4,437 research outputs found

    Evaluation of registration, compression and classification algorithms. Volume 1: Results

    Get PDF
    The registration, compression, and classification algorithms were selected on the basis that such a group would include most of the different and commonly used approaches. The results of the investigation indicate clearcut, cost effective choices for registering, compressing, and classifying multispectral imagery

    Efficient training procedures for multi-spectral demosaicing

    Get PDF
    The simultaneous acquisition of multi-spectral images on a single sensor can be efficiently performed by single shot capture using a mutli-spectral filter array. This paper focused on the demosaicing of color and near-infrared bands and relied on a convolutional neural network (CNN). To train the deep learning model robustly and accurately, it is necessary to provide enough training data, with sufficient variability. We focused on the design of an efficient training procedure by discovering an optimal training dataset. We propose two data selection strategies, motivated by slightly different concepts. The general term that will be used for the proposed models trained using data selection is data selection-based multi-spectral demosaicing (DSMD). The first idea is clustering-based data selection (DSMD-C), with the goal to discover a representative subset with a high variance so as to train a robust model. The second is an adaptive-based data selection (DSMD-A), a self-guided approach that selects new data based on the current model accuracy. We performed a controlled experimental evaluation of the proposed training strategies and the results show that a careful selection of data does benefit the speed and accuracy of training. We are still able to achieve high reconstruction accuracy with a lightweight model

    Information Theory and Machine Learning

    Get PDF
    The recent successes of machine learning, especially regarding systems based on deep neural networks, have encouraged further research activities and raised a new set of challenges in understanding and designing complex machine learning algorithms. New applications require learning algorithms to be distributed, have transferable learning results, use computation resources efficiently, convergence quickly on online settings, have performance guarantees, satisfy fairness or privacy constraints, incorporate domain knowledge on model structures, etc. A new wave of developments in statistical learning theory and information theory has set out to address these challenges. This Special Issue, "Machine Learning and Information Theory", aims to collect recent results in this direction reflecting a diverse spectrum of visions and efforts to extend conventional theories and develop analysis tools for these complex machine learning systems

    Advanced Image Acquisition, Processing Techniques and Applications

    Get PDF
    "Advanced Image Acquisition, Processing Techniques and Applications" is the first book of a series that provides image processing principles and practical software implementation on a broad range of applications. The book integrates material from leading researchers on Applied Digital Image Acquisition and Processing. An important feature of the book is its emphasis on software tools and scientific computing in order to enhance results and arrive at problem solution

    An MS Windows prototype for automatic general purpose image-based flaw detection

    Get PDF
    Flaw detection plays a crucial role in many industries to make sure that the products meet the specified quality requirements. When making for example a car it is important that all the parts satisfy certain quality standards to make sure the consumer buys a car that is safe to operate. A crack or another weakness in a crucial part can be catastrophic. To make sure their cars are as safe as possible, car manufacturers are conducting thorough testing of crucial parts. Similar tests are done in a wide variety of industries, and these quality controls are often referred to as flaw detection. Any cracks, voids, or other weaknesses that can cause danger are called flaws. Flaw detection is often done, or preferred done, in real time-- in an assembly line fashion. An important constraint, in addition to reliability, is therefore speed. The techniques used in these tests varies. Common techn~ques are ultrasonic waves (1-D or 2-D), eddy current imaging, x-ray imaging, thermal imaging, and fluorescent penetrent imaging. In this thesis I will discuss automatic general purpose image-based flaw detection. Automatic means that the flaw detection is performed without human supervision, and general purpose means that the inspection is not tailored to a specific task (i.e. one particular flaw in one particular type of object), but is ideally applicable to any detection problem

    Sparse representation based hyperspectral image compression and classification

    Get PDF
    Abstract This thesis presents a research work on applying sparse representation to lossy hyperspectral image compression and hyperspectral image classification. The proposed lossy hyperspectral image compression framework introduces two types of dictionaries distinguished by the terms sparse representation spectral dictionary (SRSD) and multi-scale spectral dictionary (MSSD), respectively. The former is learnt in the spectral domain to exploit the spectral correlations, and the latter in wavelet multi-scale spectral domain to exploit both spatial and spectral correlations in hyperspectral images. To alleviate the computational demand of dictionary learning, either a base dictionary trained offline or an update of the base dictionary is employed in the compression framework. The proposed compression method is evaluated in terms of different objective metrics, and compared to selected state-of-the-art hyperspectral image compression schemes, including JPEG 2000. The numerical results demonstrate the effectiveness and competitiveness of both SRSD and MSSD approaches. For the proposed hyperspectral image classification method, we utilize the sparse coefficients for training support vector machine (SVM) and k-nearest neighbour (kNN) classifiers. In particular, the discriminative character of the sparse coefficients is enhanced by incorporating contextual information using local mean filters. The classification performance is evaluated and compared to a number of similar or representative methods. The results show that our approach could outperform other approaches based on SVM or sparse representation. This thesis makes the following contributions. It provides a relatively thorough investigation of applying sparse representation to lossy hyperspectral image compression. Specifically, it reveals the effectiveness of sparse representation for the exploitation of spectral correlations in hyperspectral images. In addition, we have shown that the discriminative character of sparse coefficients can lead to superior performance in hyperspectral image classification.EM201

    Underwater image restoration: super-resolution and deblurring via sparse representation and denoising by means of marine snow removal

    Get PDF
    Underwater imaging has been widely used as a tool in many fields, however, a major issue is the quality of the resulting images/videos. Due to the light's interaction with water and its constituents, the acquired underwater images/videos often suffer from a significant amount of scatter (blur, haze) and noise. In the light of these issues, this thesis considers problems of low-resolution, blurred and noisy underwater images and proposes several approaches to improve the quality of such images/video frames. Quantitative and qualitative experiments validate the success of proposed algorithms
    corecore