.  
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For each drug, the date and time variables were transformed into discrete time 

variables. The time variable was used to identify the order in which each drug was 

administered to the individual patient and thus required by the sequence analysis process.  

 
Association Rules and Sequence Analysis 

   
Separate analyses for ADE and non-ADE sets were conducted. For each set, four 

different association and sequence analysis experiments were conducted. Each 

experiment utilized a different antidote drug as the consequence variable. This approach 

allowed the identification of a specific antidote drug in the item set found by the 

sequence analysis process. 

A frequent set support threshold of 5% and a rule support threshold of 10% were 

used. The support threshold of 5% means that an item set (antecedent-consequence) must 

be present at least in 5% of the associations in order to be considered a frequent set.  The 

rule support threshold of 10% means that the item set must be greater than or equal to 

10% of the rules to be considered a high-support association rule. Likewise, the 

maximum number of items in an item set was limited to 2. 

 
Software Packages 

 
Software packages used were Statistical Analysis Software (SAS) Release 9.1 and 

SAS Enterprise Miner Release 4.3.Structured Query Language (MySQL V5.0) Open 

Source database management system. 

 
Institutional Review Board 

 
Institutional Review Board approval was obtained from both the Intermountain 

Healthcare, and the University of Utah. 
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Results 

The study included 1400 cases. Of those, 371 ADE cases were identified based on 

the clinical classification previously described [27]. The overall ratio of ADE to non-

ADE patients was 0.36:100. After applying the pharmacological exclusions described 

above, the ADE group had 6740 individual drug records and the non-ADE group had 

4427 records. The total number of drug categories for the ADE group was 121; the total 

for the non-ADE group was 93 (p < 0.001). The drugs per patient were 14 for the ADE 

group and 10 for the non–ADE group (p < 0.001). 

Table 4.1 shows the drug categories and the differences found in each group. In 

the ADE group, the different drugs used and not found in the non-ADE group were anti-

hypertensives, bronchodilators, cardiovascular medications, antibiotics of uncommon use 

in laboring patients, and drugs used for general anesthesia.  

The association rule analyses and the sequence discovery analyses showed 

significant differences between the groups. In the non-ADE group, we found no 

significant associations for ephedrine, nasal decongestants, and topical steroids. A 

significant Z-score was found for antihistamines in which the antecedent component of 

the item set was cephalosporins and opioid analgesics. The total number of significant 

associations for antihistamines as antidote was 22. Likewise, in the ADE group, no 

significant associations were found for item sets with nasal decongestants and topical 

steroids. Significant associations were found for antihistamines (80 significant 

associations) and ephedrine (16 significant associations).  In the analysis for 

antihistamines, the most significant associations were with nonsteroidal anti-

inflammatory drugs, opioid analgesics, oxytocin, and cephalosporins. Significant 
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associations in the ephedrine as antidote group were with antiemetic, cephalosporins, 

opioid analgesics, and nonsteroidal anti-inflammatory drugs. Table 4.2 shows the 

associations found for ephedrine in the ADE group. Table 4.3 shows the association rules 

found for antihistamines in the ADE group. 

Discussion 

The main purpose of this study was to identify significant associations between 

therapeutic drugs used in patients during L&D hospitalization and drugs known as 

antidote drugs and to create logic utilizing data mining methods in patient records with 

reported ADE. The resulting associations indicated statistical significance as well as 

clinical relevance. As expected, we identified no associations between the drugs of 

frequent use in labor and post-partum and antidote drugs.  

From our findings, it is clear that the ADE group includes drugs used in patients 

in L&D with complicated diagnosis that require the use of a larger number of drugs and 

ingredients with pharmacological actions outside of labor conduction and puerperal care. 

This observation is in accordance with those by other authors who have found a larger 

number of drugs used in patients with subsequent ADE [5, 28].  

Our work explores how data mining techniques used in fields outside of medicine 

apply to clinical healthcare data. As noted above, ADE are underreported; there is 

pressing need to develop electronic methods for detection and reporting. The validation 

of data mining methodologies with clinical healthcare data opens new possibilities for 

future research. These methodologies applied to clinical data are likely to improve 

automatic detection of ADE.  
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Limitations 
 

The main challenge of the present study is the clear identification of patients with 

reported ADE. The use of ICD9 codes for this purpose does not provide a clear 

identification of the type of adverse drug event as well as the timing of its presentation 

during the hospitalization. We have no reliable way of determining when the ADE 

happened, if present on admission, occurring during labor and delivery, or happening in 

the post-partum period. Nonetheless, by utilizing the pharmacy patient records and the 

time and date of the drug administration, we were able to create a time variable that 

allowed not only an association rule analysis but also a sequence analysis in the study 

groups. 

Identification of patients with ADE via ICD9 codes might have missed a number 

of patients in which the AE was not clearly documented in the medical record and thus 

not included in the discharge coding. Another limitation of the study is the manner in 

which the drug categories were assigned: some by drug components, and others by drug 

action. Those categorized by drug action are of infrequent use and were grouped together 

in an effort to include them in the analysis without loss of information. However, the 

approach allowed statistical verification of the different drugs used between patients with 

and without ADE. It also allowed the association and sequence analysis algorithms to 

generate significant rules and to identify the most common antidotes used in patients 

admitted for L&D.  The approach also opened new research venues in which clinical 

variables as well as the inclusion of antidote measures (intravenous fluids, changes in 

maternal posture, etc.) can be used to identify patients with ADE.  
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Conclusion 

Episode mining techniques can be used with healthcare data to identify 

associations between drugs and antidotes in patients with ADE. The associations can be 

used to create computer logic that can aid in the electronic prediction of rare events such 

as ADE. 
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Table 4.1 Differences in the drug categories found in ADE and non-ADE groups. The 
numbers indicate the different drugs included in the category. Blank spaces in the non-
ADE groups indicate drugs that were not found in one group and found in the other. 
  

Drug Categories in No 
ADE Group 

Number of 
Different Drug 
Names in Same 
Category 

Drug Categories in ADE 
Group 

Number if Different 
Drug Names in Same 
Category 

ACETAMINOFEN_MIX 40 ACETAMINOFEN_MIX 67 

ACETAMINOPHEN 46 ACETAMINOPHEN 80 

AMOXICILLIN 2 AMOXICILLIN 4 

AMPICILLIN 76 AMPICILLIN 74 

ANTIACID 30 ANTIACID 123 

ANTIDEPRESANT 20 ANTIDEPRESANT 10 

ANTIHISTAMINE 66 ANTIHISTAMINE 188 

    ASPIRIN 1 

ATROPINES 1 ATROPINES 5 

BETABLOCKER 4 BETABLOCKER 41 

    BRONCODILATADOR 9 

    CALCIUMBLOCKER 2 

    CALCIUMGLUCONATE 1 

CELESTONE 6 CELESTONE 18 

CEPHALOSPORIN 151 CEPHALOSPORIN 244 

CLINDAMYCIN 3 CLINDAMYCIN 33 

    CLONIDINE 1 

CODEINE_MIX 41 CODEINE_MIX 68 

    DESFLURANE 1 

DEXAMETHASONE 7 DEXAMETHASONE 8 

    DICLOXACILLIN 9 

DINOPROSTONE 8 DINOPROSTONE 16 

    DOXYCYCLINE 2 

    ENOXAPARIN 24 

EPHEDRINE 26 EPHEDRINE 52 

EPIDURAL PCA 36 EPIDURAL PCA 31 

EPINEPHRINE 12 EPINEPHRINE 13 

ERYTHROMYCIN 7 ERYTHROMYCIN 13 

ESTROGENS 1 ESTROGENS 1 

FENTANYL 255 FENTANYL 281 

FLEET ENEMA 1 FLEET ENEMA 3 

FLUCONAZOLE 2 FLUCONAZOLE 6 

    FOLICACID 2 

    FOLTX 3 
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Table 4.1 Continued 

Drug Categories in No ADE 
Grosup 

Number of 
Different Drug 
Names in Same 
Category 

Drug Categories in ADE 
Group 

Number if Different 
Drug Names in Same 
Category 

FUROSEMIDE 5 FUROSEMIDE 22 

GENTAMICIN 8 GENTAMICIN 27 

GLUCOPHAGE 5     

GUAIFENESIN 9 GUAIFENESIN 12 

HEPARIN 8 HEPARIN 21 

HEPATITISB_VACC 1 HEPATITISB_VACC 3 

    HESPAN 1 

HYDRALAZINE 1 HYDRALAZINE 24 

HYDROCODONE 217 HYDROCODONE 265 

HYDROXYCHLOROQUINE 1     

    HYPEROSMOTICIV 13 

IBUPROFEN 702 IBUPROFEN 734 

    IMIPENEM 20 

INDOMETHACIN 2 INDOMETHACIN 5 

INSULIN 7 INSULIN 22 

IRON 37 IRON 67 

IVFLUID 990 IVFLUID 1380 

    KETAMINE 3 

LANOLIN 68 LANOLIN 76 

LAXATIVE 392 LAXATIVE 521 

LEVOTHYROXINE 1 LEVOTHYROXINE 8 

LOCAL ANESTHETIC 412 LOCAL ANESTHETIC 346 

LOCAL ANTIFUNGAL 2 LOCAL ANTIFUNGAL 7 

LOCALBACTERIOSTATIC 8 LOCALBACTERIOSTATIC 13 

LOCALESTEROID 13 LOCALESTEROID 15 

    LOPERAMIDE 1 

MACROLIDE 1 MACROLIDE 16 

MAGNESIUM SULFATE 26 MAGNESIUM SULFATE 84 

MEPERIDINE 39 MEPERIDINE 32 

    METHYLDOPA 17 

METHYLERGONOVINE 26 METHYLERGONOVINE 21 

    METHYLPREDNISOLONE 6 

METOCLOPRAMIDE 37 METOCLOPRAMIDE 92 

    METRONIDAZOLE 6 

MIDAZOLAM 10 MIDAZOLAM 29 

MISOPROSTOL 11 MISOPROSTOL 18 

MORPHINE 109 MORPHINE 243 
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Table 4.1 Continued 

Drug Categories in No 
ADE Group 

Number of 
Different Drug 
Names in Same 
Category 

Drug Categories in 
ADE Group 

Number if Different 
Drug Names in Same 
Category 

    MUSCLERELAXAT 15 

NALBUPHINE 37 NALBUPHINE 72 

NALOXONE 21 NALOXONE 40 

NASALDECONGEST 3 NASALDECONGEST 13 

    NEOSTIGMINE 1 

NICODERM 2 NICODERM 1 

NIFEDIPINE 1 NIFEDIPINE 16 

    NITROFURANTOIN 3 

    NITROGLYCERIN 3 

NSAID 103 NSAID 102 

OPIODS_SYNTHETIC 12 OPIODS_SYNTHETIC 16 

OXYCODONE 768 OXYCODONE 1152 

OXYTOCIN 428 OXYTOCIN 473 

PAIN SERVICE CODE 43 PAIN SERVICE CODE 46 

PENICILLIN 65 PENICILLIN 81 

PHENOBARBITAL 6 PHENOBARBITAL 13 

PHYTONADIONE 2 PHYTONADIONE 5 

    POTASSIUM IV 6 

POTASSIUM TB 1 POTASSIUM TB 4 

PRAMOXINE 1 PRAMOXINE 1 

PREDNISONE 3 PREDNISONE 3 

PRENATAL VIT 14 PRENATAL VIT 34 

PROGESTERON 4 PROGESTERON 7 

PROMETHAZINE 53 PROMETHAZINE 158 

PROPOFOL 3 PROPOFOL 9 

    PROTAMINE 1 

QUINOLONE 5 QUINOLONE 6 

RANITIDINE 15 RANITIDINE 31 

RHO(D) 6 RHO(D) 3 

ROCEPHIN 1 ROCEPHIN 4 

ROFECOXIB 7 ROFECOXIB 31 

SCOPOLAMINE 7 SCOPOLAMINE 11 

SEDATIVE 37 SEDATIVE 125 

    SEVOFLURANE 1 

SIMETHICONE 10 SIMETHICONE 47 

SUCCINYLCHOLINE 2 SUCCINYLCHOLINE 2 

SUFENTANIL 27 SUFENTANIL 26 

SYNTHE_PENICILIN 2 SYNTHE_PENICILIN 22 

    TACROLIMUS 1 

TERBUTALINE 11 TERBUTALINE 16 
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Table 4.1 Continued 

 

Drug Categories in No ADE 
Group 

Number of 
Different Drug 
Names in 
Same 
Category 

Drug Categories in ADE 
Group 

Number of Different 
Drug Names in Same 
Category 

THIOPENTAL 2 THIOPENTAL 1 

    TRIME/SULFA 1 

TROMETHAMINE 77 TROMETHAMINE 217 

TUCKS 30 TUCKS 28 

UNASYN 5 UNASYN 57 

URINARYBACTERIOSTATIC 49 URINARYBACTERIOSTATIC 67 

VACCINE 33 VACCINE 34 

VALACYCLOVIR 3 VALACYCLOVIR 3 

    VANCOMYCIN 11 

WARFARIN 5 WARFARIN 17 

ZOFRAN 58 ZOFRAN 147 



  91 

 

 
Table 4.2 Examples of significant associations found in the ADE group when the 
experiments were conducted with “Ephedrine” as the consequence or antidote drug. Lift 
values > 1 indicate strong association. Z scores > 0 indicate reported confidence is 
significantly better than the expected confidence. 

Associations Expected 
Confidence 1 LIFT2 Z SCORE3

OXYTOCIN & ZOFRAN ==> EPHEDRINE 8.959537572 2.092741935 1.479392784 
OXYCODONE & CEPHALOSPORIN ==> 
EPHEDRINE 8.959537572 1.842154713 1.148864762 

ZOFRAN ==> EPHEDRINE 8.959537572 1.843148861 1.141484828 
OXYTOCIN & CEPHALOSPORIN ==> EPHEDRINE 8.959537572 1.800208117 1.067494636 
OXYTOCIN & MORPHINE ==> EPHEDRINE 8.959537572 1.621725944 0.848156542 
OXYTOCIN & OXYCODONE ==> EPHEDRINE 8.959537572 1.576453435 0.743170182 
CEPHALOSPORIN ==> EPHEDRINE 9.826589595 1.453781513 0.694832676 
MORPHINE ==> EPHEDRINE 8.959537572 1.482358871 0.658032427 
OXYCODONE ==> EPHEDRINE 8.959537572 1.38187404 0.489170438 
IBUPROFEN & OXYCODONE ==> EPHEDRINE 8.959537572 1.328725038 0.438526188 
OXYTOCIN & IBUPROFEN ==> EPHEDRINE 8.959537572 1.302150538 0.382265023 
OXYTOCIN ==> EPHEDRINE 8.959537572 1.295166795 0.360788577 
IBUPROFEN ==> EPHEDRINE 8.959537572 1.231316726 0.287507056 
OXYTOCIN & LOCAL ANESTHETIC ==> 
EPHEDRINE 8.959537572 1.193345506 0.26376132 

LOCAL ANESTHETIC ==> EPHEDRINE 8.959537572 1.1687215 0.225078067 
1. The number of the consequent transactions divided by the total number of transactions. 
2. The ratio of the confidence to the expected confidence or the strength of the association. 
3. Indicates if the confidence is significantly greater than the expected confidence if 

the value is � 0 
                                                 

. 
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Table 4.3 Examples of significant associations found in the ADE group when the 
experiments were conducted with "Antihistamines" as the consequence or antidote drug. 
Lift values > 1 indicate strong association. Z scores > 0 reported confidence is 
significantly better than the expected confidence. 

Rule
Expected 
Confidence 1 LIFT2 Z_SCORE3

OXYCODONE & NALBUPHINE 10.69364162 6.234234234 9.092239132 
OXYTOCIN & NALOXONE 10.69364162 6.126747437 8.9709401 
CEPHALOSPORIN & HYDROCODONE 17.91907514 3.255376344 8.391711956 
IBUPROFEN & NALOXONE 10.69364162 5.731473409 8.279277467 
NALOXONE 10.69364162 5.731473409 8.279277467 
OXYCODONE & SEDATIVE 10.69364162 5.714714715 8.074596546 
MORPHINE & NALOXONE 10.69364162 5.481826654 7.962036239 
CEPHALOSPORIN & NALBUPHINE 13.00578035 4.296732026 7.723894444 
OXYCODONE & HYDROCODONE 10.69364162 5.30752374 7.429095241 
OXYTOCIN & ANTIACID 10.69364162 5.167852063 7.188206449 
OXYCODONE & ANTIACID 10.69364162 4.967905405 7.049046977 
IBUPROFEN & ANTIACID 10.69364162 4.675675676 6.480116913 
ANTIACID 23.12138728 2.1625 6.272427558 
OXYTOCIN & NALBUPHINE 10.69364162 4.555786556 6.222024508 
MORPHINE & HYDROCODONE 10.69364162 4.415915916 6.068428882 
NALBUPHINE 10.69364162 4.463144963 5.972812994 
OXYCODONE & TROMETHAMINE 10.69364162 4.675675676 5.847828622 
FENTANYL & CEPHALOSPORIN 10.69364162 4.605889472 5.768397041 
SEDATIVE 10.69364162 4.411014788 5.725312086 
CEPHALOSPORIN & TROMETHAMINE 11.84971098 3.971305595 5.569323353 
MORPHINE & ZOFRAN 10.69364162 4.472385429 5.554828564 
OXYCODONE & MORPHINE 10.69364162 4.724893314 5.541918916 
CEPHALOSPORIN & ZOFRAN 10.69364162 4.483524621 5.512344676 
OXYTOCIN & SEDATIVE 10.69364162 4.17826337 5.481483725 
LOCAL ANESTHETIC & CEPHALOSPORIN 10.69364162 4.198565913 5.47798347 
ZOFRAN & TROMETHAMINE 10.69364162 4.198565913 5.47798347 
OXYCODONE & CEPHALOSPORIN 10.69364162 4.721070585 5.447072596 
CEPHALOSPORIN & MORPHINE 14.73988439 3.209782838 5.388600831 
IBUPROFEN & SEDATIVE 10.69364162 4.091216216 5.331355337 

1. The number of the consequent transactions divided by the total number of transactions. 
2. The ratio of the confidence to the expected confidence or the strength of the association. 
3. Indicates if the confidence is significantly greater than the expected confidence if the value is 

� 0 
. 
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Table 4.3 continued 

Rule
Expected 
Confidence 1 LIFT2 Z_SCORE3

OXYCODONE & ZOFRAN 10.69364162 4.250614251 5.143786282 
OXYTOCIN & TROMETHAMINE 10.69364162 4.143003763 4.973502974 
IBUPROFEN & CEPHALOSPORIN 10.69364162 4.375402926 4.960634189 
OXYTOCIN & CEPHALOSPORIN 10.69364162 4.298605057 4.738942027 
FENTANYL & TROMETHAMINE 10.69364162 3.701576577 4.727301655 
LOCAL ANESTHETIC & MORPHINE 10.69364162 3.701576577 4.727301655 
IBUPROFEN & TROMETHAMINE 10.69364162 3.886275886 4.643146592 
FENTANYL & MORPHINE 10.69364162 3.814366999 4.55339074 
IBUPROFEN & MORPHINE 10.69364162 4.020207123 4.532115588 
TROMETHAMINE 10.69364162 3.887640449 4.521806156 
OXYTOCIN & MORPHINE 10.69364162 4.076230076 4.520957179 
MORPHINE 10.69364162 4.091216216 4.457104674 
CEPHALOSPORIN & 
METOCLOPRAMIDE 16.1849711 2.347857143 4.373899694 
OXYTOCIN & ACETAMINOPHEN 10.69364162 3.455934195 4.363006106 
OXYTOCIN & ZOFRAN 10.69364162 3.798986486 4.338990922 
OXYCODONE & 
URINARYBACTERIOSTATIC 10.69364162 3.435190292 4.293174695 
OXYTOCIN & 
URINARYBACTERIOSTATIC 10.69364162 3.416839917 4.229060704 
OXYCODONE & METOCLOPRAMIDE 10.69364162 3.445234708 4.217244671 
FENTANYL & ZOFRAN 10.69364162 3.428828829 4.159702985 
CEPHALOSPORIN 22.5433526 1.964468864 4.100300793 
OXYCODONE & FENTANYL 10.69364162 3.589407589 4.034208595 
IBUPROFEN & ZOFRAN 10.69364162 3.493911494 3.967696909 
OXYTOCIN & METOCLOPRAMIDE 10.69364162 3.308939709 3.927350211 
ZOFRAN 10.69364162 3.517480784 3.864851992 
URINARYBACTERIOSTATIC 10.69364162 3.224603914 3.864296066 
FENTANYL & HYDROCODONE 10.69364162 3.117117117 3.761092186 
OXYTOCIN & OXYCODONE 10.69364162 3.698274546 3.71795073 
METOCLOPRAMIDE 10.69364162 3.117117117 3.601072962 
IBUPROFEN & METOCLOPRAMIDE 10.69364162 3.005791506 3.536156236 
OXYTOCIN & HYDROCODONE 10.69364162 3.029311001 3.4517207 
OXYTOCIN & PROMETHAZINE 10.69364162 2.961261261 3.431875182 
IBUPROFEN & OXYCODONE 10.69364162 3.395431145 3.394002421 

1. The number of the consequent transactions divided by the total number of transactions. 
2. The ratio of the confidence to the expected confidence or the strength of the association. 
3. Indicates if the confidence is significantly greater than the expected confidence if the value is 

� 0. 
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Table 4.3 continued 

Rule
Expected 
Confidence 1 LIFT2 Z_SCORE3

IBUPROFEN & PROMETHAZINE 10.69364162 2.838803089 3.266662894 
HYDROCODONE 10.69364162 2.970429253 3.265422956 
PROMETHAZINE 10.69364162 2.833742834 3.185342421 
IBUPROFEN & HYDROCODONE 10.69364162 2.830014225 3.112730369 
OXYCODONE & LOCAL ANESTHETIC 10.69364162 2.796665825 2.890292934 
ACETAMINOPHEN 25.14450867 1.431724138 2.718090196 
OXYTOCIN & FENTANYL 10.69364162 2.757449757 2.637224904 
FENTANYL 10.69364162 2.694457169 2.490245565 
OXYTOCIN & IBUPROFEN 10.69364162 2.805405405 2.473717672 
IBUPROFEN & FENTANYL 10.69364162 2.583926031 2.420184541 
OXYTOCIN 10.69364162 2.776681118 2.347538297 
IBUPROFEN 10.69364162 2.662306435 2.231214176 
LOCAL ANESTHETIC 10.69364162 2.203197962 1.813471929 
LOCAL ANESTHETIC & FENTANYL 10.69364162 2.078078078 1.797913837 
OXYTOCIN & LOCAL ANESTHETIC 10.69364162 2.117287098 1.758678404 
IBUPROFEN & LOCAL ANESTHETIC 10.69364162 2.058473568 1.674933228 

1. The number of the consequent transactions divided by the total number of transactions. 
2. The ratio of the confidence to the expected confidence or the strength of the association. 
3. Indicates if the confidence is significantly greater than the expected confidence if the value is 

� 0 
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CONCLUSIONS 
 
 

Different KDD techniques were used to extract important medical information 

from healthcare data. Data transformation, normalization, dimensionality reduction, and 

descriptive and predictive tasks were all important steps in this study.  

The studies conducted in this dissertation allowed the validation of KDD 

techniques in the healthcare setting with complex obstetrical data. Through the 

application of data transformation and data preprocessing, it was demonstrated that 

obstetrical data can be successfully analyzed and useful electronic models can be 

generated. The overall results of this study indicate that there are still new areas of 

informatics that remain to be explored using healthcare data. As techniques continue to 

improve and more coded clinical data becomes available, it will be possible to 

incorporate automatic processes in the electronic health record that will aid in the early 

detection of AE.  

The techniques utilized in the studies will likely improve in performance if direct 

clinical data instead of coded billing data is used. Hence, it is important to move forward 

with research on better ways to store real time coded clinical healthcare data. 

There is continuous, ongoing research in disciplines outside of healthcare that 

develop methodologies to help discover hidden relationships in large, complex datasets. 

It has been demonstrated that these techniques can also be proven useful in healthcare; 

continued research is recommended.



   

 

 
 
 
 
 
 

CONTRIBUTION TO BIOMEDICAL INFORMATICS 
 
 

The work presented in this dissertation demonstrated the ability to use specific 

KDD methods for the analysis of complex datasets in healthcare data for the extraction of 

useful information. The work presented here validates the use of KDD processes in 

healthcare data by demonstrating clinically significant conclusions in an area of medicine 

to which these processes had not been previously applied. These findings are encouraging 

and lead us in new research directions. 

One of the most common complaints with decision support systems is false-

positive alerts. The sequence analysis study efficiently shows the application of 

techniques that involve a time variable. If applied in a real time clinical setting, it could 

result in a decrease in false-positives alerts, reduce the noise in decision-support systems 

and possibly increase user acceptance.  

Patient data were transformed, manipulated, and normalized with the application 

of KDD techniques. As noted in the introduction, the KDD process comprises different 

phases. We exploited an array of methodologies and demonstrated how they can all be 

applied to healthcare data. Through data manipulation and handling, we were able to 

extract information that was not otherwise evident from initial analysis of the dataset. The 

dataset in which the work was performed was complex and the incidence of the sentinel 

events chosen sparse; various techniques allowed the extraction of meaningful 
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conclusions. The present work stimulates future research to explore other KDD methods 

to glean medical information from complex and sparse data. 

We have demonstrated that new techniques have feasible applications in 

healthcare data, even if their primary purpose is the application in arenas not related to 

medicine. Our results encourage innovation and experimentation. New technologies 

continue to appear daily and are made rapidly available to the end user. Data capturing 

systems evolve to facilitate user interaction; KDD knowledge also evolves and new 

algorithms are designed. New research is encouraged as the quality and availability of the 

data improves; our research demonstrates that complex experimentation is in order.  

Our work also demonstrates the importance of domain knowledge and fortifies 

the position of the field of Biomedical Informatics as an independent discipline. The 

Biomedical Informatics researcher and practitioner understand the possibility embedded 

in the use of computational techniques and appreciates the complexity of the clinical 

domain. 
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