9,016 research outputs found

    Explainable Goal Recognition: A Framework Based on Weight of Evidence

    Full text link
    We introduce and evaluate an eXplainable Goal Recognition (XGR) model that uses the Weight of Evidence (WoE) framework to explain goal recognition problems. Our model provides human-centered explanations that answer why? and why not? questions. We computationally evaluate the performance of our system over eight different domains. Using a human behavioral study to obtain the ground truth from human annotators, we further show that the XGR model can successfully generate human-like explanations. We then report on a study with 60 participants who observe agents playing Sokoban game and then receive explanations of the goal recognition output. We investigate participants' understanding obtained by explanations through task prediction, explanation satisfaction, and trust.Comment: 11 pages, 5 figure

    A simplistic approach to keyhole plan recognition

    Get PDF
    When applying plan recognition to Human - Computer Interaction, one must cope with users exhibiting a large amount of reactive behaviour: users that change tasks, or change strategies for achieving tasks. Most current approaches to keyhole plan recognition do not address this problem. We describe an application domain for plan recognition, where users exhibit reactive rather than plan-based behaviour, and where existing approaches to plan recognition do not perform well. In order to enable plan recognition in this domain, we have developed an extremely simplistic mechanism for keyhole plan recognition, "intention guessing". The algorithm is based on descriptions of observable behaviour, and is able to recognize certain instances of plan failures, suboptimal plans and erroneous actions. At run-time, the algorithm only keeps track of a limited number of the most recent actions, which makes the algorithm "forgetful". This property makes the algorithm suitable for domains where users frequently change strategies

    The display of spatial information and visually guided behavior

    Get PDF
    The basic informational elements of spatial orientation are attitude and position within a coordinate system. The problem that faces aeronautical designers is that a pilot must deal with several coordinate systems, sometimes simultaneously. The display must depict unambiguously not only position and attitude, but also designate the relevant coordinate system. If this is not done accurately, spatial disorientation can occur. The different coordinate systems used in aeronautical tasks and the problems that occur in the display of spatial information are explained

    Are the deficits in navigational abilities present in the Williams syndrome related to deficits in the backward inhibition?

    Get PDF
    Williams syndrome (WS) is associated with a distinct profile of relatively proficient skills within the verbal domain compared to the severe impairment of visuo-spatial processing. Abnormalities in executive functions and deficits in planning ability and spatial working memory have been described. However, to date little is known about the influence of executive function deficits on navigational abilities in WS. This study aimed at analyzing in WS individuals a specific executive function, the backward inhibition (BI) that allows individuals to flexibly adapt to continuously changing environments. A group of WS individuals and a mental age- and gender-matched group of typically developing children were subjected to three task-switching experiments requiring visuospatial or verbal material to be processed. Results showed that WS individuals exhibited clear BI deficits during visuospatial task-switching paradigms and normal BI effect during verbal task-switching paradigm. Overall, the present results suggest that the BI involvement in updating environment representations during navigation may influence WS navigational abilitie

    A Framework for Interactive Teaching of Virtual Borders to Mobile Robots

    Full text link
    The increasing number of robots in home environments leads to an emerging coexistence between humans and robots. Robots undertake common tasks and support the residents in their everyday life. People appreciate the presence of robots in their environment as long as they keep the control over them. One important aspect is the control of a robot's workspace. Therefore, we introduce virtual borders to precisely and flexibly define the workspace of mobile robots. First, we propose a novel framework that allows a person to interactively restrict a mobile robot's workspace. To show the validity of this framework, a concrete implementation based on visual markers is implemented. Afterwards, the mobile robot is capable of performing its tasks while respecting the new virtual borders. The approach is accurate, flexible and less time consuming than explicit robot programming. Hence, even non-experts are able to teach virtual borders to their robots which is especially interesting in domains like vacuuming or service robots in home environments.Comment: 7 pages, 6 figure

    Meeting of the MINDS: an information retrieval research agenda

    Get PDF
    Since its inception in the late 1950s, the field of Information Retrieval (IR) has developed tools that help people find, organize, and analyze information. The key early influences on the field are well-known. Among them are H. P. Luhn's pioneering work, the development of the vector space retrieval model by Salton and his students, Cleverdon's development of the Cranfield experimental methodology, Spärck Jones' development of idf, and a series of probabilistic retrieval models by Robertson and Croft. Until the development of the WorldWideWeb (Web), IR was of greatest interest to professional information analysts such as librarians, intelligence analysts, the legal community, and the pharmaceutical industry

    Studying Control Processes for Bridge Teams

    Get PDF
    Several technological advances have been seen the maritime domain to achieve higher operational efficiency and to address the generally recognised causes of most maritime accidents. The International Maritime Organization (IMO) endorses the use of best available technology to “drive continuous improvement and innovation in the facilitation of maritime traffic” in line with the goal of sustainable development. It is commonly acknowledged that modern technology revolutionized marine navigation, and presently it has a large potential to increase safety in navigation. However, the incorporation of new technologies in support of navigation also brought unforeseen critical consequences, contributing to unsafe practices, or even to accidents or incidents. Several issues were associated with human factors. To properly address the adoption of the newest technology in support of safe navigation, IMO established the e-navigation concept, currently under implementation. The complexity of the maritime socio-technical system requires novel theoretical foundations, since many of the present framework rely on the analysis of accidents. The design of complex maritime navigation system must take place on several levels, providing different perspectives over the system problems. The evaluation and design of technologies envisaged by the e-navigation concept requires a better understand of how teams perform the navigation work in the pursuit of safe navigation. This study attempts to provide a better understanding on how maritime navigation is currently done on-board, considering the overarching elements and their interactions. In maritime navigation safety is a transverse issue, and that is why we need to know the conditions for safe navigation to improve the design of ship navigation control. The work supporting this thesis was focused on: (i) understanding how navigation is done and to perceive by the practitioners, (ii) understanding interactions between humans and technological interfaces, and (iii) understanding the relevant soft skills for the navigation functions. To address these topics, data was collected from expert practitioners such as navigators, pilots and instructors, thru semi structured interviews and questionnaires. The mains contribution of this study lies in presenting a framework of maritime navigation, exploring the control processes in the different levels of the maritime socio-technical system. In the view of safe operations, interactions between stakeholders are clarified, trying to determine how they influence safe navigation. This systemic view is then analysed from the perspective of the ship, considering it as a Joint-cognitive system (JCS). It is proposed that this JCS comprises 5 control levels: reactive, proactive, planning, strategic and political-economical. Planning is considered a fundamental process in the maritime Socio-technical system, because it facilitates the interactions between the different control level. It also increases the integrity of communications and enhances the predictability of the different control agents. New directions are proposed to improve the design of navigation system, recommending new roles for human and automated agents, and presenting a new conceptual navigation display.info:eu-repo/semantics/publishedVersio
    corecore