Metadata, citation and similar papers at core.ac.uk

Provided by Swedish Institute of Computer Science Publications Database

SICS Technical Report T95:01 ISSN: 1100-3154
SICS-T--95/01-SE

A Simplistic Approach to Keyhole Plan Recognition

by

Annika Waern and Ola Stenborg

Swedish Institute of Computer Science
Box 1263, S-16429 Kista, SWEDEN

https://core.ac.uk/display/11433689?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A Simplistic Approach to Keyhole Plan Recognition

Annika Wern Ola Stenborg
annika@sics.se sten@sics.se
Swedish Institute of Computer Science Stockholm University

January 4th, 1995

Abstract

When applying plan recognition to Human - Computer Interaction, one
must cope with users exhibiting a large amount of reactive behaviour: users
that change tasks, or change strategies for achieving tasks. Most current ap-
proaches to keyhole plan recognition do not address this problem. We describe
an application domain for plan recognition, where users exhibit reactive rather
than plan-based behaviour, and where existing approaches to plan recognition
do not perform well.

In order to enable plan recognition in this domain, we have developed an
extremely simplistic mechanism for keyhole plan recognition, ”intention guess-
ing”. The algorithm is based on descriptions of observable behaviour, and is
able to recognize certain instances of plan failures, suboptimal plans and erro-
neous actions. At run-time, the algorithm only keeps track of a limited number
of the most recent actions, which makes the algorithm ”forgetful”. This prop-
erty makes the algorithm suitable for domains where users frequently change
strategies.

Keywords: Plan Recognition, Situated Reasoning

1 Introduction

Plan recognition is the task of inferring an agent’s intentions (goal and plan for
achieving that goal) from the the agent’s observed actions. Plan recognition is an
instance of a more general abductive explanation task, where a set of observations
about the world are to be explained on the basis of some generic domain knowledge,
if necessary by adding some assumptions about the state of the world.

The plan recognition problem appears in three different forms: Plan recognition
when the actor is aware and actively cooperating to the recognition, for example by
choosing actions that make the task easier (intended plan recognition), plan recog-
nition when the actor is unaware of or indifferent to the plan recognition process
(keyhole plan recognition), or plan recognition when the actor is aware of and ac-
tively obstructs the plan recognition process (obstructed plan recognition). Most
research of today fall into one of the two first categories while the third generally is
viewed as giving too little information and posing too hard meta-constraints on the
recognition process to be useful to attack.

Although intended plan recognition in principle gets more information from the
actor, the extraction of this information from actions and utterances is a complex
task. The actors way of expressing him/herself must be interpreted - a system must
for example know something about the actors language and domain knowledge, and
it must also sometimes be able to reason about the actor’s understanding of the
systems competence to fully understand how the actor is trying to help the system
understand his/her intentions. The complexity of the task is an effect of the richness
of the information.

The fact that keyhole and obstructed plan recognition deal with less rich infor-
mation sources imply that the recognition mechanisms for these tasks potentially
could be simpler to realise, and this is indeed confirmed in existing literature. For
example, the mechanisms proposed by Randall Calistri-Yeh [1991] for intended plan
recognition in task-oriented dialogue are very complex, whereas most approaches to
keyhole plan recognition of today base themselves on the simple plan structures from
Kautz [986], without attempting to differentiate between the beliefs of the actor and
those of the observing system. In order to deal with obstructed plan recognition, In-
grid Zukerman (personal communication) has proposed an even simpler recognition
mechanism, where only typical collections of action occurrences are recognized and
associated to goals, but where the plan recognition mechanism has the potential to
adopt over time to change when the users ”catch on” to it.

In this paper, we argue that for many instances of keyhole plan recognition in
human-computer interaction, even the plan structures from Kautz are unnecessarily
complex. This is due to the fact that users in a keyhole plan recognition domain
will exhibit reactive rather than cooperative behaviour.

2 Human plans and human behaviour

There are several applications of keyhole plan recognition. If the user’s task is
recognized, the system can inform the user if the goal is for some reason impossible

to achieve, or help the user in learning a better way to achieving it by critiquing
the user’s actions, or even invoke a procedure to achieve it automatically. If the
user’s strategy (plan) for achieving the task is recognized (which allows the system to
predict the user’s future actions), the system can execute faster, or prevent incorrect
or suboptimal behaviour. Finally, the user’s strategy or task may play a role in
collecting information about the user’s knowledge of or preferences in the domain
where the plans are executed.

However, when keyhole plan recognition is used to detect user plans in human-
computer interaction, one must be aware of the structure of such plans. The nature
of human plans was studied by Lucy Suchman [1987], work that has greatly in-
fluenced recent developments in reactive planning. Suchman claims that typically,
humans do plan their behaviour, but foremost at a rather high and strategic level.
At the level of individual interactions with the world, actions are selected reactively,
based on the immediately perceived status of the world.

Not all human behaviour follow this pattern. A counter- example is task-oriented
dialogues, where a dialogue usually deals with one singular task, and where the
introduction of a new task or a modification of the current plan needs to be signalled
[Litman and Allen 1987]. However, task-oriented dialogues arise from the need to
perform cooperative planning. All agents in the dialogue are roughly committed to
the overall task, and assume that the other agents are making inferences about the
task, its sub-components and its results, as well as the commitments of the different
agents.

In human - computer interaction, a user typically does not reason about the task
as a joint task of her and the system. Instead, the user perceives the system as a tool,
with which the user can perform a set of low-level manoeuvres or manipulations,
which in different ways can be utilized to reach the user’s overall goal. This attitude
will cause users to change their intentions - both adopting a new plan for a goal, or
even abandon the goal for a new one - without considering if the computer should
know about the change. Furthermore, since the computer system is a low-level tool
with respect to the user’s goal, the user’s singular actions may say very little about
the user’s overall task - many actions and action patterns will look the same no
matter what the user’s task is.

The general HCI situation is for this reason ill-formed for intended plan recog-
nition, and indeed for most existing approaches to keyhole plan recognition as well.
There exist applications where it is not correct to assume that a user keeps to one
plan as long as her actions are possible to interpret within that plan as in [Kautz
1987], and neither is it always correct to assume that the user is maintaining several
concurrent plans as in [Quast 1993] - a user may abandon an intention altogether.
Furthermore, as our empirical study shows, we cannot be certain that the goals
we would like to recognize in a particular application indeed will be recognizable.
Before devising a plan recognizer for a particular application, we must analyse the
application carefully to deduce what goals we can recognize, and how persistent users
are in pursuing these goals.

3 A plan recognition task in news reading

We have made a minor study of an application domain where users exhibit a large
amount of reactive behaviour. The study was done as a feasibility study for a project
studying news filtering for usenet news [Karlgren et al. 1994], aimed at exploring
whether plan recognition could provide a way to set up or adapt a news filter for an
individual user. We had noticed previously in the project that the average user puts
very little time in learning the functionalities of a news system, and was even less
likely to be willing to configure a news filter manually. An alternative to manual
configuration would be to let the user signal his or her preferences while reading the
news. This way, the system can monitor the user’s preferences, and correlate these
to different properties of the entries (see [Kozierok and Maes 1993] for a similar
example in a meeting booking system). We wanted to explore the possibilities for
an even more ”automatic” way of detecting preferences - if we could infer the user’s
interest in an entry directly from the reading pattern of the user, this could be used
to gradually build up the filtering knowledge.

Our question was: Can we use keyhole plan recognition to detect enough of a
users plan to find out if an entry is interesting or uninteresting to that user? Roughly,
we were interested in recognizing:

e If the user searched for some particular information
o When the user succeeded in finding interesting information

e When the user’s search for interesting information failed (detecting criteria on
uninteresting information)

In addition to these tasks related to a specific information need, we found that the
user often indulged in a "random exploration” task, without any specific information
in mind.

3.1 Empirical studies of news readers

We selected to study the news reading task using a rather advanced news reading
tool. The reason for choosing this tool was that it allowed a rather large graphical
view of much of the information and used point-and-click interaction, and addition-
ally it included functionalities of keyword search in headers. The assumption was
that the rather high-level functionality of the tool would make keyhole plan recog-
nition possible by exploiting a fairly close relation between what people actually do
and their underlying intention.

The study was performed in two parts. First, we videotaped two users that were
”thinking aloud” while reading. This study gave us a start at analysing the connec-
tion between different reading strategies, and the underlying reason for following a
certain reading strategy. After analysing and classifying these, we made a second
study of three "silent” interactions using new experiment subjects. This was done
to test both on that we had captured the most common reading strategies, but also
that the feature of "talking aloud” had not influenced the behaviour of the original

subjects too much. In the second study we detected one new reading strategy, but
else, the users in the second study used the same interaction strategies as those of
the first. We can be fairly certain that the two studies together have captured some
common behaviours of users in the domain, even if it is likely that a larger number
of reading strategies would be detected. We here summarize briefly the results that
are relevant for the task of filtering.

It turned out that it was very easy to distinguish between pure ”browsing” and
”search for particular information”. Browsing occurred both at the group level and
at the level of individual entries, and were in both cases implemented by the simple
command "next”. (This command was interpreted by the system as "next entry”
while there were remaining entries in a meeting, or ”first entry in next meeting”
after the last entry of a meeting had been read.) Search, on the other hand, was
signified by a user selecting certain entries or groups by clicking at them, or entering
the command ”subject next”. Search on keywords in headers was less frequently
used.

However, it turned out to be very difficult to recognize if the search succeeded,
that is if the user really found interesting information. (Interest occurs of course
on a floating scale, and none of our subjects ever found an entry that was directly
relevant to him in his current work situation.) Originally, we thought that the
reading strategy within a single entry could be used to signify interest. If a user
would read for a long time, or go back and forth in an article, this would signify
that the article was interesting for the user. However, we found several users who
would exhibit this behaviour if they weren’t sure if the article was interesting or not.
This occurred usually when the header was vaguely interesting, but the content of
the article was cryptic. In all observed cases, the users finally concluded that the
article was not relevant to them.

We had better success in identifying reading strategies that signalled that an
article or a topic was uninteresting. Articles that were read for a very short time
were judged uninteresting "at a glance”. Some subjects would select only such
headers that were interesting for them, denoting that the ones they did not select
were uninteresting for them. One of the subjects would also actively mark as "read”
all messages in a topic that he found uninteresting. (This avoids getting them back
in the next reading session as "unread”.)

The most interesting feature of this domain however, is that users frequently
would change their current strategy. Users frequently move from random scan to
subject search (indicating an interest in a thread of articles with the same subject),
or even directly from subject search to subject delete (indicating an uninteresting
subject). This meta-level strategy of pre-emption of tasks seem to depend on the
fact that users in this application in general estimate the likelihood of finding any
interesting information to be small, and for that reason are prone to abandon strate-
gies at an early stage, when the effort of searching seems unmotivated given the low
likelihood of finding anything (in blunt words, when they grow bored).

Read news

-

search for specific information Random Scan Avoid uninteresting
informgiign
Select ific Group Search for information Select firg unread group Avoid uninteresting Avoid Uninteresting
N ingroup grol articl
"Scan" “Click" on group "Next" group
group list
Random scan In group X .
T "quit" “catchup" "read quickly" "markread"
group group article article

Search for particular "Next" article

information in group

*

"Searchkeyword" Choose an article "subject next"
by subject article

Figure 1: A task structure depicting the most common reading strategies.

3.2 Key actions and action sequence lengths

One interesting aspect we found was that we could identify ”key actions” that would
signify the user’s current plan. Some actions could be a part of virtually any plan,
whereas other were specific to one reading pattern. As an example, "read for a
long time” could occur both during browsing and during search for some particular
information, while ”subject search” only was used when the users goal was to explore
a certain topic.

Based on the knowledge about what we actually could detect, and the identified
key actions, we have constructed a task hierarchy depicting the most frequent reading
strategies for the news reading task, see figure 1. Most arches in the graph denote
abstraction: by doing the low-level task, one achieves a higher level task. Arches
that are connected with a curved arrow denote instead a sequential decomposition
of a task into sub-tasks, and arches marked with a star denote an sub-task that
may be repeated several times in order to achieve the higher level task. Observable
actions in the interface are marked by italics.

Note that this task hierarchy is not the only one that could be constructed - this
hierarchy is specifically formed to denote such tasks that are possible to recognize
using keyhole plan recognition. Note also, that we cannot claim to capture all
reading strategies - this was only a prestudy and the sample is very small. However,
the task structure was formed after studying both novice and expert users of the
tool and covers the strategies from both groups.

In total, we identified twelve key actions, and most tasks in the hierarchy can
be identified after two actions have been observed. The only exception to this rule
are the tasks "random scan” and "random scan in an interesting group”, for which
one must keep track of (in principle) an arbitrary number of actions, since we must
remember how the group was selected throughout the reading actions within the
group. However, these tasks are very closely related, and the fact that the group
was once explicitly selected is not enough proof that the user has not moved over
to "random scan”. For the purposes of the application, the fact that a user selects

Choose an article

by subject
Correct Suboptimal Incorrect
attempt attgmpt atteqopt
"middle button "mark" article "catch up" article "Mark" article "Read" article

click" article

Figure 2: A correct, a suboptimal and an erroneous strategy for selecting an article.

a group is in itself enough sign of its significance.

3.3 Strategies of novices and experts

The empirical material shows some significant differences between novice and expert
users, both at the level of individual interactions as well as concerning their overall
strategies. Firstly, novice users were much more prone to stick to a random scan
strategy. This could have been dependent on not knowing the tool, but the study
indicated that it was due to users being unfamiliar with the information and its
structure. Other differences in strategies were also recognised. In particular, experts
were more prone to delete uninteresting material when found. The advantage of these
strategies are that articles marked "read” will not be visible in the next session,
and not accessible by "next” or "subject next”. One expert utilized this strategy
to the extreme - he started by first scanning for uninteresting material to delete,
and only after that did he start to search for interesting material. Due to the
differences in strategies between novices and experts, we believe that it would be
possible to distinguish between different strategy preferences. This can be used to
select appropriate help or tutoring strategies.

We also found some suboptimal and erroneous behaviours, see figure 2. An
example of a suboptimal plan were that some users jumped to an article with a
particular subject by marking it and then doing catch up, followed by read. This
strategy achieves the task but leads to a side effect - all articles in between the
sought article and the previously shown article are marked ”"read” , even though
some of them might have been interesting for the user. There were also instances
of erroneous actions for the same task - several users would mark the sought article
header and then pressed "read”. This action sequence does not achieve a jump -
instead the next unread article will be displayed.

In our implementation, we have integrated both suboptimal plans and erroneous
actions in the plan library. This falls into the "bug catalogue” approach to under-
standing user errors, which has been heavily criticised, since it is limited to recogniz-
ing such bugs that have been explicitly entered into the knowledge representation.

Calistri-Yeh [1991] has argued against this approach by claiming that

”people are capable of an infinite variety of misconceptions, and it is
quite unlikely that the plan knowledge base will have a pre-stored plan
for the specific mistake that a user will make.”

The main motivation for our choice is that the plan library should model the
behaviour of the user group, as empirically established. From this aspect, empirically
verified correct, incorrect and suboptimal strategies are just the same!. In our
domain, we believe that most user errors can be captured by including a set of
common erroneous strategies in the plan library. One should also note that in
domains where novel strategies are frequent (whether they are erroneous or correct)
keyhole plan recognition would be very hard or even impossible to achieve. The work
by Calistri-Yeh deals with intended plan recognition, where the plan is explicitly

stated.

4 Plan compilation and run-time ”intention guessing”

From the previous section we can conclude that the information available for plan
recognition in this task has an extremely simple structure. We have developed a plan
compilation scheme aimed at dealing with this kind of simplistic plan recognition
tasks. We have chosen to name this scheme ”intention guessing” rather than plan
recognition to distinguish it from more complex approaches.

From the task hierarchy, we can extract the behavioural patterns a user will
exhibit while keeping to one task. This way, we describe a set of user strategies,
each related to a specific task. The strategies are described using a set of simple,
temporal relationships that we allow to be nested within each other:

repeat A until A fails

e doAorB

e do A and then B

e do A and if A succeeds then B else C

Note that these structures contain only what can be externally observed, the
actions and their effects. This way, they describe only the behavioural component
of a user’s plan, and omit the intentional aspects of it.

Based on the definition of a set of strategies, we construct a look-up table, in
which each possible sequence of observable actions is related to the relative probabil-
ities of the different strategies in which the action sequence occurs. This is done by
viewing each strategy as a generating grammar for potential action sequences that
fit this strategy. Note that some actions sometimes may fail, and that the action se-
quences for a strategy must contain both sequences for successful and failed attempts

Tt is still useful to mark suboptimal or incorrect strategies as such, since this information can
be used for tutoring purposes, but that use of keyhole plan recognition goes beyond the scope of
this paper.

at executing the strategy. For example, if a strategy ”(a then b)” is being executed,
and a fails, it is not correct to continue with b. (In fact, most users will in this case
repeat a, hoping that it may succeed the second time.) The construction of a set of
action sequences for each strategy gives us a way of recognising failed attempts at
tasks, and of distinguishing them from successful ones. This is inspired by similar
work on integrating high-level planning with low-level execution mechanisms, see
[Giunchiglia et al 1994].

The sequence generation process would not terminate by itself for strategies that
contain ”"while” structures, and even if we restrict the size of execution sequences
the number of sequences grows exponentially with the length of the included action
sequences. For this reason, we restrict the intention guesser to monitor a ”window”
of the N latest observed actions. The size of the window can, if necessary, be slightly
smaller than the average length of actions needed to uniquely identify the user’s plan.

4.1 Run-time behaviour

At run-time, the intention guessing algorithm assigns a probability to each strategy,
based on the currently observed window of actions. At any time, the current window
will be almost identical to the window one action before, only shifted one step and
one action added at the end. Thus, the possible windows that can be observed in a
particular situation is heavily restricted from the previous step. We can utilise this
fact and code the problem as a finite state automaton with AW~ states and A edges
from each state, where W is the length of the action window and A the number of
recognisable actions. Such an automaton can be coded in Prolog utilizing indexing to
give in principle constant time behaviour (if we ignore the time required to compute
the index). However, that solution produces quite a lot of spatial overhead due to
the construction of a very large number of predicates, as each node in the automaton
must be coded as a separate predicate. In our implementation, we tried two other
versions: one where the automaton was coded as a three-argument predicate, the
first being the current node and the second the currently observed action, and one
where the entire look-up table was kept. In the first, indexing was used to select
the next state, whereas the second used sequential search. The advantage of the
latter is that the table need only to contain entries for action windows that produce
a non-zero probability for at least one strategy. Both implementations produced
satisfactory behaviour on the readnews problem, but the latter was significantly less
space-consuming.

Similar space savings could in some cases be obtained in the automaton ap-
proach. Since the automaton is constructed to accept any input string, what really
signifies its behaviour is what output it produces. Thus, it can be viewed as a
non-deterministic automaton for producing goal guesses rather than a deterministic
automaton on input. Algorithms for transforming a non- deterministic automaton
into a deterministic one can be found in standard literature on automata theory, and
this can be utilized to reduce the automaton in cases where several inputs produce
the same output.

4.2 Probability measures

We now turn to how to make a proper "guess”, that is, how to calculate the proba-
bility that the user is executing a certain strategy given that a particular sequence
of actions has been observed. This probability is dependent mainly on two factors:
how many strategies the currently observed action window fits, and how large a
portion of the window that fits the strategy.

Assume for now that all occurrences of the window in a strategy are full occur-
rences, that is, that the entire window occurs in the strategy. Let Ny indow(Strategy)
denote the occurrences of a window in a strategy and M the total number of known
strategies. Then

occurrence — weight(Strategy, Window) =
N (Window,Strategy)

f.\il N (Window,Strategy;)

There may also be occurrences when a part of a window fits a strategy, but not
the entire window. This may indicate that a user has been executing the strategy,
but stopped, or has just now started to execute a strategy.

Preemption of a strategy is handled in a very simple way. We simply required
that the last action in a window must belong to the recognized strategy in order to
constitute an occurrence. If a strategy partially fits the current window, but not the
last action of the window, this signifies that the user may have been executing the
strategy previously, but that this intention has been abandoned. Since we only are
concerned with recognizing the current intention, we disregard this case entirely. In
domains where users frequently interleave the executions of several plans, one may
choose to count these occurrences as well, since this will cause all plans that are
observed during the monitored action sequences to be recognized as alternatives.

Initialization of new intentions, on the other hand, requires careful treatment of
the relative probabilities. Potentially, a user may have initiated a new strategy if the
last action of the window belongs to the new strategy - but the probability of this
change is lower than that of a strategy that fits the entire window. Furthermore,
one must distinguish between initialization of a new strategy, where the partial
occurrence in the window is an initial fragment of a strategy, and the resuming of a
strategy, where the fragment may occur anywhere in the recognized strategy. In our
domain, plan interleavings did not occur, why we again disregard the second case.

Still assuming that each strategy is equally likely to occur, initialization can be
handled in the following way. LetL(Window, Strategy) denote the average length
of the portions of Window that fit Strategy. Then the relative probability of a BP
with respect to all other known strategies, given that the action Window has been
observed is

partial — occurrence — weight(Strategy, Window) =
L(Window,Strategy)

M .
Zi:l L(Window,Strategy;) /M

occurrence — weight(Strategy, Window) *

Finally, we may have obtained knowledge about the relative frequencies of dif-
ferent strategies. If we assume that the relative probability compared to all other

known strategies is P(Strategy), we can calculate the relative probability of the
strategy assuming that a certain window has been observed as

prob—weight(Strategy) | occurs(Window) = P(Strategy)*partial—occ—weight(Strategy, Window)

The sum of all probability weights is 1. A probability weight denotes only how
likely a certain strategy is in relation to other known strategies. In order to know
something about the true likelihood of a strategy, we must be able to estimate the
likelihood that the user in the current situation is executing a strategy outside the
known strategies. In our implementation, this is not done. The plan recognizer
always returns one of two results: either a set of relative probability weights on a
subset of strategies (always summing up to one), or else a zero probability for all
strategies, signifying that the user’s behaviour does not follow any known strategy.

To summarize, the implemented algorithm computes the relative probability of
a strategy, given that a particular action window has been observed as

probability — weight(Strategy) | occurs(Window) =

N (Window,Strategy)*L(Window,Strategy)
P(Strat
(S ra egy) * f.\il N(Window,strategyi)*zlj.\il L(Window,Strategy;) /M

where N(Window, Strategy) denotes the number of occurrences of Window
in Strategy, L(Window, Strategy) denotes the average length of the portions of
Window that fit Strategy, P(Strategy) denotes the probability of a user adopting
a certain strategy, and M is the total number of known strategies.

5 Related approaches to plan recognition

The simplistic plan recognition mechanism has been specifically designed to deal
with users moving between tasks. It has some important restrictions: it cannot
recognise tasks at arbitrary levels, it does not handle plan interleaving, and it can
only deal with strategies and strategy preferences that were foreseen at compile
time. In this section, we compare our approach to existing approaches to keyhole
plan recognition.

As noted in section 3.2, two of the higher-level tasks that are recognizable in
our domain can only be distinguished from each other if an (in principle) infinite
memory of actions was kept. Since the proposed intention guessing mechanism only
keeps track of a limited number of the most recent actions, these tasks cannot be
recognized using this technique. This situation is not a problem for the intention
recognition mechanism in Kautz [1987]. This difference illustrates well the inherent
"forgetfulness” difference of our approach. Kautz” approach, and any other that
assume that users keep to one consistent plan as long as their actions are consistent
with it, will have large problems with the frequent moves between different tasks
that users exploit in this domain. This problem may be approached by combining
the simplistic goal guessing mechanism with a more advanced approach, using the
simplistic intention guesser for recognizing low-level actions, and a traditional plan
recognition mechanism for recognizing high-level plans. This combination becomes

10

particularly interesting in interfaces that combine task-oriented dialogue with direct
manipulation - we present an application example of this in the next section.

Similarly to Kautz, Quast [1993] proposes a deductive approach to plan recogni-
tion, but where arbitrary interleavings of plans are allowed. The forgetfulness of our
intention guesser does not allow us to recognize that a previous strategy is resumed.
However, Quast cannot handle preemption of plans - the only way to deduce that a
plan no more is intended is if it is completed. It is not even clear if Quast’s approach
can handle the case when a user abandons a plan because it is impossible to achieve
- this is in our approach handled to some extent by recognizing failed attempts at
strategies. In the domain we studied, no interleaving of plans occurred, whereas
plan pre-emption was frequent. Qur current experience does not allow use to draw
any conclusions about which is the more frequent behaviour, and there are most
likely applications of both kinds.

We believe that a correct treatment of plan interleaving and plan pre-emption in
deductive approaches would require that the plan library contained explicit knowl-
edge about how users move between tasks (c.f. [Wilensky 1981] on meta-knowledge
about the planning process) - in particular since this property is application depen-
dent. Viewed in this light, the forgetfulness of our algorithm provides an extremely
cost-effective shortcut for dealing with domains where plan pre-emption is frequent.

The intention guessing algorithm is completely dependent on a precoded plan
library. This problem is well-known in literature on plan recognition, and it is un-
likely to ever get a satisfactory solution for keyhole plan recognition. There exists
solutions for intended plan recognition that can deal with recognizing instances of
novel plans or user-specific preferences or misconceptions [Pollack 1986], [Calistri-
Yeh 1991]. However, the only possible approach to achieving any of this in keyhole
plan recognition is to introduce some mechanism of learning over time based on prob-
abilistic data, and it is unclear if such training can be achieved that can recognize
completely novel plans. Bauer [1994] presents an attractive mechanism for adapting
a plan recogniser to the particular interaction patterns of individual users. After a
number of training sessions, the system is able to detect the next most likely action
for a user from an observation of one (or several) immediately preceding actions.

The training mechanism that Bauer proposes does not associate any user inten-
tion to the different behavioural patterns. Bauer assumes that this information is
provided by some external source, either from a precoded plan library or supplied
by a user-specific planner (as is described in [Bauer et al. 1991]). In our framework,
we extract the strategies from a task structure. This way, we achieve that each
strategy has a task associated to it, giving an intentional interpretation of the user’s
behaviour. It is possible that the work in [Bauer 1994] could be merged with our
approach, yielding a way to train the precoded mechanism to fit individual users.

A mechanism that is specifically geared to training a system to recognize user
behaviour has been proposed by Ingrid Zukerman (personal communication). This
mechanism is directed to obstructed plan recognition in game playing, in this case the
game of MUD. This system supposes that information can be obtained that attach
an overall goal (a "quest”) to an observed sequence of user actions. So far, the
system has been trained on a set of prepared examples, containing both an observed

11

action sequence, and the quest it is intended to achieve. Again the problem is if
and how the information about "quests” associated to behavioural patterns could
be observed in other situations than from training examples, but due to the nature
of the domain it is not altogether inconceivable that a quest can be recognized once
it has been fulfilled.

The trained mechanism proposed by Zukerman recognizes plans in an even more
simplistic way than our compiled intention guesser. Her behavioural patterns in
describe only the relative frequencies of different actions in all plans for a certain
quest. The system must keep track of the relative frequencies of all actions since
the quest started, and it cannot form strategies for disregarding certain actions that
occur in strategies for a large number of quests, or recognizing actions at the right
level of abstraction. Finally, it is not clear how this mechanism can be adopted
to cope with preemptions of quests and initialization of new quests. In all these
respects, the intention guesser has advantages. Note however that a precompilation
strategy is in general too weak to deal with obstructed plan recognition, since as
soon as the user catches on to the plan recognition mechanism, he or she will modify
his/her behaviour to fool the plan recognition mechanism.

6 Integrating intention guessing with intended plan
recognition

The intention guessing mechanism has here been proposed as a mechanism for simple
and efficient keyhole plan recognition in simple domains, but it has an entirely
different usage as well, in interacting with a more complex system for intended plan
recognition. This would allow integrated plan recognition for a system that contains
both a task-oriented dialogue, as well as direct manipulation components. In such
a system, we can expect that users will exhibit a high-level task-oriented behaviour
while still moving frequently between different low-level tasks, or strategies for the
same low-level task.

We are currently exploring this idea in a separate project aimed at develop-
ing a software assistant system. The system presents documentation of a software
development method. Currently, this project has developed a system in which infor-
mation may be found both by point-and-click navigation through the information
structure, and also by posing direct questions from a limited query menu [Lemaire
et al. 1994]. Questions can concern individual objects, but also be comparisons
between two objects, or more generally, about two concepts. Comparison questions
can be posed as "follow-up questions” to other questions. In this application, we
have found plan recognition a useful means to select answers to questions, while the
navigation through the information structure still is done by direct manipulation.
(We are also including some other means of adaptation, see [H66k et al. 1994].)

The application integrates a (partly) task-oriented dialogue with direct manip-
ulation. The user’s navigational manoeuvres can be viewed as "keyhole” sources of
information, in a manner similar to that of the news reader interface. However, once
users indulge in a question - answer dialogue, we will also give them the means to

12

explicitly state their intentions.

7 Conclusions

When applying plan recognition to Human - Computer Interaction, one must cope
with users exhibiting a large amount of reactive behaviour without notifying the
system: users that change tasks, or change strategies for achieving tasks. To support
this claim, we have presented an empirical study of an application of plan recognition
where users exhibit reactive rather than plan-based behaviour, and where existing
approaches to plan recognition do not perform well. We have described an extremely
simplistic mechanism for keyhole plan recognition, ”intention guessing”, to deal with
this type of domains.

The simplistic ”intention guessing” algorithm is based on descriptions of observ-
able behaviour, and is able to recognize certain instances of plan failures, suboptimal
plans and erroneous actions. At run-time, the algorithm only keeps track of a lim-
ited number of most recent actions, which makes the algorithm ”forgetful”, which is
an extremely useful property in domains where users frequently abandon strategies.
A useful extension of the ”intention guessing” mechanism is to integrate it with a
high-level mechanism for intended plan recognition.

The simplicity of the intention guessing algorithm leads to a number of restric-
tions:

e The algorithm cannot always distinguish between high-level strategies where
long sequences of actions are the same,

e it cannot handle arbitrary interleavings of plans, and

¢ it is dependent on a full compile-time characterization of the plan recognition
task.

On the other hand, it has the following advantages over other approaches to
keyhole plan recognition:

e the very efficient runtime behaviour,
e it copes well with preemption and initialization of plans

It is an open question to what extent users exhibit plan interleaving and plan
preemption in HCI applications. It is likely that this property is highly domain-
dependent. Furthermore, in particular HCI applications it may prove very difficult
to recognize high-level user strategies, due to the low level of individual interactions
with the system. For these reasons, one must carefully analyse any plan recognition
application to deduce what goals are recognizable, and how persistent users are
in pursuing these goals, before devising a plan recognizer that is suitable for the
particulars of the applications.

13

8 References

M. Bauer, S. Biundo, D. Dengler, M. Hecking, J. Kéhler, and G. Merziger. 1991. In-
tegrated plan generation and recognition: a logic- based approach. In Proceed-
ings of the 4th Internationaler GI- kongress Wissenbasierte Systeme, Miinchen,
pages 266 - 277, Springer IFB 291.

M. Bauer. Quantitative modeling of user preferences for plan generation. 1994. In
Proc. of the 4th international conference on User Modelling, Hyannis, Mass.,
available from MITRE Corp. pages 73- 78.

R. J. Calistri-Yeh. Utilizing user models to handle ambiguity and misconceptions
in robust plan recognition. 1991. in User Modelling and User-Adapted Inter-
action 1, pages 289-322.

F. Giunchiglia, L. Spalazzi and P. Traverso. Planning with failure. 1994. in Pro-
ceedings of the 2nd International Conference on Al Planning Systems (AIPS-
94). Chicago, Illinoi. AAAI press.

K. Hook, J. Karlgren and A. Waern. 1994. A glass box intelligent help interface.
Submitted to CHI'95, available from SICS.

H. A. Kautz. A formal theory of plan recognition. 1987. Ph.D. thesis, technical
report 215, dept. of Computer Science, University of Rochester.

J. Karlgren, K. Hook, A. Lanz, J. Palme and D. Pargman. 1994. The glass box
user model for filtering. In Proc. of the 4th international conference on User
Modelling, Hyannis, Mass., available from MITRE Corp.

R. Kozierok and P. Maes. A learning interface agent for scheduling meetings. 1993.
in proc. of the int’l workshop on intelligent user interfaces, Orlando, Florida.

ACM Press.

B. Lemaire, C. McDermid and A. Warn. Adaptive Help by Navigation and Ex-
planation. 1994. SICS technical report T94:05.

D. J. Litman and J. F. Allen. A plan recognition model for subdialogues in con-
versations. 1987. Cognitive Science 11, pages163-200.

M. E. Pollack. A model of plan inference that distinguishes between the beliefs of
actors and observers. 1986. in Proc. of the 24th annual meeting of the assoc.
for Computational Linguistics.

K. J. Quast. Plan recognition for context sensitive help. 1993. in Proc. of the 1993
int’l workshop on intelligent user interfaces, Orlando, Florida. ACM Press.

L. Suchman. Plans and situated actions. The problem of human machine commu-
nication. 1987. Cambridge university press.

14

R. Wilensky. Meta-Planning: representing and using knowledge about planning in
problem solving and natural language understanding. 1981. Cognitive science
5, pages 197 - 233.

15

