51 research outputs found

    THIESEL 2020.Thermo-and Fluid Dynamic Processes in Direct Injection Engines.8th-11th September

    Full text link
    'The THIESEL 2020 Conference on Thermo-and Fluid Dynamic Processes in Direct Injection Engines planned in Valencia (Spain) for 8th to 11th September 2020 has been successfully held in a virtual format, due to the COVID19 pandemic. In spite of the very tough environmental demands, combustion engines will probably remain the main propulsion system in transport for the next 20 to 50 years, at least for as long as alternative solutions cannot provide the flexibility expected by customers of the 21st century. But it needs to adapt to the new times, and so research in combustion engines is nowadays mostly focused on the new challenges posed by hybridization and downsizing. The topics presented in the papers of the conference include traditional ones, such as Injection & Sprays, Combustion, but also Alternative Fuels, as well as papers dedicated specifically to CO2 Reduction and Emissions Abatement.Papers stem from the Academic Research sector as well as from the IndustryXandra Marcelle, M.; Desantes Fernández, JM. (2020). THIESEL 2020.Thermo-and Fluid Dynamic Processes in Direct Injection Engines.8th-11th September. Editorial Universitat Politècnica de València. http://hdl.handle.net/10251/150759EDITORIA

    Advanced Energy Harvesting Technologies

    Get PDF
    Energy harvesting is the conversion of unused or wasted energy in the ambient environment into useful electrical energy. It can be used to power small electronic systems such as wireless sensors and is beginning to enable the widespread and maintenance-free deployment of Internet of Things (IoT) technology. This Special Issue is a collection of the latest developments in both fundamental research and system-level integration. This Special Issue features two review papers, covering two of the hottest research topics in the area of energy harvesting: 3D-printed energy harvesting and triboelectric nanogenerators (TENGs). These papers provide a comprehensive survey of their respective research area, highlight the advantages of the technologies and point out challenges in future development. They are must-read papers for those who are active in these areas. This Special Issue also includes ten research papers covering a wide range of energy-harvesting techniques, including electromagnetic and piezoelectric wideband vibration, wind, current-carrying conductors, thermoelectric and solar energy harvesting, etc. Not only are the foundations of these novel energy-harvesting techniques investigated, but the numerical models, power-conditioning circuitry and real-world applications of these novel energy harvesting techniques are also presented

    Ecodesign and Energy Label for Household Dishwashers

    Get PDF
    European Commission launched in 2014 the revision of the ecodesign and energy-/resource label implementing measures for the product group 'household dishwashers (DW)'. The revision study follows the Commission’s Methodology for the Evaluation of Energy related Products (MEErP) and includes sections related to the scope and definition market analysis, analysis of user behaviour and system aspects, analysis of technologies, environmental and economics, design options and policy analysis and scenarios.This research was based on available scientific information and data, uses a life-cycle thinking approach, and has engaged stakeholder experts in order to discuss key issues, and to the extent possible reach consensus on the proposals The outcomes of this study provides policy makers with the evidence basis for assessing whether and how to revise the existing Regulations.JRC.B.5-Circular Economy and Industrial Leadershi

    Optical Gas Sensing: Media, Mechanisms and Applications

    Get PDF
    Optical gas sensing is one of the fastest developing research areas in laser spectroscopy. Continuous development of new coherent light sources operating especially in the Mid-IR spectral band (QCL—Quantum Cascade Lasers, ICL—Interband Cascade Lasers, OPO—Optical Parametric Oscillator, DFG—Difference Frequency Generation, optical frequency combs, etc.) stimulates new, sophisticated methods and technological solutions in this area. The development of clever techniques in gas detection based on new mechanisms of sensing (photoacoustic, photothermal, dispersion, etc.) supported by advanced applied electronics and huge progress in signal processing allows us to introduce more sensitive, broader-band and miniaturized optical sensors. Additionally, the substantial development of fast and sensitive photodetectors in MIR and FIR is of great support to progress in gas sensing. Recent material and technological progress in the development of hollow-core optical fibers allowing low-loss transmission of light in both Near- and Mid-IR has opened a new route for obtaining the low-volume, long optical paths that are so strongly required in laser-based gas sensors, leading to the development of a novel branch of laser-based gas detectors. This Special Issue summarizes the most recent progress in the development of optical sensors utilizing novel materials and laser-based gas sensing techniques

    Towards a review of the EC Recommendation for a definition of the term "nanomaterial"; Part 1: Compilation of information concerning the experience with the definition

    Get PDF
    In October 2011 the European Commission (EC) published a Recommendation on the definition of nanomaterial (2011/696/EU). The purpose of this definition is to enable determination when a material should be considered a nanomaterial for regulatory purposes in the European Union. In view of the upcoming review of the current EC Definition of the term 'nanomaterial' and noting the need expressed by the EC Environment Directorate General and other Commission services for a set of scientifically sound reports as the basis for this review, the EC Joint Research Centre (JRC) prepares three consecutive reports, of which this is the first. This Report 1 compiles information concerning the experience with the definition regarding scientific-technical issues that should be considered when reviewing the current EC definition of nanomaterial. Based on this report and the feedback received, JRC will write a second, follow-up report. In this Report 2 the JRC will provide a detailed assessment of the scientific-technical issues compiled in Report 1, in relation to the objective of reviewing the current EC nanomaterial definition.JRC.I.4-Nanobioscience

    Goods and Services of Marine Bivalves

    Get PDF
    The aim of this book is to review and analyse the goods and services of bivalve shellfish. How they are defined, what determines the ecological functions that are the basis for the goods and services, what controversies in the use of goods and services exist, and what is needed for sustainable exploitation of bivalves from the perspective of the various stakeholders. The book is focused on the goods and services, and not on impacts of shellfish aquaculture on the benthic environment, or on threats like biotoxins; neither is it a shellfish culture handbook although it can be used in evaluating shellfish culture. The reviews and analysis are based on case studies that exemplify the concept, and show the strengths and weaknesses of the current applications. The multi-authored reviews cover ecological, economic and social aspects of bivalve goods and services. The book provides new insights for scientists, students, shellfish producers, policy advisors, nature conservationists and decision makers. This book is open access under the CC BY license.publishedVersio

    Fire performance of residential shipping containers designed with a shaft wall system

    Get PDF
    seven story building made of shipping containers is planned to be built in Barcelona, Spain. This study mainly aimed to evaluate the fire performance of one of these residential shipping containers whose walls and ceiling will have a shaft wall system installed. The default assembly consisted of three fire resistant gypsum boards for vertical panels and a mineral wool layer within the framing system. This work aimed to assess if system variants (e.g. less gypsum boards, no mineral wool layer) could still be adequate considering fire resistance purposes. To determine if steel temperatures would attain a predetermined temperature of 300-350ºC (a temperature value above which mechanical properties of steel start to change significantly) the temperature evolution within the shaft wall system and the corrugated steel profile of the container was analysed under different fire conditions. Diamonds simulator (v. 2020; Buildsoft) was used to perform the heat transfer analysis from the inside surface of the container (where the fire source was present) and within the shaft wall and the corrugated profile. To do so gas temperatures near the walls and the ceiling were required, so these temperatures were obtained from two sources: (1) The standard fire curve ISO834; (2) CFD simulations performed using the Fire Dynamics Simulator (FDS). Post-flashover fire scenarios were modelled in FDS taking into account the type of fuel present in residential buildings according to international standards. The results obtained indicate that temperatures lower than 350ºC were attained on the ribbed steel sheet under all the tested heat exposure conditions. When changing the assembly by removing the mineral wool layer, fire resistance was found to still be adequate. Therefore, under the tested conditions, the structural response of the containers would comply with fire protection standards, even in the case where insulation was reduced.Postprint (published version

    Spacelab Science Results Study

    Get PDF
    Beginning with OSTA-1 in November 1981 and ending with Neurolab in March 1998, a total of 36 Shuttle missions carried various Spacelab components such as the Spacelab module, pallet, instrument pointing system, or mission peculiar experiment support structure. The experiments carried out during these flights included astrophysics, solar physics, plasma physics, atmospheric science, Earth observations, and a wide range of microgravity experiments in life sciences, biotechnology, materials science, and fluid physics which includes combustion and critical point phenomena. In all, some 764 experiments were conducted by investigators from the U.S., Europe, and Japan. The purpose of this Spacelab Science Results Study is to document the contributions made in each of the major research areas by giving a brief synopsis of the more significant experiments and an extensive list of the publications that were produced. We have also endeavored to show how these results impacted the existing body of knowledge, where they have spawned new fields, and if appropriate, where the knowledge they produced has been applied

    Alternative Aviation Fuel Experiment (AAFEX)

    Get PDF
    The rising cost of oil coupled with the need to reduce pollution and dependence on foreign suppliers has spurred great interest and activity in developing alternative aviation fuels. Although a variety of fuels have been produced that have similar properties to standard Jet A, detailed studies are required to ascertain the exact impacts of the fuels on engine operation and exhaust composition. In response to this need, NASA acquired and burned a variety of alternative aviation fuel mixtures in the Dryden Flight Research Center DC-8 to assess changes in the aircraft s CFM-56 engine performance and emission parameters relative to operation with standard JP-8. This Alternative Aviation Fuel Experiment, or AAFEX, was conducted at NASA Dryden s Aircraft Operations Facility (DAOF) in Palmdale, California, from January 19 to February 3, 2009 and specifically sought to establish fuel matrix effects on: 1) engine and exhaust gas temperatures and compressor speeds; 2) engine and auxiliary power unit (APU) gas phase and particle emissions and characteristics; and 3) volatile aerosol formation in aging exhaust plume
    corecore