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Abstract: The simultaneous acquisition of multi-spectral images on a single sensor can be efficiently
performed by single shot capture using a mutli-spectral filter array. This paper focused on the
demosaicing of color and near-infrared bands and relied on a convolutional neural network (CNN).
To train the deep learning model robustly and accurately, it is necessary to provide enough training
data, with sufficient variability. We focused on the design of an efficient training procedure by
discovering an optimal training dataset. We propose two data selection strategies, motivated by
slightly different concepts. The general term that will be used for the proposed models trained
using data selection is data selection-based multi-spectral demosaicing (DSMD). The first idea is
clustering-based data selection (DSMD-C), with the goal to discover a representative subset with
a high variance so as to train a robust model. The second is an adaptive-based data selection
(DSMD-A), a self-guided approach that selects new data based on the current model accuracy.
We performed a controlled experimental evaluation of the proposed training strategies and the
results show that a careful selection of data does benefit the speed and accuracy of training. We are
still able to achieve high reconstruction accuracy with a lightweight model.

Keywords: RGB; NIR; multispectral; demosaicing; deep learning; data sampling; active learning

1. Introduction

Multi-spectral imaging systems have a broad range of applications in the area of remote sensing,
computer vision, camera-based security systems, etc. Such applications include image enhancement,
dehazing, quality inspection, object classification, and the characterization of materials.

The near-infrared band (NIR, 700-1100 nm) is part of the active, or reflected infrared band,
with wavelengths closest to the visible light spectrum (400-700 nm). The photometric properties of
these two spectral bands are distinct. An image obtained at a specific wavelength represents different
information compared to another image captured at another wavelength. While the edges between
objects in images captured in the visible and NIR bands match, the intensities and intensity differences
are different and depend on the object material. These properties make NIR complementary to the
visible light range in numerous applications.

In terms of image acquisition, the similarities between NIR and visible light are that both can
be acquired through the same optical path and that silicon-based sensors are sensitive to both bands.
Recently, single-sensor cameras for simultaneous acquisition of multi-spectral data have gained
popularity in the research community. Using a single optical system and a single sensor for both RGB
and NIR modalities alleviates the burden of precise optical calibration and misalignment correction,
in contrast to multi-camera, spatial scanning or multi-shot approaches. In our work we will focus on
the simultaneous acquisition of RGB and NIR images by a single sensor.
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The generalization from RGB to multi-spectral imaging can be achieved by placing an array of
different wavelength-selective band pass filters in front of the sensor, denoted as a color filter array
(CFA) or a multi-spectral filter array (MSFA). In the case of RGB-NIR imaging, the most practical
modification is to replace one of the green pixels of the Bayer pattern [1] by a NIR pixel. In the literature,
various configurations of the multi-spectral CFA have been proposed [2] and optimized for different
applications. In this paper we will focus on the uniform, Bayer-like pattern.

Regardless of the filter configuration, extending the sensitivity range results in the decreased
spatial sampling density of one or more spectral channels. Demosaicing is a crucial step for the recovery
of missing information in the imaging pipeline and involves accurate color reconstruction and the
alignment of edges. Since each band is sampled at a different spatial location, interpolation artifacts are
typically prominent around edges. Looking at wider regions along the edges allows for sophisticated,
edge-aware interpolation algorithms [3,4]. In our approach we will rely on a multi-resolution,
deep convolutional neural network (CNN) that combines local and spatially broader information.

Due to the complexity of deep neural networks, learning to model accurate data representation
requires substantial amounts of training samples. However, using complete images creates a lot of
information redundancy in the training samples. For example, natural images contain significant
portions of flat regions of low variability. Through uniform random sampling, that proportion is
reflected in the training datasets.

Such data redundancy negatively influences the learned representation by introducing bias,
a shortcoming that is well known in the image processing literature. Numerous dictionary learning
algorithms for sparse representation as well as dimensionality reduction techniques have been focusing
on learning compact and informative data representations [5,6]. Another strategy is designing effective
instance selection algorithms by means of a specific selection criteria [7].

In this paper we aim to perform data selection for the purpose of training a generative CNN for
demosaicing. Some of the principles in this paper are inspired by the tools used in the compressed
sensing and dictionary learning literature, thus making a connection between these topics. This focus
is on modifying the uniform random sampling scheme to a selective or weighted random sampling so
as to achieve a comparable performance and lower training complexity compared to training with
a full dataset.

1.1. Contributions

In our prior work [8] we proposed a neural network-based method for demosaicing raw RGB-NIR
images using two different sampling patterns. Based on this work, this paper extends the focus
towards data sampling and training procedures. More specifically, we propose to carefully select
a smaller, informative subset from a large training data set, with the goal to decrease training time and
to obtain a more general model. The complete training pipeline is presented with a block diagram in
Figure 1, with the orange block representing data selection.

Training dataset creation Training an epoch i with k samples

«| Ground |I
truth

Image
database | I

Optimized CNN
Patch t
H—> —>/  training set » inference > Loss

selection i o calculation
LY = {t1..ty} (demosaicing)
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Figure 1. Block diagram of the training pipeline for a single epoch, from an input image database to
loss calculation and back-propagation. The proposed data selection techniques apply to the orange
diamond shape in the block diagram.
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Our first proposed idea is to form clusters in the space of training samples and to train the network
only with selected samples that represent all samples in the clusters. With this approach the variability
among the selected samples will be high, therefore carrying a lot of information, while ignoring
redundant samples. The training data consists of four-channel square patches extracted from a set of
training images.

The second approach presented in this paper performs a selection of training samples adaptively,
based on the reconstruction error. More specifically, we propose to create a training dataset at
each training epoch by statistical sampling and favoring samples from critical regions with a large
reconstruction error.

Moreover, we experimented with the objective of demosaicing. Instead of focusing merely on
improving the peak signal-to-noise ratio (PSNR) as a standard metric in literature, we simultaneously
optimize the structural similarity index (SSIM) as a perceptive quality measure. Some sources in the
literature suggest that the combination of metrics yields superior results compared to optimizing each
metric alone [9], and our experiments support this finding as well.

In this paper we also decreased the number of network coefficients compared to our prior work [8]
by 65% to improve training and run-time speed at the cost of a slight performance decrease. We trained
a smaller model by reducing the dimensionality of the convolutional filters. The new, lighter model is
comparable in performances to the original one, with 35% of the original number of parameters.

1.2. Paper Structure

In Section 2 we present an overview of prior work in the literature, relevant to our research.
In Section 3 we define demosaicing as a reconstruction problem and we point out the challenges
to solving the problem. In Section 4 we describe the proposed ideas for data selection to improve
the training of the CNN from a more theoretical viewpoint, while in Section 5 we elaborate on
practical considerations. In Section 6, we describe the modification of the training loss function that we
incorporate in this paper compared to our prior work. The experiments and the results are presented
in Section 7 and the conclusions from the paper and future work directions are presented in Section 8.

2. Related Work

For decades, numerous research efforts have been dedicated to accurate, full-resolution
reconstruction from color mosaic images. Many of these works were designed to restore images
within the RGB domain. However, the same principles are applicable for the multi-spectral case.

Image demosaicing is an image interpolation (or up-sampling) problem, and therefore shares
many of the challenges present in the problem of single-image super-resolution (SISR) [10].
For example, super-resolution (SR) and demosaicing are ill-posed inverse problems without a unique
solution. Moreover, the complexity of the problem and amount of missing details increase with
the up-scaling factor. Lastly, assessing the quality of the result can be ambiguous and application
dependent. The most noticeable artifacts that occur from image interpolation include aliasing, zipper
structures, and blur. Figure 2 shows examples of these artifacts.

Modern super-resolution methods based on deep learning models, such as SRCNN [11] and
VDSR [12], show superior performances compared to classical algorithms. These methods perform
simple early up-sampling and refine the results using a convolutional neural network. Analogous
to this in the demosaicing literature is the early bilinear interpolation applied on mosaic images,
before being fed into a neural network to refine the output [13]. Another alternative is to process low
resolution inputs and incorporate up-sampling in the cascade of network layers [14,15]. Our proposed
method does not involve any initial interpolation and it uses the full-resolution mosaic with zeros at
the missing pixel locations.
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Figure 2. Examples of the most prominent artifacts of demosaicing: aliasing, zipper, and blur.

In a recent work [16], three popular deep learning design concepts have been adapted into
a framework for spatial and multi-spectral interpolation from color input mosaics. The architectures
include residual network, multiscale network, and parallel-multiscale network. The paper evaluates
the effectiveness and computational complexity of the three approaches using synthetic and real data
and finds the multiscale properties highly beneficial for the up-sampling task. The parallel-multiscale
network achieved the highest reconstruction quality.

In spectral reflectance reconstruction from trichromatic RGB samples, the goal is to reconstruct
high-dimensional reflectance vectors from low-dimensional camera responses. Usually this involves
both spatial and spectral interpolation, based on a transformation learned from large collections
of training samples. The data redundancy problem has been addressed with different sample
optimization techniques [17-19], with a common requirement of maximizing diversity among the
selected samples. In [20], the samples are selected based on local color and texture descriptions of the
neighborhood around each pixel, and the results show that including texture improves the quality of
the optimized dataset.

To mitigate the negative influence of data redundancy, Birodkar et al. [21] studied three popular
classification image datasets and identified 10% of the images as redundant, based on their similarity
in a semantic space. In [22], the Active Dataset Subsampling (ADS) approach uses an ensemble of deep
neural networks (DNNs) to estimate the uncertainty of each training sample, and discards the samples
with the lowest uncertainty. A novel idea for dataset compression was proposed in [23], where the
distribution of a large training dataset is "distilled" into a smaller dataset, with a distribution that is an
approximate of the original.

Gharbi et al. [14] proposed a convolutional neural network for joint denoising and demosaicing
of color images. In this paper, the authors developed an algorithm for detecting challenging samples
for demosaicing, according to which only about 40% of all samples in a standard dataset are useful
for training. The reported results of training with the reduced, challenging subset are numerically
comparable and visually superior to simple random sampling.

The goal of instance selection algorithms [24,25] is to sub-sample a large training set, so that
the new, smaller subset is less noisy or redundant and offers high modeling accuracy. Ref. [24]
distinguishes two broad categories: Wrapper and filter methods. The approaches in the former group
select instances based on the accuracy obtained by a classifier, while the ones in the latter group use an
empirical selection criterion which is not necessarily based on the classifier.

However, the problem of over-fitting to difficult examples is commonly observed in the literature
and is referred to as the fixation problem in [26]. The “on-demand” approach proposed in [26] attempts
to overcome the fixation problem by generating new training instances in targeted difficulty levels,
based on the model’s current performance.
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Inspired by these conclusions, we explore the idea of sampling difficult samples more densely and
adaptively, while at the same time including easy samples in the training set to prevent over-fitting.
Unlike most of the methods explained above, we construct a new training dataset before each epoch.
Therefore, we are restricted to a simple and fast instance selection technique to avoid a significant
increase in the training time. Our goal is to keep the overall training time lower compared to training
with a large set without instance selection.

In terms of training objectives, the most popular choices for image restoration problems are
minimizing the mean squared error (L, norm) and the mean absolute error (L1 norm) between the
output and ground-truth. The metric L; is less sensitive to outliers than L, and has recently gained
increased interest, especially in the context of denoising. Minimizing the L, norm on the other hand
maximizes the PSNR, which is often the main requirement for restoration. For achieving perceptually
pleasing results, some researchers rely on a multi-scale structural similarity index (MS-SSIM) [27],
with certain approximations to make it differentiable.

The authors of the study conducted in paper [9] experimented with a deep neural network for
image reconstruction, optimized with respect to a combination of L or L, loss with a loss based on
the structural similarity index (SSIM) [28]. Their conclusion is that training with a combination of
L1/L; and a multi-scale SSIM-based loss results in images of higher accuracy to ground-truth and
higher subjective visual quality compared to using each metric alone. We adopted this approach in the
proposed method and trained the demosaicing network with a combination of L, and two-scale SSIM
loss functions.

3. Full Resolution Color Image Reconstruction

Reconstructing full-resolution color images from sub-sampled outputs is one of the fundamental
processing steps in modern digital cameras. As discussed above, typically a selective color filter array
is used to spatially sample different wavelengths. In RGB-NIR imaging, four spectral components are
spatially sub-sampled. A reconstruction of the full resolution color components requires interpolating
the missing values from the sampled ones.

We will assume a general image observation model that involves a CFA for sampling different
light bands [29,30] formulated as:

y=Fx+n 1

where y is a vector form of the observed sensor data, x = [xg, xg, X5, xN]T represents the ideal
4-channel image that we aim to restore, and n is additive noise. The operator F models three successive
linear operations in the general image formation pipeline: Wavelength-dependent blur B, spectral
cross-talk C, and channel sub-sampling S:

F=S(C®I)B. 2)

Each of these three operations, as well as the noise n pose different challenges for the
reconstruction of the original ideal signals and have been the focus of numerous research efforts
in the past decades.

In this paper we focus on the problem of an accurate reconstruction of full-resolution images
X, given spatially sub-sampled images y, without simultaneously treating the other two problems.
The color sampling can be defined using the channel sampling matrix S, which corresponds to the
underlying color filter array (CFA) and produces the mosaic y in Equation (3). With this model, we will
treat the image as a sum of four separate channels: R, G, B, and NIR.

y = Sx. 3)
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The matrix S is a diagonal matrix that stores binary values, indicating the color filter arrangement
applied to the pixels. The observation y can be rearranged into a four-channel mosaic image with
zeros in the pixel locations where the respective color was not sampled.

Following our previous work [8], we focus on reconstructing an approximation % of the ideal,
full resolution color image x using a convolutional neural network. The goal of the neural network is
to perform the inverse of S, which is a non-linear operation over the mosaic input y. The parameters
of the CNN are learned by a loss function defined between the output and ground truth.

In our prior work [8] the demosaicing model was based on the U-Net architecture [31], modified to
include additional skip connections forming residual blocks. The U-Net consists of a down-sampling
path and an up-sampling path connected with a bridge of layers and skip connections from the
down-sampling to the up-sampling layers. Residual learning facilitates coping with vanishing
gradients and has resulted in improved performances in numerous applications.

In this paper, we retain the same concept, with small modifications in the architecture. The current
architecture is presented in Figure 3, including the size of the filters in the convolutional layers.
Compared to prior work, we removed one of the convolutional layers in the first part of the contracting
path and decreased the number of feature dimensions in all convolutional layers. The reduction in size
is 65%, from 1.45 million trainable parameters to 0.5 million. Moreover, the input to the network are
four-channel inputs with sub-sampled channels and zeroes at the missing value locations. The residual
learning is extended to keeping the original sampled pixels unchanged and learning to fill-in only
the missing values. Ground truth is available in the form of full-resolution RGB-NIR images. Mosaic
inputs can be simulated from the ground truth data by channel sub-sampling using the selected
CFA pattern.

Image
acquisition

Uniform pattern

g ﬁ g ﬁ Mosaic G ﬁ Residual Full resolution
4N %
[ Convlx1x16x4 ] output

( Addition ]ﬁ‘-
( Conv5x5x4x16 ] RelU

— ReLU Conv5x5x16x 16 )
( Conv5x5x16x 16 RelU _

(
)
RelU [ Conv5x5x32x16 |
—*& Addition }—'[ Concatenation |
( Avg. pool up )

RelLU
ConvUp 2x2x32x16

( Addition
( Conv3x3x16x32 ) RelU }ﬁ‘_
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( Conv3x3x16x32 ) RelU R —
ReLU ( Conv 3 x 3 x 64 x 32
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Figure 3. The proposed neural network architecture based on the U-Net model with residual blocks.
The network learns to reconstruct the missing information based on the subsampled inputs and
combines the output with the original input.
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Training deep neural networks with millions of parameters imposes the need for substantial
amounts of data. To achieve generalization, the training data needs to be versatile, which is typically
accomplished by acquiring huge training datasets and/or performing data augmentation. However,
the fundamental issues with that approach are data redundancy and training time complexity. Our aim
is to reduce the training dataset and retain a smaller, highly informative training subset.

4. Proposed Data Sampling Strategy

In the domain of demosaicing, the main challenges arise in image regions with strong edges and
repetitive textures. Smooth regions do not require sophisticated interpolation methods. For textured
regions, neural networks offer stronger modeling advantage over classical methods. Therefore,
textured training samples can be considered more informative than smooth ones for discovering
the true properties of the data.

In this paper we propose a data sampling scheme in order to improve the training time and/or
algorithm performance, as illustrated in Figure 1. On the one hand we take the data variability into
consideration to extract maximally informative samples. On the other, we optimize the training set
with respect to the current model performance to supply difficult samples. Moreover, in the design
of the proposed algorithms we aim to create soft criteria for instance selection to avoid overfitting to
a specific sub-problem.

Training with data selected based on a certain criterion has similarities with the principles of
active learning [32]. Namely, the hypothesis in active learning is that if the training algorithm is able to
choose data from which to learn, it will require less training and achieve better performance.

Let T = {t; = (xj,¥j),% € R%,y; € R%,j = 1..k} be a large, exhaustive set of training sample
pairs t = (xj,yj) where x; is the ground truth image patch and yj is the corresponding mosaic. Our goal
is to create a smaller, optimized training dataset £ by selecting samples from 7 and adding them
into £. We propose and analyze two strategies for mining informative samples explained below,
and compare them to a baseline which is uniform random sampling.

4.1. Uniform Random Sampling

Uniform random sampling is a basic strategy, where the training set £, is created by randomly
deciding whether to add each sample ¢ in the training set with equal probability. The samples that are
included into the training set are the ones with a positive outcome of Bernoulli sampling:

L, = {t|z¢ ~ Bernoulli(p) = 1} 4)

where z; is the binary {0,1} Bernoulli outcome for patch t, and p is the probability for z; to be 1.
The probability p is fixed for all samples and determines the sampling density i.e., the proportion of
samples added from 7 into £,.

Uniform random sub-sampling of data is a fast technique that results in a subset that carries the
same amount of information as the original data. It enables representing the original data distribution
with fewer samples. However, by sampling uniformly regardless of the locations from the image
manifold where data is more difficult to model, the subset may contain many redundant samples that
do not contribute towards finding the optimal solution.

4.2. Sample Clustering

Our first proposed strategy creates an optimal training dataset L by clustering the samples based
on their low-level features. We consider this approach as passive learning since the current state of the
model is not considered during instance sampling. However, drawing from the ideas in active learning,
we propose to form a set of highly variable training samples that will cause significant changes in the
model during training and lead to faster convergence. To avoid overfitting, a new L% is generated
before each training epoch i.
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Initially, a large pool of samples S' is obtained by uniform sampling from 7 (Equation (4)),
since working with the whole 7" is computationally prohibitive for this approach. The samples from
S’ are then clustered and only the resulting cluster centers are included into the final training set £%.

The sample patches are described by low level features including spectral intensity and texture.
For clustering, we rely on the k-means method [33], which is a simple and powerful iterative algorithm
for unsupervised data partitioning. The objective of k-means is to minimize the within-cluster variance
(WCV), which is equivalent to maximizing the between-cluster variance (BCV), a result of the fact
that the total variance of the data set remains constant [34]. Our goal is to obtain a dataset of samples
{t,...t;} corresponding to the cluster centers {y1,...}} that minimize the WCV and maximize
the BCV: )

Li=argminy_ Y [|fi — pjl? ®)

thoti} j=1fieg

where f; is the normalized feature vector calculated from ground truth patch x in sample t € S, k is
the number of clusters C;...Cy, and y; is the mean of the samples belonging to cluster C;.

To confirm the hypothesis that the same amount of centroid samples carry more information than
uniform random samples, we calculated the average per-feature entropy, based on the normalized

features f. The average of 100 different random realizations of each type of dataset is presented in
Table 1.

Table 1. Average per-feature entropy in a training data set.

Dataset Number of Samples  Average Entropy
Large set S, uniform sampling 10,000 3.38
Small set £, uniform sampling 1000 3.36
Small set L., cluster centers 1000 4.20

It is not surprising that the data sets generated by uniform random sampling have the same
entropy, since in both cases the distribution of image patches is sampled in an identical manner.
The clusters, on the other hand, are formed such that the variance between the them is high,
and therefore they carry more information.

4.3. Adaptive Selection Based on Past Error

The second data selection strategy we propose is closer to the idea of active learning. Before each
training epoch i, a new training set L is formed by evaluating the samples in 7" with the current
model (trained up to epoch i — 1) and sampling with higher probability the patches that result in
a higher reconstruction error. This strategy gives the model the opportunity to adapt by learning from
examples that are more difficult to describe, based on its own modeling ability.

Analogous to this approach in active learning is entropy-based uncertainty sampling for
classification problems. The fundamental difference is that we do not make predictions of the future
model outcomes, since ground truth is available, and we can calculate the past error as a criterion for
mining new samples.

Creating the training dataset £ based on the current model # can be formulated as selecting only
samples t that follow the rule:

i = {t = (x,y)|z: ~ Bernoulli(Jy(£,)) = 1) ©)

where Ij(%,y) is an error metric normalized in the range [0, 1], defined as difference between the
reconstructed patch £ and the corresponding ground truth y. The random variable z; introduces
randomness in the decision whether the sample ¢ will be included in £i. Samples with a larger
error will have a higher chance of being included in the next round of training, to change the model
faster and towards more optimal solution. Sampling with variable probability based on fitness allows
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generating a set of difficult samples, as well as including some smaller proportion of samples that are
easy to model so as to prevent overfitting.

5. Practical Implementation

In this section we will explain the practical aspects of the implementation of the proposed methods
with respect to computational complexity and dataset size. In our experiments we rely on the RGB-NIR
Scene Dataset [35] and generate the training sets by cropping patches of size 64 x 64 x 4 from the
images. The dataset contains 477 pairs of matching RGB and NIR images with an average size of
700 x 1000 pixels.

5.1. Data Clustering

For the sample clustering approach, the patches are described by low-level features of intensity
and texture. The feature vectors consist of average intensities per channel in the patch (4 values),
and the histogram of oriented gradients (HOG) obtained by a weighted gradient angle contributions by
the corresponding magnitudes (5 values). The intensity information is important to accurately model
the spectral properties of the data. Including samples with different patterns and edge orientations is
beneficial for learning to perform more accurate interpolation around edges.

Based on these features, a bisecting k-means strategy is carried out, recursively splitting the data
into two sub-clusters, as long as the intra-cluster variance is larger than a variance threshold, or the
number of samples in the cluster exceeds a cluster size threshold. Finally, the selected training samples
are the ones closest to the centroids of the clusters in the feature space.

Setting a threshold on the cluster variance serves to control the data compression strength.
The cluster size limit is imposed to prevent data imbalance. We have experimentally chosen
the stopping thresholds. In Figure 4 we present a coarse grid-search of parameters, carried out
simultaneously over viable ranges of values, analyzing three different properties of the output datasets.

average entropy average cluster si

Figure 4. Grid-search for optimal stopping criteria with respect to different cluster properties:
(a) average number of clusters, (b) average entropy, (c) cluster size variation. The selected point
is a tradeoff between processing time, variability and cluster balance.

Figure 4a shows the average number of clusters resulting from the variance and size threshold
combinations. Choosing a too-small number of clusters may result in high intra-cluster variance and
severe under-representation of interesting samples. Having too many clusters, however, will decrease
the compression rate and may not sufficiently suppress redundancy in the final set. The average
entropy per feature in the output set (Figure 4b) is related to inter-cluster variance, which we aim to
maximize. The third property (Figure 4c) is the variation in the sizes of the resulting clusters (in terms
of cluster cardinality). This value is an indicator of cluster imbalance.

Based on these three properties we can make a tradeoff between processing time (number of
clusters) and quality of the dataset (entropy and size balance). Since there is no global optimum,
we chose a value around the knee point of the curvature in Figure 4a. The selected threshold pair
should not greatly decrease the entropy from the highest possible value in that range (Figure 4b).
Finally, the sizes of the clusters should be balanced, which is ensured by analyzing Figure 4c.
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The motivation for top-down hierarchical k-means clustering is three-fold. First, the number
of clusters does not need to be specified in advance, it can be controlled by constraining the cluster
variance and cardinality.

Moreover, the quality of the clusters obtained by hierarchical clustering tends to be higher than
that of the original k-means (Figure 5). To compare the two strategies, we evaluated the quality of the
resulting clusters, based on two common criteria: The ratio of separation/compactness (Figure 5a),
and the Silhouette criterion (Figure 5b), both of which we aim to maximize. Large separation and
small compactness values correspond to well-defined clusters. High Silhouette criterion is an indicator
of high cluster consistency.

In this experiment, the cluster variance, as an input parameter for hierarchical k-means,
was gradually increased, resulting in fewer, larger, and more diverse clusters. For the original k-means,
the number of clusters in each step was set to match the hierarchical approach. To make a fair
comparison, we have not constrained the cluster size.

hierarchical kmeans

== hierarchical kmean:
—— original kmeans 06 —— original kmeans

160

separation/compactness
Mean Silhouette Criterion

20 L L L L L ! ] 2 L L L L L L ),
0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

maximum std threshold maximum std threshold

a b

Figure 5. Clustering performance metrics of original vs. hierarchical k-means for a range of cluster
variance thresholds. We have compared: (a) the ratio separation/compactness and (b) the mean
Silhouette criterion, which show that hierarchical k-means provides more separated, compact and
consistent clusters.

The third motivation for hierarchical clustering is the time complexity. The complexity of the
original k-means is O(n?), while that of the hierarchical k-means is lower, O(nlog,(n)). In Table 2 we
present the breakdown of the number of operations required in the original vs. hierarchical k-means.

Table 2. Time complexity breakdown for k-means vs. hierarchical k-means data clustering.

Original k-Means  Hierarchical k-Means

Distance calculation kxnxd
Finding minimum kxn
Worst-case k=n k=2
1 iteration n?(d+1) 2n(d+1)
Number of iterations M M x log,(n)
Total M xn?(d+1) M x log,(n) x 2n(d +1)

n—samples; d—dimensions; k—clusters; M—max. iterations.

5.2. Adaptive Training

In the second proposed sampling strategy, we adaptively selected the samples in L}, by evaluating
the reconstruction quality at all pixel locations in the training images. The training patches were
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randomly cropped from the training images, with the probability proportional to the average
reconstruction error fg (%,y) around each pixel, in a window of size equal to the patch size.
For practical reasons, we can equivalently re-formulate the sampling rule defined with
Equation (6):
Li={t= () () > zs2 ~ U0, 1]} %

where z; is a uniform random variable in the range [0,1]. The samples included in the next training
epoch t* = (x,y) are pairs of ground truth patches x, corresponding sub-sampled mosaics y at pixel
locations where the condition in Equation (7) are met. This process is carried out for each training
image separately, to increase the variability among the selected samples and to prevent overfitting to
the same globally difficult cases.

The reconstruction error Jy can be measured by the mean squared error between the reconstructed
and the ground truth training images. We will evaluate several different choices for the error metric in
the experiments section.

For illustration, Figure 6 shows examples of color patches which belong to training datasets
created with each of the data selection methods explained above. In the dataset of uniformly selected
samples (Figure 6a) there is a significant portion of flat patches. The samples generated by clustering,
based on color and texture features, is shown in Figure 6b. Here the samples are more variable and
include various textures and edge orientations. On the third example we present a set of patches
selected based on their reconstruction loss. This example shows that the difficult cases are mainly
textured regions.

(a) Random samples L% (b) Cluster centers L. (c) Adaptive sampling £},

Figure 6. Examples of RGB patches from each type of dataset. Random sampling results in many
smooth patches, while clustering and adaptive sampling select more textured patches for more
informed training.

6. Training Objectives

In many image restoration problems, including super-resolution and demosaicing, the peak
signal-to-noise ratio (PSNR) is one of the standard metrics for evaluating image quality. PSNR is
calculated based on the mean squared error (MSE) between the reconstructed output image I,,; and
a ground-truth, reference image I,., for images in the range of [0-255]:

2
PSNR = 10log,, MSEZSS

(Iout/ Iref) ’ (8)

As a metric for image quality, PSNR is not well correlated with the perceived reconstruction
quality. On the other hand, the structural similarity index (SSIM) is a perceptually inspired metric for
the structural correspondence between images. Typically, SSIM is calculated based on small windows



Sensors 2020, 20, 2850 12 of 23

at the same location in two images. The similarity between two windows w, and wy, at pixel position
u is: ) c o c
+ Oxy +
SSIM(u) = APy T =1 0wy T2

= 9
e+ 2+ Crot+op+ G ©)

where jix and py, are the mean values in the corresponding windows, 0y and oy are the variances in each
window, and oy, is the covariance. Constants C; and C; are small numbers used for normalization,
and in our method they are set according to standard practice, to 0.001 and 0.009, respectively.

Among the most popular training loss functions in image reconstruction literature are the MSE
(Lp norm), Cityblock distance (L1 norm), and SSIM-based loss. The metric L; is less sensitive to outliers
than L. Minimizing the L, norm maximizes PSNR, however it is less correlated to perceived difference
between two images. SSIM helps in preserving the structure, however, depending on the window size
used to calculate its terms, it can cause artifacts either around the edges or in smooth regions [9].

The MSE loss for a reconstructed patch £ compared to a reference patch y of size N is the average
squared difference between the intensities from all pixel locations u:

N
st = 37 2 (+() ~ (). (10)

The Cityblock (or L) distance, used as loss function, is defined as the average absolute difference
between the intensities from all pixel locations # in two compared patches £ and y:

N
= X120~y )

Since SSIM can be implemented as a differentiable function with some approximation, it can be
used as a loss function for training. Similarly to the approach in paper [9], our method calculates
multi-scale SSIM (MS-SSIM) on two different scales, approximated by Gaussian windows with different
standard deviations, 07 and 0>. The multi-scale, SSIM-based loss function can be defined as:

N
s ssin = 1 5 1 MSSTMa, (2(0), y()) + (1= M)SSIMe, () y(0))]. (12)
u=1

The conclusions of the analysis of loss functions for image restoration with neural networks
in paper [9] is that due to the convergence properties, surprisingly, the L; loss can outperform Lp
according to various metrics, including PSNR. Additionally, a model trained with a combination of L;

and MS-SSIM loss, outperformed the models trained with each individual loss functions.
In a similar fashion, in the proposed method we carried out small-scale experiments with training
using L1, Ly, and MS-SSIM individually, or using a combination of any of the L; or L, norms with

MS-SSIM. For example, the combined loss of MSE and SSIM-based error is:

I = lIyse/r, + alps—ssim- (13)

Combining L; with MS-SSIM is performed in the same fashion. In the current experiments we
set A; = 0.5, and & = 10 to balance the error ranges. The Gaussian window standard deviations were
determined experimentally and set to 01 = 1 and 0, = 3, for a window of size 7 x 7 pixels.

7. Experiments and Results

For all experiments, we relied on the RGB-NIR Scene Dataset [35] to train and compare different
models. Approximately 75% of the images in the dataset were reserved for training, and the remaining
25% for validation purposes. For a final evaluation and comparison with the literature we relied on
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three additional, public datasets of RGB and NIR images: The Freiburg Forest Dataset [36], IVRG [37],
and OMSIV [38].

To investigate and evaluate the influence of each proposed data sampling strategy, as well as the
training objective functions, four different, controlled experiments were carried out: (1) Evaluation of
the optimal distance metric for clustering-based instance selection (Section 4.2); (2) evaluation of the
optimal error metric for adaptive sampling, (Section 4.3); (3) evaluation of the optimal loss function
for training the network for demosaicing (Section 6); and (4) comparative evaluation of the proposed
strategies. Finally, a model according to the best performing approach will be trained.

For a controlled study, we attempted to make the experimental conditions equal, by minimizing
differences in initialization and hyper-parameters. Therefore, the parameters of the neural network
(convolution filters and biases) were randomly initialized and stored, with the goal of being re-used as
an initial hypothesis for all experiments. Moreover, the number of training samples per epoch was fixed
to 2500 patches with a size of 64 x 64 x 4. The models were optimized using the Adam optimizer [39],
with a learning rate of 10~3, weight decay of 10~2, and batch size of 25. The comparative experiments
were carried out for 50 epochs and stopped early, since we are predominantly interested in the trend of
the learning curves. The final model will be fully trained until convergence.

The experiments performed in this study are small-scale, due to the limited number of images
in the dataset. Training with more samples from the same set of images may add redundancy,
without any significant added information. Moreover, the difference between the random samples and
the optimized samples will become smaller, making the comparison less conclusive. Nevertheless,
we expect that the conclusions from the small-scale experiments can be extrapolated for large-scale
datasets and intend to investigate this in the future.

7.1. Optimal Distance Metric for Clustering-Based Instance Selection

As explained in Section 4.2, the training dataset is obtained by clustering a large pool of randomly
selected patches from the training images. The initial set of random patches S contains 50,000 samples.
By hierarchically applying k-means, the samples are clustered into two subsets, and recursively
continue to be divided until any of the stopping criteria is met. In this experiment, the cluster size was
limited to 50, and the variance threshold adjusted so that the number of clusters was approximately
2500. Out of them, exactly 2500 were selected for a controlled comparison. For each distance metric
tested, a different variance threshold was selected. The centers of the clusters form L.

Different datasets L. were created using four different distance metrics in the clustering
algorithm: MSE, cityblock distance, cosine distance, and correlation-based distance. The motivation to
include cosine and correlation-based distance metrics in the evaluation was inspired by the spectral
reconstruction techniques [17-19].

In Figure 7, the learning curves of the models trained with each dataset are compared. The y-axis
denotes the average PSNR between the ground truth patches and the reconstructed patches of the
validation set. The results of this experiment indicate that in the current framework, the choice of
distance metric does not have a noteworthy influence on the training performance. Nevertheless,
the mean squared error performs slightly better than the other distance metrics in the earlier
training stages.

We suspect that the similarity in the results comes from the fact that the training process does not
critically depend on the actual cluster properties, if the selected center samples are sufficiently diverse.
Another reason could be that drawing samples from a limited number of training images results
in overlap between the datasets. Furthermore, there is a close connection between the cosine and
correlation distances with the Euclidean (L;) distance. Both cosine and correlation distances perform
normalization based on the assumption that the vectors lie in the Euclidean space. Finally, by dividing
the clusters based on their within-cluster variance, the algorithm tends to be biased towards the
L, distance.
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Figure 7. Evaluation of the effect of different distance metrics for data clustering. The experiments
show no significant impact of the choice of distance metric on training accuracy.

7.2. Optimal Error Metric for Adaptive Instance Selection

For the second instance selection strategy, we investigated the impact of the error metric on
the training performance. The probability of sampling new training patches from various locations
in the training images is proportional to the reconstruction error in those locations. For each pixel,
the average error is calculated based on its local neighborhood (Section 4.3).

The motivation to compare different error metrics comes from the variability in metrics used as
evaluation criteria in the demosaicing literature [9,20]. Additionally, for multi-spectral reconstruction,
paper [18] implies that the differences between multi-spectral signals can be measured more effectively
with the Chebyshev distance.

In this experiment we evaluated five different error metrics: MSE, SSIM, Chebyshev distance,
cityblock distance, and PSNR. Since PSNR and SSIM describe the similarity between two inputs,
the probability for the selection of new samples is with inverse proportion.

Figure 8 shows the learning curves for each of the error metrics that were investigated.
Interestingly, SSIM scores lower than the other metrics on this graph, while the other metrics tend to
be more similar. The main differences are noticeable in the earlier training stages, while the learning
curves reach the same level in the later phase. PSNR performs slightly better than the other metrics,
which is not surprising since performance is also measured with PSNR. Furthermore, the small
difference between MSE and PSNR could be a result of the normalization with respect to the peak
value in the calculation of PSNR.

On the other hand, the lower scores of SSIM indicate that focusing only on examples with textures
and structures that are difficult to reconstruct is not the optimal strategy for training. The reason may be
in the difference between metrics such as MSE or PSNR that estimate absolute errors and whole SSIM is
designed to measure perceptual similarity and describes perceived changes in structural information.

7.3. Optimal Loss Function for Training the Demosaicing Network

In the previous two experiments, the training loss function was the standard MSE. With the third
experiment, the goal is to investigate the effectiveness of other loss functions as well, motivated by the
conclusions in [9]. The loss functions evaluated include MSE, L1, MS-SSIM, and the combinations of
MSE with MS-SSIM and L; with MS-SSIM (Section 6). For this experiment we reverted to the uniform
subsampling for computational efficiency.
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In Figure 9, we present the learning curves of training with different loss functions, evaluated
according to PSNR on the validation set. In this case, 100 training epochs per model were completed,
so that the convergence using different losses can be observed on a longer scale. Interestingly, in the
beginning the model trained using L; (blue, dashed curve) reached higher PSNR faster than the one
using Ly (red, dashed curve). After the first 50 epochs, the model trained using L, continued to
improve and converged to a more optimal solution.
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Figure 8. Evaluation of different error metrics for adaptive data selection. The numerical error metrics
do not significantly affect the quality of the generated dataset. SSIM as a perceptual metric pefrorms
slightly worse, due to the differences in the definition of image quality between SSIM and PSNR.
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Figure 9. Evaluation of different loss functions for training a demosaicing network. A combined loss
improves training speed, compared to minimizing each metric individually. MS-SSIM is sensitive to
image details and can converge to a subpoptimal solution with respect to PSNR.
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The model trained using MS-SSIM corresponds to the green curve in Figure 9. It converged earlier
and to a suboptimal solution. From the visual inspection of the results, one explanation could be that
the colors in the reconstructed images appear washed-out, resulting in a low PSNR. Since SSIM is
designed to focus on image structure and is not very sensitive to color shifts in flat areas, this is not
a surprising result.

The combinations of L; and L, with MS-SSIM are represented with the full lines in the
corresponding colors. As Figure 9 shows, the combined loss noticeably improved the training speed,
compared to minimizing each metric individually. This experiment also shows that SSIM complements
well the standard loss metrics for the problem of demosaicing.

From the conclusions of paper [9] and from our analysis, we suppose this may be due to several
reasons. For example, MSE leads to accurate color reconstruction, however it may get stuck in a local
minimum. On the other hand, due to its multi-scale nature, MS-SS5IM helps in a more accurate
reconstruction around edges.

Figure 10 shows an example obtained with models trained with the two types of loss functions.
As shown, the main differences between the two outputs were found around the edges in the image.
Visually, there were small noticeable differences along the thin, repetitive lines along the base, and the
top of the roofs, where aliasing was reduced by the mixed loss.

Output of training usin,
32.71dB

MSE Output of training using MSE + SSIM Absolute difference
. 33.16 dB = s

Figure 10. Effects of training with different loss functions (left: mean squared error (MSE),
middle: combination of MSE and structural similarity (SSIM) loss), mostly prominent around object
edges (right).

7.4. Comparative Evaluation of the Proposed Strategies

As a final comparative experiment, we compare the proposed strategies against each other,
and against a baseline which is uniform sampling. Apart from the training dataset, all other aspects of
the training are identical.

In Figure 11 we present a comparison of the learning curves during 100 epochs, obtained with the
best performing variant of each data selection procedure. For time efficiency, MSE alone was used as
a loss function. The reconstruction quality was measured by PSNR on the validation set. The steeper
the learning curve, the faster the network learned, and the higher the curve, the better the accuracy of
the model.

Compared to uniform sampling, the proposed strategies clearly produced more optimal datasets
with which the model could efficiently be trained. In the early stages, the difference in PSNR was
considerable, which shows the effectivenes of a carefully optimized dataset.

Even in the intermediate training stages, the proposed approaches showed better performance
than the baseline. For example, to reach PSNR of 29 dB, it took 100 epochs for the random selection
model, 80 for the clustering based approach, and 62 for the model trained by adaptive sampling.

The curves became close in the later traning stages, which can be explained by the limited dataset
availability in the current setup. Due to randomness in choosing samples in each epoch, after many
iterations the model would encounter many different examples from the training images, increasing
the overlap between the different datasets.
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Figure 11. Evaluation of the two proposed strategies (clustering-based and adaptive sampling) against
a uniform random sampling baseline. The proposed strategies clearly improve the training efficiency.

7.5. Dataset Generation Complexity

The main conclusion from the previous experiments is that a careful selection of informative
training samples does positively influence the required number of training iterations and accuracy.

Another valuable evaluation is the time complexity for generating the datasets. The goal was to
estimate how scalable the proposed ideas were with the growing availability of the dataset. Since we
focused on improving the training speed, the dataset creation process should not significantly add to
the total training time.

In Figure 12 we compared the time required to create each type of dataset, with the increasing
dataset size. In each test, the pool of potential candidate patches was linearly increased, and the target
number of samples was set to 5% of that pool. The goal was to evaluate the processing time of the
proposed approaches, with respect to increasing data availability. The presented results averaged from
3 repetitions of the same experiment.

The absolute running times in this experiment depend on several factors, including the optimality
of the implementation and the processing hardware. For example, in the clustering-based approach,
with our current implementation, around 78% of the processing time was spent on feature extraction,
and the rest on clustering. On the other hand, the patch evaluation in the adaptive sampling was
carried out on the GPU, in batches of 1000 patches.

Therefore, we are more interested in the slopes of the lines presented in Figure 12. As expected,
the fastest approach was random sampling (blue line) since the only operation was cropping from
random locations. Its running time linearly depended on the number of images and lied in the order
of [1073,1074] seconds. The time required for clustering-based data selection increased significantly
faster with the increase of data (red lines). To get a more complete analysis, we separately provided
the time required only to cluster the data (dashed line), and the total processing time of the approach,
including feature calculation (full line). With a faster feature extraction method, the approach could
become time efficient. The adaptive sampling (orange line) required demosaicing all patches in the
pool before deciding which ones to sample, which is also a time-consuming operation.

Nevertheless, the total processing time of one epoch should be considered when choosing a data
selection approach. In some cases, it may be more beneficial to train with a larger, randomly sampled
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dataset rather than to dedicate the same amount of time for pre-processing. On the other hand,
a well-defined training set would result in faster convergence and fewer training epochs.

60
s random sampling
= feat. ext. + clustering
== = sample clustering
50 + adaptive sampling
40 +
@
[0)
£
o 30
c
k%)
0
Q
)
o
6 20
10 |- - -
— —
_ - —
0= . . . . . . . . . . . /
0.1 04 07 1 13 16 19 22 25 28 81 34 37 4
# of patches in the original set x 104

Figure 12. Time required to process and subsample an increasing number of candidate patches, by each
data sampling strategy.

7.6. Demosaicing Performance

Finally, using each of the two proposed approaches, a different model was trained until
convergence. The hyperparameters were tuned for each model individually, to reach best performance.
Based on the conclusions from the experiments explained above, the final strategies for the proposed
approaches are the following:

1. Hierarchical k-means clustering is applied to a large pool of potential samples. L, is used as
a distance metric to form clusters in Euclidean space. The loss function that is minimized is the
combined loss of MSE and MS-SSIM. We will denote the model that corresponds to this strategy
as data selection-based multi-spectral demosaicing using clusteing (DSMD-C).

2. Adaptive data sampling is carried out based on the MSE error metric for consistency with the
training loss and due to the negligible difference with the other possibilities explored in the
experiment. The loss function is also the combined loss of MSE and MS-SSIM. This model will be
denoted as data selection-based multi-spectral demosaicing using adaptive sampling (DSMD-A).

To evaluate the performances objectively, we compared the reconstruction quality with existing
demosaicing methods for RGB and NIR images from the literature. The selection of algorithms for
comparison was limited to methods with publicly available code that used the uniform pattern, so as
to ensure the experiment could be controlled. However, we expect that with powerful deep learning
algorithms, the reliance on the pattern layout will not be strong [40], if the patterns have the same
spectral sampling density.

In Table 3 we present the PSNR and SSIM scores calculated between the reconstructed images
and their corresponding ground truth images. We carried out tests on three publicly available datasets:
Freiburg Forest Dataset [36], IVRG [37], and OMSIV [38]. In the table, the methods in the first
group are classical methods from the literature with publicly available codes. The method denoted
as RGB-NIR-Unet is the model proposed in our prior work [8]. As indicated, this model is larger
in number of trainable parameters compared to the models proposed in this paper. In our prior
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work, the training strategy differs from the current one in terms of dataset size per epoch and the
hyperparameters. Therefore, the training performance per number of epochs is not directly comparable.

Table 3. Comparison of the performance of the proposed method with existing classical demosaicing

methods from the literature.

Model PSNR [dB]/SSIM
Freiburg [36] IVRG[37] OMSIV [38]
Bilinear 41.19/0.9740  30.42/0.8999  30.57/0.9067
Binary-tree edgde sensing demosaicing (BTES) [41] 40.94/0.9714  30.42/0.8968 29.23/0.8805
Least-square, multispectral demosaicing (LMSD) [42] 40.48/0.9654 31.42/0.8944 29.27/0.8656
Multisp. adaptive residual interpolation (MS-ARI) [3] 41.85/0.9787 33.01/0.9419 31.23/0.9261
Monno (uniform pattern [43]) 41.12/0.9688  32.39/0.9308 30.34/0.9007
RGB-NIR-Unet [8] (1.45 M param., prior work) 44.20/0.9850 34.87/0.9531 33.52/0.9424
Proposed DSMD-C (clusters, L2 + SSIM, 0.5 M param.) 43.27/09813 34.31/0.9474 33.24/0.9397
Proposed DSMD-A (adaptive, L2 + SSIM, 0.5 M param.)  44.21/0.9850 34.72/0.9516 33.49/0.9438

The best performances of the two approaches proposed in this paper are listed in the last two
rows of Table 3. With only 35% of the total number of parameters compared to [8] (a decrease of 65%
of the number of weights and biases), the new models achieved a similar reconstruction accuracy.
Moreover, they clearly outperformed existing classical state-of-the-art methods.

Freiburg Forest Dataset contains 136 images with a size of 480 x 860, with natural scenes and
fewer strong, high-frequency details due to the scene type. This makes the images easier to reconstruct,
which is reflected in the high PSNR values that algorithms achieved on this dataset. IVRG contains
25 test images (512 x 768) with more variable and textured content, including images of charts often
used for testing performance limits. Therefore, IVRG is more challenging for demosaicing algorithms.
OMSIV contains 533 images of size 256 x 256, and the difficulty of this dataset comes from poorer
image quality and the presence of noise.

For visual inspection, in Figure 13 we have selected representative regions from test images in
the IVRG dataset, and the reconstruction results with our DSMD-A model. We show examples of
some of the best samples, some examples with typical, median quality, and some of the ones with the
lowest PSNR. Smooth regions without strong, saturated colors are the easiest to reconstruct and they
comprise the set of best reconstructed samples. The examples with median quality consist of regions
with typical textures and edges. In these examples too, there are no noticeable reconstruction artifacts.
The main challenges remain to be fine, repetitive textures. However, this is one of the fundamental
limitations for all demosaicing methods. Examples such as the ones that were selected are less common
in typical datasets. Still, even in those regions, the distracting artifacts are reduced in comparison with
other methods, which is confirmed by the PSNR and SSIM values in Table 3.
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Figure 13. Selected crops from test images with the best, median, and worst performance.

8. Conclusions and Future Work

Deep learning models are complex, with enormous number of trainable parameters. To train them
robustly it is necessary to provide sufficient training data, with a lot of variability. This makes deep
learning highly time-consuming, and the information redundancy can have adverse effects on training.
Therefore, strategies for instance selection and data reduction are gaining increasing interest for
numerous machine learning problems. In this paper we investigated different approaches for optimal
dataset subsampling to train a deep learning model for multispectral demosaicing. Two general
strategies were considered.

The first proposed strategy optimized the training subset by maximizing the variability among
the selected samples. To obtain a variable and representative training set, a hierarchical data clustering
was adopted. The set of cluster centers obtained by k-means was a subset of high variance. Therefore,
it maximized the magnitude of the model change with each parameter update and led to faster and
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more optimal convergence. Another benefit was that with large datasets, this technique could be
carried out off-line and with pre-defined features based on domain knowledge.

For efficiency and to find more optimal clusters, we performed hierarchical clustering,
with k-means (k = 2) applied in each branch of the space-partitioning tree. Based on our experiments,
we found this technique not overly sensitive to the distance metric used in clustering in terms of final
dataset quality.

The second proposed strategy was adaptive sampling and focused on self-guided training, where
the samples were selected based on their reconstruction error. The model could choose the most
interesting samples and improve the data representation faster and more precisely.

In the experiments we evaluated different error metrics to measure the difference between the
reconstructed and reference images, based on which samples were selected. The learning curves
that were compared indicate that for optimizing PSNR, using SSIM as an error metric was not
optimal. This may be due to the design of SSIM as a measure perceptual similarity and therefore
not being consistent with metrics such as PSNR. Another explanation is that focusing entirely on the
reconstruction quality of high-frequency details can lead to overfitting.

In a controlled experiment, we compared the two proposed techniques against a baseline which
is uniform random sampling. The results showed that both methods performed well, with adaptive
sampling reaching a higher PSNR faster than the clustering-based approach.

Additionally, motivated by the findings in the literature, we tested several loss functions for
training. The experiments indicated that combining the mean squared error with a loss function based
on the structural similarity index benefited the training even further.

Finally, we trained a model based on the conclusions from the previous experiments and chose
the best performing variants. Specifically, the new model was trained using the adaptive sampling
strategy, and with a loss function which is a combination of MSE and MS-SSIM. Compared to our
prior work, we achieved a comparable reconstruction accuracy on three public datasets, with a model
reduced in size for 65%, retaining only 35% of the total number of parameters.

In future work, we will focus on real multispectral data that will provide interesting opportunities
to further investigate the proposed concepts. A more comprehensive solution in the image
reconstruction pipeline will consider the spectral sensitivity of the sensor to each wavelength, as well
as the spectral correlation between channels. Furthermore, we will experiment with combining
the strengths of the proposed approaches, depending on the size of the available training image
datasets. An interesting research direction could be to form partitions in a large data space and based
on the reconstruction error of representative samples, to sample more densely in the more difficult
partitions. Finally, we will focus on larger datasets and apply the findings in this paper to other deep
learning-based computer vision problems.
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