274 research outputs found

    Scheduling Algorithms for Cloud: A Survey and Analysis

    Get PDF
    Cloud Computing is a fast growing computing paradigm due to the vast benefits it provides to the users. Scheduling becomes one of the key aspects due to the pay-as-you-go nature of the Cloud. The factors affecting the technique of scheduling applied change with change in scenarios. For instance for scheduling in hybrid clouds the data transfer speed has to be taken into consideration whereas for mobile environments scheduling becomes dependent on context change. Moreover scheduling can be improvised on many fronts such as energy efficiency, cost minimization, Maximization of resource utilization, etc. This paper surveys scheduling techniques in various Cloud Computing scenarios and sites the most efficient scheduling technique available for a particular set of user needs by comparing various techniques and the problems they address

    Performance comparison of heuristic algorithms for task scheduling in IaaS cloud computing environment

    Get PDF
    Cloud computing infrastructure is suitable for meeting computational needs of large task sizes. Optimal scheduling of tasks in cloud computing environment has been proved to be an NP-complete problem, hence the need for the application of heuristic methods. Several heuristic algorithms have been developed and used in addressing this problem, but choosing the appropriate algorithm for solving task assignment problem of a particular nature is difficult since the methods are developed under different assumptions. Therefore, six rule based heuristic algorithms are implemented and used to schedule autonomous tasks in homogeneous and heterogeneous environments with the aim of comparing their performance in terms of cost, degree of imbalance, makespan and throughput. First Come First Serve (FCFS), Minimum Completion Time (MCT), Minimum Execution Time (MET), Maxmin, Min-min and Sufferage are the heuristic algorithms considered for the performance comparison and analysis of task scheduling in cloud computing

    Hybrid scheduling algorithms in cloud computing: a review

    Get PDF
    Cloud computing is one of the emerging fields in computer science due to its several advancements like on-demand processing, resource sharing, and pay per use. There are several cloud computing issues like security, quality of service (QoS) management, data center energy consumption, and scaling. Scheduling is one of the several challenging problems in cloud computing, where several tasks need to be assigned to resources to optimize the quality of service parameters. Scheduling is a well-known NP-hard problem in cloud computing. This will require a suitable scheduling algorithm. Several heuristics and meta-heuristics algorithms were proposed for scheduling the user's task to the resources available in cloud computing in an optimal way. Hybrid scheduling algorithms have become popular in cloud computing. In this paper, we reviewed the hybrid algorithms, which are the combinations of two or more algorithms, used for scheduling in cloud computing. The basic idea behind the hybridization of the algorithm is to take useful features of the used algorithms. This article also classifies the hybrid algorithms and analyzes their objectives, quality of service (QoS) parameters, and future directions for hybrid scheduling algorithms

    Optimized task scheduling based on hybrid symbiotic organisms search algorithms for cloud computing environment

    Get PDF
    In Cloud Computing model, users are charged according to the usage of resources and desired Quality of Service (QoS). Task scheduling algorithms are responsible for specifying adequate set of resources to execute user applications in the form of tasks, and schedule decisions of task scheduling algorithms are based on QoS requirements defined by the user. Task scheduling problem is an NP-Complete problem, due to the NP-Complete nature of task scheduling problems and huge search space presented by large scale problem instances, many of the existing solution algorithms incur high computational complexity and cannot effectively obtain global optimum solutions. Recently, Symbiotic Organisms Search (SOS) has been applied to various optimization problems and results obtained were found to be competitive with state-of-the-art metaheuristic algorithms. However, similar to the case other metaheuristic optimization algorithms, the efficiency of SOS algorithm deteriorates as the size of the search space increases. Moreover, SOS suffers from local optima entrapment and its static control parameters cannot maintain a balance between local and global search. In this study, Cooperative Coevolutionary Constrained Multiobjective Symbiotic Organisms Search (CC-CMSOS), Cooperative Coevolutionary Constrained Multi-objective Memetic Symbiotic Organisms Search (CC-CMMSOS), and Cooperative Coevolutionary Constrained Multi-objective Adaptive Benefit Factor Symbiotic Organisms Search (CC-CMABFSOS) algorithms are proposed to solve constrained multi-objective large scale task scheduling optimization problem on IaaS cloud computing environment. To address the issue of scalability, the concept of Cooperative Coevolutionary for enhancing SOS named CC-CMSOS make SOS more efficient for solving large scale task scheduling problems. CC-CMMSOS algorithm further improves the performance of SOS algorithm by hybridizing with Simulated Annealing (SA) to avoid entrapment in local optima for global convergence. Finally, CC-CMABFSOS algorithm adaptively turn SOS control parameters to balance the local and global search procedure for faster convergence speed. The performance of the proposed CC-CMSOS, CC-CMMSOS, and CC-CMABFSOS algorithms are evaluated on CloudSim simulator, using both standard workload traces and synthesized workloads for larger problem instances of up to 5000. Moreover, CC-CMSOS, CC-CMMSOS, and CC-CMABFSOS algorithms are compared with multi-objective optimization algorithms, namely, EMS-C, ECMSMOO, and BOGA. The CC-CMSOS, CC-CMMSOS, and CC-CMABFSOS algorithms obtained significant improved optimal trade-offs between execution time (makespan) and financial cost (cost) while meeting deadline constraints with no computational overhead. The performance improvements obtained by the proposed algorithms in terms of hypervolume ranges from 8.72% to 37.95% across the workloads. Therefore, the proposed algorithms have potentials to improve the performance of QoS delivery

    Energy-Efficient Virtual Machine Placement using Enhanced Firefly Algorithm

    Get PDF
    The consolidation of the virtual machines (VMs) helps to optimise the usage of resources and hence reduces the energy consumption in a cloud data centre. VM placement plays an important part in the consolidation of the VMs. The researchers have developed various algorithms for VM placement considering the optimised energy consumption. However, these algorithms lack the use of exploitation mechanism efficiently. This paper addresses VM placement issues by proposing two meta-heuristic algorithms namely, the enhanced modified firefly algorithm (MFF) and the hierarchical cluster based modified firefly algorithm (HCMFF), presenting the comparative analysis relating to energy optimisation. The comparisons are made against the existing honeybee (HB) algorithm, honeybee cluster based technique (HCT) and the energy consumption results of all the participating algorithms confirm that the proposed HCMFF is more efficient than the other algorithms. The simulation study shows that HCMFF consumes 12% less energy than honeybee algorithm, 6% less than HCT algorithm and 2% less than original firefly. The usage of the appropriate algorithm can help in efficient usage of energy in cloud computing

    Workflow Scheduling Techniques and Algorithms in IaaS Cloud: A Survey

    Get PDF
    In the modern era, workflows are adopted as a powerful and attractive paradigm for expressing/solving a variety of applications like scientific, data intensive computing, and big data applications such as MapReduce and Hadoop. These complex applications are described using high-level representations in workflow methods. With the emerging model of cloud computing technology, scheduling in the cloud becomes the important research topic. Consequently, workflow scheduling problem has been studied extensively over the past few years, from homogeneous clusters, grids to the most recent paradigm, cloud computing. The challenges that need to be addressed lies in task-resource mapping, QoS requirements, resource provisioning, performance fluctuation, failure handling, resource scheduling, and data storage. This work focuses on the complete study of the resource provisioning and scheduling algorithms in cloud environment focusing on Infrastructure as a service (IaaS). We provided a comprehensive understanding of existing scheduling techniques and provided an insight into research challenges that will be a possible future direction to the researchers

    Allocation of Virtual Machines in Cloud Data Centers - A Survey of Problem Models and Optimization Algorithms

    Get PDF
    Data centers in public, private, and hybrid cloud settings make it possible to provision virtual machines (VMs) with unprecedented flexibility. However, purchasing, operating, and maintaining the underlying physical resources incurs significant monetary costs and also environmental impact. Therefore, cloud providers must optimize the usage of physical resources by a careful allocation of VMs to hosts, continuously balancing between the conflicting requirements on performance and operational costs. In recent years, several algorithms have been proposed for this important optimization problem. Unfortunately, the proposed approaches are hardly comparable because of subtle differences in the used problem models. This paper surveys the used problem formulations and optimization algorithms, highlighting their strengths and limitations, also pointing out the areas that need further research in the future

    Evolutionary algorithm-based multi-objective task scheduling optimization model in cloud environments

    Full text link
    © 2015, Springer Science+Business Media New York. Optimizing task scheduling in a distributed heterogeneous computing environment, which is a nonlinear multi-objective NP-hard problem, plays a critical role in decreasing service response time and cost, and boosting Quality of Service (QoS). This paper, considers four conflicting objectives, namely minimizing task transfer time, task execution cost, power consumption, and task queue length, to develop a comprehensive multi-objective optimization model for task scheduling. This model reduces costs from both the customer and provider perspectives by considering execution and power cost. We evaluate our model by applying two multi-objective evolutionary algorithms, namely Multi-Objective Particle Swarm Optimization (MOPSO) and Multi-Objective Genetic Algorithm (MOGA). To implement the proposed model, we extend the Cloudsim toolkit by using MOPSO and MOGA as its task scheduling algorithms which determine the optimal task arrangement among VMs. The simulation results show that the proposed multi-objective model finds optimal trade-off solutions amongst the four conflicting objectives, which significantly reduces the job response time and makespan. This model not only increases QoS but also decreases the cost to providers. From our experimentation results, we find that MOPSO is a faster and more accurate evolutionary algorithm than MOGA for solving such problems
    corecore