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ABSTRACT

In Cloud Computing model, users are charged according to the usage of resources
and desired Quality of Service (QoS). Task scheduling algorithms are responsible
for specifying adequate set of resources to execute user applications in the form
of tasks, and schedule decisions of task scheduling algorithms are based on QoS
requirements defined by the user. Task scheduling problem is an NP-Complete
problem, due to the NP-Complete nature of task scheduling problems and huge search
space presented by large scale problem instances, many of the existing solution
algorithms incur high computational complexity and cannot effectively obtain global
optimum solutions. Recently, Symbiotic Organisms Search (SOS) has been applied
to various optimization problems and results obtained were found to be competitive
with state-of-the-art metaheuristic algorithms. However, similar to the case other
metaheuristic optimization algorithms, the efficiency of SOS algorithm deteriorates as
the size of the search space increases. Moreover, SOS suffers from local optima
entrapment and its static control parameters cannot maintain a balance between local
and global search. In this study, Cooperative Coevolutionary Constrained Multi-
objective Symbiotic Organisms Search (CC-CMSOS), Cooperative Coevolutionary
Constrained Multi-objective Memetic Symbiotic Organisms Search (CC-CMMSOS),
and Cooperative Coevolutionary Constrained Multi-objective Adaptive Benefit Factor
Symbiotic Organisms Search (CC-CMABFSOS) algorithms are proposed to solve
constrained multi-objective large scale task scheduling optimization problem on IaaS
cloud computing environment. To address the issue of scalability, the concept of
Cooperative Coevolutionary for enhancing SOS named CC-CMSOS make SOS more
efficient for solving large scale task scheduling problems. CC-CMMSOS algorithm
further improves the performance of SOS algorithm by hybridizing with Simulated
Annealing (SA) to avoid entrapment in local optima for global convergence. Finally,
CC-CMABFSOS algorithm adaptively turn SOS control parameters to balance the local
and global search procedure for faster convergence speed. The performance of the
proposed CC-CMSOS, CC-CMMSOS, and CC-CMABFSOS algorithms are evaluated
on CloudSim simulator, using both standard workload traces and synthesized workloads
for larger problem instances of up to 5000. Moreover, CC-CMSOS, CC-CMMSOS, and
CC-CMABFSOS algorithms are compared with multi-objective optimization algorithms,
namely, EMS-C, ECMSMOO, and BOGA. The CC-CMSOS, CC-CMMSOS, and
CC-CMABFSOS algorithms obtained significant improved optimal trade-offs between
execution time (makespan) and financial cost (cost) while meeting deadline constraints
with no computational overhead. The performance improvements obtained by the
proposed algorithms in terms of hypervolume ranges from 8.72% to 37.95% across
the workloads. Therefore, the proposed algorithms have potentials to improve the
performance of QoS delivery.



vi

ABSTRAK

Dalam model Pengkomputeran Awan, pengguna dikenakan caj mengikut penggunaan
sumber dan Kualiti Perkhidmatan (QoS) yang dikehendaki. Algoritma Penjadualan Tugas
bertanggungjawab menentukan set sumber yang mencukupi untuk melaksanakan aplikasi
pengguna dalam bentuk tugas, dan keputusan jadual algoritma penjadualan tugas adalah
berdasarkan keperluan QoS yang ditakrif oleh pengguna. Masalah penjadualan tugas merupakan
masalah NP-Complete yang disebabkan oleh sifat masalah penjadualan tugas NP-Complete dan
ruang carian besar yang ditunjukkan melalui masalah berskala besar, kebanyakan daripada
penyelesaian algoritma sedia ada mendatangkan kerumitan pengiraan tinggi dan tidak boleh
mendapatkan penyelesaian optimum global secara berkesan. Baru-baru ini, Carian Organisme
Simbiotik (SOS) telah diguna untuk pelbagai masalah pengoptimuman dan hasil yang diperolehi
didapati bersaing dengan algoritma metaheuristik yang canggih. Namun begitu, serupa dengan
algoritma pengoptimuman metaheuristik yang lain, kecekapan algoritma SOS merosot apabila
saiz ruang carian meningkat. Selain itu, SOS mengalami kerugian disebabkan perangkap
optima tempatan dan parameter kawalan statiknya tidak dapat mengekalkan keseimbangan
antara carian tempatan dengan global. Dalam kajian ini, algoritma-algoritma Carian
Organisme Simbiotik Pelbagai-Objektif Kekangan Evolusi Sama Koperatif (CC-CMSOS),
Carian Organisme Simbiotik Mimetik Pelbagai-Objektif Kekangan Evolusi Sama Koperatif
(CC-CMMSOS), dan Carian Organisme Simbiotik Faktor Suai Faedah Pelbagai-Objektif
Kekangan Evolusi Sama Koperatif (CC-CMABFSOS) dicadangkan untuk menyelesaikan
masalah kekangan pengoptimuman penjadualan tugas berskala besar pelbagai objektif pada
persekitaran pengkomputeran awan IaaS. Untuk menangani isu pengskalaan, konsep Evolusi
Sama Koperatif bagi meningkatkan SOS, iaitu CC-CMSOS menjadikan SOS lebih cekap
untuk menyelesaikan masalah penjadualan tugas berskala besar. Algoritma CC-CMMSOS juga
meningkatkan prestasi algoritma SOS dengan menghibridkannya dengan Simulasi Penyepulih-
Indapan (SA) untuk mengelakkan perangkap dalam optima tempatan untuk penumpuan global.
Akhir sekali, algoritma CC-CMABFSOS disesuaikan dengan parameter kawalan SOS untuk
mengimbangi prosedur carian tempatan dan global bagi kelajuan penumpuan yang lebih pantas.
Prestasi CC-CMSOS, CC-CMMSOS, dan algoritma CC-CMABFSOS yang dicadangkan dinilai
pada simulator SimAwam, menggunakan kedua-dua kesan beban kerja standard dan beban
kerja yang disintesis untuk contoh-contoh masalah yang lebih besar sehingga 5000. Selain itu,
CC-CMSOS, CC-CMMSOS, dan algoritma CC-CMABFSOS dibandingkan dengan algoritma
pengoptimuman pelbagai objektif, iaitu EMS-C, ECMSMOO dan BOGA. Algoritma-algoritma
CC-CMSOS, CC-CMMSOS dan CC-CMABFSOS telah mencapai penigkatan keseimbangan
optima yang ketara antara masa pelaksanaan dengan kos kewangan yang menepati tarikh akhir
tanpa overhed pengiraan. Peningkatan prestasi algoritma yang dicadangkan dari segi julat
hiperisipadu adalah daripada 8.72% kepada 37.95% merentasi beban kerja. Oleh itu, algoritma
yang dicadangkan mempunyai potensi untuk meningkatkan prestasi penghantaran QoS.
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CHAPTER 1

INTRODUCTION

1.1 Overview

Cloud Computing provides scalable and elastic access to resources on pay-per-
use model, this eliminates the need for organizations and companies to invest in owning
hardware and software resources. Large scale scientific and industrial applications like
astronomy, physics, bioinformatics, data mining and business-informatics demand high
computational power for their execution in reasonable amount of time (Deelman et al.,
2009; Juve et al., 2013). To meet up with the increasing computational demand of
large scale applications, Cloud Computing is witnessing high rate deployment of large
scale applications in recent times, because Cloud provides elastic and flexible compute
resources which can be leased on pay-per-use model (Foster et al., 2008). Large scale
applications consist of huge number of tasks which are executed on Infrastructure-as-a-
Service clouds. Cloud Computing services are offered in form of Software as a Service
(SaaS), Platform as a Service (PaaS), and Infrastructure as a Service (IaaS). SaaS service
model delivers applications to end users via Internet and these applications are accessed
using client applications like web browsers. SaaS is usually used for service applications
like web-mail, and document editing applications. PaaS provides application developers
with environment for development, testing and hosting of their applications.

Moreover, IaaS provides access to flexible and scalable computing resources
for large scale application deployment. With IaaS model, virtualized compute
resources called virtual machines (VMs) with pre-configured CPU, storage, memory, and
bandwidth are leased to users by paying for what they use only. Various VM instances
are available to the users at different prices to serve their various application needs, this
gives users the freedom to control compute resource at their disposal. IaaS provides
three inherent benefits to users. First, users lease resource on demand, and charged
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based on pay-per-usage similar to basic utilities like electricity, gas, and water. This
enables users to shrink or expand their resource subscription base on the needs of their
application. Second, IaaS Cloud provides direct resource provisioning which improve
the performance of user applications. Third, users can demand for leased resources any
time and any where according to the desired level of service. However, determining the
adequate number of resources to execute a set of large scale task on IaaS Cloud is still an
open problem (Wu et al., 2015).

Furthermore, there are two parties in Cloud Computing environment, the Cloud
service providers and Cloud service consumers. Providers own high computing resources
housed in data centers, and the resources are leased to consumers on pay-per-use model.
Whereas, the Cloud service consumers lease resources from providers to execute user’s
applications. On one hand, the target of provider is to maximize return on investment as
much as possible. To that effect, providers wants to schedule as many user applications
as possible on each resource to maximize the utilization of resources. On the other hand,
consumers wish to have their requests served at minimal cost. To satisfy the consumers
requests, Cloud services must be provisioned according to the required quality of service
(QoS) and service level agreement (SLA). QoS is the capacity of guaranteeing a certain
level of performance based on some criteria defined by consumer (Rimal et al., 2011)
whereas SLA is a legal written document describing QoS requirements (Rimal et al.,
2009). However, scheduling large scale tasks based on user’s QoS is still a challenging
issue. Therefore, the focus of this thesis is on QoS task scheduling in IaaS Clouds on
large scale perspective.

1.2 Problem Background

Task scheduling algorithms play critical role in harnessing the benefits of Cloud
Computing for efficient execution of large scale applications on IaaS Cloud. Scheduling
algorithms are responsible for specifying adequate set of compute resources to execute
user applications in the form of tasks, and schedule decisions of the algorithms are
based on QoS requirements defined by the user. Meeting desired QoS requirements
depends on effective use of underlying compute resources, therefore, a task scheduler
has to be aware of respective challenges introduced by essential features of the Cloud
Computing environment. Unlike other distributed computing platforms such as clusters
and grids, Cloud users control the types of compute resources to be used for executing
their applications which introduced a number of challenges to task scheduling algorithms.
Firstly, flexibility prompts the need for task schedulers to be able to determine the
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adequate number of resources for executing given set tasks without violating user QoS
requirements, and to avoid resource underprovisioning or overprovisioning. Secondly,
scheduling algorithms must be able to efficiently cope with large scale problem.
Lastly, task scheduling techniques must be able to find optimal trade-offs between QoS
objectives like execution time (makespan), financial cost (cost), among others without
violating imposed constraints like deadline and budget to prevent the users from paying
unnecessary prices which is a multi-objective optimization problem. The conflicting
nature of tasks scheduling objectives makes multi-objective task scheduling optimization
problem more challenging especially for large scale task scheduling problems. In the
rest of the thesis, execution time and financial cost will be referred as makespan and cost
respectively.

Generally, task scheduling problems in Cloud have been proven to be a hard
Nondeterministic Polynomial time (NP-hard) optimization problem (Ullman, 1975;
Liu et al., 2013), that is there no deterministic algorithm that can find optimum
solution to task scheduling problem within an acceptable period of time. Furthermore,
users have various QoS objectives, mostly involving makespan and cost. The QoS
objectives are mostly conflicting that is no single optimal solution that can satisfy
the requirements of all the objectives, therefore trade-off solutions have to be sought.
Additionally, various consumers specify constraints for their objectives, like budgets,
and deadline that task scheduling algorithms must satisfy. Furthermore, the underlying
cloud infrastructure have diverse economic and system characteristics like pay-per-use
model, heterogeneity, dynamism, elasticity and performance variations which further
complicates task scheduling problem. One of the big challenges in cloud computing
service provisioning is to offer the requested services in accordance to constrained
QoS objectives of users such as makespan and cost using task scheduling techniques,
especially for large scale task scheduling problems. Moreover, several task scheduling
techniques have been suggested for distributed systems like cluster and grids (Daoud and
Kharma, 2008). These techniques try to minimize makespan as a primary objective in
static environment like clusters and grids, whilst this is acceptable for such computing
platforms, users stand the risks of being charged prohibitive and unnecessary costs
under pay-per-usage model of Cloud infrastructure provision. For instance, the number
and type of VMs used, and period of time for VMs usage have effect on the total
cost of application execution on Cloud. Normally, users pay less for slower resources
as compared to faster resources, hence the scheduler is faced with a multi-objective
optimization problem of finding time-cost trade-offs in selecting suitable services
considering pay-per-use model.
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Due to the practical applications and challenges of executing large scale
applications, task scheduling of applications on the large scale have become an emerging
research in cloud computing and have attracted significant attention of researchers in
recent times. Various heuristics have been applied to solve task scheduling problems
which generate optimal solutions for small size problems (Chen et al., 2013; Ming and
Li, 2012; Mao et al., 2014; Patel et al., 2015). However, the quality of solutions produced
by these techniques degrades woefully as the problem size and number of variables to be
optimized increases. Also, these heuristic methods do not have provisions and support
for meeting various QoS requirements. In contrast, many cloud users requires certain
QoS satisfaction especially for scientific and business domain applications. In recent
times, attempts have been made to address task scheduling problems using metaheuristic
algorithms to address this problem (Hameed et al., 2014; Wu et al., 2015; Singh and
Chana, 2016b). Utilizing metaheuristic algorithms for solving task scheduling problems
in Cloud have shown promising improvements in achieving efficiency, by reducing the
solution search space. However, metaheuristic algorithms incur high computational
time and in some cases return local optimum solution especially when dealing with
large solution space, also, these techniques may suffer from premature convergence
and imbalance between local and global search (Tsai and Rodrigues, 2014; Guzek
et al., 2015; Kalra and Singh, 2015; Zhan et al., 2015; Xue et al., 2016; Meena et al.,
2016). These limitations result to sub-optimal task schedule solutions which affects the
performance of service provision in terms of meeting the desired QoS objectives.

Task scheduling optimization approaches either focused on single objective or
multi-objective. The single objective task scheduling optimization approaches, only try
to optimize either makespan or cost with some constraints, especially deadline or budget
(Zuo et al., 2014; Rodriguez and Buyya, 2014; Netjinda et al., 2014a; Tawfeek et al.,
2015; Li et al., 2015c, 2016; Nirmala and Bhanu, 2016; Zhong et al., 2016; Meena et al.,
2016; Liu et al., 2016). The constrained QoS aware algorithms attempt to optimize
trade-offs between some QoS objectives without violating user imposed constraints
(Lu et al., 2014). However, because of the rapid development of Cloud, several QoS
objectives and constraints needs to be considered which makes task scheduling a multi-
objective optimization problem. The complexity of the multi-objective task optimization
formulation arise from the fact that users and providers have different optimization goals.
Users are mainly concerned with minimizing makespan and cost while meeting certain
imposed constraints, whereas providers want to maximize resource utilization and energy
consumption while meeting user QoS requirements. In this situation, task scheduling
have to be solved as a multi-objective optimization problem trying to optimize many and
yet conflicting objectives, where it is not possible to obtain optimal solution with regards
to all objectives. Therefore, a good trade-offs between the objectives need to obtained.
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Multi-objective task scheduling optimization challenge is an important
consideration because of its direct effect on both cloud service providers and consumers
(Zhan et al., 2015). In cloud computing platform, task scheduling algorithms must
optimize financial cost of leasing compute resources in addition to execution time
(makespan) and other QoS metrics. Generally, cloud providers offer heterogeneous set
of resources (VM instances) at various prices with varied performance. In this way, task
scheduling problem needs to be formulated as a multi-objective optimization problem
that intend to optimize conflicting objectives such as maksepan and financial cost of task
execution. With multi-objective formulation, there is no single solution which is optimal
with respect to all objectives, but a set of trade-off solutions called Pareto front (Tao et al.,
2014). Multi-objective task scheduling optimization problems are usually solved using
aggregation, hierarchical, Pareto, and coevolutionary multi-swarm approaches. The
aggregation (weighted) approach is the common method for solving multi-objective task
scheduling problems. The approach assign weights to multiple objectives and sum up
the objectives to form single objective function. For instance, Delavar and Aryan (2014)
proposed GA based task scheduling algorithm to optimize makespan, reliability, and load
balancing of applications by putting into consideration the heterogeneous characteristics
of compute resources. Also, Shen et al. (2016) developed GA algorithm for adaptive
scheduling of tasks considering energy consumption and makespan performance. Casas
et al. (2016) proposed GA based task scheduling technique for optimizing makespan
and cost. Zuo et al. (2015) proposed ACO based task scheduling algorithm to optimize
budget and deadline constrained task scheduling problems, the proposed approach
simultaneously makespan and cost within a given budget and deadline. However, the
results of different objectives is dependent on the values of the assigned weights which
may not adequately represent the decision of the user. Moreover, the approach produce
only solution which is not adequate for multi-objective decision problems.

The hierarchical approaches optimize task scheduling objectives in a sequential
order, the optimization ordering of the objectives are determined based on their
importance and solution to the objectives are alternately sought based on their ordering.
For instance, the approach proposed by Teng et al. (2007) used sorting strategy, the
objective functions are optimized in sequential order. The optimization of an objective
is continuously carried until no further improvement is possible, then next objective is
optimized while meeting the constraints of the previous optimized objectives. Similar
approach was used by Zhang et al. (2014) to optimize makespan and cost. However,
these approaches are time consuming especially when there are several objectives with
constraints, since it requires several iteration of optimization process. Moreover, the
importance of the objectives is dependent on the problem, and performance of the
approach may be significantly affected by the ranking of the objectives.
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To overcome the challenges of fitness assignment problem, new efforts have
been reported to use techniques for solving multi-objective task scheduling problems
efficiently. These techniques are based on using multiple populations for multiple
objectives for solving multi-objective problems where each population optimize
one objective (Zhan et al., 2013). Each population is optimized using existing
optimization algorithm. Yao et al. (2016) proposed endocrine-based co-evolutionary
multi-swarm multi-objective algorithm to find optimal trade-offs solutions between
energy consumption, makespan, and cost. The proposed strategy adopted multi-swarm
optimization strategy where each swarm corresponds to one objective and PSO is used
to optimize each objective. A novel competition and cooperation strategy is designed to
avoid swarms getting trapped in local optima. Similarly, Li et al. (2015a) presents co-
evolutionary multi-swarm PSO algorithm to obtain optimal trade-off solutions between
makespan and cost. Learning between the particles is enhanced using renumber strategy
(Li et al., 2015b). However, the proposed techniques can not scale well since the
efficiency of PSO algorithms is challenged by local optima entrapment and imbalance
between local and global search. Moreover, efficiently exchanging information between
swarms and avoidances of local Pareto Fronts are still challenging issues with co-
evolutionary multi-swarm multi-objective task scheduling approaches.

To overcome the drawbacks of both aggregation and hierarchical approaches,
Pareto-based optimization approaches have been put forth for addressing multi-objective
task scheduling problems (Tao et al., 2014; Durillo et al., 2014). Pareto approaches
finds several optimal trade-off solutions for the objectives for the optimization problem.
The concept of Pareto dominance is applied to assign fitness to individuals. The
Pareto approach does not require transforming multiple objectives into single objective
formulation, and generate several trade-off solutions in a single run. Tao et al. (2014)
presents a hybrid GA algorithms to obtain Pareto optimal solutions for makespan and
energy consumption. Pareto optimal trade-offs between makespan, cost, and energy
consumption was solved using list scheduling heuristics and hybrid PSO respectively
(Fard et al., 2014; Yassa et al., 2013). Similarly, Verma and Kaushal (2017) presents PSO
based multi-objective task scheduling algorithm to obtain optimal trade-offs between
makespan, cost, and energy consumption while meeting deadline and budget constraints
respectively. Xu et al. (2014) put forth multi-objective GA for workflow task scheduling
problem to simultaneously minimize makespan and cost while considering the priorities
of the tasks. Moreover, Zhang et al. (2017) proposed multi-objective GA algorithm
to obtain Pareto optimal trade-offs between energy consumption, and reliability for
deadline constrained task scheduling problems. However, with Pareto task scheduling
approaches, it is difficult to select appropriate individual for the next generation since
Pareto dominance is a partial order (Zhan et al., 2013). Therefore, the solutions
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obtained may not cover the entire Pareto Front (PF) if the selection operator fails to
keep adequate diversity. Thus, developing multi-objective task scheduling that effectively
assign fitness to individuals while keeping solution to efficiently estimate the entire PF
remains challenging research.

Many task scheduling optimization problems often introduce constraints which
could be loose, moderate, or tight,the imposed constraints makes the solution seeking
process more difficult since some regions of search space could be infeasible.
By convention, metaheuristic algorithms are characterized by solving unconstrained
optimization problems, therefore constrained optimization problems needs to be
transformed unconstrained form and appropriate penalty factors are applied in the case
of constraint violation. Static penalty function is one of the common constraint method
handling strategies, static penalty function is usually applied to penalize infeasible
solutions by decreasing their fitness values according to their degree of constraint
violation. However, finding a suitable value for penalty function is difficult (Chen
et al., 2015b; Liu et al., 2016). For instance, Rodriguez and Buyya (2014) presents
PSO algorithm for solving deadline constrained cost optimization problem for workflow
scheduling on cloud and used static penalty function to identify the particles violate
the constraints are inferior to the feasible ones. However, this may result to premature
convergence of search procedure which is a common issue with PSO. Another common
approach for constraint handling is eliminating infeasible solutions as the iterative
process proceeds. However, some infeasible solutions hold vital information that are
essential in guiding search direction, thus they may be useful in next generations
of individuals in finding optimal solutions (Kianpisheh et al., 2016; Meena et al.,
2016; Ambursa et al., 2016). Furthermore, Huang (2014) presented improved GA for
constrained workflow scheduling problem, in their encoding approach task execution
queue on VM is indicated in addition to task to VM assignment. Individuals are first
evolved using the objective function and evolved population is changed when there
is constrain violation. With this method there is no need to define penalty function
for constraint violation. However, the approach needs to evolve for many generations
which result to high computation time. To avoid the difficulty of defining problem
specific factor for penalty functions, Liu et al. (2016) put fort a self-adaptive penalty
function handle deadline constraint violation in solving cost optimization based task
workflow scheduling problem using co-evolutionary GA. The proposed approach is able
to accelerate the convergence speed of GA while preventing premature convergence.
However, the performance of GA is challenged when traversing large search space. Thus,
addressing constrained task scheduling optimization problems is still an active research
area.
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1.3 Problem Statement

Execution of large scale applications in cloud computing environment is only
beneficial, if execution of tasks of the application can be scheduled across compute
resources in a manner to achieve a reasonable execution time. To harness the benefits of
cloud, task scheduling algorithms play a critical role, task scheduling algorithms assign
tasks to compute to meet certain optimization objectives. The common objectives of
task scheduling formulations are minimization of financial cost (cost), total execution
time (makespan), reliability, security, energy consumption, resource utilization among
others. Also, in many task scheduling formulations, user impose certain constraints
like budget and deadline. Various QoS optimization techniques have been proposed
for distributed systems like clusters and grids. However, these techniques cannot
be adapted to cloud environment being an utility based computing platform which
is characterized by heterogeneity, dynamism and elasticity. Also, the few works for
cloud environment do not either consider the essential characteristics of cloud or the
performance of these techniques degrades as the problem size increases. Moreover,
cloud based solutions approaches to multi-objective QoS problems are mostly based on
weighted sum technique which converts multi-objective formulation to a single objective.
However, the assigned weights to each objective may not represent the actual desire of
the user and these approaches cannot provide various trade-offs from which the user can
choose most suitable option.

In cloud computing environments, task scheduling techniques play a crucial role
in meeting various user QoS requirements with diverse QoS objectives and optimization
constraints. Users requirements are not only numerous and conflicting, but do include
constraints which could be tight, moderate or loose. To solve a constrained optimization
problem, the problem needs to be transformed into unconstrained optimization problem.
To solve the transformed problem, static penalty function is usually applied to penalize
infeasible solutions by decreasing their fitness values according to their degree of
constraint violation. However, finding a suitable value for penalty function is difficult.
Another common approach is eliminating infeasible solutions as the iterative process
proceeds. However, with this approach some infeasible solutions hold vital information
that are essential in guiding search direction, thus they cannot be eliminated. However,
most of the proposed solutions approaches fail to meet user constraints and provide
inadequate QoS optimization results. Therefore, there is need for efficient task
scheduling techniques to properly model QoS requirements of applications and handle
user constraints effectively. Also, the new techniques should provide solutions that meet
QoS requirements without violating the specified constraints.
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There are some grid based heuristic task scheduling algorithms that have been
adapted for cloud environment, however, these algorithms have made little success in
cloud. These heuristic based algorithms produce optimal results for small size problems,
however, their performance degrades with large size problems. Further, heuristic
techniques do not have provision handling multiple QoS requirements (Ming and Li,
2012; Mao et al., 2014). Based on the constraints imposed by large scale problems,
task scheduling problem is identified as NP-hard. Recently, many works have been
influenced by nature inspired techniques to provide solutions to increasing complexity
and scale of cloud computing system. The NP-hard problems are in most cases
being tackled by metaheuristic algorithms like genetic algorithms (GA), Particle Swarm
optimization (PSO), and Ant Colony optimization (ACO). These techniques have shown
promising performance over heuristic techniques particularly for large scale scheduling
problems, the algorithms can find optimal global solution in some cases. However, the
computational complexity of these algorithms increases exponentially as the size the
problem increases. Moreover, local optimum solutions are return in other cases, and
these techniques still suffers from issues like entrapment of search procedure in local
optima, premature convergence, and imbalance between global search and local search,
resulting to sub-optimal results. Local optima are defined as the relative best solutions
within a neighbor solution set which is not necessarily an optimal, therefore, local optima
entrapment could result to slow convergence and non-optimal task schedules. Global
search is the ability of the algorithm to search for new new solution far from the current
solution in the search space. Local search is to search the surrounding search area nearby
the current solution, something like local search. Finding an algorithm that could can
balance local and global search is challenging. Furthermore, most of the existing works
fail to capture the essential features of cloud computing like heterogeneity, elasticity,
dynamism, and uncertainty of computing resources there by fail to fulfill user QoS
needs. There is need for metaheuristic based optimization algorithms that can efficiently
cope with large search space when scheduling large scale applications. Hence, there is
scope for further development of task scheduling solutions for further improved solutions.
Therefore, this thesis presents Symbiotic Organisms Search (SOS) based task scheduling
algorithms for large scale task scheduling optimization on IaaS cloud.

Symbiotic Organisms Search algorithm is a recently introduced metaheuristic
algorithm in Cheng and Prayogo (2014) and has gathered considerable interest of
researchers from natural computing. SOS was originally proposed to handle continuous
benchmark and engineering problems, which was shown to have a robust performance
and has faster convergence speed when compared with GA (Deb et al., 2002), PSO
(Kennedy, 2011), Differential Evolution (DE) (Qin et al., 2009), Bees Algorithm (BA)
(Pham et al., 2011), and Particle Bee Algorithm (PBA) (Cheng and Lien, 2012) which
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are the traditional metaheuristic algorithms. SOS have proven to be efficient for
optimizing complex multidimensional search space while handling multi-objective and
constrained optimization problems. Active researches on SOS since its introduction
includes hybridization, discrete optimization problems, constrained and multi-objective
optimization. Hybridization intends to combine the strengths of SOS like global search
ability and rapid optimization, with other related techniques to address some of the issues
with SOS performance, like entrapment in local optima.

Some efforts have been made in adapting and modifying SOS algorithms to
handle multi-objective and constrained optimization, which are important aspect of
facilitating design and optimization of various problems in engineering and computer
science. While significant success have been achieved in this areas in recent times,
optimization of problems in these areas still remain active research issue. As a result,
SOS algorithm have been applied to solve optimization problems in a variety of domains
like economic dispatch, power optimization, construction project scheduling, design
optimization of engineering structures, transportation, energy optimization, wireless
communication, and machine learning. With trend of application of SOS to optimization
problems, SOS have shown to provide all-purpose principles that can easily be adapted
to solve wide range of optimization problems in various domains. SOS algorithm have
been to be very effective and easily adaptable to various application requirements, with
potentials for hybridization and modifications. However, SOS still face challenges like
local optima entrapment, imbalance between local search and global search, constraint
handling, large scale optimization, and multi-objective optimization, and these are still
important research focus as evident from the literature. Further understanding and
refinements of SOS algorithm and challenges of using it to solve large scale optimization
problems are needed.

This research focused on addressing three different issues in SOS algorithm:
scalability, slow convergence, and imbalance between local and global search for
efficient optimization of large scale task scheduling problems on IaaS Cloud Computing
environment.

1.4 Research Hypothesis

The following research hypothesis have been formulated to address the stated
problems.
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i. The performance of a metaheuristic algorithms for large scale task scheduling
degrades with increase in dimensionality of solution search space.

ii. The convergence speed of a metaheuristic algorithm for task scheduling
optimization is slow down by local optima entrapment of its search procedure,
thus, leading to high computation time and non-optimal solutions.

iii. The optimality of solutions obtained by a metaheuristic algorithm for task
scheduling optimization is dependent on its ability to make a proper balance
between local and global search.

1.5 Research Questions

The following research questions will be answered to address the stated problems
based on the above stated hypothesis.

i. How to enhance the performance of a metaheuristic algorithm to cope huge
solution search space for large scale task scheduling optimization?

ii. How to increase the convergence speed of a metaheuristic algorithm by avoiding
possible local optima to reduce computation time and enhance optimality of
solutions for large scale task scheduling optimization?

iii. How to enhance the global convergence of metaheuristic algorithm by balancing
between local and global search to increase the optimality of solutions for large
scale task scheduling optimization?

1.6 Research Aim

The aim of this research is to develop an efficient constrained multi-objective QoS
task scheduling optimization technique for IaaS Cloud Computing Environment based
on the state-of-the-art metaheuristic Symbiotic Organism Search (SOS) algorithm that
is scalable and able of avoiding local optima entrapment to ensure faster convergence,
with adaptive control parameters to adequately balance local and global search for global
convergence.
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1.7 Research Objectives

The following objectives are set to achieve the aim of this research:

i. To design and develop a large scale task scheduling technique for Infrastructure as
a Service (IaaS) Cloud Computing environment using state-of-the algorithm that
can optimize execution time and cost while meeting the users deadline constraints.

ii. To further improve the above Cloud Computing task scheduling technique in order
to avoid entrapment in local optima for faster convergence.

iii. To ultimately design and develop a Cloud Computing task scheduling technique
that could adaptive control parameters to balance the local and global search
procedure for global convergence.

1.8 Scope of the Research

This research is conducted within the following scope:

i. The study of the set out objectives are carried through extensive simulation using
CloudSim 3.0.3 simulation framework.

ii. This research considers only task scheduling on IaaS cloud environment.

iii. The precedence constraints between the tasks to be scheduled are out of the scope
this research.

iv. Only the VM instances suitable for compute intensive tasks and pricing model
offered by Amazon EC2 are considered in this research.

1.9 Research Contributions

The main contributions of this research are as follows:

i. Cooperative Coevolutionary Constrained Multi-objective Symbiotic Organisms
Search (CC-CMSOS) for large scale task scheduling optimization to find optimal
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trade-offs between makespan and cost while meeting deadline constraint thereby
reducing the computational time and improving global convergence.

ii. Cooperative Coevolutionary Constrained Multi-objective Memetic Symbiotic
Organisms Search (CC-CMMSOS) for large scale task scheduling optimization
to find optimal trade-offs between makespan and cost while meeting deadline
constraint thereby ensuring faster convergence.

iii. Cooperative Coevolutionary Constrained Multi-objective Adaptive Benefit Factor
Symbiotic Organisms Search (CC-CMABFSOS) for large scale task scheduling
optimization to find optimal trade-offs between makespan and cost while meeting
deadline constraint thereby ensuring global convergence.

1.10 Thesis Organization

The rest of the thesis is organized as follows. Chapter 2 examines the related
literatures and analyzes the current issues encountered in task scheduling optimization
on cloud computing environment which forms the bases for realization of the research’s
methods. The review of different task scheduling techniques were carried out. The focus
of the review was primarily on metaheuristic algorithms for their efficiency to support
large scale task scheduling optimization on IaaS Cloud. In addition, developments and
applications of SOS algorithms are discussed, as a potential solution to large scale task
scheduling optimization.

Chapter 3 describes the methodology of this study, it covers the general
framework that list the approaches of achieving the research objectives in a systematic
manner. The steps required for design and development of the proposed algorithms are
outlined. Furthermore, the experimental test bed which comprises of the simulation tools,
and workloads for evaluating the efficacy of the proposed algorithms are established as
well as metrics of evaluation and comparison with other algorithms for benchmark.

Chapter 4 presents the design and development of constrained multi-objective
SOS algorithms for large scale task scheduling optimization problems, with detailed
discussion on design and development of the algorithms. The designed algorithms
respectively address the issues of scalability, slow convergence, and imbalance between
local and global search of standard SOS algorithms for efficient optimization of QoS
objective for large scale task scheduling problems.
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Chapter 5 presents the results analysis and discussion of multi-objective
Symbiotic Organisms Search (SOS) algorithms for large scale task scheduling
optimization problems on IaaS cloud environment.

Chapter 6 concludes the thesis with a summary of contributions and possible
future directions of this research.
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Núñez, A., Merayo, M. G., Hierons, R. M. and Núñez, M. (2013). Using genetic
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