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SUMMARY

Modern patient care and therapeutics for neurological and sleep-disorder pop-

ulations rely on continuous and remote patient monitoring protocols [1, 2]. This

moves the patient care from hospitals to homes and therapy centers which allow

for long term monitoring at a lower cost. The improvements in sensor technologies

have resulted in low-cost, portable and reliable patient monitoring systems which

increasingly allow for remote and passive patient monitoring. These patient moni-

toring systems can be categorized as wearables (on-body) and nearables (off-body).

While wearables capture localized physiological data such as pulse rate, wrist ac-

celeration and brain signals, nearables record global passive data including body

movements, ambient sound and environmental variables. Together, wearables and

nearables provide a more comprehensive understanding of the patient state.

The processing of data captured from wearables and nearables have multiple

challenges including handling missing data, time synchronization between sensors

and data fusion techniques for multimodal analysis. The research described in

this thesis aims to address these issues while working on data captured in the

wild. We specifically focus on neurological (Rett syndrome) and sleep disorder

(Obstructive sleep apnea) cohorts to test the effectiveness of our methods. In

the first part of this dissertation, a wearable based disease severity estimator is

developed for Rett syndrome. The proposed method utilizes heart rate and chest-

wall acceleration data captured continuously using a wearable biosensor at the

comfort of the patients’ homes for long periods (at least two days). We provide

data cleaning, data imputing and feature extraction methods for such signals and

perform binary classification using a least absolute shrinkage and selection operator

(LASSO) model. By using the features that capture the interaction between heart

rate and body movements, this approach achieved a high classification performance

xx



with the area under the receiver operating curve (AUC) equal to 0.92. In the second

part of this dissertation, we develop an edge computing and ambient data capture

system for clinical and home environments. Using the data captured by this system,

we perform obstructive sleep apnea detection in a mixed-disorder elderly male

cohort of 32 patients using a logistic regression classifier. Further, we perform the

medical equipment alarm classification, a multi-class classification task, in silent

and noisy speech settings and obtain high accuracy using an XGBoost classifier.

Finally, we perform room-level geolocation of humans in a built environment using

the Bluetooth signal strength data captured by our system. The last part of this

dissertation focuses on methods to combine data from wearables and nearables to

asses patient state. We consider the problem of sleep-wake detection in a mixed-

disorder elderly male cohort using a wrist worn wearable and a video camera.

We capture photoplethysmogram (PPG), wrist acceleration and video based body

movements from 79 participants and derive features from each data modality.

We leverage transfer learning to perform sleep-wake detection from PPG and

a CatBoost classifier to perform multimodal sleep-wake detection. Among the

unimodal models, video based body movement model performs better than the

PPG and acceleration models in terms of κ. Combining all data modalities provides

the best sleep-wake detection performance.

The work described in this dissertaion provides foundational methods for cap-

turing, combining and analyzing data captured using wearables and nearables. The

methods presented can be extended for performing disease severity estimation and

patient state analysis in other disease cohorts for obtaining better understanding of

the patient physiology and behavior.
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CHAPTER 1

INTRODUCTION

Over the years, sensor technologies have played a critical role in patient monitor-

ing in clinical and home environments. Further, ambient patient monitoring using

wearable (on-body) and nearable (off-body) sensors is becoming more prevalent,

especially in the neurological and sleep disorder (NeuroSleep) populations [3, 4].

Traditional patient care which involves hospital visits, administering questionnaires,

and in-hospital monitoring in intensive care units and operation theaters do not suf-

fice for managing NeuroSleep cohorts. These disorders need long term monitoring

(up to several months) and dynamic care (real-time decision making and support)

that cannot be effectively provided by the traditional methods at low-cost. Further,

as shown in Figure 1.1, the daily behaviors and sleep patterns alter in NeuroSleep

cohorts compared to healthy normals. Moreover, each cohort presents a unique

challenge for their continuous monitoring.

Wearables, also known as on-body sensors have the advantage of being able to

collect high-resolution physiological signal data continuously and remotely. Among

other signals, wearables can collect electrocardiogram (ECG), electroencephalogram

(EEG) and three-axis acceleration. On the other hand, we have nearables that

can passively record signals related to human behavior and ambient environment

including human body movements, body pose, location, speech, acoustic noise such

as patient monitoring alarms, ambient temperature, ambient humidity and ambient

light intensity for long periods of time (at least several months). Thus, in this

dissertation, we describe methods for patient monitoring in NeuroSleep cohorts by

using data from wearables and nearables. There is much value to data captured by

both wearables and nearables; they are complimentary and combining them could
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Figure 1.1 Daily behavior and sleep patterns in health normals and patients suffer-
ing from neurological and sleep disorders differ and can be captured via continuous
montioring physiology and behaviors

improve patient monitoring. Thus, we developed techniques to independently

process the unimodal signals and to combine signals from wearables and nearables

to perform multimodal patient monitoring.

1.1 Thesis Statement

The thesis statement is as follows:

“The combination of wearables and nearables allows for patient monitoring in

diverse settings and could boost diagnostic power for patient state analysis. ”

1.2 Major Contributions

In this dissertation, we focused on three specific aims: (1) Wearable based disease

severity estimation in Rett syndrome; (2) Generalized patient state analysis from

nearables with applications in obstructive sleep apnea estimation; and (3) Com-

bining wearable and nearable data for sleep-wake detection in a mixed-disorder

2



Figure 1.2 The thesis overview illustrating the different project pipelines described
in this dissertation.

elderly male population.

(1) In the first aim of the thesis, we developed methods to perform disease severity

classification using a wearable. To demonstrate this, we performed Rett

syndrome severity classification using the ECG and three-axis acceleration

signals captured using the Biostamp®(MC10, Cambridge, MA, USA) nPoint

on-body sensor [5].

(2) In the second aim of the thesis, we built a Raspberry Pi-based hardware system

to capture, collect and archive signals corresponding to human behavior and

ambient environment. Further, we demonstrated the utility of this system via

the following experiments - (1) Obstructive Sleep Apnea OSA classification

using a passive infrared (PIR) sensor; (2) Medical equipment alarm note

classification using audio; (3) Geolocation of humans in a built environment;

(4) Ambient light logging; (5) Ambient temperature and humidity logging.

(3) Lastly, in the third aim, we developed a multimodal signal processing and

machine learning technique to combine the data captured using a wearable
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(Empatica E4) and a nearable (video-polysomnography (PSG)) to perform

sleep-wake detection.

The above contributions resulted in the following publications:

1.2.1 Journal articles

• Suresha, P.B., Hegde, C., Jiang, Z. and Clifford, G.D., 2022. An Edge Comput-

ing and Ambient Data Capture System for Clinical and Home Environments.

Sensors, 22(7), p.2511.

• Suresha, P.B., Robichaux, C.J., Cassim, T.Z., Garcı́a, P.S. and Clifford, G.D.,

2022. Raspberry Pi-Based Data Archival System for Electroencephalogram

Signals From the SedLine Root Device. Anesthesia & Analgesia, 134(2), pp.380-

388.

• Suresha, P.B., O’Leary, H., Tarquinio, D.C., Von Hehn, J. and Clifford, G.D.,

2022. Rett syndrome severity estimation with the BioStamp nPoint using

interactions between heart rate variability and body movement. PLOS One.

[in review]

• Suresha, P.B., Li, Q., Shah, A.J., Vaccarino, V., Bliwise, D. and Clifford, G.D.,

2022, Transfer learning and multimodal data fusion of on and off-body sen-

sors for sleep-wake detection. In Machine Learning for Health (PLMR) [in

submission]

1.2.2 Conference articles

• Suresha, P.B., Cakmak, A.S., Da Poian, G., Shah, A.J., Vaccarino, V., Bliwise,

D. and Clifford, G.D., 2019, May. Obstructive Sleep Apnea Classification in a

Mixed-Disorder Elderly Male Population Using a Low-Cost Off-Body Move-
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ment Sensor. In 2019 IEEE EMBS International Conference on Biomedical &

Health Informatics (BHI) (pp. 1-4). IEEE.

In Figure 1.2 we present the various stages of all the thesis objectives. The

nearables based patient state analysis methods are further divided into two sub-

parts: (1) OSA detection and (2) Passive ambient monitoring.

1.3 Scope and organization of the dissertation

The dissertation is organized as follows. In chapter 2, we present relevant

literature on wearables and nearables, the missing data problem, physiology in

Rett syndrome, non-contact monitoring systems, quantifying body movements in

OSA and sleep-wake detection. Chapter 3 focuses on the Rett syndrome severity

classification problem, describing the data, methodology, results and conclusion.

Further, it provides a detailed discussion on the measurement of physio-motor

objective measures in Rett syndrome. Chapter 4 dives deep into the description

of the edge-computing and ambient data capture system. Further, it presents five

applications for data captured using nearables and includes the details regarding

the OSA detection experiment. In chapter 5, we present the utility of video-based

body movement features for sleep-wake detection in a mixed-disorder elderly male

cohort. We use transfer learning to obtain improved sleep-wake detectors from

wearables. Further, we provide methods to combine wearable and nearable data

for improved sleep-wake detection. Finally, in Chapter 6, we provide concluding

remarks and future directions.
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CHAPTER 2

BACKGROUND AND RELATED WORK

The famous saying, ”Standing on the shoulders of the giants”, suggests that any

scientific progress can only be made by using the understanding gained by previous

works of numerous scientists. Thus, in this chapter we discuss the background for

all the works presented in this dissertation. Further, we present related works that

provide the context and motivation for the various works in this thesis.

2.1 Wearables and nearables

Since the turn of the 21st century, wearables (on-body sensors) have been at the

forefront of non-traditional health monitoring systems [6, 7, 8]. These sensors collect

high-resolution physiological signal data such as the ECG, EEG, body acceleration

and galvanic skin response. Further, multiple wearables can be used in a network

for remote patient monitoring. Body area networks (BANs) are one such system

where multiple wearables continuously monitor human physiology and track the

patient’s health status [9]. BANs utilize wireless technologies including the ultra-

wideband [10], Bluetooth [11], and Zigbee [12, 11] for this purpose. Wearables and

BANs have numerous advantages to them:

• They capture high-resolution information regarding human physiology.

• They enable human physiology monitoring at the comfort of patient’s homes.

• Wearables and BANs can act as a pre-screening tool for a more comprehensive

diagnostic tool such as polysomnography [13].

They also suffer from the following drawbacks.
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• Wearables perform localized measurements. For example, a wrist-worn ac-

celerometer measures the acceleration of hand/wrist (local) and does not

reliably measure overall body movement (global). Although a network of

accelerometers will alleviate this problem, it comes at the cost of causing

inconvenience to the patient as they have to wear multiple sensors on their

body over long periods.

• Data from wearables are often corrupted by missing data due to motion

artifacts [14] (the patient-induced noise in physiological signals by voluntary

or involuntary bodily movements) and low compliance by the patients [15].

Human bodily movement causes motion artifacts in the physiological signals

(say ECG) being captured by the wearable and thus leads to data degradation.

Further, the wearer (a human) has to comply with a data acquisition schedule

and follow the instructions diligently to generate good quality data.

Non-contact health monitoring systems or nearables, on the other hand, capture

global signals (e.g., overall body movements via video camera [16]) and are less

dependent on patient compliance for data capture. Further, due to non-dependency

on patients or caregivers for data capture, these systems exhibit a higher compliance.

Finally, nearables enable the monitoring of patient’s ambient environment includ-

ing temperature, humidity, lighting conditions and ambient sound. The patient’s

ambient environment could potentially act as stressors and have a negative impact

on the patient’s state and their healing process [17]. Thus, capturing ambient vari-

ables can add value to the patient state analysis pipeline. Wearables and nearables

each have their own advantages and disadvantages. In this dissertation, we will

develop methods to capture, process, analyze and combine the data captured using

wearables and nearables for analyzing the patient’s state.
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2.2 Missing data and data imputation in signals from wearables and nearables

Wearable sensors have the advantage of extending the ability of assessing the

patient’s well-being outside the hospital environment and for a prolonged period,

which might be longer then 24 hours (e.g., several days or months). One of the

drawbacks of these technologies is that the patients are not ‘under control’ and the

devices can be removed or switched off for a certain period during the evaluation.

Device failures can also result in recordings with missing sections. Moreover, noise

is a main issue when devices are used in an everyday life context, resulting in

signals that might contain unanalyzable segments of different lengths. Note that the

same missing data issues might also occurs using more sophisticated ambulatory

devices as well as when analyzing data coming from different datasets collected

using different protocols and different recording lengths. In contrast, in the nearable

sensors, the relative amount of missing data is generally lesser when compared

to the wearable sensors. Since these sensors are not attached to patient’s bodies,

motion artifacts are not present in these data modalities. However, other types of

noises such as shadow noise and periodic noise in video recordings, background

noise in audio recordings (say when we are trying to record patient alarms) can

occur in nearable sensor data resulting in missing data. Further, nearables that

require an electrical connection will not record data when there is an electricity

failure. Similar to wearables, device failures can occur in nearables as well resulting

in recordings with missing sections. Another issue with nearables is that the

captured data can correspond to multiple subjects or patients and this can often

lead to confusion. In conclusion, employing signal quality checks and exploring

data imputation techniques to improve data quality for patient state classification

and prediction is crucial when working with data from wearables and nearables. In

this thesis, we will develop two data imputation techniques for the ECG signal.
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2.3 Biological mechanisms underlying Rett syndrome

Rett syndrome is a rare genetic neurological disorder that occurs primarily in

girls [18]. Rett syndrome affects 1 in 10000 females causing psychomotor regression,

stereotypical hand movements and dysautonomia [19]. Rett syndrome affects the

neurophysiology of the patient and the presence of focal, multifocal, and generalized

epileptiform abnormalities is characteristic of the EEG recorded in most individuals

[20]. Further, individuals with Rett syndrome have significantly longer corrected QT

intervals (QTc) and a higher incidence of prolonged QTc (> 0.450 milliseconds) than

age-matched healthy females [21, 22, 23]. Finally, a pattern of breath holding (central

or obstructive respiratory pauses) and hyperventilation (increased respiratory rate

and effort) is frequently recorded in Rett syndrome.

A recent study by Singh et al. [24] showed that Rett patients are less adaptable

to autonomic changes during the night which motivates our study - to discover

physio-motor biomarkers discriminating high severity Rett patients from low sever-

ity Rett patients. Dysautonomia or autonomic dysfunction is the abnormal function

of the autonomous nervous system. It adversely affects involuntary body functions,

including blood-pumping by the heart, maintaining proper blood pressure and

respiration. Unfortunately, dysautonomia is a cardinal feature in Rett syndrome [25,

26, 27, 28, 29, 30]. A principled approach to characterize dysautonomia is to utilize

the ECG [26, 31, 32, 33]. Researchers have used the ECG to study the variations in

breathing and heart rate (HR) in Rett girls [34, 35]. In our work, we captured the

ECG signal from girls suffering from Rett syndrome using the BioStamp® nPoint

wearable biosensors to capture the severity of autonomic dysfunction and, in turn,

develop Rett severity classification models using ECG. Specifically, we used the

heart rate variability (HRV) metrics for this purpose. The HRV is a physiological

phenomenon of the variation of the time interval between the heartbeats. Typically,
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it is measured using a set of metrics known as the HRV metrics. First, a peak picking

algorithm is used to identify the R-peaks in the ECG signal and the time series

known as the RR-interval signal is computed. The HRV metrics are then computed

on this RR-interval signal. The HRV metrics include time domain, frequency do-

main and entropy based features. Dystonia is a movement disorder where a subset

of muscles contract uncontrollably. The contractions cause the affected body parts

to twist involuntarily, resulting in repetitive movements. In Rett syndrome, dysto-

nia, psychomotor regression, and stereotypical hand movements are fundamental

concerns and cause significant stress on patient and caregiver quality of life. We

refer the readers to the following works [36, 37, 38, 39] for a detailed explanation of

dystonia in Rett syndrome. The BioStamp® nPoint wearable biosensors measured

the body movements of Rett patients by recording the three-axis acceleration signal

via an accelerometer [40], an electromechanical sensor that senses static and dy-

namic forces of acceleration. To further characterize body movements, we derived

rest activity metrics [41] and the cosinor rhytmometry features from the captured

three-axis acceleration signals. Together, we call them actigraphy metrics. Apart

from the above described unimodal features, we also investigated the usage of

features derived from the interactions between HR and body movements. Finally,

we trained machine learning models to perform Rett syndrome severity estimation

utilizing all the above described features.

We posed the Rett syndrome severity estimation problem as a binary classifica-

tion problem and classified low severity patient visits from high severity patient

visits. The groundtruth labels were obtained by binarizing the physician assigned

clinical global index - severity scale. The aggregated list of medications that were

common to both groups included the following drugs: (1) Calcium carbonate, (2)

Clonidine (Sedative and Antihypertensive drug), (3) Depakene (Anticonvulsant),

(4) Diastat (Anxiolytic and Sedative), (5) Levocarnitine (treat carnitine deficiency),
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(6) Miralax (Polyethylene glycol 3350), (7) Trileptal (Anticonvulsant), (8) Vimpat

(anticonvolucent) and (9) Vitamin D. The high severity groups was was further pre-

scribed antihistamines, antibiotics, antioxidants, antifungals, calcium supplements,

levothyroxine, escitalopram, magnesium oxide, esomeprazole and omeprazole to

treat gastroesophageal reflux, budesonide, triamcinolone, multi-vitamins, vitamin

B2 and other anticonvulsants and sedatives to treat seizures. We see that Rett syn-

drome patients are prescribed a large group of medications to control the various

symptoms that the patients suffer. In our experiments in chapter 4 we set out to

identify physiological biomarkers related to HRV in Rett syndrome. Hence, we

review the effect of various medications listed above on patient HRV. The first major

set of drugs prescribed for Rett patients include the anticonvulsants, antiepileptic

and sedatives to treat siezure. Numerous studies [42, 43] have shown that the time

domain HRV parameters are significantly suppressed in epilepsy patients groups

with or without medications. Further, in some epileptic patients, antiepileptic

drugs may help improve the cardiac autonomic function impairment [42]. Some

Rett patients suffer from hypothyroidism for which thyroxine drugs have been

prescribed. A study by Xing et al. [44] showed that the thyroxine drugs used to

treat hypothyroidism partly improved autonomic function and did not suppress

HRV. The gastroesophageal reflux in Rett syndrome is treated using the drugs

esomeprazole and omeprazole and studies have shown that the drugs help improve

autonomic function response on the cardiac activity and do not suppress HRV [45].

Triamcinolone is used to treat certain allergies and rheumatic disorder symptoms in

Rett syndrome. A study by Cottin et al. [46] did not show a deleterious effect on

autonomic cardiovascular control.

In chapters 4, we will further describe the Rett syndrome data in detail and

discuss the machine learning approach to Rett syndrome severity estimation.
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2.4 Non-contact monitoring systems: A literature review

Non-contact monitoring systems have been used to perform human body move-

ment detection, vital sign measurement, ambient audio capturing, human geoloca-

tion and ambient environment monitoring. A popular way to perform non-contact

monitoring of patients is to use the Doppler radar technology [47, 48]. The Doppler

radar is a specialized radar system that can measure target displacement remotely

by using the Doppler effect. It has been used for gait-assessment of older adults

[49], capturing human respiration signal [50] and human vital sign measurement

[51]. While it does an excellent job of detecting body movements and measuring the

vital signs of a patient, it does not capture auditory cues or ambient environmental

signatures.

Extensive research has been performed to study the effect of noise pollution

on patient and staff health, the performance of staff, and patient safety in clinical

environments [52, 53, 54, 55, 56]. However, very few works describe methods

to capture privacy-preserving ambient sound in clinical and home environments.

In particular, Guerlain et al. [57] presented a methodology for archiving multi-

channel audio and video recordings of operating rooms (ORs) during surgeries

to facilitate prospective studies of operative performance. To geolocate clinical

personnel at fine-resolution, Azevedo-Coste et al. [58] proposed using multiple

cameras installed in ORs along with a wireless network of inertial sensors. On the

other hand, recently, there has been a surge in the development of radio frequency

(RF)-based non-contact human movement detectors and geolocators [59, 60, 61].

Aschoff et al. [62] provided a comprehensive explanation about the effect of

ambient temperature, humidity, and light intensity on the human circadian rhythm

and sleep. There is a growing evidence [63, 64, 65, 66, 67, 68] about the effects

of ambient environment on patient health. While few systems [69, 70] provided
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methodology for capturing these ambient variables, we did not find works that

captured concurrent patient motion, auditory noise and environmental signals.

The geolocation of humans has been performed using Bluetooth beacons and

inertial measurement unit (IMU) sensors. Sato et al. [71] performed geolocation on

six participants using the range-only extended Kalman filter simultaneous localiza-

tion and mapping technique. Martı́n et al. [72] utilized the IMU sensor along with

the Bluetooth beacon to obtain a room level (six-rooms) human localization while

geolocating four participants. There exist multiple works that analyzed generic

ambient environmental sounds including in-home sounds, emergency sirens and

everyday sounds. We have described three specific studies that were related to our

work on alarm note classification. Jain et al. [73] developed two prototype systems

for in-home sound analysis and deployed each system in four different homes

to recognize 23 in-home sounds and three outdoor sounds. Cantarini et al. [74]

applied the harmonic percussive source separation technique to classify emergency

siren sounds from road noise sounds. Wyatt et al. [75] deployed a BERT-based

environmental sound classification model on an RPi Zero to identify six different

everyday sounds (Knock, Laugh, Keyboard Typing, Cough, Keys Jangling and

Snap). All three studies mentioned above described standalone audio capture and

recognition systems for varied environmental settings and did not describe a multi-

modal data acquisition system. There are few works in the literature that perform

ambient environment data capture. Rashed et al. [70] described a medical platform

for remote healthcare and assisted living. They utilized a DHT11 temperature and

humidity sensor and a TSL235R light to frequency converter to keep track of the

patient’s environmental conditions.

In Chapter 3, we describe our non-contact monitoring system that captures

patient privacy preserving signatures corresponding to body movement, ambient

sound, illuminance, temperature and humidity. Further, we utilize this system
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Figure 2.1 The data collection setup for detecting body movements during sleep

for capturing passive ambient data from a cohort suffering from Autism spectrum

disorder during their sleep for predicting their behavior during the day.

2.5 Quantifying body movements in OSA using nearables

OSA, a serious sleep disorder that causes people to temporarily stop breathing

several times during the night, is typically diagnosed using PSG in a sleep-lab and

more recently using portable sleep monitors [76]. OSA has a prevalence of 3− 7%

among the adult male population and the risk of having OSA increases with age

[77].

While PSG still remains the standard test for the diagnosis of OSA and clini-

cal sleep assessment, at-home monitoring using technologies similar to the ones

specified in [78, 79, 80] have enormous potential for tracking disease progression,

treatment compliance, response to therapy, and ongoing screening for critical work-

ers (e.g. truck drivers, pilots etc). The adverse effects of OSA and its multiple

possible complications have resulted in a substantial and growing demand by pa-
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tients to access diagnostic studies and effective treatment [81]. Moreover, since OSA

is a chronic disorder, sufferers often require lifelong monitoring and care [82]. Thus,

in this work we propose the use of low-cost and easy-to-use (high compliance)

sensors that can be adopted for follow-up monitoring as well as to help identify

patients with OSA who would otherwise be undiagnosed and untreated.

The work be Roebuck et al. [83] provides a comprehensive report on the different

data modalities one can use for OSA detection. Various unimodal and multimodal

data driven approaches have been used in the past for OSA detection. For instance,

while some researchers have used wearables to capture ECG in conjunction to

oxygen saturation to train machine learning models to detect OSA [84, 85], others

have relied on nearables including video monitoring, audio signals, mattress sensors

and smartphones [16, 86, 87, 88, 89]. In chapter 4, we will introduce a new data

modality that can be used in OSA detection. We will specifically introduce the PIR

sensor and illustrate the system we develop to capture human body movement

using this sensor. Further, we train a machine learning algorithm to classify patients

with OSA from normals using the data collected with the PIR sensor.

2.6 Sleep-wake detection

Besides enabling complete sleep analysis, sleep-wake detection methods have

numerous secondary applications. Two important applications include: (1) The

measurement of sleep disorder severity. For instance, the apnea hypopnea index

(disease severity metric for OSA) computation involves the measurement of total

sleep time which can be derived from sleep-wake scores. (2) The quantification of

sleep disturbances. Sleep disturbances (body movements and awakenings) have

an impact on daily behaviors in neurological disease populations such as Autism

spectrum disorder [90, 91]. These disturbances can be quantified using a sleep-wake

detection method.
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The clinical standard for sleep disorder diagnosis is a sleep study conducted at

a sleep lab via an overnight PSG. It includes numerous EEG electrodes to monitor

the brain signals, as well as electromyograms, electrooculograms, finger tip pulse

oximetry, respiratory bands across the chest wall and lower abdomen, actigraphy,

audio and video. On the other hand, as discussed earlier, sleep disorders such as

OSA and periodic limb movement disorder (PLMD) which are diagnosed with

the help of such sleep studies, depend on the accurate estimation of total sleep time

for a reliable measurement of disease severity metrics. Further, many patients

get admitted to the sleep labs to understand their sleep cycles better and in turn

improve their sleep. Thus, accurate sleep-wake detection and the more general five-

level (wake, rapid eye movement (REM) sleep, non-REM stage-1, non-REM stage-2

and non-REM stage-3) sleep-staging become highly important. The cumbersome

and intrusive nature of the gold standard PSG procedure may affect the normal

sleep of the admitted patients resulting in a less-reliable sleep study and disease

severity estimation. Moreover, the ground truth sleep staging is typically performed

by a human annotator (albeit experienced) and can result in noisy labels.

Over the last decade, data from wearables [92, 93, 94] including wrist-worn

accelerometers and photoplethysmograms (PPGs) have provided promising re-

sults for sleep-wake detection. Further, nearables such as microphones [95], video

cameras [96] and radar sensors [97, 98] have been utilized to reliably perform sleep-

wake detection. Furthermore, considerable advancement has been made in the

commercial space for sleep-wake detection and sleep disorder detection. Conse-

quently, numerous hardware and software systems have received Food and Drug

Administration (FDA) clearance for the above stated applications. WatchPAT® [99]

is an FDA cleared home sleep apnea device that measures seven channels (periph-

eral arterial signal PAT®, heart rate, oximetry, actigraphy, body position, snoring,

and chest motion) for sleep apnea detection. Also, there exist sleep tracking mats
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such as Withings [100] and Beddit [101] which track sleep, heart rate and breathing

disturbances utilizing mats that go underneath the sleeping humans. In November

2021, The United Kingdom (UK) based medical device company Acurable obtained

FDA clearance as a Class II medical device for their AcuPebble SA100, a small

wearable device that enables automated, remote home testing to detect OSA in

adults [102]. Another product to obtain FDA clearance for OSA screening is the

DROWZLE® sleep apnea pre-screening device developed by the company Resonea.

DROWZLE® consists of stand-alone smartphone-based software that records and

analyzes respiratory patterns during sleep for the purpose of in-home screening for

obstructive sleep apnea [103]. ResApp Health’s SleepCheckRx app received FDA

clearance as a prescription-only software-as-a-medical device [104] for at-home

sleep test that screens adults for the risk of moderate to severe OSA by analyzing

breathing and snore sounds recorded via an iPhone. While the FDA cleared systems

discussed here illustrate a promising future for sleep apnea screening, there are

other related key areas that need more work. Developing an accurate sleep-wake de-

tector which is highly accurate (E.g. Cohen’s kappa > 0.7), both in the general and

the sleep-disorder suffering populations is still extremely valuable. Please refer sub-

section 5.2.3 for the description of the inter-rater reliability metric – Cohen’s kappa

[105]. The measurement of many other sleep disorders including the PLMD benefit

from the metrics derived from a robust sleep-wake detector. Further, neurological

conditions such as Autism and Rett syndrome greatly benefit from sleep-wake

detection as it allows for the measurement of night time circadian rhythm. Specifi-

cally, in Autism, alterations in circadian sleep-wake rhythm, reduced total sleep,

longer sleep latency and nocturnal awakenings are observed [106, 107, 106, 108].

Moreover, these deviations from the normality have a negative impact on their

day-time behaviors. A low quality sleep in the night can cause a higher incidence

of aggressive behavior [109]. Furthermore, the behavioral issues in Autism pose a
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challenge for patient’s sleep monitoring. For instance, a wearable watch designed

to capture PPG and three-axis acceleration can be damaged by the study partici-

pant due to the behavioral issues. Thus, there is a need to explore passive patient

monitoring methods for sleep analysis. Further, the sleep related metrics could

potentially help understand and predict daily behavior density for these patients.

Toward this, in Chapter 5, we explore the usage of the passive patient-privacy

preserving sleep monitoring system using a video-camera. Further, we describe a

multimodal algorithm, that combines data captured using a wrist-worn wearable

and the video-camera to perform improved sleep-wake detection.
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CHAPTER 3

SEVERITY OF RETT SYNDROME FROM WEARABLES

3.1 Introduction

HRV

Actigraphy

MTE

MSNR

Parameter Tuning

Wearable Data Collection Pre-Processing

ECG

Three-Axis
Acceleration

Data Imputation

Model Performance Evaluation Feature
Popularity

Physio-Motor Biomarker Detection for Rett Syndrome

Figure 3.1 The project pipeline. We utilized the BioStamp® nPoint biosensor wear-
ables to collect simultaneous ECG and three-axis acceleration data from multiple
locations on the chest. We performed data pre-processing and implemented multi-
ple data imputation techniques to improve data quality. We trained L1-regularized
logistic regression classifier models and tuned the model weights using the imputed
data. Finally, we visualized model performance and computed feature popularity
scores.

In this chapter we will discuss methods to utilize data collected by wearables

for patient state analysis. Specifically, we developed methods to estimate disease

severity in Rett syndrome using signals captured using the MC10 Biostamp nPoint
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wearable biosensor. The necessary background on the disease: Rett syndrome, its

symptoms and its effect on patient’s autonomic nervous system and motion were

provided in section 2.3. To summarize, Rett syndrome is a disorder where more

than 95% of cases are caused by mutations in the gene encoding the methyl-CpG

binding protein 2 (MECP2), a transcriptional regulator involved in chromatin re-

modeling and the modulation of RNA splicing [110]. The disease is characterized by

a period of apparently normal postnatal development followed by developmental

delay and loss of acquired skills resulting in psychomotor regression, develop-

ment of stereotypical hand movements, and dysautonomia [111]. It leads to the

deterioration of the autonomous nervous system, impacting breathing regularity,

HR, gut motility, and impairs motor planning and locomotion, resulting in sig-

nificantly impaired mobility, no purposeful hand use, and largely absent verbal

communication. There is no permanent cure for Rett syndrome in humans, and

symptom management remains the standard of care [112]. When new drugs are

discovered to alleviate specific Rett symptoms, clinical trials are conducted to learn

about their efficacy, safety, and side effects. An essential step in measuring the

efficacy of a drug or treatment method is to assess the associated benefits and risks

through clinical trials. However, objective measures of symptom severity are not

yet available for Rett syndrome or neurological conditions generally, and efforts to

develop objective measures of autonomic symptoms could significantly enhance

the ability to understand therapeutic efficacy. The key benefit we would like to

see in Rett patients is improving their autonomous nervous system’s function and

locomotion. Amongst various indices measured in Rett clinical trials, the Clinical

Global Impression - Severity (CGI-S) is used to measure overall disease severity

in Rett subjects [113, 114]. The CGI-S is a 7−point Likert rating scale that reflects

experts’ clinical judgment of the patient based on the clinician’s total experience

with the Rett syndrome population. The CGI-S ranges from 1 to 7 and each score
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corresponds to the following patient states: (1) normal, not at all ill, (2) borderline

ill, (3) mildly ill, (4) moderately ill, (5) markedly ill, (6) severely ill, (7) amongst

the most extremely ill. It has been widely used as an outcome measure in Rett

syndrome and other neurodevelopmental disorders such as Autism and Fragile

X Syndrome [113]. In our work, we measured CGI-S in all our patients during all

clinic visits included in our experiments to assess their global clinical state.

Apart from the unimodal features described in section 2.3, interactions between

the HR and body movement were quantified using multiscale transfer entropy

(MSTE) [115, 116] and multiscale network representation (MSNR) [117]. The MSTE

metrics measured the information flow between two simultaneously sampled time

series at multiple time scales. In MSNR, we constructed network representations of

simultaneously sampled three-dimensional time series at multiple time scales and

derived network characteristics at each time scale. These network representations

revealed more nuanced characteristics of the time series being analyzed.

The goal of this study was two-fold. First, we wanted to develop machine learn-

ing (ML) classification models to classify patients with low-severity Rett syndrome

(CGI-S ≤ 4) from patients with high-severity Rett syndrome (CGI-S > 4) based

on the objective measures attained from a wearable biosensor. Second, through

the classification experiment, we wanted the trained models to provide us with

important features (physio-motor biomarkers) that could help us distinguish the

two groups. Hence, we developed Rett syndrome severity classifier models based

on raw data recordings using metrics derived from the following feature sets: (1)

HRV metrics, (2) Actigraphy metrics, (3) MSTE-features, and (4) MSNR-features. We

used the least absolute shrinkage and selection operator (LASSO) for model training

and developed logistic regression models with the L1-penalty. We developed sepa-

rate models for each of the four feature sets listed above and for all possible two,

three, and four combinations of these feature sets. Thus, we developed 15 binary-
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classification models for Rett syndrome severity classification. Finally, we listed the

models’ features that were important for Rett syndrome severity classification. We

illustrate the complete pipeline of our work in Figure 3.1.

3.2 Materials and methods

3.2.1 Data collection

The dataset for this work was sourced from two Institutional Review Board (IRB)-

approved studies: (1) The Triheptanoin-clinical trial [118] (2) The Outcome measures

and biomarkers development study [119]. The data were collected between January

2016 and December 2018 - a three-year period. We used the body-worn patch

BioStamp® (MC10 Inc., Cambridge, MA, USA) [120] to record ECG and three-axis

acceleration from all the participants. While some ECG records were captured

at a sampling rate of 125Hz, others were captured at a sampling rate of 250Hz.

Concurrently, the three-axis acceleration records were captured at the sampling

rates of 31.25Hz and 62.5Hz, respectively. These differences did not meaningfully

influence the HRV and activity metrics we extracted [121]. We captured the ECG

signal and the three-axis acceleration from the following four locations on the body:

(1) Medial chest, (2) Left Hypochondrium, (3) Right Hypochondrium, and (4) Left

Pectoralis. Per the protocols, all four locations were not used for all the participants,

and only a subset of these locations was used for each participant. In conjunction

to the signal data obtained from the biosensors, caretaker and physician surveys

were conducted to obtain symptom severity for all 20 patients enrolled in the study.

Specifically, the CGI-S scores were obtained through physician surveys to assign a

binary label (low-severity vs. high-severity) for each patient-visit. A patient-visit

was assigned to the low-severity category if the CGI-S ≤ 4 and was assigned to

the high-severity category if the CGI-S > 4. For each patient-visit we needed two

consecutive days of signal data for the feature extraction. By applying this filter, we
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obtained a total of 32 patient-visits with two consecutive days of signal data and

the associated CGI-S label. Among the 32 patient-visits, we had 18 high-severity

visits corresponding to 10 unique patients and 14 low-severity visits corresponding

to 11 unique patients. One patient had both low-severity and high-severity visits.

We considered each patient-visit a data point and thus had 32 data points with an

associated binary label for model development and analysis.

Study approval

This study was approved by the Emory IRB (IRB00088492 : Outcome Measures

and Biomarkers Development for Rett Syndrome and Multisite development of

standardized assessments for use in clinical trials). A written informed consent was

received prior to the participation from the parents of the patients.

3.2.2 Missing data

Considerable amounts of missing data were present in the dataset due to the

following reasons: (1) Device charging and data upload, (2) Motion artifacts, and

(3) In some cases, low compliance by the caretakers. Thus, we implemented three

signal imputation techniques to improve data quality and increase the amount of

available data for analysis. Namely,

1 Signal quality index-based ECG data imputation.

2 Data imputation for activity counts.

3 Stochastic surrogate data imputation.

Signal quality index-based ECG data imputation

The ECG signal recorded using the wearable patches contained sections of data

corrupted by motion artifacts. To improve data quality, we sourced data from
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Figure 3.2 Stochastic surrogate data imputation technique fills gaps in heart rate
(HR) and activity count signals by choosing a contiguous HR segment in the gap’s
neighborhood of the same length as the gap.(A) We illustrate an example HR
signal with missing data. (B) The HR signal contains a 25-second-long gap that
has been identified. Based on the boundaries and length of the gap, two folded
normal distributions are constructed for stochastically choosing a 25-second-long
HR segment. (C) We perform a coin toss experiment, and based on the outcome,
we sample from one of the two folded normal distributions and accordingly select
a contiguous 25-second-long HR segment and copy it over to the gap. Further,
we add a small noise to this imputed signal (we do not show it in the figure for
convenience). (D) The imputed HR signal with no gaps.
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multiple sensors. As discussed earlier, we simultaneously captured ECG from up

to four unique locations on the body. Thus, for a time-window t, say we had N

(N ≤ 4) ECG signal snippets recorded from N locations, we chose the one signal

snippet with the highest Signal Quality Index (SQI). The SQI for ECG provides the

percentage of beats that match when detected by multiple annotation generators

with highly differing noise responses [122]. We refer the readers to Li et. al [123] for

a detailed explanation of the SQI computation algorithm. If this value was greater

than 0.75, we used it in our analysis; otherwise, we discarded all ECG data for the

time-window t. By switching between N signals for each time-window t to form a

single 1−D ECG signal, we maximized the amount of good data available for the

analysis.

Data imputation for activity counts

When analyzing activity count signal in isolation, as per the scripts provided in

the actigraphy toolbox [124], we combined the data to obtain one value per hour.

When there was no data in a given hour, we imputed those samples using the

Piecewise Cubic Hermite Interpolating Polynomial (PCHIP) interpolation.

Stochastic surrogate data imputation

The computation of transfer entropy and multiscale network representation

required us to impute the missing data in the 48-hour HRV features and the activity

count signals. For this, we developed the surrogate data imputation method, a

stochastic technique developed to impute missing data in a timeseries using data

in the vicinity of the missing sections (or gaps). The data imputation algorithm

works as follows. Given a time series (S) and its timestamps (t), we find all the N

gaps g[i] ∀i ∈ {1, 2, 3, . . . , N} in S which are greater than a fixed threshold thg. The

gaps are then sorted in increasing order. We impute the gaps with surrogate signal
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snippets in increasing order of the gap length as follows. We denote the gap length

in seconds as gl, while tb and te denote the time stamp where the gap begins and

ends, respectively. Next, for each gap g[i] we draw a sample xr from the normal

distribution with mean 0 and variance equal to 1, i.e., xr ∼ N (0, 1). The normal

distribution from which we picked a sample is then mapped to the timeseries S

in the following way. We map the left half of the distribution (0.5 × folded normal

distribution) to S where t < tb − gl and the right half of the distribution (0.5 ×

folded normal distribution) to S where t > te. We illustrate this mapping of the

Gaussian distribution onto the timeseries in Figure 3.2. Accordingly, we copy the

signal snippet of length gl starting from the point in time that corresponds to xr on

the timestamp signal t. We insert this copied signal in the gap g[i] and add a noise

signal which is 5% of the sample sampled from a Gaussian distribution with mean

(µS ) and variance (σ2
S ) equal to the mean and variance of the signal S . Further, we

update both the timeseries S and the corresponding timestamps t. This procedure

is repeated iteratively until all gaps {g[i]} in S greater than thg are imputed.

3.2.3 Feature extraction

We extracted HRV metrics from the ECG signals and actigraphy features from

the three-axis accelerometer signals in the dataset. The HRV metrics were extracted

using the open-source PhysioNet Cardiovascular Signal Toolbox provided by Vest

et al. [122]. We extracted 24 distinct HRV metrics, including time-domain measures,

frequency-domain measures, entropy measures, phase rectified signal averaging

(PRSA) measures, and other non-linear metrics. We used the default window length

settings provided in the toolbox and thus used a 300-second-long feature extraction

window with a 30−second shift. We used the SQI based ECG data imputation to

maximize the amount of good ECG data. For a given patient-visit, we computed

the mean and variance of each HRV metric between the times 10 PM and 10 AM.
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We chose this period to include ECG data during sleep and discard the noisier

signal recorded during daytime and evenings. Thus, each HRV metric provided

two features resulting in 48 features from 24 HRV metrics.

We extracted the actigraphy features from the z-axis of the acceleration signal

from the right hypochondrium using the open-source Actigraphy Toolbox [124].

We converted the acceleration signal to activity counts using the Oakley method

described by Borazio et al. [125]. First, we used Oakley’s method for converting

accelerometer signals to activity count. We then extracted the following eight fea-

tures using the toolbox: (1) Interday stability, (2) Intraday variability, (3) Least active

5 hours, (4) Most active 10 hours, (5) Rest activity, (6) Mesor, (7) Amplitude, and

(8) Acrophase. The last three features were based on Cosinor Rhythmometry. The

Actigraphy features needed two consecutive 24−hour periods (midnight to mid-

night) of data for feature computation. Thus, we identified the best two consecutive

24-hour periods with the least missing data for each patient-visit. If both days did

not have at least 12−hours of acceleration data per day, those patient-visits were

discarded. To impute missing data, we used the PCHIP interpolation.

Finally, we computed MSTE and MSNR features using 2−day consecutive HR

and activity count signals. We utilized the Stochastic surrogate data imputation tech-

nique to impute missing data. We processed the HR signal, deceleration capacity

(DC) of the RR-interval [126] signal, and the activity count (ACT) signal for com-

puting the features. Transfer entropy (TE) from X to Y depicted as TEX→Y is a

measure of directional coupling between two concurrently sampled timeseries

X = {x1, x2, . . . , xN} and Y = {y1, y2, . . . , yN}. Formally, TEX→Y is a reduction in

uncertainty, given by the conditional entropy of yi given its past values minus the

conditional entropy of yi given both its past values and past values of the other

variable y(l)i−w:

TEX→Y = H
(
yi|y

(l)
i−w
)
− H

(
yi|y

(l)
i−w, x(k)i−t

)
(3.1)
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where i indicates a given point in time, t and w are the time lags in X and Y

respectively, and k and l are the block lengths of past values in X and Y respectively.

The k and l were both set to 1 to improve computational speed, and t and w were

both set to 1 under the assumption that the maximum auto-transfer of information

occurs from the data point in X immediately before the target value in Y, and

vice versa. These choices of k = l = t = w = 1 are appropriate in biomedical

experiments as the absolute values of auto-correlation functions tend to decrease

monotonically as time lag increases [116]. In our experiments, we computed the TE

between the following signals: (1) HR-DC, (2) HR-ACT, (3) DC-ACT, (4) DC-HR,

(5) ACT-HR, and (6) ACT-DC. We computed these TE values at scales 1 to 10 using

the coarse-graining algorithm [127] to obtain Multiscale Transfer Entropy (MSTE)

features. The probability densities for the estimation of MSTE were estimated using

the Darbellay-Vajda (D-V) adaptive partitioning algorithm [116, 117, 128]. Further,

we computed 3D D-V partitioning using the HR-DC-ACT signals and computed

MSNR features. The network representation features included the following 11

metrics: (1) Number of nodes (total number of nodes in the network), (2) Average

degree (the average value of the degree of all nodes in the network, where the degree

of a node is defined as the total number of its neighboring edges), (3) Number of

loops (the total number of independent loops in the network, also known as the

“cyclomatic number” or the number of edges that need to be removed so that

the network cannot have cycles), (4) LOOP3 (the total number of loops of size 3

in the network), (5) LOOP4 (the total number of loops of size 4 in the network),

(6) Average clustering coefficient - 1 (number of LOOP3s divided by the number

of connected triples in the network), (7) Average clustering coefficient - 2 (the

clustering coefficient c(u) for node u can be defined as the ratio of the number of

actual edges between the neighbors of u to the number of possible edges between

them, and the average clustering coefficient C(G) of a network is the average of c(u)
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taken over all the nodes in the network), (8) Graph radius (the eccentricity of a node

u is defined as e(u) = max{d(u, v) : v ∈ V}, where the distance d(u, v) is the length

of the shortest path from u to v, and V is the set of all nodes; the graph radius is the

minimum of eccentricities over all nodes in the network), (9) Spectral radius (the

largest magnitude eigenvalue of the adjacency matrix of the network), (10) Trace

(sum of the eigenvalues of the adjacency matrix, i.e.,Σλ), and (11) Energy (squared

sum of the eigenvalues of the adjacency matrix A. More formally, the energy of a

network G is: E(G) = ∑n
i λ2

i ). We computed the above-described MSNR features at

scales 1 to 10 using the coarse-graining technique [127]. Using the surrogate data

imputation technique, we obtained 100 imputations for each patient-visit. Thus, we

generated 3200 datapoints. We computed the MSTE and MSNR features for all the

3200 datapoints and then computed the mean and variance over 100 imputations

for each patient-visit. In the end, we obtained 32 vectors of length 120 (60 mean

values and 60 variance values) as the MSTE features and obtained 32 vectors of

length 220 (110 mean values and 110 variance values) as the MSNR features. Thus,

we obtained 48 HRV features, 8 Actigraphy features, 120 MSTE features, and 220

MSNR features for each of the 32 patient visits.

3.2.4 Rett syndrome severity classification

We developed separate models for each feature sub-group and combinations of

feature sub-groups to obtain 15 classifiers corresponding to the following feature

combinations: (1) HRV, (2) Actigraphy, (3) MSTE, (4) MSNR, (5) HRV + Actigraphy,

(6) HRV + MSTE, (7) HRV + MSNR, (8) Actigraphy + MSTE, (9) Actigraphy + MSNR,

(10) MSTE + MSNR, (11) HRV + Actigraphy + MSTE, (12) HRV + Actigraphy

+ MSNR, (13) HRV + MSTE + MSNR, (14) Actigraphy + MSTE + MSNR, and

(15) HRV + Actigraphy + MSTE + MSNR. We used the LASSO based logistic

regression classifier to assess the performance of different feature combinations.
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Figure 3.3 The feature combination of heart rate variability (HRV) metrics, multi-
scale transfer entropy, and multiscale network representation achieves the highest
area under the receiver operating curve (AUC), equal to 0.92. (A) The receiver
operating curves (ROCs) for the 15 different Rett severity classifiers are provided.
Each classifier uses a different subset-combination of the four feature sets, namely:
(1) HRV metrics (H), (2) Actigraphy metrics (A), (3) Multiscale transfer entropy
features (T), (4) Multiscale network representation features (N). The combination of
H+T+N performed the best with a leave one-patient out cross-validation pooled-
AUC equal to 0.92. The individual ROCs corresponding to the individual classifiers
are shown using a combination of line styles and colors. The figure legend shows
the pooled-AUC values for each feature combination. (B) A depiction of the number
of patient-visits for each of the 20 patients showing the low-severity and high-
severity patient-visits in different colors. (C) The top 10 most popular features
used by the best classifier (H+T+N) for Rett severity classification are shown here,
along with the corresponding feature coefficients. The mean deceleration capacity
(µPRSA−DC) is the most popular feature with a feature popularity score of 1 followed
by σ2

τ
(8)
Act→HR

and σ2
τ
(8)
Act→DC

with feature popularity scores 0.97 and 0.93, respectively. In

the top-10 most popular features for the H+T+N feature combination, two features
were HRV-metrics (µPRSA−DC and σ2

PNN50), three features were MSNR-features
(σ2

LOOP4(3)
, σ2

LOOP4(5)
and µTRACE(10)) and the rest five were MSTE-features.
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The models were assessed via a leave-one-patient out cross-validation experiment.

The hyperparameter tuning was performed using a within-training-three-fold cross-

validation. We measured the classification performance using the metric - area

under the receiver operating curve (AUC). Using this metric, we compared the 15

different classifiers and assessed their classification performance. For each feature

combination, the entire classification experiment was repeated five times with

different random seeds to account for variability in model coefficients that arose

during hyperparameter tuning (the within-training-three-fold data split changed

each time). The model’s outputs for the five repetitions of the experiment were

combined by computing the median value for the classification probability output.

The final AUC for each feature combination was determined by comparing this

median output against the ground truth labels.

3.2.5 Feature popularity

Apart from measuring classification performance, we computed a novel feature

popularity score for the features used in classification, which allowed us to measure

feature importance and compare features. Since all classification experiments com-

prised 20 patients, the leave-one-patient out cross-validation approach produced

20 models. As described previously we repeated the classification experiment five

times for a given feature combination, resulting in 5× 20 = 100 classifier models

per feature combination. In these 100 models, for each feature f, we counted the

number of models in which it had a non-zero LASSO coefficient. Then, the feature

popularity score (ρ) for the feature f was computed as:

ρ =
# of nonzero coefficients for f

100
(3.2)
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This metric measured the popularity of the feature; the greater number of times the

feature was picked by the LASSO-based classifiers, the more popular the feature

was.

3.3 Results

The HRV, breathing, and physical activity are thought to influence Rett syndrome

severity, but the underlying correlations are yet to be measured. Our experiments

investigated the effect of HRV-metrics, actigraphy, MSTE, and MSNR features on

Rett syndrome severity by assessing 15 binary classification models (Figure 3.3A)

described in the section Rett syndrome severity classification. For this, as described in

the section Data collection, we utilized a cohort of 20 patients with Rett syndrome, of

which 10 patients had low-severity patient-visits, nine patients had high-severity

patient-visits and one individual had both low-severity and high-severity patient-

visits. We illustrate this in Figure 3.3B.

3.3.1 Rett syndrome severity classification

The best binary Rett severity classifier used the feature combination of HRV-

metrics, MSTE-features, and MSNR-features, and obtained a pooled-AUC equal to

0.92. When we used the four feature sub-groups separately for classification, HRV-

metrics performed the best with a pooled-AUC equal to 0.76. This was followed

by MSTE-features (AUC = 0.68), Actigraphy-metrics (AUC = 0.63) and MSNR-

features (AUC = 0.55) respectively. When we used 2-combinations of feature sets,

the feature combination of HRV and MSTE performed the best with an AUC = 0.80.

This was followed by the following 2-combinations of feature sets: (1) HRV + MSNR

(AUC = 0.79), (2) HRV + Actigraphy (AUC = 0.77), (3) Actigraphy + MSTE (AUC

= 0.66), (4) MSTE + MSNR (AUC = 0.62), and (5) Actigraphy + MSNR (AUC

= 0.51). When we used 3−combinations of feature sets, we obtained the following
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Figure 3.4 Data imputation techniques combined with first and second-order statis-
tics improve classification performance. (A) An illustration of the effects of novel
signal quality index-based ECG data imputation. We show the improvements in
the average signal quality index of the electrocardiogram records for all 32 patient-
visits. (B) The deceleration capacity (DC) values between 10 PM and 10 AM for
the low-severity and high-severity Rett syndrome groups. We show the DC val-
ues between the 75th and 25th percentile for low-severity and high-severity Rett
patient-visits. (C) We depict all edges corresponding to 4-loops in the networks
constructed from trivariate time series (HR, DC, and Activity count signal) for a
high-severity (left-red-panel) and a low-severity (right-blue-panel) patient at the
3rd coarse-graining time scale. For each patient, we show two surrogate LOOP4
networks at the following values for LOOP4: (1) µLOOP4(3) − (1.96× σLOOP4(3)), (2)
µLOOP4(3) + (1.96× σLOOP4(3)). From the image, it is clear that both the number of
4-loops and the variance of the number of 4-loops are smaller for the low-severity
patient compared to the high-severity patient.

descending order of classification performances: (1) HRV + MSTE + MSNR (AUC

= 0.92), (2) HRV + Actigraphy + MSTE (AUC = 0.82), (3) HRV + Actigraphy +

MSNR (AUC = 0.75), (4) Actigraphy + MSTE + MSNR (AUC = 0.62). Finally, when

all feature subsets were used together, we obtained an AUC = 0.91, only second to

the combination of HRV-metrics, MSTE-features and MTNR-features (AUC = 0.92).
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3.3.2 Feature popularity

The mean deceleration capacity (µPRSA−DC) was the most popular feature for

Rett syndrome severity classification. Using the novel formula described in the

section Feature popularity, we extracted the top-10 most popular features utilized

by the best classifier (HRV, MSTE, and MSNR) and the distribution of their cor-

responding weights (Figure 3.3C). The feature µPRSA−DC came out on top with a

feature popularity score ρ = 1.00. It was followed by the following 9 features: (1)

Variance (across all surrogate representations) of transfer entropy from the activity

counts signal to the HR signal at the 8th coarse-graining scale (σ2
τ
(8)
Act→HR

) (ρ = 0.97),

(2) Variance (across all surrogate representations) of transfer entropy from the ac-

tivity counts signal to the deceleration capacity signal at the 8th coarse-graining

scale (σ2
τ
(8)
Act→DC

) (ρ = 0.93), (3) Variance (across all surrogate representations) of the

number of 4−loops in the network representation of the tuple - (HR signal, activity

count signal, DC signal) at the 3rd coarse-graining scale (σ2
LOOP4(3)

) (ρ = 0.81), (4)

Variance (across all surrogate representations) of the number of 4−loops in the

network representation of the tuple - (HR signal, activity count signal, DC signal)

at the 5th coarse-graining scale (σ2
LOOP4(5)

) (ρ = 0.79), (5) Mean (across all surrogate

representations) of the trace of the adjacency matrix of the network representation

of the tuple - (HR signal, activity count signal, DC signal) at the 10th coarse-graining

scale (µTRACE(10)) (ρ = 0.76), (6) Variance (across all surrogate representations) of

transfer entropy from the activity counts signal to the deceleration capacity signal

at the 1st coarse-graining scale (σ2
τ
(1)
Act→DC

) (ρ = 0.47), (7) Variance (across all sur-

rogate representations) of transfer entropy from the activity counts signal to the

HR signal at the 1st coarse-graining scale (σ2
τ
(1)
Act→HR

) (ρ = 0.31), (8) Mean (across all

surrogate representations) of transfer entropy from the activity counts signal to

the HR signal at the 4th coarse-graining scale (µ
τ
(4)
Act→HR

) (ρ = 0.29), (9) Variance of

the 5-minute PNN50 measure i.e., the average number of pairs of adjacent beat-
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HRV Actigraphy MSTE

HRV+MSTEMSNR HRV+Actigraphy

HRV+MSNR Actigraphy+MSTE Actigraphy+MSNR

MSTE+MSNR HRV+Actigraphy+MSTE HRV+Actigraphy+MSNR

HRV+MSTE+MSNR Actigraphy+MSTE+MSNR HRV+Actigraphy+MSTE+MSNR

Figure 3.5 The top-five most popular features for each of the 15 classifiers.
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to-beat intervals differing by more than 50 ms, between the times 10 PM and 10

AM (σ2
PNN50) (ρ = 0.18). The feature weight for (µPRSA−DC) was greater than zero

for 93% of the time, suggesting an inverse relationship (due to the negative-log

relationship between features and odds) between the feature values and the Rett

disease severity (i.e., a higher values of µPRSA−DC corresponded to a higher chance

of low-severity Rett syndrome). It conformed with our feature values as shown

in Figure 3.4B. In Figure 3.5 we illustrate the top 5 most popular features for each

of the 15 classifiers. Whenever HRV-metrics were used for classification (8 of the

15 instances), µPRSA−DC was the most important feature with a consistent feature

popularity score of 1. When only Actigraphy-metrics were used for classification,

the amplitude of the circadian rhythm measured using the cosinor rhytmometry

was the most popular feature with a feature importance score of 0.94. When we

used MSTE-features alone, σ2
τ
(8)
Act→DC

was the most popular feature with a feature

popularity score of 0.94. Finally, when we used the MSNR features alone, (σ2
LOOP4(3)

)

was the most popular feature with a feature popularity score of 0.90. Interestingly,

the top features from the individual feature set models for HRV-metrics (µPRSA−DC),

MSTE-features (σ2
τ
(8)
Act→DC

), and MSNR-features (σ2
LOOP4(3)

) were all featured as one

among the top−5 most popular features in the best model (AUC = 0.92) that used

the feature combination of HRV-metrics, MSTE-features, and MSNR-features. For

the classifier that used all available features (HRV + Actigraphy + MSTE + MSNR),

the following metrics featured as the top-5 most popular features: (1) µPRSA−DC

(ρ = 1.00), (2) σ2
τ
(8)
Act→HR

(ρ = 0.98), (3) σ2
τ
(8)
Act→DC

(ρ = 0.97), (4) Interdaily Stability

(ρ = 0.82); (5) σ2
LOOP4(3)

(ρ = 0.81).

3.4 Discussion

As of 2022, no clinically meaningful disease-modifying treatments exist for

patients with Rett syndrome. We instead rely on multiple therapeutics and symp-
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tomatic treatment strategies geared towards managing respiratory ailments, treating

seizures, improving gastrointestinal function, and improving motor skills [129]. As

new drugs and therapeutics are discovered, the need for objective measures that

can be used in clinical trials increases. Neurological disorders, including Rett, suffer

from difficult-to-measure symptoms. Most efficacy assessments are based on parent,

clinician (and in some cases, patient) interpretation of symptom severity, which

by nature introduces bias and often, exemplified by high placebo rates, results in

a high noise to signal ratio. Hence, the need to establish objective measurements

in patients directly, especially for symptoms that are difficult or impossible to ob-

serve, would open the door to evaluate therapeutics in novel ways and has the

potential to expedite therapeutic development in multiple ways. Namely, (1) It

would reduce bias; (2) It would help reduce clinical trial sample size by reducing

the noise to signal ratio; and (3) It would facilitate shorter trial duration by cap-

turing continuous data at home. The measurement of autonomic function could

be an early biomarker of therapeutic efficacy and may be particularly relevant for

curative therapeutics such as gene therapies that theoretically should improve or

restore baseline function. If trials focus on efficacy measures that require learning

and implementation (like mobility, communication, and hand use), this may take

significantly longer to detect than an autonomic function correction that should

not require learning. Thus, in the current study, we attempted to address these

unmet needs by capturing physiological (ECG) and body activity (three-axis ac-

celerometer data) from a 20-patient cohort. We chose to regress features extracted

from the ECG signal and body activity measurements against the binarized CGI-S

to correlate objective measures attained from a wearable biosensor to an overall

symptom severity scale. We have shown that the inclusion of multiscale features

(MSTE and MSNR) along with HRV-metrics provided a performance improvement

of 21% in terms of the AUC (AUC = 0.92) when compared to using HRV-metrics
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alone (AUC = 0.76). This improvement is attributable to the information embedded

in the higher-order interactions between the HR, DC, and activity count signals.

While the transfer entropy-based features enabled us to study the 2-dimensional

variations between all combinations of HR, DC, and activity count signals in both

directions, the network representations-based features enabled us to study the

3-dimensional interactions between these signals. Further, the computations of

these features at multiple coarse-graining scales provided a means to analyze the

signal modulations occurring due to different physiological phenomena (at different

timescales). The coarse-graining scales we used in this study ranged from 1 to 10,

which corresponded to a variation of sampling rate from 1/30 Hz to 1/300 Hz (i.e.,

from a sample every 30 seconds to a sample every 5 minutes). It allowed us to

study the effect of different physiological processes, including respiration, vagal

activity, and circadian rhythm, on the interactions between HR, DC, and activity

count signals.

Our analysis suggested that the mean value of the DC of the HR signal captured

on the BioStamp® nPoint between 10 PM and 10 AM was the most popular feature

to classify low-severity Rett syndrome patients from high-severity Rett syndrome

patients. It was the most popular feature in all the eight classifier models in which

it was used, with a consistent and highest feature popularity score of 1. The

computation of DC involved synchronizing the phases of all periodic components

of the signal irrespective of their timescales [130]. Thus, the DC captured the overall

deceleration of the sinus rhythm due to physiological processes that occurred at

different timescales, including the vagal (parasympathetic) activity, the baroreflex,

and the circadian rhythm. In Figure 3.4B, we depicted the variation of the 5−minute

averages of DC between the times of 10 PM and 10 AM for both low-severity and

high-severity Rett syndrome patient visits. Apart from the mean value of the DC,

we observed the emergence of the variance of transfer entropy at 8th coarse-graining
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scale from (1) Activity count signal to the HR signal and (2) Activity count signal

to the DC signal among the most popular features. Further, the variance of the

number of loops of size 4 in the network representations at coarse-graining scales

3 and 5 were among the top−5 most popular features in the best classifier model

(AUC = 0.92). Thus, in Fig Figure 3.4C, we illustrated an example of the network

representations for a low-severe and a high-severe Rett patient at the 3rd, 5th, and

8th coarse-graining scales. In addition to demonstrating the viability of a wearable

biosensor to estimate disease severity based on objective measurements directly in

patients, another novelty in our work was handling missing data in signals captured

using wearables for patient state analysis. We proposed three different techniques

for this purpose. The first method of combining data from multiple channels

boosted the amount of available data by 13.4% when compared to using a single

channel (medial chest) and improved the average SQI by 10%. In Fig Figure 3.4A,

we illustrated this improvement in SQI for each of the 32 patient-visits due to the

usage of the novel SQI based ECG imputation. The second method helped impute

the activity count data and reduce missingness. The third and final technique

of generating stochastic surrogates enabled us to compute the MSTE and MSNR

features. It was specifically developed for this study, without which no multiscale

analysis could have been performed. We computed the sample mean and sample

variance of all MSTE and MSNR metrics across all surrogate representations and

used them as features for our classification models. The sample mean is a measure

of the samples’ central tendency, and the sample variance is a measure of the spread

of the samples. Since our method used a normal distribution to sample the random

variables, and a normal distribution can be completely defined by a mean value

and variance, it was rational to use the sample mean and variance to characterize

the underlying MSTE and MSNR values.

In section 2.3, we listed the different medications prescribed to the Rett patients
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in our study. Our literature survey yielded that these drugs, prescribed to minimize

the symptoms of Rett syndrome have been shown to partly improve autonomic

cardiovascular function. Any suppression in HRV metrics for the high severity

group, if observed in our experiments, could imply that high severity Rett patients

inherently are less adaptable to the autonomic changes due to the severity of the

disease.

3.5 Conclusion

We developed a machine learning model that utilized features characterizing

HRV, body movement, and the interaction between the two to estimate Rett syn-

drome severity in a group of 20 female Rett patients. For this, we developed a

novel stochastic method for biosignal data imputation. We obtained the highest

pooled-AUC equal to 0.92 utilizing the feature combination of HRV-metrics, MSTE-

features, and MSNR-features. Further, the proposed approach provided us with

physio-motor biomarkers that could be used in clinical trials as objective metrics

to quantify the improvement in overall patient state. Specifically, the mean DC of

the HR signal captured between 10 PM and 10 AM using the BioStamp® nPoint

biosensor was the most popular feature with a feature popularity score equal to 1.

In conclusion, our study (1) Implemented a novel data imputation technique for

physiological signals, (2) Developed a machine learning model to estimate Rett dis-

ease severity, and (3) Developed objective measures that characterize the autonomic

function in Rett syndrome.
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CHAPTER 4

PATIENT STATE ANALYSIS FROM NEARABLES

4.1 Introduction

In this chapter, we describe an edge computing and ambient data capture system

for clinical and home environments. Further, we will describe five applications of

the data capture system. In clinical environments such as ORs and intensive care

units (ICUs), key events during patient monitoring include: (1) Patient movements

while lying in bed and in mobility within the room [131, 132]; (2) Bedside monitor

alarm triggers and noise pollution [132, 133, 134, 135, 136]; (3) Presence, absence

and movement of clinical personnel in the patient’s vicinity [137, 138, 139]; and (4)

Variations in the ambient light, temperature, and humidity [132, 140, 136]. In home

environments, key events that are generally untracked but are beneficial for patient

monitoring include: (1) Patient bodily movement during sleep [141, 142]; (2) Patient

movement around their residence [143]; (3) Doorbell triggers, smoke-detector trig-

gers, microwave beeps, and phone rings [144]; and (4) Changes in the ambient light,

temperature, and humidity [145]. Recently, nearables [16, 87, 145, 146, 147, 148]

such as microphones, video cameras, light-intensity sensors, temperature and hu-

midity sensors, are becoming more popular for hassle-free patient monitoring. They

not only collect valuable patient behavior data but also pick up key information

about the patient’s ambient environment while not interfering with the patient’s

day-to-day activities. Thus, we developed a non-contact data capture and archival

system to capture patient behavior and ambient environment information.

While obtaining patient behavior and ambient information is crucial in under-

standing the effects of healthcare practices on patient health, maintaining patient
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Figure 4.1 Edge computing and ambient data capture system. (PIR: Passive Infrared
Sensor; USB: Universal Serial Bus)

privacy is as important if not more. For this, we utilized the edge computing

paradigm. In edge computing, algorithms are decentralized and moved closer to

the point of data capture to reduce latency and bandwidth requirements. This

paradigm can be defined as computing outside the cloud, happening at the edge

of the network, specifically in applications where real-time data processing is re-

quired. In our work, we utilized a Raspberry Pi (RPi) as a hub for data collection

and edge computing. We extracted patient privacy-preserving features from the

captured data on the RPi (at the edge) before discarding the raw underlying sig-

nal and transferred the computed features to a Health Insurance Portability and

Accountability Act (HIPAA) compliant storage. The retrospective patient state

analysis utilizing these captured features occurred on a central server away from

the RPi. Non-contact monitoring of patients is becoming more prevalent, especially
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in elderly patients [149, 150, 151] and neurodevelopmental populations (such as

Autism Spectrum Disorder) [152] as these systems cause no burden on the patients

in terms of wearing and operating the device (in contrast to a wearable such as the

smart watch). Further, non-contact monitoring allows for monitoring the patient’s

global movements in contrast to wearables, thus providing additional information

about patient behaviors. The advent of the COVID-19 pandemic further increased

the need for such systems [147] as they allow passive patient monitoring from a

distance. However, there are multiple challenges in building such a system. First

challenge lies in integrating different sensors to capture multiple data modalities

under a single clock. Second, this system should asynchronously transfer the data

to a HIPAA-compliant database. Lastly, the system should maintain patient privacy

while capturing the various data modalities. We overcame these challenges by

developing a novel software system that ran on an RPi. Using this system we

integrated the following five sensors: (1) PIR sensor (2) RPi-Infrared (IR) camera (3)

Universal Serial Bus (USB) Microphone (4) TCS34725 color sensor and (5) DHT22

temperature-humidity sensor. Further, we utilized the onboard Bluetooth receiver

to geolocate humans using Bluetooth beacons. The main novelty of our work lied

in capturing privacy-preserved features simultaneously from multiple sensors to perform

human movement detection, registering auditory cues, human geolocation, and ambient

environment monitoring. It was a specific design consideration that all hardware

could be easily purchased at a low cost. This effectively helped scale the system

and enabled us to capture data in large clinical environments. Further, the system

was intended to be deployed rapidly without the need for expert fabrication of

hardware.

We have described four applications of the data captured by our system. Namely:

(1) Medical equipment alarm classification, (2) Geolocation of humans in a built

environment, (3) Ambient light logging, and (4) Ambient temperature and humidity
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logging, (5) Obstructive sleep apnea detection from PIR sensor, (6) Next Day Behav-

ior Prediction in Autism. We provide the details of these experiments in section 4.3.

While alarm classification and geolocation tasks aid us in non-contact patient mon-

itoring, the management of indoor air temperature, humidity, and light intensity

are vital for maintaining patients’ comfort in hospitals [153]. In [154], researchers

recommended creating separate thermal zones according to patients’ preferences

for improved recovery. Further, a relative humidity (RH) greater than 45%− 50%

assists fungal growth in built environments and can affect patient recovery in hos-

pitals [155]. With respect to the lighting conditions, patients prefer a mixture of

warmer and cooler luminaire throughout the day and favor distributed lighting

over the traditional over-bed configuration [69]. Thus, temperature, humidity, and

light intensity monitoring are essential components in our ambient data capture

system. These sub-parts assist clinicians and caretakers make critical decisions

about the patient’s environmental conditions.

4.2 Materials and methods

4.2.1 System architecture

The system architecture described here is a low-cost, high-compliance design.

At its core is the Python script that interfaces with the sensors via the RPi. A picture

illustrating the hardware components of the system is shown in Figure 4.1. The

bill-of-materials, along with the total cost for the hardware components and the

system dimensions, are provided in our open-sourced Github repository [156].

We now describe the system’s individual hardware components along with the

associated software.
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Raspberry Pi

The RPi is a $35 computer that is about the size of a deck of cards. It functioned

as the central hub in our data collection pipeline. In our work, we used the RPi

4 model B (Figure 4.1), which was released in June 2019 and was the most recent

model during the software development stage of the project. The Debian-based

operating system (‘Raspbian-Buster’) that is optimized for the RPi was installed for

developers and users to interact with the hardware. Among the onboard peripherals

on the RPi were two USB 2.0 ports and two USB 3.0 ports, a 40-pin General Purpose

Input-Output (GPIO) header, and a USB-C port to supply power to the RPi. The

RPi was powered using a 5V 3A power adapter. Alternatively, in low-resource

settings, one can consider powering the RPi using alternative means, for instance, a

car battery [147]. In that case, a step-down transformer is required to convert a 12V

power supply to 5V. However, in all our experiments, we used an external power

supply that was available in the built environment.

PIR sensor based human movement detection

We used a PIR sensor (Figure Figure 4.1) for coarse human movement detection.

The PIR sensor consists of a pair of IR sensitive slots housed in a hermetically sealed

metal casing. A Fresnel lens acts as the outermost cover, which increases the range

and sensitivity of the sensor. When the sensor is idle, both the IR slots receive the

same amount of IR radiation. Whereas, when an IR emanating object moves past

the field of view of the first IR slot, this slot detects an increased IR radiation, and

thus, a differential signal C between the two slots is generated. A differential signal

C′, which is completely out of phase with respect to C, is generated when the object

moves past the other IR-sensitive slot. These differentials are then processed to form

the output signal. Our system was designed to capture data at a sampling frequency

of 1Hz. The data itself was a binary spike train taking the value 1 when a movement
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was detected and 0 otherwise. In chapter 6, we will present a method for capturing

movement data using a PIR sensor during sleep from a single person. Further, we

show that the captured movement data can be utilized to build a binary classifier for

obstructive sleep apnea classification at a classification accuracy equal to 91% [142].

One should note that this method can be generalized to perform human movement

detection in different clinical and home environments. Based on the positioning and

orientation of the sensor, one could capture different information. For instance, the

timestamps when the patient’s knee was operated on could be obtained by placing

the sensor to monitor a patient’s knee during their knee replacement surgery.

IR camera-based human movement detection

It is possible to use a video feed [16] from an RPi-IR camera in place of the

PIR sensor to perform human movement detection. This method allowed us to

capture the human movement signal with more than two quantization levels and

obtain a finer signal than the binary signal captured using the PIR sensor. Besides

capturing the occurrence of movements, the RPi-IR camera-based analysis allowed

us to compute the intensity and direction of these movements. We used the No

Infrared (NoIR) version [157] of the RPi-IR camera (Figure 4.1). In contrast to the

regular RPi-camera, the NoIR RPi-IR camera did not employ infrared filters and

gave us the ability to see in the dark with infrared lighting.

We now describe the method to extract human movement signal from the RPi-IR

camera feed and describe its utility. Without loss of generality let us assume we

capture the video at 1 Hz (i.e. 1 frame per second). Let the video frame at time t (in

seconds) with a pixel resolution equal to M × N be denoted as Ft, and the previous

video frame be Ft−1. The frame difference between the two frames at time t (Dt) is

defined as Dt = Ft − Ft−1. The difference-frame Dt has the same pixel resolution as

Ft and Ft−1, i.e. M × N. For a given video V, the corresponding difference frame-
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stack is given by the set D = {Dt}t∈[2,T] where T is the total number of frames

in V and Dt is the difference frame at t seconds. We extract four different signals

from D namely: (1) Global Difference Sum (GDS); (2) Global δ-Pixel Count (GDPC);

(3) Local Difference Sum (LDS); and (4) Local δ-Pixel Count (LDPC). The global

signals (GDS and GDPC) for a given difference frame Dt are computed as follows:

GDS[t] = ∑
i∈[1,M]

∑
j∈[1,N]

|Dt[i, j]| (4.1)

GDPC[t] = #({d ∈ Dt
∣∣ |d| > δ}) (4.2)

where d denotes an individual pixel in the difference frame Dt, |.| denotes the

absolute value and #(.) denotes the set cardinality. GDS[t] is the sum total of the

absolute values of the pixels in the difference frame at time t seconds and GDPC[t]

is the total number of pixels in the difference frame at time t seconds that have

an absolute value greater than δ. If δ = 0, GDPC[t] denotes the total number of

non-zero pixels in the difference frame Dt. The local signals (LDS and LDPC) for

a given difference frame Dt are computed likewise to the global signals but are

calculated on smaller blocks in the difference frame. For this, we divide a difference

frame of pixel resolution M × N into K parts of equal size along the M-axis and L

parts of equal size along the N-axis. Each of the K parts contains m = M
K columns

and each of the L parts contains n = N
L rows. This division along the rows and

columns of a difference frame Dt creates nBlocks = K ∗ L local-blocks of size m× n.

Let the sth local-block be denoted as DLt,s. Then the local signals (LDS and LDPC)

at time t for the sth local-block are given as:

LDS[t, s] = ∑
i∈[1,m]

∑
j∈[1,n]

|DLt,s[i, j]| (4.3)

LDPC[t, s] = #({d ∈ DLt,s
∣∣ |d| > δ}) (4.4)
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where d denotes an individual pixel in the difference frame local-block DLt,s, |.|

denotes the absolute value and #(.) denotes the set cardinality. The LDS[t, s] is the

sum total of the absolute values of the pixels in the sth local-block of the difference

frame at time t seconds and the LDPC[t, s] is the total number of pixels in the sth

local-block of the difference frame at time t seconds that have an absolute value

greater than δ. Similar to GDPC, if δ = 0, LDPC[t, s] denotes the total number

of non-zero pixels in the sth local-block of the difference frame Dt. The different

parameters that needed to be set were δ, K, and L. The default values we set in our

work were δ = 0, K = 5, L = 4 and the videos we experimented on had a pixel

resolution equal to 320× 256. Thus, in our work, we had m = 64, n = 64, and

nBlocks = 20.

Together, the host of time-series data described above gave us information about

the temporal and spatial variations in the video V. We needed certain assumptions

so that these signals gave us information about human movement. The assumptions

were as follows (1) We had one person in the entire video. (2) The background was

static, and the only moving object in the video was the person or an object attached

to the person. (3) The video was not corrupted or affected by noise.

While the PIR sensor provided binary movement signals (movement occurred

vs. no movement), the movement signals from the IR cameras were finer and had

a higher spatial resolution. These two solutions were useful in different scenarios.

For instance, while the PIR sensor could be used to detect the presence or absence

of a human in a room, the movement signal from the IR camera could be used

to perform a privacy-preserving analysis of a patient’s sleep. Thus, based on the

requirement and budget, the users of our system could use one or both sensors. For

instance, if the application is human movement detection and cost is a concern, we

recommend the users to use a PIR sensor.
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Privacy preserving audio data capture

The proposed audio data capturing system consisted of a USB microphone

connected to the RPi. In this work, we tested the Fifine Conference USB Microphone

(Figure 4.1). In order to record the audio signal, we used the python-sounddevice

package available on GitHub [158, 159] under the MIT License. Specifically, we

modified the script rec unlimited.py [158] to be able to continuously record audio

data and perform audio feature computation at regular intervals. To extract features

from these audio snippets, we used a 30 millisecond Hanning window with a 50%

overlap. Feature computation was done using the librosa package available on

Github[160] under the Internet Systems Consortium (ISC) license. We utilized the

spectral representation method stft in the Core IO and Digital Signal Processing

toolbox and the spectral features method mfcc in the feature extraction toolbox in

order to compute short-time Fourier transform (STFT) and Mel-frequency cepstral

coefficients (MFCC), respectively. Further, we used the filter bank construction

method mel in the Filters toolbox to create a filter bank with 10 frequency bins.

For each 30 millisecond window, we then computed the signal energy in different

frequency bins by performing the following matrix multiplication:

E = MS (4.5)

where S was the STFT coefficient vector for the current window, M was the mel

filter mask matrix with each row corresponding to a different mask, and E was

the signal energy in different frequency bins corresponding to the mel filter masks.

Note that the default shape of mel filter masks was a triangle with the mask values

summing to one. We further included scripts for computing sample entropy of the

windowed audio snippets using the mse.c script, which was available on Physionet

[161] under the GNU general public license. Further, we developed scripts to
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archive the computed audio features to a secure cloud storage and discard the

underlying audio snippets. The above implementations were developed using

Python 3.7.3, C, and Bash scripting. These were representative edge computing

methods that could extract different features (MFCC, signal energy and sample

entropy) from audio signals. Other feature extraction algorithms which could be

run on the constrained environment of an RPi could be easily incorporated as

additional methods. The discarding of raw audio data ensured patient privacy

and speaker identification was not possible. Furthermore, we did not record the

speaker’s pitch information in the audio snippets or deploy methods to determine

if a given window contained voiced speech.

Human location tracking via Bluetooth

The Bluetooth scanning system utilized the onboard Bluetooth receiver of an RPi.

In this work, we tested the Smart Beacon SB18-3 by kontact.io with an RPi 4 model B.

We leveraged the scanner package by bluepy - a Bluetooth LE interface for Python [162]

for this purpose. The code implementation was done in Python 3.7.3. The software

recorded the received signal strength indicator (RSSI) value from all the beacons

transmitting the Bluetooth signal in the vicinity. We used the media access control

(MAC) addresses of the Bluetooth beacons to identify them. A Python script would

poll for RSSI values from all the beacons in the vicinity at regular intervals. The

received RSSI values, the unique MAC address, and the recording timestamp were

dumped into a file.

Ambient light intensity assessment

In this work, we used the Waveshare TCS34725 Color Sensor (Figure Figure 4.1)

in conjunction with an RPi to capture ambient light intensity. Among other signals,

the color sensor captured the following signals which were of interest to us: (1)
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Red, Green, and Blue values in the RGB888 format (8-bit representation for each of

the three color-channels); (2) Illuminosity in Lumen per square meter (LUX); and

(3) Color Temperature in Kelvin. The RGB values and the color temperature gave

us information about the ambient light color, and the illuminosity values gave us

information about the ambient light intensity.

Temperature and humidity detection

For temperature and humidity detection we used the DHT22 Temperature-

Humidity sensor module (Figure Figure 4.1) in conjunction with an RPi. The DHT22

sensor comprised a thermistor and a capacitive humidity sensor that measured the

surrounding air to provide calibrated temperature and humidity values. Further,

the sensor module came with a digital board that housed three pins, namely VCC,

GND, and OUT. The sensor had an operating voltage of 3.3/5V (DC), and the OUT

could be read from a GPIO pin on the RPi. The temperature range was −40 to 80

°C, and the humidity range was 0− 100% RH.

4.2.2 Data fusion

The following data modalities were captured at a sampling frequency of 1 Hz:

(1) PIR sensor-based human movement; (2) IR camera-based human movement;

(3) Audio data; (4) Bluetooth RSSI signal; (5) Ambient light intensity; and (6)

Temperature and humidity. A single main script facilitated the capture of all

the above data modalities and the individual time stamps corresponding to each

sample. The human pose signal was recorded in an ad-hoc manner when the

algorithm detected a human body. Nevertheless, the corresponding timestamps

were recorded using a single clock onboard the RPi to ensure all data modalities

were recorded synchronously. Further, the recorded data was easy to access via a

simple directory structure consisting of separate folders for each data modality. The
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data collection was performed in parallel by each RPi and transmitted in real-time

to a HIPAA compliant central server, which aggregated the data to perform patient

state analysis.

4.3 Applications

The applications of our edge computing and ambient data capture system range

from monitoring patient sleep in sleep labs to tracking neurodevelopmental disorder

patients at their homes. In our work, we describe four experiments to demonstrate

our system’s utility:

1. Obstructive sleep apnea classification using passive infrared sensor: We can

detect the binarized apnea hypopnea index based on the body movements during sleep

via the PIR sensor.

2. Medical equipment alarm classification using audio: This utility facilitates

patient monitor alarm monitoring in ORs or ICU rooms, where there are many

system not centrally integrated.

3. Geolocation of humans in a built environment: We can track humans in a built

environment and model social distancing for quantifying epidemic disease exposure

[163].

4. Ambient light logging: This system can be used to study the effect of ambient light

on human circadian rhythm.

5. Ambient temperature and humidity logging: We can perform long-term monitor-

ing of the effects of ambient environmental conditions on patient behavior.

6. Next Day Behavior Prediction in Autism: We can predict daily behaviors of people

with Autism based on their previous night’s sleep.
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4.3.1 Obstructive sleep apnea classification using a passive infrared sensor

In this experiment, we illustrated the use of the PIR sensor (a nearable) for

patient state analysis. Specifically, we used the data obtained from the PIR sensor to

detect patients with obstructive sleep apnea.

Dataset

We used a subgroup of participants included in the Emory Twin Study Follow-up

and recruited from the Vietnam Era Twin Registry [164]. Overnight sleep move-

ments of participants were continuously recorded using the low-cost PIR sensor in

our nearables system, for up to eight hours during a conventional laboratory-based

PSG. Breathing was measured with separate channels for oral/nasal airflow, nasal

pressure, thoracic and abdominal respiratory effort, and pulse oximetry. All data

were collected at Emory sleep-labs and data acquisition systems were setup in two

bedrooms present in the sleep-labs. We obtained written informed consent from all

participants, and the Emory University institutional review board approved this re-

search (IRB#00081004). Data were collected between January 2016 and October 2018

during simultaneous polysomnogram studies on 32 male participants (aged ∈ [61

years, 73 years]). 14 of the analyzed participants were classified as suffering from

OSA while 18 were deemed non-OSA (control) participants. The Apnea-Hypopnea

Index (AHI), which is an indicator of the severity of OSA measured during the PSG,

was used to determine OSA. Participants with an AHI ≥ 15 events per hour were

assigned to the OSA class. Those with AHI < 15 served as the control group. The

sample used in this study included 11 participants demonstrating PLMD, defined

as having a Periodic Limb Movement Index (PLMI) – the number of periodic limb

movements per hour as recorded by expert annotators - greater than 15 movements

per hour. The range of values for PLMI in the sample used in this study was [0, 80.3].

53



Feature extraction

Overnight sleep movement data corresponding to ith participant Pi during a

single night recording was a summation of Li time delayed impulse signals. This

record was denoted as Ri. The sampling frequency was set to 1 Hz. Thus, for

the ith record Ri acquired between 10 pm in the night and 6 am the next day

(eight hour recording), we had a maximum of 8 × 3600 = 28800 impulses i.e.

max
i∈N

Li ≤ 28800, where N was the number of participants in the data cohort.

We concatenated all the timestamps in Portable Operating System Interface time

(POSIX-time) corresponding to impulses present in record Ri to construct ith POSIX-

time timeseries Ti. We then defined the ith first-difference signal (Di) as the first

difference of Ti and the ith activity signal (Ai) as the sample-wise inverse of this first

difference. Since the sampling frequency was set to 1 Hz, the possible minimum time

span between two movement events was one second, whereas the maximum time

span was finitely large. This provided a natural way for normalizing the activity

signal and it was always bounded between 0 and 1, i.e. Ai[t] ∈ [0, 1] ∀t ∈ [10 pm, 6

am].

We utilized a total of 12 features to perform OSA classification. The 12 features

belonged to one of the following three categories 1) Entropy based features; 2)

Standard statistics of the first difference of the the time series of movements; and 3)

Periodic limb movement activity. Multiscale entropy (MSE) is a method to measure

complexity of a physiological or a finite time series with the aim to consider multiple

time scales inherent in such time series [165]. In order to utilize sleep movement

signal complexity in OSA classification the first set of features were based on MSE,

denotedHτ where τ is the scale (τ ∈ {1, 2, 3, 4, 5}). The Difference Signal Statistics

(DSS) were derived from the first difference signal Di. The number of impulses in

the recording, i.e. number of samples in the difference signal plus 1, was a feature.

The mean, variance, skewness, kurtosis and inter-quartile range of the difference
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signal were the other features in this second set. PLMI measured as part of the sleep

study polysomnography for each of the 32 participants was an additional feature.

Experiments

We performed six experiments to classify each participant to one of the OSA or

control class where in each experiment we used a different combination of features.

Specifically, the six feature combinations were as follows: (1) MSE; (2) DSS; (3)

PLMI; (4) MSE + DSS; (5) MSE + PLMI; and (6) MSE + DSS + PLMI. For each of

these feature combinations we further implemented the forward selection method

[166] to simultaneously rank and select the most discriminative features for the

classification task. Logistic regression was used as the classifier and Leave One Out

Cross-Validation (LOOCV) was used to assess the performance. In each iteration

of the cross-validation, data corresponding to one participant was left out as the

testing data point and P classifiers were built using the remaining data (utilizing

the remaining 31 participants’ data as the training data) where P corresponds to

the total number of features in the analysis and is defined as follows:

P =



1 for 3rd experiment

5 for 1st experiment

6 for 2nd and 5th experiments

11 for 4th experiment

12 for 6th experiment

The pth classifier (p ∈ [1,P ]) corresponded to the model trained with best validation

accuracy when using only ‘p’ of the P features. The performance metrics included

the F1-Score (F1) and accuracy (Acc) and were calculated and reported for the

model with the highest F1.
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Table 4.1: Class labels including the Musical Notes in International Organization for
Standardization / International Electrotechnical Commission (ISO/IEC) 60601−
1− 8 Alarm and their count [E stands for the Empty class and T stands for the
Transition class]

Musical Note Fundamental Frequency (Hz) Count

C4 261.63 207
D4 293.66 43
E4 329.63 32
F4 349.23 46
F#

4 369.99 27
G4 392.00 66
A4 440.00 45
B4 493.88 17
C5 523.25 81
E - 969
T - 432

4.3.2 Medical equipment alarm classification using audio

In this experiment, we tested the utility of the audio feature extraction methods

(energy in mel frequency bins and MFCC) proposed by us for clinical audio clas-

sification. For this, we utilized an external clinical audio database, extracted the

proposed features, and performed multi-class classification.

Dataset

We analyzed the International Organization for Standardization / International

Electrotechnical Commission (ISO/IEC) 60601− 1− 8 type medical equipment

alarm sounds [167]. The alarm sounds comprised eight categories: general, oxygen,

ventilation, cardiovascular, temperature, drug delivery, artificial perfusion, and

power failure. Further, each category had two alarm sounds, namely, medium

priority alarm and high priority alarm. The medium priority alarm sounds were

about one second long and consisted of three musical notes that were played once,

whereas the high priority alarm sounds were about 4.5 seconds long. They consisted
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of five musical notes that were played twice. All the alarm audio recordings were

single channel, sampled at 22050 Hz, and recorded in the Waveform audio file format.

Nine musical notes were used to construct these 16 different alarm audio recordings.

Table Table 4.1 lists these nine musical notes with their fundamental frequencies.

The works [167, 168] provide more information on the individual alarm sound

recordings.

Feature extraction

We used the audio data capture software described in Section subsubsection 4.2.1

and computed 20 MFCC features and 10 filter bank energy features on 30 mil-

lisecond snippets of the 16 alarm sound recordings. Further, we computed STFT

coefficients for the audio clips and annotated each snippet to belong to one of the

following 11 classes: {Empty, C4, D4, E4, F4, F#
4 , G4, A4, B4, C5, Transition}. The

Empty class was assigned when all the STFT coefficients of a snippet were equal to

zero. If a particular audio snippet was partially made up of a specific note with the

rest of the samples equal to zeros, such windows were annotated as the Transition

class. We annotated the musical notes by comparing the fundamental frequency in

STFT with the values shown in Table Table 4.1. Moreover, we used the note sheets

provided in [167, 168] to confirm our annotations. We had a total of 1965 data points.

Table Table 4.1 further provides the breakdown of the number of data points in each

class.

Classification

Using the 30 features described, we performed an 11 class classification using

five-fold cross-validation and an XGBoost [169] classifier. All codes were written in

Python 3.6.3 and XGBoost was implemented using the package provided in [170].

The following hyperparameters were used without any tuning: n estimators = 150,
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objective = ‘multi:softmax’, num class = 11, max depth = 6. All other hyperparame-

ters were set to their default values. As illustrated in Table Table 4.1, the dataset

contained class imbalance. We thus used both the macro averaged F1 (F1−macro)

score and the micro averaged F1 (F1−micro) score as the measures for assessing

classification performance. The F1−macro score gives equal importance to each

class irrespective of the number of samples in each class thus providing a balanced

assessment of the multi-class classification performance when the dataset is imbal-

anced. The F1−micro score on the other hand aggregates samples from all classes

before computing the F1 score. Please refer [171] for the individual expressions for

computing the two F1 scores.

Speech mixing

Next, we measured the performance of the note classification algorithm in the

presence of speech. For this, in addition to the ISO/IEC 60601− 1− 8 dataset, we

used a speech record consisting of five speakers [four male and one female] from

the Oxford Lip Reading Sentences 2 dataset [172]. First, we resampled the speech

record to match the sampling frequency of the alarm audio recordings (22050Hz)

and extracted the first channel of this resampled speech record, denoted by S . Next,

for each of the 16 alarm audio records Ai, i ∈ [1, 16], we uniformly randomly pick

an audio snippet from the speech record Si which was of the same length as Ai. We

then generated 10 audio records per alarm audio recording as follows:

Mi[α] = α ∗ Si + (1− α) ∗ Ai (4.6)

where Mi[α] was the mixed audio recording for a given α and α ∈ {0, 0.1, 0.2,

· · · 0.8, 0.9} was the mixing parameter that combined speech recording with alarm

audio recordings. Note that ∗ and + denoted scalar multiplication and sample-wise
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Table 4.2: The human tracking experiment

Start Time End Time Duration Action
(second) (second) (seconds)

0 146 146 Stay in room 1
146 159 13 Move from room 1 to room 2
159 268 109 Stay in room 2
268 286 18 Move from room 2 to room 3
286 470 184 Stay in room 3
470 480 10 Move from room 3 to room 1
480 600 120 Stay in room 1

addition, respectively. When α was equal to 0, we had no speech component, and

thus, Mi[0] was equal to the original alarm audio recording Ai. As α increased

from 0 to 0.9, the speech component in Mi[α] increased linearly, and the alarm

audio component decreases linearly.

We obtained a total of 160 different audio recordings (10 mixed audio recordings

per clean alarm audio recording). We re-computed 20 MFCC features and 10 filter

bank energy features for these 160 audio recordings using 30 millisecond Hanning

windows and a 50% overlap and obtained a total of 19650 feature vectors. The

ground truth labels for the feature vector at different α values were the same as

those for α = 0. Utilizing these 19650 feature vectors and corresponding labels, we

performed an 11 class classification of musical notes using five-fold cross-validation

and XGBoost [169] classifier. The hyperparameters were the same as it was when

there was no speech mixing.

4.3.3 Geolocation of humans in a built environment via Bluetooth

In this experiment, we processed the RSSI signal received by the RPi to perform

room-level location detection of humans using a Bluetooth beacon. We set up nine

RPis in a built environment where each RPi was loaded with the software to capture

RSSI values as received from a specific Bluetooth beacon. The built environment
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consisted of three rooms, and three RPis were present in each room, approximately

equidistant from the center of the room. A Kontakt.io Bluetooth beacon with a

unique MAC address was used in the experiment. A human subject carried the

Bluetooth beacon in their clothes and moved around the space as illustrated in

Table Table 4.2. Please note that this is a minor limitation of our system and the

usage of a Bluetooth beacon (albeit inside one’s clothes) resulted in our system not

being completely non-contact.

The processing of the collected RSSI values to perform geolocation of humans

was done on a central server. This was because we collected data from multiple

RPis to perform geolocation. Once the data was transferred to the cloud from each

RPi, we downloaded the data onto a central server and performed geolocation.

The RSSI signals captured by each RPi were non-uniformly sampled. Hence, these

signals were converted to a uniformly sampled signal with a sampling frequency

equal to 1 Hz by filling missing data using the following equation.

RSSIn[currentTime] = RSSIn[previous]

×max([β× (currentTime− previous), 1])
(4.7)

where, n ∈ [1, 9] was the index variable to recognize RPis, RSSIn was the vector of

RSSI values captured by nth RPi, currentTime was the time (in seconds) at which we

did not have a reading of the RSSI value, previous was the closest predecessor time

point (in seconds) to currentTime at which we had a reading of the RSSI value, β

was the decay parameter that controlled the rate at which the RSSI value decayed

when RSSI values were missing and max was a function to compute the maximum

value in the input vector. The time difference (currentTime - previous) was expressed

in seconds.

Further, any RSSI value less than −200 dBm was clamped to −200 dBm to have

all RSSI values in a fixed range. We set β to 0.2, which corresponded to maintaining
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Table 4.3: The ambient light tracking experiment

Day Time (HH:MM) Action

Clear Day (Dclear)
07:32 Sunrise
18:10 Sunset

Night-1 (N1)

18:55 Lights-ON
23:45 Lights-OFF
01:00 Data upload start
02:00 Restart data collection

Cloudy Day (Dcloudy)
07:31 Sunrise
16:58 Lights-ON
18:11 Sunset

Night-2 (N2) 23:42 Lights-OFF

the previous value for 5 seconds before the RSSI values were decayed when the

RSSI values were missing. Further, we computed the average RSSI signal for each

room by computing the mean value of the RSSI signals captured by the three RPis

in each room. We used the softmax function to obtain a probability vector that gave

the probability of the human subject with the Bluetooth beacon to be present in each

of the three rooms at any given point in time. The averaging of RSSI values from

multiple RPi receivers and the further usage of the softmax function significantly

suppressed the effect of noisy RSSI samples.

4.3.4 Ambient light logging

To perform ambient data logging, we set up an RPi with the Waveshare TCS34725

color sensor in a built environment. The RPi was loaded with the associated soft-

ware needed to capture the ambient light intensity values. Table Table 4.3 provides

a timeline of events that occurred during ambient light data capture. The duration

between 1 AM and 2 AM was reserved for data upload, and no data capture was

performed during this period. The color sensor was set up in a place that received

natural sunlight during the day and received light from light sources in the room
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during the night. The lights in the room were turned ON when the natural sunlight

was not adequate for a normal human lifestyle. The lights in the room remained

ON until “sleep time” of the residents in the built environment when the lights

were turned OFF. We recorded the ambient light data for two consecutive days. In

parallel, we tracked the weather conditions of the data collection site and recorded

the minute-to-minute local cloud cover information. With this setup, we studied

the effect of cloud cover, sunrise and sunset times, artificial lights in the room,

and buildings around the data collection site on the ambient light data captured

by the color sensor. We divided the entire time period into 4 sections: Dclear, N1,

Dcloudy, N2. Here, Dclear represents the day-period (sunrise to sunset) on the first

day when the skies were clear, N1 represents the first night (sunset to sunrise),

Dcloudy represents the day-period (sunrise to sunset) on the second day when the

skies were extremely cloudy (average cloud cover ¿ 80%), and N2 represents the

second night (sunset to sunrise). Since the cloud cover information during the night

had little or no effect on the ambient light intensity in the room, in our analysis, we

only used the cloud cover data tracked during Dclear and Dcloudy.

4.3.5 Ambient temperature and humidity logging

We validated the DHT22 temperature and humidity sensor against a commer-

cially available sensor in this experiment. We set up an RPi with the DHT22 sensor

in a built environment. The RPi was loaded with the necessary software to contin-

uously capture temperature and humidity values and the associated coordinated

universal time (UTC) timestamps. We collected the temperature (TRPi) and hu-

midity (HRPi) values with this setup at a sampling frequency of 1Hz for three

consecutive days (about 72 hours). Further, we set up the ORIA mini Bluetooth

Temperature-Humidity sensor (a commercial sensor) beside our RPi setup and simul-

taneously performed temperature (Tcs) and humidity (Hcs) measurements using the
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Table 4.4: Classification performance when different feature combinations were
used
[Acc = Accuracy, F1 = F1 Score]. p∗: number of features needed in a given feature
combination (with P) to maximize F1.

Experiments Highest Highest p∗/P # of times each feature was picked for the highest F1 model of the 32 LOOCV-iterations
F1 Acc (%) H1 H2 H3 H4 H5 L µd σ2

d γd Kd Id PLMI
MSE 0.81 84 3/5 31 13 18 2 32 - - - - - - -
DSS 0.62 66 4/6 - - - - - 5 21 30 32 28 12 -

PLMI 0.29 53 1/1 - - - - - - - - - - - 32
MSE + DSS 0.83 84 10/11 30 30 25 32 32 32 24 31 27 29 28 -

MSE + PLMI 0.77 81 3/6 32 12 16 2 32 - - - - - - 2
MSE + DSS + PLMI 0.89 91 5/12 9 22 15 8 32 5 11 30 7 13 4 4

commercial sensor. The commercial sensor allowed the export of the recorded Tcs

and Hcs measurements in the form of comma-separated value files via an Android

application. The commercial sensor output contained measurement values at a

sampling rate of 0.001667Hz (one sample per 10 minutes). Hence, we retrospec-

tively processed the TRPi and HRPi measurements captured by the DHT22 sensor to

match the number of samples and the measurement timestamps corresponding to

the commercial sensor via the following procedure. For every timestamp (tscs) at

which we had the temperature and humidity values from the commercial sensor,

we constructed a 10-minute window which spanned from tscs− (10 minutes) to tscs.

We collated all TRPi and HRPi measurements in this time window and computed

the mean value of these measurements to obtain TRPi−µ[tscs] and HRPi−µ[tscs]. We

then compared the TRPi−µ with Tcs and HRPi−µ with Hcs by plotting the signals

one over the other. Further, we performed correlation analysis and fit separate

linear models for the temperature and humidity measurements. Finally, we created

separate Bland-Altman plots for the temperature and humidity measurements.

4.4 Results

4.4.1 Obstructive sleep apnea classification using a passive infrared sensor

Results obtained for the six experiments are presented in Table 4.4. The numbers

under each feature indicated the frequency (out of the 32 LOOCV folds) with which
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Table 4.5: Note Classification in Medical Equipment Alarm

Setting F1−micro F1−macro

Without Speech 0.98 0.97
With Speech Mixing 0.93 0.91

they were chosen for each fold. The bolded frequencies indicate that forward

selection resulted in the inclusion of the feature. The highest F1 of 0.89 and Acc

of 91% (bolded in columns two and three) were obtained by using five of the 12

features (when the feature combination MSE + DSS + PLMI were used). The top

five features consistently selected across all folds associated with the model that

provided the highest F1 and Acc were (in order of frequency of selection) H5, σ2
d ,

H2,H3 and Kd. Further, without PLMI (the only non-PIR sensor based feature) a

highest F1 of 0.83 and an Acc of 84% were obtained by using 10 features. Notably,

the least frequently selected feature was the mean time between movements, µd.

Utilizing MSE alone, a highest F1 of 0.81 and Acc of 84% was obtained using

three of the five MSE features. Usage of the DSS features alone, resulted in a highest

F1 and Acc of 0.62 and 66% respectively whereas, usage of PLMI feature alone

resulted in a F1 of 0.29 and Acc of 53% with the former experiment needing four of

six features to attain the highest performance metrics.

4.4.2 Medical equipment alarm classification using audio

Table Table 4.5 shows the results for the 11-class medical equipment alarm

note classification. We computed the micro averaged (F1−micro) and the macro-

averaged (F1− macro) F1 scores for the two experiments. When there was no

speech content in the alarm audio recordings, we obtained an F1−micro equal to

0.98 and an F1−macro equal to 0.97. Retraining with speech resulted in a drop of

5.1% and 6.2% in F1−micro and F1−macro scores, respectively.
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A B

Figure 4.2 Human geolocation via Bluetooth. The translucent background colors
indicate the ground truth values, and the corresponding room number has been
labeled. (A) The received signal strength indicator (RSSI) values as captured by
each of the nine Raspberry Pis during the experiment are shown. It is measured in
decibels with reference to one milliwatt (dBm). (B) The corresponding probability
values of the subject being in Rooms 1, 2, or 3 during the experiment. The blue color
depicts Room 1, the green color depicts Room 2, and the red color depicts Room 3.

Figure 4.3 Observing the effects of cloud cover, sunrise, sunset, lights-ON, lights-
OFF and buildings around the data collection site on the ambient light in a built
environment for two continuous days (48 hours). The solid-orange bars ( ) depict
the amount of ambient light sensed by the color sensor in Lumen per square meter
(LUX). The solid-blue circles ( ) depict the local cloud cover in percentage of local
sky covered by clouds. The sunrise and sunset times are indicated with the rising
and setting sun symbols, respectively, using the upward and downward arrows.
The yellow and black bulbs specify the lights-ON and lights-OFF times, respectively.
The skyscraper symbol indicates the time when the Sun goes behind a skyscraper
and causes a shadow onto the location where ambient light was being tracked. Data
upload is depicted by binary values and a cloud node.
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B C

A

Figure 4.4 Comparison of temperature and humidity values captured by the Rasp-
berry Pi (RPi) integrated DHT22 sensor and a commercial sensor. The top plot
corresponds to temperature in each subplot, and the bottom plot corresponds to
humidity values. (A) The dashed blue lines indicate the processed temperature
and humidity values captured by the RPi integrated DHT22 sensor. The solid red
lines indicate the corresponding values captured by the commercial sensor. (B)
The correlation plots between values captured from the DHT22 sensor and the
commercial sensor. The solid-blue circles ( ) indicate individual temperature and
humidity tuples. The linear fits on the data and their deviations from the 45◦ line
are depicted in the plot. (C) The Bland-Altman plot between the two measurements.
The solid black lines indicate the mean difference between the two measurements.
The dashed black lines indicate the +1.96 and the -1.96 standard deviation (SD) lines
for the difference between the two measurements.
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4.4.3 Geolocation of humans in a built environment via Bluetooth

The geolocation computation using the RSSI data was performed on a central

server. Figure Figure 4.2A shows interpolated RSSI values captured by each of

the nine RPis that were placed in the built environment, and Figure Figure 4.2B

illustrates the corresponding probability of the subject being in rooms 1, 2, or 3.

The ground truth of the subject’s presence is shown using translucent colors in

the background. Specifically, translucent blue denoted being present in room 1,

translucent green denoted being present in room 2, and translucent red denoted

being present in room 3. Further, the transition from one room to another was

illustrated by overlapping colors corresponding to the two rooms. It is evident from

Figure Figure 4.2 that our system did an excellent job of identifying the room in

which the person was present. Specifically, for 592 out of 600 seconds, the human

tracking system correctly identified the subject’s presence in one of the three rooms,

which corresponded to an accuracy of 98.67%.

4.4.4 Ambient light logging

Figure Figure 4.3 depicts the variation of ambient light intensity over two days.

The minimum, median, and maximum illuminance values during the Dclear period

were equal to 0.56 LUX, 71.08 LUX, and 186.92 LUX, respectively, whereas the

minimum, median, and maximum illuminance values during the Dcloudy period

were equal to 0.26 LUX, 26.93 LUX, and 117.41 LUX, respectively. Thus, the median

difference in illuminance between the clear and cloudy days was equal to 44.15

LUX. The minimum, median and maximum illuminance between the lights-ON

and lights-OFF times was equal to 15.08 LUX, 15.30 LUX, 16.66 LUX on the first

night (N1) and equal to 9.39 LUX, 10.15 LUX, 15.02 LUX on the second night (N2).

The illuminance was consistently equal to zero between the lights-OFF and sunrise

times. Further, we observed a dip in illuminance when the Sun hid behind a
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skyscraper and cast a shadow on the data collection site during the day.

4.4.5 Ambient temperature and humidity logging

Figure Figure 4.4 illustrates the comparison between the processed temperature

and humidity values from the DHT22 sensor with the outputs from a commercial

sensor. The temperature values from the two sensors closely followed each other

with a root mean squared error (RMSE) between the two measurements equal to

0.28◦C and a coefficient of determination (r2) equal to 0.97. Over 97% of the samples

lay within the limits of agreement [-1.96SD, +1.96SD] in the Bland-Altman plot.

Further, the mean difference was equal to -0.4◦C. The humidity values from the two

sensors closely followed each other with an RMSE between the two measurements

equal to 1.00%RH and an r2 equal to 0.90. Over 95% of the samples lay within the

limits of agreement [-1.96SD, +1.96SD] in the Bland-Altman plot. Further, the mean

difference was equal to -1.2%RH.

4.5 Discussion and Conclusion

The work described in this chapter aims to extend the types of data found in

traditional clinical monitoring environments and provide a simple system to capture

data in the built environment, outside of clinical settings. Many commercial (clinical

and consumer) systems are either designed to keep data in a proprietary ‘walled-

garden’ to reduce competition or are not designed for the high throughput needed

to transmit/record the data. The RPi-based edge computing system described in

this work allows direct data import via USB and upload to the cloud asynchronously

to overcome these issues.

We have included methods to capture audio data, physical movement, and

location of subjects. As we have demonstrated, audio data allows capturing of all

alarms in the clinical space. While some monitors transmit some of these events
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or signals over the network, it is often costly or impossible to gain access to such

data, and data integration and synchronization are highly problematic. Moreover,

such systems do not provide a holistic picture of the environment. For example,

the volume of the alarm, together with the background noise, contributes to noise

pollution and has been shown to affect caregivers and patients alike [134, 135, 173].

Beyond alarms in the clinical environment, it is possible to capture whether a patient

is being mechanically ventilated (and at what frequency), groans and expression

of pain, and other non-verbal utterances. It is possible to add speaker and voice

recognition to the code base, to identify who is speaking and about what, providing

insight into clinical (and non-clinical) discussions that may provide additional

diagnostic power. For instance, by differentiating patients from family members, it

is possible to assess both the level of clinical team support and frequency of bedside

visits and the social support that a patient may have (inferred by the number and

duration of visitations by friends and family). Tracking the time clinicians spend

with patients and the level of expertise available could help identify gaps in care.

In addition, by tracking Bluetooth transmitter strength of body-worn devices (e.g.,

badges or phones), it is possible to infer motion, an individual’s identity (through

a look-up table), and even the exact location of an individual if more than one

Bluetooth receiver base is used. Real-time and accurate tracking of humans using

Bluetooth beacons needs a receiver (RPi) sensor network. Further, we can have a

central server where all the RPis communicate and update the collected RSSI values.

We can then have algorithms operating on this database in real-time to perform the

geolocation of humans. We have implemented this system in a clinical environment

at Emory Healthcare, Atlanta, USA, to monitor the real-time location of humans.

By capturing motion via video, we can probe even deeper into assessing the

patient and their environment. For instance, we can estimate the quantity of sleep,

sedation, and agitation that a patient experiences, all of which have been linked
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to recovery [174]. At the same time, if the motion is associated with clinical care,

then the intensity of activity can indicate when treatments, observations, or specific

activities (such as replacing drips) took place. While we know that the ratio of

nursing staff to patient impacts outcomes [137], there are no studies that examine

the time at the bedside and the actions taken at the bedside in terms of their impact

on the outcome. However, it is known that time spent at the bedside is linked to

improved patient satisfaction [175].

Finally, the data modalities we capture provide us a unique opportunity to

perform multimodal analysis of the patient state. For instance, consider the case

of human sleep monitoring in a home environment. All we need to do is to place

the Bluetooth beacon in the patient’s clothes before they sleep. The motion signals

captured during the patient’s sleep give us the timestamps when the patient moved

in the bed. Based on the intensity of the motion signal, we can delineate minor

movements (rolling over) from major movements (sitting up in bed). The simulta-

neous recordings of audio-features and illuminance, which can act both as sleep

inhibitors (flushing toilet or turning ON lights) and wake-event markers, give us

valuable information about the patient’s sleeping patterns. Further, the RSSI signal

analysis will provide us with all the times that the patient exits the room during

the night. Finally, via a long-term monitoring protocol, we can recommend ideal

sleeping conditions to the patient by monitoring the temperature and humidity

in the room. Thus, the system presented here provides a low-cost method for

performing deep analysis, both at home and in a clinical setting.
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CHAPTER 5

COMBINING WEARABLES AND NEARABLES FOR SLEEP-WAKE

DETECTION

5.1 Introduction

In this chapter, we explored combining data from a wearable and a nearable for

sleep-wake classification. Specifically, we used the Empatica E4 as the wearable and

PSG-Video recorder as the nearable to monitor the sleep of a mixed-disorder elderly

male population. We recorded PPG and three axis-acceleration from the wearable

and extracted patient privacy-preserving body movement signals from the video

recordings. Further, we extracted features from each signal modality and fed them

to a binary classifier to perform sleep-wake detection. The goal of the study was

to understand the effectiveness of video based features for sleep-wake detection.

Further, we wanted to understand the benefit of combining wearable and nearable

data modalities in sleep-wake detection.

5.2 Materials and methods

5.2.1 Dataset

We used a subgroup of participants included in the Emory Twin Study Follow-

up and recruited from the Vietnam Era Twin Registry [164]. Overnight in-lab

PSGs (including video) were recorded from 79 participants along with the PPG

and three-axis acceleration from the wrist worn Empatica device. All data were

collected at the Emory sleep-labs and the sleep staging was performed by in-house

expert scorers at this facility. We obtained written informed consent from all partici-

pants, and the Emory University institutional review board approved this research
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(IRB#00081004). Data were collected between March 2017 and December 2018 on

the 79 male participants (aged ∈ [61, 73] at the time of data collection). The cohort

consisted of participants with mixed-disorders. Specifically, 23 participants suffered

from mild (5 < AHI ≤ 15), 7 participants from moderate (15 < AHI ≤ 30) and

20 participants from severe (AHI > 30) sleep apnea. Further, 15 participants had

mild (5 < PLMI ≤ 25), 16 participants had moderate (25 < PLMI ≤ 50) and 15

participants had severe (PLMI > 50) periodic leg movement disorder. Finally, 33

of the 79 participants in the study were obese (Body mass index > 30). The labels

were generated by experienced sleep scorers at the Emory sleep labs who labeled

each 30 second epoch as one of the following 5 categories: (1) Wake, (2) REM sleep

(3) Sleep stage N1, (4) Sleep stage N2, and (5) Sleep stage N3. In our work, we com-

bined categories two to four (REM sleep and sleep stages N1, N2 and N3) to obtain

the sleep class. Thus, we tackled the binary classification problem of sleep-wake

detection.

5.2.2 Preprocessing and feature extraction

The Empatica E4 captured three-axis acceleration signals at a sampling frequency

equal to 32 Hz. We cleaned the signal via an equiripple FIR band-pass filter with the

lower and higher pass band frequencies equal to 0.3 Hz and 11 Hz, and the lower

and higher stop band frequencies equal to 0.25 Hz and 11.05 Hz. Next, we used the

Oakley algorithm [176] to compute activity count (E) signals for each of x, y and

z-axis acceleration signals (ax, ay, az) and for the root mean squared acceleration

signal (arms =
√

a2
x + a2

y + a2
z). For a given 30-second epoch E[i], we computed the

following two sleep-related metrics from each of the four above described activity

count signals:
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(1) Oakley sleep metric (A[i]) [176, 177] given by,

A[i] = 0.04× E[i− 2] + 0.2× E[i− 1] + 2× E[i] + 0.2× E[i + 1] + 0.04× E[i + 2]

(5.1)

(2) Kosmadopoulos sleep metric (B[i]) [178] given by,

B[i] =0.04× E[i− 4] + 0.04× E[i− 3] + 0.2× E[i− 2] + 0.2× E[i− 1]

+ 2× E[i] + 0.2× E[i + 1] + 0.2× E[i + 2] + 0.04× E[i + 3] + 0.04× E[i + 4]

(5.2)

We also computed the tilt-angle signals (ρx, ρy and ρz) for all three axes by extending

the tilt-angle signal equation described by Cakmak et al. [93] as follows:

ρx =
ax√

a2
x + a2

y + a2
z

ρy =
ay√

a2
x + a2

y + a2
z

ρz =
az√

a2
x + a2

y + a2
z

(5.3)

In the end, we had the following signals:

• Activity counts: Ex, Ey, Ez and Erms

• Oakley sleep metrics: Ax, Ay, Az and Arms

• Kosmadopoulos sleep metrics: Bx, By, Bz and Brms

• Tilt-angle time series: ρx, ρy and ρz

The PPG signal was captured at a sampling frequency equal to 64 Hz. First,

a simple baseline wander filtering was performed as described by Khaustov et

al. [179]. Further, an equiripple FIR low-pass filter with a pass band frequency
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= 5 Hz and a stop band frequency = 8 Hz was used to remove high frequency

noise in the PPG signal. Finally, the beat-to-beat interval (NN) signal was extracted

from the filtered PPG signal utilizing the qppg algorithm provided by Vest et al.

[180]. The qppg algorithm measured the onset position of the PPG beats and was

optimized to work well on PPG signals derived from adult humans. After NN-

signal extraction, the respiratory induced amplitude variation (RIAV) signal was

extracted as the difference between the maximum value of the PPG amplitude

within a 75ms window from the PPG onset and the signal amplitude at a given

PPG onset. Both the NN-signal and the RIAV-signal were resampled to 4 Hz for

cardiorespiratory coupling (CRC) spectrogram calculations. The CRC spectrograms

were computed as described by Li et al. [181, 94]. In summary, for each 30-second

epoch of sleep or wake, we considered the NN-signal snippet and RIAV-signal

snippet of length 5-minutes centered at the 30-second epoch. We then computed

the CRC spectrogram by using a window of length 128 seconds with a shift of 10

seconds. The computed CRC spectrogram acted as the input for the pre-trained

sleep-wake detector model and for the transfer learned sleep-wake detector model

described in subsection 5.2.3.

The PSG-videos at Emory sleep labs were captured at a sampling rate equal

to 5 Hz. The pixel resolution (M × N) was 240× 180, M = 240 was the width

and N = 180 was the height of a video frame within the video. To obtain body

movement signals from these videos, we used two methods listed below:

1 Global difference mean (GDM) on the raw difference frames.

2 Scaled global difference mean on the Gaussian blurred and Otsu thresholded

difference frames (GDMOtsu).

The computation of GDM has been described in detail in subsubsection 4.2.1 except

for the scaling-factor. Please refer to Equation 4.1 for the computation of GDS. The
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additional step in computing the GDM was to scale the GDS signal by the total

number of pixels in a frame (M× N). Thus, we used a scaling-factor = 240× 180 =

43200 to convert GDS to GDM signals. The GDMOtsu signal was obtained by

performing three additional intermediate steps when compared to the computation

of GDS. First, an image smoothing step was performed on each difference frame

Dt using a Gaussian blurring procedure to obtain DG
t . The kernel size for the

Gaussian window was set to 5 × 5. The Gaussian blurring procedure helped

in attenuating high frequency noise and assisted in improving body movement

detection and suppressed spurious difference pixels. Next, we performed Otsu’s

thresholding method on DG
t (grayscale image) so that, all pixels lower than the

Otsu’s threshold were set to zero. The Otsu’s method determined the threshold

in an unsupervised manner by accepting that the picture contained two classes of

pixels (foreground and background), and such that the threshold maximized the

separability of the resultant classes in gray levels. The difference frame obtained

after Otsu’s thresholding was denoted as DGO
t . Then, the corresponding sample in

the GDMOtsu signal was obtained as:

GDMOtsu[t] =
∑i∈[1,M] ∑j∈[1,N] DGO

t

#({d ∈ DGO
t
∣∣ |d| > δ})

(5.4)

where the numerator summed the pixels that remained after Otsu’s thresholding

and the denominator was the count of non-zero pixels (scaling-factor) in the M× N

frame. The PSG-videos captured contained a periodic noise with a period of 8

seconds. Both the GDM and GDMOtsu signals exhibited this noise in the form of

spikes at a frequency = 1
8 = 0.125 Hz. Thus, we performed feature extractions in

the frequency domain rather than the time domain. For a given 30-second epoch

(sleep or wake), we considered the GDM and GDMOtsu signal snippets of length

5-minutes centered at the 30-second epoch. We computed the discrete-time Fourier
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transform (DTFT) of both signal snippets using a Hanning window and a 4096-

point fast Fourier transform. Next, we dropped the DTFT values at 0.125 Hz and

its harmonics. We cropped the spectrum to only include values at frequencies

∈ [0.0073, 0.5] Hz. This ensured that the mean value was suppressed from the body

movement signals and only movements with a period of at least 2 seconds were

considered in our analysis. Finally, we concatenated the remaining DTFT values

and computed the mean, standard deviation, skewness and kurtosis for both the

GDM and GDMOtsu snippets to obtain eight dimensional feature vectors.

5.2.3 Experiments

We experimented with different feature combinations to understand the discrim-

inatory power of different data modalities for sleep-wake detection. Specifically, we

compared the classification performance of the below listed feature combinations.

(1) Acc (Oakley): Features derived from three-axis acceleration

(2) PPG (pre-trained): CRC derived from PPG with a pre-trained convolutional

neural network (CNN) model

(3) PPG (TL): CRC derived from PPG with a transfer learned CNN model

(4) PPG (TL) + Acc (Oakley)

(5) PPG + Acc (CPD): Change point detection based sleep-wake detector by

Cakmak et al. [93]

(6) Video-based movement (V): Features derived from GDM and GDMOtsu

(7) V + PPG (TL)

(8) V + PPG (TL) + Acc (Oakley)
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The first five experiments served as baseline models as they were based on previous

works and the last three experiments showed us the improvements one can obtain

via video-based analysis. The results for the change point detection based sleep

wake detector (fifth in the list) have been directly included from the reference [93]

without further validation. All other multimodal experiments were performed

using the CatBoost classifier - A “Categorical Boosting” algorithm which has shown

to outperform [182] the existing state-of-the-art implementations of gradient boosted

decision trees such as XGBoost and LightGBM. Finally, each experiment (apart from

experiment 5) were performed as is and after fixing imbalance in the training dataset

by weighting the loss function by the proportion of samples in each class for either

classes during training. All the models were trained and tested with a 10-fold by

subject cross-validation. For the CatBoost classifiers trained in our experiments, the

number of iterations needed for training was tuned by splitting the training data

into further train-validation splits and utilizing the validation set to maximize the

Cohen’s kappa [183, 105] between the model outputs and the ground truth labels

for sleep-wake epochs. The remaining hyperparameters for the CatBoost classifier

were set to the default values. Classification accuracy (Acu), sleep accuracy (Sleep-

Acu), wake accuracy (Wake-Acu), area under the receiver operating curve (AUC)

and Cohen’s Kappa (κ) were used to evaluate the performance of all the models.

Cohen’s Kappa is calculated as

κ =
pa − pe

1− pe
(5.5)

where pa = ∑1
k=0 pkk, pe = ∑1

k=0 pk+p+k, pkk represents the percentage of epochs

classified into category k by the algorithm and by the annotated label; pk+ and p+k

represent the percentage of epochs assigned to category k by the algorithm and

annotated label respectively.
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Figure 5.1 Baseline sleep wake detectors. (PPG: Photoplethysmogram; CRC:
Cardirespiratory Coupling; CNN: Convolutional Neural Network; SHHS: Sleep
Heart Health Study; PRV: Pulse Rate Variability; Psleep: Probability of sleep derived
from the CNN model.)
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Figure 5.2 Convolutional neural network structure of the pre-trained model [181].
The input is a 50× 18 cardiorespiratory coupling plot and the output layer contains
two neurons representing the probabilities of wake (class ) and sleep (class )

Sleep-wake detection from features derived from three-axis acceleration

We extracted a total of 18 features from the different signals derived from the

three-axis acceleration. These 18 features included four activity count values - Ex, Ey,

Ez and Erms, four Oakley sleep metrics - Ax, Ay, Az and Arms, four Kosmadopoulos

sleep metrics - Bx, By, Bz and Brms, and six tilt-angle time series based features -

µ(ρx), µ(ρy), µ(ρz), σ(ρx), σ(ρy) and σ(ρz), where µ(.) and σ(.) were the mean and

standard deviation values computed over a 30-second window corresponding to

the sleep-wake epoch. We trained a CatBoost classifier with these 18 features and

pooled the results from a 10-fold by subject cross-validation. The top-left diagram

in Figure 5.1 illustrates the three-axis accelerometer based sleep-wake detection.

Sleep-wake detection from PPG with a pre-trained CNN model

We derived a 50× 18 CRC plot from the PPG signal for each sleep-wake epoch

as described by Li et al. [181, 94]. The CRC plots were fed as inputs to a pre-trained

CNN based sleep-wake detector model to obtain the probability of sleep (Psleep).

The architecture of the pre-trained CNN model is provided in Figure 5.2 and follows

the same architecture that is described in [181]. The pre-training was performed
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using the Sleep Heart Health Study visit 1 database [184] including 5793 overnight

PSG recordings. One should note that the pre-trained CNN sleep-wake detection

model was developed from a single lead ECG [181]. We derived 24 pulse rate

variability (PRV) metrics [180] from the PPG signal for every sleep-wake epoch and

combined them with Psleep using a CatBoost classifier to obtain the final estimation

of probability of sleep. The results were pooled from a 10-fold by subject cross-

validation. The top-right diagram in Figure 5.1 illustrates the sleep-wake detection

method from a pre-trained CNN model coupled with PRV metrics.

Sleep-wake detection from PPG with a transfer learned CNN model

In this experiment, we further trained the pre-trained model with the CRC plots

derived from the Emory PPG database. In each training fold, we further trained the

CNN model for 10 iterations over the entire training data and used early stopping

[185] to determine the required number of iterations by computing the Cohen’s

kappa [183, 105] for a within training data validation set. Once the transfer learning

of the CNN model was complete, we obtained the Psleep for all of the training

data and combined them with the corresponding PRV metrics to further train the

CatBoost classifier. The sleep-wake detection performance was measured via the

10-fold by subject cross-validation. The bottom-left diagram in Figure 5.1 illustrates

the sleep-wake detection method using CRC plots with a transfer learned CNN

model coupled with PRV metrics.

Sleep-wake detection from combining features from accelerometry and PPG

In this experiment, we combined the features from experiments 1 and 3. The

transfer learning procedure was replicated from experiment 3. The CatBoost clas-

sifier now received 18 three-axis acceleration based features, 24 PRV metrics and

one Psleep value from the transfer learned CNN. We measured the classification
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performance using the same 10-fold by subject cross-validation that was used in

the previous experiments. The bottom-right diagram in Figure 5.1 illustrates the

accelerometry features, PRV metrics and CRC based sleep-wake detection.

Sleep-wake detection from video based movement

Until now, we looked at methods for sleep-wake detection using a wearable (the

Empatica E4 watch). In this experiment, we tested using the features derived from

signals captured using a video camera (a nearable) for sleep-wake detection. We

derived eight dimensional feature vectors per epoch that included the following

features: µ(GDM[i]), σ(GDM[i]), skew(GDM[i]), kurt(GDM[i]), µ(GDMOtsu[i]),

σ(GDMOtsu[i]), skew(GDMOtsu[i]) and kurt(GDMOtsu[i]), where µ(.), σ(.), skew(.)

and kurt(.) were the statistical mean, standard deviation, skewness and kurtosis

of the input signals and i was the epoch index which indicated the correspond-

ing snippets of GDM and GDMOtsu. We fed these video based body movement

features to a CatBoost classifier and pooled the results from a 10-fold by subject

cross-validation to measure the sleep-wake detection performance. The top-left

diagram in Figure 5.3 illustrates the sleep-wake detection method using video based

movement.

Sleep-wake detection from video based movement and PPG

Next, we combined the video based body movement features with the PRV

metrics and the Psleep value from the transfer learned CNN to perform sleep-wake

detection. In total, the CatBoost classifier took 33 features as input for each epoch

and performed binary classification. The results were pooled from a 10-fold by

subject cross-validation. The top-right diagram in Figure 5.3 illustrates the sleep-

wake detection method using video based movement, PRV metrics and CRC.

81



Transfer
Learned
Model

SHHS 
Sleep-Wake

Detector

Video

Cardirespiratory
Coupling
Extractor

PPG

CRC

Pre-TrainedPre-Trained
CNN modelCNN model  

Pulse Rate
Variability
Extractor

CatBoost
Classifier

PPG
PRV

Psleep

Sleep
vs 

Wake

Oakley and
Tilt-Angle

Based 
Features

Wrist 
Acceleration

Difference
Signal

Extractor

Feature
Extractor

GDMOtsu

GDM

Feature Extractor

Trainable Model

Pre-Trained Neural Network

A B

C

CatBoost
Classifier

Video

GDMOtsuGDM

Difference
Signal

Extractor

Feature
Extractor

Sleep
vs 

Wake

Transfer
Learned
Model

SHHS 
Sleep-Wake

Detector

Video

Cardirespiratory
Coupling
Extractor

PPG

CRC

Pre-TrainedPre-Trained
CNN modelCNN model  

Pulse Rate
Variability
Extractor

CatBoost
Classifier

PPG
PRV

Psleep

Sleep
vs 

Wake

Difference
Signal

Extractor

Feature
Extractor

GDMOtsu

GDM

VBMF

VBMF

WAF
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Table 5.1: Performance of baseline sleep-wake detectors (Sleep-Acu = Sleep Accu-
racy, Wake-Acu = Wake Accuracy, κ = Kappa, SD = Standard deviation, Acc =
Three-axis acceleration, PPG = Photoplethysmogram, TL = Transfer learned, CPD
= Change point detection method)

Models Balanced Accuracy (%) Sleep-Acu (%) Wake-Acu (%) F1-score (%) κ
Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD)

Acc (Oakley) No 71 (12) 86 (13) 41 (15) 79 (12) 0.28 (0.16)
Yes 65 (10) 70 (18) 55 (18) 71 (14) 0.22 (0.15)

PPG
(pre-trained)

No 71 (11) 81 (14) 53 (19) 78 (11) 0.32 (0.15)
Yes 66 (12) 64 (19) 74 (16) 70 (15) 0.31 (0.15)

PPG (TL) No 73 (10) 85 (12) 52 (18) 80 (10) 0.35 (0.14)
Yes 70 (10) 71 (16) 70 (16) 75 (12) 0.36 (0.15)

PPG (TL) +
Acc (Oakley)

No 75 (10) 86 (10) 54 (18) 81 (10) 0.38 (0.15)
Yes 71 (9) 74 (15) 67 (17) 76 (11) 0.36 (0.13)

PPG + Acc (CPD) [93] No 76 (9) 85 (12) 54 (20) 59 (14) 0.39 (0.17)

Table 5.2: Performance of proposed sleep-wake detectors (Sleep-Acu = Sleep Accu-
racy, Wake-Acu = Wake Accuracy, κ = Kappa, SD = Standard deviation, PPG =
Photoplethysmogram, TL = Transfer learned, Acc = Three-axis acceleration

Models Balanced Accuracy (%) Sleep-Acu (%) Wake-Acu (%) F1-score (%) κ
Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD)

Video features (V) No 77 (10) 91 (5) 52 (15) 83 (9) 0.42 (0.13)
Yes 74 (8) 79 (10) 67 (15) 79 (9) 0.41 (0.13)

V + PPG (TL) No 78 (8) 89 (7) 59 (16) 83 (8) 0.45 (0.13)
Yes 75 (8) 78 (12) 72 (16) 80 (9) 0.44 (0.13)

V + PPG (TL) +
Acc (Oakley)

No 78 (8) 89 (7) 58 (17) 83 (8) 0.45 (0.13)
Yes 75 (7) 79 (10) 69 (17) 80 (8) 0.43 (0.12)

Sleep-wake detection from combining wearables and nearables

Finally, we combined three-axis acceleration features along with video based

body movement features, PRV metrics, and CRC plots. In this experiment, the

CatBoost classifier took 51 features per epoch. The classification performance was

measured by pooling the results from a 10-fold by subject based cross-validation.

The bottom diagram in Figure 5.3 illustrates the sleep-wake detection method using

video based movement, PRV metrics, CRC plots and three-axis acceleration features.

5.3 Results

Table Table 5.1 and Table 5.2 present the classification performance for all the

baseline models and proposed models respectively. All the results provided (except
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the CPD [93] model) were computed by computing the metrics for each participant

and then taking the mean and standard deviation of the metrics for all participants.

The proposed models always outperformed their baseline counterparts indicat-

ing that the addition of video based features always improved sleep-wake detection.

The F1-score and κ provide an all-round view (not biased to class imbalance) of

the model performance and the imbalanced model with video based features and

PPG based transfer learned CNN features performed the best in terms of F1-score

(83%) and κ (0.45). The addition of features derived from three-axis acceleration did

not improve its performance. The imbalanced model using just the video based

features performed with the highest sleep accuracy (91%). The balanced PPG based

pre-trained model had the highest wake accuracy (74%) amongst all the models.

Among the baseline models, the CPD model [93] had the best accuracy (76%) and κ

(0.39), whereas the imbalanced PPG (TL) + Acc (Oakley) model performed with the

highest sleep accuracy (86%) and F1-score (81%).

5.4 Discussion and Conclusion

In this chapter, we presented a novel video based method for identifying sleep

and wake states from body movements. The method comprised of extracting two

difference signals: GDM and GDMOtsu, and computing statistical features from

these signals for a binary classification task. Our experiments showed the flexibility

of the video based sleep-wake detector in that it could easily incorporate additional

features from physiological signals (PPG) and wrist-worn accelerometer to improve

classification performance. In the experiment where PPG was used in isolation, we

showed that transfer learning helped increase the sleep-wake detection performance

in terms of accuracy and κ. However, the wake accuracy did not improve with

transfer learning. Combining the transfer learned model with video based features

did improve the wake accuracy. The addition of features from the wrist-worn
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accelerometer did not significantly improve the performance when compared to just

using video and PPG derived features. Moreover, when comparing the model with

just video features versus the model with just acceleration based (Oakley) features,

the video model performed significantly better. This showed that the metrics

derived from video based movement contained more discriminatory features for

sleep-wake detection compared to wrist-worn acceleration. Since the video based

body movement features capture global (entire body) movements and wrist-worn

acceleration captures local (wrist and hand) movements, we conclude that capturing

global body movements are more crucial than capturing the local wrist movements

for sleep-wake detection. In conclusion, video based body movements are extremely

useful in sleep-wake detection and perform significantly better than wrist-worn

acceleration or PPG based sleep-wake detectors. Further, combining wearables

and nearables does provide a boost in classification performance for sleep-wake

detection compared to unimodal models.
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CHAPTER 6

CONCLUSION

This dissertation presents wearable and nearable-based technologies for patient

state analysis. The theme of this work is to keep the system low-cost and patient

privacy-preserving while being able to monitor patient state at a high accuracy. All

the methods presented in this thesis were validated using human-subject studies

with data collected in the wild.

In chapter 3, we focused on developing a disease severity classifier for patients

suffering from Rett syndrome using a wearable. First, we developed two techniques

to reduce the amount of missing data in ECG signals. Next, we showed that HRV

metrics combined with features capturing the interaction between the heart rate

signal and body movements could accurately classify high severity Rett patients

from low severity patients. Finally, we identified a physio-motor biomarker for Rett

syndrome - deceleration capacity of the heart rate during sleep - it was a highly discrimi-

natory feature for Rett syndrome severity detection with a feature popularity score

equal to 1.

Although wearables have many advantages for patient monitoring, they have

two primary disadvantages - localized measurements and missing data. To over-

come these issues, in the next chapter, we developed techniques for patient mon-

itoring with nearables. For this, we built a generalized open-source system for

edge computing in clinical and home environments. It provided real-time data ele-

ments and analysis that were not generally present in electronic medical records yet

were associated with clinical performance, diagnosis, and outcomes. In particular,

we focused on the acoustic environment (such as speech, alarms, and environ-

mental noise), human movement detection (from PIR sensor and IR camera) and
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geolocation (absolute or relative to others). Further, we included methods for

privacy-preserving feature extraction to provide a generally acceptable system that

is unlikely to violate hospital policies and other privacy regulations, which may

reduce the anxiety of administrators and clinicians concerning the level of monitor-

ing. The implementation on a state-of-the-art extensible edge computing system

at a relatively low cost provided a high degree of flexibility in the design. The

bill-of-materials and open-source code to replicate the work described were made

publicly available under an open-source license [156]. Using the PIR sensor based

body movement detector, we showed it is possible to detect obstructive sleep apnea

in a mixed-disorder elderly patient cohort at a high degree of accuracy. We also

showed that one can classify medical equipment alarms using edge-computed fea-

tures derived from audio. Further, we described an algorithm to accurately perform

room-level geolocation of humans and to accurately track ambient environmental

parameters (temperature, humidity and illuminance) in a built environment.

The last part of the dissertation presented a method to combine data from

wearables and nearables for improved sleep-wake detection in a mixed-disorder

elderly male cohort. We showed that video based analysis provided a boost in

accuracy and κ values for sleep-wake detection when compared to wearable based

analysis. Moreover, combining nearable data with wearable data further improved

the classification performance. Most video based sleep-wake detectors have focused

on infants [186, 187, 188] or have very small number of participants [96]. To the

author’s knowledge, this is the first large scale (> 50 patients) study in a mixed-

disorder elderly male cohort to asses the effectiveness of features derived from

video based body movements for sleep-wake detection.

87



6.1 Future work

The methods presented in this dissertation have performed at a high accuracy,

however, we feel further studies are needed to stress-test the methods and improve

generalizability. Thus, the future work includes applying the techniques presented

in this thesis to larger and whenever possible in more diverse cohorts to fine-tune

the algorithms as necessary for clinical usage.

6.1.1 Severity of Rett syndrome from wearables

The Rett syndrome severity estimation project included 20 patients who had

continuous and simultaneous ECG and three-axis acceleration recorded for at least

two days. The Rett Syndrome Research Trust (our collaborators in this project) have

since collected the same wearable sensor data from an additional 20 patients who are

suffering from Rett syndrome. The data imputation, feature extraction, classification

and feature importance measurement techniques can be easily translated to these

patients and thus, we can test the generalizability of the wearable data processing

techniques described in this thesis.

6.1.2 Patient state analysis from nearables

The hardware system designed in this project has numerous potential applica-

tions. Specifically, these systems are very suited to monitor neurological populations

as the data collection procedure is passive and does not rely on patients’ or care-

givers’ compliance. Thus, the system itself has been deployed for patient monitoring

and data collection in two separate healthcare facilities located in the United States

of America: (1) A New York state department of health funded center for excellence

facility that offers residential, medical, clinical and special education programs

to the residents (25 units); and (2) A Mild Cognitive Impairment rehabilitation
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program facility at Emory Healthcare in Atlanta (40 units). In terms of data volume,

for a 12 hour (7 AM to 7 PM) recording of all data modalities, a total of 832 MB of

data is recorded by the device. The data collection is ongoing and the processing of

these datasets is part of future work.

6.1.3 Combining wearables and nearables for sleep-wake detection

One possible direction is to extend the current work of sleep-wake detection

to both generalized sleep-staging and detecting sleep-disorders such as OSA and

PLMD. Further, the algorithm needs to be stress-tested on larger databases and

external cohorts to establish generalizability of the models. Finally, our method can

be easily integrated into existing PSG analysis software to provide a first pass sleep-

wake detection before experienced sleep scorers update the algorithm’s estimate.

6.2 Final remarks

The combination of wearables and nearables have huge potential for patient

state analysis. While both modalities have advantages and disadvantages, they com-

pliment each other to provide a more complete understanding of the patient state.

With the advent of newer paradigms in healthcare such as internet of things, multi-

modal data analysis is the way forward. While missing data, time-synchronization

of sensors and intelligent algorithms that can leverage multimodal data continue

to be the grand challenges in the field, this dissertation provides concrete methods

which address each of these concerns in specific settings. In conclusion, this disser-

tation provides a foundation for capturing and combining physiological data from

wearables and passive global data from nearables for patient state analysis.
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