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Predictive Models for Bariatric Surgery Risks
with Imbalanced Medical Datasets

Talayeh Razzaghi ∗ Ilya Safro † Joseph Ewing ‡

Ehsan Sadrfaridpour § John D Scott ¶

August 3, 2017

Abstract

Bariatric surgery (BAR) has become a popular treatment for type
2 diabetes mellitus (T2DM) which is among the most critical obesity-
related comorbidities. Patients who have bariatric surgery, are ex-
posed to complications after surgery. Furthermore, the mid- to long-
term complications after bariatric surgery can be deadly and increase
the complexity of managing safety of these operations and healthcare
costs. Current studies on BAR complications have mainly used risk
scoring for identifying patients who are more likely to have complica-
tions after surgery. Though, these studies do not take into considera-
tion the imbalanced nature of the data where the size of the class of
interest (patients who have complications after surgery) is relatively
small. We propose the use of imbalanced classification techniques
to tackle the imbalanced bariatric surgery data: synthetic minority
oversampling technique (SMOTE), random undersampling, and en-
semble learning classification methods including Random Forest, Bag-
ging, and AdaBoost. Moreover, we improve classification performance
through using Chi-Squared, Information Gain, and Correlation-based

∗Department of Industrial Engineering, New Mexico State University
†School of Computing, Clemson University
‡Quality Management Department, Greenville Health System
§School of Computing, Clemson University
¶Department of Surgery, Greenville Hospital System

1



feature selection (CFS) techniques. We study the Premier Health-
care Database with focus on the most-frequent complications includ-
ing Diabetes, Angina, Heart Failure, and Stroke. Our results show
that the ensemble learning-based classification techniques using any
feature selection method mentioned above are the best approach for
handling the imbalanced nature of the bariatric surgical outcome data.
In our evaluation, we find a slight preference toward using SMOTE
method compared to the random undersampling method. These re-
sults demonstrate the potential of machine-learning tools as clinical
decision support in identifying risks/outcomes associated with bariatric
surgery and their effectiveness in reducing the surgery complications
as well as improving patient care.
Keywords: Imbalanced data, risk prediction, clinical decision sup-
port, bariatric surgery.

1 Introduction

Being known as the blood sugar level for a prolonged period, Diabetes Mel-
litus (or just Diabetes in a shorter term) is now growing at an Epidemic rate
in the United States according to American Diabetes Association [1]. Studies
show that Diabetes Mellitus is among the leading causes of disability, mor-
bidity, and mortality in the United States [5, 4, 32, 50]. In a broader scale,
the World Health Organization estimated that about 422 million adults were
living with Diabetes in 2014 [3]. Although the occurrence rate of Diabetes-
related complications has significantly been reduced due to recent endeavors
in glycemic control and cardiovascular risk factor management, the rise of
Diabetes prevalence has solely lead to growing numbers of macrovascular and
microvascular disease incidents over the last few years. Diabetes appears in
three forms as stated in [2]: Diabetes Type 1, which results from insulin defi-
ciency and accounts for 5-10% of diabetic patients, Diabetes Type 2, which is
previously referred as non-insulin dependent diabetic patients and accounts
for 90-95% of diabetic diagnoses, and Gestational diabetes, which occurs due
to Genetic defects.

Patients with Diabetes Mellitus Type 2 (T2DM) often suffer from Obesity-
related illnesses. As a closely-related metabolic syndrome, Obesity is also
associated with several health risks. According to a recent report published
by Center for Disease Control and Prevention, more than one-third of adults
in the United States suffer from Obesity [39]. According to a study by Caw-
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ley and Meyerhoefer [14], the national medical care costs of Obesity-related
illnesses in adult pass more than $200 billion a year. Obesity, which is de-
fined as having a Body Mass Index (BMI) of 30 Kg/m2), has been shown to
be a serious health risk factor for both T2DM and Cardiovascular diseases.
For example, the results from a clinical study conducted by Daousi et al.
[16] show that Obese patients with T2DM suffer from worse cardiovascular
risk factors compared to other diabetic patients without obesity. However,
a limited number of works have studied the impact of Obesity on arising
cardiovascular consequences on diabetic patients [30, 31].

Bariatric surgery (BAR) has been shown to be a successful therapy for
T2DM patients with Obesity, which can lead to significant and persistent
weight loss [23, 10, 11]. According to some studies, BAR has proved to
result in complete remission of T2DM in about 75-80% of patients [12, 13].
BAR is performed through one of these four distinct procedures: Rouxen-Y
gastric bypass (RYGB), Gastric banding (LAGB), biliopancreatic diversion
(BPD), and sleeve gastrectomy (SG).

However, limited studies [42, 18] have addressed the mid- to long-term
outcomes/risks of diabetes and obese patients after bariatric surgery. Risk
scoring using Logistic regression analysis is the most commonly used tech-
nique in bariatric surgery risk studies. DeMaria et al. [18] developed a risk
scoring system by logistic regression to identify the most important predictors
of increased rate of mortality after surgery.

Since the majority group (patients who have complications after surgery)
dominates the behavior of Logistic regression analysis, it might not be an ap-
propriate method for imbalanced classification problems [35]. Failing to cor-
rectly identify patients who are at risk of complications after surgery can lead
to significant costs and even loss of life. Hence, it is necessary to develop clas-
sification models that yield accurate detection of complication/risk events.
Because such models will benefit clinicians to improve patient outcomes after
surgery and provide cost-effective care for high-risk patients. Our work lies in
the medical pattern recognition framework, which is known to be highly im-
balanced, i.e., the instances of interest in the dataset are relatively rare. We
discuss the hardness of classification problems with healthcare imbalanced
data with missing values in [44]. Examples are Intense Care Unit (ICU)
infection detection events [46], medical diagnoses [34], adverse drug events
[51, 48], bleeding detection in endoscopic video [17], and so on. Bariatric
surgery results lie in this group as well because BAR risks/complications are
very skewed and the high-risk groups often form the minority class. However,
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to the best of authors knowledge, there is no comprehensive study that han-
dles the imbalanced nature of the bariatric surgical risk prediction problems.

In this work, we study the merit of using imbalanced classification tech-
niques to predict the outcomes appearing in T2DM patients with Obesity,
who have undergone BAR. In particular, we consider Stroke, Diabetes, Angina,
Blindness, Myocardial Infarction, Heart Failure, and Death as the most-
potential outcomes of BAR [30] and construct predictive models by solving
classification problems for each of them. This paper is organized as follows.
In Section 2, we describe the approaches and methods, measures, and data
used in the study. In Section 3, we provide empirical results and discussion.
Finally, in Section 4 we give our conclusions, and ideas for future research.

2 Materials and Methods

The Premier Healthcare Database is one of the largest U.S. healthcare datasets,
which gathers the data from 700+ hospitals across U.S. and contains clin-
ical and health-economic data. This database includes both inpatient and
outpatient visits and records the costs, diagnoses, and procedures associated
with each visit as well as the demographic information about the patients.
Figure 1 shows the overview of our method. In the following subsections, we
discuss the details of our method.

2.1 Data Preparation

In this section, we discuss the overview of our data preparation step. (We
present the detailed results in Section 4.) For this research work, we limit our
study to the T2DM patients with Obesity, who have undergone BAR. We
exclude patients who they had no ICD-9-CM diagnosis code associated with
moderate or severe obesity or contained missing data. Using the Premier
Healthcare Database, three categories of data are extracted for each of these
patients. First, we select a number of patient-specific attributes including
age, race, gender, ethnicity, the insurance provider, and the marital status
for each such patient. Second, we consider an array of candid health-related
attributes that reflect the patient’s clinical history. As stated in Section 2.2.,
these candid features will be analyzed via feature selection methods that
pick the most influential set of features for the related classification problem.
Third, we extract the information about seven specific outcomes as the most
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Figure 1: The overview of our approach
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potential outcomes of BAR (as stated by Johnson et al. [30]). For this
purpose, only outcomes that occur after BAR date are identified. It is worth
mentioning that we do not include missing or incompatible data in our study.

Remark 1 - We need to consider remedies for the variation in each
patient’s age and marital status considering the fact that the data is related
to a period of four years. These remedies are stated in Section 3 of this
paper.

2.2 Feature Selection

Given each outcome, not all features are of significant influence on the out-
come. In fact, considering irrelevant features may produce less-accurate clas-
sification results and can lead to biased predictive models. In addition, such
features may result in overfitting, which might have negative impacts on
the accuracy of a model. Hence, feature selection is recommended prior
implementing any data-mining algorithm. Depending on how the feature
selection search is combined with the classification model, feature selection
techniques can be categorized into three strategies: filter techniques, wrapper
techniques, and embedded techniques [47].

In filter techniques, each feature’s relevance score is computed based on
the inherent properties of the data. The most relevant features are then se-
lected for the next step, and the features at the bottom of the scoring list
are eliminated. The most common filter selection algorithms are Informa-
tion Gain (IG) [28], Chi-square [56], and Correlation-based Feature Selection
(CFS) [56, 26].

Wrapper methods act based on the appropriateness of subsets of the
features (unlike the filter methods that compute the advantage (i.e., the rel-
evance score) for each feature). These techniques first determine the space of
feature subsets followed by construction of various combinations of features
(stored as subsets). Upon performing the training step of a specific classi-
fication algorithm (e.g., Näıve Bayes, bagging, etc.), one can compute the
most relevant subset of features. Hence, it is said that we “wrap” a search
method around a specific classification model to examine the entire space
of the feature subsets. Note that as the number of features increases, the
space of feature subsets exponentially grows, which can significantly affect
the performance of the wrapping-based methods. Hence, heuristics become
more appropriate choices to tackle real-world problems. The wrapper meth-
ods commonly use randomized search heuristics [7, 29, 36, 40] and sequential
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search techniques [27, 53].
In embedded techniques, the classifier construction step also involves a

search method for an optimal subset of features within the combined space
of the feature subsets and hypotheses. Similar to wrapper methods, these
methods are also specific to a given learning algorithm, although they are
less computationally expensive [47].

For this work, we choose filter methods for the feature selection step. This
is justified by the fact that filter techniques are known to be computationally
fast and, hence, appropriate for real-world datasets. Moreover, they are inde-
pendent of the choice of the classification techniques, which can significantly
reduce the computations required for the feature selection step. Yang and
Pederson [54] stated that IG and Chi-square performed successfully in the
multi-class classification framework.

2.2.1 Information Gain

The Information Gain (IG) algorithm measures the reduction in entropy
when the feature is present. The concept of entropy is used as a measure
of the uncertainty of a random variable. The entropy of a variable X is
calculated as

H(X) = −
∑
i

P (xi) log2(P (xi)) (1)

where the prior probability for the value of X is denoted by P (xi). After
observing values of another variable Y, the entropy of X is given by,

H(X|Y ) = −
∑
j

P (yj)
∑
i

P (xi|yj) log2(P (xi|yj)) (2)

where the P (xi|yi) is the posterior probability of X = xi given the data
Y = yi. Further information about X provided by Y is measured by the
decrease of entropy of X and thus is defined as information gain (IG) [43]:

IG(X|Y ) = H(X)−H(X|Y ) (3)

Thus, if IG(X|Y ) > IG(Z|Y ), it denotes that the feature Y is more corre-
lated to the feature X compared to feature Z.
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2.2.2 Chi-square

Chi-square (χ2), another popular feature selection method, is used to select
relevant features by considering the classes. In this approach, the continuous-
valued features are discretized into several intervals. Assume that N is the
total number of examples and Nij is the number of examples belongs to the
class Ci and the jth interval. Mlj is the number of examples in the jth
interval, and l is the number of intervals. The expected frequency of Nij is
given by,

Eij =
Mlj|Ci|
N

(4)

The χ2 statistic of a feature is defined as,

χ2 =
m∑
i=1

l∑
j=1

(Nij − Eij)
2

Eij

(5)

The larger value of χ2 reflects that feature is more informative.

2.2.3 Correlation-based Feature Selection (CFS)

CFS selects the best feature subset with respect to the predictive perfor-
mance of individual feature as well as the amount of redundancy among
them. The correlation between a subset of features and classes and the
inter-correlation between the features are calculated by correlation coeffi-
cients. As the correlation between features and classes increases and the
inter-correlation decreases, the relevance of a subset of features increases
[25]. CFS typically applies search methods such as forward selection, best-
first search, bi-directional search, backward elimination, and genetic search.
The merit of a feature subset (S) with k features is given by

MeritSk
=

krcf√
k + k(k − 1)rff

(6)

where k is the number of features. rcf is the average of the correlations
between the subset features and the class label, and rff is the average inter-
correlation between subset features [25].
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2.3 Classification Approaches and Methods

The construction of a classification model for imbalanced bariatric surgical
data is performed upon finishing the data preparation and feature selections
steps. The presence of imbalanced classes often results in serious bias in
the performance metrics. In fact, most of the state-of-the-art data-mining
techniques tend to obtain a decision boundary that is biased toward the
majority class. As a result, if imbalanced-ness is neglected, the technique
tends to misclassify instances from the minority class (e.g., the rare outcomes
of BAR), while it is highly crucial to identify the minority class instances.

2.3.1 Approaches

To cope with the imbalanced-ness issue, several remedies have been suggested
including undersampling [6], oversampling [15], the cost sensitive algorithms
[55] and ensemble learning methods [41]. Both undersampling and over-
sampling methods try to balance the two classes through either decreasing
the size of the majority class or increasing the size of the minority class.
Cost-sensitive learning methods employ larger penalty for misclassification
of minority class (compared to the one of majority class). This prohibits
generation of boundaries biased to the majority class. Although being very
precise, the main difficulty in using these methods arise in the computation
of appropriate penalty values. The main idea of ensemble-based classifiers is
to aggregate the predictions obtained by applying several base classifiers into
an imbalanced data set with the hope of getting improved results compared
to each classifier’s result [45]. Adaptive Boosting (AdaBoost)[49], Bagging
[8], and Random Forest [37] are among the mostly-used algorithms in the
ensemble learning framework.

Random undersampling (RUS) removes the instances from the ma-
jority class randomly until the desired majority to minority class ratio is
reached.

Synthetic minority over-sampling technique (SMOTE) generates a
synthetic instance by interpolating k instances (for a given integer value k)
of the minority class that lies close enough to each other [38]. Oversampling
methods aim to achieve the desired ratio by creating “synthetic” instances
of the minority class.
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Adaptive Boosting (AdaBoost) [19] is the most well-known algorithm
in the boosting family [49]. AdaBoost trains each classifier sequentially using
the entire dataset. After each iteration, it concentrates more on problematic
observations that were misclassified in the previous iteration. It aims to
classify these observations correctly in current iteration through a weighting
strategy. All observations get equal weights in the first round of training,
then at each iteration, AdaBoost increases the weights of incorrectly clas-
sified examples while decreases the weights of correctly classified examples.
Moreover, this algorithm assigns another weight to each classifier based on
its overall accuracy. Better classifiers receive higher weights. Then the class
label of a new example is determined by selecting majority of weighted votes
that are given by each classifier.

Bagging or the bootstrap aggregating to construct ensembles was first in-
troduced by Breiman [8]. It uses bootstrapped replicas of the initial training
set to train different classifiers. Finally, when an unknown example is given
to each classifier, the class label is identified by a majority or weighted vote.
Algorithm 1 demonstrates the pseudocode for Bagging.

Algorithm 1 Bagging

1: Input: S: Training set, N : Bootstrap size, T : Number of iterations, I:
weak classifier

2: for k = 1 : T do
3: Sk ← RandomSampleReplacement(N,S)
4: hk ← I(Sk)
5: end for
6: Output: An ensemble by the Majority voting scheme, H(x) =
sign(

∑T
k=1 hk(x)) where hk ∈ {−1, 1} are base classifiers.

Random Forest (RF) [9] is an ensemble learning method that builds a set
of decision tree classifiers to find the label of a new example by voting for the
most popular class. For each decision tree classifier, Bagging is used on the
original training data to create many copies of it. Each decision tree classifier
differs from the rest in a way that the split on each node is based on the best
feature chosen from a randomly selected set of all candidate features. Finally,
the class label of a new instance is assigned through majority voting among
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all votes (i.e., predicted label) given by each tree (small base classifier) of an
RF. Algorithm 2 shows the pseudocode for RF.

Algorithm 2 Random Forest

1: Input: S: Training set, F : Feature Set, T : Number of trees in forest
2: function RandomForest(S, F )
3: for i = 1 : T do
4: Si ← bootstrapSample(S) (select a bootstrap sample from S)
5: At each node:
6: f ← randomly select a subset of the features from F
7: Split on best feature in f
8: return hi
9: end for

10: end function
11: Output: An ensemble by the Majority voting scheme, H(x) =

sign(
∑T

i=1 hi(x)) where hi ∈ {−1, 1} are tree classifiers.

2.3.2 Methods

In this paper, we employ six of the most popular classification methods cou-
pled with (under/over) sampling methods as remedies to treat the imbal-
anced nature of the data. These methods are 1) Näıve Bayes, 2) Radial
Basis Function Neural Network (RBFNN), 3) 5-Nearest Neighbors (5NN),
4) Decision Trees (C4.5 Algorithm also known as J48 Algorithm), 5) Sup-
port Vector Machines (SVMs), and 6) Logistic Regression (LR). The reader
is referred to the book authored by Friedman et al. [20] to obtain more
information about the aforementioned techniques. In addition, we employ
a hybrid approach. Our motivation originates form studies that advocate
combining the (under/over) sampling procedures with the ensemble learning
algorithms [21, 22]. In particular, we study six such approaches, which are
obtained by combining each of (under/over) sampling methods with ensemble
learning techniques including Random Forest (RF), Bagging, and AdaBoost
classifiers. Our initial experimental studies (refer to A5) demonstrated the
superiority of using Radial Basis Function (RBF) kernel over linear kernel
when implementing SVM algorithm. So, in our implementations, we only
work with SVMs equipped with RBF kernels.

11



3 Results and Discussion

3.1 Classifier Evaluation Metrics

Several metrics have been proposed to validate the results of a classification
algorithm. Accuracy, Precision, Sensitivity, Specificity, G-mean, F-Measure,
and the area under the Receiver Operating Characteristic (ROC) are few of
common metrics, which are mainly computed from the Confusion Matrix as
depicted in Table 1 [24].

Table 1: Confusion matrix for binary classification problem

Positive class Negative class
Positive class True Positive (TP) False Positive (FP)
Negative class False Negative (FN) True Negative (TN)

Accuracy =
TP + TN

TP + FP + TN + FN
(7)

Sensitivity =
TP

TP + FN
, Specificity =

TN

TN + FP
(8)

G-mean =
√
Sensitivity ∗ Specificity (9)

F-measure =
2TP

2TP + FP + FN
, Precision =

TP

TP + FP
(10)

Note that since the bariatric surgical complication datasets are highly im-
balanced, some of the metrics above may produce misleading interpretations
(e.g., “Accuracy” performance metric as stated by Lòpez et al. [21]). Here,
we put more emphasis on the G-mean performance metrics due to the fact
that it reflects both “Specificity” and “Sensitivity” measures. Moreover, we
report the area under ROC curve, which plots “Sensitivity” versus “Speci-
ficity.” The ROC area measures the ability of the classifier to classify the
majority and minority classes correctly.
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3.2 Results

In this section, we present the detailed results of our study including the
data preparation, feature selection, and classification. We start by providing
details about the data preparation regarding the patients’ characteristics (in-
cluding both demographic and clinical attributes) and discuss the outcomes
next. Finally, we state the results of our implementations.

3.2.1 Patients Characteristics

The Premier Healthcare Database contains no patient-identifiable informa-
tion, and the patients cannot be tracked across institutions; their visits to
the same hospital can be tracked using the MEDRECKEY ; the PATKEY
would represent each individual visit to that institution and would be dif-
ferent for each visit. Through a careful study of the database records be-
tween 2011 and 2014, we have observed more than 4M patients’ visits along
with more than 50M records about the diagnoses/procedures occurred dur-
ing those visits. To store and query such a massive amount of data, we
employ MySQL a© Community Server (as depicted in Figure 1). By employ-
ing the ICD-9 codes for T2DM, Obesity, and BAR, we also extract only
those records that belong to T2DM patients with Obesity, who have under-
gone BAR. (Please refer to Table A1 in the Appendix for the ICD-9 codes.)
These include 11636 patients. In the rest of this section, we limit our focus
to such records.

For the demographic data, we collect each patient’s gender, ethnicity,
insurance provider, age, and marital status. That is, five candid attributes of
demographic data has been stored for each patient. Note that these attributes
are recorded at all visits that each patient makes. Therefore, as mentioned
in Remark 1, variations in the age and marital status can be substantial and
must be taken into account. We explain our remedies to cope with this issue
next. Within the records of the patients under of our study, we observed a
variation of less than 2 for the age, so we decided to work with the average
of the age feature. Regarding the marital status, three possible states had
originally been defined within the MartStat field in the Premier Healthcare
Database: 1) Married, 2) Single, and 3) Other. However, we observed that
a patient’s marital status might change between the date of BAR and the
outcome under study. Hence, we considered six more possible values for
the marital status, which reflect the possible change in the marital status.
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For each patient, we first let the MartStat field be the marital status at
the time of bariatric surgery. Depending on the outcome under study, if
the patient maintains the same marital status at the date of the outcome
occurred, we leave this field unchanged. Otherwise, depending on the change
in the marital status, we let MartStat take one of the following six values:
4) Married to Single, 5) Married to Other, 6) Single to Married, 7) Single to
Other, 8) Other to Single, and 9) Other to Married. To include the clinical
history of the patients into our analysis, we also collect information about
eight comorbid conditions/diseases (as stated in [31]) as candid features using
their associated ICD-9 codes. We include these candid clinical-based features
provided that the condition/diagnosis have occurred earlier than the BAR
date. Table 2 and 3 show the general information regarding the patients’
demographic data and clinical attributes, respectively.

Table 2: Patient demographic attributes

Feature Value Frequency Feature Value Frequency

Gender
Female 8259 (%70.9) Married (M) 3867 (%33.2)
Male 3377 (%29.1) Single (S) 5834 (%50.1)

Ethnicity
White 7780 (%66.8) Other (O) 1839 (%15.9)
Black 1553 (%13.4) Marital M to S 15 (%0.1)
Other 2303 (%19.8) Status M to O 21 (%0.2)

Insurance

Medicare 3305 (%28.4) S to M 27 (%0.2)
Medicaid 1130 (%9.7) S to O 13(%0.1)
Managed care 5208 (%44.8) O to M 8 (%0.1)
Commercial 1101 (%9.4) O to S 12 (%0.1)
Self-pay 221 (%1.9)

Age
Varies in 13 – 86

Other 671 (%5.8) years old.

It is worth mentioning that for this period of study, the patients un-
der study were between 13 and 86 years old and had no previous history
of myocardial infarction (MI), angina, congestive heart failure, stroke, and
blindness in at least one eye.

3.2.2 Outcomes

Based on the study by Johnson et al. [30], we refer to seven common out-
comes that can occur after any of the four standard BAR procedures (as
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Table 3: Patient clinical attributes

Feature Frequency Feature Frequency
COPD 2978 (%25.6) Coronary Artery Disease 1179 (%10.1)
Diabetic Manifestations 416 (%3.6) Transient Ischemic Attack 11 (%0.1)
Tobacco Abuse 590 (%5.1) Sleep Apnea 2337 (%20.1)
Hypertension 9074 (%77.9) Dyslipidemia 7457 (%64.9)

mentioned in Section 2). Table 4 state these outcomes along with their fre-
quencies within the patients under study. According to Table 4, the number
of patients in the class of risks/outcomes (positive class) is extremely fewer
than the number of patients of the class of no risks/outcomes (negative class).
Hence, this data is highly imbalanced and justifies our choice of using spe-
cial classification methods. Note that none of the “Blindness,” “Myocardial
Infarction,” and the “Death” outcomes yield a reasonable-size data set for
data-mining techniques. Hence, we limit our study to four outcomes: Dia-
betes, Angina, Heart Failure, and Stroke.

Table 4: Outcomes of BAR and their frequency among patients under study

Label Frequency

Diabetes 1543 (13.2%)
Heart Failure 396 (3.4%)
Stroke 43 (0.3%)
Angina 51 (4.4%)
Myocardial Infarction 4 (0.03%)
Death 0
Blindness 6 (0.05%)

3.2.3 Implementation

In this section, we describe experimental results using both random under-
sampling and oversampling (SMOTE) in combination with base classifiers
and widely-used ensemble learning algorithms (as stated in Section 2.3). We
implement our approaches using Waikato Environment for Knowledge Anal-
ysis known as WEKA [52]. WEKA is a free license workbench developed
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to perform predictive modeling and data analysis and includes several mod-
ules. In particular, we use WEKA Explorer module to implement various
classification algorithms. We also employ feature selection tool available in
WEKA.

For both undersampling and oversampling methods, the desired ratio of
the class sizes is considered to be 50:50. For the oversampling (SMOTE)
technique, we employ 5-nearest neighbors (5NN) algorithm to create new in-
stances of the minority class. Euclidean distances are used to compute the
necessary closeness values for the 5NN technique embedded within SMOTE
method. Finally, we employ 10-fold cross-validation to calculate the esti-
mates of the performance metrics.

Our work lies in the context of the one-against-all multi-class classifica-
tion problem. The classification task is conducted to find out whether a
patient suffers from an outcome or not (no matter if the patient develops
other issues or not). Table 5 reports the performance metrics for the three
feature selection methods when applied to the classification problems for the
Diabetes outcome. Note that for each classification algorithm and each per-
formance metric, we report the results of both undersampling (in column
“U”) and oversampling (in column “O”) methods. We have reported similar
information regarding Angina, Heart Failure the other three outcomes in the
Appendix in tables A2, A3, and A4, respectively.

To obtain an idea about the performance of each feature selection method,
we also report the selected number of features. In particular, for each out-
come, we report the number of original features as well as the number of
selected features that have been employed by the best classifier (which is
determined as having the highest value of G-mean performance metric for
that outcome). Table 6 demonstrate such information.
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Table 6: Summary of the result for best feature selection and classification
of each outcome. The number of original features is 25.

Outcome Classifiers Feature Selection ‖SelectedFeatures‖ G-mean ROC Area

Diabetes Bagging
Chi-Squared 24 0.84 0.91
IG 21 0.84 0.91
CFS 8 0.84 0.91

Angina
RF

Chi-Squared 25 1.00 1.00
IG 21 1.00 1.00
CFS 14 1.00 1.00

Bagging
Chi-Squared 25 1.00 1.00
IG 21 1.00 1.00

Heart Failure RF
Chi-Squared 22 0.95 0.98
IG 20 0.95 0.98

Stroke RF
Chi-Squared 25 1.00 1.00
IG 21 1.00 1.00
CFS 13 1.00 1.00

3.3 Discussion

According to Tables 5, A2-A4, the oversampling method dominates the un-
dersampling method when both considered for ensemble learning classifiers
and the same feature selection technique. We observe, for example, the for-
mer method can produce an improvement of about 30% in some cases. For
example, for the “Heart Failure” outcome reported in Table A3, compare the
methods using the G-mean when they are used within Random Forest clas-
sifier with any feature selection technique. The oversampling method also
outperforms the undersampling method when both considered for 5NN, C4.5,
and SVM base classifiers with any feature selection technique. We relate this
result to the loss of valuable information that is more likely in undersampling
technique due to removing instances from the majority class (which could
negatively affects building an accurate model). For the RBFN method, how-
ever, we observe slightly better G-mean values for the undersampling method.
The difference between methods when employed with Näıve Bayes and LR
are indistinguishable (with the Stroke outcome as the exception for Näıve
Bayes). The “CFS” feature selection method is very slightly outperformed
by the “Chi-Squared” and the Information Gain feature selection methods
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in some cases (i.e., combinations of classifiers and sampling method) for all
outcomes, although they remain indistinguishable. An interesting exception
occurs when this behavior is studied for RBFN base classifier, which reveals
the superiority of “CFS” to the other two feature selection methods for all
outcomes. This agrees with some present studies [33].

In general, the ensemble learning classifiers yield better performance met-
rics compared to base classifiers when studying all outcomes. The high-
est performance values for these classifiers are attained when oversampling
method is employed. Within ensemble learning classifiers, we observe that
“AdaBoost” classifier is almost always outperformed by the “Random For-
est” and “Bagging” classifiers. This result is held for all performance metrics.
Within base classifiers, the “5NN” and the “C4.5” classifiers result in best
G-mean values in all outcomes followed by the “SVM” classifier. We note
that while the best performance of the RBFN classifier may occur using any
of the sampling methods, it is always outperformed by the “Näıve Bayes”
and “LR” base classifiers. The difference between the two latter classifiers,
however, is not substantial in terms of the G-mean performance metric.

Based on Tables 5, A2-A4, the best approach to classify the Diabetes out-
come is the combining of any of feature selection methods and Bagging clas-
sifier, which produces 84% classification G-mean and 91% ROC area value.
In the classification of Angina outcome, both Random Forest classifier (inde-
pendent from our choice of feature selection method) and Bagging classifier
(when combined with either Information Gain or Chi-squared feature se-
lection methods) produce the highest classification G-mean and ROC area
values. The best methods for the classification of Heart Failure outcome data
set are combining either Information Gain or Chi-squared feature selection
methods with Random Forest classifier, which yields 95% G-mean and 98%
ROC area values. The next best choice here is obtained by combining the
Information Gain or Chi-squared feature selection with Bagging classifier.
The Random Forest also yields the highest performance values for the clas-
sification of Stroke independent from our choice of feature selection method.
Interestingly, both the Bagging and the C4.5 classifiers are ranked the second
best alternative, in this case, yielding 99% G-mean value and 100% for the
ROC area value. Table 6 reports the best approaches for each outcome. It
also states the actual number of selected features that have been used by the
feature selection methods.
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4 Conclusion

This paper proposes the application of imbalanced classification techniques
to identify bariatric surgery’s complications for each patient. By extracting
the required data sets from the Premier Healthcare Database, we investigate
various data-mining methods to determine the risk group of a particular pa-
tient, including commonly-used base classifiers as well as ensemble learning
and sampling methods to mitigate the effects of the imbalanced data set. Fur-
thermore, we compare the advantage of using well-known feature selection
methods prior to classification. Our results show that the combination of a
suitable feature selection method with ensemble learning methods equipped
with Oversampling (SMOTE) method can achieve higher performance met-
rics.
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[7] Blanco, R., Larrañaga, P., Inza, I., Sierra, B.: Gene selection for cancer
classification using wrapper approaches. International Journal of Pat-
tern Recognition and Artificial Intelligence 18(08), 1373–1390 (2004)

[8] Breiman, L.: Bagging predictors. Machine Learning 24(2), 123–140
(1996)

[9] Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001)

[10] Brolin, R.: Gastrointestinal surgery for severe obesity. Nutrition 12(6),
403–404 (1996)

[11] Buchwald, H.: Bariatric surgery for morbid obesity: health implications
for patients, health professionals, and third-party payers. Journal of the
American College of Surgeons 200(4), 593–604 (2005)

[12] Buchwald, H., Avidor, Y., Braunwald, E., Jensen, M.D., Pories, W.,
Fahrbach, K., Schoelles, K.: Bariatric surgery: a systematic review and
meta-analysis. JAMA 292(14), 1724–1737 (2004)

[13] Buchwald, H., Estok, R., Fahrbach, K., Banel, D., Jensen, M.D., Pories,
W.J., Bantle, J.P., Sledge, I.: Weight and type 2 diabetes after bariatric
surgery: systematic review and meta-analysis. The American Journal
of Medicine 122(3), 248–256 (2009)

[14] Cawley, J., Meyerhoefer, C.: The medical care costs of obesity: an
instrumental variables approach. Journal of Health Economics 31(1),
219–230 (2012)

[15] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote:
synthetic minority over-sampling technique. Journal of Artificial Intel-
ligence Research 16, 321–357 (2002)

21



[16] Daousi, C., Casson, I., Gill, G., MacFarlane, I., Wilding, J., Pinkney, J.:
Prevalence of obesity in type 2 diabetes in secondary care: association
with cardiovascular risk factors. Postgraduate Medical Journal 82(966),
280–284 (2006)

[17] Deeba, F., Mohammed, S.K., Bui, F.M., Wahid, K.A.: An empirical
study on the effect of imbalanced data on bleeding detection in endo-
scopic video. In: Engineering in Medicine and Biology Society (EMBC),
2016 IEEE 38th Annual International Conference of the, pp. 2598–2601.
IEEE (2016)

[18] DeMaria, E.J., Portenier, D., Wolfe, L.: Obesity surgery mortality risk
score: proposal for a clinically useful score to predict mortality risk in
patients undergoing gastric bypass. Surgery for Obesity and Related
Diseases 3(2), 134–140 (2007)

[19] Freund, Y., Schapire, R.E.: A desicion-theoretic generalization of on-
line learning and an application to boosting. In: European conference
on computational learning theory, pp. 23–37. Springer (1995)

[20] Friedman, J., Hastie, T., Tibshirani, R.: The elements of statistical
learning, vol. 1. Springer series in statistics Springer, Berlin (2001)

[21] Galar, M., Fernandez, A., Barrenechea, E., Bustince, H., Herrera, F.:
A review on ensembles for the class imbalance problem: bagging-,
boosting-, and hybrid-based approaches. IEEE Transactions on Sys-
tems, Man, and Cybernetics, Part C (Applications and Reviews) 42(4),
463–484 (2012)

[22] Galar, M., Fernández, A., Barrenechea, E., Herrera, F.: Eusboost: En-
hancing ensembles for highly imbalanced data-sets by evolutionary un-
dersampling. Pattern Recognition 46(12), 3460–3471 (2013)

[23] Grundy, S., Barondess, J., Bellegie, N., Fromm, H., Greenway, F., Hal-
sted, C., Huth, E., Kumanyika, S., Reisin, E., Robinson, M., et al.:
Gastrointestinal surgery for severe obesity. Annals of Internal Medicine
115(12), 956–961 (1991)

[24] Gu, Q., Zhu, L., Cai, Z.: Evaluation measures of the classification per-
formance of imbalanced data sets. In: International Symposium on In-
telligence Computation and Applications, pp. 461–471. Springer (2009)

22



[25] Hall, M.A.: Correlation-based feature selection for machine learning.
Ph.D. thesis, The University of Waikato (1999)

[26] Hall, M.A.: Correlation-based feature selection of discrete and numeric
class machine learning (2000)
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1

Supplementary Materials

In this section, the ICD-9 codes for the clinical attributes and outcomes are
listed in Tables (A1). The results for Angina, Heart Failure, and Stroke out-
comes are shown in Tables (A2-4). In Table (A5), the values of the “ROC
Area” computed for all four outcomes (when applying SVM with both linear
and RBF kernel functions) demonstrate the significance of the benefit obtained
by the RBF kernel function (highlighted in bold) to the linear kernel function.
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Table A5. Comparative ROC area results for SVM using Linear kernel against RBF kernel

Outcome Linear kernel RBF kernel

Diabetes 0.62 0.70
Heart Failure 0.75 0.88
Stroke 0.75 0.97
Angina 0.79 0.98


	Clemson University
	TigerPrints
	8-2017

	Predictive Models for Bariatric Surgery Risks with Imbalanced Medical Datasets
	Talayeh Razzaghi
	Ilya Safro
	Joseph Ewing
	Ehsan Sadrfaridpour
	John D. Scott
	Recommended Citation


	tmp.1502212542.pdf.MmcCH

