2,975 research outputs found

    Markov models for fMRI correlation structure: is brain functional connectivity small world, or decomposable into networks?

    Get PDF
    Correlations in the signal observed via functional Magnetic Resonance Imaging (fMRI), are expected to reveal the interactions in the underlying neural populations through hemodynamic response. In particular, they highlight distributed set of mutually correlated regions that correspond to brain networks related to different cognitive functions. Yet graph-theoretical studies of neural connections give a different picture: that of a highly integrated system with small-world properties: local clustering but with short pathways across the complete structure. We examine the conditional independence properties of the fMRI signal, i.e. its Markov structure, to find realistic assumptions on the connectivity structure that are required to explain the observed functional connectivity. In particular we seek a decomposition of the Markov structure into segregated functional networks using decomposable graphs: a set of strongly-connected and partially overlapping cliques. We introduce a new method to efficiently extract such cliques on a large, strongly-connected graph. We compare methods learning different graph structures from functional connectivity by testing the goodness of fit of the model they learn on new data. We find that summarizing the structure as strongly-connected networks can give a good description only for very large and overlapping networks. These results highlight that Markov models are good tools to identify the structure of brain connectivity from fMRI signals, but for this purpose they must reflect the small-world properties of the underlying neural systems

    Automated Knowledge Discovery from Functional Magnetic Resonance Images using Spatial Coherence

    Get PDF
    Functional Magnetic Resonance Imaging (fMRI) has the potential to unlock many of the mysteries of the brain. Although this imaging modality is popular for brain-mapping activities, clinical applications of this technique are relatively rare. For clinical applications, classification models are more useful than the current practice of reporting loci of neural activation associated with particular disorders. Also, since the methods used to account for anatomical variations between subjects are generally imprecise, the conventional voxel-by-voxel analysis limits the types of discoveries that are possible. This work presents a classification-based framework for knowledge discovery from fMRI data. Instead of voxel-centric knowledge discovery, this framework is segment-centric, where functional segments are clumps of voxels that represent a functional unit in the brain. With simulated activation images, it is shown that this segment-based approach can be more successful for knowledge discovery than conventional voxel-based approaches. The spatial coherence principle refers to the homogeneity of behavior of spatially contiguous voxels. Auto-threshold Contrast Enhancing Iterative Clustering (ACEIC) - a new algorithm based on the spatial coherence principle is presented here for functional segmentation. With benchmark data, it is shown that the ACEIC method can achieve higher segmentation accuracy than Probabilistic Independent Component Analysis - a popular method used for fMRI data analysis. The spatial coherence principle can also be exploited for voxel-centric image-classification problems. Spatially Coherent Voxels (SCV) is a new feature selection method that uses the spatial coherence principle to eliminate features that are unlikely to be useful for classification. For a Substance Use Disorder dataset, it is demonstrated that feature selection with SCV can achieve higher classification accuracies than conventional feature selection methods
    corecore