99 research outputs found

    The spatio-temporal mapping of epileptic networks: Combination of EEG–fMRI and EEG source imaging

    Get PDF
    Simultaneous EEG–fMRI acquisitions in patients with epilepsy often reveal distributed patterns of Blood Oxygen Level Dependant (BOLD) change correlated with epileptiform discharges. We investigated if electrical source imaging (ESI) performed on the interictal epileptiform discharges (IED) acquired during fMRI acquisition could be used to study the dynamics of the networks identified by the BOLD effect, thereby avoiding the limitations of combining results from separate recordings. Nine selected patients (13 IED types identified) with focal epilepsy underwent EEG–fMRI. Statistical analysis was performed using SPM5 to create BOLD maps. ESI was performed on the IED recorded during fMRI acquisition using a realistic head model (SMAC) and a distributed linear inverse solution (LAURA). ESI could not be performed in one case. In 10/12 remaining studies, ESI at IED onset (ESIo) was anatomically close to one BOLD cluster. Interestingly, ESIo was closest to the positive BOLD cluster with maximal statistical significance in only 4/12 cases and closest to negative BOLD responses in 4/12 cases. Very small BOLD clusters could also have clinical relevance in some cases. ESI at later time frame (ESIp) showed propagation to remote sources co-localised with other BOLD clusters in half of cases. In concordant cases, the distance between maxima of ESI and the closest EEG–fMRI cluster was less than 33 mm, in agreement with previous studies. We conclude that simultaneous ESI and EEG–fMRI analysis may be able to distinguish areas of BOLD response related to initiation of IED from propagation areas. This combination provides new opportunities for investigating epileptic networks

    EpiGauss : caracterização espacio-temporal da actividade cerebral em epilepsia

    Get PDF
    Doutoramento em Engenharia ElectrotécnicaA epilepsia é uma patologia cerebral que afecta cerca de 0,5% da população mundial. Nas epilepsias focais, o principal objectivo clínico é a localização da zona epileptogénica (área responsável pelas crises), uma informação crucial para uma terapêutica adequada. Esta tese é centrada na caracterização da actividade cerebral electromagnética do cérebro epiléptico. As contribuições nesta área, entre a engenharia e neurologia clínica, são em duas direcções. Primeiro, mostramos que os conceitos associados às pontas podem ser imprecisos e não ter uma definição objectiva, tornando necessária uma reformulação de forma a definir uma referência fiável em estudos relacionados com a análise de pontas. Mostramos que as características das pontas em EEG são estatisticamente diferentes das pontas em MEG. Esta constatação leva a concluir que a falta de objectividade na definição de ponta na literatura pode induzir utilizações erradas de conceitos associados ao EEG na análise de MEG. Também verificamos que o uso de conjuntos de detecções de pontas efectuadas por especialistas (MESS) como referência pode fornecer resultados enganadores quando apenas baseado em critérios de consenso clínico, nomeadamente na avaliação da sensibilidade e especificidade de métodos computorizados de detecção de pontas Em segundo lugar, propomos o uso de métodos estatísticos para ultrapassar a falta de precisão e objectividade das definições relacionadas com pontas. Propomos um novo método de neuroimagem suportado na caracterização de geradores electromagnéticos – EpiGauss – baseado na análise individual dos geradores de eventos do EEG que explora as suas estruturas espacio-temporais através da análise de “clusters”. A aplicação de análise de “clusters” à análise geradores de eventos do EEG tem como objectivo usar um método não supervisionado, para encontrar estruturas espacio-temporais dps geradores relevantes. Este método, como processo não supervisionado, é orientado a utilizadores clínicos e apresenta os resultados sob forma de imagens médicas com interpretação similar a outras técnicas de imagiologia cerebral. Com o EpiGauss, o utilizador pode determinar a localização estatisticamente mais provável de geradores, a sua estabilidade espacial e possíveis propagações entre diferente áreas do cérebro. O método foi testado em dois estudos clínicos envolvendo doentes com epilepsia associada aos hamartomas hipotalâmicos e o outro com doentes com diagnóstico de epilepsia occipital. Em ambos os estudos, o EpiGauss foi capaz de identificar a zona epileptogénica clínica, de forma consistente com a história e avaliação clínica dos neurofisiologistas, fornecendo mais informação relativa à estabilidade dos geradores e possíveis percursos de propagação da actividade epileptogénica contribuindo para uma melhor caracterização clínica dos doentes. A conclusão principal desta tese é que o uso de técnicas não supervisionadas, como a análise de “clusters”, associadas as técnicas não-invasivas de EMSI, pode contribuir com um valor acrescido no processo de diagnóstico clínico ao fornecer uma caracterização objectiva e representação visual de padrões complexos espaciotemporais da actividade eléctrica epileptogénica.Epilepsy is a brain pathology that affects 0.5% of the world population. In focal epilepsies, the main clinical objective is the localization of the epileptogenic zone (brain area responsible for the epileptic seizures – EZ), a key information to decide an adequate therapeutic approach. This thesis is centred on electromagnetic activity characterization of the epileptic brain. Our contribution to this boundary area between engineering and clinical neurology is two-folded. First we show that spike related clinical concepts can be unprecise and some do not have objective definitions making necessary a reformulation in order to have a reliable reference in spike related studies. We show that EEG spike wave quantitative features are statistically different from their MEG counterparts. This finding leads to the conclusion that the lack of objective spike feature definitions in the literature can induce the wrong usage of EEG feature definition in MEG analysis. We also show that the use of multi-expert spike selections sets (MESS) as gold standard, although clinically useful, may be misleading whenever defined solely in terms of clinical agreement criteria, namely as references for automatic spike detection algorithms in sensitivity and specificity method analysis. Second, we propose the use of statistical methods to overcome some lack of precision and objectivity in spike related definitions. In this context, we propose a new ElectroMagnetic Source Imaging (EMSI) method – EpiGauss – based on cluster analysis that explores both spatial and temporal information contained in individual events sources analysis characterisation. This automatic cluster method for the analysis of spike related electric generators based in EEG is used to provide an unsupervised tool to find their relevant spatio-temporal structures. This method enables a simple unsupervised procedure aimed for clinical users and presents its results in an intuitive representation similar to other brain imaging techniques. With EpiGauss, the user is able to determine statistically probable source locations, their spatial stability and propagation patterns between different brain areas. The method was tested in two different clinical neurophysiology studies, one with a group of Hypothalamic Hamartomas and another with a group of Occipital Epilepsy patients. In both studies EpiGauss identified the clinical epileptogenic zone, consistent with the clinical background and evaluation of neurophysiologists, providing further information on stability of source locations and their probable propagation pathways that enlarges their clinical interpretation. This thesis main conclusion is that the use of unsupervised techniques, such as clustering, associated with EMSI non-invasive techniques, can bring an added value in clinical diagnosis process by providing objective and visual representation of complex epileptic brain spatio-temporal activity patterns

    EEG spike source localization before and after surgery for temporal lobe epilepsy: a BOLD EEG-fMRI and independent component analysis study

    Get PDF
    Simultaneous measurements of EEG-functional magnetic resonance imaging (fMRI) combine the high temporal resolution of EEG with the distinctive spatial resolution of fMRI. The purpose of this EEG-fMRI study was to search for hemodynamic responses (blood oxygen level-dependent - BOLD responses) associated with interictal activity in a case of right mesial temporal lobe epilepsy before and after a successful selective amygdalohippocampectomy. Therefore, the study found the epileptogenic source by this noninvasive imaging technique and compared the results after removing the atrophied hippocampus. Additionally, the present study investigated the effectiveness of two different ways of localizing epileptiform spike sources, i.e., BOLD contrast and independent component analysis dipole model, by comparing their respective outcomes to the resected epileptogenic region. Our findings suggested a right hippocampus induction of the large interictal activity in the left hemisphere. Although almost a quarter of the dipoles were found near the right hippocampus region, dipole modeling resulted in a widespread distribution, making EEG analysis too weak to precisely determine by itself the source localization even by a sophisticated method of analysis such as independent component analysis. On the other hand, the combined EEG-fMRI technique made it possible to highlight the epileptogenic foci quite efficiently.58258

    Combined EEG-fMRI and ESI improves localisation of paediatric focal epilepsy

    Get PDF
    OBJECTIVE: Surgical treatment in epilepsy is effective if the epileptogenic zone (EZ) can be correctly localized and characterized. Here we use simultaneous Electroencephalography-functional MRI (EEG-fMRI) data to derive EEG-fMRI and Electrical Source Imaging (ESI) maps. Their yield and their individual and combined ability to 1) localize the epileptogenic zone and 2) predict seizure outcome was then evaluated. METHODS: Fifty-three children with drug-resistant epilepsy underwent EEG-fMRI. Interictal discharges were mapped using both EEG-fMRI haemodynamic responses and Electrical Source Imaging (ESI). A single localization was derived from each individual test (EEG-fMRI global maxima (GM)/ESI maxima) and from the combination of both maps (EEG-fMRI/ESI spatial intersection). To determine the localisation accuracy and its predictive performance the individual and combined test localisations were compared to the presumed EZ and to the postsurgical outcome. RESULTS: Fifty-two/53 patients had significant maps; 47/53 for EEG-fMRI; 44/53 for ESI; 34/53 had both. The epileptogenic zone was well characterised in 29 patients; 26 had an EEG-fMRI GM localisation which was correct in 11; 22 patients had ESI localisation which was correct in 17; 12 patients had combined EEG-fMRI and ESI which was correct in 11. Seizure outcome following resection was correctly predicted by EEG-fMRI GM in 8/20 patients, by the ESI maxima in 13/16. The combined EEG-fMRI/ESI region entirely predicted outcome in 9/9 patients including 3 with no lesion visible on MRI. INTERPRETATION: EEG-fMRI combined with ESI provides a simple unbiased localisation that may predict surgery better than each individual test including in MRI-negative patients

    Imaging functional and structural networks in the human epileptic brain

    Get PDF
    Epileptic activity in the brain arises from dysfunctional neuronal networks involving cortical and subcortical grey matter as well as their connections via white matter fibres. Physiological brain networks can be affected by the structural abnormalities causing the epileptic activity, or by the epileptic activity itself. A better knowledge of physiological and pathological brain networks in patients with epilepsy is critical for a better understanding the patterns of seizure generation, propagation and termination as well as the alteration of physiological brain networks by a chronic neurological disorder. Moreover, the identification of pathological and physiological networks in an individual subject is critical for the planning of epilepsy surgery aiming at resection or at least interruption of the epileptic network while sparing physiological networks which have potentially been remodelled by the disease. This work describes the combination of neuroimaging methods to study the functional epileptic networks in the brain, structural connectivity changes of the motor networks in patients with localisation-related or generalised epilepsy and finally structural connectivity of the epileptic network. The combination between EEG source imaging and simultaneous EEG-fMRI recordings allowed to distinguish between regions of onset and propagation of interictal epileptic activity and to better map the epileptic network using the continuous activity of the epileptic source. These results are complemented by the first recordings of simultaneous intracranial EEG and fMRI in human. This whole-brain imaging technique revealed regional as well as distant haemodynamic changes related to very focal epileptic activity. The combination of fMRI and DTI tractography showed subtle changes in the structural connectivity of patients with Juvenile Myoclonic Epilepsy, a form of idiopathic generalised epilepsy. Finally, a combination of intracranial EEG and tractography was used to explore the structural connectivity of epileptic networks. Clinical relevance, methodological issues and future perspectives are discussed

    Bayesian multi-modal model comparison: a case study on the generators of the spike and the wave in generalized spike–wave complexes

    Get PDF
    We present a novel approach to assess the networks involved in the generation of spontaneous pathological brain activity based on multi-modal imaging data. We propose to use probabilistic fMRI-constrained EEG source reconstruction as a complement to EEG-correlated fMRI analysis to disambiguate between networks that co-occur at the fMRI time resolution. The method is based on Bayesian model comparison, where the different models correspond to different combinations of fMRI-activated (or deactivated) cortical clusters. By computing the model evidence (or marginal likelihood) of each and every candidate source space partition, we can infer the most probable set of fMRI regions that has generated a given EEG scalp data window. We illustrate the method using EEG-correlated fMRI data acquired in a patient with ictal generalized spike–wave (GSW) discharges, to examine whether different networks are involved in the generation of the spike and the wave components, respectively. To this effect, we compared a family of 128 EEG source models, based on the combinations of seven regions haemodynamically involved (deactivated) during a prolonged ictal GSW discharge, namely: bilateral precuneus, bilateral medial frontal gyrus, bilateral middle temporal gyrus, and right cuneus. Bayesian model comparison has revealed the most likely model associated with the spike component to consist of a prefrontal region and bilateral temporal–parietal regions and the most likely model associated with the wave component to comprise the same temporal–parietal regions only. The result supports the hypothesis of different neurophysiological mechanisms underlying the generation of the spike versus wave components of GSW discharges

    Combined EEG-fMRI and ESI improves localisation of paediatric focal epilepsy

    Get PDF
    OBJECTIVE: Surgical treatment in epilepsy is effective if the epileptogenic zone (EZ) can be correctly localized and characterized. Here we use simultaneous Electroencephalography-functional MRI (EEG-fMRI) data to derive EEG-fMRI and Electrical Source Imaging (ESI) maps. Their yield and their individual and combined ability to 1) localize the epileptogenic zone and 2) predict seizure outcome was then evaluated. METHODS: Fifty-three children with drug-resistant epilepsy underwent EEG-fMRI. Interictal discharges were mapped using both EEG-fMRI haemodynamic responses and Electrical Source Imaging (ESI). A single localization was derived from each individual test (EEG-fMRI global maxima (GM)/ESI maxima) and from the combination of both maps (EEG-fMRI/ESI spatial intersection). To determine the localisation accuracy and its predictive performance the individual and combined test localisations were compared to the presumed EZ and to the postsurgical outcome. RESULTS: Fifty-two/53 patients had significant maps; 47/53 for EEG-fMRI; 44/53 for ESI; 34/53 had both. The epileptogenic zone was well characterised in 29 patients; 26 had an EEG-fMRI GM localisation which was correct in 11; 22 patients had ESI localisation which was correct in 17; 12 patients had combined EEG-fMRI and ESI which was correct in 11. Seizure outcome following resection was correctly predicted by EEG-fMRI GM in 8/20 patients, by the ESI maxima in 13/16. The combined EEG-fMRI/ESI region entirely predicted outcome in 9/9 patients including 3 with no lesion visible on MRI. INTERPRETATION: EEG-fMRI combined with ESI provides a simple unbiased localisation that may predict surgery better than each individual test including in MRI-negative patients

    Multimodale Bildgebung in der prächirurgischenEpilepsiediagnostik bei Kindern und Jugendlichen

    Get PDF
    Kinder mit einer Epilepsie, die nicht auf Medikamente ansprechen, können durch einen operativen Eingriff geheilt werden. In der prächirurgischen Diagnostik dieser Kinder ist es notwendig die epileptogene Zone eindeutig zu bestimmen: dazu bedarf es Hypothesen. Verschiedene Verfahren (Elektroenzephalographie, Magnetresonanztomographie, Positron-Emissions-Tomographie, Single-Photon-Emissionscom-putertomographie) werden aktuell angewandt. Doch keine der genannten Methoden kann die epileptogene Zone mit der erforderlichen Sicherheit eingrenzen, jede hat Limitationen, so dass es auf die Zusammenschau der Verfahren ankommt. Deshalb wurde in dieser Studie erstmalig bei Kindern mit symptomatischen und kryptogenen fokalen Epilepsien die Kombination aus der simultanen Ableitung von Elektroenzephalographie und der Aufzeichnung von funktioneller Magnetresonanztomographie in Kombination mit einer Quellenanlyse untersucht. Die Kombination von Elektroenzephalographie und funktioneller Magnetresonanztomographie ist eine nicht invasive Methode, die hämodynamische Veränderungen im gesamten Gehirn während interiktaler epileptischer Aktivität detektieren kann. Dabei werden bei 540 Magnetresonanz-Aufnahmen mit schnellen Sequenzen die Unterschiede dargestellt, die einerseits zwischen den Aufnahmen bestehen, bei denen eine interiktale epileptische Aktivität im Elektroenzephalogramm zu sehen war und andererseits zwischen den Aufnahmen, bei denen dies nicht der Fall war. In früheren Studien bei Kindern mit verschiedenen Epilepsieformen zeigte sich je-doch, dass die Ergebnisse selten lokalisiert, sondern meist ausgedehnt zur Darstel-lung kamen. Daher untersuchten wir, ob eine Kombination mit einer Quellenanalyse, die auf verteilten Quellen basiert, diese ausgedehnten Aktivierungsareale zeitlich differenzieren kann. Wir wählten von 26 Patienten, die an einem epilepsiechirurgischen Programm teil-nahmen, sechs Patienten aus, die einen klaren erwarteten epileptogenen Fokus durch Übereinstimmung von Positron-Emissions-Tomographie, iktaler Single-Photon-Emissionscomputertomographie und Video-Elektroenzephalographie zeigten. Bei allen Patienten fanden wir eine signifikante Signaländerung in der Elektroenzephalographie und funktioneller Magnetresonanztomographie sowie eine Übereinstimmung mit der erwarteten epileptogenen Zone bei fünf Patienten. Bei fünf Patienten sahen wir zusätzlich ausgedehnte Aktivierungsareale. Die Quel-lenanalyse zeigte, dass der Beginn der interiktalen epileptischen Aktivität bei allen Patienten in der erwarteten epileptogenen Zone lag und bei fünf Patienten eine Verlagerung in nahe Gehirnregionen erfolgte. Diese Ausbreitungen der Quellen korrespondierten mit Arealen der Signaländerungen im funktionellen MRT. Die Kombination von Elektroenzephalographie und funktioneller Magnetresonanztomographie ist eine Methode, die signifikante Aktivierungen im Bereich der epileptogenen Zone zeigen kann, jedoch sind diese Aktivierungen meist darüber hinaus ausgebreitet, so dass es zusätzlicher Methoden bedarf, diese ausgedehnten Bereiche zu erklären. Die Quellenanalyse, die auf verteilte Quellen basiert, ist in der Lage, die Ergebnisse der funktionellen Magnetresonanztomographie durch die hohe zeitliche Auflösung zu interpretieren und für die prächirurgische Diagnostik zu verbessern
    • …
    corecore