157 research outputs found

    Spectral Heart Rate Variability analysis using the heart timing signal for the screening of the Sleep Apnea–Hypopnea Syndrome

    Get PDF
    The final publication is available http://dx.doi.org/10.1016/j.compbiomed.2016.01.023[Abstract] Some approaches have been published in the past using Heart Rate Variability (HRV) spectral features for the screening of Sleep Apnea–Hypopnea Syndrome (SAHS) patients. However there is a big variability among these methods regarding the selection of the source signal and the specific spectral components relevant to the analysis. In this study we investigate the use of the Heart Timing (HT) as the source signal in comparison to the classical approaches of Heart Rate (HR) and Heart Period (HP). This signal has the theoretical advantage of being optimal under the Integral Pulse Frequency Modulation (IPFM) model assumption. Only spectral bands defined as standard for the study of HRV are considered, and for each method the so-called LF/HF and VLFn features are derived. A comparative statistical analysis between the different resulting methods is performed, and subject classification is investigated by means of ROC analysis and a Naïve-Bayes classifier. The standard Apnea-ECG database is used for validation purposes. Our results show statistical differences between SAHS patients and controls for all the derived features. In the subject classification task the best performance in the testing set was obtained using the LF/HF ratio derived from the HR signal (Area under ROC curve=0.88). Only slight differences are obtained due to the effect of changing the source signal. The impact of using the HT signal in this domain is therefore limited, and has not shown relevant differences with respect to the use of the classical approaches of HR or HP.Xunta de Galicia; CN2011/007Ministerio de Economía y Competitividad; TIN2013-40686-PXunta de Galicia; CN2012/21

    Noninvasive autonomic nervous system assessment in respiratory disorders and sport sciences applications

    Get PDF
    La presente tesis está centrada en el análisis no invasivo de señales cardíacas y respiratorias, con el objetivo de evaluar la actividad del sistema nervioso autónomo (ANS) en diferentes escenarios, tanto clínicos como no clínicos. El documento está estructurado en tres partes principales. La primera parte consiste en una introducción a los aspectos fisiológicos y metodológicos que serán cubiertos en el resto de la tesis. En la segunda parte, se analiza la variabilidad del ritmo cardiaco (HRV) en el contexto de enfermedades respiratorias, concretamente asma (tanto en niños como en adultos) y apnea del sueño. En la tercera parte, se estudian algunas aplicaciones novedosas del análisis de señales cardiorespiratorias en el campo de las ciencias del deporte. La primera parte está compuesta por los capítulos 1 y 2. El capítulo 1 consiste en una extensa introducción al funcionamiento del sistema nervioso autónomo y las características de las bioseñales analizadas a lo largo de la tesis. Por otro lado, se aborda la patofisiología del asma y la apnea del sueño, su relación con el funcionamiento del ANS y las estrategias de diagnóstico y tratamiento de lasmismas. El capítulo concluye con una introducción a la fisiología del ejercicio, así como al interés en la estimación del volumen tidal y del umbral anaeróbico en el campo de las ciencias del deporte.En cuanto al capítulo 2, se presenta un marco de trabajo para el análisis contextualizado de la HRV. Después de una descripción de las técnicas de evaluación y acondicionamiento de la señal de HRV, el capítulo se centra en el efecto de los latidos ectópicos, la arritmia sinusal respiratoria y la frecuencia respiratoria en el análisis de la HRV.Además, se discute el uso de un índice para la evaluación de la distribución de la potencia en los espectros de HRV, así como diferentes medidas de acoplo cardiorespiratorio.La segunda parte está compuesta por los capítulos 3, 4 y 5, todos ellos relacionados con el análisis de la HRV en enfermedades respiratorias. Mientras que los capítulos 3 y 4 están centrados en asma infantil y en adultos respectivamente, el capítulo 5 aborda la apnea del sueño. El asma es una enfermedad respiratoria crónica que aparece habitualmente acompañada por una inflamación de las vías respiratorias. Aunque afecta a personas detodas las edades, normalmente se inicia en edades tempranas, y ha llegado a constituir una de las enfermedades crónicasmás comunes durante la infancia. Sin embargo, todavía no existe un método adecuado para el diagnóstico de asma en niños pequeños. Por otro lado, el rol fundamental que desempeña el sistema nervioso parasimpático en el control del tono bronco-motor y la bronco-dilatación sugiere que la rama parasimpática del ANS podría estar implicada en la patogénesis del asma. De estemodo, en el capítulo 3 se evalúa el ANS mediante el análisis de la HRV en dos bases de datos diferentes, compuestas por niños en edad pre-escolar clasificados en función de su riesgo de desarrollar asma, o de su condición asmática actual. Los resultados del análisis revelaron un balance simpáticovagal reducido y una componente espectral de alta frecuencia más picuda en aquellos niños con un mayor riesgo de desarrollar asma. Además, la actividad parasimpática y el acoplo cardiorespiratorio se redujeron en un grupo de niños con bajo riesgo de asma al finalizar un tratamiento para bronquitis obstructiva, mientras que estos permanecieron inalterados en aquellos niños con una peor prógnosis.A diferencia de los niños pequeños, en el caso de adultos el diagnóstico de asma se realiza a través de una rutina clínica bien definida. Sin embargo, la estratificación de los pacientes en función de su grado de control de los síntomas se basa generalmente en el uso de cuestionarios auto-aplicados, que pueden tener un carácter subjetivo. Por otro lado, la evaluación de la severidad del asma requiere de una visita hospitalaria y de incómodas pruebas, que no pueden aplicarse de una forma continua en el tiempo. De este modo, en el capítulo 4 se estudia el valor de la evaluación del ANS para la estratificación de adultos asmáticos. Para ello, se emplearon diferentes características extraídas de la HRV y la respiración, junto con varios parámetros clínicos, para entrenar un conjunto de algoritmos de clasificación. La inclusión de características relacionadas con el ANS para clasificar los sujetos atendiendo a la severidad del asma derivó en resultados similares al caso de utilizar únicamente parámetros clínicos, superando el desempeño de estos últimos en algunos casos. Por lo tanto, la evaluación del ANS podría representar un potencial complemento para la mejora de la monitorización de sujetos asmáticos.En el capítulo 5, se analiza la HRV en sujetos que padecen el síndrome de apnea del sueño (SAS) y comorbididades cardíacas asociadas. El SAS se ha relacionado con un incremento de 5 veces en el riesgo de desarrollar enfermedades cardiovasculares (CVD), que podría aumentar hasta 11 veces si no se trata convenientemente. Por otro lado, una HRV alterada se ha relacionado independientemente con el SAS y con numerosos factores de riesgo para el desarrollo de CVD. De este modo, este capítulo se centra en evaluar si una actividad autónoma desbalanceada podría estar relacionada con el desarrollo de CVD en pacientes de SAS. Los resultados del análisis revelaron una dominancia simpática reducida en aquellos sujetos que padecían SAS y CVD, en comparación con aquellos sin CVD. Además, un análisis retrospectivo en una base de datos de sujetos con SAS que desarollarán CVD en el futuro también reveló una actividad simpática reducida, sugiriendo que un ANS desbalanceado podría constituir un factor de riesgo adicional para el desarrollo de CVD en pacientes de SAS.La tercera parte está formada por los capítulos 6 y 7, y está centrada en diferentes aplicaciones del análisis de señales cardiorespiratorias en el campo de las ciencias del deporte. El capítulo 6 aborda la estimación del volumen tidal (TV) a partir del electrocardiograma (ECG). A pesar de que una correcta monitorización de la actividad respiratoria es de gran interés en ciertas enfermedades respiratorias y en ciencias del deporte, la mayor parte de la actividad investigadora se ha centrado en la estimación de la frecuencia respiratoria, con sólo unos pocos estudios centrados en el TV, la mayoría de los cuales se basan en técnicas no relacionadas con el ECG. En este capítulo se propone un marco de trabajo para la estimación del TV en reposo y durante una prueba de esfuerzo en tapiz rodante utilizando únicamente parámetros derivados del ECG. Errores de estimación del 14% en la mayoría de los casos y del 6% en algunos sugieren que el TV puede estimarse a partir del ECG, incluso en condiciones no estacionarias.Por último, en el capítulo 7 se propone una metodología novedosa para la estimación del umbral anaeróbico (AT) a partir del análisis de las dinámicas de repolarización ventricular. El AT representa la frontera a partir de la cual el sistema cardiovascular limita la actividad física de resistencia, y aunque fue inicialmente concebido para la evaluación de la capacidad física de pacientes con CVD, también resulta de gran interés en el campo de las ciencias del deporte, permitiendo diseñar mejores rutinas de entrenamiento o para prevenir el sobre-entrenamiento. Sin embargo, la evaluación del AT requiere de técnicas invasivas o de dispositivos incómodos. En este capítulo, el AT fue estimado a partir del análisis de las variaciones de las dinámicas de repolarización ventricular durante una prueba de esfuerzo en cicloergómetro. Errores de estimación de 25 W, correspondientesa 1 minuto en este estudio, en un 63% de los sujetos (y menores que 50 W en un 74% de ellos) sugieren que el AT puede estimarse de manera no invasiva, utilizando únicamente registros de ECG.<br /

    Impact of the PPG sampling rate in the pulse rate variability indices evaluating several fiducial points in different pulse waveforms

    Get PDF
    The main aim of this work is to study the effect of the sampling rate of the photoplethysmographic (PPG) signal for pulse rate variability (PRV) analysis in the time and frequency domains, in stationary conditions. Forehead and finger PPG signals were recorded at 1000 Hz during a rest state, with red and infrared wavelengths, simultaneously with the electrocardiogram (ECG). The PPG sampling rate has been reduced by decimation, obtaining signals at 500 Hz, 250 Hz, 125 Hz, 100 Hz, 50 Hz and 25 Hz. Five fiducial points were computed: apex, up-slope, medium, line-medium and medium interpolate point. The medium point is located in the middle of the up-slope of the pulse. The medium interpolate point is a new proposal as fiducial point that consider the abrupt up-slope of the PPG pulse, so it can be recovered by linear interpolation when the sampling rate is reduced. The error performed in the temporal location of the fiducial points was computed. Pulse period time interval series were obtained from all PPG signals and fiducial points, and compared with the RR intervals obtained from the ECG. Heart rate variability and PRV signals were estimated and classical time and frequency domain indices were computed. The results showed that the medium interpolate point of the PPG pulse was the most accurate fiducial point under different PPG morphologies and sensor locations, when sampling rate was reduced. The error in the temporal location points and in the estimation of time and frequency indices was always lower when medium interpolate point was used for all considered sampling rates and for both signals, finger and forehead. The results also showed that the sampling rate of PPG signal can be reduced up to 100 Hz without causing significant changes in the time and frequency indices, when medium interpolate point was used as fiducial point. Therefore, the use of the medium interpolate point is recommended when working at low sampling rates

    The 38th International Congress on Electrocardiology

    Get PDF

    수면 호흡음을 이용한 폐쇄성 수면 무호흡 중증도 분류

    Get PDF
    학위논문 (박사)-- 서울대학교 융합과학기술대학원 융합과학부, 2017. 8. 이교구.Obstructive sleep apnea (OSA) is a common sleep disorder. The symptom has a high prevalence and increases mortality as a risk factor for hypertension and stroke. Sleep disorders occur during sleep, making it difficult for patients to self-perceive themselves, and the actual diagnosis rate is low. Despite the existence of a standard sleep study called a polysomnography (PSG), it is difficult to diagnose the sleep disorders due to complicated test procedures and high medical cost burdens. Therefore, there is an increasing demand for an effective and rational screening test that can determine whether or not to undergo a PSG. In this thesis, we conducted three studies to classify the snoring sounds and OSA severity using only breathing sounds during sleep without additional biosensors. We first identified the classification possibility of snoring sounds related to sleep disorders using the features based on the cyclostationary analysis. Then, we classified the patients OSA severity with the features extracted using temporal and cyclostationary analysis from long-term sleep breathing sounds. Finally, the partial sleep sound extraction, and feature learning process using a convolutional neural network (CNN, or ConvNet) were applied to improve the efficiency and performance of previous snoring sound and OSA severity classification tasks. The sleep breathing sound analysis method using a CNN showed superior classification accuracy of more than 80% (average area under curve > 0.8) in multiclass snoring sounds and OSA severity classification tasks. The proposed analysis and classification method is expected to be used as a screening tool for improving the efficiency of PSG in the future customized healthcare service.Chapter 1. Introduction ................................ .......................1 1.1 Personal healthcare in sleep ................................ ..............1 1.2 Existing approaches and limitations ....................................... 9 1.3 Clinical information related to SRBD ................................ .. ..12 1.4 Study objectives ................................ .........................16 Chapter 2. Overview of Sleep Research using Sleep Breathing Sounds ........... 23 2.1 Previous goals of studies ................................ ................23 2.2 Recording environments and related configurations ........................ 24 2.3 Sleep breathing sound analysis ................................ ...........27 2.4 Sleep breathing sound classification ..................................... 35 2.5 Current limitations ................................ ......................36 Chapter 3. Multiple SRDB-related Snoring Sound Classification .................39 3.1 Introduction ................................ .............................39 3.2 System architecture ................................ ......................41 3.3 Evaluation ................................ ...............................52 3.4 Results ................................ ..................................55 3.5 Discussion ................................ ...............................59 3.6 Summary ................................ ..................................63 Chapter 4. Patients OSA Severity Classification .............................65 4.1 Introduction ................................ .............................65 4.2 Existing Approaches ................................ ......................69 4.3 System Architecture ................................ ......................70 4.4 Evaluation ................................ ...............................85 4.5 Results ................................ ..................................87 4.6 Discussion ................................ ...............................94 4.7 Summary ................................ ..................................97 Chapter 5. Patient OSA Severity Prediction using Deep Learning Techniques .....99 5.1 Introduction ................................ .............................99 5.2 Methods ................................ ..................................101 5.3 Results ................................ ..................................109 5.4 Discussion ................................ ...............................115 5.5 Summary ................................ ..................................118 Chapter 6. Conclusions and Future Work ........................................120 6.1 Conclusions ................................ ..............................120 6.2 Future work ................................ ..............................127Docto

    Cardiac Arrhythmias

    Get PDF
    The most intimate mechanisms of cardiac arrhythmias are still quite unknown to scientists. Genetic studies on ionic alterations, the electrocardiographic features of cardiac rhythm and an arsenal of diagnostic tests have done more in the last five years than in all the history of cardiology. Similarly, therapy to prevent or cure such diseases is growing rapidly day by day. In this book the reader will be able to see with brighter light some of these intimate mechanisms of production, as well as cutting-edge therapies to date. Genetic studies, electrophysiological and electrocardiographyc features, ion channel alterations, heart diseases still unknown , and even the relationship between the psychic sphere and the heart have been exposed in this book. It deserves to be read

    Combining wearables and nearables for patient state analysis

    Get PDF
    Recently, ambient patient monitoring using wearable and nearable sensors is becoming more prevalent, especially in the neurodegenerative (Rett syndrome) and sleep disorder (Obstructive sleep apnea) populations. While wearables capture localized physiological data such as pulse rate, wrist acceleration and brain signals, nearables record global passive data including body movements, ambient sound and environmental variables. Together, wearables and nearables provide a more comprehensive understanding of the patient state. The processing of data captured from wearables and nearables have multiple challenges including handling missing data, time synchronization between sensors and developing data fusion techniques for multimodal analysis. The research described in this thesis addresses these issues while working on data captured in the wild. First, we describe a Rett syndrome severity estimator using a wearable biosensor and uncover physio-motor biomarkers. Second, we present the applications of an edge computing and ambient data capture system for home and clinical environments. Finally, we describe a transfer learning and multimodal data fusion based sleep-wake detector for a mixed-disorder elderly population. We show that combining data from wearables and nearables improves the performance of sleep-wake detection in terms of the F1-score and the Cohen’s kappa compared to the unimodal models.Ph.D

    Diagnosis of the sleep apnea-hypopnea syndrome : a comprehensive approach through an intelligent system to support medical decision

    Get PDF
    [Abstract] This doctoral thesis carries out the development of an intelligent system to support medical decision in the diagnosis of the Sleep Apnea-Hypopnea Syndrome (SAHS). SAHS is the most common disorder within those affecting sleep. The estimates of the disease prevalence range from 3% to 7%. Diagnosis of SAHS requires of a polysomnographic test (PSG) to be done in the Sleep Unit of a medical center. Manual scoring of the resulting recording entails too much effort and time to the medical specialists and as a consequence it implies a high economic cost. In the developed system, automatic analysis of the PSG is accomplished which follows a comprehensive perspective. Firstly an analysis of the neurophysiological signals related to the sleep function is carried out in order to obtain the hypnogram. Then, an analysis is performed over the respiratory signals which have to be subsequently interpreted in the context of the remaining signals included in the PSG. In order to carry out such a task, the developed system is supported by the use of artificial intelligence techniques, specially focusing on the use of reasoning mechanisms capable of handling data imprecision. Ultimately, it is the aim of the proposed system to improve the diagnostic procedure and help physicians in the diagnosis of SAHS.[Resumen] Esta tesis aborda el desarrollo de un sistema inteligente de apoyo a la decisión clínica para el diagnóstico del Síndrome de Apneas-Hipopneas del Sueño (SAHS). El SAHS es el trastorno más común de aquellos que afectan al sueño. Afecta a un rango del 3% al 7% de la población con consecuencias severas sobre la salud. El diagnóstico requiere la realización de un análisis polisomnográfico (PSG) en una Unidad del Sueño de un centro hospitalario. El análisis manual de dicha prueba resulta muy costoso en tiempo y esfuerzo para el médico especialista, y como consecuencia en un elevado coste económico. El sistema desarrollado lleva a cabo el análisis automático del PSG desde una perspectiva integral. A tal efecto, primero se realiza un análisis de las señales neurofisiológicas vinculadas al sueño para obtener el hipnograma, y seguidamente, se lleva a cabo un análisis neumológico de las señales respiratorias interpretándolas en el contexto que marcan las demás señales del PSG. Para lleva a cabo dicha tarea el sistema se apoya en el uso de distintas técnicas de inteligencia artificial, con especial atención al uso mecanismos de razonamiento con soporte a la imprecisión. El principal objetivo del sistema propuesto es la mejora del procedimiento diagnóstico y ayudar a los médicos en diagnóstico del SAHS.[Resumo] Esta tese aborda o desenvolvemento dun sistema intelixente de apoio á decisión clínica para o diagnóstico do Síndrome de Apneas-Hipopneas do Sono (SAHS). O SAHS é o trastorno máis común daqueles que afectan ao sono. Afecta a un rango do 3% ao 7% da poboación con consecuencias severas sobre a saúde. O diagnóstico pasa pola realización dunha análise polisomnográfica (PSG) nunha Unidade do Sono dun centro hospitalario. A análise manual da devandita proba resulta moi custosa en tempo e esforzo para o médico especialista, e como consecuencia nun elevado custo económico. O sistema desenvolvido leva a cabo a análise automática do PSG dende unha perspectiva integral. A tal efecto, primeiro realizase unha análise dos sinais neurofisiolóxicos vinculados ao sono para obter o hipnograma, e seguidamente, lévase a cabo unha análise neumolóxica dos sinais respiratorios interpretándoos no contexto que marcan os demais sinais do PSG. Para leva a cabo esta tarefa o sistema apoiarase no uso de distintas técnicas de intelixencia artificial, con especial atención a mecanismos de razoamento con soporte para a imprecisión. O principal obxectivo do sistema proposto é a mellora do procedemento diagnóstico e axudar aos médicos no diagnóstico do SAHS
    corecore