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Abstract 

This doctoral thesis carries out the development of an intelligent system to support 

medical decision in the diagnosis of the Sleep Apnea-Hypopnea Syndrome (SAHS). 

SAHS is the most common disorder within those affecting sleep. The estimates of the 

disease prevalence range from 3% to 7%. Diagnosis of SAHS requires of a 

polysomnographic test (PSG) to be done in the Sleep Unit of a medical center. Manual 

scoring of the resulting recording entails too much effort and time to the medical 

specialists and as a consequence it implies a high economic cost. In the developed 

system, automatic analysis of the PSG is accomplished which follows a comprehensive 

perspective. Firstly an analysis of the neurophysiological signals related to the sleep 

function is carried out in order to obtain the hypnogram. Then, an analysis is performed 

over the respiratory signals which have to be subsequently interpreted in the context of 

the remaining signals included in the PSG. In order to carry out such a task, the 

developed system is supported by the use of artificial intelligence techniques, specially 

focusing on the use of reasoning mechanisms capable of handling data imprecision. 

Ultimately, it is the aim of the proposed system to improve the diagnostic procedure and 

help physicians in the diagnosis of SAHS. 
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Resumen 

Esta tesis aborda el desarrollo de un sistema inteligente de apoyo a la decisión 

clínica para el diagnóstico del Síndrome de Apneas-Hipopneas del Sueño (SAHS). El 

SAHS es el trastorno más común de aquellos que afectan al sueño. Afecta a un rango 

del 3% al 7% de la población con consecuencias severas sobre la salud. El diagnóstico 

requiere la realización de un análisis polisomnográfico (PSG) en una Unidad del Sueño 

de un centro hospitalario. El análisis manual de dicha prueba resulta muy costoso en 

tiempo y esfuerzo para el médico especialista, y como consecuencia en un elevado coste 

económico. El sistema desarrollado lleva a cabo el análisis automático del PSG desde 

una perspectiva integral. A tal efecto, primero se realiza un análisis de las señales 

neurofisiológicas vinculadas al sueño para obtener el hipnograma, y seguidamente, se 

lleva a cabo un análisis neumológico de las señales respiratorias interpretándolas en el 

contexto que marcan las demás señales del PSG. Para lleva a cabo dicha tarea el sistema 

se apoya en el uso de distintas técnicas de inteligencia artificial, con especial atención al 

uso mecanismos de razonamiento con soporte a la imprecisión. El principal objetivo del 

sistema propuesto es la mejora del procedimiento diagnóstico y ayudar a los médicos en 

diagnóstico del SAHS. 
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Resumo 

Esta tese aborda o desenvolvemento dun sistema intelixente de apoio á decisión 

clínica para o diagnóstico do Síndrome de Apneas-Hipopneas do Sono (SAHS). O 

SAHS é o trastorno máis común daqueles que afectan ao sono. Afecta a un rango do 3% 

ao 7% da poboación con consecuencias severas sobre a saúde. O diagnóstico pasa pola 

realización dunha análise polisomnográfica (PSG) nunha Unidade do Sono dun centro 

hospitalario. A análise manual da devandita proba resulta moi custosa en tempo e 

esforzo para o médico especialista, e como consecuencia nun elevado custo económico. 

O sistema desenvolvido leva a cabo a análise automática do PSG dende unha 

perspectiva integral. A tal efecto, primeiro realizase unha análise dos 

sinais neurofisiolóxicos vinculados ao sono para obter o hipnograma, e seguidamente, 

lévase a cabo unha análise neumolóxica dos sinais respiratorios interpretándoos no 

contexto que marcan os demais sinais do PSG. Para leva a cabo esta tarefa o sistema 

apoiarase no uso de distintas técnicas de intelixencia artificial, con especial atención a 

mecanismos de razoamento con soporte para a imprecisión. O principal obxectivo do 

sistema proposto é a mellora do procedemento diagnóstico e axudar aos médicos no 

diagnóstico do SAHS. 
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0. SUMMARY IN SPANISH / RESUMEN EN 
CASTELLANO 

0.1. Introducción 

 

El Síndrome de Apneas-Hipopneas del Sueño (SAHS), es el más frecuente de los 

trastornos respiratorios que se producen durante el sueño, ya que afecta a alrededor de 

un 4% de la población adulta. Dicho síndrome se caracteriza por la ocurrencia de 

paradas respiratorias involuntarias intermitentes durante el sueño. 

 

Las consecuencias inmediatas de esta enfermedad son fatiga e hipersomnolencia 

diurna, que degeneran en situaciones de irritabilidad, déficit de atención, aumento del 

riesgo de padecer accidentes laborales y de tráfico (se calcula que hasta 6 veces más que 

una persona que no padece SAHS), bajo rendimiento, estrés social, y en definitiva, la 

incapacidad de desarrollo de una actividad diurna satisfactoria. Muchas veces además, 

las pausas respiratorias vienen acompañadas por ronquido, lo que amplía el problema al 

entorno colectivo de las personas cercanas al paciente, que tienen que sufrir este 

problema. A largo plazo, y especialmente en pacientes con un SAHS severo, se 

relaciona esta enfermedad con un mayor riesgo de padecer enfermedades 

cardiovasculares, como hipertensión arterial, miocardiopatía isquémica o infarto [1] [2] 

[3] [4]. 

 

En España se estima que entre 2 y 3 millones de personas –entre el 3% y el 6% de 

la población- padecen esta enfermedad, de las cuales tan solo una de cada diez se 

encuentra actualmente diagnosticada y tratada. Además se estima que entorno al 25% de 

estos pacientes padecen un síndrome de tipo grave o muy grave [5]. Estas cifras 

coinciden con los diversos estudios que se han realizado por todo el mundo en los 
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últimos años, y que estiman la prevalencia de esta enfermedad en torno al 3% y el 7% 

de la población adulta [6].  

 

El único procedimiento diagnóstico comúnmente aceptado para determinar la 

presencia del SAHS consiste en la realización de una prueba polisomnográfica durante 

una noche de sueño. Esta prueba se lleva a cabo normalmente en las Unidades de Sueño 

de los centros hospitalarios, y consiste en el registro durante la noche de varias señales 

fisiológicas del paciente, tanto neumológicas como neurofisiológicas. El registro 

resultante es analizado posteriormente por parte de un especialista clínico de forma 

manual. El principal objetivo es determinar una medida del número de pausas 

respiratorias registradas por hora de sueño: el Índice de Apnea-Hipopnea (IAH), que se 

utiliza como medida para el diagnóstico del síndrome, además de servir para cuantificar 

la gravedad del mismo [7]. 

 

Este proceso de revisión manual, que equivale al análisis visual de más de 500 

metros de papel1 por paciente, resulta una tarea tediosa para el clínico, y tiene como 

consecuencia varios factores negativos asociados, como son un descenso en la calidad 

del diagnóstico debido a la fatiga, un mal aprovechamiento del tiempo del clínico, y 

como consecuencia, la saturación de las Unidades de Sueño que no pueden absorber el 

caudal de pacientes debido al tiempo invertido en cada paciente individual. Todo lo 

anterior deriva en una peor atención al paciente y dispara los costes asociados al 

diagnóstico de esta enfermedad. 

 

El desarrollo de sistemas que automaticen, al menos en parte, el análisis de la 

polisomnografía, y que puedan usarse como herramienta de apoyo al diagnóstico, 

suponen un gran ahorro en tiempo, dinero y esfuerzo, ayudando a focalizar la atención 

del clínico solamente sobre la información relevante. Se facilita enormemente de esta 

manera su labor y se optimiza su tiempo. Así, suponiendo un sistema que lograse 

automatizar completamente -y de forma correcta- el análisis de la polismonografía, la 

tarea del médico podría verse reducida únicamente a una tarea de comprobación y 

confirmación de los resultados. 

 

                                                           
1 Originariamente se hacía en papel, hoy en día normalmente el registro se encuentra digitalizado en un 
fichero electrónico y se examina en el ordenador. En cualquier caso, la longitud del mismo no varía. 
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Esta tesis aborda el desarrollo de un sistema inteligente de apoyo a la decisión 

clínica para el diagnóstico del SAHS. El problema se aborda desde una perspectiva 

integral, lo que significa contemplar todas las fases del procedimiento diagnóstico 

clínico; esto es, realizar primero un análisis de las señales neurofisiológicas vinculadas 

al sueño para obtener el hipnograma, y seguidamente, realizar un análisis neumológico 

de las señales respiratorias interpretándolas en el contexto que marcan las demás señales 

del análisis polismonográfico. Para lleva a cabo dicha tarea el sistema se apoyará en el 

uso de distintas técnicas de inteligencia artificial, con especial atención a mecanismos 

de razonamiento que soporten imprecisión en los datos. 

 

El objetivo principal que subyace detrás del sistema desarrollado es la de la 

búsqueda de una solución al problema del diagnóstico del SAHS, en términos de ahorro 

en tiempo y esfuerzo al personal médico, y por consiguiente, de dinero a los centros 

clínicos, siempre con el objetivo primordial de la mejora en la calidad en la atención al 

paciente. En última instancia, el sistema aspira a convertirse en una herramienta útil de 

apoyo a la decisión clínica contribuyendo a la mejora del proceso diagnóstico. 

 

0.2. Descripción de la metodología utilizada 

 

Esta tesis tiene como objetivo principal el desarrollo de un sistema de ayuda al 

diagnóstico del SAHS, que contribuya a dar solución a los problemas de las 

aproximaciones actuales para el análisis automático de la polisomnografía.  

 

De acuerdo con este objetivo, la metodología seguida para el desarrollo del sistema 

pretende seguir una filosofía integral en el proceso diagnóstico. En este sentido el 

sistema desarrollado contempla, no sólo el análisis de las señales respiratorias, sino que 

incluye también el análisis de las señales electrofisiológicas relacionadas con el sueño. 

De esta forma el sistema realiza primero un análisis de las señales de 

electroencefalograma (EEG), electrooculograma (EOG) y electromiograma (EMG) 

submentoniano para obtener un el mapa del sueño del paciente o hipnograma. Durante 

el análisis del EEG además se realiza la detección de eventos transitorios tales como 

sleep spindles, complejos-K y microdespertares de EEG. Una vez finalizada esta fase de 

análisis, el sistema realiza un procesamiento de las señales respiratorias para la 



Diagnosis of the Sleep Apnea-Hypopnea Syndrome: a comprehensive approach through an intelligent 
system to support medical decision 

 

4 
 

localización de pausas respiratorias. El conjunto de señales involucradas incluye las de 

flujo respiratorio y movimientos torácicos y abdominales. También la señal de 

saturación de oxígeno es utilizada para la localización de las posibles desaturaciones y 

resaturaciones asociadas. Estos eventos son a continuación correlacionados en el tiempo 

e interpretados en el contexto de las señales neurofisiológicas. Así por ejemplo, se 

descartarán como falsos positivos aquellos intervalos apneicos que sucedan durante una 

períodos estables de vigilia, ya que la apnea debe de ocurrir, por definición, mientras el 

paciente se encuentra dormido. También por ejemplo será posible vincular los eventos 

apneicos a los microdesperares asociados y por tanto se podrá determinar la relación 

causa-efecto entre la ocurrencia de un episodio apneico y el microdespertar asociado 

correspondiente. 

 

El sistema desarrollado tiene también en cuenta la presencia de posibles artefactos 

en las distintas señales. Estos artefactos servirán también para mejorar los resultados del 

análisis y descartar posibles falsos positivos debidos a los mismos. Otro foco de 

información importante a tener en cuenta dentro de esta aproximación integral es la 

proveniente de otras señales del contexto como, por ejemplo la posición del paciente. La 

interpretación de la posición del paciente durante el sueño permite detectar los 

movimientos del mismo, además de detectar posiciones que pueden favorecer la 

aparición del evento apneico, como por ejemplo cuando el paciente se encuentra 

durmiendo en posición supino. 

 

La determinación  de los patrones diagnósticos relevantes y la correlación temporal 

de eventos tiene lugar a través de la implementación de restricciones temporales que 

definen las relaciones que pueden o deben darse entre los distintos eventos individuales 

detectados en las diferentes señales que integran la polisomnografía. El objetivo es la 

detección de patrones diagnósticos relevantes para la identificación de intervalos en la 

polisomnografía con posible ocurrencia de un evento apneico. 

 

Además de todo lo anterior, una de las principales aportaciones de esta tesis al 

desarrollo del sistema reside en la incorporación de mecanismos para el soporte de la 

imprecisión en los datos y la capacidad para establecer mecanismos de razonamiento 

afectados por incertidumbre. Más concretamente dichos mecanismos están soportados 

por el uso extensivo de técnicas de inteligencia artificial basadas en el análisis difuso de 



0. Summary in Spanish 
 

5 
 

la información. Dichas capacidades contribuyen por un lado a la mejora de los 

resultados en presencia de ruido en las entradas –algo muy común en las señales con 

alta sensibilidad al ruido-. Por otro lado contribuyen a aumentar las capacidades de 

generalización del sistema, reduciendo en cierta medida la variabilidad efectiva en los 

resultados. Esto último se justifica en el sentido de que el sistema tenderá a evitar 

juicios categóricos y a que los mecanismos de razonamiento estarán basados en la 

similitud y en la generalidad, más que en el uso de estrictas definiciones cuantitativas.  

 

El paradigma de la lógica difusa facilita asimismo la elaboración de un sistema que 

permite mostrar los resultados obtenidos en un lenguaje más cercano al experto, a través 

de la utilización de etiquetas lingüísticas. Por ejemplo en lugar de clasificar un evento 

categóricamente como de tipo apnea, dicha clasificación se lleva a cabo en términos 

tales como que el evento presenta con bastante posibilidad las características de una 

apnea, y que al mismo tiempo dicho evento es poco posible que se trate de una 

hipopnea. Este tipo de clasificación de los eventos detectados permite por tanto: (1) 

presentar los resultados en un lenguaje más propio del ser humano, a través del uso de 

términos lingüísticos en la clasificación, y así facilitando la explicación de sus 

resultados, (2) evitar juicios categóricos tasando las clasificaciones en términos de 

posibilidades y no de certezas absolutas, y (3) facilitar al experto la evaluación final 

toda la evidencia que apunta a cada una de las diferentes hipótesis ofreciendo, no sólo 

un único resultado posible, sino una lista de resultados ordenada por su respectivo grado 

de creencia (grado de pertenencia). De este modo, el experto puede evaluar todos los 

resultados posibles y decidir sobre el resultado diagnóstico final.  

 

0.3. Conclusiones 

 

Esta tesis doctoral ha abordado el desarrollo de un sistema de ayuda a la decisión 

clínica para el diagnóstico del SAHS. El objetivo principal ha sido la obtención de un 

modelo de comportamiento inteligente para lograr un sistema que emule las capacidades 

de diagnóstico de los expertos clínicos. De este modo se consigue reducir el tiempo y el 

esfuerzo requerido por el personal médico para inspección visual del registro 

polisomnográfico. 
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Las principales limitaciones de los sistemas computacionales de diagnóstico 

actuales consisten en la escasez de un enfoque integral y el excesivo uso de protocolos 

fijos y clasificaciones categóricas. Normalmente estos sistemas se limitan a ofrecer 

soluciones parciales al problema y no son capaces de manejar adecuadamente la 

variabilidad en los datos y la subjetividad humana. El sistema desarrollado contribuye 

en este sentido debido a (i) su filosofía integral, en la que la actividad neurofisiológica 

es usada como contexto para la interpretación de los eventos respiratorios, y (ii) a la 

implementación de mecanismos para el manejo de datos imprecisos y que imitan los 

procesos diagnósticos humanos bajos los principios de generalización y juicios 

aproximados. De hecho, mientras que la discrepancia entre el experto y el sistema 

computacional causada por la subjetividad y la imprecisión es un problema para la 

aceptación final de estos sistemas en la práctica real, está claro que los sistemas 

automáticos que tratan de imitar el examen visual del PSG del clínico no pueden ser 

mejorados mucho más allá del acuerdo que dos expertos diferentes pueden alcanzar 

entre sí. Dada la inevitable subjetividad asociada al análisis diagnóstico, una posible vía 

de mejora debería de considerar el desarrollo de herramientas de apoyo que eviten 

clasificaciones categóricas y que produzcan juicios basados en criterios de similitud. El 

sistema desarrollado se sirve del paradigma de la lógica difusa para dar respuesta a los 

problemas anteriores, sin embargo, sin renunciar a las ventajas que ofrecen los sistemas 

automáticos de análisis en cuanto al ahorro en tiempo y en esfuerzo para la revisión del 

polisomnograma. 

 

A pesar de que más investigaciones son necesarias, los resultados obtenidos por el 

sistema desarrollado están en el nivel de acuerdo general que el que muestran dos 

expertos humanos entre sí. En este sentido se puede considerar que el sistema se 

comporta como un experto más en la tarea de diagnóstico. Se puede concluir, por tanto, 

que se han cumplido los principales objetivos de esta tesis, y que el sistema puede ser 

usado con efectividad como una herramienta de soporte para el clínico en la tarea de 

diagnóstico del SAHS.       
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0.4. Contribuciones más relevantes 

 

Esquemáticamente, las contribuciones más relevantes de este trabajo de 

investigación son las siguientes: 

 

1. Se ha desarrollado un sistema que modela comportamiento inteligente para 

ayudar al clínico en el diagnóstico del Síndrome de Apneas-Hipopneas del 

Sueño 

 

2. El sistema simplifica la tarea de análisis del PSG, reduciendo tanto el 

tiempo como el esfuerzo requerido por el personal médico 

 

3. La validación del sistema usando pacientes reales ha demostrado que éste se 

comporta como un experto más respecto a los resultados de su diagnóstico 

 

4. Las limitaciones de las aproximaciones actuales de diagnóstico automático 

han sido abordadas, específicamente: 

 

a. El procedimiento de análisis se organiza en el sistema integrando 

tanto la información neurofisiológica como la respiratoria, dando 

lugar a una aproximación integral al diagnóstico en la que los 

eventos respiratorios son interpretados en el contexto del sueño, 

tanto a nivel de macroestructura como microestructura del mismo, y 

en función de las demás señales presentes en el registro 

polisomnográfico 

 

b. El manejo de información imprecisa y de la subjetividad entre 

expertos ha sido llevado a cabo a través de la implementación de 

técnicas de análisis difuso, evitando que el sistema emita juicios 

categóricos, desarrollando mecanismos de razonamiento basados en 

la similitud y la aproximación, y proviniendo al sistema con 

capacidades de explicación de los resultados en un lenguaje cercano 

al lenguaje natural del clínico 
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1. INTRODUCTION 

It is a fact that the human being spends around one third of his life sleeping, 

approximately 25 years. However it has been an aspect of our life which has not 

received a sufficient attention so far. Fortunately, this vision has changed over the 

course of the last years, and nowadays the experts consider a good nocturnal rest as one 

of the fundamental pillars for a good quality of life. It is clear the relationship between 

amount and quality of sleep, and health and life expectancy of a person. Sleep is, 

without any doubt, a basic necessity for the organism, at the same level than the 

necessity of being fed up or breathing, and its deficiency or deprivation has serious 

consequences on the individual’s health. 

 

Under the common name of Sleep Disorders we group all those pathologies related 

with the deprivation or the deficiency of sleep, including difficulty for getting or staying 

asleep (Insomnia), to be sleepy during inappropriate moments along the day, excessive 

total sleep time, or abnormal conducts related with sleep. Among them the Sleep 

Apnea-Hypopnea Syndrome (SAHS) is the most frequent of the respiratory diseases 

occurring during sleep, affecting around the 4% of adult population. It is characterized 

by the occurrence of intermittent involuntary pauses during sleep.  

 

Immediate consequences of this syndrome are fatigue and daytime 

hypersomnolence, which degenerate in situations of irritability, deficit of attention, 

increasing risk of accidents at work and traffic accidents –it has been calculated that up 

to six times higher than a person not suffering from SAHS-, low performance or social 

stress and, definitely, incapacity for the development of a satisfactory daytime activity. 

Even more, lots of times the respiratory pauses come accompanied by snore, which 

expands the problem to the circle of people surrounding the patient who have to suffer 

the problem indirectly. In the long term, and especially in the case of patients with a 
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severe SAHS, the syndrome is related with a higher risk of undergoing into 

cardiorespiratory problems such as arterial hypertension, myocardial ischemia or stroke 

[1] [2] [3] [4].  

 

Several studies have been carried around the world during the last years, which 

estimate that the prevalence of SAHS is between the 3% and the 7% of the adult 

population [5]. In Spain it is estimated that between 2 and 3 million people –around the 

3% and the 6% of the population- suffer from this syndrome, from which only one in 

every ten is actually diagnosed and treated. Besides it is estimated that around the 25% 

of these patients experience a severe or a very severe type of the syndrome [6]. 

 

The only diagnostic procedure commonly accepted to determine the presence of 

SAHS requires of a polysomnographic test to be done during the night. This test is 

normally carried out in the Sleep Labs at the medical centers. It involves the recording 

of several physiological signals during the night, both respiratory and neurophysiologic. 

The resulting recording, namely polysomnographic recording or PSG, is then visually 

analyzed offline by a medical specialist, to determine a measure of the number of 

respiratory pauses reported per hour of sleep: the Apnea-Hypopnea Index (AHI), which 

is used as the main measure for the diagnosis of the syndrome as well as to quantify its 

severity [7] 

 

Manual revision of the PSG, which is equivalent to the visual analysis of more than 

500 meters of paper2 per patient, results in a tedious task for the clinician. As a 

consequence several negative factors are associated, such as a descent in the diagnosis 

quality due to fatigue, bad use of clinician’s time, and therefore, the saturation of the 

Sleep Units which cannot absorb patient’s demand due to the time invested in the 

analysis of each individual recording. Finally all the previous results in worse patient 

care and rising of the associated costs associated with the diagnosis. 

 

In this regard, the development of systems that automate, at least in part, the 

analysis of the PSG, represents a great saving in terms of time, money and effort, 

facilitating the clinician’s task in a great extent and optimizing his/her time. Indeed, in 

                                                 
2 Originally it was actually made in paper; nowadays normally the recording is digitalized into an 
electronic file and is examined in the computer. In any case its length does not change.  
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the ideal scenario of a system being able to completely –and correctly- automate the 

analysis of the PSG, the use of supporting tools for the diagnosis should help to focus 

attention of the scorer only over the relevant information. Ultimately the physician’s 

task could become reduced to the solely task of checking and confirming of the results. 

 

This doctoral thesis deals with the development of an intelligent system for aiding 

the clinical decision making in the diagnosis of SAHS. The problem is carried out from 

a comprehensive perspective, which means to consider all the phases regarding the 

clinical diagnostic procedure; that is, to firstly perform an analysis of the 

neurophysiological signals bound to the sleep process in order to obtain the hypnogram, 

and subsequently, to make an analysis of the respiratory signals and interpreting them in 

the context marked by the remaining signals involved in the polysomnogram. In order 

to accomplish this task the system makes use of different artificial intelligence 

techniques, with special attention to the use of reasoning processes being able to deal 

with imprecise data. 

 

The main objective underlying the developed system is that of looking for a 

solution to the problem of SAHS diagnosis, in terms of savings in time and effort for the 

associated medical personnel. Therefore the aim is the design of a useful tool to be 

effectively used by the clinician. The resulting software is expected to revert in the 

improvement of the diagnostic procedure, and therefore, to ultimately revert in the 

general improvement of the quality in patient’s care.  

 

1.1. Background 

 

In the revision made by Penzel [8] about the computer systems for the recording 

and analysis of sleep, there is a reference to the four tasks that a system of such 

characteristics should fulfill. 

 

The first task is that systems should replace conventional paper chart recorders. The 

intention of this function is to produce less paper and minimize space requirements for 

archiving without losing the raw data. The second task is documentation. With the 

computer based system, a technician should be able to enter all additional notes and 
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observations made during the nocturnal recording, which have previously been 

documented on paper. The third task is evaluation of sleep and cardiorespiratory 

functions. An automatic sleep scoring system should use its computational power to 

support sleep evaluation. The system should analyze electroencephalography (EEG), 

electrooculography (EOG) and electromyography (EMG) in terms of sleep stages; 

respiration, snoring and oxygen saturation, in terms of sleep related breathing disorders; 

and EMG tibialis in terms of movement disorders. Other parameters recorded in a sleep 

laboratory may require additional analysis. The system should support visual evaluation 

as an alternative to automatic analysis, and it should allow editing of the results of 

automatic analysis. The fourth task is reporting. The computer based system should help 

in the generation of a final report of the investigation, and it should include an advanced 

filing system to archive the report as well as the data in a structured way. The former 

enables the sleep laboratory to keep track of patients and to recall reports when needed. 

This option also enables the review of former polysomnographic recordings, which is 

seldom used today due to the difficult access to old paper recordings, in conventional 

paper archives. 

 

Nowadays nobody doubts that tasks one, two and four are perfectly covered 

already, since the incorporation of the Health Management Information Systems into 

the hospitals, including the sleep labs. Effectively today almost nobody keeps using a 

kilometric recording paper to register the signals of the patient during the night. In its 

place, the signals are recorded into a digitalized file, for example, an EDF file [9]. This 

file can be subsequently stored occupying no more than just a few megabytes into a 

digital storage which can fit in a pocket. Moreover the digital file can be sent through 

the network to the other side of the world, allowing it to be examined by a physician 

just by launching a computer program being able to read this format, and to project it 

onto a screen. Besides, this kind of programs allow direct accessing to any part of the 

recording without any problem, also adjusting the set of signals to visualize, accessing 

the information about them, making zoom, or adding annotations. Even more, they can 

reproduce video recorded during the night and synchronizing it in time with the signals, 

reproduce ambient sounds and snores, or make possible the application of digital filters 

to get rid of noise and some kind of artifacts [10]. Finally, once the recording has been 

checked by the technician, it is possible to generate a report taking into account all the 

annotations made by him/her, and that contains all the relevant information for the 
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diagnosis. This report can be digitalized as well in any kind of digital format, being then 

stored into a documentary server and allowing its access, again through the network, 

from any part of the world just by barely clicking a couple of times. 

 

It is however regarding the task number three, the one relative to the analysis 

capabilities of the computer programs for the recording and analysis of sleep, where 

these systems still today present deficiencies. In this regard, even if in one hand sleep 

medicine can be considered a relatively young discipline within the medical field, it is 

also true that attempts to automate the sleep analysis task can be considered almost as 

old as the discipline itself. 

 

In this context, and stepping up to set up a date for the beginnings of these systems, 

it can certainly established around the year 1968, when A. Rechtschaffen and A. Kales 

(R&K) published their manual for the standardization of the terminology, techniques 

and scoring system of sleep stages in human subjects [11]. This manual, which is not 

absolutely the first work on sleep research, it did became instead, the very first great 

standardization, which extended for example the previous observations made by Loomis 

[12] who described sleep phases from A to E, or the observations from Aserinsky and 

Kleitman [13], who for the first time described the rapid eye movements phase (REM). 

The set of rules for the sleep analysis described by R&K defined since then the standard 

method for its characterization. This method has arrived practically unaltered to our 

days, being only recently modified by the last revision published in 2007 by the 

American Association of Sleep Medicine (AASM) [14]. In any case, from the advent of 

the standardized methods for visual evaluation of sleep, several attempts to develop 

systems for the automatic classification of sleep have followed each other. On the other 

hand, in the context of SAHS as a disease associated to sleep, the first attempts can be 

found around the decade of the 70s and beginnings of the 80s [15] [16]. 

 

During these last 30 years there have been several the approximations proposed to 

automate the polysomnographic analysis task. However, research activity in this field 

still continues today to be very active. Throughout this thesis manuscript, especially in 

chapter three, a more detailed analysis of these systems will be carried out, specially 

focusing in those specifically designed for the diagnosis of SAHS. In any case, the 
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question seems to be obvious: why the automatic analysis of PSG still constitutes to be 

a challenge not completely resolved? We can analyze the causes more in detail: 

First of all we can point out to computational and technological reasons. In fact, as 

it has been already mentioned, a polysomnography of an entire night implies continuous 

recording lasting around 8 hours of duration, which involves between 10 and 15 

different physiological signals. This implies a considerable amount of data which not 

always the computers have been able to manage. Actually the first algorithms for the 

PSG analysis made the processing online as long as data were generated. The main 

reason was that they hardly were able to store a file which might weight from 50 MB up 

to 500 MB. On the top of that, it has to be added the requirements regarding the 

calculation performance required for the analysis of the different involved signals. 

Hence, it has been necessary the evolution of the computation capabilities, for the 

computers to be able to satisfy the necessities to analyze and store a complete PSG. 

 

In any case, and once these limitations were overcame, the complexity of the 

analysis task continued –and still nowadays- being one of the main challenges 

preventing the success of this kind of systems. It has to be remarked that 

polysomnography is composed of a number of signals of different nature. Thus, there is 

a need for different analysis techniques depending on the concrete signal. On the other 

hand, many of these signals are very sensitive to noise. Simultaneous recording of the 

signals favors the possibility of interferences among them. Even more, sleepy patients 

tend to move or sweat, which causes the easy displacement of the sensors. External 

factors to the recording such as mains interference can also affect signal registration. In 

summary, there are several factors that can cause the presence of all kinds of artifacts 

corrupting the PSG. These artifacts can be reduced somewhat by improving the sensors, 

the insulating and the application of analog filters at the time of the signal registration. 

However, the presence of artifacts in the recorded signals is something inherent to the 

recording itself, and its presence cannot be completely avoided. The occurrence of 

artifacts in the recording represents a challenge even for the experienced scorer. Thus it 

does not seem strange that its treatment constitutes, from a computational point of view, 

one of the main issues that automatic systems for the analysis of PSG should confront 

[17]. 
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On the other hand, the complexity of the analysis task itself, involving several 

signals of different nature and their temporal interrelation, makes the development of 

computer approximations from a comprehensive perspective, something rather scant 

and difficult to attain. In this respect, and specifically for the case of SAHS, by 

comprehensive it must be understood those approximations that, besides the analysis of 

apneic respiratory pauses, carry out an analysis of the neurophysiological activity 

related to the sleep. Such methodology allows interpreting the respiratory pauses in the 

context of the patient’s sleep structure. The former necessarily involves, at least, the 

construction of the hypnogram, and the detection of relevant transient events such as, 

for example, micro arousals which can have an apneic origin. Likewise the detected 

respiratory events should be interpreted in the context marked by the remaining signals 

present in the polysomnography. It is of special attention, for example, the analysis of 

apneic events within the context of the body position of the patient. In this respect, 

besides the development of individual algorithms for the adequate processing and the 

extraction of the relevant information on each signal, it grows the importance of 

temporal correlation mechanisms in charge of accomplishing the identification of 

significant diagnostic patterns throughout the recording. 

 

All the previous challenges entail that many of the approximations in the scope of 

the computerized analysis of SAHS, instead of global approaches, rather reduce to the 

accomplishment of specific subtasks. Within these subtasks, for example, there can be 

encountered realizations for the analysis of oxygen saturation decays, the identification 

of respiratory amplitude reductions, or in the best scenario, the performing of a full 

analysis of the respiratory signals but without interpreting them in the context of the rest 

of the PSG signals. This situation leads to suboptimal analyses, in many cases, not 

satisfactory enough for the clinician to consider the use of these programs as valid tools 

for the diagnosis of SAHS. 

 

However, besides the lack of comprehensive approaches, current systems also 

suffer from additional drawbacks. To introduce them, let us consider the following. In 

the domain of SAHS two main types of episodic events can be found: apneas and 

hypopneas [14]. An apnea is defined as an event of a higher intensity, characterized by 

a stop in the respiratory airflow during at least 10 seconds. This stop is characterized by 

a flow reduction of approximately the 90% with respect to the normal breathing. 
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Obviating the problem of the establishment of the normal breathing, it can be said that 

previous definition is more or less well characterized and is widely accepted for the 

different specialists in the field [18]. The event hypopnea, on the contrary, is more 

difficult to measure and its definition is less precise [19]. In this case rather than a stop 

the term pause is more commonly found in the literature. The controversy here results 

mainly at the time of the numerical characterization of such a pause –or reduction, 

which can vary from one medical center to another from “discernible” to a required 

amplitude reduction of 50% [18]. On the other hand, it is known that both apneas and 

hypopneas are commonly accompanied by a decrease in the levels of arterial blood 

oxygen saturation (SaO2). In this respect, while the apnea definition commonly obviates 

this desaturation from the requirements, for being an event sufficiently well 

characterized by other measures, the required levels of desaturation to classify an event 

as hypopnea may also vary depending on the expert. Desaturation values in the range of 

2% and 5% are common. Even sometimes the absence of a desaturation event is 

permitted. Additionally, the necessity of EEG arousals events accompanying the 

hypopnea is also an object of controversy. Indeed, even today the AASM in its recent 

revision of the sleep scoring rules provides two different definitions to score this event 

[14]. 

 

On the top of that, it is necessary again to remark that the analysis of the PSG, 

which involves the analysis of an entire night of sleep and with many different signals, 

is a tedious task for the clinician. It can be considered, for example, that the recognition 

of an apnea event for an experienced specialist is not a difficult task. However 

recognition of hypopnea events results much more complex due to the less significant 

airflow reduction occurring in these cases, which therefore makes its quantification 

more difficult at a glance [20]. Besides, as the time passes the tiredness increases and, as 

a consequence, the accuracy of the analysis. The scorer may try to go faster and the risk 

of making mistakes increases. This results in a loss in the final quality of the diagnosis. 

 

All the previous causes that, with the same recording, different diagnoses can be 

achieved in the presence of different scorers. Even more, the expert itself may show 

discrepancy on scoring the same recording, but in different instants of time. In 

definitive, there is variability in the diagnosis due to different definitions of the relevant 

events, and also because of subjectivity of the human decisions. And although, the use 
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of automatic systems for the analysis of the PSG should represent an adequate solution 

to the variability problem, in practice its use from the part of the medical personnel is 

far from that expected. Thus eventually these programs do not solve the problem for 

which they were built for. 

 

Taking this situation into account we can extend the reasons which prevent the 

success of the current computer systems for the analysis of the sleep: 

 

• The discrepancy due to the diversity of criteria existent for the definition of 

apneic events. As stated before, it results in a generalization problem for 

these systems since although the results can be correct for an expert, it is 

possible that another expert does not found them equally correct (expert’s 

inter-variability). Moreover even the same expert in different instants of 

time can disagree with himself (expert’s intra-variability). 

  

• Categorical decisions. Even in the situation where there is a unique standard 

criterion, the problems arise in regard with the way a system implemented 

using such criterion could offer its results. It is a common problem for 

expert systems to excessively offer its results in categorical form. Let us 

consider, for example, the following situation in which given two events A 

and B, the system associates respective probabilities of occurrence –in 

percentages- of 90% and 90.1%. Attending to the criterion of the higher 

probability, a system could express as its resulting output that the most 

probable event is B. However saying nothing about the concurrent high 

probability of occurrence of A. Similarly it can be the case in the context of 

SAHS of the occurrence of an apneic event which does not present clearly 

characteristics to be classified without any doubt either as an apnea or a 

hypopnea. In this situation the opinion of the clinician expert plays a 

fundamental role in the final classification. Even if both system and expert 

use the same standard guideline for identification of the event, the 

categorical affirmation from the part of the system about the event’s 

classification may not correspond with expert’s subjective opinion. This 

causes discrepancy between the system and the expert which may 
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eventually result in distrust on the system’s results from the part of the 

clinician.  

  

• The lack of explanation of the results. An expert will give little credibility to 

a system behaving as a black-box which offers its results without an 

adequate explanation, even more in the medical field. A good diagnostic 

system, besides valid outputs, should provide an explanation of its results. 

Moreover whether this explanation takes place, it should be carried out into 

a language adequate to the necessities of the expert.  

 

• Usability problems. It is important to design the system thinking on its final 

user which may do not be a computer technician. The system must speak the 

language of the clinician, fulfill its necessities, and its use should not be too 

much complicated. It should not offer more of what the physician needs, 

and it should organize the results through adequate views, making 

accessible all needed information in an organized manner.   

 

1.2. Scope and objectives 
 

This doctoral thesis has as its main objective the development of a system helping 

in the diagnosis of SAHS, which contributes to solve the problems of current 

approaches for the automatic analysis of the PSG. 

 

In order to fulfill that objective, and according to the title of this thesis, first of all, 

the developed system is aimed at following a comprehensive philosophy over the 

diagnostic process. In this respect the system carries out not only the analysis of the 

respiratory signals, but it also includes the analysis of the electrophysiological signals 

related to sleep. In this manner the system firstly performs an analysis of the 

electroencephalography (EEG), electrooculography (EOG) and submental 

electromyography (EMG) to obtain the structure of the patient’s sleep or hypnogram. 

Besides, during the EEG analysis a detection of transient events such as sleep spindles, 

K-complexes or EEG arousals is performed. Once this analysis has finished the system 

continues by processing respiratory signals for the location of breathing pauses. The set 
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of involved signals here includes the airflow and the signals recording thoracic and 

abdominal respiratory movements. Additionally, the oxygen saturation signal is used for 

the detection of the corresponding desaturations and resaturations. All of these events 

are subsequently correlated in time, and interpreted in the context of the 

neurophysiological signals. In this regard, for example, those false positives caused by 

the occurrence of apneic intervals during stable periods of wakefulness can be 

discarded. This is because, by definition, the apneic event must occur while the patient 

is asleep. Another possibility that the comprehensive approach permits, is that of linking 

the apneic events causing EEG arousals to their corresponding neurophysiologic event, 

thus allowing the determination of the cause-effect relationship between the apneic 

event, and its associated microarousal. 

 

The developed system takes also into account the presence of possible artifacts in 

the monitored signals. Detection and characterization of signal artifacts allows the 

analysis to detect possible false positives caused by them. Another source of important 

information in the comprehensive approach comes from the remaining context signals 

such as, for example, patient’s position.  Interpretation of the sleeping position allows 

detecting movements during sleep, or to take into account sleep positions which favor 

the appearance of the apneic event, like for example when the patient is sleeping in 

supine position.  

 

The identification of the relevant diagnostic patterns takes place through the 

implementation of temporal constraints, which define the relationships which can or 

must occur, among the isolated events detected across the different signals included in 

the PSG. The objective is to form significant diagnostic patterns to identify recording 

intervals where the evidence points out to the possible occurrence of an apneic event. 

 

Besides the comprehensive approach, one of the main contributions of this thesis 

lies in the incorporation of mechanisms supporting imprecision in the data, and the 

capacity to establish reasoning processes affected by uncertainty. More specifically such 

procedures are supported by the prominent use of artificial intelligence techniques based 

on the fuzzy analysis of the information. Such capabilities contribute, on one hand, to 

the improvement of the results in the presence of noise at the input –something very 

common among signals with a high noise-to-signal ratio. On the other hand, they 
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contribute to augment generalization capabilities of the system, thus reducing somewhat 

the effective variability of the results. This last statement is justified by the fact that the 

system tends to avoid categorical judgments, besides, reasoning mechanisms operate 

basing more its decisions on similarity criteria rather than in strict quantitative 

definitions. 

 

The use of fuzzy approaches to support imprecise information makes it also easier 

to construct a system being able to express its results in a language closer to the human 

expert. This is possible by making use of fuzzy linguistic labels. For example, instead of 

categorically classifying an event as an apnea, the classification in the proposed system 

is carried out in fuzzy terms. For example the event may present with quite a lot of 

possibility the characteristics of an apnea, but at the same time, the same event is quite 

unlikely to be a hypopnea. This kind of classification of the detected events permits the 

system: (1) to present the results in a more human-like manner through the use of 

linguistic terms in the classification, also facilitating the explanation of the results, (2) to 

avoid categorical judgments, evaluating the classifications in terms of possibilities, not 

in terms of absolute certainties, and (3) to allow the expert to easily evaluate all the 

evidence pointing out to each one of the considered hypothesis, not by just offering one 

unique possible result, but a list of possible results sorted by their respective amount of 

belief3. In this manner the expert clinician can evaluate all the possible results and 

decide out about the final diagnosis.  

 

  

                                                 
3 In this case it may be more correct to say, by their respective degree of membership. For further details 
see Chapter 4 
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Summarizing, main objectives of this doctoral thesis can be enunciated as follows: 

 

• To construct a system to aid medical decision in the diagnosis of SAHS. 

The system will make special emphasis in the automatic analysis of the PSG 

 

• To simplify the analysis task of the PSG, reducing both time and effort 

needed from the medical personnel 

 

• To overcome limitations of current computer methods for the diagnosis of 

SAHS, and to do so: 

 

o To construct a system that handles the problem both from the 

pulmonological and the neurophysiological perspectives 

 

o To develop an analysis strategy that minimizes the effects of intra 

and inter experts variability 

 

o To avoid categorical judgments 

 

o To  develop a system being able to explain its results 

 

• Ultimately, to revert in the society by improving the SAHS diagnostic 

procedure and therefore the general quality in the patient’s care 

 

1.3. Structure of the document 
 

In the following it is given a breakdown of the different chapters which compose 

the structure of the doctoral manuscript. 

 

The document continues in the next chapter with a general description of the 

context in which the project is included: the diagnosis of the Sleep Apnea-Hypopnea 

Syndrome. In this regard, throughout the next chapter the most relevant clinical 

concepts related with sleep are introduced, focusing in the polysomnographic test and in 



Diagnosis of the Sleep Apnea-Hypopnea Syndrome: a comprehensive approach through an intelligent 
system to support medical decision 
 

22 
 

the description of the most important signals included in the PSG. After introducing the 

fundamentals of the sleep analysis, a description of the classical approximation to the 

diagnosis of SAHS is given. The different types of events associated to this syndrome 

are described and interpreted in the context of the PSG. 

 

Chapter three is an introduction to the intelligent systems for the support of the 

clinical decision making. Firstly, historical perspective is given, starting from the 

beginnings of artificial intelligence in the field of medicine to its evolution reaching the 

current systems. The different techniques and mechanisms that current intelligent 

systems implement are described in general terms. In the context of this thesis special 

attention is made with regard to the different techniques to handle the analysis of 

imprecise information. Focusing in SAHS domain, a review is performed on the 

different solutions which have been carried out so far in order to assess the automatic 

diagnosis of SAHS. To structure the analysis, the different solutions are classified in 

commercial systems and non-commercial –academic- systems. Finally, a critical 

analysis of current approaches is performed in the last part of the chapter, introducing 

the necessity to carry out new approaches to overcome their limitations. 

  

Throughout chapter four the technological aspects of the developed system are 

described in relation with the fuzzy analysis of information. Fundamental theoretical 

aspects of fuzzy logic are firstly described, introducing fuzzy inference mechanisms, to 

end up with the so-called fuzzy inference systems. Machine-driven parameterization of 

such systems is outlined by the use of neuro-fuzzy modeling techniques. Discussion on 

specific techniques used for the construction of the developed system is performed in 

the last part of the chapter. 

 

Chapter five focus on the description of the system itself. It starts from a software 

engineering perspective, making reference to the methodology used for its development, 

analyzing the analysis of the requirements, and making a brief description of the system 

from the architectonical point of view. In the following sections system’s construction is 

described regarding its design, and explaining and detailing the operation of all its 

integrating modules. In this respect the processing algorithms are described including, 

among others, those regarding signal acquisition, artifact detection, respiratory event’s 



1. Introduction 
 

23 
 

identification, analysis of the neurophysiological signals, hypnogram generation, 

detection and classification of the apneic events, and final diagnosis generation. 

 

Subsequent chapters deal with the evaluation of the system by carrying out a 

validation process. The aim is to evaluate if the proposed objectives have been achieved 

and in which degree. For such purpose a validation process using PSG recordings of 

real patients is performed. Chapter six introduces the validation process by describing 

the used validation measures and the design of the validation tests. Chapter seven 

presents and analyzes the results according to the structure of the proposed validation 

tests. 

 

Finally, in chapter eight the final discussion is effectuated, in which analysis of the 

constructed system is performed from a critical point of view. Main conclusions are 

delivered assessing its lacks and its strengths, commenting possible improvements and 

future work. 

 

1.4. Summary of this chapter 
 

This chapter introduces the topic of this doctoral thesis. The main objective is to 

develop a system for the automatic analysis of the PSG to be used as supporting tool for 

the clinician in the diagnosis of SAHS. SAHS is defined as a syndrome pertaining to the 

group of diseases affecting sleep. Its diagnosis implies the realization of a 

polysomnography and the subsequent analysis of the resulting recording. Such a task is 

costly, thus as a result it is proposed the construction of a system to automate the 

analysis, helping to reduce diagnostic time and the effort of the involved clinical 

personnel. 

 

The development of a system of these characteristics presents some difficulties, and 

throughout the chapter, an analysis of the problematic associated to the automatic 

analysis of the PSG in the context of SAHS is done. In this respect, some of the factors 

preventing the satisfactory implantation of these systems in the sleep units of the 

medical centers are analyzed, which include lack of comprehensive approaches and 

limitations on the correct analysis of the relevant information. 
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Main objectives of the doctoral thesis are subsequently described, which mark the 

guidelines for the development of a system to confront shortages of the current 

approximations. For such purpose, it is proposed the development of a system which 

assesses the analysis from a comprehensive perspective. Such system, in addition, 

makes use of artificial intelligence techniques being able to manage data imprecision 

and supporting reasoning processes affected by uncertainty. The resulting system is 

aimed at constituting a possible solution for the shortages of current approximations in 

the diagnosis of SAHS. 
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2. DESCRIPTION OF THE DOMAIN 

The word sleep designates both the act of sleeping as well as the desire of sleep (to 

be sleepy). Concerning the act of sleeping, although there are several definitions, it is 

commonly accepted the one referring to sleep as a uniform restful state from an 

organism; a complex state quantitatively different from wakefulness, but at the same 

time closely related to it.  

 

As a restful state, sleep is characterized by a resting posture -varying depending on 

the animal species- with either an absence or a decrease in the voluntary corporal 

movements, and with poor response to external stimuli. It is also important to stress its 

limited duration, which distinguishes it from coma. However at the internal level a 

series of important biological variations are produced together with a characteristic 

change of the cerebral activity. This activity is associated with a repairing function for 

the individual through hormonal, metabolic, biochemical and temperature changes, 

which are essential for a good resting. 

  

A remarkable phenomenon produced throughout sleep is the dreaming act. 

Dreaming, as an involuntary mental process which submerges us in a virtual reality 

involving images, sounds, thoughts and sensations, has only been confirmed in the 

Homo Sapiens. It is though that some mammals could also hold high probabilities of 

dreaming, however although there are other animals which experiment REM4 sleep 

state, their subjective experience is difficult to be determined.   

 

Current advanced scanning systems have detected that in several occasions dreams 

are cerebral activity loops which repeat night by night. It is also known that every single 

subject has an unrepeatable and unique form of dreaming. Cerebral activity represented 

                                                 
4 Period of dreaming during which, as we will see, dreaming is normally produced 
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by electromagnetic waves on the screen of these scanners presents very similar graphic 

patterns within each patient, and different between two of them. 

 

What remains clear is that sleeping is essential to develop a normal life. The 

number of hours the human being dedicates to sleep varies considerably from one 

person to another, not only because of biological/genetic reasons, but many times 

because of subject’s life habits. Experts establish the recommendable duration of sleep 

in eight hours, in which it can found a variability range between five and ten hours of 

sleep. Ideal sleep duration is that which allow us to develop a normal social and 

working life.  

 

In which all experts agree is that sleep is necessary for life. The lack or the 

privation of sleep triggers all kinds of disorders affecting behavior, as for example, 

decreasing in the daytime attention level –thus affecting working and personal 

performance of the individual- increasing risk of traffic accidents, and cardiovascular 

dysfunction. The hypothesis that sleep participates in memory consolidation has also 

been investigated recently. Studies have confirmed the idea that sleep is profoundly 

implicated in the memory function of both human and animals. In this respect it has 

been demonstrated its effects in memory consolidation and learning [1]. 

 

Throughout the last century a great progress has occurred in the scientific studies 

about sleep. Although even the oldest medical manuals stressed the repairing functions 

of sleep, the scientific interest has not been developed until beginnings of 20th century. 

It is in this period when a key publication appears, The Interpretation of Dreams, by 

Freud [2]. Nevertheless true scientific research on sleep does not occur until about the 

middle of the century. It is around the decade of 50s when it is discovered that sleep is 

not a homogeneous phenomenon, but it fluctuates in a cyclic form between two 

sequential states. Recent developments in the fields of neurobiology, molecular biology, 

physiology, neuropsychiatry or cardiology, together with technology advances that have 

enabled in a great extent what it has been known as energy of sleep, have allowed the 

researchers the study of the sleep details. As a consequence, these developments have 

enabled the development of a researching movement toward the compression of sleep 

and its disorders, and the creation at the medical level of the so-called Sleep 

Laboratories. 
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2.1. Sleep Studies 
 

Given the importance that sleep has in the life of human beings, an increasing 

interest is raising regarding its study and characterization. Technology advances 

experienced within the last century have allowed the researchers to define sleep through 

certain related physiological measures. In this respect the so-called Sleep Studies arise. 

 

The purpose of such studies, besides divulging and understanding the structure of 

sleep, is to diagnose anomalies which may be either direct or indirect responsible of 

both, nigh sleep problems as well as daytime complications5. In fact in the recent years 

it is common the use of the term dyssomnias, avoiding the use of hypersomnias or 

insomnias, since many times people sleeping bad during the night may also present 

abnormal daytime somnolence.  

 

The Multiple Sleep Latency Test (MSLT) consists in the study of the input latency 

of sleep and phase REM; for that purpose the patient undergoes naps (normally five) 

separated by two hours during a day. With this test it can be known if it exists or not a 

pathologic hypersomnolence, and to specify if it has to deal with a specific disorder 

such as narcolepsy. 

 

Another kind of study is actigraphy. It consists in the evaluation of the movement, 

generally of the arm, during several days. It serves as an indirect measure to give an 

idea of the different sleep periods over patients with sleep problems. In this test only 

one sensor is used which is an accelerometer placed in the patient’s wrist as it was a 

watch. Common recording periods usually last between 4 and 10 days.   

 

Pulse oximetry is another non-invasive method allowing the monitoring of oxygen 

concentration in hemoglobin. It also allows measurement of pulse rate. It can be used 

either as a simple screening test to discard the presence of sleep apneas, or as to control 

efficacy in the treatment of already diagnosed patients. However it is not an exhaustive 

diagnostic test and therefore is mostly used for screening purposes.  

 

                                                 
5 E.g. insomnia or narcolepsy 
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There exist different types of studies according to the actual symptoms and the 

suspected syndrome. Nevertheless the most complete test and the standard procedure to 

carry out sleep studies in the sleep labs is the polysomnography (PSG).   

 

2.2. The polysomnography 
 

Polysomnography is a diagnostic test in which several sensors are attached to the 

patient in order to monitor different physiological functions, determine his/her sleep 

patterns, and to check for possible abnormalities. Depending on the symptoms and the 

suspected diseases the number of recorded signals can vary. There are studies which 

uniquely record neurophysiological activity during the night, whereas others –as in the 

diagnosis of SAHS- usually include many other signals, for example, related to the 

respiratory function (see Figure 2.1)   

 

 
 

 
Figure 2.1. Image of a nocturnal digitalized polysomnography 
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In patients with insomnia, the PSG corroborates and classifies the kind and the 

severity of the insomnia. It indicates if a difficulty exits either to get or to manage to 

sleep, and it points out to the presence of nocturnal awakenings, or an early morning 

awake. For each one of these possibilities the cause and the corresponding treatment 

differ. In patients with daytime somnolence, the polysomnographic studies help the 

physician to know whether a nocturnal factor exists that influences this symptom. 

Actually, patients with presence of obstructive apneas usually comply, not because of 

the snoring6, but because they are tired and because they feel somnolent during the day.   

 

Another purpose of the polysomnographic studies is that of diagnosing peculiar 

episodes which come out during the night, as they are for example awakenings, 

somniloquy7, sleep walking, bruxism8 or night terrors. 

 

Polysomnography is carried out in the sleep labs of the medical centers. It is the 

most precise diagnostic method for the majority of the most common sleep disorders. 

Manual revision of the PSG is, however, a laborious task, complex and expensive. On 

the other hand, in many cases PSG is not well tolerated by the patients, mainly because 

it may result an uncomfortable test due to the presence of wires and equipment. Also 

because of the hospital environment in which the recording is carried out which differs 

from the usual sleep place of the patient. The increasing healthcare demand that the 

specialized centers in sleep disorders are experiencing, causes the necessity of 

alternative methods to PSG of being simpler and with less associated cost. In this 

respect, development of portable systems which allow a first analysis to be performed 

ambulatory is an increasing field of interest. In chapter 3 some examples of portable 

systems are analyzed. In any case, these devices are normally limited to fulfill with a 

screening function. 

 

In the case of polysomnography applied to SAHS, the analysis principally consists 

in the detection of apneic events (involuntary respiratory pauses), mainly through the 

information coming from the interpretation of the respiratory signals, and its posterior 

analysis in the context of the neurophysiological activity, which determine the sleep 

                                                 
6 The partner is the one who usually complains about snoring 
7 Sleep talking 
8 Involuntary mandibular movements 
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state of the patient. Other sources of contextual information are used in addition to 

refine the analysis, for example, to detect the presence of false positives due to 

situations such as changes in body position of the patient, or the occurrence of artifacts 

in the signals.  

 

In accordance, it can be considered that in the case of SAHS, the polysomnographic 

montage usually involves three different types of signals: 

 

1. Pulmonological signals for the localization of the respiratory pauses –apneic 

events- mainly comprising respiratory movements, oxygen saturation in arterial 

blood and airflow. 
 

2. Neurophysiological signals related with the sleep function mainly including 

electroencephalogram (EEG), electrooculogram (EOG) and electromyogram 

(EMG). The main objective is the assessment of the sleep map of the patient –

hypnogram- which serves as the fundamental context for the interpretation of the 

respiratory events. Besides, there are useful for the localization of additional 

events of importance for the diagnostic, such as for example EEG micro-

arousals, sleep spindles or K-complexes. 

 
3. Additional contextual information signals, as they may be the recording of lights 

state, patient’s body position throughout the test, electrocardiogram (ECG) or 

the snore signal. 

 

In the following subsection a more detailed analysis of the most relevant signals 

within the PSG is performed regarding the diagnosis of SAHS. 

 

2.2.1. Signals related to sleep of the patient 

 
Electrooculogram  

 

Around the middle of the 19th century it has been discovered a difference in the 

potential between the cornea and the retina of human eye. In this regard, when cornea is 

positively charged, retina is charged negatively, and therefore it allows the electrical 
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characterization of the human eye as a rotary dipole. This potential difference is used to 

monitor the ocular movements, and to distinguish the different patterns of eye 

movements which occur during some sleep periods. It is common to work in a range 

between 20 and 250 µV (peak to peak) with sampling frequencies between 100 to 500 

Hz (see Figure 2.2). Analysis range of EOG is normally below 50 Hz. 

 

 
Figure 2.2. Image of the mechanism to record eye movements. Figure from the web version of the book 
by Jaakko Malmivuo & Robert Plonsey [3], chapter 28 

 

Electromyogram  

 

The EMG monitors the neuromuscular activity associated with muscle contraction. 

It is recorded using electrodes situated over the skin surface of the muscle which is 

intended to be monitored. In the scope of sleep the most commonly used derivation is 

the submental EMG, because the muscles in this area provide good quality signals that 

reflect changes produced in the normal progression of sleep (see Figure 2.3). 

Additionally, two supplementary tibialis derivations are normally used to gather muscle 

activity from the legs. Monitoring of leg movements is useful to keep track of arousals 

caused by leg movements, and it is of special interest in the case of suspecting from 

Restless Leg Syndrome (RLS) or Periodic Limb Movement Disorder (PLMS). Usual 

recording amplitudes within this signal are in the range from -100 to 100 µV, and with 
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sampling frequencies which oscillate between 100 and 500 Hz (analysis frequencies 

usually range between 10 and 100 Hz). 

 

 
Figure 2.3. Image of a submental EMG 

 

Electroencephalogram 

 

Brain cells communicate producing little electrical impulses. For the recording of 

EEG several electrodes are placed in the scalp over multiple areas to detect and record 

electrical activity patterns (see Figure 2.4). Such electrodes are usually arranged in 

different strategic points along the skull, normally in a bipolar setting, in which one 

extreme is stick to a certain specific region and the other to a common reference region 

for all the electrodes. This reference region is usually over the mastoid (M) or the ear 

lobule (A). The result of the measurement of the potential difference between both 

electrodes results in the recorded EEG signal. In general the setting up of the electrodes 

for the monitoring of EEG follows the standard system 10-20 which is shown in Figure 

2.5. 

 

 
Figure 2.4. General schema of an EEG recording system 
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Figure 2.5. The standardized 10-20 electrode system. Figure from the web version of the book by Jaakko 
Malmivuo & Robert Plonsey [3], chapter 13.3  

 

The EEG is, by far, the most complex of the neurophysiological signals involved in 

the characterization and structuring of the sleep states due to its non-linear nature, non-

stationarity, and its low signal-to-noise ratio [4]. Usual unavoidable sources of noise in 

the recording of non-invasive EEG are, for example, cancellation effects produced 

among the firings of the distinct neurons under the influence of the same electrode, or 

the effect of the skull which acts as low pass filter between the origin of the signal and 

the sensor.  

 

Analysis of the EEG during sleep is often based on the analysis of the spectra of 

dominant frequencies within the signal. In general the sleep spectrum can be broke 

down into four different categories. The frequency bands designated by these categories 

are namely alpha (α), beta (β), theta (θ) and delta (δ) (see Table 2.1). Each one of these 

bands shows different types of activity depending on the current sleep phase of the 

patient. On the other hand, besides the predominant frequencies, it is also of interest in 

the EEG the detection of transient events such as K-complexes, sleep spindles or micro-

arousals. These events help to classify the different sleep states that the patient 

undergoes throughout the night. 
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Table 2.1. Summary of main frequencies of the sleep EEG 

 Frequency 
range 

Amplitude 
range Observations 

Beta >16 Hz 5 – 50 µV -It can be observed during excited EEG and 
REM phases 

Alpha 8-13 Hz 5 – 50 µV 

-Localized in the occipital region 
 
Alpha rhythm: 
 
-Is seen in the relaxed waking state with eyes 
closed 
 
-Attenuates with eye opening, anxiety or 
mental activity such as calculations 

Theta 4-8 Hz 50-100 µV -Appears in low amplitude patterns during 
drowsiness and phase REM 

Delta <4 Hz 100-200 µV -It can be observed in deep sleep states 
 
 

2.2.2. Signals related to respiratory function 

 
Respiratory airflow 

 

Airflow occurs when there is a difference of pressure between the external ambient 

pressure and the pressure inside the lungs. Air circulates from the region with higher 

pressure toward the one with lower pressure. The higher the difference, the higher the 

velocity, being flow a physical measure which quantifies volume per unit of time. 

 

Recording of airflow signal has as its objective to obtain a measure of the volume 

of air inhaled and expelled from the lungs. The result is a sinusoidal signal which 

reflects respiratory rhythm, usually with a positive slope during inhalation, and with a 

negative slope during expiration9 (see Figure 2.6). In the past to obtain this signal a 

thermocouple was used, which is a transducer formed by the union of two different 

metals producing a voltage in function of the temperature between the two metals. 

However the use of thermocouple in the clinical field has been replaced lately by the 

use of thermistor. The thermistor works as a resistive sensor offering much more 

precision and it is also simpler to calibrate than the thermocouple. In any case both 

devices act as temperature sensors and are placed close to the upperway respiratory 

orifices of the subject, normally in the mouth or in the nostrils. In this respect because 
                                                 
9 Ultimately this will depend on the used amplifier (if it inverts or not the signal)  
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of the difference in temperature between inhaled and expelled air, an indirect measure 

of the air volume breathed in and breathed out is respectively obtained. Both devices –

thermocouple and thermistor- are valid for the detection of total absence of respiratory 

flow –apnea- because of the total absence in the variation of temperature. 

 

However the necessity of measuring also partial pauses –hypopneas- introduced the 

necessity of using new sensors because, in this case, the relation between temperature 

change and the actual airflow cannot be so easily measured. That is why according to 

guidelines proposed by the American Academy of Sleep Medicine (AASM), in order to 

measure airflow both, nasal cannula with pressure transducer and thermistor, should be 

simultaneously used [5]. Pressure transducer produces a more direct and reliable airflow 

estimation, which is more sensitive to little changes, and therefore it is better for the 

detection of hypopneas. The reason why AASM still recommends the use of a 

thermistor for the detection of apneas may be probably related to legacy reasons and its 

use will presumably be excluded in future revisions.   

 

On the other hand in patients with Continuous Positive Airway Pressure (CPAP), 

airflow is commonly measured through a pressure sensor included right in the mask 

attached to the patient in order to control the CPAP pressure. 

 

 
Figure 2.6. Thermistor and airflow signal 

     
Oxygen saturation 

 

Pulse oximeters monitor oxygen saturation in arterial blood in a non-invasive 

manner. They calculate the percentage of arterial hemoglobin by measuring changes in 

light absorption resulting from beats in the arterial blood flow (see Figure 2.7). The 

probe of the pulse oximeter is applied to a body region, normally to a finger or to a toe, 
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emitting both a red and an infrared light through the skin. The corresponding 

wavelengths are absorbed respectively by the deoxyhemoglobin and the 

oxyhemoglobin. Oxygen blood saturation can then be derived using the ratio between 

the absorbed red light and infrared light. 

 
 

 
Figure 2.7. Pulse oximeter and oxygen saturation signal 

 

Thoracic and abdominal movements  

 

Non-invasive recording of thoracic and abdominal movement is performed using 

impedance pneumography, or more recently, through inductive plethysmography [6]. 

The former employs two surface electrodes to record volume changes in the rib cage by 

the voltage drop across the electrodes. A weak alternating electrical current is passed 

through the electrodes allowing the impedance to be measured, which increases during 

inspiration and decreases during expiration. However more recently the use of inductive 

plethysmography is preferred. Respiratory Inductive Plethysmography (RIP) employs 

sensors to measure changes in the cross-section area of the rib cage and the abdominal 

region. The sensors are electrically stimulated generating a magnetic field by the 

movement occurring during respiration. Alterations in the cross-sectional area change 

the shape of the magnetic field, thus inducing an opposing current that can be measured. 

This measure is gathered to generate the movement signal through an oscillator and 

subsequent frequency demodulation. The generated signal follows a sinusoidal pattern 

representing ascending and descending movements in each one of the monitored zones 

(see Figure 2.8). Advantages of RIP under pneumography impedance include less noise 

sensitivity, better calibration, or the possibility to quantify phase difference between the 

rib cage and the abdominal region, therefore allowing the classification of apneic events 

as obstructive, central or mixed. 
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Figure 2.8. Inductive plethysmography and respiratory movements signals. Thor Res = thoracic 
respiration; Abdo Res = abdominal respiration 

 

2.2.3. Additional contextual signals 

 
Body position 

 

Recording of body position is normally performed through an accelerometer sensor 

attached to patient’s trunk. The continuous signal from the accelerometer is then 

discretized segmenting it in intervals representing the different sleeping positions of the 

patient. Normally four fundamental positions are considered: (i) supine, (ii) prone, (iii) 

left lateral, and (iv) right lateral. However, depending on the desired degree of detail, in 

some occasions intermediate positions can be differentiated. 

 

Lights control 

 

Lights control signal is mainly used in the sleep labs to keep track of periods in 

which the patient is already in bed and is about to sleep. That is, it is used to discard 

intervals in the PSG in which the recording is active but cannot be computed as valid 

sleep periods. These intervals may obey to different reasons such as periods of bad 

calibration of the device, interruptions caused by the presence of the technician in the 

monitoring room or moments in which the patient stands up to go to the bathroom. All 

these non-valid recording periods are marked by setting the lights recording channel to 

OFF.  
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In this respect, lights recording could be considered more as a set of markers or 

annotations than actually a signal itself. However there also exist approximations 

implementing lights recording through an ambient light sensor, normally as a function 

of the present lux, thus resulting in a continuous signal. In these cases a posterior 

processing of the resulting signal can be performed to segment it in intervals of lights 

ON and lights OFF according to predefined threshold values. 

 

Snore sound signal 

  

Recording of ambient sound in PSG recordings comes out because of the high 

snore prevalence in apneic patients, especially in the case of obstructive syndrome, 

where occlusion in the upper airways produces an obstruction in the airflow causing 

snoring. Therefore sound recording –normally by an ambient microphone- can be used 

for the localization of respiratory pauses associated with snoring.  

 

Although recording montages that include the snore sound signal are increasing 

both in ambulatory and overnight hospital monitoring, the use in practice of the snore 

signal as an apneic event detection procedure is rather scant. Main reasons include its 

high sensitivity to noise which decreases its discriminative capabilities10, and its 

limitation to be only applied in cases with an obstructive origin, thus not being valid to 

detect apneic events with a central origin. 

 

Electrocardiogram 

 

ECG signal is usually included among the default recorded signals in the PSG. It 

does not have a direct implication in the detection of apneic events, moreover its 

recording may obey more to historical motivations: the ECG is par excellence the vital 

monitoring signal, with a long tradition, the most studied, with a relative ease of 

acquisition, and good signal-to-noise ratio. On the other hand it can be used as an 

indirect measure reflecting the occurrence of apneic events. Effectively in 1984 

Guilleminault et al. [7] described the cardiac cyclic variation as a pattern reflecting 

                                                 
10 For example it is difficult to distinguish between the sound caused by an apneic event from that 
produced by a patient’s movement 
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fluctuations in the heart rate, repeating during each apneic episode, and characteristic of 

obstructive sleep apnea. Its calculation from the cardiac rhythm is a relatively easy 

procedure, and in this respect heart rate can be used to detect increases during the 

hyperventilatory compensation phase prior to respiration recovering. In any case, and 

although its use for screening purposes is under research because of the nice properties 

of the ECG signal, its incapacity to reflect central events, as well as the fact of being an 

indirect measure of the respiratory pause, prevents in practice the use of ECG alone to 

be enough to obtain a reliable diagnosis of SAHS.   

 

2.3. Structural analysis of sleep 
 

As previously outlined in the introduction, the beginning of modern sleep research 

dates back to the 1930s, and it is closely related to the invention of the 

electroencephalography. In 1937, Loomis et al. [8] were the first to observe that sleep is 

not a homogeneous state during the whole night and they described different stages of 

sleep based on the EEG. In 1953, Aserinsky and Kleitman observed a special state of 

sleep during which rapid, binocularly symmetrical eye movements occur. It was 

denominated the rapid eye movement (REM) sleep. During REM state EEG pattern is 

similar to the one observed during wakefulness, and both respiratory and heart rates are 

increased in contrast to other sleep stages. Their experiments resulted in a relationship 

between REM sleep and dreaming: majority of people awakened from REM sleep 

reported dreams, whereas people awakened during non-REM (NREM) sleep did not 

recall dreams [9]. From the overnight recording of EEG and electrooculogram (EOG), 

Kleitman and Demet specified the cyclic pattern of REM-NREM sleep [10]. Aserinsky 

and Kleitman also divided NREM sleep into four stages: 1 through 4, ranging from the 

lightest sleep in stage 1 to the deepest sleep in stage 4. 

 

Traditionally structural analysis of sleep is carried out from the PSG based on three 

fundamental sources of information which defines it from a physiological point of view: 

EOG, EMG and EEG, which in the literature can also be found abbreviated as EXG. 

The popularization of this set of signals dates back to 1968 when a committee co-

chaired by Rechtschaffen and Kales (R&K) published “A manual of standardized 

terminology, techniques and scoring system for sleep stages of human subjects” [11]. 
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The manual comprises parameters, techniques and wave patterns of polysomnographic 

recordings, and it involved the first standardization on the sleep analysis, lasting almost 

until today. The purpose of these uniform and standard criteria was to increase the 

comparability and replicability of the results from different laboratories.  

 

According to R&K criterion, sleep is basically divided in two great stages: REM 

and NREM. At the same time NREM can be further classified into four stages 1 through 

4 according to the findings of Aserinsky and Kleitman. In the R&K manual default EEG 

derivations are C4/A1 or C3/A2 taking as reference the 10-20 electrode placement 

system. The potentials for the recording of eye movements are measured from 1cm 

above and slightly lateral to the outer canthus of one eye, and 1cm below and lateral to 

the outer canthus of the second eye. The reference electrodes for both eyes are placed on 

the same ear lobe or mastoid. The EMG is recorded beneath the chin (mental, 

submental). R&K manual also recommended an epoch-by-epoch approach to scoring, 

using epochs of 20 or 30 seconds. Table 2.2 summarizes the R&K scoring criteria. 
 

Structural analysis of sleep proposed by R&K was kept unaltered and it was 

considered the only standard method for around 40 years. It was only recently when the 

AASM proposed a modification of the scoring method [5]. The new manual was 

published in 2007 aimed at giving a response to the advancing of sleep science, 

incorporating evolutionary changes as well as newer technical methods and capabilities. 

In general, the rules and specifications for the scoring of sleep retain much of the 

framework of R&K, based on the accumulated validity and reliability of this scoring 

system, with some new definitions and rule modifications, as well as with new rules for 

pediatric visualization. Arousals, movements, respiratory events and cardiac events are 

now included into the standardized scoring system. However, the new AASM manual 

can be considered in many senses more as a specification over the R&K method, rather 

than a new method itself. Perhaps major modification regarding sleep macrostructure 

involves the fusion of the old stages S3 and S4 into a new unique stage N3 representing 

deep sleep. Some other modifications include new recommended derivations for the 

EEG scoring. For example, now frontal (F4-M1), central (C4-M1) and occipital (O2-

M1) derivations with backup electrodes (F3-M2, C3-M2, O1-M2) should be used in 

order to register the EEG activity. Also three electrodes should be placed in order to 

record chin EMG, one above and two below the mandible, choosing between one of the 
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two inferiors to be referenced to the one above, keeping the second as backup electrode. 

Further specification on recording requirements can be found in [5]. 

 

Table 2.2. Summary of Rechtschaffen and Kales sleep staging criteria 

Sleep Stage Scoring Criteria 

Wakefulness 

>50% of page (epoch) consists of alpha (8-13 Hz) 

activity or low voltage, mixed (2-7 Hz) frequency 

activity 

Stage 1 

50% of the epoch consists of relatively low voltage 

mixed (2-7 Hz) activity, and <50% of the epoch 

contains alpha activity. Slow rolling eye 

movements lasting several seconds often seen in 

early stage 1 

Stage 2 

Appearance of sleep spindles and/or K-complexes 

and <20% of the epoch may contain high voltage 

(>75µV, <2 Hz) activity. Sleep spindles and K-

complexes each must last >0.5 seconds 

Stage 3 
20%-50% of the epoch consists of high voltage 

(>75µV), low frequency (<2 Hz activity) 

Stage 4 
>50% of the epoch consists of high voltage (>75 

µV) <2 Hz delta activity 

Stage REM 

Relatively low voltage mixed (2-7 Hz) frequency 

EEG with episodic rapid eye movements and 

absent or reduced chin EMG activity 

 
 

In the following main characteristics of each one of sleep stages are enunciated. For 

its description current classification following AASM manual (W, N1, N2, N3, REM) is 

used: 
 

• Stage W. It represents the waking state, ranging from full alertness through 

early stages of drowsiness. Electrophysiological and psychophysiological 

markers of drowsiness may be present during stage W and may persist into 

stage N1. In stage W, the majority of individuals with eyes closed will 

demonstrate alpha rhythm: trains of sinusoidal 8-13 Hz activity recorded 

over the occipital region which attenuates with eye opening. The EEG 

pattern with eyes open consists of low amplitude activity (chiefly beta and 
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alpha frequencies) without the rhythmicity of alpha rhythm. The EOG 

during wakefulness may demonstrate rapid eye blinks at a frequency of 

about 0.5-2 Hz. As drowsiness develops, the frequency of blinking slows, 

and eye blinks may be replaced by slow eye movements, even in the 

presence of continued alpha rhythm. If the eyes are open, voluntary rapid 

eye movements or reading eye movements may be seen. The chin EMG 

during stage W is of variable amplitude, but is usually higher than during 

sleep stages. Figure 2.9 shows the typical picture of the PSG during 

wakefulness. 

 

 
Figure 2.9. Figure shows an example of wakefulness stage. Eyes are open with movement. EOG channels 
show vertical (in phase) and lateral (out of phase) eye movements. Chin EMG is high. Traces of alpha 
rhythm can be observed in the EEG. Image adapted from SHHS’s manual of operations [12].  

 

• Stage N1. It is the lightest sleep state in which the subject can still perceive 

the majority of stimuli which happen around. Sleep in stage N1 is not 

practically restful at all. In subjects who generate alpha rhythm, N1 stage is 

scored when alpha rhythm is attenuated and replaced by low amplitude, 

mixed (4-7 Hz) frequency activity for more than 50% of the epoch. Other 

hallmarks of N1 sleep stage are the presence of vertex sharp waves and slow 

eye movements. Vertex waves are sharply contoured waves with duration 

<0.5 seconds maximal over the central region and distinguishable from the 

background activity. Slow eye movements are characterized by reasonably 

regular, sinusoidal eye movements with an initial deflection usually lasting 
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>500 msec. During stage N1 the chin EMG is variable but often lower than 

in stage W. An example of PSG recording during N1 is shown in Figure 

2.10. 

 
 

 
Figure 2.10. Example of N1 sleep state. Slow rolling eye movements are seen on the EOGs. High voltage 
vertex sharp waves can be observed intermixed with 2-7 Hz activity in the last part of the epoch. Burst of 
alpha rhythm may still be present in some parts of the epoch. Image adapted from SHHS’s manual of 
operations [12]. 

     
• Stage N2. In this stage a blocking of sensorial inputs at the thalamus level is 

produced. This blocking entails a disconnection from the environment 

which facilitates the sleeping process. Sleep in stage N2 is partially 

recovering which suggest that it is not enough to rest completely. EEG 

activity during N2 is characterized by low amplitude and mixed frequency 

with predominance of theta frequency but also delta activity increases with 

respect to stage N1. However main physiological activity characterizing 

stage N2 comprises the occurrence of transient sleep spindles events and K-

complexes. A sleep spindle is defined as a train of distinct waves with 

frequency 11-16 Hz (mostly commonly 12-14 Hz) with duration ≥0.5 

seconds, usually maximal in amplitude using central derivations. K-

complexes are defined as well-delineated negative sharp waves immediately 

followed by a positive component standing out from the background EEG, 

with duration ≥0.5 seconds, usually maximal in amplitude when recorded 

using frontal derivations. EOG usually shows no eye movement activity 

during stage N2 sleep, but slow eye movements may persists in some 
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subjects. On the other hand, the chin EMG is of variable amplitude, but is 

normally lower than in stage W or N1. Figure 2.11 shows an example of 

typical signal trends during N2.    

 

 
Figure 2.11. Example of N2 sleep state. Background EEG similar to N1 with presence of K-complexes 
(center) and sleep spindles (first third of the epoch). Chin EMG is more relaxed than in N1. Absence of 
eye movements. Image adapted from SHHS’s manual of operations [12]. 

     
 

• Stage N3. Sensorial blocking intensifies in this stage in respect to N2 which 

indicate a deeper sleep. If the subject wakes up in this state he/she will 

probably experiment confusion and disorientation. Sleep in stage N3 is 

essential for a restful sleep. In this state EEG activity is characterized by the 

presence of slow waves with predominance of delta frequency. Slow wave 

activity comprises waves of frequency 0.5-2 Hz and peak-to-peak amplitude 

>75 µV, measured over the frontal regions. Normally stage N3 is scored 

when 20% or more of an epoch consists of slow wave activity, irrespective 

of age. Sleep spindles may persist in stage N3. Eye movements are not 

typically seen during stage N3 and they might reflect the EEG pattern 

(which can also happen in N2). In stage N3, the chin EMG is often lower 

than in stage N2 and sometimes as low as in stage REM. An example of 

PSG recording during N3 can be seen in Figure 2.12. 
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Figure 2.12. Figure shows a typical epoch of N3 state. High amplitude delta waves are present in the EEG 
which reflect in the EOG (do not confuse with eye movements). Chin EMG is even more relaxed than in 
N2. Image adapted from SHHS’s manual of operations [12]. 

     
 

• Stage REM. It is the phase where we typically dream. Cerebral activity in 

REM stage is fast, with low amplitude and mixed frequency with 

predominance of theta activity and possible presence of beta bursts. It 

resembles activity seen in stage N1. A typical transient pattern of EEG 

activity is the presence of sawtooth waves. A sawtooth wave is a train of 

sharply contoured or triangular, often serrated, 2-6 Hz waves maximal in 

amplitude over the central head regions. In some individuals a greater 

amount of alpha activity can be seen in stage REM than in stage N1, 

however alpha frequency in stage REM often is 1-2 Hz slower than during 

wakefulness. In the EOG rapid eye movements are characteristic of this 

phase which can be identified as conjugate, irregular, sharply peaked eye 

movements with an initial deflection usually lasting <500 msec. Transient 

muscle activity is also usual in the EMG which on the other hand normally 

reaches its lowest amplitude levels. The transient muscle activity appears as 

short irregular bursts of EMG activity usually with duration <0.25 seconds 

superimposed on low EMG tone. This activity is maximal in association 

with rapid eye movements. It is interesting in the scope of this thesis to 

comment that because of the absence of muscle tone, the possibility of 

occurrence of an obstruction of the upper airway tract increases during 

REM. Thus it is a period of special relevance for the diagnosis of SAHS. 

Figure 2.13 shows an interval of PSG during REM. 
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Figure 2.13. Figure shows an example of REM stage. Mixed frequency EEG activity, including saw-tooth 
waves (between seven and eight vertical bars). Chin tone is at its lowest level. Saccadic, rapid eye 
movements are apparent on the EOG channels. Image adapted from SHHS’s manual of operations [12]. 

     
 

2.3.1. The normal sleep cycle 

 
From the overnight recording of EEG and EOG, Kleitman and Demet specified the 

cyclic pattern of REM-NREM sleep [10]. During the sleeping process a cyclic 

alternation of the sleep states takes place. In the sleep onset the normal individual 

progressively develops the four phases of NREM and then the first REM block appears. 

This process constitutes the first sleep cycle. One cycle of NREM lasts about 90-100 

minutes and during the night, 4-5 of these cycles occur.  

 

Normal adult sleep oscillates between seven and ten hours. Along this period an 

opposite distribution exists between REM state and phases of slow wave sleep (SWS): 

in the early hours of sleep SWS dominates, whereas REM sleep occurs more often in 

the second part of sleep. On the other hand in the second half of the night the contrary 

takes place: REM sleep is abundant with periods of progressive longer duration, being 

the last one about 25-30 minutes, whereas there is almost an absence of slow waves. 

The portion of REM sleep during night also alters with age: in new-born babies REM 

sleep lasts for 50% of the night, in adults approximately for 20%. 
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Stage N1 concentrates at the beginning of sleep and after awakenings in-between. It 

is a transition stage whose normal latency is about 5 and 25 minutes. In relation with 

stage N2, the later manifests throughout all the night occupying approximately 45% of 

the total time. Deep sleep stages on the other hand, concentrates in the first half and they 

occupy between 15% and 20% of total sleep time. REM sleep cyclically repeats 

throughout the night, approximately every 90 minutes, involving around 20% or 25% of 

the total sleep time in the adult. Finally, within the sleep time the amount of 

wakefulness does not often exceed the 5% in normal conditions and it normally happens 

because of brief awakenings that the person does not even notice about.  

 

On the other hand, it is interesting to comment that normal sleep structure alters 

when a person has slept less than usual in the preceding nights. In these cases sleep does 

not recover in amount but in quality. In this respect what is normally modified with 

respect to the normal sleep pattern is the increasing proportion of both slow wave sleep 

and REM. 

 

The results obtained after visual analysis of the recordings allows the construction 

of a graphical representation of the different states and sleep phases throughout the 

night. This representation receives the name of hypnogram, and it facilitates the study of 

normal and pathologic sleep by giving a general vision of the sleep macrostructure (see 

Figure 2.14). The temporal axis is segmented according to arbitrary units called epochs 

with duration of 30 seconds each. 

  

 
Figure 2.14. Example of R&K hypnogram showing a normal sleep pattern. 
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It is necessary to point out that representation of the sleep structure as previously 

described corresponds with that proposed by R&K-like standards. However although 

such structuring has been widely used as the standard criterion for more than 40 years, it 

has also been criticized many times [13] [14]. One of its main limitations relies on its 

organization based on the scoring of discrete states every 30 seconds. It is well-known 

that biological processes do not usually occur under discrete phenomena, but by means 

of continuous transitions between the different states. Therefore sleep structuring 

according to epoch-based classification rules results somewhat unnatural. Moreover 

characterization of the different sleep states can be especially difficult because of the 

variability present among the different subjects, or because of the high sensitivity of the 

signals to the presence of noise. In addition standard R&K-like rules are not always 

precise at the time of performing the classification in a number of situations, leading to 

subjective interpretations by the clinician. There has been a lot of research under the 

topic of improving the current sleep scoring standards. Further discussion on this topic 

is addressed throughout the subsequent chapters of this doctoral thesis. In fact with 

respect to this problem, the proposed system carries out its own tentative solution (see 

Chapter 5, Hypnogram generation). 

   

2.3.2. Alterations of the normal sleep cycle 

In the previous section normal sleep structure has been described. In this respect by 

normal one may understand the medium age adult subject, with healthy habits and 

without apparent sleep pathologies.  

 

However sleep structure is not a fixed pattern that repeats itself every night in the 

same manner. On the contrary several variations alter the ideal structure depending on a 

number of factors, even among non pathological subjects. A clear example of the 

previous are the variations produced with age. In this respect, it is known for example 

that increasing age carries out associated a reduction in the electroencephalographic 

slow-wave activity (SWA) and in spindle frequency activity. Increasing in the number 

of involuntary awakenings during sleep has been also reported to represent one of the 

hallmarks of age within human sleep alterations. Thus, all the previous imply a general 

decrease in the NREM sleep consolidation [15] [16] [17].  
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It has been discussed a lot about the gender factor as another possible parameter 

influencing sleep structure. Several studies point out to differences both at the 

microstructure [18] and at the macrostructure levels [19]. These differences usually 

account for females having higher proportion of slow wave sleep EEG than males [20]. 

On the other hand there are studies pointing out to the fact that gender differences in the 

sleep structure are rather caused by current limitations in the analysis methods and not 

because of mechanisms inherent to the proper sleep physiology. According to Kemp et 

al, for example, current methods for both visual and computer analysis of sleep -which 

are based on quantification of frequency power and/or amplitude, e.g. using Fourier 

analysis- are influenced by factors unrelated to the sleep process [21]. These non-sleep-

related factors include brain anatomic orientation, thickness of the skull, gender or 

headside. However the same study supports the age to actually be a sleep-related factor.  

 

In any case, differences caused by these purely circumstantial factors can also be 

included within the parameters of normality, i.e. they are not considered as pathological. 

It is in the pathological patient where, on the other hand, the associated alterations have 

important implications. Figure 2.15 shows an example of the typical hypnogram of a 

patient with sleep problems in which there can be observed clear differences with 

respect to the structural pattern described in the previous section. 

 

 
Figure 2.15. Figure shows image of a fragmented hypnogram. The patient experiences continuous 
awakenings that break up the normal sleep structure. 

 

Indeed, the patient presenting pathological alterations in the sleep tends to exhibit a 

high fragmented hypnogram, with constant awakenings preventing a restful sleep to be 

conciliated. In the apneic patient, for example, constant respiratory pauses follow each 

other causing a biological response that increments the alertness level. This situation 

ultimately produces an abnormal incidence of micro-arousals breaking up the normal 

sleep pattern. Ondze et al. concluded that even in mild disordered breathing subjects, 
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sleep architecture is characterized by a high degree of fragmentation, resulting in a 

different time course of SWA and a decreased sleep spindle index when compared to 

controls [22]. 

 

In patients with congestive heart failure it is also common the presence of a form of 

periodic breathing with a crescendo-decrescendo alteration in tidal volume separated by 

periods of apnea. It receives the name of Cheyne-Stokes Respiration (CSR). Patients 

with CSR usually show fragmented sleep with frequent arousals, and nocturnal oxygen 

desaturations leading to poor sleep efficiency [23]. 

 

Alterations in the normal sleep can be associated to psychiatric problems as well. 

There are reports of sleep spindles and K-complexes varying together, for example, in 

the case of dementia where both spindles and K-complexes are reduced. Increase of 

arousal index or abnormal REM activity can also be influenced among patients 

suffering from depression [24]. 

 

Other sources of alteration are related to person’s life style and habits, which can 

influence then sleep cycle even within the same normal subject. For example people 

who work in nocturnal shift or alternate frequently in their work shift show alterations 

in their normal sleep-wake cycles. These modifications have much to do with 

homeostatic and circadian regulation of human sleep. The homeostatic process takes 

control of the amount of sleep and wakefulness [25]. It increases fatigue and sleep 

propensity during wakefulness and it decreases them during sleep. The indicator of 

homeostatic regulation is the slow wave sleep (SWS) which is significantly enhanced 

during the recovery night after sleep deprivation, which in contrast is attenuated by 

daytime naps. The circadian process on the other hand reflects the influence of external 

events which oscillate with the circadian rhythm. It represents the alternation of sleep 

propensity within 24 hours [26]. Therefore circadian rhythm sleep disorders usually 

occur when there is an alteration of the internal timing mechanism or a misalignment 

between sleep and the 24-h social and physical environment. 

 

As it has been shown, alterations of the normal sleep cycle can be due to a number 

of causes. In the next section sleep disorders are introduced which, as it has been 

mentioned already, constitute an important source of alterations in the normal sleep 
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pattern. In fact normal sleep architecture is the exception in the pathological patient. 

The former is an important fact to be taken into account when dealing with the 

construction of an automatic method to characterize the sleep process. Indeed as it will 

be shown throughout the next chapters, the complication at the time of constructing an 

automatic sleep analyzer lies mostly in the complexity and variability of the sleep 

patterns among the different subjects. 

 

2.4. Sleep disorders 
 

A good nocturnal rest is essential to carry out a full and healthy life. The time 

period necessary for a good rest ultimately depends on the particular person; however it 

is situated somewhere in-between seven or ten hours. Even though some people can get 

used to sleep fewer hours than what would be normally necessary, this ends up by 

affecting their judgment, reaction time and many other fundamental functions during 

daytime [27].  
 

Many studies have proved that the lack of sleep is dangerous. Persons with lack of 

sleep have been exposed to driving simulators and manual and to ocular coordination 

test. The results showed performance as bad as –or even worse than- people in an 

inebriation state. Lack of sleep has also been reported to make worse alcohol effects 

[28]. 

 

According to the National Heart Lung and Blood Institute (NHLBI) an estimated 

50-70 million Americans chronically suffer from sleep or circadian disorder [29]. An 

estimated 25-30% of the general adult population and a comparable percentage of 

children and adolescents are affected by decrements in the sleep health, which is a 

proven contributor to disability, morbidity and mortality. Studies carried out in Europe 

conclude that over 30% of the population is affected by sleep problems [30]. Concretely 

Spain is one of the countries more affected by sleep problems. Prevalence is higher than 

30% of the population, however only around 5% of the cases are actually diagnosed and 

receive treatment in the sleep labs [31] [32] [33]. 
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There are more than 70 different sleep disorders [34]. The most common symptom 

is insomnia, and as a consequence, daytime sleepiness. Severity associated to the 

different sleep disorders is uneven and many of them can be satisfactorily controlled 

once they are diagnosed. 

 

Without the aim to be exhaustive some of the most common sleep disorders are 

subsequently outlined. Further details as well as the complete list of officially 

recognized sleep disorders can be found in [34]:  
 

• Insomnia: More than a disorder itself the general term insomnia rather refers to 

a common symptom characterized by the difficulty in falling or staying asleep. 

In fact depending on the subjacent cause several specific types of insomnia can 

be recognized. However in general difficulty to fall asleep is more common 

among the young population, whereas in old persons the difficulty lies in staying 

asleep. Prevalence is usually higher among females. In addition smokers often 

tend to present sleep architecture with fewer deep stages and less REM sleep –

they even may experience awakenings every 3 or 4 hours due to nicotine 

abstinence. For short-term insomnia, good sleep habits have demonstrated to be 

useful to relieve or even to cure sleep deprivation. In severe cases some other –

more experimental- treatments include light therapy and medication.  

 

• Periodic Limb Movement (PLM) Disorder: It is characterized by periodic 

episodes of repetitive and highly stereotyped limb movements that occur during 

sleep. The movements usually occur in the legs and they consist of extension of 

the big toe in combination with partial flexion of the ankle, knee, and sometimes 

hip. Similar movements can occur in the upper limbs. The movements are often 

associated with a partial arousal or awakening; however, the patient is usually 

unaware of the limb movements or the frequent sleep disruption. Individuals 

with restless legs syndrome11 usually have periodic leg movements detected 

during polysomnography monitoring. PLM can accompany narcolepsy and the 

obstructive sleep apnea syndrome. Prevalence is found to be rare in children and 

progresses with advancing age to become a common finding in up to 34% of 

                                                 
11 A different sleep disorder characterized by disagreeable leg sensations that usually occur prior to sleep 
onset and that cause an almost irresistible urge to move the legs 
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patients over age of 60 years. No sex differences have been reported. In PSG 

PLMs can appear immediately with the onset of non-REM N1 sleep, are 

frequent during N2 sleep stage and decrease during deep sleep. PLMs are 

usually absent during REM sleep.  

 
• Narcolepsy: Narcolepsy is a disorder of unknown etiology that is characterized 

by excessive sleepiness that typically is associated with cataplexy and other 

REM-sleep phenomena, such as sleep paralysis and hypnagogic hallucinations. 

The excessive sleepiness of narcolepsy is characterized by repeated episodes of 

naps or lapses into sleep of short duration (usually less than one hour). The 

narcoleptic patient typically sleeps for 10 to 20 minutes and awakens refreshed 

but within the next two to three hours begins to feel sleepy again. The patients 

can often tolerate the sleepiness if, with much effort and attention, they make a 

strong attempt to stay awake. Eventually, however, it is impossible to combat 

the recurrent daily sleepiness. A history of cataplexy is a characteristic and 

unique feature of narcolepsy. It is characterized by sudden loss of muscle tone 

provoked by strong emotion. Narcolepsy can be inherited but sometimes is 

associated with brain damage. Medication such as stimulants and 

antidepressants can help to control the symptoms.  

 
• Night terrors: Also known as sleep terrors, they are characterized by a sudden 

arousal from slow-wave sleep with a piercing scream or cry, accompanied by 

autonomic and behavioral manifestations of intense fear. Sleep terrors manifest 

as a severe autonomic discharge which can include tachycardia, tachypnea, 

flushing of the skin or increased muscle tone. The patient usually sits up in bed, 

is unresponsive to external stimuli, and, if awakened, is confused and 

disoriented. Night terrors are typically observed in children between the ages of 

4 and 12 and tend to resolve spontaneously during adolescence. They are more 

frequent in males than in females. Night terrors begin in deep sleep (N3), usually 

in the first third of the major sleep episode. However, episodes can occur in 

slow-wave sleep at any time. 

 
• Sleep Apnea-Hypopnea Syndrome: It is by far the most common sleep 

disorder and it is characterized by the occurrence of involuntary respiratory 

pauses during sleep. Its diagnosis is the main objective of this doctoral thesis, 
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and due to its relative importance, its characteristics are further discussed in the 

subsequent section.  

 

2.5. The Sleep Apnea-Hypopnea Syndrome (SAHS) 

 

The general name of Sleep Apnea-Hypopnea Syndrome (SAHS) is usually used in 

the literature to refer to a syndrome which is characterized by the repeated occurrence of 

episodes of total or partial reduction in patient’s respiration during the night. As stated 

before, SAHS is by far the most common of the disorders affecting sleep. Several 

studies have been carried around the world during the last years, which estimate that the 

prevalence of SAHS is between the 3% and the 7% of the adult population [35] [36]. In 

Spain it is estimated that between 2 and 3 million people –around the 3% and the 6% of 

the population- suffer from this syndrome, from which only one in every ten is actually 

diagnosed and treated. Besides it is estimated that around the 25% of these patients 

experience a severe or a very severe type of the syndrome [31].  

 

Historical origin of SAHS is attributed to two different European researching 

groups which independently described its symptoms for the first time in 1965: Gastaut 

et al. [37] in France and Jung and Khuhlo [38] in Germany who informed of their 

respective findings about the Pickwickian Syndrome of Sleep Apneas. Such a name was 

given from the term coined by Burwell et al. [39] in 1956, in honor to the character Joe, 

the sleepy boy from The Posthumous Papers of the Pickwick Club by Charles Dickens 

[40]. However it was not until 1973 when Guilleminault et al. [41] formally 

characterized the apneic event12 regarding its duration and type.  

 

Common terminology with respect to SAHS is often inconsistent and confusing, 

including different terms like sleep apnea, obstructive apnea, upper airway apnea, 

hypersomnia sleep apnea syndrome, sleep hypopnea syndrome or obesity 

hypoventilation syndrome, among others. Actually many of the previous terms rather 

refer to more specific denominations of the same syndrome. Definitions used within this 

doctoral manuscript are aimed to be the most widespread, and in this respect, from now 

                                                 
12 Term that will be used to refer the individual occurrence of an episode of respiration reduction  
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on the term SAHS will be used to refer to the disease from a general point of view. 

More specific terms will be used throughout this section when assessing 

subclassification of the different types of SAHS.   

 

Throughout the rest of the chapter SAHS is introduced in more detail, describing 

first its physiopathology and diagnostic procedure. The different types of apneic events 

are then introduced that lead to the classification of SAHS according to the predominant 

type of apneic event in the patient. Interpretation of the apneic events in the context of 

the remaining signals of the PSG is subsequently assessed. Discussion ends up with a 

brief introduction to the different treatment options once SAHS has been diagnosed. 

 

2.5.1. Physiopathology and diagnosis 

 
Patients suffering from sleep apnea present involuntary respiratory pauses that 

repeats throughout the night. Its duration is variable and it depends on the concrete 

patient, however such duration must be of at least 10 seconds and it should not exceed 

the 2 minutes. Typical duration is about 20 to 40 seconds. A distinction is made within 

the apneic event, mainly attending to the associated degree of reduction in the airflow. 

In this respect baseline breathing should be determined which is defined as a period of 

regular breathing with stable oxygen levels [12]. In a broad sense a hypopnea is defined 

as a respiratory pause meeting the duration criteria with an associated reduction around 

30%-50% respect to baseline breathing. The exact definition however highly depends 

on the concrete reference [42]. In the case of an apnea the associated reduction is more 

pronounced and it usually situates about 90% or total breathing cessation. Exact 

definitions by the AASM can be consulted in [5]. In Figure 2.16 a respiratory 

polygraphy is shown where these two types of events can be identified. It can also be 

shown in Figure 2.16 that the pauses are usually accompanied by a drop in the oxygen 

saturation levels, which is proportional to the reduction associated to the causing airflow 

reduction event. The lack of oxygen in arterial blood usually triggers an autonomic 

response increasing the alertness level of the individual which often causes 

neurophysiological awakening [43] [44]. These associated micro-arousals break up the 

normal sleep structure preventing the refreshing rest. As a consequence daytime 
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sleepiness is usual in apneic patients, impacting in their social, working and family life, 

as well as causing neuropsychiatric and cardiorespiratory disorders. 

 

 
Figure 2.16. PSG where apneic events are marked over respiratory signals; Hyp = Hypopnea; Ob.A = 
Obstructive Apnea. Image adapted from SHHS’s manual of operations [12]. 

 
Upon awakening, patients typically feel unrefreshed and they may describe feelings 

of disorientation, grogginess, mental dullness, and incoordination. Severe dryness of the 

mouth is common and often leads the patient to get something to drink during the night 

or upon awakening in the morning. Morning headaches, characteristically dull and 

generalized, are often reported. Excessive sleepiness is one of the most frequently 

symptoms. One of the main problems of this disease is that patients are usually unaware 

of their own symptoms. That is the main reason because most of the patients are 

currently underdiagnosed. Snoring is characteristic in the obstructive patient and it can 

be so loud that it disturbs the sleep of bedpartners or others sleeping in close proximity. 

That is why in many times it may be useful to ask to familiars for symptoms, especially 

to the patient’s partner [34]. 

 

In 1983 Guilleminault et al. [45] described cardiac arrhythmias and behavior 

disorders related to SAHS. This description was followed by several reports searching 

for cardiac arrhythmia, hypertension, cerebrovascular accidents and sudden death as 

sequels of SAHS. Nowadays SAHS is associated with an increasing risk of suffering 

cardiac and cerebral infarct, high arterial pressure, arrhythmias, and in general, several 

dysfunctions of the cardiorespiratory system [46] [47] [48] [49]. 
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Standard diagnostic procedure to determine the presence of SAHS requires of a 

polysomnographic test to be done during the night. This test is normally carried out in 

the sleep units of the medical centers, and it involves the recording of several 

physiological signals during the night, both respiratory and neurophysiological. The 

resulting recording, namely polysomnographic recording or PSG, is then visually 

analyzed offline by the medical specialists. Main parameter used for syndrome 

diagnosis is the Apnea-Hypopnea Index (AHI), which is calculated as the number of 

apneic events (either apnea or hypopnea) present in the PSG per hour of sleep. 

Normally an AHI > 10 is of clinical significance although this number can vary 

according to the followed reference. When no hypopneas are included in the index it is 

called Apnea Index (ApI) and it usually is relevant when ApI > 5. Assessment of AHI 

implies manual revision of the PSG recording, considering all evidences present in the 

respiratory signals and interpreting them according to contextual information of 

remaining PSG signals. This represents a high cost in double sense: (i) in time, for the 

length of a full night polysomnographic record which, if printed all continuously, may 

easily achieve half a kilometer long, and (ii) in effort, for the complexity of the analysis, 

as well as the amount and diversity of signals involved.  

 

The high cost associated to the visual review of the PSG can eventually degenerate 

in a loss in the quality of analysis due to the accumulated tiredness throughout the 

revision task. From the point of view of hospital’s administration, it may also represent 

a waste of personnel resources which could be dedicating their time to other affairs. On 

the other hand there is a saturation of the sleep units, not being able to support analysis 

demand. All the previous carries as a consequence the elevation of the economic costs 

associated to the diagnosis of SAHS. 

 

2.5.2. Apneic event classification 

In the previous section a first classification of the different types of apneic events 

has been performed –i.e. apneas or hypopneas- according to the associated degree of 

reduction in the respiratory airflow. How this first classification should be actually 

accomplished may itself represent a source of controversy. Several definitions regarding 

apnea/hypopnea differentiation can be found in the literature leading to variability in the 

criteria (see Chapter 1, “Background”).  
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Putting aside this discussion, once the apneic event has been detected, it can be 

further classified according to the nature of its underlying physiological cause. Three 

types of apneic events can be differentiated in this respect: obstructive, central and 

mixed. Prevalence of a certain type of event conditions the diagnosis, leading to 

specification of the concrete syndrome of the patient, respectively, Obstructive Sleep 

Apnea-Hypopnea Syndrome (OSAHS), Central Sleep Apnea-Hypopnea Syndrome 

(CSAHS) and Mixed Sleep Apnea-Hypopnea Syndrome (MSAHS). Differences 

between the different types are subsequently addressed. 

 

Obstructive SAHS 

 

In this case origin of the apneic event is found in the partial or the total obstruction 

of the upper airways (UAs). An increase in respiratory effort of the patient can be 

observed as a consequence of the obstruction. In many times such an effort eventually 

causes the unconscious awakening of the patient. 

 

In Ramirez et al. [50] three factors are mentioned which generally determine the 

proper operation of UAs during sleep: its size, activity and neuromuscular coordination. 

Pharynx plays an important role in respiration. In pharynx constricting and dilating 

muscles can be found, the later preventing its collapse during inspiration, together with 

the action of other non-intrinsic muscles exerting similar function. The role of these 

muscles lay in the regulation of existing balance between pharynx opening and the 

negative pressure provoked by the thoracic muscles in the inspiratory act, thus allowing 

permeability of UAs. 

 

It has been observed that during rapid eye movement phases in sleep there is a 

decrease in the dilating muscular activity of the pharynx. In certain circumstances that 

favors the partial or the complete obstruction of UAs. Among them, it can be 

highlighted the presence of benign or malignant tumefaction, palatal or lingual 

hypertrophy, macroglossia or vocal chords dysfunction. However obesity is the most 

often predisposing factor associated with obstructive sleep apnea since overweight 

favors occlusion of UAs. As a consequence of this occlusion snore is predominant 

among obstructive patients [50]. 
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Some studies have suggested that sex or familial history can also influence as 

predisposing factors. In adults the male to female ratio is about 2:1. Usual consuming of 

alcohol and smoking also favors OSHAS [51]. With respect to age factors, obstructive 

sleep apnea can occur at any age, from infancy to old age. However severity tends to 

increase with age, reaching its peak around the ages of 40 or 60 [52]. Women are more 

likely to develop obstructive sleep apnea after menopause. 

 

Detection of obstructive apneic events through the PSG is carried out by examining 

the context of the apneic event, searching for signs of presence of respiratory effort. 

Respiratory effort points out to organism reaction because of obstruction of UAs. As it 

has been previously described, the widest used method to keep track of respiratory 

effort is the recording of thoracic and abdominal respiratory activity by inductive 

plethysmography. In presence of effort the sinusoidal wave representing respectively rib 

cage and abdominal movements should be discernible in these signals. Even though, 

similar reduction should be observed in the amplitude of thoracic-abdominal 

movements with respect to main airflow derivation. In addition, it is important to point 

out that, because of the obstruction, synchronization of thoracic and abdominal 

movements usually presents certain phase lag. Figure 2.17 shows an example of an 

obstructive event in the PSG.  
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Figure 2.17. Example of an obstructive event, presence of respiratory effort can be seen in both thoracic 
and abdominal derivations. 

 

Central SAHS 

 

In this case the respiratory pause has normally a neurological origin which is 

derived from the way the brain controls respiration. The repetitive central sleep apneas 

appear to be related to the oscillations of a physiologic feedback loop from lung to 

brain. Therefore the origin is not of obstructive nature but for a temporal loss of the 

respiratory effort. This circumstance clearly differences central events with respect to 

obstructive events.  

 

Central apneic events general occur in patients affected by severe lesions in the 

inferior part of the brain stem which controls the respiratory function. Therefore it 

generally occurs among seriously diseased people. It may manifest, for example, in 

patients with bulb poliomyelitis, encephalitis of cerebral stem, neurodegenerative 

diseases or cerebrovascular accident [53]. 
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Patients with pure central syndrome, i.e. almost without presence of obstructive or 

mixed events, rarely complain about daytime hypersomnolence or necessity of taking 

naps. On the other hand, its main complain usually includes insomnia and fragmented 

sleep accompanied by continuous awakenings during the night. Depression is another 

common symptom among these patients [34].  

 

Central apnea can be asymptomatic; therefore, its exact prevalence is unknown. 

What is known is that prevalence of this kind of apnea within the population is lesser 

than that of obstructive type (some studies point out to about 12% of total apneic 

patients [54]). This circumstance favors the existence of very few studies with sufficient 

number of central events, which causes knowledge about this disease to be scant. 

Central sleep apnea is observed with increasing frequency in the general population as a 

function of age. In adults, central apneic events appear to be more prevalent in men than 

in women. After menopause, this difference is less apparent [34]. 

 

Detection of central events in the PSG is similarly based on the examination of 

respiratory movements to assess the presence of respiratory effort. In this case both 

derivations thoracic and abdominal show an almost flat signal, evidence of no 

respiratory effort (see Figure 2.18). However sometimes little oscillations may be 

observed due to interference of ECG. 
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Figure 2.18. Example of central event: both thoracic and abdominal excursions show almost complete 
absence of movement during occurrence of the apneic event. 

 

Mixed SAHS 

 

Mixed events appear in the PSG as a combination between a central and an 

obstructive event. Normally the event starts as central and subsequently an obstructive 

respiratory effort is produced (see Figure 2.19). Muscles of UAs, behaving also as 

respiratory muscles, dilate the pharynx during inspiration allowing air to come in. If a 

decrease in their activity occurs as well as in the diaphragm due to a central event, the 

drop in the muscle tone of the dilating muscles of the pharynx may produce the 

occlusion of UAs, and as a consequence, the presence of respiratory effort in the 

resuming of diaphragmatic activity. Mixed events can also be caused artificially by 

external factors, for example, by the use of CPAP. 
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Figure 2.19. Example of mixed events. Events start as central and end with presence of respiratory effort. 
Classification of the events is clearer from the thoracic derivation. 

 

Declaration of mixed SAHS as a unique clinical syndrome per se may generate 

controversy. In fact mixed apnea type is not recognized by standard guidelines [34] as a 

differentiated syndrome category. Mixed events do not usually appear isolated but often 

are accompanied by central and obstructive events. The diagnosis for a patient 

presenting mixed events tends to be either OSAHS, when obstructive events 

predominate, or CSAHS when most of the events are central. Moreover many clinicians 

do not even consider the mixed event detection but classify it as obstructive [12]. On the 

other hand some researchers claim about complex sleep apnea syndrome to be identified 

as a new unique clinical syndrome. Recent studies have been conducted on patients with 

apparent OSAHS that after elimination of obstructive events using CPAP, have 

emerged central apneas or Cheyne-Stokes breathing pattern previously unseen [55]. For 

the aims of this doctoral thesis, mixed SAHS will not be considered a separated 

syndrome category. On the other hand, the designed system will detect mixed events 

leading the clinician the final decision in the diagnosis (for more details, see Chapter 5). 

 

Figure 2.20 shows a summary table where main characteristics of the different 

types of apneic events are displayed.  
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Figure 2.20. Summary of characteristics of the different classes of apneic events 

 

2.5.3. Contextual interpretation of apneic events 

In the previous sections a general description of the domain of sleep studies has 

been given, comprising the most important signals included in the PSG, and describing 

the different types of apneic events related with SAHS. It has also been pointed out that 

localization of these events, together with its quantification and its classification, 

determines the fundamental pieces of information in order to issue a diagnosis and 

assess its severity. As it has been shown up to this point, principal involved signals in 

this task are the so-called pulmonological or respiratory signals, mainly comprising 

airflow, oxygen saturation, and thoracic and abdominal respiratory signals. 

 

However as it has been previously advanced, the solely examination of these 

signals is not enough for a correct syndrome characterization: interpretation of detected 

apneic events in the respiratory signals must be always carried out in the context of the 

remaining signals of the PSG. That comprises the other two previously characterized 

groups of signals: the neurophysiological signals related with the patient’s sleep 

structure, and the remaining contextual signals of the PSG. In the following the most 

important relationships that can be established among them are described, as well as 

how these relationships can influence the correct interpretation of the events detected in 

the respiratory signals. 

 

First, an important source of information for the interpretation of the apneic events 

is given through the hypnogram of the patient. In this context an important rule of 
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interpretation to be taken into account is that, by definition [5], the occurrence of an 

apneic event must occur while the patient is asleep. Therefore airflow reductions 

localized in the periods of stable wakefulness (stage W in the hypnogram) should be 

discarded as being effectively caused by the occurrence of an apneic event. Besides, it is 

important to bear in mind that during wakefulness the monitored patient tends to make 

the normal movements of a waking person. That introduces lots of possible artifact 

sources which may look like respiratory airflow reductions but, logically, they do not 

actually have an apneic origin. Thus, it is evident that if these false positives are not 

discarded, then the final AHI will be considerably increased, and therefore, the presence 

of SAHS in the patient will be overestimated. 

 

Another important context of interpretation derived from the hypnogram of the 

patient, has to do with the consideration of the different sleep stages in which the 

reduction in the airflow takes place. In this respect, it is known that respiratory activity 

becomes more unstable during REM sleep [56]. Additionally, it has to be added that 

muscular relaxation associated to REM stage favors the collapse of the upper airways 

[57], which makes REM sleep to be a period with a special prevalence of apneic events. 

In the case of hypopneas, for example, because of the previous, observation of 

abnormally long periods of hypopnea can be interpreted as normal within periods of 

REM stage [12]. For this reason, which in a different situation could be considered as an 

abnormal behavior of the respiratory signals, it can be normalized by taking into 

account the context of REM occurrence in the hypnogram. There are some other cases, 

such as in transition form a light sleep state to deep sleep, where a slightly reduction in 

the respiratory signal is normally produced. In this case however the reduction should 

be related with the phase transition, not being attributed to occurrence of an apneic 

event. Therefore, in case of being detected, the possible hypopnea should be discarded 

[57]. 

 

Also related with sleep structure, but rather related to a microstructure level, the 

occurrence of EEG arousals constitutes another factor of interest for the detection of 

apneic events. As it has been introduced already, hypoventilation associated with 

occurrence of the apneic event produces in many cases a body response increasing 

alertness level. This is reflected at the level of microstructure by the triggering of a 

transient arousal event in the EEG. In this regard detection of micro-arousal events may 
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result in neurophysiological evidence of the immediately previous occurrence of an 

apneic event in the respiratory signals [44]. Moreover, according with the last review of 

standards for detection and classification of apneic events, the presence of EEG arousal 

may be required in order to confirm the existence of a hypopneic event type [5]. 

 

In addition to the context offered by the neurophysiological signals, there are many 

other factors to be considered that may refine the consideration of an airflow reduction 

as having an actual apneic origin. Among them, body position of the patient during 

sleep is one of the most important. Similarly to the case of hypnogram, several studies 

have been performed that determine that certain positions favor blocking or obstruction 

of UAs. Sleep in supine position stands out in this regard as a position especially 

favoring occurrence of apneic events with an obstructive origin [58] [59]. That is so that 

literature often refers to the term positional OSAHS, in order to quantify the influence 

that body position exerts over syndrome severity. In this regard to make a classification 

of apneic events according to body position, often the different positions are grouped in 

two classes: supine (on the back) and non-supine (any other sleep position), thus 

defining two positional parameters: the apnea-hypopnea index for non-supine positions 

(AHINS), and the apnea-hypopnea index for supine positions (AHIS). Definition of 

positional categories –positional OSAHS and non-positional OSAHS- is often based on 

the relationship between both parameters according to Table 2.3. Hence a patient is 

assigned to the positional group when relationship 5.0≤S

NS

AHI
AHI  is true. On the contrary 

if 0.25.0 ≤< S

NS

AHI
AHI then the patient is assigned to the non-positional group. 

 
Table 2.3. Definition of positional SAHS categories 

5.0≤⇔ S

NS

POSITIONAL AHI
AHIOSAHS  

0.25.0_ ≤<⇔ S

NS

POSITIONALNON AHI
AHIOSAHS  

0.2_ >⇔− S

NS

POSITIONALSUPINENON AHI
AHIOSAHS
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As a result, although AHI for non-supine positions is up to two times higher than 

supine AHI, the patient is still classified in the non-positional group. Only when this 

ration is higher than two, the possibility of a contrary positional effect is considered 

[60].   

 

With regard to body position, on the other hand, it is important to bear in mind that 

when an airflow reduction takes place in the context of a sleep position change, this 

should not be considered as with an apneic origin, but as a consequence of change in the 

position. 

 

Another contextual signal which may help the interpretation of PSG events is the 

recording ambient light during the monitoring. Presence of lights on helps localization 

of recording periods susceptible of being discarded as valid for its scoring. These 

periods often correspond with periods of sensor calibration or moments in which, for 

example, the patient lays reading in bed, watching TV or when he/she has gone to 

bathroom. 

 

The previously mentioned situations may be included within a more general set: the 

set of intervals in the recording with presence of artifacts. The concept of artifact can be 

susceptible of interpretation and it is discussed in posterior sections (see Chapter 5, 

“Handling of artifacts”). In any case artifacts can be enunciated from a general point of 

view, as being those signal intervals influenced by external interferences, hence not 

being entirely caused by the monitored entity. Examples of artifacts include patient 

movements, sweating, presence of electrical or magnetic fields, equipment failure, etc. 

which, ultimately, alter biological measures recorded by the sensor. Localization and 

interpretation of such intervals can therefore contribute to modify the judgment about 

the actual origin of data reflected in the signal. An abrupt drop in desaturation levels 

reaching zero levels for example, should be rather attributed to a sensor failure than to a 

respiratory obstruction –i.e. at least if the patient is still alive.   

 

Another possible source of contextual information are the cardiorespiratory 

indexes, derived from the fact that normally pulse rate decreases during the apneic event 

(brabdycardia) whereas an increase in heart rate is observed near the end of the apnea 

(tachycardia). This increase peaks during the few breaths after the apnea. The cyclic 
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behavior of heart rate has been called cyclical variation of heart rate, and it is considered 

as being specific for the sleep apnea [7]. Estimation of the RR intervals from an ECG 

derivation, or from pulse oximetry, can be therefore performed, and used to calculate 

the heart rate variability (HRV), which may help to the detect the apneic event.  
 

2.5.4. SAHS treatment 

As it has been previously outlined, an apnea index higher or equal to five13 is 

considered relevant in order to diagnose SAHS and to start its treatment. It has been 

proved that ApI > 20 increases associated mortality for the non treated patients, reason 

why patients under these circumstances are considered as a special risk group which 

should be urgently treated [61].  

 

The class of SAHS with more treatment possibilities is that with an obstructive 

origin. In this respect, for example for OSAHS, it has been demonstrated that the 

ambulatory patient may experience considerable improvement by making some changes 

in his/her daily life [62]: 

 

• Several studies have reported about the importance of losing weight as a 

therapeutic measure in cases of OSAHS obese patients [63]. A moderate 

loose (around 10 Kg) resulted in 50% decrease of computed ApI, improving 

daytime sleepiness, results of multiple latency test, and stability of oxygen 

saturation levels in the arterial blood. In cases with drastic weight loose 

(higher than 50 Kg) total abolition has been even reported. Unfortunately 

most of the patients are not able to loose or even to keep their weight, hence 

additional measurements are needed. 
   

• Suppression of alcohol ingestion before going bed is also an important part 

of the therapy. Alcohol contributes to pharynx muscle relaxation, 

precipitating upper airways obstruction. 

 
• It is known that supine position favors appearance of the apneic event with 

respect to lateral positions. Different strategies have been used to prevent 

                                                 
13 Or ten if we consider AHI 
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supine position in OSAHS patients. However, although useful in the short 

term, they do not exhibit clear benefits on the long term. 

 
Treatment of hypertension using medication in patients with OSAHS has not 

presented excessive good results [62]. 

 

CPAP is by far the most common therapy applied for treatment of SAHS. It is 

specially recommended in cases of severe SAHS, and when there have been detected 

life risk situations such as progressive chronic respiratory failure or severe CO2 

retention. CPAP consist of a ventilatory unit which generates and supervises airflow 

toward the patient, hence exerting a positive pressure over UAs. Collapsing airways 

region is therefore pneumatically dilated allowing its opening. 

 

Nasal CPAP has proved to be effective in elimination of both obstructive and 

mixed apneas. In the case of patients with central syndrome, although not so effective, 

CPAP is also applied because normally central events rarely appear isolated. In this 

respect, the improvement is obtained over the suppression of obstructive and mixed 

events. Complains of the patients regarding use of CPAP usually refer to excessive 

airflow pressure, or uncomfortability about attaching mechanism of the mask. Severe 

complications in the therapy with nasal CPAC are extremely rare and they represent 

isolated cases through literature. In the cases of patients with CPAP intolerance because 

of increased resistance of UAs while inspiration, second generation mechanisms such as 

BiPAP can be used, allowing independent adjusting of inspiratory and expiratory 

pressures.  

 

In extreme OSAHS cases, surgery of pharyngeal region may become an alternative 

[64]. However surgery is not always recommended, being therapy with continuous 

positive pressure the most extended treatment in most of the cases. 

 

Central sleep apnea still remains considered as relatively rare syndrome whose 

etiology is not completely defined. Given the range of physiopathologic factors 

contributing to the varied forms of CSAHS, treatment approaches also vary 

considerably [53]. In any case, the ideal treatment should consider the particular context 

of each patient, and ultimately it should be supported by results of the global clinical 
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examination, results of the polysomnographic test, severity of the symptoms, and 

patient’s life habits. 

 

2.6. Summary of this chapter 
 

This chapter carries out the necessary description of the medical context related 

with the Sleep Apnea-Hypopnea Syndrome. The chapter starts by introducing sleep as a 

resting state with a repairing function for the human being, and sleep science as the 

discipline that studies its fundamentals and its biological mechanisms. Sleep science is 

presented as a relatively young discipline and of increasing interest, thus an object of a 

great research activity within the last years.  

 

The so called sleep studies are subsequently presented as the clinic tool for the 

study of sleep and its alterations. The discussion especially focuses on the analysis of 

the PSG as the par excellence clinical test and gold standard for the analysis of sleep. 

Within the mentioned test, a description of the most important signals involved in its 

recording is performed, classifying them into three blocks: (1) signals related with 

patient’s neurophysiological sleep, (2) signals for the analysis of the respiratory 

function, and (3) additional contextual signals. 

 
Once the most important signals involved in the sleep analysis have been described, 

the chapter continues by introducing the fundamental concepts for the analysis of sleep. 

From the neurophysiological perspective, the features that determine the sleep structure 

are described in order to determine the hypnogram. The hypnogram is interpreted as an 

epoch-based chart that allows representation of the sleep structure throughout the night 

to be done segmenting it into a series of sleep phases.  

 

The main diseases that break up the normal sleep cycle are afterwards outlined 

prior to fully center the discussion on the particularities of SAHS. In this regard SAHS 

physiopathology and diagnostic procedure are firstly described. Then a description is 

given of the different types of apneic events occurring in the context of this syndrome 

and their classification. Localization of apneic events involves the analysis of the 

respiratory signals, mainly including airflow, thoracic and abdominal movements, and 
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arterial blood oxygen saturation. The apneic events with a respiratory origin must be 

interpreted in the context of the hypnogram and the rest of the PSG signals. The 

analysis of such relationships is carried out next. 

 
The taxonomy caused by the subclassification of SAHS into more concrete 

subtypes is an important factor in the diagnostic procedure. Such classification is done 

according to the main event type taking place in each case. Classification of SAHS is of 

interest since the nature of each SAHS subclass can have consequences on the posterior 

treatment. An overview regarding SAHS treatment is given in the last part of the 

chapter. 
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3. INTELLIGENT SYSTEMS IN THE DIAGNOSIS 
OF SAHS 

One may define the clinical decision aiding systems as computer-based tools 

providing support for the diagnosis within a certain medical domain. Ultimately, the 

aim is that of helping the professional clinician who is in charge of making the final 

decision on the diagnosis. However, within these systems, two different classes can be 

established with respect to the actual presence of intelligence in the supporting task: 

 

• In one hand, one may group under the common class of indirect supporting 

systems, to those systems that base their support by providing routines to 

help data acquisition and management of the information. These systems 

usually make extensive use of databases in order to organize information, 

allowing its posterior access through the use of querying tools, and 

procedures for automatic report generation. This kind of systems does not 

necessarily entail the use of artificial intelligence. 

 

• On the other hand, it is inside the group of direct supporting systems, where 

artificial intelligence techniques are extensively used to aid the clinician in 

medical decision. These systems are knowledge intensive, and as the basic 

mechanism to support medical decision, they usually try to mimic human’s 

reasoning processes. In some manner, it can be said that within these 

systems, the computer plays in part the role of clinician, being the main 

objective the partial or the full automation of the diagnostic task. 

 
As it was introduced in during the preceding chapters, it is the interest of this 

doctoral thesis to focus in the automatic diagnosis of SAHS. Such a task requires 

emulation of clinician procedures to examine the PSG, and therefore this second group 

of systems is preferred. It is the object of this chapter to introduce these systems, firstly 
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from a general perspective, and afterwards to carry out a specific analysis with regard to 

the current approaches in the domain of SAHS diagnosis. The corresponding start-of-

the-art can be therefore assessed which will lay the foundations for the design of a 

comprehensive system to aid the physician in the diagnosis of SAHS. 

 
3.1. Artificial intelligence and medicine 

 

Even though historical origins of artificial intelligence –from now on AI- could be 

dated back to the Greek ages though mythologies of the first androids, it is only around 

the middle of 20th century when one properly can start talking about AI. 

 

It was in 1943 when three fundamental articles settled the theoretical bases around 

what nowadays is known as Cybernetics. In the first one, by Wierner, Rosenblueth and 

Bigelow, it is suggested how goals and purposes can be conferred to machines [1]. In 

the second one, McCulloch and Pitts prove how any input-output law can be modeled 

by using artificial neural networks [2]. The last one, owned to Craik, proposes the use of 

models in order to allow machines to be used as problem solvers [3]. 

 

However it is necessary to wait until middle of 50s for these bases to abandon the 

framework of theory and speculation. This coincides with an increment in the 

processing capabilities of computers, being by this time capable of accomplishing 

sufficiently complex programming tasks. It was in the meeting celebrated at the 

Darmouth College in 1956 when the term artificial intelligence was coined for the first 

time. The most outstanding researchers of the moment in the field were cited in this 

meeting, such as Samuel, McCarthy, Minsky or Newell. They would pass to history as 

the actual fathers of modern AI. 

 

There have been several definitions of AI through literature, however here the one 

given by Minsky [4] is preferred: the science of allowing machines to carry out things 

that would require intelligence if they were made by a human being. Let us analyze its 

meaning: 
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First of all, as a science, AI tries to develop the vocabulary and the concepts 

necessaries to help understanding, and occasionally mimicking, intelligent behavior. 

That is, it has as its objective the study of intelligent behavior, which on the other hand 

may seem a controversy since, actually, intelligence itself is still a concept not fully 

understood. 

  

In a second place AI can also be interpreted, from an engineering point of view, as 

a set of methods which allow us to acquire knowledge at the high level, formalize it, 

represent it efficiently, and use it to solve problems in concrete application domains. 

And, in this respect, to accomplish more or less complex tasks which might be 

attributed to an intelligent being. It is precisely with regard to the adjective intelligent, 

where AI can be differentiated from the automatic processes for problem solving, which 

are merely based on mass processing and intensive calculation attributable to 

conventional computing systems. In contraposition, the term heuristic, bound to the AI 

program, denotes the capability of guiding the search for the solution to the problem 

similarly as it does the human expert, that is, without the necessity of evaluating all the 

possible states of the problem. In other words, in the view of the combinatory explosion 

of exploring all the possible cases, the success is not based anymore on the mere brute 

force analysis, but on the use of an adequate search strategy according to the actual 

problem definition. 

 
In this context, during a first period of research the interest on AI focused on the 

construction of general purpose mechanisms which attempted to concatenate elementary 

reasoning steps for the constitution of complete solutions. These mechanisms receive 

the name of weak methods, and they are characterized by the fact that domain 

information is very low, or even inexistent. However as the time passed, application 

fields of AI diversified, and more specific areas emerged, for example to implement the 

guiding system of a robot, construction of manufacturing systems, or medical diagnosis. 

These applications represent more complex domains where specific knowledge is 

needed. Nevertheless, it has been precisely in these tasks, where AI has experienced its 

greatest success as an applied science. This kind of AI systems, which make intensive 

use knowledge as its fundamental, have been known as Knowledge Based Systems 

(KBSs).  
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The so-called Expert Systems (ESs) which are aimed at giving solutions in more 

specific environments can be interpreted as specializations of the more general KBSs. 

These systems attempt to act as one more expert in the domain, for which special effort 

is performed over knowledge acquisition and learning tasks. ESs constitute elegant 

solutions in well-known, structured and –up to certain point- restricted domains.  

 

With regard to the application of AI in the field of medicine, the beginnings can be 

dated back to appearance, in 1956, of the first articles mentioning the possibility of 

constructing automatic systems to aid medical decision [5]. Later on, in 1964, the first 

experimental prototypes began to show its utility in the field [6]. The actual successes, 

however, have to wait for the evolution of AI toward systems being able to manage high 

level symbolic knowledge. In this respect, the work of Gorry et al. [7] analyzes the 

reasons that motivated the evolution from the first conventional approximations to the 

new systems managing symbolic knowledge. These systems have been denominated 

Medical Expert Systems (MESs) and are characterized by the use of symbolic reasoning 

techniques, which produce qualitative judgments based on expertise. This expertise is 

coded in the form of heuristic rules.  

 

Even though in the middle of 60s the first MES used in the real practice was 

DENDRAL, the first successful system in the field of medicine, more specifically in the 

diagnosis of infectious blood diseases, was MYCIN [8]. This system, inspired by 

DENDRAL, and developed by Edward Shortliffe at University of Stanford, has leaved 

its footprint on history for several reasons. Firstly, it marked the guidelines with regard 

to separation of the knowledge base from the control structures in expert systems. In 

addition, it faced the handling of uncertainty and imprecision by means of a novel 

reasoning schema, which although ad hoc, it eventually transcended as a referent for the 

developing of future systems because of its simplicity and effectiveness. This schema is 

actually known as the model of certainty factors of Shortliffe and Buchanan [9]. 

 

Decade of 70s was a period of great optimism about the role that MES might 

develop in the medicine field. Other successful systems of this time were for example 

CASNET [10] or the system of Leeds [11]. 
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Nevertheless, during the next three decades, definitive settlement of MESs in the 

clinical context still not completely occurred. The work of Engle [12] analyzes the 

problematic in the creation and in the development of this kind of systems, especially 

applied to the diagnostic task, throughout 30 years of experience. Among the main 

factors causing the rejection of these systems from the part of the clinician, he points 

out to non critical factors such as usability problems or the high consideration the 

clinicians have over their own capacities. In this respect, it is important to remark that, 

even with the use of these systems, the last decision on the diagnostic should ultimately 

remain on the hands of the physician. In other words, it is not about to substitute the 

clinician in the diagnostic procedure, but aiding him/her to perform the task. On the 

other hand Engle also points out to critical factors, as they are, in his opinion, the 

impossibility of developing an adequate database or the problematics for the 

construction of an effective set of decision rules which act within these systems.  

 

In spite of the previous difficulties, nowadays AI in medicine has become a 

growing and attractive discipline. Construction of hybrid systems which integrate not 

only the symbolic perspective, but also connectionism techniques of AI such as artificial 

neural networks or new techniques from the field of machine learning like support 

vector machines or data mining, open new paths in the field of intelligent monitoring 

and clinical decision aiding systems. An overview of the different approaches in this 

regard in carried out in the following section. 

 

3.2. Knowledge and intelligent systems in medicine 

 

Knowledge based systems (KBS) are widely used in the areas where knowledge is 

predominant instead of data, and where heuristic and logic is required in reasoning to 

infer new knowledge. 

 

According with definition of Ackoff [13], data is classified as raw which simply 

exists and has no significance beyond its existence, whereas knowledge is the 

appropriate collection of information which is useful. In the medical field, data and 

knowledge proportionally integrate for detection, diagnosis, interpretation and treatment 
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of diseases. Actual proportion between data and knowledge ultimately depends on the 

problem in hand. 

 

From the point of view of the different computational techniques related to artificial 

intelligence and its application in the medical field, according to the previous 

distinction, Pandeley y Mishra [14] establish the following groups as pertaining to the 

class of directed by knowledge: rule based-reasoning (RBR), case-based reasoning 

(CBR) and model-based reasoning (MBR). On the other hand, data governed methods 

include artificial neural networks (ANNs), genetic algorithms (GAs) or data mining 

(DM). 

 

KBS are general purpose problem solvers that depend on a rich base of knowledge 

to perform difficult tasks. Knowledge is stored in a knowledge base separated from the 

control and inference mechanisms. Blackboard based architecture is a kind of KBS 

which uses a form of opportunistic reasoning [15]. Knowledge in a KBS may be 

represented in several forms, for example, trough frames [16], Bayesian networks [17] 

or production rules [18]. 

 

In rule-based systems knowledge is represented by symbolic rules. The inference in 

the system is performed by a process of chaining through rules recursively, either by 

backward or forward reasoning [19].  

 

Regarding CBR, domain knowledge that is needed to group diagnoses in episodes 

(events) is eminently implicit. It lends itself for reasoning more based on analogy than 

in formulation of domain rules or the construction of a model [20]. Knowledge is stored 

in form of cases, and given the presence of a new problem, this is solved in the basis of 

analogy reusing the past cases. The process within CBR can be divided into five phases: 

case representation, indexing, matching, adaptation and storage [21]. When a new 

problem arrives, the situation is identified by case representation phase. After that, the 

features of the new case are assigned to represent it during the indexing phase, and those 

indexes are then used in the matching phase. According to the similarity of the indexes, 

the matching phase retrieves similar cases to the base case. Adaptation phase takes 

advantage of the solutions for similar cases and some suitable adaptations are applied to 
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solve the new problem. Finally the new case is stored with the base case after the new 

problem and its solution are confirmed by the user via the storage phase. 

 

In MBR knowledge base is represented through a set of models (satisfying 

assignments, examples) of the world rather than a logical formula describing it. When a 

query is presented, reasoning is performed by evaluating the query on these models 

[22]. 

 

All the above KBS has some advantages and disadvantages. In this respect, for 

example, rules of RBRs have the advantage of their ability to express the general 

knowledge, naturalness of representation, modularity and its disposition for providing 

explanations. However disadvantages include bottleneck of knowledge acquisition, 

brittleness of rules, inference efficiency problem, difficulty in maintenance of large rule 

bases, inability of exploiting problem-solving experience, and interpretation problem. 

CBRs have advantage of expressing specialized knowledge, naturalness of 

representation, modularity, easier knowledge acquisition, self updatability and handling 

of unexpected or missing values; however they also suffer from problems such as 

inability to express general knowledge, knowledge acquisition problem, in some cases 

efficiency problem, and inability of explanation [23]. MBRs offer enhanced 

interpretation and explanation power, principled approach that provides the reference 

for model manipulation and reasoning, provision for the generation or treatment of all 

cases within a well-defined framework, and handling of unexpected cases. They face 

however problems such as difficult modeling, lack of model-builders, need for reusable 

libraries and the need for integration with other methods [24]. 

 

Due to the different advantages and disadvantages among RBR, CBR and MBR, in 

the medical domain sometimes it is difficult to solve problems using a unique 

approximation. On the other hand, by the combination of the different approaches for a 

concrete problem one can exploit their advantages and minimize the shortages of the 

individual models. Examples of integration of different KBS approximations can be 

found in [25] and [26], which combine RBR and CBR; [27] and [28] integrate CBR and 

MBR; in [29] combination of RBR, CBR and MBR is carried out. 
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 However, in general, the translation of implicit knowledge into explicit rules –

problem of knowledge acquisition- leads to loss and distortion of information content. 

An alternative to this kind of inference is the use of statistical inference, derived from 

Baye’s theorem, which sets a probabilistic value for each considered output14. Examples 

can be found in [30] and [31]. This type of expert system can be successfully used for 

mutually exclusive diseases and independent symptoms, but it fails when some 

symptoms have the same cause or the patient may suffer from more than one disease. 

To deal with uncertainty and inexact information artificial intelligence techniques such 

as theory of evidence [32], certainty factors model [9] or fuzzy logic [33] are rather 

preferable. More discussion on handling of imprecise information is assessed 

throughout the next section. 

 

On the other hand there exist many cases in which it is very difficult or directly 

impossible to implement human intelligence using KBS15. This is mainly the field in 

which connectionist approximations such as ANNs have been developed. ANNs have 

been widely utilized and accepted methods for the diagnosis in data intensive domains. 

They are special kind of machine learning models that mimic how the biological 

neurons work. Basically they are composed of a set of interconnected nodes. Each 

connection has a weight which is a measure of the relative importance of this 

connection. Different models of ANNs are available throughout the literature depending 

on the architecture that mainly differs on the topology and in the activation functions of 

the processing elements [34]. ANNs possess some advantages over RBR: they present a 

complementary approach with respect to the numeric knowledge representation by the 

network weights, and the adaptive capability of adjusting the weights based on training 

is widely regarded as learning-like. Although ANNs have been successfully used in 

many areas of medicine [35], they also possess some drawbacks. In this respect, 

structure of ANNs is not transparent, approaching behavior of a black-box that simply 

maps the input to the output; additionally, often expert knowledge cannot be used in 

order to initialize net parameters for better initializing and improve convergence. 

 

GAs are efficient methods based on principles of natural selection and genetics in 

which operators of selection, mutation and crossover are applied over a population of 

                                                 
14 For example to each possible disease in the context of medical diagnosis 
15 Again, the bottleneck of knowledge acquisition 
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individuals that represent possible solutions to a problem [36]. Optimization is carried 

out by minimizing a fitness function so that on each iteration –generation- best 

individuals are obtained, thus obtaining better solutions according to the objective 

function. In the field of medicine, GAs have been used mainly for evaluation of features 

in diagnosis and treatment, including many applications such as detection of cancer 

cells in blood and bone marrow [37], three-dimensional radiation therapy treatments 

planning [38], stereotactic radiosurgery and radiotherapy [39], or detection of mass 

lesions on digital mammography [40]. More applications can be found in the review of 

Pandey and Mishra [14]. Combination of ANNs and GAs is used for optimization of 

parameters or topology of ANNs since GAs are global searching methods, thus helping 

to reduce the possibility to obtain suboptimal trainings because of falling into local 

minima [41]. 

 

DM is an emerging area of computational intelligence that offers new theories, 

techniques and tools for the analysis of large datasets [42]. In this respect, rather than a 

concrete technique, DM consists of several approximations within the field of machine 

learning such as Support Vector Machines (SVMs), decision trees, clustering 

techniques, and many other related approaches aimed at performing knowledge 

discovery in datasets. Within the range of DM techniques, feature selection represents a 

subset of special interest in medicine which is devoted to determine the best set of 

descriptors of a dataset that identifies to a certain disease [43]. DM has been used in the 

diagnosis and treatment of a number of diseases in the medical domain including 

diabetes [44], pulmonary [45], Alzheimer [46], heart diseases prediction [47] and 

OSAHS [48] [49]. 

 

As it has been shown, there is a diversity of methods and modeling techniques 

within the field of intelligent systems and its application to medicine. In general, two 

great groups of techniques where distinguished specially suited, respectively, for 

knowledge or data driven domains, each one with their corresponding advantages and 

disadvantages. However, combination of the two great approximations (knowledge and 

data) is also possible leading to what is known as hybrid systems [50]. Indeed, hybrid 

systems can exploit the advantages while minimizing the shortages of each of the 

approximations. The system developed throughout this doctoral thesis, in fact, can be 

classified as pertaining to this category, since it combines approaches from both 
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knowledge and data based approaches. For a detailed description of the concrete 

techniques used within the developed system and their integration, the reader is referred 

to consult the chapters 4 and 5. 

 
3.3. Handling of imprecise information 

 

Development of computational systems in medicine entails several difficulties due 

to uncertainty associated to medical domain. Indeed, it is possible to identify different 

sources of imprecision, which may represent a problem when one has to deal with the 

construction of automatic reasoning systems in environments involving expert 

knowledge in medicine: 

 

• Diversity of criteria for the identification of the same event. Although there 

usually are standards for the identification of the different events and 

relevant patterns in the task of interpretation, many times the involved 

definitions are not precise, sometimes implying a series of variable limits 

around the range of possible values. This kind of variability is usual among 

experts from the same discipline but pertaining to different schools. 

Moreover, even in the case in which the standard criteria followed for the 

interpretation is perfectly defined (experts pertain to the same school) there 

is still variability because of the subjectivity of the human expert, and the 

compiled nature of its knowledge. With the term inter-expert variability, 

one refers to the present variability derived from the discrepancy among 

different experts within the same area of expertise. 

  

• Subjective variability among experts. In this case variability is associated to 

the fact that nature of the human being is not of an exact nature. Application 

of the same knowledge at the time of interpretation is affected by additional 

factors, such as the time the expert has available to carry out such a task, the 

degree of tiredness or the state of humor. One talks about intra-expert 

variability referring to the discrepancy that exists between the expert and 

himself/herself in two different instants of time.  
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• In general, expert reasoning processes do not obey to exact numeric 

calculations, but often make use of generalization, expressions containing 

approximate linguistic terms and ambiguity. Besides, there is a component 

of imprecision which is bound to the compiled character of the expert 

knowledge. Experts usually reason on the basis of identification of patterns, 

trends, and similarity criteria, with respect to previous experience in similar 

cases. They develop subjective rules which hardly can be quantified in exact 

or numeric terms.   

 
• In the domains involving diagnosis over biomedical signals –as in the case 

of SAHS- the variability issue is additionally emphasized by problems 

inherent to the nature of the recording process: imprecision due to limited 

sensitivity of the measuring devices, loss of information in the signal 

digitalization process, as well as the presence of artifacts in the signals such 

as noise, punctual interferences, bad calibration or loss of focus.  

 
In this context, the use of Bayesian techniques for the managing of probabilities 

arises as one of the first successful approximations in order to handle imprecision [51]. 

Based on the famous Theorem of Bayes [52], the main advantage of the Bayesian 

methods lies on the use of the probability theory, to avoid the -up to that time- 

mandatory use of categorical interpretations. However, although the use of the Bayesian 

approximation constituted an authentic revolution in the development of intelligent 

systems, the theoretical basis of the Bayesian perspective carries out some limitations. 

Its main difficulty has to do with the great amount of probabilities that is necessary to 

obtain in order to build a knowledge base. Additionally the correct application of the 

Bayesian model requires mutually exclusive hypotheses and conditionally independent 

evidences. Unfortunately, assumption of conditional independency is rarely valid, 

moreover, in practice, exclusivity and exhaustivity between hypotheses is often false, 

being the most current situation the appearance of concurrent and superimposed 

hypothesis. Another disadvantage is that Bayesian methods do not permit a clear 

explanation of their conclusions to take place, allowing at the same time a single 

evidence to support both, one hypothesis and its negation16.  

                                                 
16 One should take into consideration that according to axioms of probability, given an event A and its 
complementary ¬A, then p(A) = 1- p(¬A) 
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One approximation that tries to solve the problems of the Bayesian method is belief 

networks. A belief network is a special type of influence diagram in which the nodes 

represent random variables. Pearl [53] proved that the use of belief networks allows 

probabilistic knowledge bases to be constructed without the necessity to impose 

assumptions on the conditional independence. These networks also guarantee that the 

evidence favoring to a certain hypothesis does not necessarily imply the partial support 

of its negation, and that consistent explanations can be obtained by tracking of the 

different beliefs until the initial points of the network. When the network is constructed 

in form of non directed graph, these networks receive the name of Markov networks. In 

these cases the association between the variables is considered to be a form of 

correlation instead of a form of causality. 

 

In parallel to the Bayesian perspective, several other models came out allowing 

handling of uncertainty. The model of certainty factors created by Shortliffe and 

Buchanan [9] is a model designed ad hoc for the construction of the expert system 

MYCIN. This model deals with the problem of uncertainty and imprecise knowledge 

defining two independent measures: the measure of increasing belief (MIB) and the 

measure of increasing disbelief (MID). The first one is a dynamic index representing 

the increment of confidence in one hypothesis given certain evidence. The second is 

another index representing the increasing amount of disbelief. The two measures can be 

formally summarized by means of the so-called certainty factor (CF). The CF is 

conceptually different to the respective conditional probabilities, because corresponding 

certainty factors to hypotheses H and ¬H are not complementary to the unit, but 

opposite between them. In this respect, the idea is that if the support provided by the 

evidence with respect to certain hypothesis is low, accordingly, the corresponding 

support regarding the negation of the same hypothesis due to the same evidence should 

not be high. 

 

Theory of evidence of Dempster and Shaffer [32] represents a more formal skeleton 

to conveniently handle both the inexact knowledge and the lack of knowledge. The 

theory works over a set of hypotheses, without the necessity to distribute the confidence 

contributed by the individual evidences among the individual hypotheses of the 

considered set, which receives the name of universal set. When several evidences exist, 
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supporting different groups of contradictory hypotheses, the model normalizes the 

corresponding results. For that purpose an index is defined –degree of conflict- that 

quantifies the amount of conflict between beliefs assigned to the different subsets of 

hypothesis. The uncertainty problem is managed using the concept of confidence 

interval, which is constructed using another two measures, credibility and plausibility, 

respectively, indicating the minimum and the maximum confidence that can be 

deposited on a concrete set of hypotheses, in a certain instant of time. The confidence 

interval dynamically evolves with the appearance of new evidences. A particularly 

interesting result of the evidential theory is that it contains the model of Shortliffe and 

Buchanan in the cases in which that model works well, but also in the cases where 

model of certainty factors present difficulties. 

 

On the other hand, from the knowledge perspective, decision making implies the 

creation of a list with all the possible strategies and actions, the evaluation of the result 

of the application of each one, and the selection of the most adequate solution for the 

concrete case. However, in medicine the previous procedure does not happen in that 

manner. Physicians almost always work with possibilities rather than with certainties, 

possibilities over which it is though more in qualitative than in quantitative terms. In 

this regard expert knowledge often refers to expressions on the style of: certain 

combinations of symptoms usually point out to a certain disease, or it is known that 

sometimes a concrete drug causes certain secondary effect but it rarely causes another. 

Always a physician takes a decision, he/she makes a choice between a number of 

alternatives which are obscured by such qualifications. Hence, it emerges the necessity 

of designing systems being able to manage such inexact information also from a 

qualitative point of view, and allow it to be taken into account in the medical decision 

making.  

 

In this context, the fuzzy logic paradigm [54] seems to be more appropriated, 

because of its capabilities to represent imprecise concepts, as well as allowing 

propagation of  uncertainty in the reasoning processes through the use of fuzzy rules. 

Fuzzy logic has been used already for the resolution of great variety of problems, and it 

has been proved successfully in different domains including control of industrial 

processes, and decision systems in general. Systems based in fuzzy handling of 

information have also shown their applicability managing imprecision and uncertainty 
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to aid the physician in the clinical decision making [55] [56]. The paradigm of fuzzy 

logic will be used in the construction of the proposed system for the diagnosis of SAHS. 

In this respect, further detailed description of its fundamentals and underlying 

mechanisms is performed throughout Chapter 4.  

 
3.4. State-of-the-art in the diagnosis of SAHS 

 

Although compared with other automatic detection systems, computer approaches 

for the analysis of sleep structure and diagnosis of its diseases may not had had a great 

historical demand in medicine, this trend has radically changed over the last years. That 

is in great part because of the emerging importance that today is given to a good 

nocturnal rest, as a fundamental factor for the developing of a full and satisfactory 

daytime life. As a consequence, in the last years an increasing demand has been 

produced in the diagnosis of SAHS and its associated treatment. Accordingly, the 

number of performed PSGs has also increased, which in the lack of a simpler and more 

precise test, still today continues to be the only standard procedure for the diagnosis of 

SAHS. On the other hand, as it was commented already, visual analysis of the PSG is a 

costly, tedious and long duration procedure. This situation impacts on the daily working 

life of the specialists in the field, since they have to devote great part of their working 

time to the analysis. With this precedent, it emerges a great interest in the development 

of automatic systems for diagnosis of SAHS. 

 

Nowadays, the increasing interest in sleep medicine demands for an important 

technology support, which due to the complexity of data analysis, it necessarily 

involves the introduction of automatic analysis systems for aiding in the decision 

making. However, the developed systems up to this time still present certain drawbacks 

which have caused their use in practice yet to be low and very restricted (see Chapter 

one, “Background”). These two factors (increasing demands in the analysis and lacks of 

the current developments) favor that research lines in the development of these systems 

continue today to be an open area of interest.  
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In the following an analysis of the current state-of-the-art in the field of automatic 

diagnosis of SAHS is performed. The analysis takes into consideration both commercial 

as well as more academic -or research- related realizations. 

 

It is necessary to clarify that in this chapter only those systems or approaches 

exclusively centered in the diagnosis of SAHS are considered. Relevant references with 

regard to related PSG analysis tasks –but not exclusively associated to SAHS diagnosis- 

such as, for example, classification of sleep stages of the patient, or the detection of 

transient events in the EEG, are discussed in the corresponding sections of Chapter five. 

3.4.1. Commercial systems 

Even though as it was previously outlined (see Chapter 1, “Background”) current 

automatic SAHS diagnostic systems still present some shortages, from the commercial 

point of view, there has been some time since sleep labs already have systems allowing 

the digitalization of the PSG signals. For the clinician, the simple fact of being able to 

carry out an offline analysis over the digitalized signals yet represents an important 

evolution. Advantages include not only the amount of saved paper17, but many others 

such as the possibility to visualize the signals over different time and amplitude scales, 

easiness in the annotation of the detected events, or the possibility of incorporating 

supporting tools that automate, at least in part, the diagnostic task. 

 

In the following some of the most relevant commercial systems are introduced, 

together with a brief description of their capabilities. It does not attempt to be much less 

an exhaustive enumeration, but to present a summary of the current possibilities of these 

systems. 

 

  

                                                 
17 In the old paper recordings, a PSG could easily achieve around one kilometer length  
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PolySmith, Neurotronics, Nihon Kohden, USA 

PolySmith is software for recording and reviewing sleep data files. Over thirty 

years of research has been engineered into the PolySmith automated analysis [57] [58]. 

Automatic analysis capabilities include automated analysis of sleep stage, respiratory 

events, desaturations, leg movements and microarousals. The software allows users to 

customize preferences including colors, workspaces, filters, and scan settings. In its last 

version (PolySmith 8.0 released December 2010) it includes new features to support 

paperless patient questionnaires and new interfaces to integrate portable sleep devices. 

 

No validation studies were able to be found regarding the reliability of its automatic 

analysis capabilities in the general population. The only found reference is available 

through its website [59] and refers to validation study carried out over 11 pediatric 

records with ages from 4 to 14. After removal of artifacts and assessing of good signal 

quality, validation was performed including sleep stage, respiratory event, microarousal 

and O2 desaturation agreement. According to published results, agreement indexes 

regarding respiratory, microarousal and desaturation are comparable to human scorers. 

For the automated sleep stage, reported agreement of PolySmith with human scorers for 

pediatric records is 77.1%. 

 

Somnolyzer 24x7, Royal Philips Electronics, The Netherlands 

Software Somnolyzer 24x7 is the resulting software produced by the The Siesta 

Group initiative [60] [61] which has recently been acquired by Philips. Software is 

integrated into an e-Health solution so that involved centers can upload the resulting 

digital recording to perform a centralized automatic analysis, receiving back the 

resulting scored PSG and the corresponding report. According to information available 

through Philips related website [62] Somnolyzer 24x7 provides with automated analysis 

of sleep staging and detection of EEG arousal, respiratory events and leg movements. 

Description of the system and validation results according to reliability in automatic 

sleep scoring capabilities regarding R&K criteria can be found in [63]. Posterior 

adaptation and validation regarding the new AASM criteria was published in [64]. 

Human quality control over the automatic classification is provided in order to ensure 

correctness of the results. In this respect sleep experts receive different quality check 

data, and on the basis of this information, the human expert has to decide whether or 

not, and if so to which extent, the automatic scoring has to be edited and correctly 
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visually. According to published validation only around 4% of epochs were changed by 

experts during quality control, resulting in a general 82% agreement (Cohen’s kappa: 

0.76) for the AASM validation study. 

 

Not many information has been found regarding analysis of respiratory signals and 

SAHS diagnosis. However according to [65], the system has been tested in a database 

of 51 subjects to assesss agreement in resulting AHI in comparison to human scorers. 

The results show correlation index of r = 0.92 during the first night, and r = 0.94 during 

the second night. 

 

Aura Lab‐based PSG, Grass Technologies, USA 

Equipment Aura of company Grass Technologies allows the technician the 

realization of polysomnographic tests either ambulatory or hospital attended. It includes 

the possibility of performing a wireless recording of up to 33 channels (15 AC 

referential, 10 respiratory plus an additional module with 8 DC channels). Workflows 

allow data analysis to be performed automatically, manually or by means of a 

combination of the two previous. Thus once the recording has been finalized, one can 

opt to carry out an automatic analysis or not. The automatic analysis is also flexible and 

it can comprise respiratory signals, neurophysiological signals or both. The software 

also permits manual annotation of events and modification of the automatic analysis 

results [66]. 

 

Within Aura PSG series the add-on FASS, which is in charge of the construction of 

the sleep map in two phases. In the first one the hypnogram is determined as a function 

of the presence or absence of events obtained from EEG, EOG and EMG signals. In a 

second phase, FASS applies a series of procedures with the objective of correcting the 

hypnogram, as for example, to check for improbable phase changes or the application of 

the 3-minutes rule to enter in stage 2. On the other hand the module Twin provides 

capabilities for the detection of apneas and hypopneas, analysis of flow curves, 

capnography, and pulse transit time (PPT) and detection of microarousals and K-

complexes. As far as the author knows the software lacks from explanation capabilities 

although it possess a powerful report generator which allows data customization. No 

validation studies were able to be found regarding its automatic analysis capabilities. 
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Somnostar 4100, Sensormedics Corporation, USA 

It records signals of EEG, EOG, EMG, ECG, digital pulse oximetry, thoracic and 

abdominal movements, body position and oro-nasal flow. The system is complemented 

with the Chephalo Pro amplifier, also from the same company, for signal acquisition. 

With Somnostar software one can review either part of or the full night study. It is quite 

interactive and it possesses widely configurable interfaces, favoring event’s annotation, 

sleep staging and signal visualization under several views. The software also provides 

with automatic analysis of respiratory function and classification of sleep stages from 

the EEG, however validation studies have shown low concordance between results of 

the automatic analysis and those of expert’s manual revision, specially in the detection 

of hypopnea events and in the classification of sleep stages [67]. Similarly to the most 

of the systems, for the EOG and EEG, Somnostar works in both frequency and 

amplitude domains. For the respiratory signals respiratory baseline is established by 

calculating average respiration during the two previous minutes to the occurrence of the 

apneic event. Classification of apneic events and construction of the hypnogram are 

based on default established –fixed- parameters: in the case of apneas detection, for 

example, a true positive is considered if there is a reduction of 80% with respect to the 

calculated baseline. 

 

SomtéPSG, Compumedics Limited, Australia 

SomtéPSG is presented as a family of products of the company Compumedics 

which is offered in three versions: laboratory, portable and ambulatory. Among all 

versions the product is subdivided into a hardware part in charge of signal acquisition, 

and software (ProFusion PSG) which allows both the manual assisted as well as 

automatic analysis, to be performed over the recording [68]. 

 

The set of supported signals includes main ones: EEG, EOG, EMG, ECG, airflow, 

snore, thoracic and abdominal movements, arterial oximetry, pulse and body position. 

ProFusionPSG possess capabilities for automatic analysis of sleep structure and 

detection of apneic events. Nevertheless both approaches are based on the application of 

“aseptic” protocols, which implies lack of contextual data interpretation or patient 

dependent handling of information. On the other hand, it has not been possible to find 

any published study on the validation of these capabilities, thus it is difficult to perform 

a detailed analysis of the product. It is noteworthy the possibility of establishing a 
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bluetooh connection from the signal acquisition device to the data capturing 

workstation. In this manner, there is a gain in autonomy and comfort, because it avoids 

the wired connection of the patient to the computer, favoring his/her relaxation and 

helping obtaining a more reliable recording. 

 

Polyman, Bob Kemp and Marco Roessen, The Netherlands 

Polyman is not strictly speaking commercial software for the automatic analysis of 

sleep but an EDF/EDF+ viewer and sleep scoring supporting program that was created 

by Marco Roessen and Bob Kemp [69]. However it includes several aiding tools that 

can perform automatic analysis of some sleep scoring subtasks. It is available in two 

versions, free and licensed.  

 

Basic free version enables the display of any number of EDF(+) files from one 

subject and allows the possibility of different configurations for visual analysis of the 

digital recording. Each signal can be freely filtered, adjusted and automatically 

analyzed. Automatic analysis of frequency content (FFT), threshold crossings, neuronal 

feedback analysis [70], and rectified EMG can be applied to the signals on the screen. It 

also supports manual scoring of sleep stages, apneas, leg movements and arousals 

according to standard R&K or AASM rules. The scorings are kept in standard EDF+ 

files and a report of standardized sleep quality parameters is produced. Licensed version 

includes additional modules to automatic scoring of limb movements, respiration, body 

position, pulse rate and oxygen saturation. 

 

Table 3.1 summarizes characteristics of the analyzed commercial systems 

according to their main advantages and disadvantages. 
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Table 3.1. Summary of advantages and disadvantages of the analyzed commercial systems 

PolySmith 

Advantages  Performs automatic sleep staging 

 Performs detection and classification of apneic events 

 Presentation of results in both text and graphics formats 

Disadvantages  Poor sleep states classification 

 No interrelation between hypnogram and apneic events 

Somnolyzer 24x7 

Advantages  Performs automatic sleep staging 

 Performs detection and classification of apneic events 

 Integrated into an e-Health solution 

 Provides quality control 

Disadvantages  No interrelation between hypnogram and apneic events 

 Use of fixed protocols in order to classify the detected events 

Aura Lab‐based PSG 

Advantages  Performs automatic sleep staging 

 Performs detection and classification of apneic events 

 Powerful report generator with customizable data 

Disadvantages  No interrelation between hypnogram and apneic events 

 Use of fixed protocols in order to classify the detected events 

 No explanation capabilities 

Somnostar 4100 

Advantages  Performs automatic sleep staging 

 Performs detection and classification of apneic events 

 Presentation of results in both text and graphics formats 

 Possesses intuitive interfaces and several configurations 

Disadvantages  Poor sleep states classification 

 No interrelation between hypnogram and apneic events 

Polyman 

Advantages  Flexible and fully customizable 

 Performs detection of apneic events 

 Analysis of EEG neuro-feedback loop 

 Includes a free version 

Disadvantages  It does not perform classification of sleep stages 

 

  



3. Intelligent systems in the diagnosis of SAHS 
 

97 
 

Besides the previously mentioned devices, it is important to point out to the 

growing interest toward the design of portable devices for the in-home monitoring. 

Although these devices do not offer the full functionality of the previous ones -aimed at 

performing the complete PSG- they save the patient the nuisance of the displacement to 

the hospital in order to carry out the polysomnographic test. Indeed the patient can be 

monitored in his/her own domicile, from which a screening diagnosis can be issued 

serving as first alert or control. In addition, the cost of in-home studies is much lesser 

than those carried out at the hospital, even if a supporting technician is required to 

attend [71]. Many studies have shown that the patient gains in sleep quality during 

ambulatory PSG recording. Actually from a general point of view, some studies have 

reported reliable results for the screening function [72] [73].  

 

Some examples of this kind of devices are analyzed subsequently: 

 

Apnea Risk Evaluation System (ARES), Advanced Brain Monitoring, Inc, 

USA 

The product is composed of a hardware part that carries out the signal acquisition, 

ARES Unicoder, and software performing analysis of the recorded information, ARES 

Insight software. ARES Unicoder is a device aimed at the monitoring of the ambulatory 

patient. The device records the following signals by means of a casing attached to the 

patient’s head: oxygen saturation, pulse, snore (through a microphone), body and head 

position (using accelerometers) [74]. Last versions also include measuring of airflow by 

nasal cannula connected to a pressure transducer [75]. The system is able to record up to 

14 hours of sleep which can be structured in two different parts (two nights, 7 hours 

each). 

 

From one recording, ARES Insight software analyzes the signals to compute an 

indirect measure of the number of apneic events per hour of sleep or Respiratory 

Disturbance Index (RDI). Calculation of this measure is based on the analysis of the 

oxygen saturation signal searching for desaturation and resaturation patterns to obtain 

an estimation of the number of apneic events. Incorporation of airflow measure also 

allows computation of AHI based on the airflow channel. Measures comprising pulse, 

snore and sleep position serve as contextual information to discard invalid 

desaturations, and also to detect awakenings that confirm the presence of the apneic 
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event. These awakenings should not be confused with EEG arousals since the software 

does not provide any analysis capabilities over the neurophysiological signals.  

 

Additionally, the system complements with a questionnaire. The software also 

allows the physician the visual evaluation of the recorded respiratory signals and the 

revision of the recording in order to add additional events or to discard false positives. 

Validation results compared against attended in-lab PSG monitoring with manual 

scoring showed Intraclass Correlation Coefficient (ICC) of 0.8, with mean difference of 

4.1 events per hour, when using a 4% desaturation threshold. The study was performed 

on a set of 86 patients and the resulting sensitivity/specificity when applying AHI cut-

off of 10 was 0.86/0.82. Quality control was previously performed excluding non-valid 

PSG periods from the analysis time [74]. 

 
MicroDigitrapper‐S, Synetics Medical, UK 

The system consist of a portable device that measures patient’s body position, 

intensity of snore, oronasal airflow, thoracic and abdominal efforts, heart rate and 

oxygen blood saturation. It does not provide of any mechanism to record signals related 

to sleep structure such as EEG, EOG and EMG; therefore analysis limits to the 

respiratory function which can influence analysis results of MicroDigitrapper-S. 

 

Analysis results of MicroDigitrapper-S return a positive case when the patient 

suffers from SAHOS. No distinction is done between apneas or hypopneas, neither to 

classify events as obstructive, central or mixed. All detected events are classified as 

obstructive apnea; therefore it should only be used in patients with an obstructive apneic 

origin.  

 

An experiment carried out on 30 patients at the sleep disorders center of Milan San 

Raffaele Hospital, verified that while index of severity associated to SAHS remained 

relatively low (AHI over 10) validation results on estimation of final AHI showed good 

precision (sensitivity of 1). However as long as severity indexes increase (AHI > 40) the 

associated precision decreased considerably (sensitivity 0.55), hence recommending the 

manual revision of the results [76]. 
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Somnocheck, Weinmann GmbH, Germany 

Sommocheck is a device addressing portable monitoring of patients in risk of 

SAHOS. It consists of a device attached to the chest of the patient that records the 

signals of airflow (thermistor), snore (microphone), oxygen saturation and pulse (finger 

sensor) and body position (using an integrated sensor in the main unit). Software 

provided with the unit allows the physician visualization and automatic analysis of the 

recorded signals. The analysis counts the number of desaturations and apneic events 

(apneas and hypopneas) and calculates basic parameters of Oxygen Desaturation Index 

(ODI), Apnea Index (ApI), Hypopnea Index (HI) and Apnea-Hypopnea Index (AHI), 

respectively, as the number of desaturations, apneas, hypopneas and apneas/hypopneas 

per hour of sleep. Validation results in [77] showed 83% sensitivity and 87% specificity 

for AHI ≥ 5 cut-off for in-lab attended PSG. Sensitivity decreased until 61% while 

100% was obtained using AHI ≥ 40 cut-off. In a second, more recent study [78], values 

of sensitivity/specificity obtained for unattended conditions were respectively 96% and 

65% (AHI ≥ 5) and 80% and 92% (AHI ≥ 30). According to information available 

through related website [79], capabilities for recording of thoracoabdominal movements 

and classification of apneic events as obstructive or centrals are also provided. 

 

WristOx 3100, Nonin Medical Inc., USA 

The product consists of two parts: a pulse oximeter hardware (Nonin WristOx 

3100) and software for the analysis of the recorded SaO2 signal (nVision 5.0). SaO2 

signal can be recorded at several sampling frequencies (1 Hz, 0.5 Hz y 0.25 Hz). 

Analysis algorithms then count the number of desaturations to compute the amount of 

apneic occurrences per hour of sleep. 

 

The goal of this product is to detect or to discard the presence of SAHS in the 

patient by means of counting the number of desaturations. In this respect the software 

focus on the establishment of a first preliminary diagnosis regarding SAHS prevalence; 

hence the results may be used to proceed with preventive treatment. However, the 

former does not exempt the patient from eventually carrying out the complete PSG test 

at the hospital in order to establish the correct diagnosis and the corresponding 

treatment. On a study carried out over 154 patients comparison of adjusted O2 

desaturation index (ADI) was performed using several AHI cut-off values. Obtained 
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sensitivity/specificity percentages were 89%/94% for AHI≥5 (ADI2>19.3), 88%/94% 

for AHI≥10 (ADI3>10.5), and 88%/90% for AHI≥15 (ADI3>13.4) [80]. 

 

Subsequently Table 3.2 summarizes main characteristics of the portable systems 

previously analyzed. 

 
Table 3.2. Summary of advantages and disadvantages of the analyzed portable systems 

Apnea Risk Evaluation System (ARES) 

Advantages  Performs automatic detection of apneic events 

 Presentation of results in both text and graphics formats 

Disadvantages  It does not include analysis of neurophysiological activity 

 It does not record respiratory effort 

 It does not perform construction of the hypnogram 

MicroDigitrapper‐S 

Advantages  Automatic detection of apneic events 

 Automatic calibration and verification of the signals 

 Configurable analyses 

Disadvantages  No distinction between different event types 

 Only accounts for obstructive events 

 It does not include analysis of neurophysiological activity 

 Precision decays with increased OSAHS severity 

Somnocheck 

Advantages  Performs detection and classification of apneic events 

 It allows manual override of automatic analysis 

Disadvantages  It does not include analysis of neurophysiological activity 

 It does not perform construction of the hypnogram 

WristOx 3100 

Advantages  Only finger pulse oximeter sensor is required 

 Automatic detection of desaturations 

Disadvantages  No distinction between different event types 

 It does not perform classification of apneic events 

 It does not include analysis of neurophysiological activity 

 High sensitivity to presence of artifacts 
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3.4.2. Academic systems 

In the previous section some of the current commercial PSG systems used at the 

sleep labs and at the diagnostic centers have been presented. These systems support the 

clinician during the SAHS diagnostic procedure. Nowadays it is difficult to find a center 

with a certain relevance that continues to perform the purely manual revision of data on 

paper. In this respect, at least with regard to information managing tasks, this kind of 

systems are already quite implanted. Nevertheless, with regard to their data analysis 

capabilities, such systems still continue to present several shortages, and in most of the 

cases, the manual method is yet used to perform the analysis of the PSG. There exists 

therefore an intense interest in the development and in the continuous improvement of 

the analysis capabilities of these systems for aiding in the diagnosis of SAHS. Besides, 

additional research lines come up attempting to simplify the standard analysis method 

or to make it more comfortable for the patient. 

 

In this context, there can be found the approximations here referred as non 

commercial or academic approximations, which in general, are aimed at overcoming the 

drawbacks of current commercial systems, either augmenting their features or 

innovating in the use of new diagnostic techniques. The name was given since normally 

these approximations follow a more researching or academic philosophy, and in this 

respect, it is rare the research line that pursues the construction of a complete system 

from the scratch. Instead, at this level, one usually finds attempts of innovation focusing 

on specific tasks within the general diagnostic approach or in the development of 

alternative methods aimed at substituting –normally by simplifying- the current PSG 

analysis procedure. On the other hand, it is also true that the dividing line between 

commercial and academic systems is certainly fuzzy in many senses. In fact the research 

line, when successful, uses to be either a predecessor of the commercial product, or be 

promoted by continuous improvement processes of products that already exist in the 

market. 

 

Subsequently several approximations included under the academic label are 

analyzed in contraposition to the preceding commercial systems. Ultimately, the 

objective of the discussion is to reflect current research state on the different methods 

and techniques developed for the computer assisted diagnosis of SAHS. In order to 
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structure the different approximations the discussion is divided into three subsections: 

SAHS estimation systems, apneic events detection and classification systems, and 

comprehensive diagnostic systems.  

 

SAHS estimation systems 

 

Due to the complexity and the elevated cost of the polysomnographic test, one of 

the main research lines is focused toward reducing the necessity of the patient to 

conduct such a test. For that purpose the resulting approximations are normally based in 

the substitution of undergoing PSG by means of the calculation of a supplementary 

measure based on historical or statistical risk factors. The indirect derived measure is 

then interpreted as preliminary evaluation of the –a priori- possibility that the patient 

may suffer from SAHS.  

 

In this respect, predicting models based on questionnaires identify several physical 

and clinical features as there can be age, gender, body mass index (BMI) or presence of 

snore, indicative of a high risk of SAHS. For example yet in the beginnings of nineties 

there are studies intending the previous, however without reaching considerable good 

results [81] [82]. The study of Crocker et al. [83] considers as independent variables 

respiratory pauses, hypertension, BMI and age, and shows by means of a statistical 

model, how the necessity to carry out sleep studies can be reduced by one third. More 

contemporary Rodsutti et al. [84] continuing with this approach, attempt to find a 

decision rule to prioritize the waiting list to carry out the polysomnography at the 

Newcastle Sleep Disorders Center in Australia. In his work Rodsutti uses a regression 

model that considers age, gender, BMI, snore and presence of respiratory pauses, and it 

classifies the output as low, moderate or high regarding the risk of suffering from 

SAHS. Although the approach shows good results, it is reprehensible the fact that the 

study only considered patients already suspected of SAHS. In this respect, the work of 

Sharma et al. [85] results more interesting, since in the selection for the study patients 

with evident symptoms of OSAHS were previously rejected. In this work in order to 

predict OSAHS the model considers the variables gender, BMI, snore index, and 

obstruction factor. Another interesting work for SAHS prediction is the one of Sweere 

et al. [86], which is based on statistical models constructed over parameters gathered on 

patient’s questionnaires previous to effectuation of the polysomnographic test.  
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 ANNs based approximations for the same prediction task can be found in the 

works of Kirby et al. [87] and de El-Sohl et al. [88]. In the last one, besides, the first 

validation of this kind of RNA-based systems is performed. A more recent 

approximation is the one by Victor-Marcos et al. [89], which makes use of radial basis 

networks in order to classify the patients as OSAS or not OSAS using non-linear 

analysis of the oxygen saturation signal. This approximation differs from the rest, 

because instead of using statistical data, it implies the monitoring of the patient’s SaO2 

signal. In the same line of proposing a minimal monitoring requirement, Caseiro et al. 

[90] propose the application of the Hilbert-Huang decomposition over 5 minutes of 

oronasal airway pressure signal. Results gathered from 41 patients show a sensitivity of 

80% for a specificity of 95%. It has to be underlined, however, that approximations 

based on ANNs experience the problem of absence of any explanation capability of 

their results since these systems behave as black-boxes. 

 

A recent work by Eiseman et al. attempts to classify individuals as patients (AHI > 

5) or normals using features including demographics, polysomnogram and 

electrocardiogram and testing several classifiers: k-nearest neighbor, naïve Bayes, and 

support vector machines. The support vector machine performed similarly to naïve 

Bayes for predicting sleep apnea class. Reported sensitivity/specificity results are in the 

range 57.5-59%/73.7-74.5% using clinical features, and 39-43.4%/82.7-83.5% using 

spectrographic features [91]. 

 

Apneic events detection and classification systems 

 

This category includes those approximations pursuing the localization of the 

individual event in patient’s biosignals, instead of, as in the previous group, seeking for 

a global statistical characterization of the recording. In this respect, whereas estimative 

approaches are oriented toward obtaining a supplementary measure assessing the 

necessity of the patient to undergo nocturnal polysomnography, these ones rather focus 

on the direct localization, measurement and classification of the actual apneic events. 

Calculation of AHI/RDI is then directly derived by counting the number of individual 

detected events and dividing the result by the number of hours of sleep/processed 

recording. 
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One of the first works in this field is the one by West and Kryger [92], who 

designed a microcomputer for the monitoring of respiratory variables including expired 

carbon dioxide, respiratory inductance plethysmography, oxygen saturation and heart 

rate. The related work of Smith along the decade of 70s and 80s can also be considered 

within the group of the precursors [93]. 

  

A little bit later George et al. [94] developed a simple strategy that uses the oxygen 

saturation signal as a trigger for the localization of apneic events. In the said work, and 

only by means of the analysis of the saturation signal, the authors attempt to localize 

and even to quantify the duration of the apneic events. The fundamental hypothesis is 

that each apneic event induces a drop in the arterial blood oxygen concentration levels. 

Validation carried out using 9 polysomnographic recordings corresponding to 6 

different OSAHS patients showed good sensitivity results. Main limitation of the 

method lies in the incapacity to distinguish between apneas and hypopneas, nor to carry 

out a classification of the event as obstructive, central or mixed. Besides, the method 

does not result very useful in the cases where the apneic event does not cause a 

significant drop in the saturation levels.  

 

Using a similar hypothesis, the work of Rauscher et al. develops a system based on 

the searching of rapid resaturations [95]. In this case the assumption is that after the 

apneic event that causes a respiratory insufficiency, it follows an episode of 

compensatory hyperventilation inducing a fast increase of oxygen saturation levels. To 

test the validity of the method, the authors performed an experiment comparing the 

results of their algorithm with respect to a method based on the detection of 

desaturations. Although through their experiments they obtain better results, it is also 

evident that no resaturation can be produced without a previous desaturation, thus the 

relative improvement is, at least, matter of opinion. In any case, precisely because of 

their similarity, detection of apneic events via localization of resaturations presents the 

same drawbacks than the work of George et al. 

 

In general, more reliable systems for detection of SAHS often carry out an analysis 

of the respiratory signals including a subset of the following: airflow, oxygen saturation 

and/or respiratory movements. In the work of Taha et al. analysis starts with the 

detection of desaturation and then the sum of RIP is analyzed to detect periods of no 
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breathing [96]. The work of Salmi et al. [97] develops a system that measures 

respiratory movements indirectly by using a static charge sensitive bed. A recent and 

interesting work is the one by A. Otero et al. in which fuzzy detection methods are used 

for marking apneic intervals in the respiratory signals. The method additionally 

facilitates knowledge acquisition by using an interface to model the membership 

functions, thus allowing system parameterization [98]. Other approximations that use 

fuzzy logic based decision algorithms for the analysis of the respiratory signals can be 

found in Al-Ashmouny et al. [99] and in Pittman et al. [100]. 

 

In Nakano et al. [101] a different strategy is followed by attempting the detection 

by means of analysis of the tracheal sound. For that purpose the manual computed index 

(AHI) is compared with respect to a measure of the number of falls per hour produced 

in the time series of the spectral power of the tracheal sound. Although both measures 

show good correlation, the obtained values cannot be considered enough to consider it a 

precise approach. Estimation of AHI through snore has been carried out in other studies 

such as in [102], which also combines the analysis of the oxygen saturation signal. In 

practice, the snore signal used as the only method to detect apneic events, does not 

receive a great support by clinicians, mainly because of its high sensitivity to noise that 

limits its discriminative capabilities. However snore sound can be used as approximate 

evidence, for example, in the development of portable systems for ambulatory 

screening. 

 

It has been widely discussed about the validity of electrocardiogram (ECG) as a 

method to detect the apneic event. In 1984 Guilleminault et al. [103] described the 

cyclic heart rate variability (HRV) as a fluctuating pattern in the cardiac rhythm, 

characteristic of obstructive sleep apnea, which repeats during each apneic episode. 

Since then this variation in the heart rate has been studied as potential detector of apneic 

events [104] [105]. With the motivation of exploring this approximation, in the year 

2000 a competition was celebrated sponsored by Computers in Cardiology18 (CINC) 

and PhysioNet19. The contest was aimed at evaluating the validity of the use of the ECG 

signal in order to detect apneic events. The event consisted of a dual challenge: 

                                                 
18 International anual conference celebrated since 1974 
19 Database of biomedical signals supported by the US National Institutes of Health's National Center for 
Research Resources (NIH NCRR) 
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• To classify a total of 30 recordings determining which of them pertained to 

OSAHS patients and which do not 

 

• To annotate in one minute intervals, the presence of the apneic event or not 

 

To accomplish the tasks only the use of the ECG signal was allowed. The first task 

was successfully solved, whereas in the second one the best algorithms obtained a 

precision around 90%. However it has to be considered that detection is done only on a 

one minute time scale which could to lead to imprecise results and subestimation of the 

actual number of apneic events. Besides, from the perspective of a comprehensive 

approach, the ECG approximation is far from being considered valid enough, mainly 

because of its deficiency at the time of classifying the different types of causing events. 

Other approximations based on the use of ECG for apneic event detection are under 

research, as in Figliola et al. [106], Maier and Dickhaus [107], or in Amir et al. [108], 

however until now, obtained results can endorse the use of ECG only as an approximate 

diagnostic technique. 
 

More centered in the classification task of the apneic event according to the nature 

of its origin –obstructive, central or mixed- there can be found the first approximations 

based on artificial neural networks in [109] [110]. In these cases a backpropagation 

method was employed, however, the classification rates did not exceed 60%. In [111] a 

radial basis function neural network is applied for an integrated detection-classification 

task obtaining an accuracy of 64±3.4% for adults and 62.6±3.4% for infants. More 

recently it can be found the work of O. Fontenla-Romero et al. [112] developed at the 

LIDIA lab of University of A Coruña. In the said work the detection of apneic events is 

performed from the airflow signal, and once detected, a wavelet processing is applied to 

the corresponding intervals of thoracic effort signal. An artificial neural network is then 

in charge of finally classifying the interval as central, obstructive or mixed. The work of 

Tagluk et al. [113] is also based on the use of wavelets but with worse classification 

results with respect to obstructive and mixed events. Finally, also within the LIDIA 

group it has been recently developed a method that combines machine learning 

techniques and expert knowledge that improves previous results of Fontenla-Romero et 

al. on the classification task [114]. 
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Comprehensive diagnostic systems 

 

With the term comprehensive diagnostic systems we here refer to those systems that 

group –as a minimum- classification of sleep stages and analysis of the respiratory 

signals, in order to offer an integrated and complete diagnosis. In this respect, in the line 

as an expert would do, approximations under this category involve the analysis of the 

polysomnographic signals in the context of a comprehensive sleep analysis. This 

characteristic differentiates the comprehensive diagnostic systems from the previous 

commented approaches which, instead, specialized in the accomplishment of specific 

subtasks, such as the detection of a concrete type of event, or the classification of the 

detected events. The ones referenced in this subsection are, therefore, more oriented 

toward the realization of the full diagnosis, and ultimately, they are aimed at 

constituting a global solution in the form of clinical decision supporting systems in the 

context of SAHS. 

 

Within this group the system ISAS [115] can be cited as one of the precursors. 

Developed at INSEC20 this integrated system for sleep patient monitoring system has 

been validated at hospital Santo Antonio de Oporto. Its architecture includes the 

following modules: 

 

• HIDRA [116] is the responsible for the detection and parameterization of 

activity related with the sleep function (EEG, EOG, EMG). 

• SAIAS [117] is the module responsible for the detection of apneas 

occurring throughout sleep. It also carries out their classification as 

obstructive or central. 

• OSCAR determines the oxygen saturation in blood and the cardiac 

frequency from data supplied by a commercial oximeter. 

• TIMEMAKER is an element that works as a clock in order to 

synchronize information coming from the different detecting devices. 

 

The output information provided by the system at the end of the sleep exam 

consists of a set of tables with statistical information of the different episodes and types 
                                                 
20 Instituto de Engenharia de Sistemas e Computadores, Departamento de Electrónica e 
Telecomunicacoes de Aveiro, Portugal 
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of apneas suffered by the patient. It also provides graphics of the oxygen saturation and 

the cardiac rhythm signal, and a table with the duration of the different cerebral 

activities exhibited by the patient throughout the night. 

 

One of the main problems presented by this approximation refers to the 

classification of sleep stages. Since the system does not achieve an adequate 

discrimination capability between EMG and EOG, it is not able to correctly classify 

REM and wakefulness. Another difficulty arises with regard to the sleep staging 

supervision strategy –performed in a minute by minute basis. In this case it often 

identifies the same sleep phase, repetitively and with short duration intervals, when 

however it is actually the same phase that maintains along a much longer period. 

 

However, the most important problem with ISAS resides in the apneas detection 

method, which is carried out by using fixed thresholds applied over the respiratory 

function signals. In this respect, it is known that throughout sleep amplitude of signals 

varies, and therefore it is necessary a recalibration of the thresholds to perform a correct 

apnea detection. The fundamental problem in this regard is the system incapability to 

determine if an amplitude reduction was caused by an apneic event or due to a transition 

in the sleep state. That is, classification of sleep stages and detection and classification 

of apneic events are performed independently without any kind of interaction between 

the two processes.  

 

 Another interesting development is the system PSG-EXPERT [118], which is 

presented as the particularization for the case of SAHS of a more general integrated 

environment for the development of diagnostic expert systems. From an application 

point of view, PSG-EXPERT is defined as an auxiliary diagnosis system for sleep 

disorders based on polysomnographic data. Such data are extracted through a series of 

processings and are inserted in a database organized according to the following 

categories: clinical history, hypnogram data, sleep parameters, spectral data, EEG time 

related activity and non EEG activity. The system is developed using an extension of 

CLIPS [119] and it supports handling of imprecise information through the use of the 

model of certainty factors [9]. It also includes a validation module which allows testing 

of concrete patient’s cases by comparing the results of the analysis with those of 

medical experts. Main limitation of the system is due to its general purpose philosophy, 
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thus it just operates at the symbolic level. In other words, processing and segmentation 

of the raw signal has to be performed separately and the resulting data has to be inserted 

in the database afterwards. In addition, despite of its built-in validation module, no 

validation results have been reported assessing the actual performance of the system.  

 

The design and implementation of an intelligent diagnostic system for SAHS aimed 

at solving the problems of their preceding systems, as well as improving their 

capabilities, was the object of the doctoral thesis of Elena Mª Hernández Pereira, 

member of the LIDIA group. The result was the system MIDAS [120] which later 

evolved into the SAMOA system [121] [122]. SAMOA, unlike other approaches, 

integrates both artificial intelligence techniques for the development of reasoning 

processes over well-known rules, and classical techniques of signal processing and 

software engineering, for the development of an integrated product which, in addition, it 

is able to provide explanation of its results. The previous converts SAMOA in a 

valuable tool to aid the physician in the diagnosis decision in the context of SAHS. 

 

Architecture of the system is displayed in Figure 3.1. 
 

 
Figure 3.1.  Modular representation of the SAMOA system 
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Subsequently a summary of the related functionality of its main modules is given: 

  

• Polysomnographic prescription module: Its objective is the evaluation of 

the convenience of submitting the patient to carry out the polysomnographic 

test. It acts as a screening tool in order to optimize hospital resources, 

avoiding realization of PSG in the unnecessary cases and/or to prioritize the 

cases where the patient is suspected to suffer from SAHS. For that purpose a 

questionnaire is filled by the patient and a numerical index indicating the 

convenience to carrying out the test is obtained using a model of certainty 

factors.  
     

• Characterization of respiratory function: Its objective is the analysis of the 

respiratory signals, which in SAMOA comprises airflow, oxygen saturation 

and presence of thoracic-abdominal effort. Eventually, detected apneic 

intervals, together with the information provided by the remaining modules, 

are confirmed as apneas or hypopneas, or on the contrary, are discarded as 

apneic events. 
     

• Construction of the hypnogram: Analysis of the neurophysiological 

information for the construction of the sequence of sleep phases of the 

patient. The resulting hypnogram is segmented according to discrete time 

units –epochs- of 30 seconds following guidelines of R&K protocol. 
 

• Diagnostic module: It is the responsible to integrate the results obtained 

from the three previously described tasks. In this respect data is interpreted 

taking into account contextual information and the final diagnosis is issued. 

Final report includes a summary of all detected events together with their 

classification, as well as a diagnostic evaluation of the presence of SAHS 

and its severity in the patient.  

 
The philosophy of the SAMOA system established the initial point that inspired the 

current doctoral thesis. SAMOA approximation constitutes a comprehensive approach 

to the problem of SAHS diagnosis; it covers evaluation of the adequacy of carrying out 

the polysomnographic test, automatic analysis of the resulting recording, and diagnosis 

of SAHS integrating both respiratory and cerebral activity. It also incorporates 
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capabilities to explain the obtained results. On the other hand, although the system in 

general offered good results, there were several points susceptible to be improved. 

 

One of these points is related with the procedure to detect apneic events in the 

respiratory signals. In this respect SAMOA base the detection in the identification of 

intervals in the airflow signal (using thermistor) which present amplitude reductions. 

For that purpose each respiratory cycle is classified according some predefined 

thresholds in one of the following labels: normal (N), slightly reduced (SR), clearly 

reduced (CR) and totally reduced (TR). On the basis of the corresponding labeling (N, 

SR, CR, TR), the possible event is then considered in a different form on the subsequent 

analysis. The previous procedure presents several drawbacks: 

 

• It uses fixed protocols in order to classify the respiratory cycles, therefore it 

cannot account for variability in data due to imprecision and inter-subject 

differences. Analysis at a glance of the human eye does not have the same 

precision as the computer analysis at the time of evaluating the signal 

amplitude. On the contrary, as it has been commented already, subjectivity 

in the human evaluation often causes discrepancy in the measurements 

between clinicians and system. 
 

• SAMOA only searches for amplitude reductions in the airflow signal. 

However, the solely analysis of airflow with a thermistor may be 

insufficient, especially in the presence of artifacts or for the detection of 

hypopnea events [123]. A better characterization of the respiratory pauses 

can be done by considering evidences from additional respiratory signals 

such as the thoracic and abdominal movements. 
 

• The detection algorithm itself excessively depends on the value established 

for the normal respiration. In cases with subsequent repeatedly occurrences 

of airflow reductions –common in severe SAHS patients, establishment of a 

normal amplitude reference value represents a difficulty. In this cases 

SAMOA does not correctly detect all the respiratory cycles and, 

consequently, it fails to detect all the apneic event occurrences. 
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Aside from the processing of the respiratory signals, another aspect that required of 

special improvement in SAMOA refers to its capabilities regarding the analysis of the 

neurophysiological activity. Indeed, besides counting with mechanisms for generation 

of the hypnogram, the system does not actually carry out an analysis of the EEG 

activity. Instead, numerical values corresponding to the different rhythms and transitory 

components are fed into the system by previous spectral analysis carried out by 

supplementary systems [124]. Besides, SAMOA does not provide of any procedure for 

the detection transient microstructure events such as sleep spindles, K-complexes or 

EEG arousals. 

 

Table 3.3 summarizes the different academic approximations analyzed in this 

section. 
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Table 3.3. Summary of analyzed academic approximations 

Academic approximations 

SAHS estimation 

systems 

 Based on questionnaires 

Viner et al. [81], Flemons et al. [82], Crocer et al. [83], Rodsutti et al. [84], 

Sharma et al. [85], Sweere et al. [86] 

 Based on ANNs 

Kirby et al. [87], El-Solh et al. [88], Victor-Marcos et al. [89] 

 Based on Hilbert-Huang decomposition 

Caseiro et al. [90] 

 Based on machine learning classifiers 

Eiseman et al. [91] 

Apneic events 

detection and 

classification systems 

 

 Detection of AHI 

West and Kryger [92], Smith [57] 

 Analysis of saturation signal 

George et al. [94], Rauscher et al. [95] 

 Analysis of saturation signal and RIP sum 

Taha et al. [96] 

 Analysis of respiratory movements by static charged bed 

Salmi et al. [97] 

 Fuzzy analysis of respiratory signals 

Otero et al. [98], Al-Ashmouny et al. [99], Pittman et al. [100] 

 Analysis of tracheal sound 

Nakano et al. [101], Yadollahi et al. [102] 

 ECG-based 

Penzel et al. [104], Mendez et al. [105], Figliola et al. [106], Maier and 

Dickhaus [107], Amir et al. [108] 

 Classification of apneic events using ANNs 

Cabian et al. [110] [109], Zemen et al. [111], Fontenla-Romero et al. [112] 

 Classification of apneic events using wavelets 

Tagluk et al. [113], Peteiro-Barral et al. [114]  

Comprehensive 

diagnostic systems 

ISAS [115] [117] [116] 

PSG-EXPERT [118] 

MIDAS [120] 

SAMOA [121] [122] 

 

  



Diagnosis of the Sleep Apnea-Hypopnea Syndrome: a comprehensive approach through a system to 
support medical decision 
 

114 
 

3.5. Critical analysis 

 

Throughout the previous sections an analysis of the state-of-the-art has been 

performed with respect to the automatic systems for the diagnosis of SAHS. As it has 

been shown the referred context constitutes a field with a certain maturity –despite the 

relatively youth of the sleep science- and where the number of approximations is 

significant. In fact the interest in the development of SAHS diagnostic systems is 

increasing, and in the last times, such systems are yet bypassing the researching 

frontiers, up to the point that currently several solutions of a certain consideration are 

already present in the market. However acceptation of these systems is still low, as well 

as it is their real use in practice by the medical specialists. Hence, it can be said that 

implantation of SAHS diagnostic systems in the clinical routine is still in a preliminary 

stage.  

 

Complexity of the analysis task is one of the main responsible for the slow transfer 

of these systems into the clinical domain. Such complexity causes that many of the 

currently available tools limit to the realization of partial tasks within the diagnostic 

process. There exist systems providing capabilities for the analysis of a certain subset of 

polysomnographic signals, for example, regarding the respiratory signals, but present 

deficiencies from the neurophysiological point of view, and vice versa. Other shortages 

found among the different analyzed approaches include lack of explanation of their 

results, or excessive sensitivity to the presence of artifacts and to the variability of the 

signals among the different patients.  

 

Devices destined for ambulatory monitoring, or techniques based on questionnaires 

for estimation of SAHS, are principally aimed at holding a screening function. They 

simplify in a great extent the required input signals with respect to the clinical PSG, at 

the prize of limiting validity of their diagnoses. Among such systems many times the 

screening task reduces to a dichotomous response (yes/no) that does not provide any 

gradation with respect to the associated severity of the disease. Others, on the other 

hand, attempt to include an estimative prediction of the severity. In both cases they may 

be used to make a first selection, allowing prioritization of waiting lists in order to carry 

out hospital PSG. In this regard screening systems save the patient the inconvenience of 
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moving to the hospital in order to carry out the polysomnographic tests, permitting a 

first diagnosis to be performed at home which can be used as alert or control21. In any 

case the use of portable ambulatory devices for preliminary screening does not exempt 

the patient from an attended in-hospital PSG for a reliable diagnosis. 

 

In spite of all, a common critic to the majority of the current systems (whether they 

are portable, based on clinical record information or in the case of comprehensive 

approaches) is that they might be defined as fixed or protocolar, in the sense that they 

accomplish their tasks by means of a set of algorithms that excessively depend on the 

appropriate setting of critical values and thresholds. Within the analysis processes of the 

previously analyzed approximations, it is common that decisions are carried out through 

a discriminant analysis, partitioning the possible outputs into disjoint sets (is or not is). 

Then, by checking if the value associated to a certain feature is, or not, included within 

the valid range of pre-established values, categorical classification of the event is 

performed. In this regard, for example it can be assessed if the related airflow reduction 

is in the range 50%-80% with respect to normal respiration, and then it can be classified 

as a clear reduction. However, the former leads to non-realistic situations such as that 

an associated reduction of 49% may not mean anything at all, whereas a reduction of 

51% rather has clinical relevance. It can also be considered the case of the patient 

suffering from continuous oxygen desaturations at 3%, which lacks of significance 

when the minimum desaturation percentage required to score an event is set to 4%. The 

former certainly differs from the situation of a healthy patient that maintains stable 

saturation levels during the whole night. However the use of all or nothing frontiers 

causes that by using the former criteria both situations to be equally significant for the 

final diagnosis.  

 

On the other hand, it has been previously enunciated in this chapter that reasoning 

processes in the medical domain contain a high component of imprecision. This 

imprecision comes from different sources which are summarized in Table 3.4. 

 
  

                                                 
21 For example in chronic patients already diagnosed 
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Table 3.4. Sources of imprecision in clinical contexts 

- Data variability 

- Presence of noise 

- Data dependence and redundancy 

- Limited sensitivity of the transducer 

- Loss of information due to analog-to-digital process 

- Interference 

- Expert’s intra and inter variability 

- Expert’s subjectivity 

- Reasoning on the basis of qualitative terms and similarity criteria 

 

In this respect, a common drawback of current available systems is that analysis 

processes are handled from an excessively quantitative perspective, not accounting for 

methods to handle imprecision. In addition, it is usual within the clinical language, to 

express opinions in terms of possibilities rather than in terms of certainties, possibilities 

over which it is thought more in qualitative than in quantitative terms. Clinicians often 

express their knowledge using sentences of the type, for example, that a certain 

combinations of symptoms usually point out to a particular disease, or that a drug is 

known to sometimes cause a particular side effect but it rarely causes another. Indeed 

when a physician takes a decision, he/she chooses from several alternatives which 

almost always are affected by such possibility expressions. Given this context, it 

emerges the necessity of constructing systems being able to handle this inexact 

information, to carry out decision making in medicine from a qualitative point of view. 

Sleep medicine is not an exception. 

 

Let us consider the following example in which we have two definitions A and B of 

a same type of event. Let us say that definition A identifies the event when there is a 

reduction in the saturation levels of 3% and a reduction in the airflow amplitude of 

30%. On the other hand, based on the criteria of B, which sustains a more strict 

definition, the event must present a descent in the saturation levels of at least a 3% and 

an airflow reduction of at least of 50%. Now, during the signal recording it is identified 

a possible event that the computer determines –with high precision- that it has 

associated a decrease in the saturation levels of 3.5%, and that its related airflow 

reduction is of 40%. According to definition A this event would be identified as a true 

positive because it fulfills all the definition requirements. On the other hand, according 
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to the definition B, the event could not be classified like that, although it satisfies the 

requirements regarding the associated desaturation levels. This is because its associated 

airflow is slightly less than the 50%. Thus, this situation according to strictly 

quantitative criteria of A and B would generate a discrepancy between both definitions. 

However, it seems logical to think that in approximate terms the identified pattern looks 

similar to both the definition A as well as the definition B. Therefore it can be delivered 

a similarity judgment –perhaps more appropriately- so that the system might determine 

that the identified pattern is similar to A but, at the same time, that it is similar to B, 

although without matching the exact definition in none of the cases. Moreover, it may 

be possible to quantify such a deviation, for example, it could be said that the pattern is 

quite similar to A, but at the same time it is somewhat similar to B. 

 

In addition, if the sensor handling the registration of the airflow has an associated 

sensitivity of the ±10% -it would be a very bad sensor in this case- then the associated 

uncertainty increases, and this situation should be taken into account. In this manner it 

seems more logical to admit that the recorded event might also match the definition B, 

because its discrepancy regarding the airflow requirements can be caused by the 

presence of noise in the data. And after all, it is not true that the human being tends to 

make its judgments on the basis of approximation and similarity criteria?  

 

Most of the current available systems fail in dealing with situations of this kind, as 

it has been mentioned, because of their inappropriate handling of data imprecision and 

their excessive dependence on fixed thresholds and categorical classifications. 

Implementation of capabilities to handle approximate reasoning, in this respect, should 

help to deal with these limitations. For this reason, in the context of the development of 

the proposed solution to aid in the diagnosis of SAHS, besides a comprehensive 

philosophy, the implementation of analysis mechanisms to manage data imprecision 

will also have an important weight. Specifically, for such a task, the fuzzy logic 

paradigm is used because of its nice properties that include, among others, the 

possibility to model imprecision both using quantitative and qualitative terms, as well as 

allowing propagation of uncertainty in the reasoning processes through the use of fuzzy 

rules. The next chapter introduces fuzzy systems and the modeling framework that 

allows implementation of mechanisms for an effective handling of imprecision within 

the developed system. 
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3.6. Summary of this chapter 

 

This chapter is an introduction to the intelligent systems for clinical decision 

support. The chapter starts by making a description, from a historical perspective, to the 

origins of artificial intelligence and its relationship with the field of medicine. This 

relationship emerged together with the advent of Expert Systems along the decade of 

the 60s and it continued evolving until today. This evolution has lead the step from the 

strongly knowledge based systems to the use, nowadays, of the so-called hybrid 

systems. Besides knowledge modeling and symbolic processing mechanisms, hybrid 

systems make use of the latest computational intelligence techniques, including artificial 

neural networks, genetic algorithms or fuzzy analysis of information. An overview of 

the main approaches and techniques used by modern AI systems in the field of medicine 

is given in this regard.  

 

The discussion continues putting special emphasis in an area of special interest 

within the scope of the intelligent diagnosis: the handling of imprecise information. 

Dealing with imprecision is of interest due to the uncertainty associated to medical 

domain which includes subjective variability, imprecision caused by the limited 

sensitivity of the measurement devices, loss of information in the signal digitalization 

processes, or the presence of artifacts such as noise, punctual interferences, poor signal 

calibration or focus loss. 

 

The chapter continues then focusing in the particular domain of SAHS, by 

analyzing the state-of-the-art regarding the context of the automatic analysis of sleep 

recordings for SAHS diagnosis. This context is faced from different points of view. 
 

A first distinction can be made based on the degree of settlement that the 

technology presents in the market. In this respect it has been differentiated between 

commercial systems and academic systems. Within the first group there have been 

enclosed those systems that are currently used by the sleep labs at the medical centers, 

or that at least have a certain impact as commercial products. On the other hand 

academic systems –or non-commercial- can be understood as those systems bound to a 

more research philosophy, whose main objective is to propose alternative analysis 

methods and, in general, to improve features of current commercial systems. 
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Special mention has been done with regard to the increasing interest in the 

development of portable systems. Even though the features of such systems do not 

achieve the performance of their precedent versions, they do improve patient’s comfort 

at the time of recording, lowering also the associated costs of the diagnosis. Such 

systems can be used as devices for a follow-up of the patient at home, or as alarm 

mechanisms to assess the necessity of a deeper PSG test to be done in the hospital. 

Portable devices partially contribute in this way to the alleviation of congestion suffered 

by medical centers due to the high ratio between the analysis requests from the 

population and the available resources. 
 

Analysis of non-commercial systems has been classified in: (1) systems for SAHS 

prediction, (2) systems for the detection and classification of apneic events, and (3) 

comprehensive approaches. The first ones are aimed at predicting the necessity of 

performing the polysomnographic test, based on the evaluation of possible risk factors 

from the patient. This is done mainly in order to fully exploit current available 

resources. The second ones are focused in the analysis of the respiratory signals for the 

detection and the classification of the apneic event. Finally, the so-called comprehensive 

approaches are claimed to become global solutions, evaluating both the respiratory and 

neurophysiological signals, to produce a full diagnosis in the context of SAHS. 

 

Our system, which is included in this last category, has the ultimate goal of 

improving capabilities of current available systems. In this regard the last part of the 

chapter performs a critical analysis on this topic, introducing the necessity to carry out 

new approaches to overcome their limitations. Besides the lack of comprehensive 

approaches, an adequate handling of data imprecision and human subjectivity is also 

identified as an important feature to be improved. The use of fuzzy theory is proposed 

in this regard as the framework to develop new analysis strategies to deal with such 

imprecision. Next chapter introduces fuzzy theory and the modeling techniques 

allowing the construction of fuzzy inference systems. These systems are then integrated 

in the proposed solution of an automatic system to help the physician in the analysis of 

SAHS.  
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4. FUZZY SYSTEMS 

In this chapter a description on the use of methods for fuzzy analysis of information 

is given as a fundamental piece within the technological framework established for the 

development of the proposed system. Hypotheses that have conducted to the use of 

artificial intelligence techniques being able to handle imprecise information, and 

specifically of fuzzy logic, have been previously introduced (see Chapter one “Scope 

and objectives”, Chapter three “Handle of imprecise information” and “Critical 

analysis”), and include avoiding of categorical results, increasing of generalization 

capabilities by minimization of effects of variability due to noise, subjectivity and 

criteria variability, improvement of explanation capabilities, or easier knowledge 

representation. 

 

On the other hand, it is necessary to clarify that even if technological aspects of the 

developed system go beyond the use of the techniques here described, detailed 

description of all of them would result totally unfeasible. However because of the 

relative importance that fuzzy inference processes have within the system, as well as 

their differential character with respect to current existent approximations for the 

intelligent diagnosis of SAHS (see Chapter three), it has been considered adequate to 

carry out a more detailed description of their fundamentals, which is carried out 

throughout this chapter. 

 

Thus, in the following, theoretical basis of fuzzy logic are explained, showing the 

possibilities that fuzzy systems allows at the time of handling of uncertainty and 

carrying out reasonings with imprecise information. Description followed throughout 

the chapter is conducted from the general perspective, however examples are developed 

showing its practical applicability in the domain of SAHS diagnosis. Specific 
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developments using this technology are then included in the final system which is 

described throughout the subsequent chapter five. 

 
4.1. Introduction to fuzzy logic 

 
If we go out to the street and see a cloudless sky, then we will not think about the 

possibility of taking out the umbrella. However if we see a clouded sky, we may 

consider raining as feasible. If, besides, there are very dark clouds and we are within the 

winter months, we will probably think that there is a high chance of getting wet if we do 

not have an umbrella, or said with other words, that there is a high possibility of rain. 

Nevertheless, it also happens that sometimes in the presence of a clear sky, the day 

unexpectedly became overcast and it finally rained, and vice versa. Most of the times, 

however, we will be right on the previous predictions. 

 

It seems, according to the preceding example, that exact knowledge is quite unusual 

in real life, while on the contrary, events are always affected by a certain degree of 

uncertainty. On the other hand, continuing with the example, let us now to consider the 

possibility of implementing an automatic reasoning system to deal with the correct 

weather forecast. With the view of developing a model that mimics human’s reasonings, 

the modeling task should face the necessity of quantifying the terms used above. 

Accordingly, it is known that people do not express using sentences such as there is a 

79% chance of rains, but they usually express vague terms such that there is a high 

possibility that it rains. However: what is the meaning of high possibility? How can it be 

quantified using a computational schema? 

 

Fuzzy logic, which is based on the theory of fuzzy sets [1], is a theory that allow us 

managing and processing information, in which prevails the use of inexact, imprecise or 

subjective terms. Similarly as it does human brain, it is possible to carry out reasonings 

based on imprecise rules22 and over incomplete data23. 

 

                                                 
22 Which is related with the concept of uncertainty 
23 Which is related with the concept of imprecision 
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As it was previously outlined (see Chapter three, “Handling of imprecise 

information”), there are other reasoning models being able to handle imprecision and 

uncertainty, such as for example, evidential theory of Dempster and Shaffer [2], or the 

model of certainty factors of Shortliffe and Buchannan [3]. However fuzzy logic, 

besides containing previous ones in terms of capabilities of the model24, it also 

establishes a natural mechanism of correspondence between imprecision supported by 

the model and the natural language [4]. Such correspondence provides of an optimal 

framework for the current modeling task, allowing approximation to the clinical 

language, both at the time of explaining system’s results, and by allowing knowledge to 

be represented by means fuzzy rules. The former facilitates the knowledge acquisition 

task25 by permitting transferring of expert knowledge, practically without the need of its 

reformulation, through the use of fuzzy rules as the representation schema.   

 

On the other hand, it is important to make a distinction between the different 

approximations to the problem of uncertainty handling, as provided by fuzzy logic and 

the theory of probability. Fuzzy theory talks about the degree of membership of an 

element to a certain set and not about the probability of occurrence of an event. In this 

respect, many authors rather prefer to talk about a theory of possibility to refer to 

interpretation of uncertainty under the fuzzy logic perspective. 

   

From a historical point of view, theoretical bases of fuzzy logic were enunciated for 

the first time by Lofti A. Zadeh [1], professor of electrical engineering at University of 

California in Berkeley. However, it was not until 1973 when Zadeh presented the basic 

theory of fuzzy controllers [5]. The main idea consists in that, differently from classical 

logic where entities are bivalent, within fuzzy logic entities are characterized with 

respect to a set by a value of membership µ(x), which is a real number in the interval 

[0,1]26. Such an idea about the existence of certain degrees of veracity and falsehood 

can be founded yet in the time of Aristotle, who already considered this possibility, or in 

Plato, who had also considered the existence of certain grades of membership.  

                                                 
24 Under certain conditions, fuzzy logic schema is equivalent to the preceding models. That is, it can be 
considered as a superset of the two previous, or these as particular cases of the fuzzy paradigm  
25 The great bottleneck in the development of expert systems 
26 Where in the extreme case 0 indicates total absence of membership whereas 1 indicates total 
membership 
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Although initially the work of Zadeh was coldly received (especially in the US), 

from his work several researchers began to apply fuzzy logic to several processes. In 

this manner, and mainly after Mamdani applied fuzzy logic to control systems [6], 

several applications were developed. In this respect, without any doubt, the first place 

where fuzzy systems have obtained a high success was in Japan, where they were 

importantly applied for the first time in Japanese underground with excellent results. 

Special mention deserves the creation of LIFE (Laboratory for International Fuzzy 

Engineering research) in 1989, promoted by the Ministry of Economy Trade and 

Industry (METI) of Japan. In the US and Europe, only when Japan started to inform 

about the numerous practical applications, fuzzy logic was given importance. Since then 

northamerican companies such as NASA, Boeing, Ford, Rochwell or Bell commenced 

to apply fuzzy logic on their projects, and nowadays fuzzy logic has proved to be 

success in a large variety of applied domains with special relevance in the modeling of 

control processes [7].  

4.2. Fundamentals 

 
It has been mentioned in the previous section that fuzzy sets theory extends 

classical sets theory, allowing an element to be partially included within a set with a 

certain degree of membership. That is, in classical sets theory the membership function 

can be understood as function with just two discrete output values, 0 or 1, if the element 

is not included in the set or it does, respectively. Therefore, the main difference within 

fuzzy set theory is that the membership function is not discrete anymore but it becomes, 

on the other hand, continuous in the interval [0, 1].  

 

Formally, given a universe of discourse U or universal reference set, it can be 

defined the membership function with respect to the fuzzy subset A, of the elements of 

the universe U, as follows: 

𝜇𝐴(𝑥):𝑈 → [0,1],∀𝑥 ∈ 𝑈. 
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where A is a linguistic label that identifies the fuzzy subset. Then, given a certain 

element 𝑥𝑖 𝜖 𝑈, conceptually 𝜇𝐴(𝑥𝑖) = 𝑢, means that xi is included with a degree of 

membership u in the concept represented by A (see Figure 4.1). 

 

 
Figure 4.1. How to obtain the degree of membership from a fuzzy set A from a given value xi 

 

For the definition of these membership functions one normally turns to the use of 

certain conventionally defined families of standard forms. Ultimately the choice of one 

family or another, as well as the exact value of their respective parameters depends on 

its suitability to represent the desired concept in the actual application domain. Some of 

the most frequently used are functions of type trapezoidal, singleton, triangular, S or 

bell-shaped, which are shown in Figure 4.2. 
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Figure 4.2. Examples of some of the most used families of membership functions: trapezoidal, singleton, 
Gaussian, triangular and S 

 

It is necessary to make a distinction between the universe of discourse or referential 

U and the concept of linguistic label. The universe of discourse represents the set of 

possible values which a variable can take, normally numeric. It indeed represents its 

domain and it is expresses in quantifiable terms. When we talk about linguistic labels, 

on the other hand, we do it from the qualitative perspective, associating a certain set of 

values from the referential U to a linguistic value. The set of different linguistic values 

can be interpreted, similarly as in the numeric case, as the set of possible values of a 

variable, in this case, a linguistic variable. 

 

In this manner, within the same universe of discourse, there can be defined several 

linguistic variables, each one with domain a certain subset of values of the referential, 

not necessarily disjoints. At the same time within each linguistic variable a set of 
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linguistic labels can be defined, each one associated with a subset of the domain of the 

corresponding linguistic variable. To the result of projecting the set of linguistic labels 

of a linguistic variable over the corresponding referential subset is often referred as 

partitioning of the linguistic variable. 

 

The former is valid both from the fuzzy point of view as well as from the 

perspective of the ordinary sets (also referred as crisp27). The only thing that establishes 

the difference is the concept of set. In this respect, in the classical sets theory, the values 

pertaining to a certain linguistic label have as their membership function the unity. On 

the other hand, in the theory of fuzzy sets the membership function is defined as  

𝜇𝐴(𝑥):𝐴 → [0,1],∀𝑥 ∈ 𝐴 ⊂ 𝑈.  

 

For example, one may consider the linguistic variable age. It can be established an 

arbitrary delimitation of the different numeric values that classifies a person within the 

categories young, adult and old. Under classical sets theory the partition may look like 

as in Figure 4.3. In contrast, by using fuzzy sets the corresponding partition over the 

referential years of a person, with domain ℝ+, can be considered as in the following 

Figure 4.4. 

 

 
Figure 4.3. Example of a possible crisp classification for the variable age 

                                                 
27 Often with the term crisp one refers to everything that derives from the concept of classical set, to 
differentiate it from that related with the fuzzy approximation 
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Figure 4.4. Example of a possible fuzzy partition for the variable age  

 
Finally let us consider an example showing a fuzzy partition applied to SAHS 

domain. In order to evaluate the degree of respiratory airflow reduction with respect to 

the normal respiration, the following possible fuzzy partition over the linguistic variable 

respiratory airflow reduction can be considered:  
 

 
Figure 4.5. Fuzzy partition of variable airflow reduction; N = normal; SR = Slightly Reduced; CR = 
Clearly Reduced; TR = Totally Reduced 

 

4.2.1. Operations with fuzzy sets 

In his paper Fuzzy Sets in 1965 [1], Zadeh provides the basic definitions over fuzzy 

sets which are the natural extensions of the corresponding definitions for ordinary sets. 

In this respect a fuzzy set A defined on the universe U is empty if and only if its 

membership function is zero for all the values 𝑥 𝜖 𝑈: 

 

𝜇𝐴(𝑥) = 0,∀𝑥𝜖𝑈 
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Two fuzzy sets A and B are equal, written as A = B, if and only if 

 

𝜇𝐴(𝑥) = 𝜇𝐵(𝑥),∀𝑥𝜖𝑈 

 

On the other hand, A is contained in B (or, equivalently, 𝐴 ⊂ 𝐵, A is a subset of B, 

or A is smaller than B) if and only if 𝜇𝐴(𝑥) ≤ 𝜇𝐵(𝑥),∀𝑥𝜖𝑈. 

  

Taking into account the previous definitions, Zadeh proposes also definitions for 

the basic operators of complement, union and intersection. Behavior of these basic 

operations is similar to their corresponding equivalents in the classical sets theory. As it 

has been previously pointed out, fuzzy set theory reduces to classical set theory if 

uncertainty is set to zero, that is, it only admits values of 0 and 1 for the output of the 

membership functions. Thus, according to Zadeh, given two fuzzy sets A and B defined 

over a referential U, such that 𝐴 ⊂ 𝑈 and 𝐵 ⊂ 𝑈, the previous operations are defined as 

follows: 

 

• Complement: 𝜇�̅�(𝑥) = 1 − 𝜇𝐴(𝑥),∀𝑥𝜖𝑈 

• Union: 𝜇𝐴∪𝐵(𝑥) = max[𝜇𝐴(𝑥), 𝜇𝐵(𝑥)] ,∀𝑥𝜖𝑈 

• Intersection: 𝜇𝐴∩𝐵(𝑥) = min[𝜇𝐴(𝑥), 𝜇𝐵(𝑥)] ,∀𝑥𝜖𝑈 

 

Note that both ∪ and ∩ satisfy the associative and the commutative properties. One 

may also prove that with the previously defined operations, fuzzy sets satisfy 

distributive and De Morgan’s laws [1]. At this point it seems that fuzzy sets with 

previous definitions of complementation, union and intersection and taking the empty 

set 𝜇⊥(𝑥) = 0,∀𝑥𝜖𝑈 as the null element and 𝜇𝑇(𝑥) = 1,∀𝑥𝜖𝑈 as the unitary element, 

have structure of Boolean algebra. However, fuzzy sets do not satisfy neither the law of 

non-contradiction nor the law of excluded middle, which prevents fuzzy sets to fully 

verify the required conditions of Boolean algebra [8].   

 

Another common operators used among fuzzy sets are the namely modifiers. These 

operators receive such a name because they allow obtaining the result of applying a 

modifying term in the common language. For example, natural language expressions of 

very and more or less can be applied over a fuzzy set linguistically represented by 
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certain label A. For example, if A = hot, for a given value x, then it can be obtained the 

resulting degree of membership with respect to the modified fuzzy set very hot as 

follows: 

  

𝜇𝑣𝑒𝑟𝑦 ℎ𝑜𝑡(𝑥) =  (𝜇ℎ𝑜𝑡(𝑥))2 

Analogously: 

𝜇𝑚𝑜𝑟𝑒 𝑜𝑟 𝑙𝑒𝑠𝑠 ℎ𝑜𝑡(𝑥) =  (𝜇ℎ𝑜𝑡(𝑥))1/2 

4.2.2. Fuzzy logic 

At the time of establishing the correspondence between sets theory and logic, 

operations described in the previous subsection found their corresponding analogue in 

the operations of negation, disjunction –logical OR- and conjunction –logical AND- 

respectively. More specifically fuzzy logic can be defined as a family of logics 

pertaining to the broader class of many-valued logics. Moreover, in practice, most of 

them usually belong to the so-called t-norm fuzzy logics [9].  

 

Without the aim to go into excessive details for the purposes of this introductory 

chapter, it is enough to consider that, generally speaking, in this kind of fuzzy logics 

operators of conjunction and disjunction, are generalized with the condition of 

satisfying certain restrictions. The functions that satisfy these restrictions are 

respectively known as t-norms (or unabbreviated, triangular norm) and t-conorms (also 

called S-norms). 

 

Definition. The binary operator ∗: [0,1] × [0,1] → [0,1], if it satisfies the following 

properties: 

 

1. Commutativity: 𝑎 ∗ 𝑏 = 𝑏 ∗ 𝑎 ; 

2. Associativity: (𝑎 ∗ 𝑏) ∗ 𝑐 = 𝑎 ∗ (𝑏 ∗ 𝑐) ; 

3. Monotonicity: 𝑎 ≤ 𝑏 𝑦 𝑐 ≤ 𝑑 ⇒ 𝑎 ∗ 𝑐 ≤ 𝑏 ∗ 𝑑 ; 

4. Identity element the unit: 𝑎 ∗ 1 = 𝑎 , 

 

where operands 𝑎, 𝑏, 𝑐,𝑑 𝜖 [0,1] , then the operator ∗ is said to be a T-norm in [0,1], 

and is denoted by Δ. 
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Definition. The binary operator ∗: [0,1] × [0,1] → [0,1], if it satisfies the following 

properties: 

 

1. Commutativity: 𝑎 ∗ 𝑏 = 𝑏 ∗ 𝑎 ; 

2. Associativity: (𝑎 ∗ 𝑏) ∗ 𝑐 = 𝑎 ∗ (𝑏 ∗ 𝑐) ; 

3. Monotonicity: 𝑎 ≤ 𝑏 𝑦 𝑐 ≤ 𝑑 ⇒ 𝑎 ∗ 𝑐 ≤ 𝑏 ∗ 𝑑 ; 

4. Identity element zero: 𝑎 ∗ 0 = 𝑎 , 

 

where operands 𝑎, 𝑏, 𝑐,𝑑 𝜖 [0,1] , then the operator ∗ is said to be a T-Conorm in 

[0,1], and is denoted by 𝛻. 

 

T-conorms can also be defined as the dual forms of T-norms -and vice versa- under 

the order-reversing operation which assigns 1- x to x on [0,1]. Indeed for example given 

a T-norm, the complementary T-conorm is defined by  

 

∇(𝑎, 𝑏) = 1 − ∆(1− 𝑎, 1 − 𝑏) 

 

In practice, in fuzzy logic the concrete form of the previous defined operators 

depends on the concrete application domain, with the sole condition that the resulting 

operators must satisfy the previous properties. Some of the most common 

implementations of T-norms and the corresponding T-conorms are shown in Table 4.1. 

In Table 4.1 a and b respectively represent the degrees of membership with respect to 

the associated fuzzy sets A and B. 

   
Table 4.1. Examples of some of the most common triangular norms and conorms  

T-norm T-conorm 
𝑚𝑖𝑛(𝑎, 𝑏) 𝑚𝑎𝑥(𝑎,𝑏) 
𝑎 ∙ 𝑏 (𝑎 + 𝑏 − 𝑎 ∙ 𝑏) 

𝑚𝑎𝑥(0,𝑎 + 𝑏 − 1) min (1,𝑎 + 𝑏) 
 

 

Each concrete implementation leads to a specific logic within the family of t-norm 

fuzzy logics. In any case, as it was mentioned above, ultimately the concrete 

implementation will depend on the concrete application domain. Equivalently to the 

case of classical logic, triangular norms and conorms obey the DeMorgan’s laws that 
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relate them. It can also be proved that functions min(∙) and max(∙) -the ones proposed 

by Zadeh- are the most restrictive forms of T-norms and T-conorms respectively. For a 

more detailed analysis of the different norms and conorms and their implications the 

reader is referred to [10]. 

 

4.2.3. Inference in fuzzy logic 

 
As it has been outlined in the previous subsection, fuzzy sets can be reinterpreted as 

predicates in propositional logic. In fact, in the same manner that an isomorphism 

between logic and classical sets theory can be defined, it is possible to define an 

isomorphism between fuzzy logic and theory of fuzzy sets. Reasoning based on natural 

language is a kind of approximate reasoning, which makes use of propositions and 

predicates expressing information of imprecise nature. In fuzzy logic, knowledge must 

be interpreted as a collection of fuzzy constraints which operate over a set of variables. 

Therefore it is just about incorporating imprecision into classical logic of predicates by 

means of theory of fuzzy sets. The analogy is represented in the schema of Figure 4.6. 

 

 
Figure 4.6. Interpretation of logic of predicates through fuzzy logic 

 

Because it is not the objective of this chapter to carry out an exhaustive analysis 

about reasoning with predicates and its interpretation in fuzzy logic, we will not go into 

further details. What is intended to remain clear is that fuzzy logic allows us to 

reinterpret logic of predicates adding mechanisms for handling of uncertainty. In this 

regard, truthfulness of a predicate is not categorical anymore, but it is evaluated as a 

function of the degree of membership of each individual clause, and it is subsequently 
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combined by the corresponding equivalent fuzzy operators. This is carried out by 

establishing an application from clauses –or sentences- in the natural language, and the 

numerical context where the degree of membership of each sentence is quantified with 

respect to its associated fuzzy set. For example, in the context of SAHS, the truthfulness 

of the sentence “Desaturation is high or airflow is clearly reduced” can be evaluated as 

follows: 

 

 
Figure 4.7. Example of the possible interpretation of truthfulness of a proposition using fuzzy logic 

 

Definition. Given two universes of discourse U and V, a fuzzy relation is defined as a 

fuzzy set in R in the space UxV, which membership function is denoted as 𝜇𝑅(𝑢, 𝑣), 

with 𝑢 𝜖 𝑈 y  𝑣 𝜖 𝑉. 

 

In practice, at the discrete level such relationship can be represented by a table 

where, for example, to each pair formed by a column element of the referential U and a 

file element of the referential V, is assigned a degree of membership in the space UxV. 

In the continuous level the resulting space can be represented through a surface. Indeed 

it is the bidimensional interpretation of a fuzzy set, but this interpretation can be easily 

extensible to the n-dimensional case. 

 

On the other hand it has to be taken into account that the number of relationships 

which can be established between two fuzzy sets A and B, respectively defined over 

spaces U and V, is potentially infinite28. 

 

                                                 
28 It is easy to think about the number of possible functions which can be defined between two variables 
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Definition. Given two fuzzy sets A y B in U y V respectively, a fuzzy implication of A in 

B, which is indicated 𝐴 → 𝐵, is a concrete type of fuzzy relationship in UxV which 

represents an IF-THEN rule, or from the fuzzy logic point of view, the fuzzy 

implication operator. Implementation of implication can also vary, but in its more 

general form it obeys the following formula:  

 

𝜇
𝐴→𝐵

(𝑢, 𝑣) = 𝜇𝐴(𝑢) ∗ 𝜇𝐵(𝑣) 

 

where the concrete implementation of Star (∗) operator can be any T-norm as those 

defined in the previous subsection. 

 

Definition. Given two fuzzy relations R and S defined over UxV and VxW, with U, V 

and W, referentials, the composition of relations R and S is defined as a new fuzzy 

relationship over the space UxW, and denoted 𝑅 ∘ 𝑆. 

 

Interpretations of operator composition to define the concrete formula for the 

membership function  𝜇𝑅∘𝑆(𝑢, 𝑣) of the resulting fuzzy relationship are, again, diverse. 

One of the main used is the so-called Sup-Star composition, which is defined as follows: 

 

𝜇𝑅∘𝑆(𝑢, 𝑣) = 𝑠𝑢𝑝𝑣𝜖𝑉[𝜇𝑅(𝑢, 𝑣) ∗ 𝜇𝑆(𝑣,𝑤)] 

 

with 𝑢𝜖𝑈, 𝑣𝜖𝑉,𝑤𝜖𝑊. 

 

Likewise Sup-Star composition leads the concrete choice of the corresponding T-

norm to be interpretable. In this respect, for example, Zadeh [5] uses the operator 

min (∙) which leads to the Sup-Min composition (also known as Max-Min composition); 

on the other hand, if the operator product is used, the resulting formula is known as Sup-

Prod composition or Max-Prod composition. 

 

In any case, once the previous definitions have been stated, all the necessary is 

available in order to reinterpret classical inference at the fuzzy level. In fact, classical 

reasoning method of Modus Ponens establishes that: 
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(Knowledge): If A then B 
 
(Fact): A 
 
------------------------------- 
 
(Consequence): B 
 

In the fuzzy plane, classical Modus Ponens is reinterpreted as Generalized Modus 

Ponens (GMP) in which the following inferential schema is established: 

 
(Knowledge): If x is A then y is B 
 
(Fact): x is A' 
 
------------------------------- 
 
(Consequence): y is B' 
 

In the former schema the fuzzy relationship defined by the implication represents 

the knowledge, in the sense that it defines how elements x defined in the referential U, 

and in relation with the fuzzy set A, are related with their corresponding projections y in 

the referential V and in relation with the fuzzy set B. In other worlds, it formalizes how 

the membership with respect to the input fuzzy set A defines a correspondence with the 

fuzzy set B at the output. On the other hand the fact presented at the input of the 

inferential process is a certain fuzzy set A’, which even if similar to A29, it does not 

necessarily has to match exactly the represented model –A- of the given knowledge. 

That said, given A’, that is, if x is A’, then GMP provides of an approximate reasoning 

mechanism such that for the elements y of the referential V, a new fuzzy set B’ can be 

defined, more or less similar to B, as much as A’ is similar to A. 

 

Let us take an example of daily life: if we look at someone’s old photo, we can still 

recognize him/her. In fact recognition will be easier as the more recent the photo is, just 

because its similarity with the current physical look will be higher. In fact we are 

certainly able to recognize the person although the photos show different scenes. In 

other words, the fact allowing us to recognize the person is that the physical aspect in 

the two photos is similar. Hence, and going back over GMP, the idea is that if A implies 

B, then something similar to A should imply something similar to B.   

                                                 
29 A possible way to quantify how similar are A and A’ might be by calculating their fuzzy intersection 
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Formally, if R is a fuzzy relation from U to V, and A’ is a fuzzy set in U, then the 

fuzzy set B’ in V induced by A’ is calculated by means of the composition of R and A’, 

that is: 

𝐵′ = 𝐴′ ∘ 𝑅 

 

Once again, the eventual concrete formula will exclusively depend on the chosen 

operators to implement the T-norms and the T-conorms implicit in the composition 

formula. 

 

4.3. Fuzzy inference systems 

 
In general terms fuzzy inference can be considered as the mapping process from the 

input of our inference system, to obtain the corresponding output through approximate 

reasoning mechanisms using the schema proposed by the GMP. Such process has been 

outlined in the previous section, and it involves all the concepts described throughout 

this chapter: membership functions, operations in fuzzy logic and IF-THEN fuzzy rules. 

 

Fuzzy Inference Systems (FIS) are intelligent systems based on rules which as the 

mechanism for exploration of their knowledge (rulebase) use fuzzy inference. These 

systems have been successfully used in several fields such as for example automatic 

control, data classification, decision analysis, expert systems or computer vision. 

Precisely, because of their multidisciplinary nature, fuzzy inference systems have been 

associated to a wider range of names including, among others, fuzzy rule-based 

systems, fuzzy expert systems, fuzzy modeling, fuzzy associative memories, fuzzy 

controllers, or simply and ambiguously, fuzzy systems. Even though it might be 

possible to search the nuances for each definition, fundamental basis that govern their 

operation are the same. In this respect, the above mentioned denomination of fuzzy 

inference systems will be the one used throughout the rest of the document.   

 

A rule by itself, in general, does not help a lot and there are necessary several rules 

to consider different circumstances of the facts which complement each other. The use 

of GMP, which is able to produce reasonings based on similarity, provides with 

interesting consequences it is generalized within fuzzy inference systems when through 
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the use of several fuzzy rules simultaneously. One of the most important is that presence 

of a single fact can activate several rules at the same time. The previous can occur since, 

due to fuzziness of the corresponding fuzzy sets, it is possible that the same event 

pertains to several fuzzy sets with different degrees of membership. Thus it can partially 

match with the antecedents of different rules, not being strictly necessary the exact 

matching with the antecedent in order to active the rule, as it happens in the classical 

rule-based systems.   

 

On the other hand, and even though there exist several possible implementations 

under the concept of FIS, often throughout literature two great families of fuzzy 

inference systems can be differentiated. In this respect distinction general can be made 

between FIS of type Mamdani and those of Takagi-Sugeno type. 

 

Mamdani FIS receive their name in honor to Ebrahim Mamdani who in 1975 

published their studies on the control of a steam engine and a heater, synthesizing a set 

of control rules obtained from human operators’ expertise [11]. At the same time 

Mamdani’s work was based on the paper published two years before, in 1973, by 

Zadeh, about the use of fuzzy algorithms in complex systems and decision processes 

[5]. Basically a Mamdani fuzzy system produces outputs in form of fuzzy sets, allowing 

expressing rules into a language closer to natural language, as it was previously 

explained, by means of assigning linguistic labels to the corresponding fuzzy sets. On 

the other hand, in the context of control systems often final output is required to be 

numeric rather than linguistic. In this respect, fuzzy sets obtained at the output of a 

Mamdani type controller are subject to an aggregation procedure after which a 

concentration process –also known as defuzzification- takes place, hence finally 

obtaining the required numeric value. The schematic process is depicted in Figure 4.8. 
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Figure 4.8. Fuzzy rules and general reasoning schema of a Mamdani fuzzy system 

 

On the other hand, in many cases it is more efficient to use a membership function 

of type singleton at the output instead of a distributed fuzzy set. In this manner an 

increment in the efficiency of the concentration process is produced, because it largely 

simplifies the required computation with respect to the most general Mamdani method -

that searches for the centroid of a bidimensional function. In contrast, in the case of a 

singleton function type, final value is already numeric and both aggregation and 

defuzzification can take place simultaneously by using a simple weighted average of a 

few data points. Indeed, fuzzy systems of Takagi-Sugeno type (or simply Sugeno), 

introduced in 1985 by Michio Sugeno [12], work in this manner, which makes them 

more adequate for domains where system’s efficiency is more important than its 

capabilities to represent knowledge in a human language manner. In fact, within Sugeno 

fuzzy systems, output of each rule is directly calculated as the linear combination of the 

inputs plus a constant term, weighted by the activation weights of each rule, as it is 

shown in Figure 4.9. 
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Figure 4.9. Fuzzy rules and general reasoning schema of a Takagi-Sugeno fuzzy system 

 

In order to illustrate more in detail how FIS operate, and how they can be applied to 

SAHS domain, the general process of a reasoning cycle is shown in the following 

applied to calculate the possibility of occurrence of an apneic event. In the example the 

used FIS is of type Mamdani for being these more convenient among reasoning 

problems which comprise capabilities to explain its behavior, as it happens in the 

application domain of this doctoral thesis: medical diagnosis of SAHS. FIS of this type 

are in fact used to control reasoning processes on different parts of the developed 

system. It has to be remarked, however, that the following example does not necessarily 

correspond with the concrete implementation followed within the system. The objective 

here is just to illustrate the working cycle of a Mamdani FIS type with an example. The 

reader is referred to consult the corresponding sections of Chapter 5 for further details 

on the concrete implementation of the FIS within the developed system.  

 



Diagnosis of the Sleep Apnea-Hypopnea Syndrome: a comprehensive approach through an intelligent 
system to support medical decision 
 

146 
 

That said, for the purposes of this example a FIS can be considered that receives as 

inputs the reduction in the respiratory airflow and its associated desaturation, obtaining 

at the output, the degree of membership to the fuzzy variable apneic event.  Thus, let us 

suppose that the following inputs are presented to the system: (a) an airflow reduction 

of 80% accompanied by (b) a 2% desaturation in SaO2 signal. The reasoning cycle of a 

Mandami fuzzy system comprises the following steps: 

 
1. Input fuzzification: Solve all the possible matches with the input variables of 

the rule antecedents in the knowledge base30 to obtain the corresponding 

degrees of membership, between 0 and 1, with respect to the fuzzy sets of the 

respective partitions (see Figure 4.10). 

 
Figure 4.10. Step 1: The figure shows how to fuzzify the numeric input by obtaining the corresponding 
degree of membership with respect to the fuzzy set clearly reduced in the antecedent part of a rule     

 
2. Calculate rule activation: If the antecedent is composed of several elements, 

then apply the corresponding fuzzy operators to obtain the resulting firing 

strength of the rule (see Figure 4.11). 
 

 
Figure 4.11. Step 2: The figure shows an example in which rule activation is calculated by applying the 
fuzzy operator on the fuzzy members of the antecedent. In this case OR operator is implemented through 
using the max function  

     
                                                 
30 Expressed in the form of fuzzy IF-THEN rules 



4. Fuzzy systems 
 

147 
 

 
3. Apply implication method: Once the degree of activation of each rule’s 

antecedent has been calculated, for those with activation higher than zero, apply 

the desired implication method to obtain as the output, the degree of 

membership with respect to the corresponding fuzzy set on the consequent part 

of the rule (see Figure 4.12). 
 

 
Figure 4.12. Step 3: Figure shows application of implication after rule activation calculation. Here 
implication is implemented using the min operator. Output fuzzy set for the rule is obtained upper 
bounded according to activation value  

     
     

4. Output aggregation: As a consequence of the previous steps and because 

several rules may be activated with the same input, several membership values 

are normally obtained with respect to the different fuzzy sets of the partition of 

output variable. The output fuzzy sets with their corresponding activation are 

then aggregated to form a unique fuzzy set over the output fuzzy variable (see 

Figure 4.13). 
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Figure 4.13. Step 4: Figure shows aggregation process after individual outputs for each rule have been 
calculated. Aggregation method here uses the max criterion 

     
 

5. Defuzzification: It is the process that transforms the resulting fuzzy set at the 

output space V, into a non-fuzzy value 𝑦 𝜖 𝑉. This operation is normally used 

among control systems, in which a numeric value is necessary at the output to 

be used as the input of an actuator mechanism (see Figure 4.14). 
 

 
Figure 4.14. Step 5: Output defuzzification by center-of-gravity (centroid) method 
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4.4. Neuro-fuzzy inference systems 

 
Neuro-Fuzzy Inference Systems (NFIS) come up as a hybrid between FISs and 

Artificial Neural Networks (ANNs), in an attempt to give response to the problem of 

FIS modeling. That is, given a certain application domain where certain behavior is 

wanted to be modeled using a FIS, several questions have to be addressed: How many 

rules are necessary? In how many fuzzy sets input variables should be partitioned? 

What kind of fuzzy sets should be used? What are the most appropriate fuzzy operators 

for the current problem? Which are the correct values for their parameters?…and so on. 

 

Indeed, system modeling task to follow a desired behavior is a complicated job 

closely related with the problem of knowledge acquisition. Moreover, the problem 

becomes even harder when for the application domain previous knowledge –normally 

from an expert- is not available to advice or to guide in the construction of the system. 

In these cases it is often resorted to machine learning mechanisms that try to optimize 

configuration of the system automatically. 

 

In this manner, NFIS can be considered as a special case of ANNs, with their 

consequent learning capabilities, but at the same time, being able to exploit advantages 

of FISs, including capabilities to handle imprecise information, and their higher 

expressiveness as compared with ANNs (that behave as black-boxes). In any case, as it 

was previously outlined, ultimately explanatory capabilities of a FIS are also bounded to 

the concrete type of FIS used. Indeed, usually within the field of automatic learning 

there is an inherent compromise between explanatory capabilities and efficacy, this last 

usually measured in terms of the final error committed by the system after the training 

phase [13]. That is mainly because a more effective system normally requires of more 

degrees of freedom, which translates in more complex systems which, in general, are 

less intelligible from the point of view of human perception.   

 

Advent of neuro-fuzzy systems can be situated starting with the work of Jang in 

1993 in which the architecture ANFIS (Adaptive-Network-Based Fuzzy Inference 

System) is described [14], although the fuzzy modeling problem had been previously 

explored by Takagi and Sugeno already in 1985 [15]. In the work of Jang, adaptive 

networks are introduced as a superset of all kinds of feed-forward neural networks. 
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Basically an adaptive network is a structure composed of nodes and directional links 

through which nodes are connected. Moreover, part or all of the nodes are adaptive, 

which means each output of these nodes depends on the parameters pertaining to its 

node. The learning rule specifies how these parameters should be changed to minimize a 

prescribed error measure. Each node, independently of being adaptive or not, 

implements a particular function –node function- which depends on the inputs 

connected to the node and its internal parameters. The function node type can vary from 

one node to another, and it ultimately depends on the specific general function the 

networks as a whole is wanted to implement. Figure 4.15 shows the general schema of 

an adaptive network. 

 

 
Figure 4.15. General schema of an adaptive network. In the figure squared nodes represent adaptive nodes 
while circle nodes represent nodes without parameters. 

 

From this general structure it is possible to obtain the equivalent to a concrete FIS, 

simply by means of choosing the appropriate node functions and establishing the 

adequate connections between the nodes. In fact Jang shows in the same work how the 

proposed ANFIS architecture is functionally equivalent to a first-order Sugeno FIS, and 

also how it is possible to train the architecture for the optimization of its parameters 

through a hybrid learning rule, which combines adaptation by means of error 

backpropagation and Least Squares Estimator (LSE) [14].  

 

In general, the number of potentially possible neuro-fuzzy architectures is very 

large and, on the other hand, for the same network configuration, there are multiple 

training variants available: backpropagation of error, genetic algorithms, linear 

programming, simulated annealing, etc. As a consequence, throughout literature several 

examples of this kind of systems can be found, among others [16] [17] [18] [19] [20]. 
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To carry out an exhaustive analysis of the same exceeds the objectives of this chapter as 

well as that of the doctoral manuscript. However, as an example, in the next subsection 

the analysis of two approximations for the modeling of neuro-fuzzy systems is 

performed. The interest on these approximations is to exemplify the use of NFIS for 

modeling and parameterization of FIS that are used in the development of the proposed 

system for the diagnosis of SAHS (see Chapter five). Their architectures are discussed 

in the following subsections. In addition an outline to the modeling of NFIS structures 

by automatic learning mechanisms is subsequently performed.   

 
4.5. Neuro-fuzzy modeling within the developed system 

 

In this section the introductory perspective to FISs followed along this chapter is 

left behind and a series of specific developments in the scope of the constructed system 

to aid in the SAHS diagnosis are described. Besides Mamdani-based FIS, which have 

been introduced in the preceding section, such realizations refer to neuro-fuzzy 

modeling processes which have been developed for the implementation of some of the 

FISs that intervene in the analysis processes of the developed system.  

 

In the following subsections two different neuro-fuzzy architectures are presented 

to be used, respectively, in regression and classification tasks. Once the architectures 

have been described, modeling techniques are proposed for both, structure identification 

and parameter optimization, of general NFIS architectures –including Mamdani FIS. 

These modeling techniques have been used for the implementation of the FIS developed 

within the constructed system to aid in the diagnosis of SAHS, which is described 

throughout subsequent Chapter 5.   

4.5.1. An architecture for regression tasks 

Here it is presented an architecture to implement a fuzzy system based on adaptive 

networks. This architecture is based on the well-known structure ANFIS proposed by 

Jang [14], and later generalized by Sun [21]. 
 

Figure 4.16 shows this architecture for the case of two input variables, x1 and x2, 

and one output variable y. Following Jang’s notation, in this kind of networks a circle 
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denotes a node without parameters; otherwise a square is used. The proposed structure 

is organized into six functional layers following a feed-forward processing manner. 
 

 
Figure 4.16. Architecture for an adaptive-network-based fuzzy inference system 

 

Each node at the first layer implements a weight of importance wi associated with 

the respective input variable i. This allows the implementation of feature selection 

during the learning adaptation, according to the evolution of the weight assigned to the 

corresponding input variable. As closer the weight is to 1, the more the influence of the 

variable on the posterior input fire strength (layer 2). On the contrary as long as the 

variable is less important on the construction of the output, this weight will tend to 

approximate to 0. 

 

Every node at layer 2 is a square node associated with a parameterized membership 

function µA(xi) where xi is one of the input variables and A is the linguistic term 

associated with this node function. Each node connected with an input variable 

represents a different fuzzy set for the corresponding variable. Thus the resulting degree 

of membership, taking into account the corresponding weight on layer 1 for the variable 

i, is: 

))(1(1 iAii xws µ−−=  (4.1) 

 

In this case the input variable x1 is partitioned in three linguistic terms, whereas in 

the partition of the input variable x2 two fuzzy set are used. 
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Layer 3 combines the degrees of membership from the nodes on layer 2 to which it 

is connected. This operation can be interpreted as the calculation of the firing strength 

of a rule. The connections define the premises in the antecedent of the rule, whereas 

parameters in the nodes of layer 3 implements the conjunction operator. In Figure 4.16 

this operation is indicated as general nodes that implement a t-norm. The choice of the 

concrete connective operator depends on the application. More discussion on t-norms 

and their implications can be found on [10]. Specifically in the proposed architecture the 

implemented t-norm is the product, as it was proposed in the original publication of 

ANFIS. 
 

Every node at layer 4 is a circle node that calculates the ratio of the ith rule’s firing 

strength with respect the sum of the firing strengths of all rules. Therefore let iw  to be 

the output of the node ith at this layer, then  1
1

=∑
=

R

i
iw , being R the number of nodes 

(rules) both at layers 3 and 4. 

 

At layer 5 the linear combination of the input is performed, and the result is 

multiplied by the corresponding firing strength coming from layer 4. The number of 

parameters pk (consequent parameters) per node is #input + 1, being the output ok of the 

node kth of this layer: 

 

∑
=

=
input

i
iikk xpwo

#

1
 (4.2) 

 

Finally layer 6 takes the summation of the ok and provides the final output of the 

system. Note that in this architecture the firing strength of each fuzzy rule is calculated 

as the conjunction of the membership values in the premise part, the consequence of 

each rule is a linear combination of the inputs, and the final output is obtained as the 

weighted average of each rule’s consequence. Thus resulting architecture is equivalent 

to a first-order Takagi-Sugeno FIS [15]. Table 4.2 summarizes the number of nodes and 

parameters per node at each layer. 
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Table 4.2. Number of nodes and number of parameters per node for architecture of Figure 4.16. V is the 
number of input variables; Li is the number of linguistic terms for the variable i; and R is the number of 

rules. 

Layer 1 2 3 4 5 6 
#Nodes 2V Li R R R 1 

Parameters 
per node 1 2 0 0 V+1 0 

 
 

4.5.2. An architecture for classification tasks 

In this subsection an architecture to implement a fuzzy classification system based 

on adaptive networks is presented. Figure 4.17 shows the architecture for the case of 

two input variables, x1 and x2, and three output classes C1, C2 and C3. The proposed 

architecture is based on the initial model proposed for classification by Sun and Jang 

[22], to which weighting nodes have been added to layer one. Modification of the 

connection links between layers two and three was also incorporated. The resulting 

structure is organized into five functional layers following a feed-forward processing 

flow. 

 

 
Figure 4.17. Architecture for an adaptive-network-based fuzzy classification system 

 

Each parameter node at layer 1 implements a weight of importance si associated 

with the respective input variable i. Analogously to the structure presented at the 

previous subsection, the former allows the implementation of feature selection during 

the learning adaptation, according to the evolution of the weight assigned to the 

corresponding input variable. 
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Every node at layer 2 is associated with a parameterized membership function 

µA(xi) where xi is one of the input variables and A is the linguistic term associated with 

the corresponding node function. Each node connected with an input variable represents 

a different fuzzy set for the partition of the input variable. Thus the activation in the 

node k at this layer results: 

 

))(1(12
iAik xsnet µ−−=  (4.3) 

 

In this example the input variable x1 is partitioned in three linguistic terms, whereas 

in the partition of the input variable x2 two fuzzy sets are used.  

 

Layer 3 combines the degrees of membership from the nodes on layer 2 to which it 

is connected. This operation can be interpreted as the calculation of the firing strength 

of a rule, and the connections between layers 2 and 3 define the premises in the 

antecedent of each rule. The parameters at the nodes of layer 3 implements the 

integrator operator (conjunction), and the number of nodes determines the resulting 

number R of fuzzy rules. 

 

In Figure 4.17 this operation is indicated as general t-norm nodes. In the current 

architecture concrete node function obeys to a parameterized version of Hamacher’s t-

norm: 
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where γ is a non-negative parameter and a and b represent inputs to the operator. 

On the other hand, due to the associative property of t-norms when more than two 

inputs achieve a layer 3 node, resulting activation can be recursively calculated as:  
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being M the total number of nodes at layer 2 connected to the rule Rr ∈ . Note also 

that this t-norm is differentiable allowing the architecture to be trained using back-

propagation [23]. 

  

At layer 4 a linear combination for the rule’s activations is done regarding each 

output class c. Therefore the total number of nodes performing this weighted summation 

is equal to the number of output classes C. The number of parameters per node is equal 

to the number of rules because total interconnection exists between nodes of layers 3 

and 4:   

∑
=

=
R

r
crcrc wnetnet

1

34  (4.6) 

 
 

Finally a sigmoid function is applied at the output layer. Since we are interpreting 

the output respect to each class as a degree of membership, a logistic function is chosen 

providing output values between 0 and 1: 
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where p represents the input index pattern. 

 

Table 4.3 summarizes the number of nodes and parameters per node at each layer. 
 

 
Table 4.3. Number of nodes and number of parameters per node for architecture of Figure 4.17. V is the 

number of input variables; Li is the number of linguistic terms for the variable i; R is the number of rules; 
and C is the number of classes. 

Layer 1 2 3 4 5 

#Nodes V ∑
=

V

i iL
1

 R C C 

Parameters 
per node 1 2 1 R 0 
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4.5.3. Structure identification and parameter optimization 

System modeling mainly consists of two parts: structure identification and 

parameter optimization. On fuzzy modeling, and taking the previously proposed 

architectures as reference, the former implies finding the appropriate fuzzy partitions on 

the input space, as well as determining the number of rules, and their antecedent and 

consequent parts which yield to the concrete connectivity between the different layers. 

Parameter optimization, on the other hand, consists on finding out best parameter values 

on each node to minimize model’s error according to a defined fitness function, also 

known as cost function.  

 

Leaving aside knowledge-based approaches to manually set up system’s structure31, 

several methodologies and algorithms have been proposed through the literature to 

handle the problem of structure identification on fuzzy inference systems from a 

machine learning approach [24] [25]. Without the aim to be the optimal, a clustering 

algorithm is proposed here in order to initialize the structure of the network [26]. The 

algorithm, called Subtractive Clustering, is a fuzzy extension of the Mountain Method 

[27] for estimating the number and initial locations of cluster centers from a set of n-

dimensional points. Under this approach each data point xi is considered as a potential 

cluster center and defines a measure of potential 

 

∑
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 (4.8) 

 

with ra a positive constant defining a radius of neighborhood. Once the potential of 

every point has been computed, the point with highest potential is selected as the first 

cluster center. Subsequently, in function of a decay parameter rb, and in proportion to 

the distance to the first cluster, the potential is reduced (subtracted) from the rest of data 

points. The point with the remaining highest potential is then selected as the second 

cluster center. The algorithm continues until the maximum potential reaches a certain 

threshold.  

 

                                                 
31 Leaved aside since here we are dealing with automatic learning procedures in the lack of knowledge 
about the ideal structure. However when expert knowledge is available that guides structure 
identification, this should be preferably used. 
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After the cluster centers have been determined, each cluster center can be thought 

as a prototypical data point that exemplifies a characteristic behavior of the system. 

Hence, each cluster center can be used as the basis of a rule that describes the system 

behavior [26]. Although we use this algorithm in order to initialize the structure, we do 

not claim for its optimality and the problem of structure identification is out of the scope 

of this work. On the other hand, it allows an initialization for the structure as estimation 

of the necessary number of rules. Additionally, compared with other types of structure 

initialization as grid partition [22], the number of rules it returns is much lower, 

therefore preserving the interpretability requisite related to fuzzy systems.  

 

Once determined the structure of the model parameters of the adaptive nodes have 

to be optimized using a fitness criterion. This corresponds with the second stage of 

system modeling, i.e. parameter optimization. As commonly happen in supervised 

training over neural-based systems, learning to find the optimal parameters for the 

mapping of the input-output data, is usually based on the minimization/maximization of 

a cost function that governs the system adaptation. The Mean Squared Error (MSE) has 

been so far the most popular criterion for system adaptation. However the optimality of 

second-order statistics depends heavily on the assumption of Gaussianity. Effectively, if 

the Probability Density Function (PDF) of the errors is not Gaussian distributed, there is 

information that is not being used to adapt the weights when the squared loss function is 

minimized. Although such assumptions provide successful engineering solutions to 

most practical problems, it has become evident that when dealing with nonlinear 

systems, a criterion that not only considers second-order statistics, but also takes into 

account higher order statistical behavior is rather desired.  

 

In this respect, Information Theoretic Learning (ITL) has been recently developed 

extending the concept of mean squared error adaptation to include information criteria 

[28]. ITL preserves the nonparametric nature of learning since the cost function is still 

directly estimated from the data, but it extracts more information from it, yielding to 

more accurate solutions than MSE, especially in non-Gaussian and nonlinear signal 

processing. Inspired by ITL thus two new criteria called respectively Minimum Error 

Entropy (MEE) and Maximum Correntropy Criterion (MCC) are proposed as 

alternatives to the MSE in order to guide the parameter’s adaptation process. A formal 

definition of MSE and the two ITL-based alternatives can be found in Appendix A. To 
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go further in the details of ITL-based cost functions will exceed the scope of this 

manuscript. For more details about the training and performance comparison on using 

both MSE and ITL-based cost functions the reader is referred to [28]. In addition, 

experimental results using the previous presented architectures can be found in 

references [29] and [30], which are also included in Appendix B as relevant publications 

of the author related with the doctoral thesis.  

 

Independently on the used cost function to be minimized/maximized, parameter’s 

optimization necessarily involves a search across the range of possible values for the 

parameters. This process is carried out throughout an iterative adjusting process in 

which the cost function is expected to return a better fitness value at each iteration. 

Typical algorithms to search in the parameter’s space are based on the direction marked 

by the gradient on the error surface.  

 

This is done by means of the chain rule, and the method is generally referred to as 

the back-propagation learning rule because the gradient vector is calculated in the 

direction opposite to the flow of the output of each node. In general, given certain cost 

function J(E) defined over the output error E, and a certain parameter α to be updated 

within an adaptive node of the network, then the general updating formula is 

 

∆𝛼 =  −𝜂
𝛿+𝐽(𝐸)
𝛿𝛼

 (4.9) 

 

in which η is the learning rate and δ+ refers to the order derivative as defined by 

Werbos [31]. The learning rate can be further expressed as  

 

𝜂 =  
𝜅

�∑ (𝛿𝐽(𝐸)
𝛿𝛼 )𝛼

2
 

(4.10) 

 

where κ is the step size, i.e. the length of each transition along the gradient direction 

in the parameter space. Note, on the other hand, in eq. (4.9) transition on the opposite 

direction of the gradient is performed, thus assuming the objective is the minimization 

of the cost function. For further discussion on parameter optimization in adaptive 

networks the reader is referred to excellent paper by Jang and Sun [32]. 
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However, these locally guided techniques often suffer from the problem of local 

minima. They also require of differentiable functions to be implemented within the 

adaptive nodes. To avoid the previous problems a different possibility is to use a global 

optimization approaches that also do not rely on the use of differentiable functions, such 

as for example, Genetic Algorithms (GAs).  

 

On this context, a global optimization process based on GAs is subsequently 

presented which is used to accomplish the parameter optimization task on the various 

FIS implemented within the system. As introduced in Chapter 3 (see subsection 

“Knowledge and intelligent systems in medicine”) GAs are search and optimization 

procedures that are based on the concepts of natural evolution including selection, 

crossover, mutation and survival of the fitness. GAs work with a population of N 

individuals, with each individual being a candidate solution of the problem. A new 

generation of solutions is then created from the old generation through genetic 

operations [33].  

 

When using GAs for optimization, and besides the choice of the appropriate fitness 

function, there are two important factors affecting the performance: the representation 

schema used for the individuals and the concrete implementation of the genetic 

operators. 

 

The representation schema describes the parameter structure of an individual, 

which regarding the structure of a FIS, it includes parameters of the fuzzy membership 

functions, fuzzy rules, node connectivity, and the encoding method used to convert an 

individual into a chromosome (i.e. the array of numerical values that represents the 

resulting FIS in the GA). In the used representation each fuzzy membership function is 

represented as float (real-coded) vector containing the parameters of the corresponding 

membership function (see Figure 4.18). The number of parameters varies according to 

the type of membership function, i.e. if the membership function is of Gaussian type, 

for example, then two genes are used encoding respectively the mean and the standard 

deviation that define the shape of the Gaussian, on the other hand, for example, if the 

membership function is of trapezoidal type, then four parameters are required to 

represent the trapezoid. A summary of the most popular membership functions and their 

corresponding parameters has been shown in Figure 4.2. The genes of the several 
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membership functions are then linked together as shown in Figure 4.18. The number of 

membership functions has been determined in the structure identification phase and it 

determines the length of the resulting part of the chromosome. If the NFIS structure 

comprises membership functions both at the input and at the output (as in the case of 

Mamdani-type FIS) then this representation is used among the input as well as over the 

output membership functions. 

 

 
Figure 4.18. Example showing genetic coding of the input fuzzy sets of an individual 

 

The representational schema used for coding the rulebase has also implicit the 

connectivity between the nodes. This is achieved by indexing the inputs and the outputs 

variables as well as keeping an implicit order between the different fuzzy sets within 

each fuzzy variable. To illustrate the process, and without loss of generality, let us 

consider the following Mamdani rule: 

 

If input1 is MF1 or input2 is not MF3, then output1 is MF2 (weight = 0.5) 

 

Assuming that there are m inputs and n outputs, then this rule is turned into a 

structure according to the following logic, where the first m vector entries of the rule 

structure correspond to inputs 1 through m: 
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• The entry in column 1 is the index number for the membership function 

associated with input 1 

• The entry in column 2 is the index number for the membership function 

associated with input 2, and so on (m times) 

• The NOT operator is represented by using a negative index. Also, it is 

possible to not use one of the feature elements in a rule. This situation is 

handled by assigning a value of “0” 

• The next n columns work the same way for the outputs 

• Column m+n+1 is the weight associated with that rule and column m+n+2 

specifies the connective used (for example, AND = 1 and OR = 2) 

 

According with the previous logic, the resulting vector associated with the 

preceding rule is: [1, -3, 2, 0.5, 2]. 

 

This coding procedure is repeated for each rule implemented in the system and the 

different vectors encoding each rule are concatenated. The initial number of rules Rinit is 

prefixed at the structure identification phase and it determines the length of the resulting 

part of the chromosome. On the other hand, dynamical search of the appropriate number 

of rules is allowed by considering a maximum number of rules Rmax ≥ Rinit and setting a 

configurable threshold value on the rule weight, such that rules with weight below the 

threshold value are not further considered to calculate the final output. In the case of the 

two previous adaptive networks, that do not implement Mamdani-type fuzzy rules, the 

representation is similar, omitting fuzzy output partitions from the representation, but 

rather including the consequent parameters for each Sugeno fuzzy rule in the regression 

architecture (see eq. 4.2), or the corresponding weight parameters (see eq. 4.6) for the 

case of the neuro-fuzzy classifier. 

 

With regard to the implementation of the genetic operators, the following are used 

within the proposed approach for NFIS modeling based on GAs: 

 

Selection operator chooses parents for the next generation based on their scaled 

values from the fitness scaling function. For this purpose, rank of the raw scores of each 
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individual is used, being the rank of an individual, its position in the sorted scores of the 

fitness function. Rank is then scaled, so that for an individual with rank n its scaled 

value is proportional to 1
√𝑛

. A stochastic selection function is then applied that lays out a 

line in which each parent corresponds to a section of the line of length proportional to 

its scaled value. The algorithm moves along the line in steps of equal size, and at each 

step, the algorithm allocates a parent from the section it lands on [34].  

 

Mutation operator specifies how the genetic algorithm makes small random 

changes among the individuals in the population to create mutation children. Mutation 

provides genetic diversity and enables the genetic algorithm to search a broader space. 

A hybrid adaptive feasible function is used that randomly generates directions that are 

adaptive with respect to the last successful or unsuccessful generation. The feasible 

region is bounded by constraints and inequality constraints set to fulfill integrity of the 

parameters. For example, when using triangular fuzzy sets, the following relation must 

hold a < b < c (see Figure 4.2). In this respect a step length is chosen along each 

direction so that linear constraints and bounds are satisfied [35]. For rulebase 

parameters, in contrast, the algorithm selects a fraction of the vector entries where each 

entry has a probability Raterulebase of being mutated. The algorithm then replaces each 

selected entry by a random number selected uniformly from the range for that entry. 

 

Crossover operator controls how the genetic algorithm combines two individuals, 

or parents, previously selected by the selection operator, to form a crossover child for 

the next generation. Scattered crossover is used in this respect that creates a random 

binary vector and selects the genes where the vector is a 1 from the first parent, and the 

genes where the vector is a 0 from the second parent. 

 

The preceding genetic operators have been used with independence of the concrete 

NFIS architecture. On the other hand, additional free parameters have still to be selected 

for each case, for example, regarding the number of individuals in the population, the 

maximum number of iterations, the choice of the fitness function or the proportion of 

crossover and mutation applied between consecutive generations. With regard to the 

choice of the fitness function, MSE and ITL-based cost functions (see Appendix A) are 

used as candidates. Appropriateness of choosing one, another, or a combination of both, 
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ultimately depends on the concrete application, and the reader was already encouraged 

to consult more specialized references in this respect such as [28]. Likewise, further 

discussion about NFIS optimization using GAs would exceed the introductory purpose 

of this chapter. The interested reader is again referred to consult the specific literature 

available at this respect, such as for example [36] or [37]. 

4.6. Summary of this chapter 
 

This chapter goes in depth into one fundamental technological framework over 

which the clinical decision support system object of this thesis is developed. Just as it 

was identified throughout the previous chapters, one of the main points of this thesis is 

that the success of a diagnostic system is strongly linked to its capabilities to both 

handle imprecise information and to make reasoning processes in environments affected 

by uncertainty. In this regard, it has been shown already how exact knowledge is quite 

unlikely in the human being, and also how this inaccuracy becomes apparent in the 

context of SAHS diagnosis. This, together with the necessity of expressing the results of 

the system on the basis of approximate linguistic labels, guide us to the use of artificial 

intelligence techniques being able to manage such kind of information. The fuzzy logic 

paradigm, for its characteristics expressed all over this chapter, looks especially suitable 

for accomplishing this task. Development of its theoretical framework and to show how 

it can be applied to model reasoning processes in the context of SAHS diagnosis 

justifies the inclusion of this chapter. 

 

The chapter starts by introducing fuzzy logic and its historical perspective. Fuzzy 

logic has its fundamentals in the theory of fuzzy sets, and its underlying procedures are 

developed subsequently, concluding that it is possible to establish an isomorphism 

between the operations in fuzzy logic and their equivalents in the field of classical 

formal logic. 

 

The chapter continues showing how an inference process can be established in 

fuzzy terms through the generalization of the classical inference mechanism of the 

Modus Ponens, yielding to the so-called Generalized Modus Ponens which is able to 

produce reasonings with imprecise facts, also establishing a mechanism for uncertainty 

propagation toward the new inferred facts. 
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A rule-based system is then introduced which as the method to exploit its 

knowledge base uses fuzzy inference. The reasoning process that would follow such a 

system is shown through an example applied to the diagnosis of SAHS. The 

generalization of this kind of systems, by incorporating learning capabilities and 

adaptation, is achieved through the use of neuro-fuzzy systems, whose particularities are 

described in the next part of the chapter. 

 

Once the general features of neuro-fuzzy systems have been enunciated, the chapter 

ends up by detailing concrete approximations for their modeling. Such approximations 

describe neuro-fuzzy modeling processes that have been developed for the 

implementation of the different fuzzy inference systems which are integrated in the 

proposed solution to support SAHS diagnosis. Next chapter is dedicated to the 

functional description of the developed system. Several signal processing and artificial 

intelligence techniques are detailed throughout its contents at this respect. However, 

since fuzzy modeling is not the main objective of the next chapter, it has been 

considered more convenient to proceed to its description here -thus abstracting 

underlying modeling details of the different integrating FIS from the contents of 

Chapter 5. 
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5. DESCRIPTION OF THE SYSTEM 

In this chapter functional description of the developed system is performed. 

Description starts from a software engineering perspective, making reference to the 

methodology used for its development, analyzing the requirements and making a brief 

description of the system from the architectonical point of view. In the following 

sections system’s construction is described regarding its design, and explaining and 

detailing how all its integrating modules work. In this respect the processing algorithms 

are described including, signal acquisition, artifact detection, analysis of the 

neurophysiological signals, processing of the respiratory signals, temporal data 

integration, reasoning mechanisms, detection and classification of the apneic events, 

and diagnosis generation. 

 

5.1. Development model 
 

The software process is defined as a framework for the tasks involved in the 

construction of high quality software [1]. The software process brings the basis for the 

control and management of the software projects, and it establishes the context in which 

the technical models are applied, working products are generated, fundamentals are 

established, quality is garanteed, and changes are appropiately accomplished [2]. 

 

To solve the problems that come up in a working environment, it is necessary to 

incorporate a process model or software engineering paradigm. Process models define a 

set of activities within the framework, a collection of tasks to accomplish each activity, 

working products generated as a consequence of the tasks, and a set of umbrella 

activities that accompany the whole process [2]. 
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There are several types of process models, each one adapts the best to the concrete 

characteristics of the software to be developed, such as time factors to execute the 

project, availability of human resources and materials, or the kind of software to be 

developed. There is not a unique ideal process, moreover, within the same company, 

several different processes can coexist. Some of the most popular are cited subsequently 

[1] [2]: 

 

• Waterfall model. It perceives the software process as a sequence of phases 

or states that start with the specification of requirements from the client, and 

it continues with the design, implementation and verification, ending up 

with the maintenance of the finished product. In the sequence, once 

definition of a state ends, the process continues toward the following state.  

 

• Evolutionary model. This approach intertwines activities of specification, 

development and validation. A first prototype is rapidly developed from 

abstract specifications. Then the prototype is refined in an evolutionary 

process ending up with a system that satisfies the necessities of the client. 

 

• Incremental model. Developing scaled sequences are applied as long as 

time advances. Each sequence of developing may involve a software model 

process, and at the end of such developing, a new software increment is 

produced [3]. The first increments are incomplete versions of the final 

product, but they offer full functionality over part of the initial 

requirements, thus producing an operational prototype with each increment. 

This process model is applied in situations in which the initial software 

requirements, even though well-defined, imply a global developing effort 

that excludes a purely linear process. 

 

• Development based on reusability. This model is based on the use of 

reusable components. The development process is then focused toward 

integration of these components more than starting development from the 

scratch. 
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• Spiral model. Proposed by Boehm [4], it is a generator of the process 

model guided by risks, which is used to conduct intensive systems of 

concurrent software engineering and with multiple users. It merges, in one 

hand, the cyclic approach for the incremental growing of the degree of 

definition and implementation of a system, while reducing the risk. On the 

other hand, a set of checking points are defined to ensure the compromise 

with the user in terms of feasible and mutually satisfactory solutions [5].  

 

With regard to the system object of this doctoral thesis the evolutionary model has 

been used. As it has been introduced, evolutionary model is based on the idea of 

developing of a first initial implementation, expose it to validation results, and refine it 

through different versions until an adequate system -according to validation and 

established requirements- is obtained (see Figure 5.1). 

 

 
Figure 5.1. Evolutionary model schema 

 

The choice of an evolutionary model is justified in the nature of the project under 

consideration, which is aimed at the development of a model of intelligent behavior and 

with a clear research orientation. In this manner, since expert knowledge is of heuristic 

nature, it is not possible to establish a detailed specification of the software aimed at its 

emulation. Specifically for the analysis of the PSG for SAHS diagnosis, reasoning 

processes from the experts involve extraction of relevant information from the signals 

which is difficult to model. Thus, an evolutionary perspective is considered the most 

suitable for the development of a system of such characteristics.  
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5.2. Requirement’s specification 
 

One fundamental question that needs to be answered before carrying out any 

development is if the system is of utility. It is very important to set from the beginning 

what is the problem to solve, who are the potential users of the system, and which is the 

expected impact of the system in the organization32. For this purpose it is necessary to 

carry out a requirement’s definition phase, and to determine the kind of problems to be 

solved or in which environments are they going to be executed. 

 

 Requirement’s specification phase in software consists in an abstract description of 

the services the system is expected to provide and the restrictions under which the 

system is supposed to work. According to the IEEE definition, software requirements 

can be classified in two categories: functional and non-functional. A functional 

requirement defines a function of a software system or its components. A function is 

described as a set of inputs, the behavior, and the obtained outputs. Functional 

requirements may be calculations, technical details, data manipulation and processing, 

and other specific functionality defining what a system is supposed to accomplish. On 

the other hand functional requirements are supported by non-functional requirements, 

which impose constraints on the design or implementation, such as performance 

requirements, security, reliability or usability. Non-functional requirements are also 

known as quality requirements [2]. In the following subsections an analysis of both 

functional and non-functional requirements of our system is carried out. 

5.2.1. Functional requirements 

In this section there are specified the set of services the user expects to obtain from 

the system. As it has been commented in the beginning of the chapter, in the context of 

research and modeling of expert knowledge, the former is not always easy to achieve.  

 

The diagnostic process in the sleep apnea-hypopnea syndrome is a complex task. At 

the time of determining if a patient suffers from SAHS, it is necessary to have into mind 

several factors. The ultimate objective, however, is to establish a particularized 

diagnosis that determines, as close as possible as the human expert does, if the patient 

                                                 
32 A system working correctly but not adapted to the way the users carry out their tasks will not have any 
value since it will not be used 
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suffers from the apneic syndrome, as well as to assess its associated severity and its 

concrete type. For that purpose, following the classical procedure described throughout 

Chapter 2, as well as the necessities and objectives identified during the introductory 

chapter, functional requirements of our system can be established. Each functional 

requirement can be described as a set of inputs, a behavior and outputs: 
 

• Construction of the hypnogram. An analysis of the neurophysiological 

activity should be performed in order to characterize patient’s sleep 

macrostructure. The previous provides of fundamental information to assess 

the sleep pattern of the patient and evaluate his/her sleep quality. It also 

serves as contextual framework to interpret the respiratory events. Input to 

this function involves the set of neurophysiological signals including EEG, 

EMG and EOG. As the output the hypnogram of the patient is obtained. 

 

• Detection of micro-arousal events. EEG arousals constitute one of the 

main indicators of disrupted sleep. Their appearance break up the normal 

sleep cycle and it therefore results in restless sleep. Appearance of micro 

arousals during sleep can be associated to a number of circumstances, but in 

apnea patients they are usually related with an apneic origin [6]. As a 

consequence, its detection and quantification results also of interest for the 

detection of the apneic event. Input to this function includes EEG and EMG 

signals. As an output the number and the temporal location of the arousal 

events is obtained.  

 

• Detection of apneic event intervals among the respiratory signals. 

According to AASM’s definition, apnea refers to a total respiratory absence, 

whereas in the case of periods of partial reduction the respiratory event is 

named hypopnea [7]. These reductions are mainly localized in the airflow 

signal; however, occurrence of the apneic event may also be reflected in the 

signals of thoracoabdominal respiratory movements. This situation suggests 

that the analysis for detection of apneic intervals should take into account 

this set of signals (airflow, and thoracoabdominal movements). After this 

analysis localization of apneic intervals among these signals is obtained as 

output. 
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• Analysis of behavior of the oxygen saturation signal. The system should 

accomplish the analysis of the SaO2 signal since, physiologically, the apneic 

event is associated with a drop in the oxygen concentration levels [8]. It is 

also a desirable requirement that the system was able to count the number of 

produced desaturations and resaturations, and to classify desaturations 

according to their associated reduction percentage. Characterization of SaO2 

signal is fundamental at the time of determining the SAHS severity in the 

patient [7]. Input to this function is the SaO2 signal; output includes 

detection and quantification of desaturation and resaturation intervals. 

 
• Apneic event interpretation. During sleeping the different respiratory 

signals are subject to both amplitude and frequency changes due to sleep 

phase changes, or because of contextual events such as a change in the 

sleeping position. In this regard, correct interpretation of the information 

obtained by the processing of the respiratory signals and the characterization 

of SaO2, should be performed in the context of the sleep structure and the 

remaining contextual information. Input to this function includes both 

neurophysiological and respiratory information as well as additional 

contextual information. As output apnea and hypopnea events occurring in 

the PSG are obtained, while false positives by context are discarded. 

 
• Classification of detected apneic events. For each individual detected 

event the system should be able to determine its class. This allows 

syndrome classification to be performed. Such a classification has to be 

done in the basis of information provided by signals of abdominal and 

thoracic respiratory movements, which bring evidence about presence or 

absence of respiratory effort during the occurrence of an apneic event. 

Therefore, output to this function comprises the classification of each apneic 

event previously detected as obstructive, central or mixed.  

 
• Calculation of significant numerical parameters. Throughout the whole 

analysis process, several parameters and indexes result of interest at the time 

of evaluating the presence of SAHS in the patient, and if it is the case, the 

corresponding associated severity. A list of AASM recommended 
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parameters to be reported for polysomnography can be found in [7] and are 

used as a guideline to conform the output to this function. Input involves 

quantitative information from all the detected events. 

 
• Issuing of final diagnosis and explanation of the results. As the final 

product of the integration of all the information, the system has to offer a 

particularized diagnosis concluding about the presence of SAHS in the 

patient, its type and its severity. It is important that the system was able to 

provide an explanation of its results, with a correct reasoning about them, so 

that allowing the clinician to adequately evaluate the diagnosis.   

 

5.2.2. Non-functional requirements 

 As previously introduced non-functional requirements should establish 

restrictions in the product under development, in the developing process itself and also 

with regard to additional specific restrictions the product may have. A good definition 

of non-functional requirement is provided by Thayer [9]: it is a software requirement 

that describes not what the software will do, but how it will do it. A typical example of 

non-functional requirements is performance. Non-functional requirements are 

sometimes difficult to be objectively verified and therefore they are often evaluated 

subjectively. They are also usually associated with the concept of software usability. 

 

In our case, success of the system depends on several factors, not just in the 

capability to correctly detect and classify the apneic events and to obtain a correct 

diagnosis. The following non-functional requirements should be considered during the 

development of the system:  
 

• Ease of use. It has to be taken into account that it is about the development 

of a tool to help the clinician, for which managing of the resulting system 

should not overpass technical capabilities of the final user. The opposite 

situation might imply the rejection of the system. 
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• Performance. One of the main objectives of the software is to reduce the 

diagnostic time necessary for each patient. In this respect analysis time per 

recording should be minimized as much as possible and, in any case, it 

should never be higher than analysis time for manual revision from the part 

of the clinician. 

 
• Natural interaction. System-clinician interaction has to be as natural as 

possible, without introducing unnecessary complexity to the analysis 

process of the PSG. It is also important to carry out the interaction in a 

language as close as possible to the own language of the clinician. It is the 

objective to develop a tool that is used by the clinician, not by the engineer.  

 
• Tidy presentation of the results. System’s results should be presented in a 

systematic and organized manner. When data volume is high then 

presentation of an integrated version is essential. In this compact report, the 

most relevant information is summarized allowing the user to breakdown 

the different items of interest at each time. 

 
• Flexibility of the system. Since physiological signals that constitute the 

input to the system come from a hardware acquisition device, it would be a 

desirable requirement that the system was able to operate over data coming 

from the maximum possible number of recording devices. Therefore, the 

analysis could be performed independently of particularities of the 

acquisition device. Flexibility must be also understood at the time of 

presenting results of the analysis. In this respect we search for a system 

avoiding categorical results as much as possible, but providing of weighted 

level of confidence over each possible hypothesis. 

 
• Extensibility and modifiability. System’s design should be modular so that 

the different components can be easily exchanged. This requirement is 

important in a context of research and within an evolutionary life cycle. In 

this regard incremental design of the system is facilitated as well as the 

possibility to perform continuous improvement over the analysis algorithms. 
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5.3. System’s architecture 
 

In the introduction of this chapter it has been justified the use of an evolutionary 

developing model, mainly because of the inherent difficulties to the design of a model 

of intelligent behavior. The key to the success of this development methodology lies on 

the use of techniques allowing modification of the system, thus changes can be 

incorporated and tested as soon as possible [1] [2]. 

  

The above requirement has to be taken into account during the development stage, 

and it is reflected in the architecture of the system, which is highly modular. In this 

respect it is feasible the identification and the modification of each one of the tasks that 

the system carries out, as well as the incorporation of new ones. An architectonical 

schema of the proposed system including the main modules is depicted in Figure 5.2. 

 
 

 
Figure 5.2. Architecture of the system 

 
 

As it can be seen from Figure 5.2 functionality of the system is organized into 

several interconnected modules. Each module is in charge of specific functions within 

the analysis process. Input to the system is given from a digitalized polysomnographic 

recording containing raw physiological signals from the patient. Currently, data format 
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used by the system is EDF which is the de-factor standard for PSG digital recordings 

[10]. Data is then fed into the system for its analysis throughout the different processing 

modules and a SAHS diagnosis is obtained as the output.  

 

There are two well differentiated groups of modules: (i) those specialized in the 

analysis of the respiratory activity and (ii) those specialized in the processing of 

neurophysiological activity. Within each major group integrating submodules are in 

charge of different specific subtasks. Respiratory analysis is structured into three 

submodules for the identification of apneic intervals, characterization of SaO2 signal 

and analysis of the respiratory effort. On the other hand neurophysiological analysis is 

organized into seven modules: Three are responsible for cerebral activity 

characterization, eye movements’ detection and muscle tone analysis. This information 

is then fed to the module in charge of obtaining patient’s hypnogram. Other three 

additional modules deal with the detection of transient events including micro-arousals, 

sleep spindles and K-complexes. These two last (sleep spindles and K-complexes) are 

also used for the generation of the hypnogram. 

 

The whole analysis process is concurrently assisted by functionality of artifact 

detection, temporal information correlation and reasoning modules. These are organized 

as general supporting modules, since they do not belong to a specific task but intervene 

at different time instants supporting remaining modules. For example, temporal 

correlation processes occur both for relating individual events among the 

neurophysiological signals to detect micro-arousals and for the correlation of respiratory 

events for the detection of apneic patterns (APs). Artifact detection and fuzzy reasoning 

processes also intercede at several stages throughout the analysis cycle. 

 

In the following sections detailed functionality of the proposed system is carried 

out. To that purpose, and due to interoperability between modules in the architecture, an 

information flow perspective is preferred to the description of each module separately. 

In this respect the different analysis tasks are described in the same way the system 

operates.  

 

Firstly, description of inputs to the system and some considerations regarding the 

artifact detection approach are discussed. Once the signals have been acquired by the 
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system, analysis of neurophysiological activity follows. Description starts by detailing 

developed approaches for the detection of transient events related to these signals. 

Methods for detection of micro-arousals in the EEG are firstly described. After that, 

implemented algorithms for the detection of sleep spindles and K-complexes are 

discussed. Both sleep spindles and K-complexes are then used as inputs for the 

hypnogram generation task which is subsequently discussed. This task additionally 

involves analysis procedures for the characterization of cerebral activity, eye 

movements and muscle tone. 

 

After neurophysiological processing methods have been discussed, analysis 

continues among respiratory signals. Preprocessing algorithms for the setting-up of the 

signals are firstly applied. The objective is to detect and repair –if possible- artifacts 

causing overflow and loss of focus in the signals. After that, analysis of airflow and 

respiratory movements is performed for detection of possible apneic intervals. 

Procedure for the characterization of SaO2 signal is finally described which objective is 

to localize desaturation and resaturation intervals. 

 

All the previous information coming from the neurophysiological and the 

respiratory analyses is then integrated in time in order to form diagnostic patterns –also 

referred as apneic patterns (APs). Apneic patterns represent pieces of information 

composed of several different events related in time. In this manner we allow 

interpretation of apneic events by considering all the possible sources of evidence. 

Reasoning processes are then conducted in order to identify the actual apneic events, i.e. 

to detect apneas and hypopneas throughout the PSG. Next step in the analysis involves 

classification of previous detected events according to their corresponding type 

(obstructive, central or mixed) for which an analysis of the respiratory effort is carried 

out involving thoracic and abdominal derivations. 

 

Final step in the description comprises evaluation of data output from signal 

analyses, which is afterwards considered in order to compute significant numerical 

parameters and indexes to issue the final diagnosis.  
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5.4. Description of the inputs 
 

As it has been described in the architectonical schema, input information to the 

system consists of the digitalized signals acquired during PSG examination. However, 

in addition to the physiological signals, also contextual information constitutes a direct 

input necessary for the correct interpretation of patient’s biosignals. Such contextual 

information can be classified according to two different categories: static contextual 

information and dynamical contextual information. 

 

Static contextual information mainly involves physical and demographic data from 

the patient. Such information is usually taken from the clinical records or it is acquired 

by the clinician during an interview with the patient. In most of the cases this 

information is decisive for the polysomnographic prescription. 

 

Dynamical contextual information refers to that depending on a concrete instant of 

time in the PSG. It comes from the recording of environment variables during at the 

time of the PSG, as they are patient’s body position during sleep, state of ambient lights 

or the recording of the acoustic snore signal. Also within this category, for example, 

might be considered the information coming from the sequence of sleep phases of the 

patient. However, it has to be taken into account that this dynamical contextual 

information is precisely derived from the trend of a subset of signals in the 

polysomnographic recording. In this respect, there is derived or inferred information 

and, therefore, it does not constitute a direct input to the system but it is taken into 

account in consecutive stages of interpretation. 

 

Digitalization process of the physiological signals included in the PSG is carried 

out through a monitoring system. This monitoring system acts as a whole as a 

transducer that transforms physical measures, by means of the corresponding sensors, 

and through an analog-to-digital (A/D) conversion process, into the digitalized signals. 

The physical monitoring system is often a commercial hardware device. This can 

represent an inconvenient at the level of non-functional requirements (see subsection 

“System’s requirements”), since potentially, each commercial system may use its own 

digital data format. In this sense it is desirable a system to be flexible, so that 
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information treatment can be isolated as much as possible from how this is presented to 

the system. Therefore, the objective is to achieve a system being as independent as 

possible from the concrete hardware for data acquisition. The use of a standard format 

for the digital representation of the polysomnographic recordings should help to solve 

this problem in a great extent. Accordingly many efforts have been made for the 

elaboration of standard formats for the representation of biomedical signals. In this line 

the European Data Format (EDF) stands out as the result of an effort for the 

standardization of a simple and flexible format for the storage and exchange of multi-

channel physical and biological signals. EDF is an open and free format and its 

description and their specifications are published in [10] and accessible from the web 

[11]. From 1992 this format has popularized and it has become one of the main formats 

for acquisition, storage and exchange of digital PSGs, both for commercial equipments 

as well as for multi-center research projects.  

 

The proposed system assumes input of digitalized data (both signals and contextual 

information) to be in EDF format. It is also interesting to stress that EDF counts with 

the support of several toolkits, also open, which allow conversion from several data 

formats to EDF and vice versa. To cite one, the project BioSig [12] for example, offers 

an open-source library for the processing of biomedical signals which, in addition to 

other features, provides support for data acquisition. BioSig provides of a common 

function calling interface that abstracts acquisition from the concrete format in which 

data have been digitalized. This interface implements support for several digital formats 

of biomedical signals, among them EDF, allowing conversion from one format to 

another. 

 

The use of a standard format such as EDF, in combination with available toolkits 

that facilitate data conversion offers, in part, a solution to the problem of format 

diversification. However, the problem of proprietary format is still inevitable since new 

formats continuously appear. Ultimately, the creation of a translator from new 

unsupported formats to EDF may be necessary in these cases. On the other hand, it is 

interesting to stress that nowadays the great majority of the proprietary software in the 

market includes the option to export its format to EDF. 
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Besides the digitalization format, another important factor that has to bear in mind 

when dealing with data acquisition is specifications and requirements for signal 

monitoring. These include the number and types of derivations to be used for each 

signal, its sampling rate, the number of bits per sample, or its dynamical range. These 

specifications may also be susceptible of interpretation with regard to the sleep lab’s 

background or the concrete expert that carries out the polysomnography, existing 

different recommendations and schools of thought. In this respect, and in an effort to 

promote an standard on these and additional requirements, the AASM has recently 

(2007) published a manual that collects the recommendations, procedures and 

specifications at the time of recording the signals involved in the sleep diagnosis 

through the PSG [7]. Specifications picked up in the AASM manual are aimed at 

updating and substituting the former rules proposed by Allan Rechtschaffen and 

Anthony Kales in 1968 [13]. The main objective is the standardization and the 

unification of terms and definitions used worldwide for recording of PSG. In practice, 

however, convergence will still take several years, among other circumstances, because 

it implies substitution of the hardware monitoring devices at the hospitals that do not 

fulfill with the proposed specifications, as well as training of current personnel in the 

new protocols. Because of this, nowadays standardization of the monitoring protocol is 

not yet a reality. 

 

All the above mentioned greatly determines the development of analysis software, 

making it dependent on the set of available signals. In this respect, for example, if the 

montage does not include derivations for the recording of the thoracic or abdominal 

movements, then it would not be possible to perform the classification of the apneic 

events; at least, not directly by following the standard recommended procedures. 

 

Subsequently, Table 5.1 shows a description of the set of signals used as the input 

for the developed system. Consequently, the system works in the basis of such 

configuration by extracting the corresponding set of signals from the given EDF file. 

The concrete set of signals as well as their respective configuration lies in the montage 

of the standard reference that has been used for the validation of the developed system 

(see Chapter 6, “Design of validation tests”). Input acquisition module can deal with 

variations in the amplitude –dynamical range- or in the sampling rate of the signals. In 

this respect, scaling and resampling operations can be applied in the case of being 
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necessary, and allowing the user to modify input configuration of the system. On the 

other hand, as stated before, if the available set of signals varies, then partial 

readaptation of the analysis algorithms should be performed to adapt them to the new 

input set. 
  

Table 5.1. Specification of input signals to the system according to the available PSG database 

Respiratory signals 

Signal Derivation/cannel Sampling 
rate Comments 

Airflow Thermistor 10 Hz Amplitude normalized to [-1,1] 
Oxygen saturation 
(SaO2) Finger pulse oximetry 1 Hz Expressed in saturation 

percentage (%) [0,100] 
Abdominal respiration Inductive plethysmography 10 Hz Amplitude normalized to [-1,1] 
Thoracic respiration Inductive plethysmography 10 Hz Amplitude normalized to [-1,1] 

Neurophysiological signals 
Electroencephalogram 
(EEG) 

C4/A1 125 Hz Amplitude in µV [-125,125] 
C3/A2 125 Hz Amplitude in µV [-125,125] 

Electromyogram (EMG) Submental 125 Hz Amplitude in µV [-31.5,31.5] 

Electrooculogram (EOG) Left 50 Hz Amplitude in µV [-125,125] 
Right 50 Hz Amplitude in µV [-125,125] 

Additional signals 

Body position Mercury gauge sensor 1 Hz 

1 = Supine 
2 = Prone 
3 = Left lateral 
4 = Right lateral 

Lights recording Light sensor secured  
to the recording garment 1 Hz On / Off 

 

 
5.5. Handling of artifacts 
 

Measuring physical variables on a living being has associated several problems. 

Without the aim to be exhaustive the following can be cited: 

 

• Inaccessibility of variables to be measured 

• Data variability 

• Interaction between the physiological systems 

• Effects of the measuring transducer 

• Noise artifacts 

 

In medicine and in biology the term artifact refers to any component from a signal 

being strange or odd to the physical variable that it represents. In this manner there are 
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considered as artifacts, for example, the white noise generated by the measuring device, 

electrical (mains) interference, signal coupling, and in general, any unexpected variation 

in the signal. It has to be taken into account that because of the characteristics of 

biomedical signals, these normally present a high sensitivity to noise (low signal-to-

noise ratio). Especially among the polysomnographic signals, the set of 

neurophysiological signals (EEG, EOG and EMG) are the most sensitive, mainly 

because of their bandwidth and their low amplitude –usually in the scale of microvolts, 

which makes their recording quite a difficult task.  

 

Some of the above mentioned problems are partially overcome by the acquisition 

devices themselves, which before the A/D conversion usually apply analog filters to get 

rid of part of the noise; some of them even perform digital filtering once the signal has 

been digitalized.  

 

Movement is another important source of perturbations in the measurement of 

physiological variables of a living being, which rarely can be solved by filtering 

techniques. Movement causes the displacement of the sensors and of the recording 

device itself generating variations in the recording of the signals by the transducer. On 

other occasions, bad calibration of the measuring device may generate signal overflow 

causing incorrect measures on the extreme values. Overflow artifacts can also be caused 

by other artifacts such as transient interferences or movements of the patient.  

 

In any case, all these situations, since not avoidable, should be detected and 

corrected as much as possible. However, at the same time, fixing of the detected 

artifacts should be carefully done since an excessive or incorrect filtering may cause the 

removing or alteration of relevant information. In general, establishing the limit on what 

is a spurious value and what is not is not a trivial task. 

 

All these kinds of situations make of physiological signal acquisition and setting up 

to be delicate processes, and turns artifact detection to be a fundamental task within the 

analysis cycle. 

 

It is for this reason that in the developed system artifact detection is conceived as a 

as a general supporting process (see architectonical design at subsection “System’s 
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architecture”) that has to act on different fronts and with different strategies during the 

whole analysis process. Each concrete artifact detection strategy has to be applied at the 

correct time, and depending on the specific kind of artifacts present at the corresponding 

level. Some of the artifacts handling strategies used throughout the analysis cycle are 

now cited from a general point of view. The following are described later on in more 

detail when carrying out the description of the corresponding analysis phases where 

they are implemented:    

 

• From the point of view of signal conditioning, it is necessary the use of 

digital filters to reduce noise effects. As it has been pointed out, this task is 

especially important in the set of neurophysiological signals (EEG, EMG, 

EOG) although the use of proper filtering is also performed over the set of 

respiratory signals when necessary.  

 

• Artifact detection due to situations of signal overflow as well as in the case 

of a loss of focus is treated specifically. In these cases artifact marking and 

classification is done, and signal reconstruction is performed where 

possible. 

 
• Intervals with possible spurious values are detected and marked in the case 

of either (1) a body movement of the patient during sleep or (2) signal 

coupling from one channel to another. 

 
• From a reasoning perspective, the set of previously detected artifacts are 

taken into account in conjunction with information coming from contextual 

signals in order to provide of an integrated interpretation of the set of 

significant events detected over the biological signals. In this respect, apneic 

patterns can be interpreted in the context of artifacts occurrence and refine 

the results of the analysis by discarding false positives.  
 

  



Diagnosis of the Sleep Apnea-Hypopnea Syndrome: a comprehensive approach through a system to 
support medical decision 
 

186 
 

5.6. Analysis of neurophysiological signals 
 

Although sleep analysis might be considered as a general and independent process, 

not necessarily bounded to the diagnosis of SAHS, analysis of the sleep structure is a 

very important task at the time of evaluating the polysomnographic recording. 

Diagnosis of SAHS is not an exception, and in this regard, any event detected in the 

recording must be considered in the context of all the signals that integrate the PSG, and 

not just in the signal (or signals) in which it has been detected. 

 

In the case of SAHS, for example, it is known that the apneic events often are 

produced with more frequency during deep sleep (N3) or REM sleep [14]. On the other 

hand, a significant reduction in the airflow that might be pointing out to an apneic event, 

should be considered a false positive or an artifact if the patient is awake (W), and 

consequently it should be discarded. It is also known that when respiratory activity 

significantly decreases, it is common that the patient undergoes a brief alertness state 

that causes the transition from deep sleep to light sleep (N1 or N2). In fact, the more 

apneic events occurring during sleep, the more fragmented the sleep cycle of the patient 

[15]. These previous examples point out to some of the reasons for which correct 

interpretation of the detected apneic intervals in the context of the sleep structure, turns 

to be of extreme importance for a correct diagnosis of the syndrome.  

 

Analysis of sleep structure comprises the set of so-called neurophysiological 

signals that includes EEG, EOG and EMG. Specifically, in the scope of the developed 

system, such an analysis pursues a dual objective: (i) determination of the characteristic 

events from the sleep microstructure such as EEG micro-arousals, K-Complexes and 

sleep spindles, and (ii) construction of the sleep map of the patient or hypnogram. The 

former helps the temporal localization of specific events which, as in the case of EEG 

arousals, may be useful even for the localization of apneic events. This happens since 

occurrence of both apneic events and EEG arousals has, in many cases, a cause-effect 

relationship (the apneic event triggers an EEG arousal) [16]. On the other hand, 

construction of the hypnogram that –among other things- also depends on the detection 

of microstructure events such as sleep spindles or K-Complexes, serves as a context for 

the interpretation of the apneic event with regard to the sleep state of the patient. This 
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allows the scorer to sometimes confirm and sometimes discard –depending on the 

concrete sleep state- the possible occurrence of the apneic event. 

 

In what follows a set of algorithms are discussed to be used for determination of the 

above mentioned items of information. Methods are based on the application of several 

signal processing and artificial intelligence techniques which are subsequently 

described.    

5.6.1. Identification of EEG arousals 

As it has been outlined in the previous subsection, in SAHS and as a consequence 

of hypoventilation associated to the occurrence of the apneic event, a decrease in the 

oxygen concentration levels in blood is produced. This lack of oxygen usually triggers a 

response in form of alert that, when produced during sleep, is known with the name of 

EEG micro-arousal. As the name suggests, the previous term of micro-arousal does not 

necessarily reflect a total awakening of the subject33. It should be rather understood at 

the level of sleep microstructure, and most of the times, it implies a change from a 

deeper sleep state in the patient to a lighter sleep phase. Occurrence of EEG arousals, on 

the other hand, is not always associated with an apneic origin, and it can be produced by 

other causes. In any case, whether the origin is, it is an indicator of disrupted sleep and 

therefore its detection is a good marker for the assessment of the sleep quality. 

 

According to the AASM, an electroencephalographic arousal during sleep is 

defined as an abrupt shift in the EEG frequency including alpha, theta and/or 

frequencies greater than 16 Hz (but not spindles), that lasts at least 3 seconds and with 

at least 10 seconds of previous stable sleep [7]. Normal sleep architecture is altered by 

the presence of these events, and the sleep fragmentation they cause is one of the main 

reasons for the daytime sleepiness associated with a number of sleep disorders. 

Therefore, localization of these events is important, not just for the diagnosis of SAHS, 

but for the sleep studies in general. For scoring arousals at least one central derivation 

of EEG needs to be recorded. Arousal scoring can also incorporate information from the 

occipital region. In addition, the scoring of arousals during the REM phase requires of a 

concurrent increase in the submental EMG lasting for at least 1 second [7].  

 
                                                 
33 Although it happens with a certain frequency 
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As a growing area of interest, a number of studies have been published in the recent 

years regarding automatic identification of EEG arousals. For example, in Cho et al. 

[17], a SVM performs a classification over a signal obtained from the C3/A2 derivation. 

Another method which also uses just one EEG derivation is the one proposed by 

Gouveia et al. [18]. However, these approaches have an intrinsic inconvenience because 

in accordance with medical standards, detection of EEG arousals during phase REM 

requires the inclusion of the EMG in the analysis. Other studies have focused more on 

alternative procedures centered on the use of indirect measurements for the detection –

without using the EEG signal- such as heart rate variability [19] or peripheral arterial 

information [20] [21]. A drawback of these methods is again that they do not follow 

methodology of the standard clinical process.  

 

Working on multi-channel data is a more complicated problem since one has to 

deal with the time correlation of the information from each individual signal. The 

proposal of Agarwal [22] is based on the analysis of the alpha and beta frequency bands 

over two derivations of EEG. Candidate parameters are then selected through a 

statistical analysis process. Although two EEG derivations are used on this work, the 

absence of the EMG channel makes it susceptible of the exposed limitations regarding 

event detection within REM stage. It is important to remark that in the same work it is 

pointed out to the high degree of discrepancy existent between different experts, as one 

of the main obstacles preventing the method to obtain better results. The work of De 

Carli et al. [23] refers to a method for the automatic detection of arousals based on 

wavelet analysis. The algorithm handles two EEG derivations and one from the EMG, 

and after feature extraction, the weighted average is taken on the overlapping events. 

More recently, Sugi et al. have reported a method for the detection of arousals in multi-

channel data for the case of the sleep apnea syndrome [24]. The previous studies base 

their decision of the presence of the event upon the value of the extracted features, 

exceeding or not, certain established thresholds. Finally, the work of Shmiel et al. [25] 

should also be mentioned, proposing the use of data mining techniques for the 

extraction of the implicit patterns on several signals to perform the detection. 

 

In the following the proposed method to detect EEG arousals within our system is 

presented. In this respect several methods and techniques from the machine learning 



5. Description of the system 
 

189 
 

field are studied in order to investigate their applicability within the method. The work 

developed in this area is structured in several parts:  

 
• Firstly, a method to perform automatic detection of EEG arousals in patients 

with SAHS is presented. This method is at the same time subdivided in 

three stages:  

  
1. A first stage of signal analysis in the time and in the frequency 

domains, in which a series of events are obtained from the raw 

signals of the patient.  

 
2. From previous detected events a number of features are extracted. 

Events are then related in time in order to construct characteristic 

patterns representing possible evidence of arousal in the recording. 

Adding features from the different events a total of 42 features 

define each characteristic pattern.  

 
3. The set of characteristic patterns previously found constitute a 

dataset. Several machine learning models acting as classifiers are 

then trained and compared to determine the best model. The 

objective is to achieve the best discrimination in order to detect EEG 

arousals from the dataset. 

  
• After the best machine learning model has been obtained to act as classifier 

within the global method, a study on feature selection methods is scheduled. 

The objective is to try to reduce the number of necessary features while 

maintaining good performance of the classifier. Several feature selection 

techniques based on both filters and wrappers are studied at this respect.  
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A method to detect EEG arousals using machine learning models 

 

In accordance with available inputs to our system (see Table 5.1 in section 

“Description of the inputs”), the proposed method works with three signals: both EEG 

C3/A2 and C4/A1 central derivations, and submental EMG, all sampled at 125 Hz. 

 

Following a similar approach to a physician examining the recording, the method 

firstly looks for individual events occurring on each separate channel. A first stage of 

signal analysis, (both amplitude and frequency based) is carried out for this purpose 

extracting features from the patient’s recorded biosignals. Once events are marked 

separately in each signal, a set of temporal rules are applied in order to group them in 

terms of characteristic patterns. These patterns represent (characterize) a time interval 

in the PSG where possible arousal events occur. In order to make the final decision on 

the presence of the arousal, the set of features contained in the pattern are fed into a two 

step classification phase. A number of machine learning models are compared for this 

purpose, including Fisher’s linear and quadratic discriminators, Support Vector 

Machines (SVM) and Artificial Neural Networks (ANN). 

 

1) Processing of EEG and EMG signals 

 

In the first phase, the signal processing occurs in the three signals in a similar 

fashion, taking two moving windows over each channel. These two temporal windows 

are used to compare consecutive temporal segments representing the past and the future 

related to the current instant of time under analysis. This process is accomplished for 

each second of the signals.  

 

In the case of EEGs, for every second and going back from the corresponding 

sample, a 10-second window is used to represent the prior information, and immediately 

consecutive to it, a new 3-second window is used to compare the evolution of the signal 

against the former. As the definition of EEG arousal is based on the localization of an 

abrupt shift in EEG frequency, a frequency-based comparison between these two 

windows is performed. The chosen duration of each window is based on the idea that 

the EEG frequency shift must be 3 seconds -or greater- to be scored as an arousal, and 
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that a minimum of 10 seconds of intervening sleep is necessary to score a second 

arousal once the former is detected [7]. 

 
The frequency comparison of the two windows is made as follows:  

 
1. Each of the two segments is transformed into frequency domain making use 

of the Fourier Transform 

 
2. A band-pass filter is applied in the range 8-30 Hz, so that it includes 

frequency bands in the range of alpha (8-12 Hz) and beta (13-30 Hz). 

 
3. Power Spectral Density (PSD) is calculated over each filtered band 

according to the following formula: 

 

∑
=

=
N

n
nX

N bpPSD
1

2

2 )(1  (5.1) 

where N is the number of samples, Xbp(n) is the filtered signal in the 8-30 Hz band, 

and 1/N2 is a weighting value which allows comparing power between the two windows 

even though time length of each one differs34. Using equation (5.1) comparison of the 

corresponding power values (their ratio Φ) on the two windows is performed, and a 

scalar magnitude is obtained which represents the frequency shift within the band. 

Repeating this procedure throughout the two EEG channels, a new signal ΦPSDα,β(n) (1 

Hz resolution) is obtained for each EEG channel. This signal is normalized to the range 

[-1,1], growing wherever the evidence of a shift in the EEG frequency in the alpha and 

beta range occurs, decreasing as the evidence disappears (see Figure 5.3). The use of a 

change in the alpha-beta range as a continuous marker for the sleep depth (and hence 

good evidence for the occurrence of arousal events) seemed also to be a good approach 

as suggested by Asyali et al. [26]. This supports the use of the 8-30 Hz band as a valid 

marker for the localization of arousals. 

 
Taking this ΦPSDα,β(n) signal (which is centered in zero) those intervals in the 

EEG surpassing the zero value are marked. These intervals, which are considered to be 

                                                 
34 Recall that we are comparing two temporal windows, one of duration 10 seconds and the other with 
duration 3 seconds 
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indicative of the possible presence of an EEG arousal, are considered later on when 

searching for arousal patterns -characteristic patterns (see Figure 5.3). 

 

 
Figure 5.3. Example of a EEG derivation during signal processing. In the figure one minute of EEG 
signal with amplitude normalized to the interval [-1,1] is shown. Signal ΦPSDα,β(n) is superimposed and 
events are marked where this signal is above zero 

 

Although the possible events are marked by the above-mentioned procedure, (based 

on shifts in the band of 8-30 Hz), a similar process is done individually for the delta 

(0.5-3 Hz), theta (4-7 Hz), alpha (8-12 Hz), beta (13-30 Hz) and sigma (12-14 Hz) 

bands. These frequency bands are the most relevant ones in the case of sleep studies 

[13]. In this way, an evolution of the different relevant frequencies over time is 

individually obtained. Thus, once a possible event is detected with the 8-30 Hz marker, 

information from these individual signals is also available, which is also used for the 

extraction of relevant features. These features are afterwards used in a subsequent stage 

to train the classifiers.  

 
In the case of the EMG signal, searching for possible events is performed in a 

similar way, shifting two moving windows. As it was the case for EEG, processing is 

done second-by-second. In this case the first moving window, which represents past 

history of the signal, has duration of 30 seconds, whereas the window representing 

future information has duration of 3 seconds. This time the values are chosen 

empirically, since the normative does not specify minimum required duration for the 

muscular event. In the case of EMG, the objective is to detect increases in the amplitude 

of the signal. To achieve this, a comparison between the amplitudes of the two windows 

is performed, in contrast to the frequency-based analysis performed in the case of the 

EEG. 
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Similarly, the result of applying this comparison throughout the entire signal is a 

new signal a(n) of 1 Hz resolution. The dynamic range of a(n) is also contained in the 

interval [-1,1], increasing when the amplitude of the EMG signal grows, and decreasing 

when reduction in the amplitude occurs. Analogously, intervals of EMG in which 

a(n)>0 are marked as the possible events (see Figure 5.4). 

 

 
Figure 5.4. Example of EMG signal during signal processing. In the figure one minute of EMG signal 
with amplitude normalized to the interval [-1,1]  is shown. Signal a(n) is superimposed and events are 
marked where this signal is above zero 

 
After the signal processing stage for the marking of individual events35, features are 

extracted from the corresponding intervals. These features are subsequently used in 

order to construct arousal patterns. The set of extracted features is summarized in Table 

5.2. In Table 5.2 ΦPSDα(n), ΦPSDβ(n), ΦPSDθ(n), ΦPSDδ(n) and ΦPSDσ(n) reference 

the ratio of power values between the two moving windows at time n, and for each 

individual frequency range (respectively, alpha, beta, gamma, delta y sigma). 

 
  

                                                 
35 Indicators of possible evidences for the detection of arousals 
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Table 5.2. Features extracted from possible events detected in EEGs and EMG used for pattern 
construction 

Source signal Feature number Description 
(a) Features from the signals 

EEG C3/A2 

1 Area of alpha-beta marker ΦPSDα,β(n) over the 
threshold 

2 Maximum value of ΦPSDα,β(n) during the possible 
event 

3 Duration of the possible event 

4,5,6,7,8 
Area of ΦPSDα(n), ΦPSDβ(n), ΦPSDθ(n), 
ΦPSDδ(n) and ΦPSDσ(n) over the threshold 

9,10,11,12,13 
Maximum value of ΦPSDα(n), ΦPSDβ(n), 
ΦPSDθ(n), ΦPSDδ(n) and ΦPSDσ(n) during the 
possible event 

14,15,16,17,18 
Minimum value of ΦPSDα(n), ΦPSDβ(n), 
ΦPSDθ(n), ΦPSDδ(n) and ΦPSDσ(n) during the 
possible event 

EEG C4/A1 

19 Area of alpha-beta marker ΦPSDα,β(n) over the 
threshold 

20 Maximum value of ΦPSDα,β(n) during the possible 
event 

21 Duration of the possible event 

22,23,24,25,26 
Area of ΦPSDα(n), ΦPSDβ(n), ΦPSDθ(n), 
ΦPSDδ(n) and ΦPSDσ(n) over the threshold 

27,28,29,30,31 
Maximum value of ΦPSDα(n), ΦPSDβ(n), 
ΦPSDθ(n), ΦPSDδ(n) and ΦPSDσ(n) during the 
possible event 

32,33,34,35,36 
Minimum value of ΦPSDα(n), ΦPSDβ(n), 
ΦPSDθ(n), ΦPSDδ(n) and ΦPSDσ(n) during the 
possible event 

EMG 
37 Area of a(n) over the threshold 
38 Maximum value of a(n) during the possible event 
39 Duration of the possible event 

(b) Contextual features  

EEG (C3/A2 & 
C4/A1) and EMG  40,41,42 

Binary attributes indicating the existence or not of a 
marked event in the channels EEG (C3/A2 & 
C4/A1) and EMG respectively 

 
 

2) Construction of characteristic patterns 

 

Once events are localized along each single channel, the aim is to associate them, 

and to determine if they represent a pattern of clinical interest for the detection of an 

arousal. In this manner, a certain interval t in the PSG can be characterized using the 

information provided by the combined events. Eventually the objective is to see if the 

evidence carried by this characterizing pattern36 is enough to classify the corresponding 

                                                 
36 Formed by the aggregation of the individual events from the different signals 



5. Description of the system 
 

195 
 

interval as representing an actual EEG arousal event. Subsequently it is described a 

procedure to do so by using a machine learning classification approach. 

 

A classical problem of pattern classification by supervised learning can be 

represented as a 2-variable term <v,d>, where v is a vector of features which describes 

the example, and d is a label indicating the membership class or desired output. This 

term d is the one that guides the machine learning algorithm to fit the model parameters 

during the learning process, thus supervising the learning. 

 

However, in this case, one must also consider the time factor. This is not the case of 

a static problem, but a series of events occurring in a concrete instant of time. Moreover, 

although the physiological event (arousal) occurs isolated in a more or less precise time 

location t, the diagnostic process implies searching for evidence in all the three 

biomedical signals –the two EEGs and the EMG. This fact is not envisaged as being 

problematic for physicians, as experts are used to recognize the arousal through the 

observation of the independent evidence in the single signals over time. However it 

complicates the classification problem from the computational perspective. The initial 

problem of the classification of patterns of examples can be better represented as an 8-

variable term <v1,t1,v2,t2,v3,t3,t,d> where in a certain instant of time t, a physiological 

event takes place classified as d, and occurs due to three individual events represented 

by the three corresponding feature vectors v1,v2,v3 –EEG1, EEG2 and EMG-, and 

localized respectively in times t1, t2 and t3 (although certainly, in the environment of 

the time instant t). 

 

One possible solution for this problem comes through the reduction or the 

projection of the 8-variable problem into the classic 2-variable one. As stated before, a 

method based on the time association of the events is proposed at this respect. The 

process is outlined in Figure 5.5. Basically, it consists of grouping together those events 

happening –t1, t2, t3- related to a certain time interval t. This association can be 

physiologically interpreted as a period of time in the recording where the occurrence of 

an arousal event is possible. This group can then be represented by a unique feature 

vector resulting from the union of the 3 vectors v1, v2 and v3 included in the group. 

Supposing v1, v2 and v3 contain features v1 = {v11…v1n}, v2 = {v21…v2m} and v3 = 
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{v31…v3l} respectively, the resulting vector vf = {v11…v1n, v21…v2m, v31…v3l} is thus 

composed of n+m+l features.  

 

Each group, represented by the corresponding union vector, can be assigned with 

the label d (representing its desired output) by means of the temporal classification of 

the time interval t by the expert. To achieve this, the recording is segmented into 

classifiable intervals called epochs. Usually in the topic of sleep studies, a commonly 

used measure of time used for the epoch is 30 seconds. Location of an event 

unequivocally in one epoch can be made by using its midpoint [27]. 

 

 
Figure 5.5. In a certain period of time t, classified as d by the expert, evidence of the physiological event 
is seen by the presence of events in the three signals during times t1,t2 and t3. By grouping these events, a 
learning vector is constructed by uniting their respective features 

 
In the case whereby more than one event for the same signal is present in the same 

epoch, the association process is accomplished by using a set of relatively easy temporal 

constraints. For example, let us consider following the situation illustrated in Figure 5.6. 

If an EMG event is present, the event is grouped with those from EEGs which 

midpoints are the closest to the midpoint of the EMG event. In Figure 5.6, epoch C 

shows that the events which relate the best are V11C and V21C, because of their 

proximity to the EMG event (V31C). In a different situation where V12C were the 

closest to V31C instead of V11C, the latter would be left aside and V12C would be the 

event integrated in the group. Alternatively, if no EMG event is present over a certain 

period of time, those events with the highest difference between their respective beta 

and delta energy shifts are chosen (Figure 5.6, epoch A)  
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As it can be appreciated in Figure 5.6 (epochs A and B), there are not always events 

available on the three channels, i.e. three events cannot be included in a group. When 

this happens, special values indicating the absence37, are assigned to the corresponding 

position of the feature vector that represents the arousal pattern. When a missing value 

is present, the value in the corresponding feature is set to zero. Taking into account that 

signal domain is within the range [-1,1], zero points out to the absence of evidence, 

either positive (0,1] or negative [-1,0), with respect to the corresponding feature. 

 

 

 
Figure 5.6. Event’s association; any possible event detected in the signals is assigned to an epoch based in 
its midpoint. Then for each epoch, all possible events assigned are selected and grouped based on 
temporal constraints. Each group is surrounded with a square. The desired output is then constructed 
based on expert annotations for this epoch. Note: In this example we are assuming that the event V22A 
has a larger difference between beta and delta frequencies than V21A 

 

In addition, during the process for the construction of the characterizing patterns, 

besides the features previously extracted and detailed in Table 5.2, three more are 

added. They are referred as contextual features and its description is summarized in 

Table 5.2(b). These features reflect the presence or the absence of an event in a channel, 

by properly setting the value of the corresponding binary feature. Therefore one expects 

the machine learning algorithm to be able to extract information on the missing values, 

not only by the values on the features themselves, but also using these contextual 

features. 

 

                                                 
37 Missing values 
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Finally there is the possibility whereby no event is detected in any of the single 

channels; should this occur, no arousal pattern is constructed for the corresponding 

epoch, this epoch being directly discarded as having any presence of an arousal event. 

 
It has to be mentioned that the previous set of temporal constraints is actually an 

ad-hoc method. It is not claimed to be a clinical procedure, but it is empirically based 

on the observation related to the expert’s annotation of the events in the recording. The 

ultimate objective is to relate the output events from the signal processing phase in 

order to form the so-called characterizing patterns, and to construct a set of learning 

patterns. More information on the temporal issues related to diagnosis in sleep studies 

from a knowledge-based approach can be found in [28]. 

 

As the output of this process, for each epoch of the recording (in which at least one 

single event is present) a feature vector v representing the evidence of an arousal event 

in the corresponding time interval is obtained, as well as the desired output d extracted 

from an expert’s classification of the epoch. The whole set of patterns constructed by 

this procedure is then used in the subsequent classification phase to compare the 

precision of different machine learning models analyzed. 

 

3) Classification stage 

 

A comparison of several models for classification with different configurations is 

investigated at this phase. Here the best classifier for the detection of arousal events is 

investigated based on the features included in the characteristic patterns constructed as 

explained in previous sections. Several machine learning models are compared 

including: (i) Fisher’s linear discriminant, (ii) a Quadratic discriminant, (iii) SVMs, and 

(iv) ANNs. In the following a brief description on the different classifier models is 

given: 

 
Fisher’s linear discriminant [29] is based on the idea of splitting the space into 

classes by using a linear combination of the attributes at the input. These linear 

discriminants are defined between each pair of classes. The projection maximizes the 

distance between the means of the two classes while minimizing the variance within 

each class. 
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The quadratic discriminant [30] is similar but the frontiers between each decision 

region are now quadratic surfaces. One discriminant per class is calculated as the 

logarithm of the PDF estimated for the amount of samples available for the 

corresponding class. 

 

The SVMs [31] are based on the maximization of the margin between two data sets 

for which two parallel hyperplanes are constructed, one on each side of the separating 

hyperplane. Effective separation is achieved by the hyperplane with the largest distance 

to the neighboring data points of both classes. In 1995, Cortes and Vapnik [32], 

introduced the concept of soft margin to deal with spaces not linearly separable. This 

introduces a parameter C as a compromise term between the margin size and the 

classification error. Also in 1992, Boser et al. [33] suggested the kernel trick allowing 

SVMs to perform non-linear classifications. This introduces two new parameters for the 

configuration of the SVM: (1) the shape of the kernel function K, and (2) the smoothing 

parameter S for the chosen kernel function. Several kinds of kernel functions can be 

chosen, e.g. linear, sigmoid, polynomial or radial basis function (RBF). The latter was 

chosen in our case. The idea behind choosing a RBF kernel is that it maps the samples 

into a higher dimensional space, so unlike linear kernels, it can handle the case when the 

relation between class labels and attributes is nonlinear. Furthermore, the linear kernel is 

a special case of RBF [34], and the sigmoid behaves like the RBF for certain parameters 

[35]. In comparison with polynomial kernels, RBF kernels have fewer hyperplanes. 

This influences the complexity of model selection, and in addition, they have shown to 

have less numerical difficulties when the training set is large [36]. 

 
Finally, ANNs are mathematical models biologically-inspired on how the biological 

neurons work. They are basically composed of a set of interconnected nodes. Each 

connection has a weight which is a measure of the relative importance of this 

connection. Different models of ANNs are available throughout the literature depending 

on the architecture (the amount of connections between the neurons or their 

organization in layers), on the process to adjust their weights, or on the propagation of 

the information from the inputs to the outputs [37]. In our case, a feed-forward network 

with one hidden layer trained with a scaled conjugate gradient backpropagation 

algorithm [38] is used.  
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Although both linear and quadratic discriminants are nonparametric models, SVMs 

and ANNs on the contrary are parameter-dependent. Therefore prior to comparing the 

four types of classifiers, a configuration procedure is performed to determine the best 

parameters for both the SVM and the ANN. Optimal configuration for the SVM is 

tested for combinations of C and S, trying exponentially growing sequences: C = 2-5, 2-

3, …, 215, S = 2-15, 2-13, …, 23. In the case of the ANN, similar exponential increments 

on the number H of neurons in the hidden layer are used: H = 21, 22, …, 26. It has to be 

pointed out that whereas the choice of different parameters C and S does not necessarily 

increment the complexity of the SVM model, in the case of an ANN, the number of 

neurons in the hidden layer directly entails an increment in the complexity of the ANN 

in terms of training computational complexity. Results on the choice of best model 

configurations are shown in Chapter 6 “Design of validation tests: identification of EEG 

arousals”. 

 

Once configuration parameters are determined, comparison of the four classifier 

models is performed. The objective is to choose the classifier which best determines, 

from an arousal pattern, if it represents a true EEG arousal or on the contrary, it must 

be discarded.  Nevertheless, when considering the patient’s full recording, the final 

classification accuracy of whole epochs does not uniquely depend on the performance 

of the classifier. Remember that the method first performs a single-event detection on 

each signal. Thus, when for a determined epoch, no events are detected in any of the 

single channels, the method directly assumes that no-arousal event is present on that 

epoch, i.e. a characteristic pattern has not been constructed, and therefore, the decision 

is no longer based on the classifier. A schematic representation of the classification 

stage is depicted in Figure 5.7. 

 
Design of validation tests to select the best classifier can be found in Chapter 6 

“Design of validation tests: identification of EEG arousals”. Corresponding results can 

be found in Chapter 7 “Identification of EEG arousals”. 

  



5. Description of the system 
 

201 
 

 
Figure 5.7. Classification stage; in the figure 7 epochs are displayed, of which 4 contain a characteristic 
pattern after grouping the events from the 3 channels. Epochs not containing a characteristic pattern are 
directly classified as non-arousal (Classification step 1). C means the decision on the classification 
depends on classifier’s decision (Classification step 2) 

 

Study on the reduction of the number of features 

 

In this section the use of different methods of feature selection is suggested to study 

their influence for the detection of micro-arousals from datasets obtained in the previous 

sections. In this respect, in the basis of the results of the preceding comparative study 

(see Chapter 7 “Detection of EEG arousals”), it is suspected the possible presence of 

redundancy in the dataset, which may hinder the correct learning of the models, 

especially of the SVMs. In addition, by taking a look to the set of extracted features in 

Table 5.2, existence of redundancy is even expected since some of them, although in a 

different manner, are in some way reflecting single physiological evidence. For 

example, given an increment in a certain frequency band, both the area contained under 

the signal and its maximum value, are influenced by –they are proportional to- the 

amount of increment produced. In fact, this a posteriori analysis over the set of selected 

features will allow us to answer to the following kind of questions: Which is the best set 

of features for the detection of micro-arousals? For example: Is it better to use the area 

below an increment as a relevant feature, or rather to use the maximum value of the 

increment?   

 

Feature selection methods allow us to reduce the number of features, identifying the 

most relevant ones, while preserving a good performance on the classifier [39] [40].  

Thus, on this section it is proposed the use of different feature selection methods to 

study their influence on the identification of arousals in sleep studies. Each one of the 

tested feature selection methods ranks the features according to different relevance 

criteria (information gain, accuracy, etc.) and, therefore, different rankings are expected 
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to be obtained. Moreover, the study does not only compare the effectiveness of the 

individual methods in the domain, but it also investigates their combination. Very few 

studies have been conducted on the combination of different rankings. For example in 

[41], the authors combine the results for three filters. However, this combination study 

is more restricted, using only the intersection with those features selected by the three 

methods being labeled with very high relevant. Here, besides the individual methods, 

both intersection and union are tried, and the combination of features is explored adding 

one by one to the candidate subset, and checking whether classification accuracy is 

improved after incorporating new features. Additionally, in the previous study only one 

classifier -a decision tree- is used after the whole subset of candidate subsets is 

constructed. In the present approach, in contrast, two very well-known classification 

methods, ANNs and SVMs, are included, accordingly with the previous 

experimentation carried out for the detection of EEG arousals. The use of two different 

classification methods is also aimed to demonstrate that the improvement in results 

depend much more of the subset of features than on the classifier used.  

 

1) Feature Selection 

 

Knowledge Discovery in Databases (KDD) is a field in the computing sciences 

evolving to provide automatic analysis solutions in order to extract the potentially 

useful information from data. This information is not typically retrievable by standard 

techniques but is approached through the use of AI techniques. In particular, 

dimensionality reduction methods may significantly support these processes by means 

of finding a sub-dimensioned representation of the problem but preserving the 

maximum possible information about original data.  

 

Data dimensionality may negatively influence the experimental results in machine 

learning problems. The higher the dimensionality of the input to the learning system, the 

higher the amount of examples needed to obtain a good model. In many real problems, 

there are not enough samples, so the learnt models can be over-fitted. Moreover, data 

usually contain noise and redundant information which may hinder and slow down the 

learning process. Reducing the dimensionality of the input space implies a decrement in 

the number of system’s parameters, thus decreasing the complexity of the model and its 

execution time. Generalization capabilities of the model increases as well. For that 



5. Description of the system 
 

203 
 

reason, reducing the number of inputs or features can benefit in a variety of application 

domains in which machine learning algorithms are adequate, such as stock market 

analysis or medical diagnosis. 

 

There are two main techniques to obtain feature reduction: feature extraction, which 

aim is to find a new set of r dimensions that are a combination of the n original ones, 

and feature selection, where a subset of r relevant features is selected from a set n, 

which remaining features are ignored. In the medical diagnosis field, it is important that 

features remain meaningful for the physician; therefore, feature selection is preferable. 

 

At the same time, feature selection methods can be grouped into two main 

categories: filters and wrappers. Filter methods carry out the selection as a pre-

processing step without using an induction algorithm, so only intrinsic characteristics of 

the training data are employed to select the relevant features.  On the other hand, 

wrappers use an induction algorithm to evaluate each candidate subset of features. Filter 

approach is faster than the wrapper approach, and results in a better generalization 

because it acts independently of the induction algorithm. Besides, wrappers are very 

time-consuming because they demand to train an induction algorithm several times, and 

therefore, for some data sets with a large number of instances they are intractable. 

However, wrappers usually turn to better performance results than filters, although they 

may obtain good results with the inherent induction algorithm and may perform poorly 

with an alternative algorithm [42]. 

 

In the case of using wrappers another decision variable is the election of the 

searching strategy. The main reason to employ a search strategy falls in the fact that, 

normally, the exhaustive search across all the space of possible subsets of features is 

usually unviable. Generally, distinction is done between forward and backward 

searching. Starting from the empty set of features and adding features on each iteration 

to the subset being evaluated in the first case or, starting from the full set and deleting 

features in each step of the searching in the second case. As previously indicated, the 

exhaustive search across all the space of possible subsets of features is usually unviable. 

Therefore, it is common the use of heuristics to guide the searching process. 
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In this case, both search techniques are to be used in order to perform a comparative 

study. Next subsections briefly describe these methods. 

 

1.1) Filter methods 

 

There are many filter algorithms described in the literature. Therefore, different 

filter methods are selected based on their use of different measures (entropy, distance, 

etc.), so that they are expected to lead to significantly different rankings of features. 

Furthermore, filters can return a ranked list of input features, or a subset of significant 

features. In the present study, all the filters chosen are rankers. Filters returning a subset 

of features are not considered in order to facilitate a fair comparison. Entropy 

Minimization Discretization (EMD) [43] is used in order to discretize numeric attributes 

when required. The filters employed are: 

  

-RelieF. The original RELIEF algorithm [44] estimates the quality of attributes 

according to how well their values distinguish between instances that are near to each 

other. For this purpose, given a randomly selected instance, xs, RELIEF searches for its 

two nearest neighbors: one from the same class, called nearest hit H, and the other from 

a different class, called nearest miss M. It then updates the quality estimate for all the 

features, depending on the values for xs, M, and H.  

 

-InfoGain [45]. It evaluates the worth of an attribute by measuring the information 

gain with respect to the class: 

 

InfoGain(Class, Attribute) = H(Class) – H(Class | Attribute), (5.2) 

 

i.e. it measures the change in the information entropy H achieved by learning the 

state of the random variable Attribute.  

 

There are different filter methods based on entropy, such as GainRatio [46] and 

Symmetrical Uncertainty (SU) [47], which is defined as the ratio between the 

information gain and the entropy of two features, x and y: 
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These methods were also tested, but better performance was achieved by InfoGain, 

so only results related to the latter are included here. 

 

-OneR [48]. It produces simple rules based on one attribute only. It operates by 

generating a separate rule for each individual feature. Each feature is discretized into 

bins and within each bin the percentage in which each class appears is calculated. Each 

bin is assigned to the class that has the highest percentage within that bin. After forming 

the rules, the single feature with the smallest error rate during training is selected. The 

class for any test case is assigned based on the bin into which its value for the selected 

feature falls [49]. 

 

1.2) Wrapper Methods 

 

Wrappers require an induction algorithm to determine the quality of each candidate 

feature subset, i.e., instead of using subset sufficiency, entropy, or another explicitly 

defined evaluation function, a kind of “black box” function is used to evaluate the 

features. Wrappers need, in addition, of a search strategy to explore all the possible 

feature subsets. An exhaustive search is not adequate for most of the problems because 

it demands high computational resources. Therefore, sub-optimal strategies are adopted.  

Well-known strategies are sequential forward selection and sequential backward 

selection (SFS and SBS, respectively). SFS starts with an empty set of features and adds 

features one by one, while SBS begins with a full set and removes features one by one. 

Features are added or removed on the basis of improvements in the evaluation function.  

In the present study, both strategies are considered using a greedy Hill-climbing 

algorithm with backtracking. Backtracking is allowed after five iterations, if the current 

subset does not improve the best accuracy achieved until that moment. Besides, as 

stated before, two inductions algorithms are selected: ANN and SVM. Combining these 

search strategies with both induction algorithms, four different wrappers are built, 

namely: ANN-backward, ANN-forward, SVM-backward and SVM-forward. Therefore, 

a different ranking of features is derived for each one of the previous methods. 
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2) Experimentation 

 

Experimentation for studying the application of the feature selection techniques 

described above is done in the following manner: 

  
(i) A data set is constructed based on the previous gathered features for the 

detection of arousals in PSGs. The list of features is summarized in Table 5.2.  

 
(ii) The resulting dataset is further split in two new datasets: one dataset used for 

training (TR), while the remaining patterns are used as a separate external test set (TS). 

Both datasets consist of a balanced number of patterns belonging to each class. Expert’s 

annotations on the scoring of arousals following the AASM criteria are used in order to 

establish the desired output for each pattern contained in the datasets.  

 
(iii) Over the TR dataset, several feature selection methods based on both wrappers 

and filters are applied in order to discard the irrelevant features. As a result, several 

candidate subsets –subsets of the most relevant features selected by the method- are 

constructed based on the measures obtained by each selection method. The process to 

construct these candidate subsets, which is based on the TR data set, is explained in 

Chapter 6 “Design of the validation tests: Feature selection on the detection of EEG 

arousals”. 

  
(iv) Once the candidate subsets are constructed, their respective predictive power is 

measured. These tests are carried out by using machine learning models in form of 

classifiers. Specifically, an ANN and a SVM, accordingly to previous experiments on 

arousal detection, are used. It has to be remarked that it is not the objective of this study 

to perform a comparative study over the different machine learning models; however 

the use of two models is aimed at confirming that the predictive power does not depend 

on the subsequent model used for classification. For each candidate subset, the 

classifiers are first trained using the TR dataset. Later, the test set is used to check its 

generalization capabilities. It is important to note that each classifier is also trained and 

tested using the whole set of 42 features in order to obtain a reference value of the 

performance. In this manner it can be compared the benefit of using a reduced set of 

features with regard to the use of the full set of features. 
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More details about the construction of datasets and the concrete classifiers’ 

parameterization are given in Chapter 6 “Design of the validation tests: Feature 

selection on the detection of EEG arousals”. Results of the comparison can be found in 

Chapter 7 “Feature selection on the detection of EEG arousals”.  

 

5.6.2. Sleep Spindles 

Sleep spindles are one of the hallmarks of human N2 sleep stage and are also one of 

the few transient EEG events which are uniquely related to sleep [50]. Although the 

term sleep spindle was introduced by Loomis et al. [51], actually, it was described for 

the first time by Berger [52]. Generally speaking, this kind of event is characterized by a 

group of rhythmic waves which progressively increase their amplitude, then gradually 

decreasing. They normally appear linked to low voltage background EEG, 

superimposed to delta activity, or temporally locked to a vertex sharp wave or to a K-

Complex. 

  

The interest in sleep spindles has been enhanced by recent neurophysiology 

discoveries that point out to variations in membrane potentials in the thalamocortical 

network, that oscillate in the frequency range of spindles at an intermediate level of 

hyperpolarization and in the frequency range of delta at a higher level of 

hyperpolarization. These findings found a close relationship between changes at a 

neuronal level in the thalamocortical network and at the macroscopic EEG level, with a 

reciprocal relationship between sleep spindles and slow waves [53] [54]. 

 

Sleep spindles have been shown to have intra-cycle variations in form of U-shape 

within the first four sleep cycles [55]. With regard to inter-cycle evolution, visual 

scoring [56] and spectral analysis [57] [58] have univocally shown that spindles 

increase over consecutive sleep cycles. It has also been widely reported the reciprocal 

relation of sleep spindle density with delta activity [50] [59] [60]. The great intra-

individual variability makes it difficult to put forward any general interpretation of the 

effect of ageing on sleep spindles, however several changes in spindle parameters have 

been reported, generally indicating a decrease in spindle amplitude and density with 

age, together with slight increase in frequency of the oscillations [61] [62]. In relation to 
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sleep disordered breathing and sleep apnea, it has been reported a decrease in sleep 

spindle index in patients when compared to controls [63] [64]. 

 

From a more quantitative point of view, standards for characterization of sleep 

define the sleep spindle as “a train of distinct waves with frequency 11-16 Hz (most 

commonly 12-14 Hz) with a duration ≥ 0.5 seconds, usually maximal in amplitude 

using central derivations”. Specifically this definition refers to visual classification of 

these transient events in the PSG [7]. However, many times literature refers to sigma 

activity as the method to characterize cerebral activity within such frequency band. In 

this respect, there is a debate regarding if changes in powers values in a certain 

frequency band actually corresponds to the changes observed through visual inspection 

of sleep spindles. In fact, spectral analysis based on Fourier Transform, by itself, it is 

not capable of making a distinction between EEG background activity and phasic 

activity in form of transient sleep spindle event.    

 

In any case, research regarding automatic methods for the detection of sleep 

spindles is a prominent area of increasing interest in the last years. That is because of 

the interest that detection of this kind of events causes, not only for the characterization 

of N2 sleep stage and the consequent construction of patient’s hypnogram, but for the 

progress of the neurophysiology research in general.   

 

As a consequence, several developments on automatic methods for sleep spindle 

detection have been reported. One of the first developments in this regard is the work of 

Campbell et al. [65] in which comparison of two phase-locked loop spindles detectors is 

made based on previous developments by Broughton et al. [66] and Kumar [67]. 

Respective 65% and 72% of true positive detections are reported. Later on, Declerck et 

al. [68] reported better performance (around 90%) of software over hardware methods. 

In the 90s Jobert et al. [69] applied matched filtering obtaining performance of 80%. 

Another standing out approach at that time is the one from Dijk et al. [54] based on 

power spectra analysis of the EEG. Spindle detection using artificial neural networks 

can be found in Huupponen et al. [70], Shimada et al. [71] or in Ventouras et al. [72]. In 

the framework of spectral analysis techniques the wavelet transform [73] [74]  and the 

matching pursuit [75] have also been proposed. Olbrich and Acherman [76], on their 

part, carried out an analysis of oscillatory patterns by fitting autoregressive models. 
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More recently, the work of Huupponen et al. [77] examines four sleep spindle detection 

methods obtaining best performance of 70% sensitivity and 98.6% specificity during 

EEG analysis in sleep stage 2. In addition, Ray et al. [78] describes a method that 

performs a subject-specific adjusting of amplitude threshold, and reports 99% 

sensitivity and 88% specificity over stage 2 from a group of 10 healthy young subjects.  

  

Algorithm for the detection of sleep spindles 

 

The approximation for the detection of sleep spindles has its fundamental in the 

frequency analysis by using the Short-Time Fourier Transform (STFT). Main advantage 

on the use of this technique resides in its compromise between temporal and frequency 

resolution, so that it allows temporal localization of dominant frequencies in the signal. 

For that purpose, the signal is subdivided into temporal intervals of finite duration in 

which the classical Fourier transform is applied, enabling in this manner analysis of 

spectral frequencies for the corresponding time interval. There is, on the counter part, a 

loss in the frequency resolution due to the reduction of the analysis period. In any case, 

in practical applications it is usually possible to find an adequate compromise between 

duration of the temporal window and the necessary frequency resolution. In this regard, 

for example in the case of sleep spindles, the frequency band of interest is set around 

12-14 Hz, and therefore any temporal window of duration higher than 0.1 seconds 

should be enough to capture the oscillation in this band. 

 

The detection algorithm implemented in the system acts over both C4/A1 and 

C3/A2 EEG central derivations, which are the ones recommended by AASM [7]. 

Basically, and by means of the use of STFT, the algorithm searches for increments in 

the spindle frequency band which, accordingly with formal definition of these events, 

should present duration ≥ 0.5 s. For that purpose, in a first step the developed procedure 

uses a moving hamming window of 2 seconds duration which is shifted throughout the 

signal with an overlapping of 1.8 seconds, that is, each time step the window is shifted 

0.2 seconds. Within each temporal window the Fourier Transform is then computed in 

order to calculate average power in the band between 12-15 Hz -same formula as in 

equation (5.1). Justification on both duration and time shifting of the used temporal 

window, is related, as it has been commented above, with an adequate comprise 

between temporal and frequency resolution. In this regard, a time step of 0.2 seconds 
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allows us to detect alterations in the spectral band over intervals with less duration than 

the minimum spindle event. 

  

Once average power in the sigma band (PSDσ) has been established throughout the 

signal, the algorithm performs a second analysis over obtained values in order to 

establish a baseline (averaging of 10 previous seconds of average power) to which 

compare instant power values of spindle activity. The former allows characterization of 

intervals with increments or decrements with respect to normal sigma activity in the 

signal. This process is repeated for each instant power value previously calculated, after 

which those intervals exceeding 2 times baseline value and with duration ≥ 0.5 seconds 

are marked as possible spindle events. 

 

An example of the previous process is illustrated in Figure 5.8, in which an interval 

of EEG signal is shown containing periods of spindle activity (see Figure 5.8, A). 

Evolution in time of computed sigma power (blue) and corresponding baseline (red) are 

shown at the bottom (see Figure 5.8, B), where peaks correspond to periods of high 

spindle activity. Subsequent Figure 5.9 plots a zoom over central peak in Figure 5.8. It 

can be shown, by counting the number of oscillations, that it effectively corresponds to 

a sleep spindle event.   
 

 
Figure 5.8. Sleep spindle detection: A) EEG channel showing periods of spindle activity; B) Spindle 
power (blue) and corresponding baseline (red). Peaks correspond to intervals in which there is an increase 
within the spindle band 
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Figure 5.9. Sleep spindle detection: A) Zoom over central peak of Figure 5.8, detected sleep spindle event 
is marked in red; B) Sigma power (blue) and corresponding baseline (red) within the interval 

 

However, the use of the above described procedure causes that within the set of 

possible events detected, there may be several false positives that it is necessary to 

discard. These false positives are mainly caused by (1) interferences produced by 

increments in the contiguous frequency bands such as alpha (8-12 Hz) and EMG 

artifacts (> 16 Hz) that can cause harmonics in the spindle band, and (2) events 

occurring during non-sleep periods such as clear stable intervals of alpha or beta 

activity. 

 

 Thus, in order to discard these false positives a dual strategy is followed, which 

tries to give response to the two previous commented situations. To solve false positives 

due to interference of contiguous bands, a detection of transient arousal intervals is 

performed by using the same approximation as for the detection of spindle intervals, 

that is, by means of the described STFT method, but now marking those intervals within 

frequencies of alphas (8-12 Hz) and betas (≥ 16 Hz). Then spindle events that have been 

detected in presence of these arousal intervals are finally discarded. On the other hand, 

detection of stable non-sleep periods is performed by computing power percentages 

within each band with respect to full spectra of each temporal window. That is: 
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P8-12 = AvgPow8-12 / AvgPow0-62.5 

P12-15 = AvgPow12-15/AvgPow0-62.5 

P16-62.5 = AvgPow16-62.5/AvgPow0-62.5 

 

and considering as false positives those intervals which satisfy:  

 

P12-15 < P8-12 v P12-15 < P16-62.5 

 

Examples on artifact detection are shown in Figure 5.10 and Figure 5.11. In Figure 

5.10 a peak in the sigma band is detected during an arousal interval (excited EEG 

containing EMG artifact). In Figure 5.11 another false positive is detected, in this case, 

because of intrusions contiguous frequency bands. In both the two previous situations 

the false positive is detected and discarded. 

 

 
Figure 5.10. Sleep Spindle artifact detection: A) A period of EEG signal affected by continuous EMG 
artifact; B) Spindle power (blue) and corresponding baseline (red). Note that a peak is produced but in 
this case there is no spindle event present; C) Power percentages corresponding to P16-62.5 (red), P8-12 
(black) and P12-15 (blue). Note that EMG (16-62.5 Hz) is dominant and therefore peak in spindle 
frequency is considered a false positive 
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Figure 5.11. Sleep Spindle artifact detection: A) EEG signal in which a possible sleep spindle event is 
marked in red; B) Spindle power (blue) and corresponding baseline (red) showing corresponding increase 
in the sigma band; C) EMG power band showing two peaks at the same time; D) Alpha power band 
which also presents a peak in the time interval corresponding to peak in sigma band (B) 

 

5.6.3. K-Complexes 
 

With regard to the current standard sleep scoring procedures [13] [7], K-Complexes 

(KCs) are, together with occurrence of sleep spindles, one of the fundamental transient 

events significant of human stage 2. However, differently from sleep spindles which are 

uniquely related to the sleep process, in the case of KCs there has been a lot of 

discussion regarding its duality: on one hand being one regular building-stone of NREM 

sleep EEG, and on the other hand being a reactive element elicited by sensory stimuli. 

Indeed, yet from the very first time the KC was described by the Loomis group [79], it 

was described as a characteristic large potential change occurring as a result of tone 

stimulation during C state of sleep (analogous to current N2 state). Nevertheless, at the 

same time, Loomis also reported in the same paper that although it can be evoked by 

external stimulus, it can also appear spontaneously.  

 

Accordingly to the above mentioned characteristic, there is usually a distinction 

between evoked KCs, as those related to a known sensory stimulus, and spontaneous 

KCs. It has to be noted, however, that some studies point out to the possibility that, in 
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fact, spontaneous KC results from response to unnoticed internal –interoceptive- 

stimulus [80] [81]. In any case, the paradoxical character of KC, generated debates on 

its function: an elementary arousal-response in NREM sleep [80] or a sleep-protective 

component [82].  

 

Recent investigation from Amzica and Steriade [83] has also opened a third 

interpretation, considering KC as an emergent phenomenon, result of sleep-specific 

slow-voltage oscillations in the thalamocortical circuitry. Thus, being a purely passive 

phenomenon reflection of a particular sleep microstate. Moreover, investigations 

proving its close relation to the slow wave sleep [84] seem to no longer support the 

arousal hypothesis. 

 

Independently of the controversy regarding its generating mechanism or function, it 

is a fact that from the visual scoring perspective, in the EEG recording the KC can 

appear isolated or accompanied by sleep spindles (K-spindle) –most of the times- but 

also preceding EEG arousals (K-alpha) or even delta waves (K-delta). There is also an 

abundance of studies demonstrating autonomic and muscle activity conjoining KCs 

[85]. 

 

 Although with a possible common origin and similar shape [85], for sleep scoring 

purposes, it is important to differentiate KCs from vertex sharp waves (see Chapter 2, 

“Structural analysis of sleep”). Vertex sharp waves are more typically seen in N1 and 

usually present lower amplitude than KCs, which are more related to N2 and N3. In N3 

however they are buried in the high-amplitude background EEG and it may be 

impossible to distinguish them from delta activity at a glance. This is probably the 

reason why isolated presence of KCs is a good marker for visually staging of N2.  

 

In this respect, recalling the AASM definition, a KC is defined as a well-delineated 

negative sharp wave immediately followed by a positive component standing out from 

the background EEG, with a total duration ≥0.5 seconds, usually maximal in amplitude 

when recorded using frontal derivations. In practice however, as previously outlined, 

sometimes KCs are difficult to be scored due to its similarity with vertex sharp waves, 

its camouflage within delta bursts and, in general, because of alterations produced by 

background EEG activity. 
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First attempts to set out automatic detection of KCs can be found in the work of 

Bremer et al. [86] in the decade of 70s. They derived values for the maximum peak-to-

peak amplitude and timing parameters, including total duration and time between zero 

crossings for the initial short positive wave and the longer later negative wave. They set 

a minimum amplitude criterion of 100 µV and a minimum interval between successive 

KCs of 2 seconds. Their method proved to be quite comparable to human scorers in 

detection KCs in stage 2, but had a tendency to overestimate KC rates in other stages. 

Nonetheless their work provided the foundation for later efforts to establish automatic 

scoring systems. Da Rosa et al. [87] proposed a model of sleep phasic events which 

consists of feedback loops that are driven by white noise (simulating tonic delta and 

sigma activity) and by isolated random impulses, simulating vertex waves or KCs, 

depending on the background tonic activity. The detector was tested on real EEG 

signals and was able to detect KCs and vertex waves quite reliably in spite of their 

variable shapes. Bankman et al. [88] proposed an approach based on feature selection 

and the use of neural networks. Respective contribution of the features and that of the 

neural network were demonstrated by comparing results to those obtained with raw data 

presented to neural networks and features presented to Fisher’s linear discriminant. 

Other relevant works on methods for automatic KC detection can be found in Richard et 

at. [89], Jansen et al. [90] and Jober et al. [69]. 

 

Algorithm for the detection of K-complexes 

 

The approximation here proposed is quite simple and it basically consists in 

combination of amplitude analysis of the EEG derivations complemented with 

information extracted from spectral features. In this respect possible occurrence of a KC 

is considered when an abrupt shift in the corresponding EEG amplitude is detected and 

this amplitude correlates with concurrent increment in delta frequency band (0.5–4 Hz). 

Once a phasic amplitude event has been marked then additional checking is performed 

in order to confirm or discard the event as an actual KC.  

 

Hence, in a first step a moving window of 2 seconds is shifted throughout the EEG 

signal with a time step of 0.5 seconds (1.5 seconds overlapping). Within each temporal 

window amplitude is computed as the difference between the maximum and the 

minimum signal values. Once instant amplitude has been computed along the EEG by 
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the above windowing method, corresponding signal baseline is obtained at each time 

step by averaging instant amplitude values in the 30 seconds preceding interval. As a 

result, EEG instant amplitude and baseline representations are obtained at each time 

step. In a second step, similar STFT processing as used for detection of sleep spindles 

(see subsection “Sleep Spindles”) is used to detect frequency shifts in delta band. Based 

on these two signals, possible KCs are marked by thresholding when both, instant 

amplitude value and average power in the delta band, are at least twice as their 

corresponding baselines. Additionally the resulting event has to have duration of at least 

0.5 seconds, whereas maximum event duration is established to be 3 seconds (see 

Figure 5.12). 

 

 
Figure 5.12. K-Complex detection: A) EEG channel showing a detected K-Complex in red; B) EEG 
instant amplitude (blue) and corresponding baseline (black); C) Delta power (blue) and corresponding 
baseline (black) 

 

Artifact detection strategy is developed in order to discard false positives from the 

previous set of possible KCs. Many false positives occur in the presence of EMG 

artifact or arousal that can produce transient increments in EEG amplitude. These 

intervals obviously do not correspond with occurrence of a KC. For this purpose 

analogous STFT processing is used to mark transient increments of alpha (8-12 Hz) and 

beta (≥ 16 Hz) bands and resulting events are then used to discard false KC positives. 
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Abrupt shifts in submental EMG amplitude are also evidence of arousal (see 

subsection “Identification of EEG arousals”). In this regard, EMG signal amplitude is 

computed in the same manner as previously explained for the EEG, and resulting events 

are also used to discard false positives. An example of false positive discarding is 

illustrated in Figure 5.13 and Figure 5.14.  

 

 

 
Figure 5.13. K-Complex artifact rejection: A) EEG channel showing an abrupt shift in the EEG amplitude 
that does not correspond with a K-Complex. B) Delta instant average power (blue) and corresponding 
baseline (black) showing a peak which corresponds to the transient amplitude shift marking a possible K-
Complex 
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Figure 5.14. K-Complex artifact rejection: A) Same EEG interval as in Figure 5.13; B) Submental EMG 
channel in which EMG artifact can be shown; C) EMG power reflecting the same EMG artifact in the 
time-frequency domain  

 

It is important to remark that although KCs may be followed by EEG arousal, and 

still being considered a KC –the so-called “K-alpha”, here discarding is performed only 

when both the supposed KC and the arousal events occur at the same time; in other 

words, when the two events overlap. Hence, occurrence of the K-alpha pattern is 

allowed if certain separation between the KC and the alpha event exists.     

 

5.6.4. Hypnogram generation 

 
One of the most important tasks within the analysis of the PSG is the 

characterization of the patient’s sleep macrostructure. This leads to the construction of 

the hypnogram in which the voluminous chart recordings of electrical activities 

recorded trough the PSG are summarized in a simple graph aimed at showing evolution 

of the different states of sleep throughout the night. 
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The procedure for obtaining the hypnogram was initially proposed in 1968 by 

Rechtschaffen and Kales (R&K) [13]. As it has been mentioned in subsection 

“Structural analysis of sleep” of Chapter 2, R&K method establishes a set of rules to 

assign to a time interval in the PSG a label representing certain state of sleep: 

Wakefulness (W), stages 1 to 4 (S1, S2, S3 and S4), and Rapid Eye Movement (REM) 

phase. Therefore the sleep recording is segmented into these classifiable intervals, 

called epochs, being its length arbitrary established to 30 seconds. Sleep states are then 

assigned based on the trend of the signals within the epoch, which following the R&K 

method involves monitoring of brain activity by EEG, characterization of muscle tone 

by EMG, and localization of eye movements by EOG. 
 

R&K method has been the gold standard to the scoring of sleep macrostructure for 

more than 40 years, being only recently modified by the AASM (see Chapter 2, 

“Structural analysis of sleep”). As it has also been stated, sleep staging is in general a 

tedious task entailing too much time and effort from the physician, requiring around 5 

hours per patient examination. Automatic sleep scoring should help to reduce the time 

needed by the physician to construct the hypnogram and, accordingly, attempts to 

develop automatic sleep scoring are almost as old as the R&K rules. Literature provides 

with several examples of approximations involving different techniques: pattern 

recognition [91] [92], evidential theory [93], probabilistic models [94], stochastic 

modeling of physiological feedback structures [95], artificial neural networks [96] [97] 

or wavelets [98]. A detailed review of the literature can also be found in [99], in which 

it is also stated that, besides the number of efforts in this field, automation of 

hypnogram generation is still an open area of research interest. 

 

On the other hand, in the recent years several criticisms have been associated with 

such a method of sleep characterization [100] [101] [102]. Major drawbacks are 

associated with its low temporal resolution –one label for 30 seconds- and the unnatural 

classification of sleep based on fixed-duration discrete epochs. Effectively, evolution of 

biological processes rather occurs in a continuous manner in which a soft transition 

takes place between the different considered states. Moreover, restriction of the analysis 

to a small number of sleep states and the use of fairly large epochs lengths, seems to 

obey more to practical criteria to avoid the manual scoring of an entire night’s sleep to 

be a prohibitively time consuming task. However at the cost of an increase in the intra-
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state variability and information loss, which nowadays is summarized under the broad 

level of microstructure of sleep, including microarousals, sleep spindles, k-complexes 

and any other activity with latency shorter that the half-minute of the epoch-based 

staging methodology [103] [104]. 

 

On this context, there is an interest on exploring different approaches that could 

overcome such limitations. Specifically, it is interesting to develop computer 

approximations on the goal of achieving a more continuous characterization of sleep. 

Thereby avoiding the limitations of sleep staging previously outlined. For example, a 

guideline to this effect has been proposed as part of an European Community concerted 

action toward a methodology for the analysis of the sleep/wakefulness continuum [105]. 
 

In the line through the achievement of a continuous marker describing the sleep 

structure some approximations can be found in the literature. In this respect a first 

interesting step is to obtain a continuous sleep depth estimator. Some examples can be 

found in the contributions of Asyali et al. [26], Choi et al. [106], Swarnkar et al. [107], 

or Saastamoinen et al. [108]. However, the previous approaches suffer from the lack of 

information on the intra-sleep periods. A realization that could also account for a 

continuous characterization of NREM intra-states is desirable. Flexer et al. [109] 

developed a continuous probabilistic sleep stager (considering three states: wakefulness, 

deep sleep and REM) based on a single EEG signal. Nevertheless a problem with 

probabilistic approximations is that they assign one minus the probability of an event to 

the complement of the event, i.e. there is no possibility of differentiating between 

uncertainty about an event and the probability of its complement. 

 

In the system object of this doctoral thesis an alternative approximation is proposed 

to the problem of the continuous sleep staging by using the fuzzy logic paradigm. As it 

has been stated throughout Chapter 4, fuzzy logic allows us to quantify a decision in 

terms of a fuzzy degree of membership which avoids binary decisions based on 

categorical classifications. It also allows us to deal with uncertainty and imprecision, 

common aspects of medical diagnostic domains (see Chapter 3, “Critical analysis”). 

Moreover, given the membership µH(x) of a certain hypothesis H, the membership of 

the complementary hypothesis (┐H) should not necessarily be 1- µH(x), and therefore 

the problems of the probabilistic approaches can be overcome. In fact, the use of fuzzy 
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logic for the classification of sleep stages is not new [110] [111] [112] [113]. However 

none of these realizations presented a solution in continuum, but they limit to classify 

the discrete epoch in fuzzy terms.  

 

In addition, the fuzzy paradigm presents an important property to allow the 

continuous representation of biological processes: soft transitions between class 

memberships, i.e. fuzzy classifiers yield similar outputs for similar input patterns. A 

property that it does exploit the work of Heiss et al. [114], which however contains 

some drawbacks with respect to our approach, mainly: (1) it is focused for its use on 

infants and, (2) it uses the architecture ANFIS [115] in order to implement the fuzzy 

classifier and to represent the knowledge of the domain. Indeed, to fulfill the 

requirement of a system being able to explain its results, there is an additional property 

a system for medical decision support should satisfy: the system should not behave as a 

black-box, i.e. it should be possible to check why and how a certain recommendation is 

given [116]. In this respect, the ANFIS structure can be considered more as a special 

kind of neural network since the use of Sugeno-like rules considerably reduces its 

explanation capabilities. In the proposed approach a Mamdani FIS is used instead, 

which offers better understandability because of its knowledge representation schema 

(see Chapter 4, “Fuzzy inference systems”). 

Thus, the objective with the proposed approach is dual: (i) first a method for the 

automatic classification of sleep macrostructure and generation of the hypnogram is 

proposed, and (ii) at the same time overcoming the limitations of the epoch-based 

staging methods is attempted by using fuzzy logic to allow smooth transitions between 

the different sleep states in continuum. 

 

Specifically the proposed method works with four different sleep stages, directly 

related with R&K and AASM states: wakefulness (W), drowsy sleep (DS), deep sleep 

(DEEP) and REM sleep. Note in the current approach DS includes classical S1 and S2 

sleep stages. 

 

The general approach can be organized in three main sequentially related 

processing steps. The first step is in charge of performing parameters extraction in 

which features over the biological signals in the PSG are obtained. Then, after relevant 

parameters have been extracted at the first phase, information is fed into the second 
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processing step where a reasoning process occurs obtaining as output, a degree of 

membership with respect to each considered state of sleep, as stated before: W, DS, 

DEEP and REM. In order to achieve such an output, the reasoning module is organized 

into several sub-modules, each one regarding to a different sleep state, therefore 

obtaining a respective degree of membership, i.e. µW, µDS, µDEEP and µREM. Note that 

microstructure events (K-complexes and sleep spindles) detected by the procedures 

described in the preceding subsections are also used as input at the reasoning stage.  

 

The whole previous process is accomplished in a second-by-second granularity, 

thus with higher resolution in comparison to epoch-based procedures. This, together 

with the properties derived from the use of a fuzzy reasoning paradigm, allows us 

obtaining a new representation of the hypnogram in which current evolution of the 

different sleep states is individually characterized. 

 

Eventually (third step) this representation is used in order to go back over the 

classical hypnogram representation, thus showing how the continuous representation 

preserves the information contained in the discrete hypnogram. To do so, some post-

processings are applied over the continuous hypnogram.  

 

The method and each one of its processing steps are subsequently described into 

more detail. 
 

A method for continuous characterization of the sleep macrostructure 

 

1) Step 1: Parameter extraction 

 

As previously mentioned, according to input information and standard 

recommendations for sleep analysis, the method proposed works with five signals: both 

EEG C3/A2 and C4/A1 central derivations, submental EMG and EOG signals from left 

(EOGL) and right (EOGR) eye electrodes. Depending on the type of the signal different 

parameters are extracted during the analysis. 
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1.1) Detection of the eye movements 

 

In the case of the EOG the interest is to characterize the eye movements. In order to 

achieve such a task, an overlapping moving window of 3 seconds is shifted second-by-

second throughout both EOGL and EOGR channels, and computing the amplitude of the 

corresponding signal interval within the window. Amplitude is calculated as the 

difference between the maximum and the minimum values of the signal inside the 

window. Thereby a value for the amplitude of the signal is obtained for the current 

sample. By repeating this process throughout the recording two amplitude signals –one 

for each derivation- are obtained. Finally a new signal AEOG (see Figure 5.15) is 

constructed by averaging the two previous amplitude signals obtained for each channel 

(left and right), thus obtaining a single parameter to represent the EOG amplitude 

independently of the channel. It can be shown in Figure 5.15 that the amplitude of AEOG 

signal increases in presence of EOG movements while it is almost flat for a relaxed 

EOG. 

 

 
Figure 5.15. In the figure 3-epochs of 30 seconds are shown. Signal amplitudes are normalized in [-1,1]. 
AEOG signal is superimposed in blue 

 

1.2) Characterization of muscle tone  

 

In the case of EMG, to distinguish between presence and absence of muscle tone, a 

similar amplitude-based analysis is performed. Using a window of 3 seconds and 

moving it second-by-second throughout EMG, a new AEMG signal is obtained. 

Differently from the amplitude computation in the EOG, this time each i-th sample of 

AEMG is calculated as the mean of the absolute value of the EMG samples included in 

the window (see Figure 5.16). The main reason to compute the amplitude in this manner 

is that it better supports the higher frequency nature of the EMG signal.  

 



Diagnosis of the Sleep Apnea-Hypopnea Syndrome: a comprehensive approach through a system to 
support medical decision 
 

224 
 

 
Figure 5.16. In the figure 3-epochs of 30 seconds are shown. Signal amplitudes are normalized in [-1,1]. 
AEMG signal is superimposed in blue 

 

1.3) Processing of electroencephalographic activity 
 

Regarding the EEG, the different sleep stages are characterized by the different 

proportion of characteristic frequencies in the most representative bands: alpha (α, 8-12 

Hz), beta (β, 13-30 Hz), theta (θ, 4-7 Hz) and delta (δ, 0.5-3 Hz) (see Chapter 2, 

“Structural analysis of sleep”). Short-Time Fourier Transform (STFT) method (3-

second window, 2-second overlapping) is used to compute spectra on every analysis 

window of the EEG. Then, within each window PSD is estimated for each band using a 

band-pass filter, and integrating the corresponding squared spectrum on the filtered 

window. Four measures of PSD are obtained for each window through the previous 

process: PSDα, PSDβ, PSDθ and PSDδ. Let PSDT to be PSDα+PSDβ+PSDθ+PSDδ, then 

the relative power proportion (rPSD) for each band x is calculated as 

rPSDx=PSDx/PSDT where x = {α, β, θ, δ}. 

 

Finally, and similar to the case of EOG, since two derivations of EEG –C3/A2, 

C4/A1- are available, final values for the parameters are calculated by averaging the 

respective rPSD values over the two derivations. Figure 5.17 shows the resulting four 

parameter signals (rPSDα(i), rPSDβ(i), rPSDθ(i) and rPSDδ(i)) characterizing the activity 

of the EEG. 

 

 
Figure 5.17. In the figure 3-epochs of 30 seconds are shown. Signal amplitudes are normalized in [-1,1]. 
rPSDα, rPSDβ, rPSDθ and rPSDδ signals are superimposed, respectively, with red, green, brown and blue 
colors 
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Note that in addition to the previous parameters extracted through the above 

described analysis of the EOG, EMG and EEG signals, microstructure events (K-

complexes and sleep spindles) are also considered as sleep descriptors to be used in the 

subsequent fuzzy reasoning stage. Algorithms for the detection of these transient events 

have been described already in the preceding subsections of this chapter (see Chapter 5, 

“Sleep Spindles” and “K-Complexes”). 

 

Summarizing, as the output for the parameter extraction phase it is obtained, for 

each i-th second of recording, a set of six values characterizing eye movements 

(AEOG(i)), muscle activity (AEMG(i)) and EEG activity (rPSDα(i), rPSDβ(i), rPSDθ(i) and 

rPSDδ(i)). Quantification of the presence of sleep spindles and K-complexes complete 

the set of extracted sleep descriptors (thus, eight in total). This information is then fed 

into the subsequent fuzzy reasoning modules to obtain the respective fuzzy 

memberships for each state (W, DS, DEEP and REM).  

 

2) Step 2: Fuzzy Reasoning Process 

 

The second step of the analysis is divided into four submodules, each one being the 

responsible to accomplish the analysis regarding to one of the four considered sleep 

stages (wakefulness, light sleep, drowsy sleep and REM).  

 

Each submodule is implemented in the form of a Fuzzy Inference System (FIS) of 

type Mamdani (see Chapter 4 “Fuzzy Inference Systems”). This allows us to fulfill the 

requirement that knowledge can be accessible and extracted in form of human-like 

decision rules (fuzzy rules). Actually, overall knowledge –extracted from medical 

expertise- is structured into four independent sets of rules (or knowledge bases), each 

one involving a particular sleep stage. Thus, the output of each submodule consists of a 

value µ in the real interval [0, 1], which represents the degree of membership for the 

current instant of time under analysis, i.e. µW, µDS, µDEEP and µREM. 

 

Input vector to these submodules is composed of the parameter information 

extracted on the previous analysis steps regarding EOG, EMG and EEG activity. In 
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order to mimic humans’ procedure to capture dynamics of the signals and promote 

smooth transitions, parameters of the signals are averaged in the environment of the 

current sample under analysis. Specifically, input for instant i is calculated by averaging 

input parameters on the interval [i-15, i+15]. Trapezoidal fuzzy sets are used for the 

partition of the input variables. For the AEOG signal 3 fuzzy sets (low, medium and high) 

are used. Similarly 3 fuzzy sets (relaxed, medium and tense) are established for the 

parameter AEMG. In the case of the EEG, each of the corresponding frequency bands (α, 

β, θ, δ) resulted in a variable partitioned again in 3 sets namely low, medium and high. 

Output variables were partitioned by defining 5 fuzzy sets uniformly distributed along 

the interval [0, 1] (very low, low, medium, high, and very high). All the fuzzy sets are 

partially superimposed in order to explode smoothing transitions and improve 

generalization capabilities of the FIS. Examples of implemented fuzzy rules are: 
 
IF: (1) AEMG is tense 
AND: (2) AEOG is high 
THEN: (1) W is very high 
 
IF: (1) AEMG is tense 
OR: (2) AEOG is high 
OR: (2) rPSDα is high 
OR: (3) rPSDβ is high 
OR: (4) rPSDδ is NOT high 
THEN: (1) DEEP is low 
 
 
Optimal parameterization of both the fuzzy sets and the rulebase is performed after 

initial knowledge structuration by automatic learning mechanisms as described in 

subsection “Structure identification and parameter optimization” of Chapter 4. For the 

configuration of the FIS the minimum was chosen as the T-norm operator for the 

conjunction and for the implication. On the other hand, the maximum was chosen as the 

S-norm operator for the disjunction and for the aggregation. Defuzzification is 

performed by using the center-of-gravity method. 

 

Once all the seconds of the recording have been analyzed, a continuous evolution of 

the degrees of membership for the different sleep stages is obtained. This output can be 

observed in Figure 5.18, in which evolutions are represented for a full PSG recording. 

Note that this representation provides more information than the discrete hypnogram 

since (i) it is provided in a higher sample rate -for each second- compared to 30s epochs 
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of R&K/AASM, (ii) the natural continuous evolution of biological processes is 

maintained and (iii) the information regarding each sleep state is also kept individually 

available. 

 

 
Figure 5.18. Evolution of sleep states throughout a full PSG recording estimated by their respective 
degrees of membership 

 

3) Step 3: Hypnogram generation 

 

The proposed representation based on the evolution of the corresponding degrees of 

membership is used here to generate the classical hypnogram. The interest in going back 

to the epoch-based hypnogram from the continuous representation is diverse: (1) it can 

be a way to show how this new proposed representation preserves all the hypnogram 

information, in fact being a superset of the information contained in the epoch-based 

hypnogram, (2) it shows how this fuzzy representation can be used as an alternative 

method within available literature regarding the problem of the automatic hypnogram 

generation in sleep. On the other hand (3), the only way to asses on the validity of (1) 

and (2) is to perform a validation process against experts’ manually generated 

hypnograms, only possible though discretization of the continuous representation and 

going back to the epoch-based hypnogram. 

 

Thus taking the continuous representation some post-processings are performed:  
 

1) An average of the second-by-second output of each subsystem within each 

epoch is performed to be used as the resulting degree of membership for the 

corresponding epoch. The epoch is finally assigned to a discrete stage (W, DS, 
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DEEP, REM) by taking the corresponding maximum averaged degree of 

membership. 

 

2) Previous processing could lead to noisy isolated epochs that break up the 

normal evolution of sleep. Therefore a second step searches for unusual phase 

transitions such as direct transitions from W to DEEP or DEEP to REM, and 

then assigns the most possible one according to the normal sleep evolution 

[117] [94] [118].  

 

3) In cases where the degree of membership regarding DS and REM is similar, 

final assignation is performed taking into account the presence of sleep spindles 

and/or K-complexes within the corresponding epoch. 

 

4) Additionally, in regions where similar degrees of membership to various states 

are achieved, final labeling is decided based on the trend marked by the 

immediately previous and subsequent epochs.  
 

Figure 5.19 shows the result of applying such post-processing to the outputs 

presented at Figure 5.18. Resulting hypnogram can now be used to perform a validation 

process against human expert’s classification. Design of validation tests and results are 

carried our respectively in the corresponding sections of Chapter 6 and Chapter 7.  

 
 

 
Figure 5.19. Discrete hypnogram obtained after post-processings 

 

Next, Figure 5.20 provides of a better comparison between epoch-based and 

continuous hypnogram representations from the resulting method. In the figure eight 

epochs are shown comprising the subsequent channels (from bottom to top): (1) right 

EOG derivation; (2) left EOG derivation; (3) submental EMG; (4) C3/A2 EEG; (5) 

C4/A1 EEG; (6) full epoch-based obtained hypnogram, blue mark showing 
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corresponding time interval that is being displayed; (7) continuous evolution of the 

individual fuzzy degrees of membership. Epochs are delimited through red vertical 

lines. Linguistic labels are used on the top of the figure showing the resulting 

classification of the epochs according to discrete hypnogram. On the other hand it can 

also be shown how fuzzy degrees of membership evolve within the epoch. Color code is 

as follows: blue for W, green for DS, yellow for DEEP and red for REM.  

 

It can be shown by taking a look to the signals, how the continuous representation 

provides of more information on the actual evolution of the signals: overall belief on 

each state can be thus quantified and intra-state evolution of the sleep states can be 

evaluated. It can be appreciated for example how although the fifth epoch has been 

scored as DEEP, a rise tend of µDS starts almost from the beginning of the epoch while 

µDEEP commences to decrease. It can also be shown how although the third epoch has 

been scored as DS, confidence with respect to a DEEP classification achieves similar 

levels. This situation may represent the typical case where subjective interpretation 

plays a role in the final classification. Isolated epoch of DS (sixth) within a cycle of 

DEEP might seem strange at a first sight; however it can be shown from the figure how 

slow waves decrease while being a concentration of sleep spindles (shown in pink over 

EEG channels). Within the seventh epoch slow EEG activity recovers and therefore 

µDEEP rises again while µDS starts to decrease again. 
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Figure 5.20. PSG interval showing both epoch-based classification scoring and continuous evolution of 
the individual degrees of membership 

 

5.7. Analysis of respiratory signals 
 

Analysis of the respiratory signals comprises in one hand analysis of airflow, 

abdominal and thoracic excursions, for the detection and quantification of respiratory 

pauses. These pauses are characterized by intervals of amplitude reduction with respect 

to the normal respiration. On the other hand, analysis of SaO2 signal is performed in 

order to detect and quantify desaturation and resaturation intervals, which are indicative 

of the presence of apneic events. Main objective is localization of individual apneic 

evidences across the respiratory signals to be afterwards correlated in time forming 

diagnostic patterns in subsequent stages.  

 

In the following the corresponding developed algorithms for the processing of the 

respiratory signals are described. However, previously to their analysis, a preprocessing 

stage is accomplished with the objective of getting rid of possible artifacts that may be 

hampering correct characterization of the respiratory activity.   
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5.7.1. Preprocessing of respiratory signals 

At this stage a first preprocessing analysis is carried out to search for artifacts in the 

respiratory signals. The objective is the correct setting-up of the signals checking for 

spurious values which may obscure posterior analyses. More specifically, here two 

kinds of artifacts are intended to be detected: those caused by bad calibration of the 

sensor (overflow artifacts) and those caused by signal interruption (loss of focus) which 

may be due to a number of circumstances –for example a displacement of the sensor.  

 

Normally overflow artifacts derive in a signal that in its digital representation 

appears saturated within its dynamic range. An example can be seen in Figure 5.21 

which shows a saturated interval in the thoracic respiration. Overflow artifacts often 

occur in respiratory airflow or in the respiratory movement signals (either abdominal or 

thoracic).  

 

 
Figure 5.21. Example of an overflow occurring in the thoracic respiratory signal. Physical signal exceeds 
the digital representation range probably because of a bad calibration of the sensor 

 

On the other hand, when a loss of focus occurs, trend of the signal suddenly 

interrupts. A clear example can be seen in Figure 5.22 regarding the saturation signal. 

Although according to the digital representation a signal overflow may also be 

considered –in fact although not shown in the figure, the signal actually achieves zero 

value- it is easy to visually differentiate it from an overflow artifact since an abrupt shift 

can be perceived in the natural evolution of the signal. 
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Figure 5.22. Artifacts present in the SaO2 signal, probably because of a loss of focus in the sensor 

 

In any case, detection of both situations should be performed previously to the 

application of further analysis algorithms. In this respect, the followed approach is dual: 
 

• On one hand, independently of the concrete artifact type, artifacts detection 

is performed by marking their starting and ending points. Thus a list of 

artifact intervals found in each signal is obtained. Additionally a 

classification of artifact’s severity is performed according to its duration in 

the context of the corresponding signal. 
 

• On the other hand, where possible, a reconstruction of the signal process is 

carried out. The main reason to attempt signal reconstruction is the 

minimization of posterior filtering application by subsequent analysis 

procedures. This is especially important in the case of a loss of focus since 

application of filter algorithms can introduce fictitious frequencies in the 

range of the affected signal.   

 
For the detection of overflow artifacts the system checks if the signal under 

consideration reaches the limits of its dynamic range. To achieve this signal period is 

calculated and if the overflow interval exceeds period of the signal then the artifact is 

marked. In this respect, since signal period may vary along the recording, calculation is 

recomputed every 2 minutes. For that purpose, each 2 minutes signal period is 

approximated by taking the inverse of the maximal frequency component in the Fourier 

Transform of the interval.  

 

Detection of loss of focus in the saturation signal is performed by differentiation, 

marking as artifacts those signal intervals in which its derivative exceeds certain 
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threshold value. Such threshold value represents the maximum desaturation/resaturation 

speed which is considered biologically possible. A maximum rate of 40% per second is 

considered in the algorithm. Values surpassing such a value are considered abrupt shifts 

in the signal caused by non natural biological transitions and are thus marked as 

artifacts.     

 

Once an artifact has been detected, classification is based on two values: Δmin y 

Δcritical. The former represents the minimal time an interval has to contain spurious 

values in order to be considered a true artifact. Use of Δmin is justified in the case of 

overflow artifacts since it can be the case of a signal where current value achieves the 

limits of its dynamic range without being necessary an artifact. In this respect, as 

previously mentioned, only overflow intervals with duration higher than the signal 

period are considered as artifacts. On the other hand, artifact periods of time duration 

higher than Δmin are classified into two types: Weak Artifacts (WA) and Heavy Artifacts 

(HA). From Δmin and while interval duration is less than Δcritical the artifacts is classified 

as WA. Durations higher of Δcritical are marked as HA. Figure 5.23 shows an example of 

such a classification in the saturation signal. 

 
 

 
Figure 5.23. In the figure two different artifacts have been detected and classified according to their 
duration; HA = Heavy Artifact; WA = Weak Artifact 

 

The use of two different labels in order to classify the artifacts is justified in terms 

of the posterior treatment of this information by subsequent analysis stages. For 

example, at the time of explaining the results of the system, the presence of a WA is 

considered as evidence that reasoning processes carried out over facts might be affected 

by the presence of an artifact, thus analyzed data may not completely be due to 

physiological events. In this manner, the user is warned over this fact in the 



Diagnosis of the Sleep Apnea-Hypopnea Syndrome: a comprehensive approach through a system to 
support medical decision 
 

234 
 

corresponding explanation of the event in the final report. Occurrence of an HA, on the 

other hand, is considered serious enough it may invalidate reasoning analysis results. If 

an apneic event is detected in the presence of an artifact of this type, a significant loss of 

information is considered as a consequence of the artifact, and the detected event is 

eventually discarded. 

 

Signal reconstruction is independently performed in the case in which a loss of 

focus is localized in the SaO2 signal. This unconditional reconstruction is accomplished 

in order to minimize collateral effects on posterior analysis phases. Application of 

digital filters, for example, may introduce artificial values as a consequence of the 

abrupt shifts in the natural signal evolution. In these cases linear interpolation between 

immediately adjacent samples free of artifact is performed. Resulting signal is assumed 

to follow regular signal evolution as if the artifact was not present. Figure 5.24 shows 

resulting signal after reconstruction from the artifacts shown in Figure 5.23. Signal 

trend previous to reconstruction as well as information about classification of the 

artifact is maintained. 

 

 
Figure 5.24. Same interval of SaO2 signal than in Figure 5.23. Signals has been reconstructed by 
interpolation of extreme values 

 
Summarizing, as the output of the preprocessing of respiratory signals, a list of 

artifacts detected on each signal is obtained. These artifacts may be produced by 

overflow in signal’s dynamical range or by abrupt shifts caused by a loss of focus in the 

sensors. Detected artifacts are localized in time and are classified as weak or heavy 

according to its relevance for the posterior analyses. Additionally, in the case of loss of 

focus in the SaO2 signal, reconstruction of the signal is performed by interpolating 

previous and posterior signal samples to the artifact interval. 
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5.7.2. Identification of apneic intervals 

Detection of apneic intervals involves analysis of the airflow signal and the 

movement signals from the thoracic and abdominal excursions. The kind of processing 

applied to these signals is the same because of their similarities: all are sinusoidal 

signals of which period represents the respiratory rhythm; additionally because of inputs 

configuration (see Table 5.1 in subsection “Description of the inputs”), the amplitude is 

always normalized to [-1, 1]. Fundamental difference resides in the derivation used to 

record the respiratory rhythm, as it has been explained in Chapter 2, and therefore each 

derivation may offer different information for the interpretation of the apneic event38. 

 

The signal that constitutes the focus of reference for the localization of apneic 

events within the classical clinical approach is the airflow [7]. However signals of 

respiratory movements also produce a measure of the amount of respiration since each 

inspiratory/expiratory cycle causes an increment/decrement in the thoracoabdominal 

section. In this respect, even though apnea definition requires the detection of a 

significant reduction localized over the airflow signal, it may be the case that an error in 

the sensor overlooks this event, however being this reflected both in the saturation and 

respiratory movement signals. Furthermore, some experts consider that a significant 

reduction on the amplitude of respiratory movements may be sufficient for the detection 

of a hypopnea [119]. In general, several combinations of situations are possible, and it is 

the hypothesis of this doctoral thesis that taking all into account will ultimately cause 

the better characterization of the apneic event. It is for this reason that the system 

searches for apneic evidences over the three previous mentioned signals: airflow, 

abdominal and thoracic movements. Relative importance of evidence detected on each 

signal –from now on, referred as apneic intervals- contributing to the overall belief 

about the existence of a concrete type of apneic event, is later refined at the reasoning 

level (see subsection “Detection of apneic events”). In any case, at this signal processing 

level, algorithms developed for the detection of apneic intervals –amplitude reductions- 

perform in the same manner over these three signals.     

 

                                                 
38 For example, in the obese patient the apneic event is preferably localized using the thoracic than with 
the abdominal derivation, since the excess of abdominal mass may obscure the recording of a feasible 
signal  



Diagnosis of the Sleep Apnea-Hypopnea Syndrome: a comprehensive approach through a system to 
support medical decision 
 

236 
 

Taking into account classical definitions regarding apnea and hypopnea events, 

their minimal duration is established to 10 seconds [120]. However it may be interesting 

to detect significant amplitude reductions of shorter duration. In this manner the 

detection criterion is relaxed, introducing a first source of imprecision in the system. It 

is, in fact, an event of duration 10.1 seconds valid while other with 9.9 seconds is not? 

In other words, given a system aimed at emulating intelligent behavior, it seems fair to 

consider the following question: Is a human being able, at a glance, to quantify such a 

difference? What about when he/she has been examining the PSG for three hours? In 

this regard, the tests carried out by Otero et al. on visual estimation of 50% of a line in 

257 participants show that error committed is 10.9 ± 4.35 (mean ± standard deviation). 

In the same study when estimating the 10% proportion the achieved error was 4.09 ± 

2.25 [121]. 

 

Taking into account the above mentioned, detection algorithm searching for apneic 

intervals in the three considered signals works as follows: 

 

1. Processing of the three signals is carried out through shifting a temporal 

moving window of length Δevent
39 seconds throughout them, so that each 

sample i is associated to the temporal window that starts in the i-th sample. 

Maximum signal amplitude within the window Ωevent(i) is then calculated as 

the difference between the maximum and minimum signals values 

contained in the corresponding window. Thus, value Δevent defines minimal 

duration of the possible amplitude reduction to be considered an apneic 

interval. 

 

2. The computed Ωevent amplitude is compared with respect to the baseline 

value, calculated over the immediately previous signal interval of duration 

Δbaseline seconds. Duration of this comparison interval, usually established to 

2 minutes, is used to determine the amplitude value of normal respiration 

over each respiratory signal. It is important to remark that within the 

baseline interval only periods of stable respiratory amplitude are considered, 

i.e. previous periods marked as possible apneic intervals do not count to 

                                                 
39 Configurable length can be established 
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compute the amplitude value for the baseline breathing. Resulting amplitude 

reference Ωbaseline is then calculated by averaging the Ωevent(k) amplitudes 

associated with the corresponding temporal windows of the k-th samples 

within the baseline period. Thus, Ωbaseline(i) represents the amplitude value 

of normal respiration for the current sample under analysis i that has 

associated amplitude  Ωevent(i). 

 
 

3. Comparing amplitude associated to the current sample with its 

corresponding baseline value, leads to a new measure ∝ representing the 

associated reduction: 

 

∝ (𝑖) =

⎩
⎪
⎪
⎨

⎪
⎪
⎧1 −

Ωevent(i)
Ωbaseline(i)

, 𝑖𝑓 Ωbaseline(i)  >  Ωevent(i) 

−1−
Ωbaseline(i)
Ωevent(i)

, 𝑖𝑓 Ωbaseline(i) <  Ωevent(i)

0, 𝑖𝑓 Ωbaseline(i) =  Ωevent(i)

� (5.4) 

 
 

4. By repeating this process throughout all the samples of the three signals, a 

new reduction signal is obtained (see Figure 5.25) that increases in the 

intervals where the signal amplitude decreases with respect to baseline 

respiration, and it decreases when respiration recovers.  
 

5. From the previous obtained signal, those periods in which the associated 

reduction is higher than αmin and has duration more than Δmin seconds are 

considered as possible apneic intervals. Duration Δmin marks minimal 

duration of the detectable apneic event by the system, thus Δmin >= Δevent. 

Both αmin and Δmin are configurable values and default values have been 

empirically established to 10% and 8 seconds respectively. Note that 

according to formula (5.4) and the dynamical range of the raw signals 

(contained in [-1,1], see Table 5.1) a ±10% amplitude change corresponds to 

a difference of ±0.1 in the signal α(i). The process is illustrated in Figure 

5.25. 
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Figure 5.25. Detection of apneic intervals: (1) original airflow signal; (2) computed reduction signal 
added in green; (3) apneic intervals marked in red, intervals marked in green represent respiration 
recovering periods 

 

As the last subtask within this module, a post-processing is performed over the 

previously detected apneic intervals. The post-processing has as its objective tuning the 

results of the detection algorithm. For example, it may be the case where the proximity 

of two events in the same respiratory signal causes that, with the above mentioned 

mechanism, only one apneic interval is detected, however, when actually two different 

events are present (see Figure 5.26). In this respect an analysis of the suspicious 

intervals is performed assessing the necessity of splitting the initial event into two or 

more individual events. The procedure is further detailed next: 
 

1. For those apneic intervals with duration more than Δmax seconds, associated 

average reduction αaverage is calculated (see Figure 5.26).  
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Figure 5.26. Original apneic interval after initial processing algorithm 

 

2. The suspicious event is segmented according to periods in which its 

associated reduction signal exceeds the αaverage cut (see Figure 5.27). 
 

 
Figure 5.27. Same event as in Figure 5.26, average associated reduction is shown with a black dotted line 

 

3. Segmented intervals of duration more than Δmin are finally considered as 

individual apneic intervals and are definitively separated from the original 

event (see Figure 5.28). 

 

 
Figure 5.28. Same event as in Figure 5.26, finally original event is split and two different apneic intervals 
are obtained  
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5.7.3. Characterization of oxygen saturation signal 
 

In parallel to the analysis of airflow and signals of respiratory movements, analysis 

and characterization of the oxygen saturation signal (SaO2) is performed. 

 

It is known that associated to each apneic event a desaturation/resaturation pattern 

appears reflected in the SaO2 signal [8] [122]. During the occurrence of an apneic event, 

and as a consequence of the airflow reduction during inspiration, an oxygen 

concentration reduction in the arterial blood oxyhemoglobin is produced. Thus, it is said 

that an oxygen desaturation is taking place. When airflow recovers, oxygen 

concentration is quickly restored leading to the consequent resaturation in the SaO2 

signal. 

 

Criteria that define both events in the context of an apneic event can vary from one 

expert to another. Normally, after hypoxia observed in the respiratory signals, 

desaturation in SaO2 signal is required to start within an interval of 20-40 seconds after 

starting of the causing apneic event. Duration of the desaturation should be more than 

10 seconds and a relative decrease in the saturation levels with respect to normal 

respiration about 2-4% is required. After reaching its lowest saturation level, this value 

is maintained for some seconds –desaturation plateau- depending on the duration of the 

apneic event, after which oxygen concentration raises until recovering preceding levels 

of stable breathing. Because of the hyperventilatory compensation produced as a 

consequence of the fall in the oxygen levels in blood, the resaturation event often is 

produced in a more abrupt manner when compared to desaturation. In fact, resaturation 

events rarely last more than 10 seconds [122]. 

 

It can be shown, again, that according to previous definitions the detection process 

itself constitutes a source of imprecision, because of the diversity in the criteria and the 

necessity to estimate durations, latencies or reductions in the signals from the visual 

inspection. This imprecision is later on treated by subsequent reasoning mechanisms in 

the context of fuzzy logic (see subsection “Detection of apneic events”). 

 

In any case, at this signal processing stage, the algorithm that characterizes the 

SaO2 signal to extract relevant information works as follows (see Figure 5.29): 
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1. Firstly, signal preprocessing is performed by using a means filter in order to 

remove little disturbances that may interfere in subsequent analysis stages. 

In this regard convolution of the signal with the filter is made using a 5 

seconds temporal window. 
         
 

2. Once the signal has been filtered, if the sampling rate is higher than 1 Hz 

then a downsampling is applied up to work with one sample per second, 

after which a new temporal window of 5 samples –thus 5 seconds- is shifted 

throughout the resulting signal, sample by sample. This window is centered 

on the current sample and the difference between the corresponding second 

previous and second subsequent samples is computed. That is, let n to be the 

current sample, difference calculation is carried out according to the 

following formula: 

 

∆𝑥[𝑛] = 𝑥[𝑛 + 2] − 𝑥[𝑛 − 2] (5.5) 

 

where x[n] is the value of the saturation signal which corresponds to sample 

n. From this –new- processed signal and by means of a new differentiation, 

the points representing patterns of the type start of fall, end of fall, start of 

rise and end of rise are marked. 
         
 

3. Finally, the SaO2 signal is segmented according to the previous detected 

patterns. In this respect a possible desaturation results from the chaining of 

one or more start of fall patterns, followed by one or more end of fall 

patterns, which mark a complete fall. Analogously, a possible resaturation 

results from the chaining of one or more start of rise patterns followed by 

one or more end of rise patterns, which represents a complete rise. 
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Figure 5.29. Analysis of SaO2 signal: (1) original signal, a disruption on the signal is highlighted which 
may interfere in the correct detection of end of rise and subsequent start of fall; (2) smoothed signal 
where patterns start of fall (SF), end of fall (EF), start of rise (SR) and end of rise (ER) have been 
detected; (3) finally signal segmented according to possible desaturation (red) and resaturation events 
(green) 

 

A note over the previously described procedure is necessary: during the third step it 

has been mentioned that segmentation of the signal is done in terms of possible 

desaturations/resaturations. The use of the term “possible” is important since here only 

intervals of sustained increase or decrease in the signal are being detected. Their 

confirmation or not, as significant enough to be respectively considered actual 

desaturations or resaturations is carried out later at the reasoning level (see subsection 

“Detection of apneic events”). 

 

One more postprocessing algorithm takes place before moving out to the next 

analysis step that refines the results of the previous segmentation. Sometimes it happens 

that subsequent chaining of several end of fall patterns with no intermediate 

resaturations produces abnormally long desaturation intervals. In these cases resulting 

possible desaturations usually present an intermediate plateau that connects two or more 

subsequent falling intervals. When this plateau is excessively long, it does not have 

sense anymore to consider that the flat period pertains to the physiological event; a 

more plausible explanation rather relies on the occurrence of two independent 
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desaturation events in which no significant resaturation is observed between them. This 

situation is common in patients where latency between subsequent apneic events is very 

short. This can be, for example, because of the delay between airflow reduction and the 

oxygen saturation drop in arterial blood, which among these patients, it sometimes 

causes the superimposition of two consecutive desaturations without recovering the 

preceding respiration levels, i.e. no resaturation event is produced. To avoid this 

situation, when suspiciously long falling saturation intervals are detected (>30 seconds), 

further analysis is performed trying to localize intermediate plateau subintervals. In the 

case a flat stable subinterval (> 15 seconds) is detected within the suspicious event, then 

the plateau subinterval is removed, and two independent falling intervals are finally 

computed (see Figure 5.30).     

 

 
Figure 5.30. In the figure three consecutive apneic events can be observed in a short period of time. 
Events can be shown over the airflow derivation. Consequent desaturations are marked on the saturation 
channel (correspondence is indicated by arrows). Little resaturation interval is observed between the first 
and second events. However, despite two individual events can be observed on the airflow, no 
resaturation at all is observed between the second and the third apneic event, Postprocessing removes the 
plateau interval in the SaO2 signal between these events and two desaturation events are eventually 
differentiated 

 

5.8. Integration and event characterization 
 

Integration and characterization of all the information generated during the previous 

analysis phases goes firstly through the relation of the different detected events in time 

for the construction of relevant diagnostic patterns. Temporal constraint rules are 

applied at this respect to characterize PSG intervals in the recording in which there is 

evidence pointing out to the possible existence of an apneic event. 
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Resulting apneic patterns are then evaluated by means of a reasoning process in 

which respiratory, neurophysiological and contextual information is taken into account 

to classify the pattern as either apneic or as false positive. In this respect, a fuzzy 

inference system is used to obtain the corresponding degrees of membership with 

respect to the categories of apnea, hypopnea and false positive.  

 

The set of apneic patterns that have been considered true positives are then 

classified according to its origin, i.e. central, obstructive or mixed, by similar fuzzy 

classification techniques. Previous to classification, additional analysis of 

thoracoabdominal derivations is necessary to evaluate presence or absence of 

respiratory effort. 

 

These three outlined processes are described in more detail throughout the 

following subsections. 

 

5.8.1. Building apneic patterns: temporal event correlation 

This analysis stage has as its objective the relation in time of the different events 

individually detected over each signal. The purpose is the detection of significant 

patterns –referred as apneic patterns (APs)- that characterize temporal intervals in the 

PSG that evidence the possible existence of an actual apneic event –with independency 

of its concrete type, i.e. an apnea or a hypopnea. 

 

Time correlation of the individual events is carried out by applying a series of 

temporal constraints that determine how the different events should be related for the 

resulting group of events to be considered as a relevant diagnostic pattern. 

 

A first level of temporal constraints involves the events located in the respiratory 

signals: airflow, oxygen saturation in arterial blood, thoracic and abdominal breathing 

movements. Each one of the patterns resulting from the correlation of the respiratory 

events defines a reasoning unit in our system which is subsequently interpreted taking 

into account the context of the hypnogram and the remaining neurophysiological events, 

as well as other contextual events such as body position, state of the ambient lights or 

presence of artifacts. 
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Hypothesis. Existence of an apneic pattern is considered when the underlying 

cause has physiological significance. 

 

The previous hypothesis will guide the correlation process. In this regard, as it has 

been commented already, when a respiratory pause occurs as a consequence of an 

apneic event, the pause is reflected in the sinusoidal signals that monitors the respiratory 

cycles as an amplitude reduction interval –apneic interval- with respect to normal 

breathing. On the other hand, as a consequence of the drop in the respiratory flow, 

oxygen saturation levels in the arterial blood decay producing a desaturation. 

Desaturations can normally be seen with a certain lag with respect to the occurrence of 

the causing apneic intervals. Once the apneic event ends, amplitude recovering can be 

seen usually with presence of compensatory hyperventilation –amplitude recovering 

slightly higher than previous baseline breathing- as well as resaturation in the oxygen 

levels, again, with a certain delay with respect to end of the corresponding apneic 

intervals.  

 

Having the previous sequence of physiological events into mind, the temporal 

correlation process tries to establish the corresponding relations among the respiratory 

events. During this process, desaturation events detected in the oxygen saturation signal 

are taken as the reference from which trying to establish the corresponding cause-effect 

relationships with the apneic intervals. 
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In this respect, for each possible desaturation previously detected in the SaO2 

signal: 

 
1. A searching interval is defined beginning at the start of the desaturation and 

going back in time. This temporal window has duration of 30 seconds, 

defining a time interval for the localization of apneic intervals in the signals 

of airflow and thoracoabdominal respiratory movements (see Figure 5.31). 
 
  

 
Figure 5.31. Definition of the search interval in the apneic pattern correlation 

       
 

2. Within the searching interval, there are considered for correlation, those 

events of which their ending points are within the interval or their starting 

points are before the start of the fall in the saturation channel. Events 

exceeding the ending point of the saturation fall are not considered, even if 

they partially overlap the searching interval (see Figure 5.32). 
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Figure 5.32. Correlation of apneic patterns: event AF2 does not correlate because its end overpasses 
ending point of the saturation fall. Event TM2 also does not correlate because it starts after starting point 
of desaturation. AF = Airflow; AM = Abdominal Movement; TM = Thoracic Movement 

 

3. If a rising interval exists in the saturation signal within the searching 

interval –sign of a possible resaturation- those events ending before the 

starting of the rise are not considered as well (see Figure 5.33).  

 

 
Figure 5.33. Correlation of apneic patterns: event TM1 does not correlate because it ends before starting 
of resaturation pattern. AF = Airflow; AM = Abdominal Movement; TM = Thoracic Movement 
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4. For the remaining events within the searching interval, and for each one of 

the three signals of airflow, abdominal movement, and thoracic movement: 

 

a. Commencing from the beginning of desaturation and going back in 

time, the algorithm searches the closest event. This event is related 

with the possible desaturation. 

  

b. If more than one event exists in the current channel, the subsequent 

in order is merged with the previous one if (1) temporal difference 

between respective ending and starting points is less than ∆union 

seconds, and (2) a respiratory recovering40 has not been detected 

between them (see Figure 5.34, Figure 5.35 and Figure 5.36). 

 

 
Figure 5.34. Correlation of apneic patterns: Same situation as in Figure 5.33, where event AM1 is 
discarded for correlation since its distance to AM2 is higher than ∆union. AF = Airflow; AM = Abdominal 
Movement; TM = Thoracic Movement 

   
 

                                                 
40 Respiratory signal interval which is found within amplitude levels of normal respiration. In cases of 
compensatory hyperventilation produced by ending of a previous apneic event, this recovering may even 
exceed these levels. 
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Figure 5.35. Correlation of apneic patterns: Now distance between events AM1 and AM2 is less than 
∆union. AF = Airflow; AM = Abdominal Movement; TM = Thoracic Movement 

 
 
 
 

 
Figure 5.36. Correlation of apneic patterns: Same example as in Figure 5.35. Events AM1 and AM2 are 
merged to form a new event AM12. Events marked in yellow are those that finally form the apneic 
pattern together associated with the desaturation. AF = Airflow; AM = Abdominal Movement; TM = 
Thoracic Movement 
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After this temporal correlation process, for each rise/fall pattern detected in the 

SaO2 signal, an apneic pattern is obtained representing the occurrence of a possible 

apneic event. The pattern at this stage is composed of the events in the saturation signal 

plus zero-to-one apneic intervals, for each one of the signals of airflow, abdominal 

movements, and thoracic movements (see Figure 5.35). In the case in which an apneic 

interval is not detected on any of these three signals, it is considered that the signal does 

not show relevant evidence of apneic event in the corresponding channel.   

 

In addition to the previous described procedure, an apneic pattern can also be 

formed without presence of significant fall in the saturation. This situation can be 

caused by presence of artifacts in the oxygen saturation channel, or because of the 

chaining of several apneic events that, because of their proximity, do not reach to trigger 

two differenced desaturations. In this case, to become a significant diagnostic pattern, 

there must be apneic intervals over all the three respiratory signals (airflow and 

thoracoabdominal movements), such that middle point of each of them is contained 

within time interval of the remaining two (see Figure 5.37).    

 

 
Figure 5.37. AP1 and AP3 are associated with desaturations indicated by arrows. AP2 has no associated 
desaturation given its proximity to AP1. Nonetheless, AP2 must be classified as an apneic event. The 
black circles indicate the mid-points of the apneic intervals included in AP2. AP = Apneic Pattern 
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Apneic patterns constructed on the basis of the previously described procedures 

only represent respiratory evidence of the presence of an apneic event. However, as it 

has been continuously sustained throughout the text, correct interpretation requires 

additional information coming from remaining PSG signals. This information serves as 

interpretative context and it includes neurophysiological activity and additional 

contextual information such as body position, presence of detected artifacts or ambient 

lights. For the integration of this contextual information within the apneic pattern, the 

patterns previously generated –that involved only respiratory activity- are now 

completed with the following information: 

 

• Body position. The apneic pattern is characterized according to patient’s 

body position during its occurrence. If the sleeping position changes during 

the occurrence of the apneic interval, the change is also reflected within the 

apneic pattern. 

 

• Lights’ state. Information on lights’ state (ON or OFF) is added during the 

occurrence of the pattern.  

 

• Sleep state. The pattern is contextualized in function of the sleep state(s) 

corresponding to the epochs that overlaps with the apneic pattern.  

 
• Detected artifacts. If it is the case, each one of the detected artifacts on the 

different events is integrated in the apneic pattern.  

 

• EEG Arousals. An EEG arousal is associated with a respiratory event if the 

arousal begins less than 5.0 seconds after the end of the event (i.e. 0-4.9 

seconds) [119].   

  

Eventually, all the different apneic patterns containing the previously described 

information are then evaluated in order to confirm or discard them, respectively, as true 

apneic events or as false positives. And then, if they are confirmed, their class, i.e. 

apnea or hypopnea, and its nature, i.e. obstructive, mixed or central, is determined. The 

process for the evaluation of the apneic patterns is described throughout the next 

subsections. 
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5.8.2. Detection of apneic events 

Once all the individual events have been correlated in time to form apneic patterns, 

analysis is produced in order to confirm or discard them as true apneic events or false 

positives. In other words, the task is to infer if, which up to this time were possible 

apneic events, can be then confirmed as apneas or hypopneas, or in the contrary, to be 

discarded as apneic events. It is at this stage in which the approximate reasoning itself 

takes place through the use of a FIS designed accordingly to the procedures defined in 

Chapter 4.   

Input information to this stage is constituted by all the apneic patterns detected at 

the previous step. Recall these patterns have resulted from the correlation of the 

individual events detected among the different respiratory signals, together with the 

contextual information coming from signals related with the sleep function, patient’s 

body position, light’s state and the presence of artifacts. The individual events 

integrating the apneic pattern have associated quantitative and qualitative information 

according to respective detection algorithms described throughout the previous sections. 

This information is summarized in Table 5.3. All this information is of imprecise nature 

since there is not an exact threshold value that determines the precise –i.e. categorical- 

evaluation of each one of the evidences. In contrast, it rather exists a range of more or 

less accepted values that point out to different hypotheses. Moreover, as it was 

mentioned already, effects of human subjectivity also contribute to this fact. Therefore, 

particularities of events associated to each pattern should be consequently evaluated 

from the general perspective, on the basis of approximate judgments and similarity 

criteria, as it does the human expert. 
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Table 5.3. Quantitative and qualitative information of the individual events integrating the apneic pattern; 
*values are determined according to user’s preferences 

Data Source Information item Possible values 

Airflow 
Reduction percentage [0 – 100] ∈  ℝ 

Duration [0 – max. duration*]∈  ℝ 

Abdominal respiration 
Reduction percentage [0 – 100] ∈  ℝ 

Duration [0 – max. duration*]∈  ℝ 

Thoracic respiration 
Reduction percentage [0 – 100] ∈  ℝ 

Duration [0 – max. duration*]∈  ℝ 

SaO2 

Fall reduction percentage [0 – 100] ∈  ℝ 

Fall duration [0 – max. duration*]∈  ℝ 

Rise increase percentage [0 – 100] ∈  ℝ 

Rise duration [0 – max. duration*]∈  ℝ 

Respiratory artifacts 

Type 

1 – Signal overflow 

2- Loss of focus (weak) 

3 – Loss of focus (heavy) 

Duration [0 – max. duration*]∈  ℝ 

Location 
1 – Prior to event 

2 – Within the event 

Channel 
Derivation in which the artifact 

has been detected 

Sleep Stages 

µ(W) [0 – 1] ∈  ℝ 

µ(DS) [0 – 1] ∈  ℝ 

µ(DEEP) [0 – 1] ∈  ℝ 

µ(REM) [0 – 1] ∈  ℝ 

EEG arousal 

Presence YES/NO 

Distance [0 – max. distance*]∈  ℝ 

Duration [0 – max. duration*]∈  ℝ 

Body position Position 

0 – right 

1 - left 

2 – supine 

3 – prone 

4 – change (movement) 

Lights state State ON / OFF 

EMG 
µ(relaxed) [0 – 1] ∈  ℝ 

µ(tense) [0 – 1] ∈  ℝ 
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To do so, a fuzzy inference schema is used to obtain, for each apneic pattern, its 

corresponding degrees of membership, simultaneously, with respect to three different 

categories: apnea, hypopnea or false positive, in function of its respective similarity 

according to the expert knowledge expressed in the form of fuzzy linguistic statements 

(fuzzy rules). 

 

In this respect, at this phase each apneic pattern is analyzed as illustrated in Figure 

5.38; knowledge is structured in several knowledge bases composed of fuzzy rules that 

evaluate the information at different levels of abstraction. This ensures a better 

structuring of the knowledge. The reasoning process takes place in three steps illustrated 

in the same figure.  

 

Figure 5.38. Fuzzy reasoning schema split into three stages. AP = apneic pattern; mov = movement 

 

The first stage represents an initial level of abstraction in which the significance of 

falls detected in the SaO2 signal are analyzed in order to determine whether they can be 

considered actual desaturations. For this purpose, a Mamdani-type FIS is used in which 

two input variables are established representing fall duration (“duration”) and reduction 

(“fall reduction”) that are partitioned using trapezoidal fuzzy sets. The output variable is 

partitioned into five fuzzy triangular sets so as to establish the degree of membership 

with regard to the desaturation category (“event desaturation”); defuzzification is done 

using the centroid method. Figure 5.39 illustrates the FIS that intervenes in this stage 

and the input and output variable partitions for this FIS.  
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Figure 5.39. (a) FIS for the first reasoning stage; (b) Partition for the duration input variable; (c) Partition 
for the fall reduction input variable; (d) Partition for the event desaturation output variable 

 

Since, physiologically, an apneic event should be associated with a desaturation 

event, in a first instance only apneic patterns in which possible associated desaturations 

have membership values of μdesaturation(AP) ≥ 0.5 (calculated empirically as the threshold 

value) are considered for the next level of reasoning. It is possible, as previously 

mentioned, that two apneic events occurring within a short space of time produce a 

single significant desaturation [119] (in other words, there is no perceptible 

resaturation); it is also possible that the measuring device may fail to reflect a 

desaturation associated with an apneic event in the SaO2 signal. Bearing in mind these 
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circumstances, the apneic patterns that have not been associated with any significant 

desaturation in the correlation phase (μdesaturation(AP) < 0.5) are also included in the 

second reasoning phase, but only if they show evidence of including apneic intervals of 

enough significance. The requirements established for the evaluation of patterns with no clear 

desaturations, and include them in the second reasoning phase, have been established in the 

previous section (see “Building apneic patterns: temporal event correlation”). 
 

In the second stage, each apneic interval included in the apneic pattern—airflow 

and thoracic and abdominal movement signals—is evaluated concurrently. The aim is to 

obtain an individual measure of the evidence of apneic event for each respiratory signal 

separately. For example, it is possible that, by uniquely considering the apneic interval 

regarding the airflow signal, the evidence was not significant enough to consider the 

apneic pattern to be a real apneic event. On the other hand, the respiratory movement 

signals might reflect significant amplitude reductions indicating that the apneic pattern 

should be classified as a hypopnea [7]. At this second stage, for each of the three 

signals, inputs are the duration of each existing apneic interval (“duration”), the 

associated reduction (“reduction”) and the degree of membership obtained at the first 

phase and referring to the desaturation category (“desaturation degree of membership”). 

The output for the second reasoning stage consists of three fuzzy variables: apnea, 

hypopnea and false positive (i.e. normal respiration). The output variables are 

partitioned on the basis of fuzzy triangular sets. Figure 5.40 depicts the FIS for the three 

respiratory signals and the respective partitions. The desaturation input value is the 

value that has been obtained at the output for the first stage, and hence it is the same for 

each apneic interval.  
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Figure 5.40. (a) FIS for the second reasoning stage involving airflow and thoracic and abdominal 
respiratory movements; (b) Partition for the duration input variable; (c) Partition for the reduction input 
variable; (d) Partition for the event desaturation output variable 

 

Finally, it is necessary to correlate the individual outputs obtained in the second 

stage for each of the apneic intervals in the apneic pattern. Weights are assigned to each 

of the respiratory signals and the memberships obtained are combined as outputs to the 

second stage, according to the established weights. In this regard weighted fuzzy logic 

techniques [123] are used, with fuzzy AND/OR operators interpreted as follows:  
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Let (∇ ,∆ ) be a pair of T-norms and T-conorms that satisfy DeMorgan’s laws, let 

w = max{w1,w2,…,wn), with ∑
=

=
n

i
iw

1
1 , where each wi is a weight associated with each 

operand, and let µ(a1), µ(a2),…, µ(an) be the degrees of membership to which the AND 

operator or the OR operator are applied. The resulting degrees of membership are 

calculated according to the following formulas: 
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Using these definitions, the process basically consists in performing a fuzzy OR of 

the degrees of membership for the output variables apnea and hypopnea, and a fuzzy 

AND for the degrees of membership regarding the normal respiration output variable, 

among the individual outputs of the three signals obtained at the second stage. The use 

of the AND operator in order to evaluate the possibility of discarding the pattern as 

apneic event tends to favor a positive identification of the apneic event. The former 

increases the sensitivity in the detection, but it also augments the number of false 

positives.  

 

The concrete applied weights for airflow (0.4), abdominal movement (0.3) and 

thoracic movement (0.3), are estimated empirically as the most suitable. The idea of 

assigning greater weight to airflow is motivated because, in the traditional diagnostic 

process, this signal represents the main reference for apneic event identification [124].  

 

By applying the above described procedure it is obtained, for each apneic pattern 

(AP), a single measure of its degree of membership with respect to the apnea, hypopnea 

and normal respiration output variables: μapnea(APi), μhypopnea(APi) and μnormal 

respiration(APi). 
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At this point, artifact information from the respiratory signals is taken into account 

in the reasoning. In this process two different types of artifacts that may affect the 

apneic pattern on any of its associated signals are distinguished: (1) artifacts taking 

place in the event itself, that is, artifacts which its temporal occurrence is within an 

apneic interval, and (2) artifacts that, even though they do not temporally overlap with a 

event, on the other hand they may influence its detection. An example of the second 

situation is when the artifact occurs in the temporal interval used to calculate normal 

respiration baseline that is used to mark the apneic interval (see subsection 

“Identification of apneic intervals”).  

 

The apneic pattern has to be interpreted also with regard to remaining contextual 

information, that is, patient’s sleep position, ambient lights, sleep stages and the 

presence of EEG arousals.  

 

In this respect, a first procedure is used to discard false positives among apneic 

patterns that, although according to respiratory activity, they may present the 

characteristics of an apneic pattern (i.e. max [μapnea(APi), μhypopnea(APi)] > = μnormal 

respiration(APi)), they should be discarded according to the contextual evidence. Thus, 

independently of its associated degree of membership, an apneic pattern is declared a 

false positive if any of the following situations occur:  

 

• Body position change. Change in body position is considered to produce 

non reliable respiratory signals because of the artifact in the sensors caused 

by the movement. Hence, when change in sleeping position is detected 

during occurrence of an apneic pattern, the apparent respiratory reduction in 

the signals is associated with patient’s movement rather than with a real 

respiratory absence. 

  

• Artifacts (HA). When loss of focus or overflow is detected within the 

respiratory channels of apneic pattern and the artifact has been classified as 

HA (see subsection “Preprocessing of respiratory signals”), then the 

corresponding apneic interval is discarded since apparent respiratory 

reduction can be attributed to the occurrence of the artifact. 
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• Patient is awake. By definition, apneic events must occur while the patient 

is sleeping. In this respect information on patient’s hypnogram is used to 

assess his/her sleeping state and, if the apneic pattern is localized during 

stable periods of wakefulness, then the apneic pattern is considered as a 

false positive.  

 

• Lights are “ON”. Another source of evidence to discard false positives 

comes from the recording of lights. If lights channel is on, either because 

ambient light is on, or because the sleep technician has annotated the 

interval as non valid for scoring, then all possible apneic events detected on 

the corresponding interval are automatically discarded.   

 

In addition, besides of false positive discarding, contextual information is also used 

for adjusting final degrees of membership of the remaining apneic patterns –i.e. those 

that were not previously discarded. Depending on the corresponding evidence, this 

adjusting can increase or decrease the degree of membership associated to the different 

hypotheses (apnea, hypopnea or normal respiration/false positive). The former may only 

produce a mere adjusting on the final beliefs, but it may also cause a new discarding of 

false positives, or even the final confirmation of apneic patterns that were initially 

considered as false negatives. Note that although based on clinical evidence, exact 

adjusting values have been empirically determined. Specifically:  

 

• EEG arousal is usually triggered as a consequence of the lack of oxygen 

produced by an apneic event. According to medical criteria [119] an arousal 

is associated with a respiratory event if the arousal begins less than 5 

seconds after the end of the event (i.e. 0-4.9 seconds). Consequently, since 

EEG arousal associated with apneic pattern is indirect evidence of the 

presence of apneic event, the following rule is applied: 

 
μapnea(APi) = max(1, μapnea(APi) + μapnea(APi) x 0.2) 

μhypopnea(APi) = max(1, μhypopnea(APi) + μhypopnea(APi) x 0.2) 

μnormal respiration(APi) = min(0, μnormal respiration(APi) – μnormal respiration(APi) x 0.2) 
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• Muscle relaxation is a symptom of deep sleep stage which favors 

appearance of apneic events. This situation is common of phase REM. Sleep 

in supine position can also be a triggering event favoring occlusion of upper 

airways, increasing likelihood of appearance of apneic events [14] [125]. 

Accordingly, final degrees of membership to account for this evidence are 

slightly modified: 

 
 μapnea(APi) = max(1, μapnea(APi) + μapnea(APi) x 0.1) 

μhypopnea(APi) = max(1, μhypopnea(APi) + μhypopnea(APi) x 0.1) 

μnormal respiration(APi) = min(0, μnormal respiration(APi) – μnormal respiration(APi) x 0.1) 

 

• Transition from light sleep to deep sleep may cause slight reduction of in 

the respiratory amplitude. However, this reduction is related to the normal 

sleep process and therefore it should not be considered evidence of 

hypopnea [126]. Thus, the following adjusting is applied in the case this 

situation occurs: 

 

μhypopnea(APi) = min(0, μhypopnea(APi) - μhypopnea(APi) x 0.5) 

 

Once the reasoning and contextual adjusting processes have ended, as the output of 

the apneic detection phase, a set of apneic patterns finally confirmed as apneic events 

(either apnea or hypopnea) and temporally localized over the PSG are obtained. Let 

μapnea(APi), μhypopnea(APi) and μnormal respiration(APi) to be the final degrees of membership in 

the apnea, hypopnea and normal respiration fuzzy sets of the apneic patterni, i=1..n, 

where n is the total number of apneic patterns. The process that determines whether 

apneic patterni is finally confirmed or otherwise is discarded as apneic event is the 

following: 
 

If : {max [μapnea(APi), μhypopnea(APi)] > = μnormal respiration(APi)} 

Then: APi is confirmed as an apneic event 

Else: APi is considered to be a false apneic event and is therefore ruled out.  
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Finally, and with independency of the final confirmation of the apneic event, for 

each apneic pattern, numerical values representing the corresponding degrees of 

membership are characterized in terms of linguistic labels (see Figure 5.41). 

 

 

Figure 5.41. Outputs in the form of linguistic labels for the differing degrees of membership 

 

For example, given APi, if the system establishes that μapnea(APi) = 0.78 and 

μhypopnea(APi) = 0.56 on concluding the reasoning phase, then the output perceived by 

the user is that the event is quite likely to be an apnea but it also is likely to be a 

hypopnea. Note that with the preceding procedure, categorical classifications of the 

event are avoided and, at the same time, outputs are characterized using expressions in 

natural language of the clinician. 

 

5.8.3. Classification of apneic events 

In the section “Apneic event classification” of Chapter 2, classification of the 

apneic event has been structured, independently of being an apnea or hypopnea, 

according to its origin or nature, that is, as central, mixed or obstructive. A correct 

classification of the nature of the apneic event is necessary insofar as treatment of the 

disease may depend on the dominant type of apneic events present in the patient 

diagnosed with SAHS. 

 

Classification phase in the developed system has as its objective to perform such a 

classification from the apneic events previously confirmed at the detection phase. 
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Clinical approximation to carry out classification from inductive plethysmography focus 

on analysis of respiratory movements, both thoracic and abdominal, which allows 

inferring the presence or absence of respiratory effort associated to the apneic event. For 

that purpose, in the constructed system, analysis is structured in two stages: 

 

• First, recorded signals of respiratory movements are analyzed using 

signal processing techniques. The objective is to extract relevant 

information to associate to each apneic event previously confirmed, 

features gathering data which is subsequently evaluated at the reasoning 

stage. 

 

• Second, reasoning stage carries out an analysis of previous extracted 

features by using a FIS which performs a fuzzy classification of the 

corresponding apneic event with respect to three possible outputs: 

obstructive, mixed and central. 

 

More specifically, first classification processing stage proceeds in the following 

form. For each apneic event confirmed at the detection phase:  
 
1. Derivations of thoracic and abdominal respiratory movements are analyzed in the 

context of the corresponding apneic pattern, firstly by filtering high frequencies 

(low pass filter, 2 Hz) in order to remove possible high frequency noise present in 

the signals. 

  

2. Resulting filtered signal intervals are processed quantifying amplitude of internal 

breathing cycles. Let 𝜑𝑐𝑦𝑐𝑙𝑒_𝑖 to be amplitude of the i-th respiratory cycle within the 

interval. Amplitude is measured as difference between maximum and minimum 

values of the respiratory cycle. 

 
3. Taking as reference the starting point of the apneic event, a reference interval is 

taken going Δref seconds back in time. Then the same processing is performed over 

this reference interval as in points 1 and 2. That constitutes a baseline period to 

compare amplitude of respiratory cycles during the apneic event, with respect to 
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average of respiratory cycle’s amplitude within this reference interval. Let  𝜑𝑟𝑒𝑓 to 

be such average amplitude.  
 
4. Then, the two respiratory channels are segmented in the time interval of the apneic 

event, by comparing amplitude of the respiratory cycles with their corresponding 

reference values. Segmentation is performed in accordance with the following 

criterion: 

𝜑𝑐𝑦𝑐𝑙𝑒_𝑖 < 𝜑𝑟𝑒𝑓 ∗  𝛼 ⇒ 𝑎𝑏𝑠𝑒𝑛𝑐𝑒 𝑜𝑓 𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡𝑖 
 

𝜑𝑐𝑦𝑐𝑙𝑒_𝑖 ≥ 𝜑𝑟𝑒𝑓 ∗  𝛼 ⇒ 𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒 𝑜𝑓 𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡𝑖 
 

That is, if the amplitude reduction shown by the corresponding i-th cycle with 

respect to average reference amplitude is higher than certain threshold α, then the 

respiratory cycle is labeled as absence of movement. On the other hand if the reduction 

does not overpass the value α, then the respiratory cycle is labeled as presence of 

movement. Empirically value of α has been set to 0.15. The process is illustrated in 

Figure 5.42 and Figure 5.43. 

 
    

 
Figure 5.42. Classification processing: apneic event shown over abdominal and thoracic respiratory 
movements 
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Figure 5.43. Classification processing: segmentation has been made according to periods of presence of 
movement (dark green) and absence of movement (light green) 

 
5. Once the signals have been segmented on intervals of presence/absence of 

movement, the whole analysis interval is subdivided into 3 subsegments of equal 

length, respectively representing starting, center and ending of the event. For each 

one of these subintervals the percentage of absence and presence of movement is 

quantified. Additionally, for each one of the corresponding subintervals in the two 

signals, linear correlation is computed (see Figure 5.44). Linear correlation between 

the different sections of the event complements with information on phase of the 

two signals previous quantification on the amount of registered movement 

(absence/presence). As it has been described in Chapter 2, central events are 

characterized by thoracic movements in phase with those from the abdominal 

respiration –positive correlation. On the other hand, during occurrence of an event 

of an obstructive origin, sinusoidal waves from thoracoabdominal derivations tend 

to present certain phase lag, which results in negative correlation. 
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Figure 5.44. Classification processing: each derivation is divided into three intervals and amount of 
presence of movement is computed. Percentages are shown below marks of previous segmentation. 
Linear correlation between the two signals is also computed for each subinterval. Resulting correlation is 
shown in the middle of the figure. 

 

Once processing of thoracoabdominal signals has concluded, resulting extracted 

features are fed into a FIS to perform classification of the event. A total of six features 

are used for classification: average of presence of movement over the two signals for 

each of the three subintervals, and liner correlation obtained for each one of them (see 

Figure 5.44).  
 

The FIS used at this reasoning stage has been optimized following learning 

procedures and neuro-fuzzy architecture for classification described in Chapter 4 (see 

section “Neuro-fuzzy modeling within the developed system”). Unlike the FIS used at 

the detection stage, here the inferential process is carried out in just one step. Therefore 

the number of input variables is six, in correspondence with the number of input 

features. At the output, a fuzzy classification of the corresponding apneic pattern is 

obtained in basis of three fuzzy output variables: obstructive, central and mixed. A 

different degree of membership results to each one of them, and the maximum degree is 

taken as the default final classification. As it has been described in previous subsection, 

linguistic classification is also performed over the obtained numerical degrees of 

membership to express results in natural language. 
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5.9. Diagnostic generation 

 
Diagnostic generation basically consists in compilation of all the relevant 

information produced during the analysis to compute significant numerical parameters 

and indexes that are useful for the physician to issue a diagnosis. Resulting information 

objects are then organized in form of report, where information is synthesized according 

to several categories and levels of detail. The clinician can therefore access on demand 

to the different items and request explanations about system’s results.  

 

A list of AASM recommended parameters to be reported for polysomnography can 

be found in [7] and are used here as guideline. With regard to sleep scoring data, besides 

of the hypnogram, the following parameters are included in the report: 

 

1. Total lights out clock time: Total time spent with lights OFF (hr:min) 

2. Lights on clock time: Total time spent with lights ON (hr:min) 

3. Total sleep time (TST): Total time in any sleep state different from awake in 

min 

4. Sleep latency (SL): Time with lights OFF to the first epoch of any sleep in 

min 

5. Sleep start (ST): Start of the recording to the first epoch of any sleep in min 

6. Stage REM latency: sleep onset to first epoch of stage REM in min. Sleep 

onset is considered as the first epoch of any sleep 

7. Stage DEEP latency: sleep onset to first epoch of stage DEEP in min 

8. Wake after sleep onset (WASO): stage W during (1) minus (5) in min. Note 

that WASO includes all wake activity, including wake out of bed 

9. Percent sleep efficiency: (TST / (1)) x 100 

10. Time in each stage (min) and corresponding percentage with respect to TST 

 

Total number of arousal events is counted and the Arousal Index (ArI) is computed 

as: 

 

𝐴𝑟𝐼 =
(𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑟𝑜𝑢𝑠𝑎𝑙𝑠 𝑥 60)

𝑇𝑆𝑇
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Main objective of diagnosis is to determine whether the patient suffers from SAHS 

and, if this is the case, to indicate the type. In order to do this, the Apnea-Hypopnea 

Index (AHI) is computed as: 

 

𝐴𝐻𝐼 =
(𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑝𝑛𝑒𝑖𝑐 𝑒𝑣𝑒𝑛𝑡𝑠 𝑥 60)

𝑇𝑆𝑇
 

 

ApI (apnea index) and HI (hypopnea index) are also computed analogously but 

considering only the number of apneas and hypopneas respectively. On the basis of the 

value of AHI, linguistic classification of the severity of the syndrome is performed, 

according to Table 5.4, into four different categories. Nevertheless, it has to be taken 

into account that besides clinical recommendations [127], there is still a discussion on 

the appropriate distinction between the different categories of SAHS severity based on 

thresholding the number of apneic events per hour of sleep [128]. Therefore, although 

based on common extended segmentation values of AHI over the literature, the 

resulting categories used in Table 5.4 should be considered just as a guideline for the 

clinician. Final severity consideration for the diagnosis should in fact account for 

additional symptomatology of the patient [129]. 

 
Table 5.4. Classification of SAHS severity 

AHI Linguistic label 

0 ≤ AHI < 10 Not significant 

10 ≤ AHI < 20 Mild 

20 ≤ AHI < 30 Moderate 

AHI ≥ 30 Severe 

 

Once the existence of SAHS has been confirmed, syndrome classification is 

performed based on recalculation of AHI taking into account each kind of apneic event, 

i.e. obstructive, mixed or central. The syndrome is then classified in terms of the 

greatest value given by the relative AHI. Prevalence of Mixed events does not represent 

a specific diagnosis from the point of view of a clinical diagnosis [129]. For this reason, 

when calculating AHIs with respect to SAHS classification, mixed events and 

obstructive events are computed together. 
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If the number of central events is reduced in comparison with the number of 

obstructive events (i.e. less than 20% of obstructive events), then it can be concluded 

that the detected central events are not a consequence of the existence of central sleep 

apnea-hypopnea syndrome (CSAHS), and therefore the syndrome is classified as 

obstructive (OSAHS). On the other hand, if the number of central events is greater than 

the number of obstructive events (i.e. more than 50% of obstructive events) then it is 

indicated that the patient suffers from CSAHS [130] [131]. In any case, a minimum 

occurrence of at least 10 events per hour of sleep (AHI ≥ 10) for both, central and 

obstructive events, should occur for a patient to be either scored respectively with 

CSAHS or OSAHS. Finally, in the case where the number of central events is between 

20%-50% of obstructive events, the patient is diagnosed as with “mixed OSAHS”. 

Clarification is needed at this point, since as it has been commented already, according 

to clinical guidelines, the category mixed OSAHS is not recognized as a proper 

syndrome type [129]. On the other hand, the use of the term “mixed” preceding OSAHS 

output is aimed at pointing out to the significant number of central events detected, thus 

the clinician can perceive that although the patient has been diagnosed with OSAHS, 

there is a significant number of central events which may suggest further investigation 

about the pathological origin. 

 

Syndrome classification according to patient’s sleeping position is also performed. 

Information regarding the position of the patient is recommended in order to do not 

overestimate the severity of SAHS in patients with apneic events dependent on sleeping 

position (see Chapter 2 “Contextual interpretation of apneic events”). In this regard, 

once the existence of SAHS has been confirmed, in the case of being classified as 

obstructive, then it can be determined whether or not the syndrome is related to position 

by using the following criteria [132]: 
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Additional reported statistics comprise distribution of the different apneic events 

together with their classification with respect to the sleep states and the different 

sleeping positions, distribution of sleeping positions with respect to the sleep phases, 

distribution of EEG arousals with respect to the hypnogram and the of desaturation 

patterns classified according to their associated percentage of desaturation (< 2%, 2-3%, 

3-4% and >4%). 

 

Based on all the previous information, diagnostic module provides of a summary 

explanation of its output, with varying degrees of detail on the basis of the obtained 

results. In a first level, global syndrome characterization comprises final confirmation or 

discarding of the syndrome, and if it is the case, classification of its severity and type 

(obstructive, mixed obstructive, central, positional or non-positional) as described 

above. On a second explanation level, information on the identification and 

classification of each individual apneic event is provided. In this respect, each event is 

justified in terms of overall trust as a genuine apnea or hypopnea, as well as to the 

possibility of being considered a false positive; event classification is also provided in 

terms of the different degrees of membership achieved with regard to classification 

categories: obstructive, mixed and central. Finally, a third level comprises related 

statistics including hypnogram (both, continuous or classical epoch-based), sleep 

parameters (see above), transient EEG detected events and several other statistics of 

interest. Next section shows how this is information is available through the main user 

interfaces of the application. 

 

A final note is intended with respect to the advantage of using fuzzy rules to 

implement system knowledge in relation with explanatory possibilities of the system. 

Indeed, as it has been mentioned throughout the text, the use of fuzzy logic allows us to 

express system knowledge using linguistic expressions in the form of IF-THEN fuzzy 

rules. This is because of the association of linguistic labels to each fuzzy set 

representing a category of data (see Chapter 4, “Fuzzy inference systems”). The former 

permits knowledge to be easily interpreted from the medical personnel. As an example, 

fuzzy rules implemented in relation with evaluation of a respiratory reduction in the 

thoracoabdominal channels are shown in Figure 5.45. 
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Figure 5.45. Example of linguistic IF-THEN rules implementing knowledge about the interpretation of a 
respiratory reduction (apneic interval) detected through thoracoabdominal channels 

 

Visual evaluation of the rules from the clinician is then available which enables 

follow up of the inferential process. For example, in following Figure 5.46 system 

output tracking is performed for input values of thoracoabdominal related amplitude 

reduction of 77% with respect to baseline, duration of 28 seconds and associated 

desaturation degree of membership of 0.68 (see subsection “Detection of apneic events” 

of current chapter). In the figure, individual contribution of each rule to the output 

(apnea, hypopnea, false positive) can be evaluated. 

 

 
Figure 5.46. Tracking of the reasoning process of the system for the evaluation of an apneic event located 
in the thoracoabdominal respiratory channels. Associated amplitude reduction of the event is 77% with 
respect to baseline breathing, event duration is of 28 seconds and the degree of membership of its 
associated desaturation is 0.68. Obtained output possibilities according to the implemented rules in  
Figure 5.45 are apnea (0.58), hypopnea (0.92) and false positive (0.08) 
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The former allows the system to explain the results of its reasoning processes by 

tracking the set of activated linguistic rules according to a given input. The clinician can 

therefore evaluate the output of the system and decide on its validity. In addition, 

besides its intuitive configuration –and in case of high disagreement- the expert may 

ultimately insert new rules or adapt the existent ones in order to match his/her 

preferences. 

 
5.10. Main user interfaces 

 
Application’s main user interface looks as in Figure 5.47. 

 

 
Figure 5.47. Systems main interface 

 
Menu bar is scheduled according to several menus allowing the user to navigate 

through the different options:  

 

Menu File: Controls different options regarding file input and output to the system. 

It includes the possibility to save an existing session, so that user configuration and 

analysis data can be saved and reloaded when desired, without the necessity to repeat 

the analysis. 
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Menu Window: Manages the active windows allowing selection for display and 

hiding of the different interfaces in a concrete instant of time. 

 

Menu Analysis: Displays analysis options (see Figure 5.53 below).  

 

Menu Options: User configuration options (Locale) 

 

Menu Help: Help and copyright info.  

 

Thus, once a PSG recording has been made at the hospital, resulting file can be 

imported to the system. The option “File->Import EDF…” leads the user to import a 

new PSG for analysis in the system through the acquisition submodule. Next screen 

allows the user to select the signals to be imported, as well as some configuration 

options, such as adaptation of sampling rate or dynamical range (normalization) of the 

input signals (see Figure 5.48). 

 

 

 
Figure 5.48. Signal acquisition interface 

 
Once the desired configuration has been made, the signals are imported from the 

EDF file into the system for representation and analysis (see Figure 5.49). 



Diagnosis of the Sleep Apnea-Hypopnea Syndrome: a comprehensive approach through a system to 
support medical decision 
 

274 
 

 
Figure 5.49. System’s signal visualization interface 

 
In Figure 5.49, on the right side of the screen there is a series of popup menus to 

select which signals the user wants to display and their order. The interface shows the 

corresponding signal intervals according to the selected time configuration display. In 

the navigation bar, below, the user can move along the full recording, forwards and 

backwards in time, or directly to go to a specific position by specifying the desired time 

or epoch. Signal’s visualization options can be accessed by pressing “Signal 

Configuration” button (see Figure 5.50). 

 
 
 

 
Figure 5.50. Signal visualization options window 
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Additional configuration options are accessible pressing the right button over 

signal’s visualization interface: 

 

 
Figure 5.51. Visualization options accessible through the right button 

   
 

Before the analysis starts, the configuration analysis window (Analysis->Analysis 

configuration) allows visualization and modification of the different analysis parameters 

(see Figure 5.52). For example, minimum required reductions and durations can be 

configured for different events. 

 

 
Figure 5.52. Analysis configuration window 

 
 

After the user has selected the appropriate configuration, the analysis can be started 

through the “Analysis” menu. The program allows separate analysis of the signals 

involving the sleep function for the construction of the hypnogram (Sleep Analysis 

option), signals involving the respiratory activity (Respiratory Function Analysis 

option) or the possibility of making the full analysis involving chaining of the two 
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previous processes. Note that the respiratory function analysis depends on the sleep 

analysis, so if the user wants to analyze respiratory signals, sleep analysis has to be 

firstly performed. 

 
 

 
Figure 5.53. Menu showing main analysis options 

 
 

Once the analysis has finished, the system allows visualization of the several 

significant events detected, for example, EEG arousals, oxygen desaturations and 

resaturations, respiratory flow reductions, increases or decreases in muscle activity, 

alterations in the respiratory movements, etc. 

 

The system enables navigation through all these detected events on the “Event’s 

navigation panel” (see Figure 5.54, on the right). By means of this panel it is possible to 

select the different types of events available for navigation by selecting the 

corresponding type of event on the popup menu. A list of detected events of the selected 

type is shown, and navigation is possible going forwards or backwards from the current 

event, or just by directly selecting the number of the desired event. Current selected 

event is marked by superimposition of a blue transparent box in the visualization 

interface. In case the event is composed by the aggregation of several individual events 

all the integrating events are marked in blue. At the same time summary information on 

event’s classification is shown on the bottom right section. Classification information 

varies depending on the selected type of event. Resulting degrees of membership 

regarding current event’s classification are shown both numerically and linguistically. 

Bar’s plot graphically represents the assigned belief (degree of membership) on the 

corresponding linguistic scale (see Figure 5.54). 
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Figure 5.54. Signals visualization interface in which an event is selected for visualization. Integrating 
events composing the full diagnostic pattern are marked in blue. Summary information on event’s 
characterization can be shown on the right bottom area of the window  

 
Below the summary information, two additional buttons are available: 

“Explanation” and “Details”. By pressing “explanation” button the user access to a text-

like explanation of the selected event. This information shows the different evidences 

and conclusions from the reasoning process, which have been followed to classify the 

event into the different categories of relevance for the diagnosis (see Figure 5.55). Note 

that linguistic labels are used in order to describe the different evidences and 

conclusions on the possible categories for the event. This allows the clinician to 

evaluate the possibility of an alternative classification.   
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Figure 5.55. Event’s explanation window 
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On the other hand, by pressing “Details” button one can access advanced 

information with more details and quantification of relevant information (see Figure 

5.56).  

 

 
Figure 5.56. Advanced event’s information interface  

 
 

If taking into account all the quantitative and qualitative information provided by 

the system, the clinician decides to modify system’s classification, it can be done as 

illustrated in Figure 5.57. By dragging the mouse over the corresponding recording 

interval (red box) the clinician can insert a new event or modify classification of a pre-

existing event detected by the system (blue box). 

 

 
Figure 5.57. Modification of system’s classification 
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In addition, once the analysis of the signals has finalized, the system provides of a 

report containing summary information and statistics on all the detected events as well 

as diagnosis information. This option is accessible through the menu “Window->Final 

report”. Within this form it is possible to navigate through the different compounding 

panels that structure the information into four categories. 

 
 

1. The tab “report” shows a general summary regarding patient’s diagnosis. 

Main diagnostic indexes can be observed as well as the total number of 

events classified according to their type (see Figure 5.58). 

 
 

 
Figure 5.58. Final report window: summary diagnosis tab 

 
2. The tab “advanced statistics” shows more detailed statistics about event’s 

classification. It includes, for example, statistics on the different sleep stages 

distribution, classification of apneic patterns regarding patient’s sleeping 

position and sleep stage, indexes of positional SAHS or arousals 

distribution. The panel also contains information on significant sleep 

statistics such as total sleep time, lights on/off clock time, sleep efficiency, 

sleep latency, REM stage latency or waking after sleep onset (see Figure 

5.59).  
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Figure 5.59. Final report window: Advanced statistics 

   
3. Event’s report tab shows a list with all the detected events and its 

localization within the PSG recording. The user can click on any event in 

the list and access to its classification results and to an explanation on the 

reasoning process. The button “Go to event” can also be clicked to go 

directly over the visualization interface and show the signal trends involved 

in the classification of the event (see Figure 5.60).  

 
 

 
Figure 5.60. Final report window: Event’s report 
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4. In the tab “Graphics” the user can access to a series of graphics of interest 

for the diagnosis, including patient’s hypnogram, body position throughout 

the recording, oxygen saturation evolution and time distribution of the 

different apneic events and EEG arousals (see Figure 5.61).  

 
 

 
Figure 5.61. Final report window: Graphics 

 

5.11. Summary of this chapter 
 

The contents of this chapter constitute the main part of the manuscript in which 

description of the proposed system is performed. Description includes the establishment 

of a developing process, analysis of the corresponding requirements, presentation of 

systems’ architecture and functional description of its integrating parts. 

 

Before carrying out the building of any system, it is necessary to perform an 

analysis assessing its adequateness as a solution for the problem for which its 

construction has been scheduled. Having that in mind, throughout the previous chapters 

there have been enunciated the shortages of the current existent systems. In this respect 

the proposed system is aimed at improving the PSG analysis through a comprehensive 

approach that introduces artificial intelligence techniques in the analysis task. Moreover 
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the economic viability of the system has been justified already, since automatic analysis 

of the PSG involves a great saving in terms of time and effort for the clinical personnel. 

 

The next step within the engineering method requires the establishment of a 

developing process that takes into account user necessities. Given the nature of the 

domain, an evolutionary developing model is proposed. Within this model, but also as a 

mandatory step over almost all the engineering processes, it is necessary to set up the 

corresponding requirements of the system. These have been divided into functional 

requirements and non-functional requirements. Within the functional requirements are 

gathered all those requirements related to the tasks the system can perform: loading of 

digital polysomnographic recordings, neurophysiological signals analysis, hypnogram 

generation, respiratory signals analysis, detection and classification of apneic events, 

calculation of significant parameters or elaboration of the final reports. On the other 

hand, within the non-functional requirements usability requirements are mostly 

included, such as ease of use, user-friendly interaction with the clinical user, structured 

presentation of the results or system’s flexibility. 

 

Architecture of the system is subsequently described. Such architecture is highly 

modular attending to the necessities of the developing process, and it is guided by the 

previously established requirements. Main functionalities on each one of the integrating 

modules are also outlined at this point. 

 

The chapter continues going in depth into the functional description of each one of 

the analysis phases. Following a methodological perspective, the description starts by 

introducing inputs to the system. In this part the procedure for the signal acquisition is 

analyzed for which a standard EDF file is read which contains the digitalized signals. 

An outline of the artifact detection strategy is given which is performed in a 

decentralized form, as a function of each signal type and over different processing 

levels. Therefore in the proposed system this task is spread out among its different 

compounding parts, and concrete mechanisms for artifact detection are detailed 

throughout the individual description of the different modules that integrate the system. 

 

Functional description of the system continues detailing the processes for the 

analysis of the neurophysiological signals related with patient’s sleep. In this respect the 
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algorithms for the detection of EEG arousals are described first, in which the 

applicability of several machine learning models is studied. The objective is to choose 

the best model to perform an analysis of the extracted features from the EEG, and its 

posterior classification for the detection of the arousal. This study is followed by 

another one trying to reduce the number of necessary features for the detection of the 

EEG arousal. Several methods for feature selection are compared at this respect. 

Afterwards, description of the algorithms used for the detection of additional transient 

events at the microstructure level is performed. Main interest is in the detection of sleep 

spindles and K-complexes. 

 

As the final stage in the analysis of the neurophysiological activity, it takes place 

the construction of the sleep map of the patient, the so-called hypnogram. To that end an 

analysis of the dominant frequencies in the EEG is performed. Besides, the method for 

the characterization of muscle tone in the EMG and the localization of ocular 

movements in the EOG is described. All this information, together with the transient 

events previously detected –sleep spindles and K-complexes- is used as the input to a 

fuzzy inference system that, as its output, characterizes the sleep state of the patient in a 

continuous manner. After applying some post-processings over the continuous output, 

the discrete hypnogram of the patient is obtained as well, according to four different 

sleep states: awake, drowsy sleep (phases N1 and N2), deep sleep (N3) and REM sleep. 

 

The analysis of the respiratory signals takes place subsequently for the 

identification of apneic intervals. This analysis involves the signals of airflow and 

respiratory movements in the thoracoabdominal channels. The apneic intervals are 

localized as intervals of reduction with respect to the normal amplitude of the signal. 

Such intervals are then detected and quantified. Likewise, processing of the oxygen 

saturation signal comprises the localization of descending intervals (possible 

desaturations) and ascending intervals (possible resaturations) in that signal. Similarly, 

these intervals are marked and quantified. Preceding these analyses, however, a 

preprocessing of the respiratory signals is performed with specific artifact rejection 

consisting in the localization of signal overflow intervals or with a focus loss. Specific 

algorithms used for the detection and the processing of this kind of artifacts are also 

described in this section. 
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Once all the respiratory signals have been analyzed and the patient’s hypnogram 

has been obtained, a temporal correlation stage among the detected events occurs. Its 

objective is the characterization of apneic patterns. An apneic pattern is defined as a 

group of individually detected events in the respiratory signals that, correctly related, 

determine the possible existence of an actual apneic event in the corresponding time 

interval. In order to decide on its veracity and, in case of confirmation, on the concrete 

type of apneic event, the detected apneic patterns are introduced into a new fuzzy 

inference system. As the output, and for each identified pattern, a degree of membership 

is obtained that indicates the possibility for the pattern to be classified as an apnea, a 

hypopnea, or to be discarded as a false positive. Additionally, a linguistic label is 

assigned to each numeric value of membership which describes it in terms of natural 

language. This process is described in the section regarding the detection of apneic 

events. 

 

Finally, over those events which have been confirmed as truly apneic, their 

classification as obstructive, central or mixed is performed. Classification is achieved by 

means of an analysis of the thoracic and abdominal movements in the interval where the 

event has been marked. Similarly classification is carried out by using a fuzzy inference 

system modeled for this specific purpose.  

 

As the final step in the analysis, all the previous generated data is taken into 

account to elaborate the pertinent reports. In this regard the system calculates the all the 

relevant parameters in order to evaluate patient’s severity and issue the proper 

diagnosis. Last part of the chapter explains output parameters and describes main 

interfaces of the user application. 
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6. VALIDATION 

Validation of intelligent systems can comprise a number of different methods 

which can be classified in qualitative methods and quantitative methods [1]. Qualitative 

methods use subjective techniques to compare the performance, while quantitative 

methods are based on the use of statistic measurements. Although both approximations 

are not incompatible, here the discussion is centered over quantitative validation, since 

objective measurements allow better comparison of the results. In this respect, 

quantitative measurement of intelligent systems can use statistical measures of general 

use, easy to interpret and to compare. It can also include graphical representation 

methods which permit figuring out how the system under validation is behaving. 

 

Independently of the used method, validation of intelligent systems is normally 

based on the comparison of the results they achieved versus the so-called gold standard 

or standard reference. Such standard represents the ideal behavior to which the system 

should converge. In this respect two different types of validation can be distinguished:  

 

• Validation against the problem, when the comparison is made against a 

reference which is known to be correct. That is, it is known with total 

certainty that the desired output is the correct for the actual problem. 

Unfortunately, the previous procedure cannot be always carried out for the 

validation of intelligent systems in medicine. 

 

• Validation oriented to the result or against the expert, when reference is 

based on the use of interpretations from human experts as the validation 

criterion. In this case the objective is to achieve behavior of the system to be 

similar to that of a human expert. As compared to validation against the 

problem, validation against the expert may not represent such an objective 
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validation, as long as the standard reference can be affected by subjectivity 

of the judgments. For example, it can be possible that two experts of the 

same level conclude different solutions to the same problem.  

 

For the validation of the proposed system, due to the nature of the standard 

reference, validation against the expert is the only possibility. Therefore, one has to take 

care at the time of interpreting the results in this kind of validation. As previously said, 

one has to take into account that expert’s opinion is subjective. It is known to vary even 

when they are confronted with themselves in the same case but in different occasions. 

Sources influencing appearance of subjectivity among expert’s opinions are several and 

they have their origin regarding different causes: 
 

• Medicine is basically a non deterministic science but based on heuristics 

and affected by imprecise information. 

• Several factors like tension and tiredness can influence the interpretation 

process carried out by the clinician. 

• It is possible to make equivalent decisions and equally valid, although not 

identical, to solve the same problem. 

  
That said, as with regard to the different quantitative methods available for 

validation, several statistical approximations can be used to carry out the validation 

process: hypothesis tests, analysis of variance (ANOVA), confidence intervals, etc. In 

addition to these statistical tests, additional agreement measures and graphical 

techniques can be used, allowing quantification and characterization of the error, and 

providing wide knowledge about the general performance of the system. 

 

The use of one particular measure or another depends, to a great extent, on the 

specific kind of agreement to be measured and the nature of the data. In this respect, for 

example, one first categorization can be established regarding if data has can be 

categorized into nominal classes or, on the contrary, it has a purely numerical nature. 

For example, with regard to the SAHS diagnosis, much of the data involve categories, 

for example, sleep stages (W, DS, DEEP, REM) or the different types of apneic events 

(apnea/hypopnea, obstructive/mixed/central). If the interest is in assessing the 

agreement over classification of the different sleep stages, quantitative measures should 
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be used being able to deal with categorical data. On the other hand, if for example the 

interest is in the comparison of the final AHI values obtained between the system and 

the standard reference on a set of PSG recordings, then quantitative measures must be 

used being able to work with the respective numerical distributions.  

 

An additional classification of the validation measures can be established, for 

example, with regard to the perspective in which the object of the comparison is 

interpreted with respect to the general reference. Under this perspective, quantitative 

techniques can be divided in three groups: pair-wise measures, group measures and 

agreement ratios. Pair-wise measures are intended to evaluate the degree of agreement 

and/or association between the results of two experts (including an intelligent system, 

human experts or a standard reference). Group measures, on the other hand, are oriented 

at measuring the divergence in the opinions considering the different experts as a group. 

In this respect, it can be investigated if the opinion of a certain expert differs, in 

particular, with the general opinion of the group, or in order to obtain measures that can 

be generalized to a group of experts within the some population. Therefore, they are 

specially suited when two or more experts are available for comparison. Finally, 

agreement ratios are aimed at measuring the agreement existent between an expert –or 

intelligent system- and a standard reference. They differ from pair-wise measures in that 

the first ones handle the interpretation of a variable as a whole, whereas in the case of 

agreement ratios, the results are analyzed within the different categories in which the 

interpretation can be divided. They have the need, therefore, of data that can be 

structured into categories. 
 

In the following the set of validation measures used for validation of the system are 

discussed. For that purpose, the different measures are organized in two great groups, 

depending on whether they operate over categorical or numerical data. After definition 

of the different validation measures, design of the validation tests is carried out. The 

objective is the description of the specific validation procedures carried out to assess 

performance of the system according to the different subtasks of interest.  
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6.1. Measures involving categorical data 

 

6.1.1. Contingency tables 

A general procedure for the calculation of agreement measures, when dealing with 

categorical data, involves the previous construction of a contingency table. A 

contingency table –or confusion matrix- is a type of table in matrix format that crosses 

categorical data of different experts. Table 6.1 shows an example of contingency table 

that relates the results from two experts.  

 
Table 6.1. Contingency table relating results from experts A and B 

  Results expert B 

  1 2 … k Total 

Results 

expert A 

1 n11 n12 … n1k n1. 
2 n21 n22 … n2k n2. 

… … … … … … 
k nk1 nk2 … nkk nk. 

Total n.1 n.2 … n.k n..=N 

 

 

Each cell from the table includes a quantity nij that represents the number of cases 

in which expert A selects the category i, whereas expert B selects the category j. 

Absolute marginal frequencies are situated at the margins of the table, and they are 

calculated as the sum of the values nij or absolute frequencies from the respective files 

and columns. 

 

It is also possible to generate contingency tables on the basis of relative 

frequencies, or proportions, instead of using absolute frequencies. The relative 

frequency from cell ij (represented by pij) is nothing but the number of cases within the 

cell (nij) divided by the number of total cases (N): 

 

𝑝𝑖𝑗 =
𝑛𝑖𝑗
𝑁
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Once the experts have classified all the cases in the set of possible categories, then 

different agreement measures can be obtained by constructing the corresponding 

contingency tables confronting classifications of the different experts two-by-two.  

 

6.1.2. Pair-wise measures 

Pair-wise measures are based on the two-by-two confrontation of the analysis 

results by a set of experts. Each expert carries out an evaluation of the cases and 

performs its classification by assigning a certain semantic label. The set of semantic 

labels41 must be exhaustive (it has be one for each case), and in addition, the 

corresponding labels have to be mutually exclusive (only one semantic label can be 

assigned to each case). 

 

Once the experts have classified all the cases in the set of possible categories, then 

agreement measures can be obtained from the resulting contingency table. Within this 

group of validation measures two of them are used in the validation of the developed 

system: the agreement index and the kappa index.  

 

Agreement Index 

 

One of the agreement measures most commonly used is the index or proportion of 

agreement. Also known as accuracy, this measure can be simply calculated as the 

quotient between the number of agreement observations and the number of total 

observations. To obtain this measure from the contingency table, one can simply sum 

the absolute frequencies from the main diagonal, and divide them by the total number of 

cases. Another possibility is just to sum the relative frequencies or proportions from the 

main diagonal: 

 

𝐴𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡 𝐼𝑛𝑑𝑒𝑥 (𝐴𝑔𝑟𝐼) =

∑ 𝑛𝑖𝑗𝑘
𝑖=1,𝑗=1
𝑖=𝑗

𝑁
= � 𝑝𝑖𝑗

𝑘

𝑖=1,𝑗=1
𝑖=𝑗

 

  

                                                 
41 Each semantic label represents a different category 
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The agreement index takes values within the range [0, 1] in which 1 represents the 

maximum agreement and 0 means absolute disagreement. Its value is not affected by the 

relative order of the categories. The main advantage of this measure is the simplicity of 

its interpretation which has made its use widespread over different fields and 

applications. However, it presents the inconvenient that it does not take into 

consideration agreements due to chance. This situation of concordances or agreements 

by chance is frequent when, for example, two classifications are performed on the same 

data but using different number of categories. In this respect, the classification with less 

number of categories will tend, in general, to have a lower agreement index, since the 

probability to agree in the classification of an item is lesser as lesser is the number of 

categories. 

 

A derived measure from the agreement index is the classification error, which is 

calculated as the complementary of the agreement index (1 – AgrI). This measure 

accounts for the amount of disagreement between two experts, i.e. it measures the 

proportion of misclassified cases. 

 

Kappa index 

 

Kappa index (κ) is a chance-corrected measure of agreement proposed by Cohen 

[2]. The measure is based on the calculation of two quantities: 

 

• p0 = proportion of observed agreement 

𝑝0 =

∑ 𝑛𝑖𝑗𝑘
𝑖=1,𝑗=1
𝑖=𝑗

𝑁
 

• pc = proportion of agreement occurring by chance 

𝑝𝑐 = �
𝑛𝑖.
𝑁
𝑛.𝑗

𝑁

𝑘

𝑖=1,𝑗=1
𝑖=𝑗

 

 

The term p0 represents the proportion of agreement as the number of total 

agreements divided by the total number of cases analyzed, whereas pc is the sum of the 

products of the marginal proportions. In this manner, 1 - pc represents the maximum 
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possible agreement once chance has been removed, and p0 - pc represents the obtained 

agreement once chance has been removed. The kappa index κ is then defined according 

to the following quotient: 

 

𝜅 =
𝑝0 − 𝑝𝑐
1 − 𝑝𝑐

 

 

When the interpretations of two experts are compared, the resulting agreement is 

expected to be higher than the one obtained if the marginal proportions were taken as 

probabilities42. For that reason observed agreement (p0) is corrected with agreement due 

to chance (pc). 

 

Kappa index is independent of the number of observations and of the number of 

present categories, and it is also not influenced by permutations on the order of the 

categories. It is a symmetrical index, and if the observed agreement is equal to the 

agreement occurring by chance, then value of kappa is zero. If the observed agreement 

is higher than that expected due to chance, value of kappa is positive, being its 

maximum value 1. On the other hand, if the observed agreement is less than the 

agreement occurring by chance, then the value of kappa is negative, being its minimum 

value -1. 

 

Subsequently, Table 6.2 shows a linguistic interpretation of the parameter κ 

according to the criterion of Landis y Koch [3]: 

 
Table 6.2. Symbolic interpretation of κ according to Landis and Koch 

Value of κ Agreement level 

< 0.00 Poor 

0.00 – 0.20 Slight 

0.21 – 0.40 Fair 

0.41 – 0.60 Moderate 

0.61 – 0.80 Substantial 

0.81 – 1.00 Almost perfect 

 
                                                 
42 In this manner the probability of a certain cell to be chosen is the product of the marginal proportions 
corresponding to that cell 
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One has to be cautious, however, at the time of interpreting the kappa index, 

because only in the case in which the number of events classified in each category by 

the experts is the same, the value of kappa might achieve the value 1. In other words, 

the former implies that the marginal distributions should be identical. However, this is 

not the common case, and therefore it is often useful to determine the maximum 

possible value of kappa that can be achieved with the given marginal distributions. 

Thus, if the number of cases classified in each category by the experts differs, the 

maximum value of kappa can determined by:  

 

𝜅𝑀 =
𝑝0𝑀 − 𝑝𝑐

1 − 𝑝𝑐
 

 

where p0M is calculated by matching the marginal values of each expert by choosing 

the minor value of each pair and then summing the resulting values. Therefore, the 

quotient 𝜅
𝜅𝑀

 tells us that the obtained value of kappa is 𝜅
𝜅𝑀

 times larger than the 

maximum possible value given the circumstances43. 

 

One more observation about kappa is that, in the way it has been defined, kappa can 

be applied both to nominal or ordinal classes, however it does not penalize deviations 

within the disagreements, which can be of interest in the case of nominal scales.  

 

Chi-squared test for homogeneity 

 

This test is used to determine whether frequency counts on the categories of certain 

categorical variable are identically distributed across different populations. It can be, in 

fact, applied to assess the distribution over two or more populations, and in this sense, it 

might be classified into the category of group measures rather than be included as kind 

of pair-wise measure. Here, however, the chi-squared test will be particularized for the 

case of two populations, which for the aim of the validation, can be though as the 

corresponding distributions resulting by classification of the cases made by two 

different experts.  

 

                                                 
43 Due to the number of cases classified for each expert in each category 
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In this respect, formulation of the problem can be represented according to the 

following particularized view of the contingency table:  

 
Table 6.3. Particularization of the contingency table for the comparison of the frequency counts of two 
different experts 

  Categories 

  C1 C2 … Ck Total 

Expert’s 

classifications 

A nA1 nA2 … nAk nA. 
B nB1 nB2 … nBk nB. 

Total n.1 n.2 … n.k n..=N 

 

Using the previous contingency table, then the objective is to determine whether the 

observed sample frequencies significantly differ from each other. The null hypothesis 

can be enunciated as 𝐻0 : 𝑛𝐴1
𝑁

=  𝑛𝐵1
𝑁
∧ 𝑛𝐴2

𝑁
=  𝑛𝐵2

𝑁
 ∧ … ∧  𝑛𝐴𝑘

𝑁
=  𝑛𝐵𝑘

𝑁
 , against the 

alternative hypothesis that at least one of the previous statements is false. 

 

Then, once defined the null hypothesis, the next step is to compute the resulting 

Chi-squared (χ2) statistic according to the following formula: 

 

𝜒2 = � �
(𝑛𝑖𝑗 − 𝐸𝑖𝑗)2

𝐸𝑖𝑗𝑗=𝐴,𝐵

𝑘

𝑖=1

 

 

where Eij is the frequency count for expert j at the category i: 

 

𝐸𝑖𝑗 =
𝑛.𝑖𝑛𝑗.

𝑁
 

 

and the number of degrees of freedom for the case of two experts is k – 1. 

 

Once the value of the statistic and its corresponding degrees of freedom have been 

determined, then the p-value can be obtained to test the validity of the null hypothesis 

according to the general procedure for hypothesis test as described in Table 6.4. 
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Table 6.4. General procedure for hypothesis test 

 

1. Define the null hypothesis (H0) 

2. Select a statistical test (test statistic) to be used for evaluation of H0 validity 

3. Choose a level of significance α for the test: probability to refuse H0 if H0 is true 

4. Calculate the p-value (probability to obtain higher discrepancy than that observed 

when H0 is true) 

5. Compare the obtained p-value with the significance level: 

a. If p-value ≤ α then refuse H0 

b. If p-value > α then accept H0 

 

  

6.1.3. Agreement ratios 

Calculation of agreement ratios is based on the construction of a 2x2 contingency 

table for each one of the categories in which is divided the interpretation (see Table 

6.5).  
 
Table 6.5. Contingency table (2x2) to calculate agreement ratios. D represents the presence of a category 
in the interpretation whereas רD stands for its absence 

 Standard Reference  
D רD  

Expert system D a b a + b 
 D c d c + dר

  a + c b + d a + b + c +d 
 

In this table the results from one source to be compared –a system or another 

expert- are related with respect to the results of the standard reference for a particular 

category. In the example, values a, b, c y d are counters respectively representing the 

number of:  

 

• a: True Positives (TP). They represent the cases in which the system3F

44 

classifies the case within the category D and so it does the standard 

reference.  

 

                                                 
44 As it has been stated, here we refer to the developed system but in general it might be any source we 
want to compare with respect to the standard reference 
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• b: False Positives (FP) or type-II errors. Classification of the case by the 

system into category D, while standard reference classifies it as רD. 

 

• c: False Negatives (FN) o type-I errors. The inverse case in which the 

system classifies the case as רD, but standard reference points out to a 

positive event (classified as D). 

 

• d: True Negatives (TN). Both, system and standard reference agree by 

classifying the event as רD. 
 

Usually these values are not used for direct comparison since they depend on the 

number of analyzed cases. In their place, relative measures are derived from them and 

used for comparison. The most important ones are subsequently described. 

 

Agreement Index 
 

It is equivalent to the agreement index previously described for the general case of 

contingency tables of size MxN. For the particular case of agreement ratios, it represents 

the proportion of cases in which the expert system has matched with the standard 

reference for a given category: 
 

𝐴𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡 𝐼𝑛𝑑𝑒𝑥 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑁 + 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 

 
It has to be taken into account that the agreement index does not make any 

distinction between positive agreements (TP) and negative agreements (TN). 

 

Sensitivity 

 

It is defined as the ratio of true positives and it allows measuring of the capability 

of the system to correctly classify the positive cases. It can be understood as the 

probability that the system correctly detects an event as positive given that it actually is 

a positive. 
 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
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A complementary measure related to sensitivity is the ratio of false negatives, 

which provides a measure of the possibility of failing in the detection of a case that the 

standard reference has considered a positive case with regard to a given category. That 

is, it measures the probability that the system wrongly classifies a case as negative. 
 

𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 = 1 − 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝐹𝑁

𝐹𝑁 + 𝑇𝑃
 

 
Specificity 
 

It is defined as the ratio of true negatives. It allows measurement of system’s 

capability to correctly classify the negative cases: 
 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

 
A measure related to specificity is the ratio of false positives, which is calculated as 

the number of times the system fails at classifying a case as positive, divided by the 

number of times the standard reference considers a negative event. That is, it measures 

the probability that the system wrongly classifies a case as positive. 

 

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 = 1 − 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 

 
Specific agreement 
 

There are some cases in which either the positive or the negative cases cannot be 

measured, or the categorization of the number of respective cases might be difficult. A 

typical example, in fact, is when scoring events over time. In these cases, appropriate 

segmentation of the temporal axis is not always possible. In addition, it can be the case 

in which it can be of interest to measure the agreement over certain category without 

taking into account either the number of true positives or true negatives, but just the 

deviations with respect to type-I and type-II errors. This can be the case for example, 

where the proportion of true negatives and true negatives is very high with respect to 

each other. 

 

In these cases, measures of positive or negative agreement can be used which are 

defined as follows:  
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𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝐴𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 

 

𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝐴𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

 

ROC Curves 
 

Receiver Operating Characteristics (ROC), or simply ROC curves, are widely used 

in validation problems because they offer an intuitive graphical mode to interpret 

discriminant capabilities of a system. They also provide of a numerical value θ which 

can be inferred from the graphic and that it globally validates the capabilities of the 

system within a unique comparable index. Comparison can be, therefore, easily and 

rapidly performed through the use of the θ parameter.   

 

ROC curves are graphical representations that relate the ratio between true positives 

(sensitivity) with the ratio of false positives (1 – specificity). The resulting crossing 

point is named operation point. For each one of these points, the corresponding ROC 

curve starts in the origin and it goes until the right upper corner, passing by the crossing 

point of the values of sensitivity and false positive ratio (see Figure 6.1). By evaluating 

the system on several situations ,or under different configurations, various operation 

points can be obtained which joining all together determine the resulting ROC curve 

that represents performance of the method. 
 

 
Figure 6.1. Example of one point ROC curve  
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Basic graphical interpretation is that, the better a system is, the more the curve 

approximates to the point (x,y) = (0,1). That is, when comparison comprises two or 

more systems by means of their respective ROC curves, the best system is the one 

having a curve monotonically superior in all of its points to the rest of the systems [4]. 

However, in the cases in which the curve does not overpass in all of its points to the 

rest, the comparison does not result so easy. It is for this reason that, often, a 

supplementary measure is used which allows direct comparison of the quality of the 

test, the area under the ROC curve (AUC). AUC or θ can be interpreted as the 

probability of a correct classification from the system, whereas the quantity 1 – θ 

represents the rate of incorrect classifications. Thus, basically, a system with value of θ 

closer as possible to one is desired, and therefore when comparing two or more systems, 

the one with the higher value of θ would be the best. Value of AUC can be easily 

calculated in the case of ROC curves with just one operating point by using the 

following formula:  

 

𝐴𝑈𝐶 = 𝜃 =
𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 + 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦

2
 

 
In the cases where the ROC curve involves two or more operation points, θ can be 

approximated by trapezoidal integration [5]. Although this approximation tends to 

subestimate the actual value of the area, because of the manner in which the points are 

connected through straight lines, the computed value asymptotically approximates to the 

real value as long as the number of operating points increases.  

 

In the subsequent Table 6.6 linguistic interpretation of the value θ is displayed 

according to [6]: 

 
Table 6.6. Symbolic classification of θ representing area under ROC curve 

Value of θ Linguistic descriptor 

0.90-1.00 Excellent 

0.80-0.90 Good 

0.70-0.80 Normal 

0.60-0.70 Scant 

<0.60 Null or almost null 
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6.2. Measures involving numerical data 

 

When dealing with numerical data, one common question one may want to ask is 

whether a set of values are consistent between them, in the sense that they can be 

regarded as being taken from the same population following a certain distribution. Some 

assumptions can be made, like for example, that data is normally distributed, or that 

certain moments of the distribution are known, for example, that data distribution is 

known to have a certain mean µ, or to have a certain variance σ. On the other hand, one 

may be interested in assessing if there are significant differences over the mean values 

of a population, or between respective variances from different populations. A wide 

range of test statistics is available in this respect, depending on the characteristics or 

information available from the original data distribution, and the object (main 

descriptors) of the comparison. In the following, some test statistics are described that 

are used for the analysis of numerical data for the validation of the system. Description 

here is aimed to be only introductory, thus for detailed comprehension and further 

details the reader is referred to any reference book on biological statistics such as [7].  

 

6.2.1. Pair-wise measures 

 

Pair-wise distribution comparison 

 

One common parametric test statistic used to check whether two random variables 

X, Y have equal means (µx, µy) is the two-sample Student’s t-test. This test assumes 

random, independent sampling from the two populations, normal distributions and equal 

variances (but unknown). The t-test for independent groups is designed to address the 

question about if the observed differences between means in the populations can be 

attributed to chance, or it is compelling evidence of a real difference in the populations. 

For this purpose, it tests the null hypothesis H0: µx = µy against the alternative that 

means from the two populations are unequal. The particularization of this test for one 

variable leads to the one-sample t-test, which checks the null hypothesis that data are a 

random sample from a normal distribution with zero mean and unknown variance, 

against the alternative that the mean is not zero. In addition, for the purposes of the 
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validation of the developed system, it is of particular interest the paired version of the 

test. Paired t-test is used when the aim is to compare two different measures from the 

same target (in our case individuals) from different experts, or from the same expert in 

different instants of time, and decide if there is a significant difference between the two 

measures. The main difference with regard to the unpaired version is that, in the first 

one, the two populations are considered as random selections of individuals, whereas in 

the paired version, the same set of individuals are used in the experiment. Paired test is 

interesting, for example, to compare respective AHI values from both the system and 

the expert on a concrete set or recordings. 

 

However, for the purpose of the validation of the developed system, in general, 

non-parametric tests are preferred since assumption of normality is not always 

affordable. 

 

Non-parametric versions of the former test statistics for pair-wise comparisons 

comprise the Wilcoxon rank sum test, for the unpaired comparison of the medians of 

two random variables, and the Wilcoxon signed rank test, in case paired comparison is 

desired. These tests can be used as alternatives to their respective t-test versions when 

the population cannot be assumed to be normally distributed, or the data is on the 

ordinal scale. The null hypothesis in the Wilcoxon test is H0: m1=m2 in the first case 

(unpaired comparison) or H0: m1-m2 = 0 in the second case (paired comparison), where 

m1 and m2 are the respective medians from the two populations. The one sample version 

of the Wilcoxon test performs a two-sided signed rank test of the null hypothesis that 

data are a random sample coming from a continuous, symmetric distribution, with zero 

median, against the alternative that the distribution does not have zero mean.  

 

In any case, once selected the appropriate test statistic, the procedure to assess the 

result of the test is analogous to that described above by calculating the corresponding 

p-value (see Table 6.4).  

 

Pearson’s linear correlation 

 

Association measures are considered as a special kind of pair-wise measures in 

which evolution of the values of a variable X with respect to the evolution of the values 
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of a second one Y is investigated. They attempt, therefore, to assess the dependence that 

exists between two numerical variables.  

 

Among these measures, Pearson’s product-moment correlation coefficient (r) is one 

of the most extended. It is obtained by dividing the covariance of the two variables by 

the product of their standard deviations: 

  

𝑟 =
𝐸[(𝑋 − 𝜇𝑥)(𝑌 − 𝜇𝑦)]

𝜎𝑥𝜎𝑦
 

 

Pearson’s r is a measure of linear dependence and it is defined in the interval [-1, 

1]. The Pearson correlation is 1 in the case of perfect positive linear relationship 

(increasing regression line), -1 in the case of a perfect negative linear relationship 

(decreasing regression line), and 0 in the case in which the variables are linear 

independent. Thus, if the variables are independent, then Pearson’s correlation is 0, but 

the converse is not true because the correlation coefficient only detects linear 

dependencies between the two variables. 

 

Hypothesis test can be performed in order to check for significant linear correlation 

by assuming normal data distribution. Under this assumption, sampling distribution of 

Pearson’s correlation coefficient approximately follows Student’s t-distribution with N -

2 degrees of freedom, where N is the number of samples. This also holds approximately, 

even if the observed values are non-normal, provided sample sizes are not very small 

[8].    

 

Spearman’s rank correlation 

 

Spearman’s rank correlation coefficient (rho) is a non-parametric measure of 

statistical dependence between two variables X and Y. It assesses how well the 

relationship between two variables can be described using a monotonic function. It 

therefore amplifies Pearson’s linear correlation to a wider range of monotonic functions, 

not necessarily linear, and it also has the property of being less sensitive to the presence 

of outliers. Similar to Person’s r, range of rho is defined within the interval [-1, 1]. 
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It is defined as the Person’s correlation coefficient between ranked variables, that 

is, it deals with associations between ranges, or categories, of which it is known their 

order. Therefore, as a difference with Pearson’s r, Spearman’s rho is invariant to 

transformations of X and Y in which order is maintained. For its calculation, firstly, raw 

scores Xi and Yi are converted to ranks xi and yi, and then, rho is computed from these as 

follows: 

 

𝑟ℎ𝑜 =  
∑ (𝑥𝑖 −𝑁
𝑖=1 𝜇𝑥)(𝑦𝑖 − 𝜇𝑦)

�∑ (𝑥𝑖 − 𝜇𝑥)2𝑁
𝑖=1 ∑ (𝑦𝑖 − 𝜇𝑦)2𝑁

𝑖=1

 

 

One can test for statistical significance of rho using the following test statistic:  

 

𝑡 = 𝑟ℎ𝑜�
𝑁 − 2

1 − 𝑟ℎ𝑜2
 

 

which analogously to Pearson’s r, is distributed approximately following a 

Student’s t distribution with N - 2 degrees of freedom under the null hypothesis that rho 

is significantly different from zero. 

 

6.2.2. Group measures 

 

Multiple distribution comparison 

 

Multiple distribution comparison measures generalize comparison of random 

variables for the case in which comparison involves two or more groups of numerical 

populations. 

 

For example, if one wants to check if there are significant differences between the 

means of several populations, one can perform a one-way analysis of variance (one-way 

ANOVA). The statistical null hypothesis is that the means of the numeric variable are the 

same for the different groups; the alternative hypothesis is that they are not all the same. 
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The basic idea is to calculate the mean of the observations within each group, and then 

to compare the variance among these means to the average variance within each group. 

Under the null hypothesis that all the observations in the different groups have the same 

mean, the weighted among-group variance should be the same as the within-group 

variance. As the means get further apart, the variance among the means increases. The 

test statistic is thus the ratio of the variance among the means, divided by the average 

variance within the groups (F-test). 

 

One-way ANOVA is mathematically equivalent to Student’s t-test for the case of 

just two groups of data. Similarly, ANOVA assumes that data is independent and 

normally distributed with equal variance within each group. If data do not fit these 

assumptions, then a non-parametric version of the test can be used, such as for example 

the Kruskal-Wallis test, which generalizes the Wilcoxon rank sum test for comparison 

of two or more groups of numerical data. 

 

Intraclass Correlation Coefficient 

 

The Intraclass Correlation Coefficient (ICC) is a general measure of agreement in 

which the measurements used for comparison are assumed to be parametric (continuous 

and normally distributed). There are several versions of ICC and the concrete definition 

ultimately depends on the experimental design, and on the conceptual intent of the 

study. In this regard, for the aim of the validation of the proposed system, specific ICC 

definition is used in order to measure the agreement of quantitative measurements made 

by different observers measuring the same quantity.  

 

Let n to be the number of targets, and k to be the number of experts, under the 

previous considerations the ICC definition is based on the assumption of the following 

linear model, which is analyzed using a two-way analysis of variance: 

 

𝑥𝑖𝑗 =  𝜇 + 𝑎𝑖 + 𝑏𝑗 + (𝑎𝑏)𝑖𝑗 + 𝑒𝑖𝑗 

 

in which xij denotes the ith rating (i = 1, …, k) on the jth target (j = 1,…n), a stands 

for the rater, b stands for the target, ab stands for interaction, and e stands for the error. 

Specifically, the ICC(2,1) version of this statistic is used as defined by Shrout and Fleiss 
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[9]. Under this form, ICC accounts for a composite of intra-observer and inter-observer 

variability, treating the different experts as random effects. ICC(2,1), as defined before, 

is intended to ask the question whether the different experts involved in the comparison 

are interchangeable. As a derived measure of correlation, ICC is theoretically defined in 

the interval [-1, 1], however negative values of ICC rarely occur in practice. In this 

respect an ICC of 1 is interpreted as total agreement between the raters, whereas an ICC 

of 0 represents no agreement at all, i.e. the experts are not exchangeable. Confidence 

intervals and hypothesis test in order to check for statistical significance of the value of 

ICC can also be obtained. A more precise mathematical definition of such statistic 

would exceed the objectives of this chapter, and the reader is referenced to the former 

paper of Shrout and Fleiss for further details.  

 

6.2.3. Model comparison 

Throughout the functional description of the system carried out in Chapter 5, some 

analysis methods have been proposed that require of a comparative analysis of several 

machine learning models to be done. That implies an additional sort of internal 

validation process –model selection- to be done, in order to determine which model 

achieves the best performance within the associated method. In this respect, for example 

for the detection of EEG arousals, four different models have been investigated to act as 

classifiers in the last phase of the method for EEG arousal identification (see Chapter 5, 

“Identification of EEG arousals”). In order to accomplish this comparative analysis, a 

general methodological framework is introduced describing specific mechanisms and 

metrics to carry out model comparison within the field of machine learning. 

 

In this respect, in general, in order to solve a problem in the scope of machine 

learning, the simplest case normally consists in having a model with a series of 

customizable parameters –or degrees of freedom- and some data. In this context, 

experimental design firstly implies to carry on an effective learning or training process 

to optimize its parameters. Then it should be estimated the real performance of the 

model. Such estimation is usually measured by calculating the error committed by the 

model. 
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In some occasions it would be necessary to perform some previous processing of 

data. This preprocessing can involve an adequate preparation of the data, reduction of 

dimensionality or data normalization. The global schema is shown in Figure 6.2. 

 

 
Figure 6.2. Experimental design schema in machine learning 

 

Data preparation may serve, for example, to try to remove cases with incomplete 

information, or if it is possible, atypical cases –outliers- and noise. It might also be 

necessary to adapt the inputs to the characteristics of the chosen machine learning 

model. For example, in the case of time series, it is usual to transform the one 

dimensional signal into d-dimensional patterns using temporal moving windows. 

  

Reduction of dimensionality pursues reducing the effects of the so-called curse of 

dimensionality. In general, the higher the input dimensionality is at the input of the 

machine learning system, the higher the number of necessary examples to obtain a good 

model. In many real cases, however, few examples are available which implies a 

problem when dimensionality is high. Likewise, data can contain a lot of redundant 

information. Because of this, in many cases it is necessary to reduce dimensionality at 

the input. Finally, dimensionality reduction at the input space causes a reduction in the 

number of systems’ parameters. This has the advantage of the reduction of the 

complexity and execution time. It also improves generalization capabilities of the 

model. Reduction of the number of features within the system has been applied, for 

example, for the identification of EEG arousals (see Chapter 5, “Identification of EEG 

arousals”). 
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Normalization involves linear rescaling of input variables. It is especially adequate 

if the different variables have very different values –orders of magnitude. In this respect 

normalization is done in order to bring data similar values. One possible technique 

consists of scaling each variable independently, such that for each variable xi, its mean 

µi and standard deviation σi are calculated in the training set. The new variables are then 

calculated as: 

𝑥𝚤� =
𝑥𝑖 − 𝜇𝑖
𝜎𝑖

 

In this manner resulting variables have mean equal to zero and standard deviation 

equal to one. 

 

Once an adequate preprocessing of data has been made –optional- it is performed 

the training of the model. Each model –neural networks, SVMs, genetic algorithms, etc. 

has its particularities in the training process. In each stage optimal parameters are 

obtained with the training data, normally using part of the whole set of available data. 

This stage is combined with the estimation of the error where, normally, several 

trainings of the model are carried out using different training sets. 

 

In order to estimate performance the error of the model has to be evaluated. The 

error should be estimated using the whole population of which data came from. 

However, normally only a limited sample of data is available. The simplest solution 

would be to use the whole dataset to train the model and to estimate the error. 

Nevertheless such a method carries on some problems since the obtained model will 

probably overfit data and the obtained error will be too optimistic.    

 

A better estimation of the error can be achieved by using alternative methods based 

on the idea of always using, at least, two different datasets, one for the training of the 

model, and the other to be used to estimate the error once the model has been trained. 

This second testing dataset is independent of the training set. This process is also known 

as holdout. Drawbacks of this method are that when few data is available it is kind of a 

“luxury” to use an important part of data in the testing set. On the other hand, since only 

just one experiment is carried out with a training set, the result can be deceptive if the 

partition is not adequate. 
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More efficient methods are based on random subsampling or on cross-validation. 

Random subsampling consists in the realization of k experiments using as testing set 

different subsets of the main dataset. Each testing subset is randomly chosen from the 

total number of samples –without replacement. Remaining data are used for training.  

 

In a k-fold cross-validation the set of patterns are split in k disjointed sets of the 

same length, with the members of each fold randomly chosen from the full set. A total 

of k iterations are done, each one using a different fold as the testing set, while the rest 

are used as training. In the extreme case of cross-validation for a dataset of N samples, 

N experiments are performed in which in each one N-1 samples are used for training 

and the remaining simple for testing. This technique is kwon as leaving one-out.  

 

The procedure results in k error measures { j
k

j ee ,...,1 } for each model configuration 

j. The final error for each model is then calculated as the averaged error for each fold 

∑
=

=
k

i

j
ij e

k
E

1

1 , allowing us to obtain a good estimation of the error, and minimizing the 

effect of the initial conditions. 

 

The choice of the number k of folds ultimately depends on the concrete problem. In 

general, if a great number of subsets is chosen, then the estimated error will tend to be 

very precise, however the variance of the real error will be high too as well as the 

computational time because of the high number of experiments. On the other hand, if 

few subsets are chosen, then computational time is reduced and variance will be low. 

On the contrary the estimated error will tend to be less precise. A usual choice for the 

number of folds is k = 10. 

 

An additional variant to the design based on two datasets –training and testing- is 

the experimental design based on three datasets. In this case a third dataset is used as the 

validation set in situations where one wants to establish the structural configuration of 

the model, e.g. to determine the best number of layers in a neural network or the 

smoothing parameter in a SVM. 
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An important aspect to be taken into account is that of the comparison of the 

results. It can be necessary, for example, to choose between different configurations of 

the same learning model –e.g. the number of neurons in the hidden layer of an ANN, or 

to choose between several machine learning models –e.g. between a SVM, an ANN or a 

linear discriminant. In this regard the next question should be addressed: Which is the 

best model, among all possible, in terms of committed error?  

 

To ask this question in the case of comparison of two models, it can be assumed 

that a cross-validation has been already done, using the very same folds for the training 

and testing on each one of the two models. Then, it has to be determined if the 

performance of the two models is equivalent, or on the contrary, there are significant 

differences among them. In such cases statistical methods –as described above- are 

usually applied which are based on hypothesis testing. Steps to be followed can be 

structured, again, in accordance with those described above in Table 6.4.   

 

In accordance with previously described methods, typical statistical tests involving 

comparison of numerical distributions between two populations –in this case of errors- 

are, for example, the Student’s t-test or the Wilconxon rank sum test (see subsection 

“Pair-wise measures”). Figure 6.3 illustrates the process for the comparison of two 

models. 

 

 
Figure 6.3. Selection between two models in machine learning 
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On the other hand when there are more than two groups of models, then it is not 

enough to compare each pair of models separately. The possibility to incorrectly detect 

a significant difference increases with the number of comparisons. In these cases it is 

usual to perform an analysis of variance (ANOVA) or a Kruskal-Wallis test to identify 

if there is a significant difference, respectively, among all the means or all the medians 

(see subsection “Group measures”). In this manner, if the variance test concludes that 

there are significant differences, then it has to be investigated which the differences are 

by using a multiple comparison test –e.g. the Tukey method [10]. On the other hand if 

the variance test concludes that there are not significant differences, then it implies that 

all the models are equivalent, thus the simplest one should be chosen. Figure 6.4 shows 

the schema for the comparison in which more than two models are involved. 

 

 
Figure 6.4. Multiple model selection in machine learning 
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6.3. Design of validation tests 
 

In this section, design of the validation tests is described in order to check system’s 

performance on the SAHS diagnostic task. Tests are organized in such a manner so that 

the objective is not only to perform validation regarding the capabilities of the system 

for discriminating the presence of SAHS in the patient with regard to the final diagnosis 

(SAHS or no SAHS), but also to test performance of the system on the intermediate 

subtasks that involve the whole diagnostic process, whenever a standard reference is 

available for comparison. 

 

In our case, standard reference for validation is taken from the database resulted 

from the Sleep Heart Health Study (SHHS). This database, to which access has been 

granted by the Case Western Reserve University previous agreement for collaboration, 

emerges from a cohort initiative of several medical centers and universities in the 

United States, supported by the National Heart Lung & Blood Institute (NHLBI). Its 

main objective was the study of cardiovascular consequences of sleep-disordered 

breathing during sleep. The resulting database was then enabled to be used as a resource 

for subsequent studies related to sleep disorders. Further details about design, 

motivation and methods of SHHS can be found in [11]. 

 

SHHS database comprises a set of PSG recordings from real patients in European 

Data Format (EDF) [12]. Each recording is accompanied by respective XML annotation 

file in which events that resulted from physicians’ offline analysis of the PSG are 

marked. Procedures and criteria followed for the analysis and marking of the events are 

collected in its Manual of Operations [13] that follows recommendations of the AASM 

for analysis procedures and scoring of events. Thus, validation of the developed system 

will be based on comparison of its results against the standard reference constituted by 

annotations from the SHHS experts. 

 

Specifically, annotations available through SHHS possess marking over the 

following types of events:  
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-Sleep stages according to the R&K standard (i.e. W, S1, S2, S3, S4, REM) in the 

basis of 30-second epochs. Note, however, that SHHS experts do not differentiate 

between S3 and S4. Same criterion is currently recommended by the recent AASM 

guidelines [14]. 

 

-EEG Arousals, marked as “start of arousal” and “duration” in the basis of the 

ASDA (current AASM) criteria published in [15]. The scoring of EEG arousals is 

independent from the scoring of sleep stages (i.e. an arousal can be scored in an epoch 

of recording which would be classified as wakefulness by the R&K criteria). An arousal 

can precede the wake stage or it can be followed by a return to sleep. 

 

-Apneic events: hypopneas, obstructive apneas and central apneas marking the start 

and duration of the apneic event. No attempt is made to distinguish mixed apneas from 

obstructive apneas. Central hypopneas and increased upper airway resistance events 

(RERAs) are also not scored by SHHS experts “because of controversies in the defining 

these events and the probable need to use invasive monitoring to identify these 

accurately” [13]. 

 

Besides the previous annotations, also desaturations and artifacts in the oxygen 

saturation channel (start, duration) are included within the annotations. However, these 

annotations are artificial, i.e. are automatically done by the scoring revision software 

used by the experts, not by the experts themselves, and therefore they are not reliable. In 

fact, desaturation events are marked always 30 seconds after the end of the scored 

apneic event and its duration is established to the same of the apneic event. That is, 

these default marks neither have validity nor they correspond with the actual start and 

end of the real desaturation, and therefore they cannot be considered for validation 

purposes. 

 

In addition to XML annotations, some demographic data is available for some of 

the recordings. These data does not allow personal identification the patient, but 

includes information regarding age, sex, height, weight and some clinical conditions.  

 

Hence, taking into account available data from the standard reference, the 

validation test are structured in the following manner:  
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(1) Validation of the capabilities for the detection of EEG arousals: two tests are to 

be carried out first, using the two approximations described in Chapter 5, “Identification 

of EEG arousals”: one using the full set of features (see Table 5.2), whereas the other 

makes use of feature selection methods in order to account for possible redundancy in 

the first set. Finally the final method that uses a reduced set of features is tested over an 

independent validation set.  

 

(2) Validation of the sleep staging algorithm, according to the method described in 

Chapter 5, “Hypnogram generation”.   

 

(3) Validation of system’s capabilities for the identification of apneic events. With 

a dual purpose: first, to assess its capability in the location of apneic events in the 

recording (regardless of its concrete type), and in a second place, to determine the 

discriminative performance for the characterization of the detected events as apneas or 

hypopneas. For that purpose, output from system’s detection phase is used (see Chapter 

5, “Detection of the apneic events”). 

 

(4) Validation of the classification of the apneic events. That is, determination of 

the concrete class of the apneic event: obstructive, mixed or central. In this respect 

output from the algorithm described throughout Chapter 5, “Classification of the apneic 

events” is used for validation. Note however that since SHHS annotations do not 

include “mixed events”, only performance regarding classification of obstructive and 

central events can be tested.  

 

(5) Validation of the final diagnosis of the patient. For that purpose comparisons on 

the final computed indexes and overall diagnosis are performed against the respective 

SHHS expert’s output.  

 

In order to carry out these tests, a total of 26 patients (mean age ± std.deviation: 

68.5±7.7, 8 females) from the SHHS database are randomly chosen without previous 

knowledge of the clinical history of the participants. Random selection only comprises 

recordings that were not used for the parameterization and optimization of the 

integrating modules of the system. In other words, the set of 26 patients forms a 

completely independent set in order to ensure adequate evaluation of generalization 
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capabilities of the system. Additional training data is needed for the parameterization of 

the system and for carrying out comparisons and model selection, especially when 

learning from examples using machine learning approaches. For this purpose additional 

PSG recordings from the SHHS database may be used as training sets which is 

indicated, where applicable, in the design of the corresponding validation task. In any 

case this independent validation set (IVS) of 26 patients is always leaved aside for final 

validation in order to assess reliable generalization capabilities of the system. In total, 

the 26 testing recordings included in IVS involve 15540 minutes of sleep. 

 

In the following, more detailed explanation on the design of each one of the 

previously outlined validation tasks is carried out. Results of the respective validations 

are given in the corresponding sections of Chapter 7.  

 

6.3.1. Identification of EEG arousals 

 

As previously mentioned, validation tests regarding identification of EEG arousals 

by the system are suborganized into three subsections: the first one (A) assessing model 

selection using the full set of 42 features in Table 5.2, the second one (B) in charge of 

studying different feature selection methods to reduce the number of needed features, 

and finally (C), validation of the final method using the independent set of 26 

recordings. 

 

A) Detection of EEG arousals using machine learning models 

 

In the considered approach to detect EEG arousals, a set of different machine 

learning models are investigated to act as classifiers. As described in Chapter 5 

“Identification of EEG arousals”, the approach consists of a first signal processing stage 

after which relevant features are correlated in time to form characteristic arousal 

patterns. Thus, the aim is to select the best model to act as classifier over the resulting 

characteristic patterns to detect the arousal. For the purposes of comparison between the 

different machine learning models, validation strategy is scheduled using an 

independent set of 20 recordings from SHHS database –different from the IVS- in 

which data is separated, at the same time, in two differentiated training and testing sets. 
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According to that, in order to carry out the experimentation the set of 20 PSG 

recordings is split up into two new sets: 15 of them used as training set (TR), while the 

remaining 5 are used as a separate testing set (TS). The number of epochs available for 

classification on each data set is 18090 and 6284, respectively, for the TR and the TS 

sets. The TR set is used in a training manner in the sense that it is used to determine 

both the best configurations for SVMs and ANNs, and it is also employed as a training 

set to compare the different classifiers. On the other hand, the TS set is put aside and 

used as a separate test set in order to assess generalization capabilities of the different 

classifiers. 

 

After signal processing and construction of the characterizing patterns (see Chapter 

5, “Identification of EEG arousals”), the number of characterizing patterns is 15280 for 

the TR dataset and 4850 for the TS dataset. Note the epochs that do not hold an arousal 

pattern are directly classified as non-arousal at the first classification step. All the 

patterns are normalized subtracting for each attribute ix  its mean )( iµ  and dividing the 

result by its standard deviation )( iσ . Thus all the attributes result in a zero mean and 

standard deviation equal to one.  

 

Due to the fact that usually the majority of epochs during sleep are free of arousal 

event, even for a patient with high arousal index, the classes both in the TR and TS sets 

are unbalanced in a proportion of 20% of actual arousals versus 80% of non-arousal 

epochs. Therefore, in order to avoid a biased classifier, an under-sampling technique 

[27] is applied so that the number of examples throughout experimentation is 

equilibrated within the two sets, resulting in two new balanced TReq and TSeq sets with 

5968 and 1992 patterns respectively.  

 

Two experiments are carried out at this point:  

 

(i) training the classifiers with the TReq set, we want to test their generalization 

capabilities over the TSeq set;  

 

(ii) training the classifiers with the TReq set, we want to test their performance 

evaluating the entire method. That means we are really using the expanded set TS+D, 
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where D denotes the set of epochs not containing a characteristic pattern –which will be 

directly classified as non-arousal at the first step in the classification, and TS denotes the 

testing set in which classes are unbalanced according to the proportion of arousals 

present in the recording –which are evaluated at the second classification step;  

 

Therefore, the first experiment pursues the comparison of the different models 

acting as classifiers over a certain data set, whereas the second determines the 

performance of the method itself –which comprises two classification steps- using 

different models acting as classifiers at the second classification step (see Figure 5.7). 

Comparing (i) and (ii) the consistence on the classification can be measure, moving 

away from the arousal pattern dataset to a real PSG recording scenario.  

 

Before proceeding with the experimentation, however, the first step is to select the 

appropriate configurations for the SVMs and ANNs. A 10-fold cross-validation is 

carried out for this purpose, in conjunction with a grid search on the space of 

combinations for parameters S and C for the SVM, and on the number of hidden 

neurons H for the ANN. Using the set TReq to perform the cross-validation, error 

measure is taken (the proportion of classes is balanced in this set) as ek = 1-accuracyk, 

where accuracyk is the proportion of correctly classified patterns in the fold k. Through 

this procedure, best obtained parameters are finally S = 2-5 and C = 2 for the SVM, 

achieving an averaged error (mean±standard deviation) of ESVM = 1.79x10-1±1.81x10-2, 

whereas the best number of neurons for the ANN is H = 32, with an averaged error of 

EANN = 1.71x10-1±1.93x10-2. 

 

Once the appropriate configurations have been selected for the SVM and the ANN, 

comparison is performed on the four models (Linear discriminant, quadratic 

discriminant, SVM and ANN) to select the best classifier. Results of the comparision 

are shown in the corresponding section on chapter 7. 

 

B) Feature selection on the detection of EEG arousals 

 

Study of feature selection in the detection of EEG arousals has as its main objective 

to assess if it is possible to reduce the number of necessary features while keeping 

adequate detection performance. For adequate it has to be understood, at least, to 
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maintain same detection capabilities as in the case with the whole set of 42 features. 

Different feature selection methods are studied in this respect and two different 

classifiers (ANN and SVM) act as evaluators. The use of two classifiers is not aimed at 

performing a comparative study but at confirming that the predictive power does not 

depend on the subsequent model used for classification. However as both models have 

free parameters, a specific configuration has to be chosen for each one, keeping it 

constant in all the experiments. This has to be done in order to allow comparison of the 

results among the different number of features. In other words, if the classifier 

configuration is modified throughout the different subsets of features then the results 

can be corrupted, influenced by its structure configuration and not by the predictive 

power of the current set of features. 

  

Thus, in order to allow comparison of the results and fulfill the objectives of the 

study, two fixed configurations are set for the two classifiers. The ANN is configured 

within 10 hidden neurons using back-propagation with momentum (learning rate 0.01, 

momentum 0.9), and the SVM is configured using a radial-basis kernel function with 

cost parameter C = 1.0. Nevertheless, even with a fixed structure configuration, when 

dealing with machine learning models a training phase is mandatory to set up internal 

parameters of the model. Thus for each candidate subset of features, the classifiers are 

firstly trained using the TR dataset. Later, the TS set is used to check their 

generalization capabilities. Each classifier is also trained and tested using the whole set 

of 42 features in order to obtain a reference value of the performance. In this manner it 

can be evaluated the benefit of using a reduced set of features with respect to the use of 

the full set of features. 

 

Steps followed for studying the application of the feature selection techniques 

described above are structured in the following manner: 

  

(i) Based on the previous gathered set of features for the detection of arousals in 

PSGs (a total of 42 features, see Table 5.2) a subset of 10 patients is randomly chosen 

from the SHHS database. The use of a subset of 10 patients from the original set of 20 

patients is motivated by the high computational cost requirements of wrapper methods. 

In any case, all the recordings included in this subset are totally independent of those 

used in IVS. 
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(ii) The resulting dataset, which consists of 2814 patterns, is split in two new 

datasets: one dataset composed of 1842 patterns is used for training (TR), while the 

remaining 942 patterns are used as a separate external test set (TS). Expert’s annotations 

on the scoring of arousals following the AASM criteria [14] are used in order to 

establish the desired output –class- for each pattern contained in the datasets. Both 

datasets consist of a balanced number of patterns belonging to each class.  

 

(iii) Over the TR dataset, several feature selection methods based on both wrappers 

and filters are applied in order to discard the irrelevant features. As a result, several 

candidate subsets –subsets of the most relevant features selected by the method- are 

constructed based on the measures obtained by each selection method. The process to 

construct these candidate subsets, which is based on the TR data set, is explained below.  

 

(iv) Once the candidate subsets are constructed, their respective predictive power is 

measured using both a ANN and a SVM. As stated before, for each candidate subset the 

classifiers are first trained using the TR dataset. Later, the TS set is used to check their 

generalization capabilities. Each classifier is also trained and tested using the whole set 

of 42 features in order to obtain a reference value of the performance. In this manner it 

can be evaluated the benefit of using a reduced set of features in respect to the use of the 

full set of features. 

 

That said, the procedure for the construction of candidate subsets (step iii) for the 

filter methods is done as follows (see Figure 6.5): 

 

• Firstly, over TR dataset, several filter selection methods are used for scoring 

the different attributes –features-. Each filter method ranks the features in a 

different way. Therefore, different subsets can be constructed depending on 

the ranking used and the number of i-top positions considered on it.  

 

• Various candidate subsets are explored to compare the adequacy of each 

method. To do so, each ranking is explored step by step, starting at the top 

and incorporating features to form a new candidate subset. 
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Figure 6.5. Procedure to obtain and evaluate the different candidate subsets using filters 

 

Apart from the three filters described in Chapter 5 “Identification of EEG 

arousals”, two more approaches that consist of the combination of the individual 

rankings provided by each filter are explored. It is expected that a more adequate subset 

of features, hopefully leading to better results, could be obtained. For that purpose, the 

intersection and the union of the rankings of the three filters used are also tested. 

Several different candidate subsets are obtained respectively as follows: 

 

subsetI(i) =  {⋂(OneR(i), Relief(i), InfoGain(i))}  
 

(6.1) 

subsetU(i) =  {⋃(OneR(i), Relief(i), InfoGain(i)) } (6.2) 
 

where at step i, OneR(i), Relief(i), InfoGain(i) represent respectively the i-first 

ranked features obtained by the OneR, Relief and InfoGain methods. 

 

On the other hand, in the case of the wrapper methods, by combining both 

classifiers and the two search strategies, four individual wrapper approaches are 

obtained. Each wrapper returns a feature subset that is checked by applying the 

classifier over the test set. The procedure to obtain the candidate subsets, which is 

slightly different from the case of filters, is illustrated in Figure 6.6, and is as follows: 
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• In order to avoid the bias of the pattern distribution in the training set (TR), 

a 10-fold cross-validation (CV) is applied. Therefore a potentially different 

subset of features is obtained for each fold.  

 

• For those subsets, the potential importance of each feature is measured by 

counting the number of times the feature appears in the 10 subsets, –so, 

being the maximum value 10-. The features are then ranked in descending 

order, but taking into account that several features may have the same 

importance. 

 

• In this way, each candidate subset is formed by exploring this ranking step 

by step: starting with the subset of features with the highest frequency of 

appearance and including, in decreasing order for each step, those features 

of inferior order of appearance.  

 

 
Figure 6.6. Procedure to obtain and evaluate the different candidate subsets using wrappers 

 

Apart from these four methods, and analogously to the case of the filters, the 

combination of the rankings by the union and the intersection of their features is 

investigated (see eq. 6.1 and 6.2). Results of the analysis for both filters and wrappers 

are given in the next chapter in section “Feature selection on the detection of EEG 

arousals”. 
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C) Final validation of EEG arousals detection using the IVS set 

 

The objective of this validation test is to check the performance of the final 

resulting method for EEG arousal identification, after feature selection methods were 

applied in order to reduce the number of initial features. For that purpose the 

independent validation set (IVS) of 26 recordings is used containing a total of 31080 

epochs for validation. 

 

Specifically, from the results of the two previous sections (i) a classifier method 

between the four tested models in A) might have been selected as candidate, and (ii) the 

best set of predicting features might have been determined in B). Thus, in order to 

assess final results of the method, final training process is scheduled using the selected 

machine learning classifier over the best subset of predicting features. 

 

Final validation results are displayed over each individual recording and agreement 

ratios are calculated. The resulting agreement index, sensitivity, specificity and AUC 

values are then computed overall and for each individual recording. Results of the 

validation as well as the corresponding statistical analysis can be found in the 

corresponding section of Chapter 7. 

 
6.3.2. Sleep Staging 

In order to validate the proposed approach annotations made by expert 

polysomnographic scorers are taken as reference for the validation process. As it has 

been outlined in Chapter 5 “Hypnogram generation”, it is important to remark that since 

the experts follow the R&K procedure (30 seconds labeling), then the epoch-based 

output (non continuous) from the system, is used in order to allow the validation 

process. Recall this epoch-based output is the result of the post-processings described in 

the same section after the continuous hypnogram has been obtained. 

 

Note that for the calculation of agreement ratios, in this case the number of possible 

categories is four (W, DS, DEEP and REM), so that given a certain category C, then a 

negative case (not C) is considered when the related classification involves any of the 

remaining three categories. In other words, if for example the system scores an epoch as 
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W and the standard reference classifies it either as DS, DEEP or REM, then a false 

positive is scored for category W and a false negative is computed for DS, DEEP and 

REM. That said, agreement indexes, sensitivities, specificities and AUC values can be  

easily calculated for each category, by constructing the corresponding 2x2 confusion 

matrix as explained above in section “Agreement ratios”. 

 

Availability of four possible categories for each classifiable element in this case 

makes of interest the construction of a contingency table as described in section “Pair-

wise measures”. From this table analysis kappa can be performed to obtain resulting 

agreement not affected by chance. Percent of positive agreement can also be 

investigated here since, according to the procedure described above for calculation of 

agreement ratios, the high number of true negatives for each category might be 

obscuring actual misclassifications of the sleep stages.  Study of overall deviating 

scorings can be computed as well from the contingency table to determine which sleep 

stages are involved in the misclassifications. 

 

Results of the sleep staging validation and the corresponding data analysis can be 

found in section “Hypnogram generation” of Chapter 7. 

 

6.3.3. Apneic events detection 

Validation here is focused on two distinct aspects: (i) expert-system agreement in 

regard to the location of apneic events, and (ii) classification of apneic events as apneas 

or hypopneas. 

 

Specifically, since every apneic pattern has associated three different degrees of 

membership with respect to categories apnea, hypopnea and false positive, assignment 

of an apneic pattern (AP) to a concrete category uses a maximum criterion as described 

in Chapter 5. That is, for (i) an apneic event is confirmed if: 

 

𝐴𝑝𝑛𝑒𝑖𝑐 𝑒𝑣𝑒𝑛𝑡 ⇔ max �μapnea(AP), μhypopnea(AP)� ≥  μfalsepositive(AP) 
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and for (ii): 

 

𝐴𝑝𝑛𝑒𝑎 ⇔ max �μhypopnea(AP), μfalse positive(AP)�  ≤ μapnea(AP) , 

 

𝐻𝑦𝑝𝑜𝑝𝑛𝑒𝑎 ⇔ max �μapnea(AP), μfalse positive(AP)�  ≤ μhypopnea(AP)  

 

For the first goal temporal positioning of the detected events is crucial. However 

temporal location of events is difficult from the point of view of implementing 

validation. Any given event can be represented by a segment located in time and 

demarcated by a start point and an end point. In this regard, in order to determine an 

exact matching, it is very difficult to compare two segments in terms of an exact 

coincidence according to their starting and ending points. Let us assume, for example, 

that precision of the temporal scale is that of real numbers and that the starting point for 

two segments is the same. Given the respective ending points, end_pointA and 

end_pointB, let us assume that these differ by 0.3 seconds. A human scorer might then 

consider that these two segments represent a temporal match –i.e. they refer to the same 

event, yet from the computational perspective, and taking into account precision of real 

numbers, they cannot be considered to be the same as they do not coincide exactly in 

time. On the other hand, it is reasonable to admit a certain difference Δ in the location 

of the starting and ending points when comparing two segments to see if they belong to 

the same event. However assigning a value to Δ is in itself a problem as one has to 

consider the different combinations between the starting and ending points which also 

depend on the concrete situation.  

 

The proposed solution is similar to that applied for the validation of EEG arousals, 

and it consists in the segmentation of the temporal axis into classifiable—and therefore 

comparable—units. Again, the concept of epoch can be taken as an arbitrary unit of 

time in the context of sleep studies. Thus, by locating the mid-point of the segment that 

represents the event, this can be unequivocally assigned to an epoch, and the validation 

process can be implemented by comparing epochs annotated, respectively, by either the 

system or the standard reference (see Figure 6.7). 
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Figure 6.7. Each black rectangle represents an apneic event over a time scale (the x axis). The circles 
represent the mid-points that locate apneic events unequivocally in an epoch (in grey) 

 

Therefore, similarly to the case of the assignment of arousal patterns to a specific 

epoch, to implement the validation process the concept of epoch is used in order to 

decide on the existence of an apneic event within an epoch. The former process enables 

us to construct the contingency table as in section “Agreement ratios” of the current 

chapter and to calculate the number of TP, TN, FP and FN accordingly. For example in 

the cases where both system and standard reference detect an apneic event in the same 

epoch then TP is scored; if an apneic event is detected by the system but it is not 

marked by the standard reference then a FP is computed, and so on.  

 
Once an apneic event is localized in a concrete epoch through its mid-point, then 

validation regarding its concrete type can also be assessed. For this purpose, epochs in 

which there is positive agreement on the location of apneic events are used in order to 

validate the system with respect to classification of the events as apneas or hypopneas. 

On the other hand, since validation is performed for epochs, in order to correctly 

validate apneic event classification, only epochs with just one apneic event are 

considered. For validation purposes, for example, it would not be clear whether an 

epoch annotated by experts as featured by an apnea and by a hypopnea should be 

actually considered as apnea or as hypopnea. 

 

Validation results and analysis of data are shown on the corresponding section of 

Chapter 7. 
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6.3.4. Apneic events classification 

As it has been described throughout Chapter 5, three different classes of apneic 

events are considered from our system: obstructive, central and mixed. However, as it 

has also been introduced in this chapter, standard reference used for validation only 

considers classification as obstructive or central over apnea events. Specifically, no 

distinction is made between mixed apneas and obstructive apneas. Therefore, for 

validation purposes events classified as mixed for our system will be considered within 

the obstructive category. Hypopnea events are not either classified by the standard 

reference (they are considered as obstructive by default). Therefore system validation 

with respect to classification of origin of the apneic event is limited to the classification 

of events of type apnea. For these events, again, the maximum criterion is applied for 

classification of the confirmed apneic event into a concrete category, and therefore: 

 

𝑂𝑏𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑣𝑒 ⇔ max�μobstructive(AP), μmixed(AP)�  ≥ μcentral(AP) 

 

𝐶𝑒𝑛𝑡𝑟𝑎𝑙 ⇔ max�μobstructive(AP), μmixed(AP)�  ≤ μcentral(AP) 

 

Similarly to the validation tests scheduled for evaluation of the detection phase, in 

this case, the type of validation measures to be used comprises calculation of agreement 

ratios for each of the previous apnea categories: obstructive and central. It has to be 

taken into account that obviously, only the set of true positives for the class apnea can 

be evaluated for this classification. Thus, the number of cases to be evaluated depends 

on the number of true positives for the apnea category marked in the validation of the 

preceding detection phase (see previous section). Results of the validation process and 

the corresponding data analysis are shown in the corresponding section of the 

subsequent Chapter 7.  

 

6.3.5. Final patient diagnosis 

The objective of this validation test is to assess reliability of the system with regard 

to final diagnosis of the patient. In this respect a first aspect of interest is to calculate 

final AHI values for each of the 26 recordings in the IVS set. Comparison on the 

obtained values is then performed against the respective AHI values according to the 
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standard reference. Since comparison involves numerical data (not categorical), 

validation in this respect is carried out using the methods described in previous 

subsection “Measures involving numerical data”. 

 

In addition to the analysis of the AHI, consistency of the TST as well as validation 

considering ApI and HI indices separately is also assessed. Validation from a 

categorical perspective is performed by taking into consideration the respective 

classifications of syndrome severity associated to the AHI. For that purpose AHI is 

segmented according to the categories established in Table 5.4 (see Chapter 5, 

“Diagnosis generation”). The comparative is performed through the calculation of the 

corresponding kappa index and the analysis of the respective severity distributions. 

 

Similar analysis is performed for the respective syndrome classifications according 

to the prevalent type of apneic event in the patients, i.e. obstructive, central or mixed. 

Respective AHIobs and AHIcen between the system and the standard reference are 

compared using numerical methods, and then from the categorical perspective 

according to the corresponding nominal classification. Criteria for syndrome 

classification according to the previous indices can be consulted in subsection 

“Diagnosis generation” of Chapter 5. Again, the analysis is repeated by taking into 

account final indices for positional SAHS (AHIs and AHIns). 

 

Final computed indices for ArI are also compared and analyzed from the numerical 

perspective. Finally, additional comparative validation is performed with regard to the 

relation between apneic events and arousals, the distribution of apneic events over the 

different sleep stages, and the correlation between different estimations of sleep 

fragmentation. 

 

Results and data analysis concerning final validation can be found in subsection 

“Final patient diagnosis” of Chapter 7.  
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6.4 Summary of this chapter 
 

This chapter introduces the set of validation measures and the design of the tests 

used for the validation of the system described through the previous chapters. 

 

An introduction to the validation process is firstly given, specially focusing in the 

validation of intelligent systems. In this respect different types of procedures and 

measures are presented which are firstly structured into two great groups, depending on 

their adequateness to handle categorical or numerical data. Within each group further 

classification is performed, for example, according to pair-wise measures, group 

measures and agreement ratios. The different types of validation measures are then 

described in more detail. Measures that operate over categorical data include agreement 

index, kappa analysis, chi-squared test for homogeneity, sensitivity, specificity, false 

positive ratio, false negative ratio, specific agreements, and area under ROC curve. 

Among measures operating over numerical data, several statistical tests of interest are 

introduced for the analysis of two numerical distributions such as Student’s and 

Wilcoxon tests, linear and Spearman’s correlation, and group measures for the 

comparison of several numerical distributions such as ANOVA analysis, Kruskal-

Wallis and intraclass correlation coefficient. Additionally, in order to perform model 

selection over methods based on machine learning approaches, a general 

methodological framework is introduced describing specific mechanisms and metrics. 

 

The chapter continues detailing the design of the validation tests, beginning with 

the available data and explaining the followed procedures according to each case. 

Validation data is taken from real PSG recordings from the Sleep Heart Health Study. 

The recordings are annotated by expert scorers which are taken as the gold standard. 

Thus, in general, validation is carried out by confronting system’s outputs with expert’s 

annotations in the recordings. In order to perform a more structured validation, the 

process is performed by splitting the main task into several subtasks of interest: 

detection of EEG arousals and feature selection, sleep staging, apneic events detection 

(apnea/hypopnea/false positive), apneic events classification (obstructive/mixed/central) 

and final diagnostic. Specific validation procedure and measures used in each case are 

respectively described throughout the final part of the chapter. 
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7. RESULTS 

In this chapter presentation and analysis of the validation results is performed 

according to the validation tests designed in the preceding chapter. In this regard 

sections are organized in arrangement to the corresponding subsections of Chapter 6. 

Specifically, the chapter is organized according to the following validation subtasks: (1) 

detection of EEG arousals and feature selection, (2) sleep staging, (3) detection and 

differentiation of apnea and hypopnea events, (4) classification of apneic events as 

obstructive, central or mixed, and (5) final patient diagnosis. Further details on the 

results of the different validation tests are given throughout the subsequent sections. 

7.1. Identification of EEG arousals 

 

A) Detection of EEG arousals using machine learning models 

 

In accordance with validation strategy described in subsection “Detection of EEG 

arousals” of Chapter 6, two first experiments are carried out to assess (i) classification 

capabilities of the classifiers over TSeq set and (ii) within the method over the expanded 

set TS+D. Table 7.1 and Table 7.2 respectively show the results for the two 

experiments. In order to provide statistical significance to the results the procedure was 

repeated 30 times. Therefore the results showed in Table 7.1 and Table 7.2 represent 

average values on each measure. Note that the first experiment (see Table 7.1) pursues a 

preliminary comparison of the classifiers under ideal conditions where the number of 

classes is balanced. The best results on each measure are stressed in bold. 
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Table 7.1. Results using various classifiers trained with the balanced set TReq and tested in the balanced 
testing set TSeq. AUC = Area Under ROC Curve 

 TReq vs. TSeq 
Model Error Sensitivity Specificity AUC 
Linear 

discriminant 0.275 0.667 0.784 0.725 

Quadratic 
discriminant 0.271 0.680 0.779 0.730 

SVM 0.199 0.781 0.820 0.801 
ANN 0.188 0.812 0.812 0.812 

 
 

It can be seen from the results in Table 7.1 that both the SVM and ANN 

demonstrate better results than the linear and quadratic discriminants. Both offer similar 

results, thus pair-wise comparison between the measures of the two models is 

performed using the non-parametric Wilcoxon test in order to check for statistically 

significant differences between model’s outputs. Based on this test it can be concluded 

that the SVM has better specificity than the ANN, whereas the ANN has better 

sensitivity (p-value = 1.4x10-3). Normally in medicine one desires the most sensitive 

test. In addition, taking into account that both, classification error and AUC, provide a 

measure on the overall performance, the ANN can be considered the best model in this 

case (p-value = 1.4x10-3). 

 

Subsequently, Table 7.2 shows the results for the performance of the method on 

each of the classifiers tested over the whole classification stage. The best results for 

each measure are similarly marked in bold. 
 

Table 7.2. Results from the method using various classifiers trained with the balanced set TReq. AUC = 
Area Under ROC Curve 

 TReq vs. TS+D (method) 
Model Error Sensitivity Specificity AUC 
Linear 

discriminant 0.229 0.739 0.777 0.758 

Quadratic 
discriminant 0.238 0.751 0.764 0.757 

SVM 0.198 0.840 0.794 0.817 
ANN 0.218 0.868 0.765 0.817 

 
 

The results show a similar trend to those in Table 7.1, with the SVM and the ANN 

achieving the best results. An increase in the sensitivity is seen while specificity 

decreases. There is also a slight increase on the classification error. This can be 
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expected due to the new unbalanced scenario in which the proportion of actual events 

decreases in comparison with the number of non-arousal epochs, therefore increasing 

the number of false positives. However, it is remarkable that an increase in the average 

performance (sensitivity and specificity) occurs reflected in a higher AUC index when 

compared to Table 7.1. Since both classifiers perform equal in terms of AUC (p-value = 

1), again it is necessary to decide if it is preferable to choose the more sensitive or the 

more specific method. As previously stated, it is chosen the one with the highest 

sensitivity since in medicine one normally prefers to over detect the disease, instead of 

under detecting it. Thus, the ANN is the model selected to act as the classifier since it is 

more sensitive (p-value = 6.34x10-5) than the SVM. Nevertheless, the preference for 

ANN can only be tentatively conjectured given the small difference between the ANN 

and SVM, and the limited number of patients used in the test set. In fact, lower 

classification error is achieved by the SVM. 

 

The choice of a balanced set in order to train the models could be a discussion 

point, taking into account that in a real full recording the classes are, in fact, 

unbalanced. However what happens if one trains the models with the TR set, i.e. with 

unbalanced classes, is that the classifiers tend to learn only the majority class 

overlooking the other. Table 7.3 and Table 7.4 are provided with the results of such 

training. Data have been obtained by exactly the same procedure followed in Table 7.2 

and Table 7.3 but this time using the TR set to train the models. 
 

It is clear that the results obtained are much worse, and although at first sight an 

improvement on the error is perceived in Table 7.4 with respect to Table 7.2, one is 

aware of the drastic drop in sensitivity because the classifier is learning only one class. 

Results in the balanced testing set of Table 7.3 confirm this hypothesis, and it is also 

confirmed that training the classifiers with TReq is the best option.  
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Table 7.3. Results using various classifiers trained with the unbalanced set TR and tested in the balanced 
testing set TSeq. AUC = Area Under ROC Curve 

 TR vs. TSeq 
Model Error Sensitivity Specificity AUC 
Linear 

discriminant 0.290 0.539 0.881 0.710 

Quadratic 
discriminant 0.290 0.553 0.867 0.710 

SVM 0.331 0.368 0.971 0.669 
ANN 0.332 0.356 0.977 0.667 

 
 

Table 7.4. Results from the method using various classifiers trained with the unbalanced set TR. AUC = 
Area Under ROC Curve 

 TR vs. TS+D (method) 
Model Error Sensitivity Specificity AUC 
Linear 

discriminant 0.181 0.619 0.858 0.739 

Quadratic 
discriminant 0.186 0.644 0.847 0.746 

SVM 0.107 0.491 0.972 0.732 
ANN 0.105 0.509 0.971 0.740 

 

 

B) Feature selection on the detection of EEG arousals 

 

In accordance with the validation procedure depicted throughout the corresponding 

subsection of Chapter 6, first step to study the benefits of feature selection methods 

involved the calculation of a reference value for the used subset of 10 PSG recordings. 

 

Thus, in order to obtain a reference value, the classifiers (ANN and SVM) are 

firstly trained using the full set of 42 features. Table 7.5 shows the results achieved 

using as measure the classification error, i.e. the proportion of misclassified patterns. It 

can be shown that resulting values are in accordance with those obtained in Table 7.1 

for the proposed method and evaluated using 5 recordings acting as the testing set (see 

previous subsection “Detection of EEG arousals using machine learning models”). 

Lower values of error with respect to values of Table 7.5 are to be expected by the 

application of feature selection techniques. 
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Table 7.5. Proportion of misclassified patterns using the full set of 42 features over the TS set 

SVM ANN 
0.196 0.194 

 
 

Results for filters methods 

 

The candidate subsets obtained using filter methods are shown in Table 7.6. 

Candidate subsets for each filter method are constructed taking into account the 20th 

first ranked features in each case. For an easier display, steps down through rankings are 

taken two-by-two on the features for the individual filters. Feature numbers (see Table 

5.2 to identify the specific features) are provided in order to describe the subset. Each 

row includes the features of the previous row plus (+) the corresponding two new ones. 

 
Table 7.6. Candidate subsets for the individual filters 

 Candidate Subsets 
Number of features InfoGain OneR Relief 

2 38,39 39,37 41,40 
4 +28,37 +38,21 +38,37 
6 +3,21 +3,41 +39,28 
8 +10,20 +28,23 +10,5 

10 +23,41 +10,20 +23,18 
12 +2,19 +40,5 +35,2 
14 +1,5 +2,42 +20,8 
16 +30,40 +12,1 +13,15 
18 +12,33 +19,30 +33,14 
20 +13,31 +13,31 +36,17 

 
 

Using the previous candidate subsets, SVM and ANN are trained using the TR 

dataset and evaluated over the TS dataset.  Figure 7.1 and Figure 7.2 show the error 

achieved by the filters on the different candidate subsets on the external test set (TS) 

using the SVM and ANN classifiers, respectively.  The dotted line represents the error 

value achieved with the complete set of 42 features. 
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Figure 7.1. Error achieved by the three filter methods checked, using SVM as classifier. The dotted line 
represents the error achieved by the SVM using the full set of 42 features 

 

 

 
Figure 7.2. Error achieved by the three filter methods checked, using ANN as classifier. The dotted line 
represents the error achieved by the ANN using the full set of 42 features 
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In order to investigate filter combinations, the union and the intersection of the 

candidate subsets on Table 7.6 are performed. The resulting candidate subsets together 

with their corresponding predictive power using the ANN and the SVM are shown, 

respectively for the union and the intersection, in Table 7.7 and Table 7.8. In both 

tables, due to the union and intersection operations (see Chapter 6, eq. 6.1 and 6.2) with 

the ith top-ranked features on the filters application, the resulting number of elements for 

each step is not constant, as in the individual filters. Therefore the results cannot be 

included in the previous figures but in form of tables, where in order to make a 

comparative study, the errors of the rows can be contrasted with those of the filter 

approaches using a similar number of features. In Table 7.7 and Table 7.8 the results 

with a lower error with respect to the reference subset (see Table 7.5) are shown in 

boldface. For the lowest error achieved, the results are highlighted with a grey 

background. 
 

Table 7.7. Filters’ candidate subsets evaluation for the union of the top ranked features on filters. Errors 
under the reference value are shown in boldface, and the best values of the table are displayed with grey 
background 

Number of 
 features 

Candidate 
subsets 

SVM  
Error  

ANN 
Error  

5 37,38,39,40,41 0.197 0.185 
6 +28 0.158 0.168 
7 +21 0.183 0.158 
8 +3 0.177 0.150 
9 +10 0.178 0.166 
12 +5,20,23 0.187 0.160 
13 +18 0.180 0.156 
15 +2,35 0.174 0.156 
16 +19 0.179 0.171 
19 +1,8,42 0.180 0.162 
22 +12,13,30 0.188 0.180 
23 +15 0.187 0.162 
24 +33 0.191 0.178 
25 +14 0.190 0.172 
27 +36,31 0.192 0.158 
28 +17 0.193 0.184 
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Table 7.8. Filters’ candidate subset evaluation for the intersection in terms of misclassified patterns. 
Errors under the reference value are shown in bold, while the best ones are displayed with a grey 
background 

Number of 
features 

Candidate 
subsets 

SVM  
Error  

ANN  
Error  

1 38 0.279 0.279 
2 +37 0.279 0.277 
3 +39 0.279 0.254 
4 +28 0.239 0.239 
6 +10,23 0.230 0.226 
7 +41 0.221 0.190 

10 +2,5,20 0.210 0.191 
11 +40 0.191 0.170 
12 +13 0.203 0.160 

 
 

Table 7.9 summarizes the best results achieved for each of the methods described 

above. Comparing the results obtained when using SVM, Relief is the best individual 

filter in both number of features and level of error. Related to the combination of 

methods, in this case, the union of filters achieves the same result as Relief, while the 

intersection achieves higher values for the error and even using more features. Using 

ANN, the union of filters gets the best values of all the trials: individual filters and their 

combinations. In this case, it is not clear the election of the best individual filter. On one 

hand, OneR obtains the lowest value for the error, but on the other hand, Relief uses the 

smallest set of features. In any case, Table 7.9 clearly denotes that the union of filters 

leads to the best performance results without increasing the number of features used. 

 
Table 7.9. Best results achieved by each filter method and their combinations in the TS dataset. Best 
results are those showing the lowest percentage of misclassified events –error-. The number of features 
related with the specific error is showed as well 

 SVM ANN 
Filter method or 
combination Error Number of 

features Error Number of 
features 

Relief 0.158 6 0.154 12 
InfoGain 0.188 16 0.154 16 
OneR 0.187 12 0.151 18 
Union 0.158 6 0.150 8 
Intersection 0.191 11 0.160 12 
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Results for the wrappers methods 

 

In the case of wrappers the results for the individual methods are shown in Table 

7.10, Table 7.11, Table 7.12 and Table 7.13. The procedure used to obtain these results 

has been described in section “Feature selection on the detection of EEG arousals” of 

Chapter 6. Table 7.10 and Table 7.11 show the results for the SVM-based wrapper, for 

the forward search and the backward search, respectively. Similarly, Table 7.12 and 

Table 7.13 show the results for the ANN-based wrapper. Notice that, independently of 

the classifier employed as part of the wrapper, SVM and ANN are trained and tested 

using the different subsets of obtained features. Error measures in the tables comprise 

the results achieved using the test set. It is also important to remember that a 10-fold 

cross-validation has been performed to select the features, and so different subsets of 

features may be selected at each fold. The first column in all the tables contains the 

number of times (NTS) a feature has been selected within the 10-fold, -being 10 the 

maximum number of times and 0 the minimum. Initially, only features that have been 

selected for all the folds are chosen, and subsequently, features that are selected in 9, 8, 

etc. folds are included.  The second column in these tables shows the features involved 

in the resulting candidate subset. Analogously to the tables when using filter methods, 

each row includes the features contained in the previous row plus (+) the corresponding 

new ones. When the resulting feature subset remains unaltered from one row to the next 

one, the row is omitted. The number of features on the resulting candidate subset is 

indicated in the third column (NF). The next two columns show the error achieved in 

the TS test using, respectively, the SVM and the ANN classifiers. As in the case of 

filters, values of error below the reference are boldfaced, whereas the value with the 

lowest error is showed with a grey background. 
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Table 7.10. Candidate subsets for the SVM wrapper with forward search and their performance on the TS 
set. NTS = Number of times selected on the 10-fold; NF = number of features in the candidate subset 

NTS Candidate subset NF SVM 
Error  

ANN 
Error  

10 3,39,40,41 4 0.173 0.172 
9 +18 5 0.173 0.168 
7 +5,28,34 8 0.163 0.153 
6 +17,35 10 0.175 0.151 
5 +16 11 0.172 0.171 
4 +4,21,25,31,36 16 0.179 0.165 
3 +8,9,23,27,29 21 0.183 0.182 
2 +10,15,24 24 0.176 0.176 
1 +1,2,6,12,14,20,22,26,30,37 34 0.187 0.160 

 
 

Table 7.11. Candidate subsets for the SVM wrapper with backward search and their performance on the 
TS set. NTS = Number of times selected on the 10-fold; NF = number of features in the candidate subset 

NTS Candidate subset NF SVM 
Error  

ANN 
Error  

10 18,39,40,41,42 5 0.194 0.186 
9 +12,14,15,33,34 10 0.195 0.195 
8 +13,22,28,35 14 0.179 0.171 
7 +1,5,9,16,17,36 20 0.183 0.174 
6 +3,20,27,31 24 0.184 0.170 
5 +4,6,8,29,30,32 30 0.188 0.170 
4 +7,26 32 0.186 0.179 
3 +10,21,23,24 36 0.187 0.191 
2 +2,11,25 39 0.194 0.177 

 
 

Table 7.12. Candidate subsets for the ANN wrapper with forward search and their performance on the TS 
set. NTS = Number of times selected on the 10-fold; NF = number of features in the candidate subset 

NTS Candidate subset NF SVM 
Error  

ANN 
Error  

10 28,39,40,41 4 0.160 0.162 
9 +3 5 0.165 0.165 
8 +8,13,21,31 9 0.185 0.168 
7 +2,5,9,11,15,26,27,30,33,35,36,42 21 0.179 0.172 
6 +10,12,17,18,19,24,34,37,38 30 0.191 0.179 
5 +4,6,20,29 34 0.197 0.176 
4 +1,7,14,16,22,23 40 0.193 0.205 
3 +25,32 42 0.196 0.194 
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Table 7.13. Candidate subsets for the ANN wrapper with backward search and their performance on the 
TS set. NTS = Number of times selected on the 10-fold; NF = number of features in the candidate subset 

NTS Candidate subset N
F 

SVM 
Error  

ANN  
Error  

10 3,6,10,11,17,19,20,21,23,26,32,35,36,38,39,40,41 17 0.180 0.168 
9 +1,7,12,15,16,18,22,25,27,28,31,34,37,42 31 0.193 0.188 
8 +2,4,13,14,29,30,33 38 0.196 0.188 
7 +5,8,9 41 0.200 0.179 
6 +24 42 0.196 0.194 

 
 

Comparing forward and backward search strategies (i.e. Table 7.10 versus Table 

7.11 and Table 7.12 versus Table 7.13), it is clear that the forward strategy obtains 

better performance results while using a reduced set of features. Besides, it can be 

checked that, in general, the best results are achieved using the ANN classifier, 

independently on the classifier used for construction of the wrapper (see Table 7.10). 

 

Finally, as the best results are obtained using the forward search strategy, only 

those wrappers are used for the combination using the union and the intersection, i.e., 

wrappers which results are shown in Table 7.10 and Table 7.12. Table 7.14 and Table 

7.15 show the results for the union and the intersection of wrappers, respectively.  Note 

that, after intersecting or adding features, the number of subsets obtained is different 

and, therefore, the resulting number of rows in these tables can vary with regard to the 

number of rows in Table 7.10 and Table 7.12 (see Chapter 6, eq. 6.1 and 6.2). 
 

Table 7.14. Candidate subsets for the intersection of the individual wrappers (ANN and SVM) in the 
forward search. NTS = Number of times selected on the 10-fold; NF = number of features in the resulting 
subset 

NTS Candidate subset NF SVM 
Error  

ANN 
Error  

10 39,40,41 3 0.192 0.190 
9 +3 4 0.173 0.172 
7 +5,28 6 0.172 0.161 
6 +18,28,34,17,35 11 0.175 0.171 
4 +16,4,21,31,36 16 0.179 0.171 
3 +25,8,9,23,27,29 22 0.183 0.183 
2 +10,15,24 25 0.178 0.178 
1 +1,2,6,12,14,20,22,26,30,37 35 0.185 0.185 
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Table 7.15. Candidate subsets for the union of the individual wrappers (ANN and SVM) in the forward 
search. NTS = Number of times selected on the 10-fold; NF = number of features in the resulting subset 

NTS Candidate subset NF SVM 
Error  

ANN 
 Error  

10 39,40,41,3,28 5 0.164 0.156 
9 +18 6 0.162 0.162 
8 +8,13,21,31 10 0.189 0.163 
7 +5,34,2,9,11,15,26,27,30,33,35,36,42 23 0.184 0.173 
6 +17,10,12,19,24,37,38 30 0.191 0.179 
5 +16,4,6,20,29 35 0.200 0.172 
4 +25,1,7,14,22,23 41 0.196 0.200 
3 +32 42 0.196 0.184 

 
 

Overall, the best performance results for wrappers are obtained using a ANN 

classifier after selecting features using a SVM-based wrapper (0.151 in Table 7.10). 

This error value is not outperformed by the union or the intersection combinations. 

However, it is important to mention that the union obtains a similar value (0.156 in 

Table 7.15), but using less number of features (5 instead of 10). So, similarly to filter 

results, the union of different wrappers achieves almost top performance results while 

using fewer features than the individual methods. 

 

In the discussion about the determination of the best feature selection method, it is 

necessary to have two factors under consideration: the improvement of error and the 

number of features used to obtain that error. Normally, better accuracy is obtained by 

including more features in the selected subset. However, it may be preferable to achieve 

a reasonable accuracy while trying to reduce the number of features to the minimum. To 

be taken into mind is that, in the field of medicine, normally the major interest is in the 

prediction capabilities of the test, rather than in the amount of information needed. 

Supposing that no extra cost is associated with the amount of features –as it is in this 

case- it can be concluded that obtaining better accuracy is preferred. 

 

After the previous considerations, in the case of filters, the method which achieves 

the lowest error is the union (0.150 error / 8 features). In the case of wrappers, the 

obtained results also corroborate the union as a better combination method than the 

intersection. For wrappers, however, the best absolute values are achieved using the 

ANN with forward search (0.151 error / 10 features). In any case the union is in fact 

fairly close with half of the features (0.156 error / 5 features).  



 
7. Results 

 

351 
 

In conclusion the improvement on the performance can be shown in both the results 

using the ANN and the SVM as classifiers, regardless of the feature selection method 

used. For filters, the best method is the union regardless of the used classifier. The 

results on wrappers show that the selection of features performs better, in general, 

following a forward search strategy and using the ANN as classifier (independently of 

the use model used as wrapper). The union of the features has also showed to perform 

well. Trying to make a decision on the use of filters or wrappers, the results are not 

conclusive in terms of error. However, considering the higher computational 

requirements of wrappers, filters seem to be a more adequate method. After the previous 

considerations, in the case of filters, the method which achieves the lowest error is the 

union (0.150 error / 8 features). It is important to note the considerable reduction 

achieved in the percentage of error compared with the results using the whole set of 

features (0.196 for SVM and 0.194 for ANN). In addition the great reduction in the 

number of features is achieved (for union of filters 8 versus 42, thus over 80% reduction 

with respect to the original set). 

 

C) Final validation of EEG arousals detection using the IVS set 

 

As it has been shown in the preceding subsections, referring to Table 7.2, a method 

for the identification of arousal events in PSG recordings has been reported achieving, 

respectively, a sensitivity and specificity of 0.868 and 0.765, or equivalently 86,8% and 

76.5%. These results have been obtained using the full set of 42 features over a set of 20 

patients, divided into 15 recordings acting as a training set, and 5 recordings as an 

independent testing set. The former data however was obtained by repeating training 30 

times in order to provide statistical relevance and to avoid initialization effects for the 

ANN, thus allowing comparison to decide on the best classification model. In this 

respect, and according to the obtained data, the best model has proved to be the ANN 

classifier. 

 

Feature selection methods were applied in order to get rid of possible data 

redundancy. Study for the reduction of the number of features was carried out using a 

subset of 10 patients, which was also organized in a training set containing 2/3 of the 

total patterns and another with the remaining 1/3 used as testing set. A subset of 10 
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patients from the original set of 20 patients was used due to the high computational cost 

requirements of the wrapper methods. Results have shown that, independently of the 

applied feature selection technique, lower classification error can be achieved while 

reducing the number of necessary features. Lower absolute error in this respect has been 

achieved using 8 features (see Table 7.9). These results have been obtained over the 1/3 

testing set, however the actual performance of the resulting classifier (using the reduced 

number of features) has not been tested within the general method. 

 

Thus, in order to assess final validation results of the method, final training process 

with the ANN model is scheduled using TReq as training set, while using TSeq as the 

validation test for the stopping criterion. In this regard, the ANN classifier is trained 

using the reduced number of features, while error in TSeq is below of training error in 

TReq, so that preventing possible overfitting. Once trained, final validation results are 

obtained on an epoch-by-epoch basis using the independent validation set (IVS) of 26 

recordings (see “Design of the validation tests” in Chapter 6). 

 

Subsequently, Table 7.16 shows the validation results in the said IVS set. As it has 

been stated throughout the corresponding section of Chapter 6, none of these recordings 

was included in the training or testing sets used for parameter configuration of the 

methods. In Table 7.16 the first column references the recording number and the second 

column indicates the number of classifiable epochs. Total number of micro-arousal 

events localized by standard reference and system are shown respectively in columns 

three and four. Number of TPs, FNs, TNs and FPs are in the subsequent columns. 

Remaining four columns contain computed values for agreement index, sensitivity, 

specificity and AUC that correspond to each recording. Last row in Table 7.16 contains 

total values (summation over the 26 recordings) and the corresponding overall indexes 

shown in bold. 
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Table 7.16. Validation of the epoch-based validation for detection of EEG arousals. RN = Record 
Number; SR = Standard Reference; TP = True Positive; FN = False Negative; TN = True Negative; FP = 
False Positive; AgrI = Agreement Index; Sens = Sensitivity; Spec = Specificity; AUC = Area Under ROC 
Curve 

EEG Arousal Event Location 

RN Epochs 
Arousal 
events TP FN TN FP AgrI Sens Spec AUC 

SR System 
200088 1200 22 33 11 10 1157 22 0.973 0.524 0.981 0.753 
200259 1233 262 258 208 48 927 50 0.921 0.813 0.949 0.881 
200386 1312 198 179 118 76 1057 61 0.896 0.608 0.945 0.777 
200532 1020 229 80 58 169 771 22 0.813 0.256 0.972 0.614 
200568 1170 120 170 87 29 971 83 0.904 0.750 0.921 0.836 
200929 1320 406 364 291 115 841 73 0.858 0.717 0.920 0.818 
201249 1140 338 305 234 101 734 71 0.849 0.699 0.912 0.805 
201294 1200 347 335 282 64 801 53 0.903 0.815 0.938 0.876 
201394 1364 48 91 36 20 1253 55 0.945 0.643 0.958 0.800 
201824 1168 231 217 153 76 875 64 0.880 0.668 0.932 0.800 
202275 1140 124 119 88 36 986 31 0.941 0.710 0.970 0.840 
202666 1120 50 66 39 11 1043 27 0.966 0.780 0.975 0.877 
202733 1200 258 288 227 31 881 61 0.923 0.880 0.935 0.908 
202956 1200 296 191 160 136 873 31 0.861 0.541 0.966 0.753 
203249 1260 225 275 162 55 930 113 0.867 0.747 0.892 0.819 
203294 1050 42 87 38 4 959 49 0.950 0.905 0.951 0.928 
203494 1260 166 168 118 46 1046 50 0.924 0.720 0.954 0.837 
203645 1364 235 97 75 159 1108 22 0.867 0.321 0.981 0.651 
203798 1119 308 192 141 159 768 51 0.812 0.470 0.938 0.704 
204135 1200 158 105 81 76 1019 24 0.917 0.516 0.977 0.746 
204452 1110 33 68 31 2 1040 37 0.965 0.939 0.966 0.953 
204480 1320 72 70 39 31 1219 31 0.953 0.557 0.975 0.766 
205813 940 104 160 84 18 762 76 0.900 0.824 0.909 0.866 
205948 1030 40 41 15 25 954 26 0.950 0.375 0.973 0.674 
206040 1320 260 180 135 124 1016 45 0.872 0.521 0.958 0.739 
206181 1320 278 296 213 64 960 83 0.889 0.769 0.920 0.845 

Total 31080 4850 4435 3124 1685 24951 1311 0.904 0.650 0.950 0.800 
 

Taking a look to the results of Table 7.16, it can be shown that in general the 

overall number of micro arousal events detected over the total number of epochs is quite 

similar (4850 for the standard reference and 4435 for the system). Wilcoxon paired sign 

rank test does not detect significant differences among the individual recordings (p-

value 0.446). However data suggest a slight tendency toward underestimation of the 

number of arousal events, which is confirmed by taking into consideration the overall 

indices of sensitivity and specificity, respectively with values 0.650 and 0.950. Overall 

performance indexes measured through agreement index and AUC show respective 

values of 0.904 and 0.800. Individual differences can be shown in this respect among 

some of the recordings, however the general trend maintains. The lowest values of 

sensitivity are found for recordings 200532, 206645 and 205948, all below 0.4. These 

recordings also show the lowest values for AUC dragged by the values in sensitivity. 
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The uneven proportion of arousal events over these recordings (according to the 

standard reference 22%, 17% and 4% respectively) as well as the presence of high 

sensitivity in other recordings (for example, recording 204452 shows 0.939 sensitivity 

with 3% of arousals, recording 202733 shows 0.880 sensitivity with 22% of arousals), 

suggest that there is not a direct relation between the proportion of arousal events and 

sensitivity of the system. Next Figure 7.3 confirms this hypothesis. In the upper side of 

the figure both linear correlation –Person’s r- and Spearman’s rho coefficients are 

shown. Their respective p-values for testing the null hypothesis H0: r = 0 and H0: rho = 

0, are displayed between brackets. Black straight line represents the linear regression 

line obtained using the Least Mean Square (LMS) method. According to the obtained p-

values (0.7 for r, 0.71 for rho) it is clear that no significant correlation exists between 

the proportion of arousal epochs and the sensitivity of the detection method. 

 

 
Figure 7.3. Sensitivity for arousal detection as a function of the proportion of arousal epochs in the 
recording. No significant correlation is perceived 

 

It is noticeable that when comparing these results with those obtained in Table 7.2 

(which measured the method using the full set of 42 features) the general trend seems to 

invert: a more sensitive method has been formerly obtained while now the method tends 

to be more specific; the conclusion is, therefore, that the higher initial dimensionality 

was effectively causing an increase in the number of false positives. Nonetheless, 

improvement of the classification error is demonstrated by comparing the two tables 

(0.218 for ANN in Table 7.2, 0.096 Table 7.16), pointing out to the fact that, 
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effectively, general performance of the method increases. Moreover, improvement of 

the classification error in the method outperforms the results achieved over the balanced 

dataset used to test the different feature selection methods (see Table 7.9 in previous 

subsection “Feature selection on the detection of EEG arousals”). This is explained by 

the joint action of the trained classifier once integrated in the method. 

 

On the other hand, the general trend observed in Table 7.16 actually resembles 

more to that obtained in Table 7.4. In Table 7.4 model comparison was performed in the 

method using the unbalanced training set TR and the full set of 42 features. Since the 

discussion taken in the corresponding section ruled out the use of TR as training in 

favor of TReq, one may wonder if final results in Table 7.16 can be regarded as 

acceptable. However, in the case of the results in Table 7.4, the resulting classifier 

barely detected an event based on learned discriminative capabilities. It basically 

learned the majority class (non arousal event) and positive examples were detected 

almost by chance. Comparison of Table 7.1 and Table 7.3 also support this fact. On the 

contrary, in Table 7.16 improvement over classification error, sensitivity and AUC 

indexes is obtained with respect to Table 7.4. Moreover, the balanced number of false 

negatives and false positives in Table 7.16 (1685 and 1311 respectively) suggest that 

discrepancy in the detection can be explained due to time location of the arousal events, 

and not because lack of detection capabilities. 

 

Subsequent Figure 7.4 represents the distributions of the validation indexes over the 

26 recordings. It can be shown in the figure that maximum dispersion corresponds to 

sensitivity index (mean±std. = 0.657±0.178) while specificity remains as the most stable 

among the different recordings (mean±std. = 0.949±0.025). Distributions for the 

agreement index (mean±std. = 0.904±0.045) and AUC (mean±std. = 0.803±0.084) 

confirm the results of Table 7.16. 
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Figure 7.4. Box plot showing distribution of agreement ratios over the individual recordings 

 
7.2. Sleep Staging 
 

Results for the validation of the discrete hypnogram obtained using the method 

described in subsection “Hypnogram generation” of Chapter 5 are shown in this 

section. In this regard Figure 7.5 presents a box plot for the sensitivities, specificities 

and the values for AUC, obtained for the four considered sleep stages and for the 26 

patients in the IVS set. Subsequently Table 7.17 shows the means and the standard 

deviations for each one of the corresponding sets. Results in Table 7.17 are represented 

in the form mean±std.deviation. 

 
Figure 7.5. Box plot representing the distribution of Sensitivity (Sens), Specificity (Spec) and Area Under 
ROC Curve (AUC) for the different sleep states 
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Table 7.17. Validation results between expert and system (mean ± std. deviation) 

 Awake Drowsy 
Sleep DEEP REM 

Sens. 0.88±0.07 0.81±0.08 0.75±0.23 0.84±0.19 
Spec. 0.96±0.04 0.89±0.08 0.97±0.03 0.95±0.04 
AUC 0.92±0.04 0.85±0.05 0.86±0.11 0.89±0.11 

 
 
 

As it can be seen from data, the method works especially well in the discrimination 

of wakefulness and REM sleep (average sensitivity/specificity of 0.88/0.96 and 

0.84/0.95 respectively). Sensitivity and specificity slightly decreases for drowsy sleep 

(0.81/0.89). However, the lowest value is achieved for the sensitivity with respect to 

stage DEEP (0.75) while on the other hand the highest specificity is achieved (0.97). 

Indeed, attending to AUC values, it can be said that best results are obtained regarding 

W and REM (AUCs of 0.92 and 0.89), followed by DEEP (AUC = 0.86) and DS (AUC 

= 0.85). Similar trends can be shown in the distributions of Figure 7.5 in which the 

thinnest dispersions are observed among the specificities, whereas higher variability 

spreads over the sensitivity of the system. Especially remarkable is the dispersion in the 

sensitivity of DEEP stage, according to standard deviation of Table 7.17. Presence of 

some outliers can also be shown among the different phases. These outliers are in 

general spread among the different subjects, i.e. they are not related to specific tough 

patients. An exception constitutes the outlier present in sensitivity of phase REM which 

corresponds to a patient with abnormal REM activity causing an additional outlier in the 

specificity of DS sleep. 

 

Subsequent Table 7.18 presents the accumulated contingency table over the 26 

patients. Summing values in the main diagonal and dividing by the total number of 

cases leads to an overall agreement of 0.838. Agreement indexes considering each sleep 

stage separately yield values of 0.93 for W, 0.86 for DS, 0.95 for DEEP, and 0.93 for 

REM. On the other hand, the percent positive agreement can be measured for a 

particular stage, by considering the number of epochs in which at least one in the 

scoring pair (system or standard reference) indicated that stage. In this case, obtained 

values are 0.82 for W, 0.72 for DS, 0.55 for DEEP and 0.63 for REM. These values 

showed that in relative terms, the highest discrepancies involve classification of DEEP 

and REM. 
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Table 7.18. Accumulated contingency table. In parenthesis associated frequency ratio is 
indicated 

R
EF

ER
EN

C
E 

 SYSTEM 

 W DS DEEP REM 

W 12208 (0.31) 1076 (0.03) 18 (< 0.01) 576 (0.01) 
DS 983 (0.02) 14357 (0.36) 1062 (0.03) 1152 (0.03) 

DEEP 16 (< 0.01) 666 (0.02) 2293 (0.06) 25 (< 0.01) 
REM 87 (< 0.01) 749 (0.02) 36 (< 0.01) 4509 (0.11) 

 
 

Calculation of Cohen’s kappa index over Table 7.18 results in κ = 0.76 (observed 

agreement p0 = 0.84, agreement due to chance pc = 0.33). Figure 7.6 shows the 

distribution of the individual kappa indexes over the 26 recordings (mean±std = 

0.75±0.07).  
 

 
Figure 7.6. Box plot representing the distribution of value of kappa index for the different subjects 

 
 

As it has been stated in subsection “Pair-wise measures” of Chapter 6, one has to 

be cautious at the time of interpreting the kappa index when the number of events 

classified in each category by the experts is not the same. As it is here the case, 

determination of the maximum possible value of kappa (κM) is performed in order to 

account for the actual marginal distributions. Thus, taking into account formula for 

maximum value possible of kappa resulting value of κM is 0.95, and therefore it can be 

concluded that current value of κ is 𝜅
𝜅𝑀

= 0.80 times larger than the maximum possible 

value given the circumstances. 
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From Table 7.18, the deviating scorings for each pair of sleep stages can be 

calculated by summing the upper and lower triangular matrices around the main 

diagonal. Figure 7.7 represents the resulting pair-wise percentages of overall 

mismatches.  

 

 
Figure 7.7. Pair-wise epoch deviating scorings expressed as percentage of overall mismatches 

 

According to Figure 7.7 most of the discrepancies in the scoring are found between 

stages W and DS which account for 38.74% of total misclassifications. Almost as 

common of as the discrepancy between W and DS, it is that between DS and REM 

(29.52% of total misclassifications), and between DS and DEEP (26.25% of total 

misclassifications). It is noticeable that among these three groups, DS is always present. 

Therefore it might be concluded that the major difficulty resides in the correct 

identification of stage DS. Nevertheless, it should also be taken into account that DS is 

by far the most commonly scored sleep stage (by both the system and the standard 

reference). Therefore, it is normal that most of the discrepancies involve this stage. In 

fact, by taking into account the proportion of misclassified epochs, it has been revealed 

that DEEP is the stage with the highest discrepancy on the positive agreement (0.55), 

followed by REM (0.65). In other words, regarding DEEP, system and standard 
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reference agree 55% of the time, whereas in the 45% of the remaining cases, either the 

system or the standard reference, classify the epoch as a different stage. However, this is 

barely reflected by overall indexes since the number of epochs with deep sleep only 

represents around 7% of the total count. 

 

7.3. Apneic events detection 
 

Two tables are presented here which show the results for apneic events detection 

regarding capabilities of the system to localize the apneic event (Table 7.19) and, once 

localized, capabilities to classify the event either as apnea or as hypopnea (Table 7.20).  

 

It has to be taken into account that since two complementary categories are 

considered for each table (event/no event in Table 7.19, apnea/hypopnea in Table 7.20) 

a TP in one category implies a TN for the complementary and vice versa. Analogously, 

given this duality, false positives (FPs) and false negatives (FNs) for one category 

result, respectively, in FNs and FPs for the other. Therefore, for reasons of brevity, in 

both tables only breakdown of one category is provided in the terms of TPs, FNs, TNs 

and FPs (apneic events and apnea, respectively). 

 

Table 7.19 summarizes the validation results for the IVS set comprising 15540 

minutes of polysomnographic recordings. Each recording represents a patient affected 

to some degree by SAHS. Organization of the table is similar to that for the epoch-

based validation of the detected arousal events (see Table 7.16 arousal events). 

Accordingly, in Table 7.19 the first column references the recording number and the 

second column indicates the number of classifiable epochs. Total number of apneic 

event localized by the standard reference and the system are shown respectively in 

columns three and four. Number of TPs, FNs, TNs and FPs are in the subsequent 

columns. Remaining four columns contain computed values for agreement index, 

sensitivity, specificity and AUC that correspond to each recording. Last row in Table 

7.19 contains total values (summation over the 26 recordings) and the corresponding 

overall indexes are shown in bold. 
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Table 7.19. Results for the validation regarding the location of apneic events. RN = Recording Number; 
SR = Standard Reference; TP = True Positive; FN = False Negative; TN = true negative; FP = False 
Positive; AgrI = Agreement index; Sens = Sensitivity; Spec = Specificity; AUC = Area Under ROC 
Curve 

Apneic Event Location 

RN Epochs 
Apneic events 

TP FN TN FP AgrI Sens Spec AUC SR System 
200088 1200 162 136 87 75 989 49 0.897 0.537 0.953 0.745 
200259 1233 645 630 580 65 538 50 0.907 0.899 0.915 0.907 
200386 1312 359 380 306 53 879 74 0.903 0.852 0.922 0.887 
200532 1020 481 497 396 85 438 101 0.818 0.823 0.813 0.818 
200568 1170 139 137 67 72 961 70 0.879 0.482 0.932 0.707 
200929 1320 471 523 419 52 745 104 0.882 0.890 0.878 0.884 
201249 1140 444 440 342 102 598 98 0.825 0.770 0.859 0.815 
201294 1200 554 541 491 63 596 50 0.906 0.886 0.923 0.904 
201394 1364 120 135 49 71 1158 86 0.885 0.408 0.931 0.670 
201824 1168 394 441 325 69 658 116 0.842 0.825 0.850 0.838 
202275 1140 346 332 251 95 713 81 0.846 0.725 0.898 0.812 
202666 1120 77 79 34 43 998 45 0.921 0.442 0.957 0.699 
202733 1200 275 337 223 52 811 114 0.862 0.811 0.877 0.844 
202956 1200 406 420 342 64 716 78 0.882 0.842 0.902 0.872 
203249 1260 413 390 318 95 775 72 0.867 0.770 0.915 0.842 
203294 1050 58 65 41 17 968 24 0.961 0.707 0.976 0.841 
203494 1260 486 534 438 48 678 96 0.886 0.901 0.876 0.889 
203645 1364 585 548 463 122 694 85 0.848 0.791 0.891 0.841 
203798 1119 543 499 463 80 540 36 0.896 0.853 0.938 0.895 
204135 1200 281 377 249 32 791 128 0.867 0.886 0.861 0.873 
204452 1110 46 59 26 20 1031 33 0.952 0.565 0.969 0.767 
204480 1320 60 88 45 15 1217 43 0.956 0.750 0.966 0.858 
205813 940 37 40 19 18 882 21 0.959 0.514 0.977 0.745 
205948 1030 92 102 51 41 887 51 0.911 0.554 0.946 0.750 
206040 1320 636 673 567 69 578 106 0.867 0.892 0.845 0.868 
206181 1320 306 352 251 55 913 101 0.882 0.820 0.900 0.860 
Total 31080 8416 8755 6843 1573 20752 1912 0.888 0.813 0.916 0.864 

 

It can be shown taking a look to results in Table 7.19 that, in general, the overall 

number of apneic events detected throughout the total 15540 minutes of sleep is quite 

similar (8705 for the standard reference and 8454 for the system). Wilcoxon paired sign 

rank test does not detect significant differences among the individual recordings at the 

0.05 significance level (p-value 0.067). Therefore, although individual differences can 

be shown in this respect among some of the recordings, the general trend maintains. 

Nonetheless, taking a look to the agreement ratios it can be shown a general tendency 

toward specificity of the system (0.916) whereas slightly lower sensitivity (0.813) is 

achieved. These differences are statistically significant (Wilcoxon rank sum p-value of 

5.56x10-7). When looking at the individual recordings, lower sensitivity is accompanied 

by higher variability (mean±std. = 0.738±0.159) when compared to specificity 

(mean±std. = 0.910±0.044).  
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General performance measured through agreement index and AUC also remain less 

sensitive to individual inter-variability (mean±std. of 0.889±0.040 and 0.824±0.068 

respectively). Overall computed indexes show values of 0.888 for agreement and 0.864 

for AUC, thus showing a more robust operation of the system from the general 

perspective. Similar trends can be observed from the box plot displayed in Figure 7.8 

which shows the larger tails over sensitivity and AUC distributions. Recordings 201394, 

202666 and 200568 show the lowest values for sensitivity and AUC over the 26 

recordings (actually AUC values are dragged by the low sensitivities for these 

recordings). 

 
Figure 7.8. Box plot showing distribution of agreements ratios over individual recordings 

 

It is noticeable that, for example, in the recording 201394 the number of epochs 

containing apneic event according to the standard reference is 135 while the number of 

non-apneic epochs is 1364, which represents a proportion of 0.099 of apneic epochs. 

Similar situation can be observed for recordings 200568 and 202666, both with 

sensitivity below 0.5 and in which proportion of apneic epochs is 0.117 and 0.068 

respectively. In fact, a general tendency can be observed in which sensitivity of the 

system for the detection of apneic events decays as the proportion of apneic events in 

the recording does, as it can be seen in the upper left plot of Figure 7.9.  
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Figure 7.9. Evolution of the agreement ratios for the detection of apneic epochs as a function of the 
proportion of apneic epochs in the recording 

 

In Figure 7.9 the correlation between the proportion of apneic events in the 

recording (according to standard reference) and the evolution of the validation indexes 

is investigated. Significant correlations (taking α of 0.05) according to all indexes are 

found that show opposite trends between sensitivity and AUC (positive correlation) and 

specificity and agreement index (negative correlation). 

 

As it has been pointed out, according to the evolution of the sensitivity index in 

Figure 7.9, it can be concluded that the higher the proportion of apneic events in the 

recording the higher the sensitivity of the system for its detection. On the other hand it 

can be seen in Table 7.19, that for these recordings the number of FN is approximately 

the same as the number of FP. Therefore, while the net count of apneic events localized 

by both the system and the standard reference is similar, it seems that there is 

discrepancy about their concrete temporal instants of occurrence. A look to the 

respective number of apneic epochs supports this interpretation since no relevant 

differences have been found between the experts and the system (see Table 7.19, 

columns 3 and 4). A contrary effect can be seen on the specificity index as a function of 
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the proportion of apneic epochs in the recording: the more apneic events in the 

recording the lesser the specificity of the system (see Figure 7.9 upper right). In order to 

study the causes of these trends, evolution of the proportions of TPs, FNs, TNs and FPs 

can be studied separately (see Figure 7.10). In the figure it can be observed that the 

increase produced in sensitivity is due to the significant (r = 0.99, p-value = 8.1x10-24, 

rho = 0.99, p-value = 1.7x10-7) correlation between the proportion of TPs and the SAHS 

severity (the proportion of apneic epochs in the recording is an indirect measure of 

AHI). This increase in the sensitivity index even compensates the moderate increasing 

trend in the proportion of FNs (correlation is lesser but still significant here, r = 0.63, p-

value = 6.4x10-4, rho = 0.62, p-value = 7.1x10-4). 

 

 
Figure 7.10. Individual evolution of the proportion of True Positives (TP), False Negatives (FN), True 
Negatives (TN) and False Positives (FP) as a function of the proportion of apneic epochs in the recordings 

 

Having that in mind, a possible explanation is that when the number of apneic 

events in the recording is low –the subject has low SAHS severity or even does not 

evidence significant SAHS at all- then also the severity or the clearness of the 

associated events is more reduced: that is, predominant apneic events are of the very 
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mild hypopnea type. A plot of the proportion of apnea events (with respect to hypopnea) 

versus the AHI confirms the hypothesis that the proportion of apnea events increases 

with the severity of the syndrome (see Figure 7.11, significant correlation is found). The 

former implies that accurate detection of these events for the human scorer is more 

difficult due to limited visual precision of the human eye, which increases subjectivity 

in the marking of events, therefore reducing agreement in the detection between the 

human scorer and the system. As the severity of the syndrome increases, it also does the 

sharpness of the associated events, which increments the proportion of true positives. 

On the other hand, this has a counter effect since the sleep pattern and the sleep in 

general becomes more unstable, which slightly affects to the increasing proportion of 

FPs and FNs of the system (although in a much more lesser rate compared to the rise in 

the proportion of TPs).  

 

 
Figure 7.11. Proportion of apneas from the total of apneic events as a function of the Apnea-Hypopnea 
Index (AHI). Significant correlation is evidenced at the 0.05 significance level 

 

In fact, the drop in the specificity as a function of the AHI is explained as a 

consequence of the previous. Indeed, because of the increasing number of epochs with 

presence of apneic event, a reduction in the number of possible TN occurs (there are 

less negative cases since the number of positive cases has increased), and this causes a 

FP to weight more in the computation of the specificity index. Hence, the reduction in 

the proportion of TNs, and the increase in the proportion of FPs, due to the rupture of 

the normal breathing, causes the observed pattern in the evolution of the specificity 

index.  
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Correlation patterns observed over the agreement index and AUC can be explained 

by the above mentioned trends on the sensitivity and the specificity. What it may look 

contradictory is that although both indexes can be regarded as general performance 

indexes, opposite trends are observed with the associated SAHS severity. Effectively 

the AUC index, as it is calculated as a one point operating curve, it directly depends on 

the corresponding associated values of sensitivity and specificity. It actually is an 

average of the two values. As it can be observed in Figure 7.9, the observed positive 

correlation for the evolution of the sensitivity index is higher -and it is so its associated 

significance- than the observed negative correlation for the specificity index in the same 

figure. Therefore average value compensates the fall in the specificity and it results in 

significant positive correlation for AUC (r = 0.69, p-value = 9.8x10-5, rho = 0.64, p-

value = 4.8x10-4). Note that values for specificity are always above the 0.8 while 

dispersion associated to sensitivity ranges from 0.4 until 0.9 (see again Figure 7.9). The 

former explains that AUC follows a similar trend to sensitivity. 

 

On the other hand agreement index shows negative correlation. This tendency 

although slightly less pronounced than the one observed for AUC is still significant (r = 

-0.62, p-value = 6.6x10-4, rho = -0.53, p-value = 5.8x10-3). Therefore it can be 

concluded that although sensitivity and AUC of the analysis increase among severe 

SAHS patients, without concerning about the type of the error, the possibility of 

committing mistakes (i.e. the total number of misclassified epochs in the detection) 

slightly increases. As it has been mentioned, the main cause for this effect is the 

instability of the sleep pattern associated to the severity patient, which increases the 

observed discrepancy between the system and the standard reference.  

 

In subsequent Table 7.20 epochs in which there is positive agreement in the apneic 

events location (TP column in Table 7.19) are used in order to validate the system with 

respect to characterization of events either as apneas or hypopneas. Since validation is 

performed for epochs, in order to correctly validate apneic event characterization, only 

epochs with just one apneic event are considered. For validation purposes, for example, 

it would not be clear whether an epoch containing both apnea and hypopnea events 

should be considered as an apnea or as a hypopnea. This explains why the second 

column in Table 7.20 has fewer epochs for classification than the total number of true 

positives given in Table 7.19. Sensitivity and specificity are given in Table 7.20 for 
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apneas also with dual values for hypopneas. As expected, respective values are 

complementary. 
 

Table 7.20. Validation results for characterization of apneic events as apneas or hypopneas. RN = 
Recording Number; SR = Standard Reference; TP = True Positives; FN = False Negatives; TN = True 
Negatives; FP = False Positives; AgrI = Agreement Index; Sens = Sensitivity; Spec = Specificity; AUC = 
Area Under ROC Curve 

Apnea/Hypopnea Characterization 

RN Epochs 
Apnea Hypopnea 

AgrI AUC TP FN TN FP Sens Spec Sens Spec 

200088 83 2 0 77 4 1.000 0.951 0.951 1.000 0.952 0.975 
200259 554 409 31 94 20 0.930 0.825 0.825 0.930 0.908 0.877 
200386 259 51 17 175 16 0.750 0.916 0.916 0.750 0.873 0.833 
200532 318 39 14 250 15 0.736 0.943 0.943 0.736 0.909 0.840 
200568 63 11 4 48 0 0.733 1.000 1.000 0.733 0.937 0.867 
200929 409 347 20 24 18 0.946 0.571 0.571 0.946 0.907 0.758 
201249 308 53 1 225 29 0.981 0.886 0.886 0.981 0.903 0.934 
201294 449 139 14 276 20 0.908 0.932 0.932 0.908 0.924 0.920 
201394 44 6 0 32 6 1.000 0.842 0.842 1.000 0.864 0.921 
201824 306 156 15 125 10 0.912 0.926 0.926 0.912 0.918 0.919 
202275 206 49 12 122 23 0.803 0.841 0.841 0.803 0.830 0.822 
202666 34 0 0 34 0 --- 1.000 1.000 --- 1.000 --- 
202733 180 140 4 26 10 0.972 0.722 0.722 0.972 0.922 0.847 
202956 323 118 2 158 45 0.983 0.778 0.778 0.983 0.854 0.881 
203249 300 10 7 268 15 0.588 0.947 0.947 0.588 0.927 0.768 
203294 26 1 0 24 1 1.000 0.960 0.960 1.000 0.962 0.980 
203494 427 307 4 80 36 0.987 0.690 0.690 0.987 0.906 0.838 
203645 402 71 96 225 10 0.425 0.957 0.957 0.425 0.736 0.691 
203798 421 201 24 164 32 0.893 0.837 0.837 0.893 0.867 0.865 
204135 243 81 5 143 14 0.942 0.911 0.911 0.942 0.922 0.926 
204452 25 2 2 20 1 0.500 0.952 0.952 0.500 0.880 0.726 
204480 40 14 1 24 1 0.933 0.960 0.960 0.933 0.950 0.947 
205813 19 0 0 19 0 --- 1.000 1.000 --- 1.000 --- 
205948 51 1 1 47 2 0.500 0.959 0.959 0.500 0.941 0.730 
206040 507 267 31 185 24 0.896 0.885 0.885 0.896 0.892 0.891 
206181 234 73 4 137 20 0.948 0.873 0.873 0.948 0.897 0.910 
Total 6231 2548 309 3002 372 0.892 0.890 0.890 0.892 0.891 0.891 

 

For the apnea category, Table 7.20 shows an overall sensitivity of 0.892 and a 

specificity of 0.890. As previously indicated, the complementary nature of the 

categories causes a duality in the interchange of the values associated with the 

sensitivity and specificity indices (0.890 and 0.892, respectively) when considering the 

hypopnea category. Global agreement index and AUC values are 0.891 and 0.891 

respectively, so that it can be concluded that in general terms the system shows stability 

among the different agreement ratios in the apnea/hypopnea discrimination task. In fact 

Kruskal-Wallis test reported no statistical differences among the distributions of the 

different indexes (p-value = 0.433).   
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Dispersions associated to the indexes can be shown in Figure 7.12 when looking at 

the inter-individual differences for the apnea category. Cells containing missing values 

have been excluded for obtaining the resulting distributions. The graph shows the 

highest variability regarding sensitivity with the lowest values found for recording 

203645 (0.425 sensitivity) and recordings 204452 and 205948 (both with 0.5 sensitivity 

values). However for these last two recordings only two and one positive cases are 

respectively available in the recording. On the other hand, specificity (hypopnea 

sensitivity) for the three previous recordings is always over 0.95 (0.957, 0.952 and 

0.959 respectively). The outlier present in the specificity distribution corresponds to 

recording 200929 (0.571 specificity) achieving conversely good sensitivity (0.946). As 

in the case for apneic event localization, performance measured through agreement 

index and AUC show more stability over individual recordings (mean±std. of 

0.899±0.048 and 0.861±0.080 respectively, while 0.844±0.177 is obtained for 

sensitivity and 0.878±0.102 for specificity for the apnea category). The outlier present 

among the agreement indexes corresponds to recording 203645 that also shows the 

highest number of false negatives for apnea category and the lowest value of sensitivity. 

 

 
Figure 7.12. Box plot showing distribution of agreements ratios over individual recordings for 
characterization of apneic events as apnea 
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Exploring the possible existence of correlation between the proportion of apnea 

events and the different indexes, it has been found significant decrease in the specificity 

for the apnea class (see Figure 7.13, upper right) as the proportion of apnea events in the 

sample (with respect to hypopnea events) increases. However no relevant effect is 

interpreted on the operation of the classifier due to this fact. Indeed as the proportion of 

apnea events in the sample increases, a good classifier will tend to increase the number 

of true positives while keeping the number of false positives and false negatives low. 

On the other hand, because only two kinds of events are included in the sample (apneas 

or hypopneas) as the number of positive cases increases (in this case, apneas) the 

number of possible true negatives (hypopneas) consequently decreases. As it has been 

commented for the case of apneic event localization, this increases the effect of any 

false positive in the specificity index. Figure 7.14 confirms this trend showing strong 

and inverse correlation among the proportion of true positives and of true negatives. 

However at the same time no significant increase in the proportion of false positives and 

false negatives is perceived. This confirms the classifier is behaving robustly, being the 

decrease in the specificity of Figure 7.13 just a collateral effect of the non-significant 

increase of the proportion of false positives, that when the proportion of true negatives 

(hypopnea events) decreases –as explained, because of the increasing proportion of 

apnea events in the sample- augment their relative weight in the computation of the 

specificity index.  
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Figure 7.13. Evolution of the agreement ratios as a function of the proportion of apnea events in the 
sample (true positively detected apneic events) versus proportion of hypopnea events 

 

 
Figure 7.14. Individual evolution of the proportion of True Positives (TP), False Negatives (FN), True 
Negatives (TN) and False Positives (FP) as a function of the proportion of apnea events in the sample 
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When studying the effects of SAHS severity (proportion of apneic epochs in the 

recording) in the characterization of the detected events as apneas or hypopneas, slight 

significant negative correlation is found affecting specificity and agreement indexes (see 

Figure 7.15, upper right and lower left). Attending to complementary study of 

individual proportions of TP, FN, TN and FP, the interpretation here is related to that 

given when studying the relationship between SAHS severity and localization of apneic 

events. In this respect, as stated before, an increase in the severity of the SAHS is 

related with higher occurrence of apnea events with respect to hypopneas (see Figure 

7.11). This causes the increase in the proportion of TP and the reduction in the 

proportion of TN, as observed in Figure 7.16, in accordance with the trends in Figure 

7.10. However, differently from Figure 7.10, in this case the correlation found in the 

proportion of TPs and TNs is less pronounced, which is expected according to the trend 

shown in Figure 7.15. This causes that the slight positive trend (barely significant, 

almost no significant correlation is found) present over the proportions of FNs and FPs, 

affects more to the indexes of sensitivity (that does not show significant positive 

correlation) and specificity (that shows significant negative correlation at the 0.05 

significance level) in Figure 7.15. In addition, the slight concurrent increase in the 

proportion of FNs and FPs, also affects to the global proportion of misclassified events. 

This is reflected in the slight negative correlation found for the agreement index (see 

Figure 7.15, lower left). On the other hand, the reasons for this concurrent increase in 

the proportion of FNs and FPs are more difficult to interpret: the concurrent increase 

shows no clear bias in the misclassification. In this regard, on possible interpretation 

may be that, when severity of the SAHS increases, subjectivity of the clinician in the 

classification of the apneic events also increases. The reason, perhaps, is that with 

higher number of apneic events in the recording, the clinician spends less time in the 

classification of every single event. 
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Figure 7.15. Evolution of the agreement ratios for apnea category as a function of the proportion of apneic 
epochs in the recording 

 
Figure 7.16. Individual evolution of the proportion of True Positives (TP), False Negatives (FN), True 
Negatives (TN) and False Positives (FP) for apnea category as a function of the proportion of apneic 
epochs in the recording 
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7.4. Apneic events classification 
 

In accordance with the considerations made in the corresponding section of Chapter 

6, following Table 7.21 shows validation results achieved using the set of 26 patients 

with regard to apneic event classification as obstructive or central. In this respect it has 

to be remarked that only the set of true positives for the class apnea (see Table 7.20 of 

the preceding section) can be evaluated for classification. This justifies the number of 

epoch in the second column of Table 7.21. In addition, hypopnea events by standard 

reference are systematically classified as obstructive, and therefore the analysis of 

system’s classification output for these events has no interest for validation. On the 

other hand it has also been mentioned that since standard reference only makes 

distinction between obstructive and central events, for validation purposes, mixed 

events by the system are included within the obstructive category. Computed indexes as 

well as table organization are identical to that of Table 7.20.  
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Table 7.21. Results of the validation for apneic event classification. RN = Recording Number; TP = True 
Positives; FN = False Negatives; TN = True Negatives; FP = False Positives; Sens = Sensitivity; Spec = 
Specificity; AgrI = Agreement Index; AUC = Area Under ROC Curve 

Obstructive/Central Classification 

RN Epochs 
Obstructive Central 

AgrI AUC TP FN TN FP Sens. Spec. Sens. Spec. 

200088 2 2 0 0 0 1,000 --- --- 1,000 1,000 --- 
200259 409 136 91 157 25 0,599 0,863 0,863 0,599 0,716 0.731 
200386 51 31 5 9 6 0,861 0,600 0,600 0,861 0,784 0.731 
200532 39 22 5 11 1 0,815 0,917 0,917 0,815 0,846 0.866 
200568 11 11 0 0 0 1,000 --- --- 1,000 1,000 --- 
200929 347 325 11 10 1 0,967 0,909 0,909 0,967 0,965 0.938 
201249 53 53 0 0 0 1,000 --- --- 1,000 1,000 --- 
201294 139 136 3 0 0 0,978 --- --- 0,978 0,978 --- 
201394 6 6 0 0 0 1,000 --- --- 1,000 1,000 --- 
201824 156 30 11 85 30 0,732 0,739 0,739 0,732 0,737 0.735 
202275 49 27 3 13 6 0,900 0,684 0,684 0,900 0,816 0.792 
202666 0 0 0 0 0 --- --- --- --- --- --- 
202733 140 8 13 113 6 0,381 0,950 0,950 0,381 0,864 0.665 
202956 118 104 0 0 14 1,000 0,000 0,000 1,000 0,881 0.500 
203249 10 10 0 0 0 1,000 --- --- 1,000 1,000 --- 
203294 1 0 0 1 0 --- 1,000 1,000 --- 1,000 --- 
203494 307 97 67 109 34 0,591 0,762 0,762 0,591 0,671 0.677 
203645 71 57 4 4 6 0,934 0,400 0,400 0,934 0,859 0.667 
203798 201 63 29 80 29 0,685 0,734 0,734 0,685 0,711 0.709 
204135 81 7 2 51 21 0,778 0,708 0,708 0,778 0,716 0.743 
204452 2 2 0 0 0 1,000 --- --- 1,000 1,000 --- 
204480 14 14 0 0 0 1,000 --- --- 1,000 1,000 --- 
205813 0 0 0 0 0 --- --- --- --- --- --- 
205948 1 1 0 0 0 1,000 --- --- 1,000 1,000 --- 
206040 267 219 16 26 6 0,932 0.813 0.813 0,932 0,918 0.872 
206181 74 59 15 0 0 0,797 --- --- 0,797 0,797 --- 
Total 2549 1420 275 669 185 0,838 0.783 0.783 0,838 0,820 0.811 

 

Analysis of the results reveals a system more sensitive to the classification of 

obstructive events (0.838) than with respect to central events (0.783). Once again since 

class categories are complementary, the trend swaps when looking at overall indexes for 

specificities. General AUC value obtained for classification is 0.811 while agreement 

index is 0.820.  

 

Distributions of the agreement ratios over the individual recordings are shown in 

Figure 7.17, taking as reference values for the obstructive category. Note that cells with 

missing values in Table 7.21 have been omitted. Means and standard deviations 

associated to each index are 0.867±0.171 for sensitivity, 0.720±0.259 for specificity, 

0.886±0.117 for agreement index and 0.741±0.111 for AUC. Wilcoxon test applied over 

sensitivity and specificity distributions confirmed relevant differences between the two 
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distributions at the 0.95 confidence level (p-value = 0.031). Therefore, it can be said 

that there is significant tendency to the detection of obstructive events. With regard to 

the presence outliers, it is noticeable the one in the specificity distribution that 

corresponds to recording 202956 in which 0 specificity is obtained. According to the 

standard reference, over a total of 118 apnea events in this recording sample, 104 are 

obstructive and 14 are central, however the system classifies all the events as 

obstructive (perfect sensitivity). Another extreme case for specificity is the recording 

203645, in which 6 of a total of 10 central events where misclassified (specificity of 

0.4). In this recording the number of obstructive events is 61 of which 57 where 

correctly classified as obstructive (0.934 sensitivity). The outlier for sensitivity 

distribution corresponds to recording 202733 in which the number of obstructive events 

is 21 while the number of central events is 119. In this recording respective sensitivity 

and specificity are of 0.381 and 0.950. In general when the number of central events in 

the recording is higher, specificity index seems to improve, suggesting that sensitivity 

for central events increases as the proportion of central events does.  

  

 
Figure 7.17. Box plot showing distribution of agreement ratios over the individual recordings regarding 
classification of apneic events as obstructive 
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Next Figure 7.18 represents the evolution of the different agreement ratios with 

respect to the proportion of obstructive events in the individual recordings. The trends 

in the figure confirm the previous hypothesis, that when the number of central events in 

the recording is high, specificity index (sensitivity for central events) is the highest. 

However, the found correlation does not show statistically significant values for 

specificity at the 0.05 significance level (see Figure 7.18, upper right). On the other 

hand, significant positive correlation is found for the sensitivity index and the 

agreement index as the proportion of obstructive events approximates to one. This 

confirms that, in general, the classifier tends to detect obstructive events, while there is 

slight underestimation of the actual number of central events. As previously 

commented, detection of central events improves when the proportion of obstructive 

events decreases; however the increase in the agreement index confirms that major 

classification performance (less number of misclassified events) is achieved when the 

prevalent event in the recording is of obstructive type. 

 

 

 
Figure 7.18. Evolution of the agreement ratios for obstructive category as a function of the proportion of 
obstructive events in the sample (positively detected apnea events) 
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7.5. Final patient diagnosis 

 

In the following Table 7.22 final computed AHI indexes of both system and 

standard reference are shown for each of the 26 patients. The corresponding linguistic 

label for the severity classification is assigned according to linguistic scales expressed 

in Table 5.4 (see Chapter 5, “Diagnostic generation”). In the table the respective 

associated sleep times (TST) are also indicated for the evaluation of the corresponding 

AHI. 

 
Table 7.22. Final computed AHIs and corresponding severity classification. RN = Recording Number, 
TST = Total Sleep Time, AHI = Apnea-Hypopnea Index  

RN 
System Standard reference 

TST AHI Severity TST AHI Severity 

200088 4:13:30 32.9 SEVERE 5:27:30 30.23 SEVERE 
200259 6:44:30 97.16 SEVERE 6:36:30 99.87 SEVERE 
200386 6:57:00 70.36 SEVERE 6:42:00 54.48 SEVERE 
200532 7:18:00 84.52 SEVERE 6:01:30 81.83 SEVERE 
200568 7:36:30 18.8 MILD 7:44:00 17.72 MILD 
200929 6:45:30 79.01 SEVERE 6:04:30 77.53 SEVERE 
201249 6:58:30 72.54 SEVERE 7:06:00 62.96 SEVERE 
201294 6:52:00 84.61 SEVERE 6:19:30 88.22 SEVERE 
201394 6:38:00 21.41 MODERATE 5:26:00 22.27 MODERATE 
201824 7:05:00 67.48 SEVERE 6:25:00 61.71 SEVERE 
202275 6:37:00 62.12 SEVERE 6:14:00 56.63 SEVERE 
202666 7:31:00 10.78 MILD 7:15:30 9.64 NOT SIGNIFICANT 
202733 7:19:30 59.39 SEVERE 6:23:30 43.18 SEVERE 
202956 5:56:00 77.87 SEVERE 5:28:30 74.16 SEVERE 
203249 7:08:30 57.13 SEVERE 7:14:00 57.93 SEVERE 
203294 5:38:00 11.01 MILD 5:41:00 10.21 MILD 
203494 8:34:30 63.91 SEVERE 7:40:30 63.58 SEVERE 
203645 6:38:00 90.6 SEVERE 7:36:00 81.71 SEVERE 
203798 6:33:30 82.34 SEVERE 6:29:30 84.57 SEVERE 
204135 6:55:00 55.37 SEVERE 6:19:30 44.74 SEVERE 
204452 5:12:00 10.96 MILD 5:03:00 11.09 MILD 
204480 6:25:30 12.63 MILD 6:24:00 9.53 NOT SIGNIFICANT 
205813 6:12:29 5.96 NOT SIGNIFICANT 6:37:00 4.08 NOT SIGNIFICANT 
205948 5:28:00 16.12 MILD 6:17:30 12.08 MILD 
206040 7:59:30 91.6 SEVERE 7:06:30 93.41 SEVERE 
206181 7:00:00 53.29 SEVERE 6:37:00 46.7 SEVERE 

Total 174:16:59   168:19:30   
 

As it can be seen from Table 7.22, according to system diagnosis, from the total set 

of 26 patients, 18 patients were diagnosed with severe SAHS, 1 was classified as 

moderate, 6 as mild, and 1 patient was found as not having relevant SAHS evidence. 

According to standard reference 18 were considered to be severe patients, 1 as 
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moderate, 4 as with mild SAHS, and 3 were considered as normals. Figure 7.19 shows 

the comparative in form of bar diagram. Overall, both distributions are not statistically 

different (𝜒(3)
2  = 1.4, p-value 0.705). According to the classification results of Table 

7.22 calculation of the kappa index leads to a κ of 0.839 with κM of 0.839. 

 

 
Figure 7.19. Diagnosis severity distribution 

 

Only 2 patients (7%) received different severity considerations (recordings 20266 

and 204480). In these cases, however, minimum differences were obtained on the final 

computed AHI indexes: 10.78 (system) vs. 9.64 (standard reference) for one patient 

(recording number 202666), and 12.63 (system) vs. 9.53 (standard reference) for the 

other (recording number 204480). In this respect, while there is discussion on the 

appropriateness of using AHI as the mere criteria to diagnose a patient with SAHS (see 

discussion in the next Chapter), it is clear that the use of arbitrary thresholds (in this 

case AHI > 10) to differentiate patients from normal subjects can affect the final 

classification. Next Figure 7.20 shows the result of applying different cut-offs to the 

respective AHI values of both the system and the standard reference. The resulting 

number of patients is indicated. Regardless on the discussion of the appropriateness of 

setting a fix threshold for the classification, the figure shows that system’s estimation of 

the AHI is consistent with the output provided by the standard reference (𝜒(11)
2  = 0.622, 

p-value = 1).  
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Figure 7.20. Number of patients using different AHI cut-offs for the system (blue) and for the standard 
reference (orange) 

 

Taking into account AHI values for the individual recordings, Figure 7.21 shows 

the box plot of the respective dispersions. Respective associated mean and standard 

deviation are 53.46±30.49 for the system and 50.00±30.46 for the standard reference. 

Wilcoxon rank sum test shows no significant differences among the medians of the 

distributions (p-value = 0.564), however when paired comparison is performed, 

significant differences are found at the 0.05 significance level (p-value = 0.003). Since 

no significant differences were found on the number of apneic events detected for each 

recording (see Table 7.19 in subsection “Apneic events detection”), these differences are 

attributed to the effect of discrepancies in TST, which indeed are found be statistically 

relevant (Wilcoxon paired sign test p-value of 0.026). Agreement estimated using the 

Intraclass Correlation Coefficient (ICC) shows a value of 0.979 (p-value = 0). 

Inspecting individual differences, maximum absolute difference is found for recordings 

202733 (16.21 difference, with 59.39 AHI for system and 43.18 for the standard 

reference) and 200386 (15.88 difference, with 70.36 AHI for the system and 54.48 for 

the standard reference). Nevertheless given the associated severities the differences do 

not have consequences on the diagnosis.   
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Figure 7.21. Box plot showing AHÍ distributions of the 26 patients for both the system (left) and standard 
reference (right) 

 

Subsequent Table 7.23 breaks down AHI indexes and shows respective computed 

ApI and HI indexes for the 26 recordings. Distribution of the respective indexes can be 

shown in the box plots of the Figure 7.22. Again no significant differences have been 

found among the respective medians of the distributions of ApI and HI between the 

system and the standard reference (p-values of 0.564 and 0.721, respectively). 

Significant differences are found when paired comparison is performed at 0.95 

confidence level between ApI distributions (p-value of 0.022). As stated before, 

differences are attributed to discrepancies on estimation of TST. No significant 

differences are found, on the other hand, in the respective HI distribution (p-value of 

0.199). Computation of ICC leads to agreement of 0.965 for ApI ratings (p-value of 

1.11x10-16), and 0.951 for HI (p-value of 1.01x10-14). Maximum absolute differences 

regarding ApI have been found in the recording 203645 (15.74 difference, with ApI 

17.94 for system and 33.68 for the standard reference). For the HI maximum 

discrepancy is also found for the same recording (24.63 difference with 72.66 HI for 

system and 48.03 for the standard reference). These results confirms those observed in 

Table 7.21 of subsection “Apneic events detection” in which recording 203645 was 

considered an outlier in terms of characterization of the apneic events as apneas and 

hypopneas. Overall respective AHI indexes for this recording are 90.6 for the system 

and 81.71 for the standard reference, therefore differences between respective ApI and 

HI indexes compensate for the AHI. 
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Table 7.23. Distribution of ApI and HI indexes among the recordings for the system and the standard 
reference 

RN System Standard Reference 
ApI HI ApI HI 

200088 2.13 30.77 0.37 29.86 
200259 70.9 26.25 75.66 24.21 
200386 17.27 53.09 12.54 41.94 
200532 13.15 71.37 13.61 68.22 
200568 1.56 17.24 1.29 16.42 
200929 68.51 10.51 69.47 8.07 
201249 17.78 54.77 10.28 52.68 
201294 27.52 57.09 26.72 61.5 
201394 2.86 18.54 2.21 20.06 
201824 32.33 35.15 29.61 32.1 
202275 23.27 38.84 13.96 42.67 
202666 0 10.78 0 9.64 
202733 48.19 11.19 35.05 8.14 
202956 37.08 40.79 25.39 48.77 
203249 5.18 51.95 2.9 55.02 
203294 1.07 9.94 0.18 10.03 
203494 46.88 17.03 42.08 21.5 
203645 17.94 72.66 33.68 48.03 
203798 42.24 40.1 41.59 42.98 
204135 19.08 36.29 14.07 30.67 
204452 0.77 10.19 0.79 10.3 
204480 3.42 9.21 3.28 6.25 
205813 0 5.96 0 4.08 
205948 0.78 15.34 0.16 11.92 
206040 46.17 45.42 50.79 42.63 
206181 15.57 37.71 13.45 33.25 

 
 

 

Figure 7.22. Box plots showing distributions of ApI and HI indexes over the individual for both the 
system and the standard reference 
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Next, Table 7.24 shows diagnosis output regarding syndrome characterization 

according to the predominant event type in the patient. In the table the respective AHI 

indexes for the two categories of apnea events considered (obstructive and central) are 

shown for the system and for the standard reference. Again, it has to be remarked that 

mixed events by the system are considered within the obstructive category. On the other 

hand note that in this case hypopneas classification is included for the computation of 

the corresponding indexes. In this respect it has to be taken into account that hypopnea 

events are systematically classified by the standard reference as obstructive, while 

classification by the system follows the same classification procedure as for every 

apneic event, regardless of its type (see subsection “Classification of apneic events” of 

Chapter 5).  Considerations made with respect to assignment of the concrete syndrome 

class can be consulted in subsection “Apneic events classification” of Chapter 6. 

 
Table 7.24. Results for syndrome characterization according predominant nature of the apneic event. RN 
= Recording Number; AHIobst = Obstructive Apnea-Hypopnea Index; AHIcen = Central Apnea-Hypopnea 
Index 

RN 
System Standard reference 

AHIobs AHIcen Syndrome type AHIobs AHIcen Syndrome type 

200088 32.66 0.24 OSAHS 30.23 0 OSAHS 
200259 54.14 43.02 MIXED OSAHS 67.49 32.28 MIXED OSAHS 
200386 65.18 5.18 OSAHS 50 4.48 OSAHS 
200532 80.96 3.56 OSAHS 81.16 0.66 OSAHS 
200568 18.8 0 OSAHS 17.72 0 OSAHS 
200929 75.17 3.85 OSAHS 77.2 0.33 OSAHS 
201249 71.83 0.72 OSAHS 62.96 0 OSAHS 
201294 83.74 0.87 OSAHS 88.06 0.16 OSAHS 
201394 20.65 0.75 OSAHS 22.27 0 OSAHS 
201824 50.4 17.08 MIXED OSAHS 40.52 21.19 MIXED OSAHS 
202275 50.33 11.79 MIXED OSAHS 49.89 6.74 OSAHS 
202666 10.51 0.27 OSAHS 9.64 0 OSAHS 
202733 15.29 44.1 CSAHS 13.14 30.04 CSAHS 
202956 77.87 0 OSAHS 71.23 2.92 OSAHS 
203249 56.85 0.28 OSAHS 57.79 0.14 OSAHS 
203294 9.94 1.07 OSAHS 10.03 0.18 OSAHS 
203494 38.48 25.42 MIXED OSAHS 44.56 19.02 MIXED OSAHS 
203645 86.98 3.62 OSAHS 75.92 5.79 OSAHS 
203798 58.86 23.48 MIXED OSAHS 63 21.57 MIXED OSAHS 
204135 42.94 12.43 MIXED OSAHS 32.25 12.49 MIXED OSAHS 
204452 10.77 0.19 OSAHS 10.89 0.2 OSAHS 
204480 12.63 0 OSAHS 9.53 0 OSAHS 
205813 5.96 0 OSAHS 4.08 0 OSAHS 
205948 16.12 0 OSAHS 12.08 0 OSAHS 
206040 84.21 7.38 OSAHS 89.33 4.08 OSAHS 
206181 50.43 2.86 OSAHS 46.7 0 OSAHS 
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As it can be seen from Table 7.24, according to the classification made for the 

system, from the total set of 26 patients, 19 patients were diagnosed with OSAHS, 6 

were classified as with mixed OSAHS (relevant presence of central events) and one 

patient was diagnosed with pure CSAHS. From the part of the standard reference 20 

patients were diagnosed with OSAHS, 5 with mixed OSAHS and 1 with CSAHS. 

Figure 7.23 shows the comparative in form of bar diagram. Calculation of the associated 

kappa index for the classification leads to a κ = 0.839 with κM = 0.839. Test for 

distribution homogeneity shows no significant differences (𝜒(2)
2  = 0.117, p-value 0.943). 

 

 
Figure 7.23. Distribution of recordings according to syndrome classification 

 

Only 1 patient (recording 202275) was considered under different syndrome type 

categories. Taking a look to the respective computed indexes (AHIobs of 50.33 and 

AHIcen of 11.79 for the system, AHIobs of 49.89 and AHIcen of 6.74 for the standard 

reference) no great differences seem to be present. Specifically, for this recording the 

respective proportions of central events with respect to the number of obstructive events 

are of 0.23 for the system and 0.16 for the standard reference. Recall from section 

“Diagnostic generation” of Chapter 5 that the limit for class transition was arbitrarily 

set to 0.2, and therefore the resulting discrepancy in the classification. As previously 

stated for the case of severity classification, probably a more smooth transition between 

class boundaries might contribute to relax this kind of abrupt transitions. 
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Subsequent Figure 7.24 shows the distribution of the respective indexes. No 

significant differences have been found between the medians of the respective 

distributions, neither for AHIobs nor for AHIcen populations (p-values of 0.721 and 

0.292, respectively). When paired test is considered, the null hypothesis of zero 

difference between paired recordings is accepted with regard to AHIobs distributions (p-

value 0.1996) and rejected for AHIcen (p-value 0.0108). Noticeable is the high number 

of outliers in the upper tails of AHIcen distributions. Basically, what this is telling us is 

that, as expected, patients with high prevalence of central events are less frequent 

among the population. Respective ICC indexes for the distributions are 0.974 (p-value 

0) for the ratings for AHIobs, and 0.934 (p-value 1.03x10-13) for the ratings with respect 

to AHIcen. 

 

 
Figure 7.24. Box plots showing distributions of AHIobs and AHIcen indexes over the recordings for both 
the system and the standard reference 

 

Maximum absolute differences regarding AHIobs have been found in the recording 

200386 (15.18 difference, with AHIobs 65.18 for system and 50.00 for the standard 

reference). For this recording the associated proportion of central events with respect to 

the number of obstructive events is 0.08 and 0.09 (respectively for system and standard 

reference). OSAHS classification by the system is therefore, in spite of the difference, 

clear and consistent with that of the standard reference. On the other hand, for the 

AHIcen, maximum discrepancy is found for recording 202733 (14.06 difference, with 

44.10 AHIcen for system and 30.04 for the standard reference). In this case associated 

proportions of central events with respect to the number of obstructive events are 2.88 
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and 2.29 (respectively for system and standard reference). Final classification of this 

recording has been of CSAHS type both by the system and the standard reference. In 

fact, this is the only pure CSAHS patient in the population.  

 

Classification according to sleeping position of the patient is shown in subsequent 

Table 7.25. Criterion described in subsection “Diagnostic generation” of Chapter 5 has 

been applied in order to obtain the corresponding classification labels. 

 
Table 7.25. Results for syndrome characterization according predominant sleep position during 
occurrence of the apneic event. RN = Recording Number; AHIns = Non-Supine Apnea-Hypopnea Index; 
AHIs = Supine Apnea-Hypopnea Index 

RN System Standard reference 

AHIns AHIs Classification AHIns AHIs Classification 
200088 0 32.9 SUPINE POSITIONAL 0 30.23 SUPINE POSITIONAL 
200259 15.13 82.03 SUPINE POSITIONAL 15.44 88.44 SUPINE POSITIONAL 

200386 70.07 0.29 NON-SUPINE 
POSITIONAL 54.48 0 NON-SUPINE 

POSITIONAL 

200532 56.03 28.49 NON POSITIONAL 60.08 21.74 NON-SUPINE 
POSITIONAL 

200568 18.14 0.66 NON-SUPINE 
POSITIONAL 17.07 0.65 NON-SUPINE 

POSITIONAL 
200929 38.77 40.25 NON POSITIONAL 39.18 38.35 NON POSITIONAL 
201249 45.16 27.38 NON POSITIONAL 40.42 22.54 NON POSITIONAL 

201294 79.66 4.95 NON-SUPINE 
POSITIONAL 83 5.22 NON-SUPINE 

POSITIONAL 
201394 0 21.41 SUPINE POSITIONAL 0 22.27 SUPINE POSITIONAL 

201824 55.2 12.28 NON-SUPINE 
POSITIONAL 50.81 10.91 NON-SUPINE 

POSITIONAL 

202275 57.43 4.69 NON-SUPINE 
POSITIONAL 53.1 3.53 NON-SUPINE 

POSITIONAL 

202666 8.25 2.53 NON-SUPINE 
POSITIONAL 5.92 3.72 NON POSITIONAL 

202733 22.66 36.72 NON POSITIONAL 18.93 24.25 NON POSITIONAL 
202956 0.34 77.53 SUPINE POSITIONAL 0 74.16 SUPINE POSITIONAL 
203249 11.06 46.07 SUPINE POSITIONAL 11.2 46.73 SUPINE POSITIONAL 
203294 4.79 6.21 NON POSITIONAL 2.46 7.74 SUPINE POSITIONAL 
203494 10.5 53.41 SUPINE POSITIONAL 7.43 56.16 SUPINE POSITIONAL 

203645 64.37 26.23 NON-SUPINE 
POSITIONAL 58.95 22.76 NON-SUPINE 

POSITIONAL 

203798 66.02 16.32 NON-SUPINE 
POSITIONAL 70.55 14.02 NON-SUPINE 

POSITIONAL 
204135 30.8 24.58 NON POSITIONAL 24.66 20.08 NON POSITIONAL 
204452 2.12 8.85 SUPINE POSITIONAL 0.2 10.89 SUPINE POSITIONAL 
204480 1.09 11.54 SUPINE POSITIONAL 0.16 9.38 SUPINE POSITIONAL 
205813 3.87 2.09 NON POSITIONAL 2.72 1.36 NON POSITIONAL 

205948 16.12 0 NON-SUPINE 
POSITIONAL 12.08 0 NON-SUPINE 

POSITIONAL 
206040 12.01 79.58 SUPINE POSITIONAL 11.68 81.74 SUPINE POSITIONAL 

206181 37.14 16.14 NON-SUPINE 
POSITIONAL 32.04 14.66 NON-SUPINE 

POSITIONAL 
Total 27.95 25.51  25.87 24.29  



Diagnosis of the Sleep Apnea-Hypopnea Syndrome: a comprehensive approach through a system to 
support medical decision 
 

386 
 

According to data in Table 7.25, system’s output comprises 9 subjects classified as 

supine positional, 10 patients as non-supine positional while the remaining 7 were 

classified as non positional. Standard reference’s classification is composed of 10 

supine positional patients, 10 non-supine positional and 6 non positional. Figure 7.25 

shows the comparative in form of bar diagram.  

 

 
Figure 7.25. Distribution of recordings according to positional syndrome classification 

 

From the total set of 26 patients, 3 of them show discrepancy in terms of the 

sleeping position associated to SAHS. In recording 200532 (AHIns of 56.03 and AHIs of 

28.49 for the system, AHIns of 60.08 and AHIs of 21.74 for standard reference), the ratio 

S

NS

AHI
AHI  is 1.97 (non-positional) for the system and 2.76 (non-supine positional) for the 

standard reference. The limit that defines class boundaries has been set to 2 (see Chapter 

5, “Diagnostic generation”). For the recording 202666 (AHIns of 8.25 and AHIs of 2.53 

for the system, AHIns of 5.92 and AHIs of 3.72 for standard reference) the respective 

S

NS

AHI
AHI  ratios are 3.26 (non-supine positional) for the system and 1.59 (non-positional) 

for the standard reference. Finally for recording 203294 (AHIns of 4.79 and AHIs of 6.21 

for the system, AHIns of 2.46 and AHIs of 7.74 for standard reference) the respective 

ratios are 0.77 (non-positional) for the system and 0.32 (positional) for the standard 

reference. Recall that the limit between supine positional and non positional SAHS for 

this ratio has been set to 0.5. Calculation of the associated kappa index for the positional 
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SAHS classification leads to a κ = 0.824 with κM = 0.941. Test for distribution 

homogeneity shows no significant differences (𝜒(2)
2  = 0.1296, p-value 0.9373). 

 

Distribution of the AHIns and AHIs indexes over the 26 recordings is shown in 

Figure 7.26. No significant differences have been found between the respective 

distributions neither for AHIns (p-value 0.749) nor for AHIs populations (p-value 0.749). 

Difference between paired observations show statistical significant differences for 

AHIns distribution (p-value 0.007), while the null hypothesis is accepted for the ratings 

of AHIs at the 0.05 significance level (p-value 0.087). With regard to this last, some 

statistical differences can also be perceived from the point of view of the outliers. 

Specifically within AHIs distributions, recordings 200259 (AHIs of 88.44), 202956 

(AHIs of 74.16) and 206040 (AHIs of 81.74) are considered outliers at the 0.05 

significance level over the scorings of the standard reference. The corresponding AHIs 

values for these recordings according to system’s ratings are very similar (respectively, 

82.03, 77.53 and 79.58). No remarkable consequences on the diagnosis are perceived 

beyond this statistical singularity. ICC values in this case report 0.985 agreement for 

AHIns scorings and 0.989 for scorings of AHIs (both with p-value 0). The indexes 

corroborate the high agreement in the rating between system and standard reference.   

 

 
Figure 7.26. Box plots showing distributions of AHIns and AHIs indexes over the recordings for both the 
system and the standard reference 
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Maximum absolute differences regarding AHIns have been found for recording 

200386 (15.59 difference, with AHIns 70.07 for system and 54.48 for the standard 

reference). No supine events are scored for the standard reference and only 0.29 of AHIs 

is obtained for the system. Therefore despite the difference in the AHIns indexes the lack 

of supine effect in SAHS for this recording is clear. On the other hand, with regard to 

AHIs, maximum difference is found for recording 202733 (12.47 difference, with 36.72 

AHIs for system and 24.25 for the standard reference). In this case associated S

NS

AHI
AHI  

ratios are of 0.61 for the system and 0.78 for the standard reference, both above the 0.5 

limit criterion established to discard positional effects in the patient. 

 

Final arousal indexes obtained by the system and the standard reference are 

represented in subsequent Table 7.26. Resulting TST is also indicated in order to 

interpret the corresponding ArI values. 

 
Table 7.26. Final computed arousal indexes; RN = Recording Number; TST = Total Sleep Time; ArI = 
Arousal Index  

 System Reference 

RN TST ArI TST ArI 

200088 4:13:30 7.83 5:27:30 4.03 
200259 6:44:30 38.32 6:36:30 39.65 
200386 6:57:00 25.76 6:42:00 29.55 
200532 7:18:00 10.96 6:01:30 38.06 
200568 7:36:30 22.32 7:44:00 15.52 
200929 6:45:30 53.93 6:04:30 66.92 
201249 6:58:30 43.78 7:06:00 47.61 
201294 6:52:00 48.79 6:19:30 54.93 
201394 6:38:00 13.72 5:26:00 8.83 
201824 7:05:00 30.64 6:25:00 42.54 
202275 6:37:00 17.98 6:14:00 19.32 
202666 7:31:00 8.78 7:15:30 6.90 
202733 7:19:30 39.32 6:23:30 40.42 
202956 5:56:00 32.19 5:28:30 54.15 
203249 7:08:30 38.51 7:14:00 31.11 
203294 5:38:00 13.10 5:41:00 7.39 
203494 8:34:30 19.61 7:40:30 21.65 
203645 6:38:00 14.62 7:36:00 30.92 
203798 6:33:30 29.31 6:29:30 47.51 
204135 6:55:00 15.18 6:19:30 25.01 
204452 5:12:00 13.08 5:03:00 6.53 
204480 6:25:30 10.91 6:24:00 11.25 
205813 6:12:29 25.81 6:37:00 15.72 
205948 5:28:00 7.50 6:17:30 6.37 
206040 7:59:30 22.52 7:06:30 36.53 
206181 7:00:00 42.29 6:37:00 42.01 
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Distribution of the corresponding ArI values over the individual recordings is 

displayed in Figure 7.27. The respective mean and standard deviations are 24.87±13.69 

for the system, and 28.86±17.91 for the standard reference. Wilcoxon test accepts the 

null hypothesis of distributions having equal medians with p-value of 0.552. When 

paired design is checked the null hypothesis is also accepted with p-value of 0.118 

(significance level at 0.05). In difference with AHI, in this case discrepancy on TST 

does not affect significance of the paired test due to the increase in the standard 

deviation of the individual differences for each recording (mean±std of the differences 

was 3.45±5.24 for AHI, and it is -3.98±9.79 for ArI). On the other hand, the negative 

sign in the average points out toward slight subestimation (although not significant) of 

the actual ArI value. With regard to the absolute discrepancies over the individual 

recordings, maximum difference has been found for recordings 200532 (27.1 difference, 

with ArI 10.96 for system and 38.06 for the standard reference) and 202956 (21.96 

difference, with ArI 32.19 for the system and 54.15 for the standard reference). 

Calculation of ICC index shows absolute agreement of 0.792 (p-value 1.44x10-7). 

 
Figure 7.27. Distribution of the values of ArI among the individual recordings for system (left) and 
standard reference (right) 

 

Finally, some additional results are presented with regard to the relation between 

apneic events and arousals, the distribution of apneic events over the different sleep 

stages and the correlation between different estimations of sleep fragmentation. 
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In the following Figure 7.28, a diagram is presented showing the percentage of 

apneic events associated with the occurrence of an arousal event. Apneic events have 

been broken down in obstructive apneas, central apneas and hypopneas, according to 

classification by standard reference. Again, recall that mixed events are included within 

the obstructive category. Criteria for association of arousals with respiratory events have 

been described in Chapter 5 and they establish that the distance between the apneic 

event and the subsequent arousal should be less than 5 seconds. In Figure 7.28 “Total 

Events” refers to the total number of apneic events regardless of its concrete type, and 

the last bars (“Total Arousals”) refer to the corresponding percentage of arousals 

associated with apneic event. Exact percentage values have been superimposed over the 

corresponding bars. 

 

 
Figure 7.28. Percentages of apneic events ending with EEG arousal events 

 

Taking a look to the graph, it can be seen that the proportion of total apneic events 

with terminating arousal is very similar (35%, 34%, Wilcoxon sign rank test p-value 

0.253). When exploring individual differences regarding the different types of apneic 

events, similar proportion maintains for hypopnea events (26%, 25%, p-value 0.057). 

On the other hand higher diversity is found regarding apneas in general and particularly 

in the case of central apneas. No statistical significance has been found, for the case of 



 
7. Results 

 

391 
 

obstructive apneas (p-value 0.433). However, in the case of central apneas the median 

of the paired differences is found to be statistically different from zero at the 0.05 

significance level (p-value 0.021). It is also noticeable that both, for the system and the 

standard reference, more than the half of the arousal events have an apneic origin 

(“Total arousals” in Figure 7.28). The proportion in this case is higher according to the 

system (72% vs. 59%), and is found to be statistically significant (p-value 7.69x10-4).  

 

Distribution of the apneic events over the different sleep stages is shown in Figure 

7.29. Results are shown taking into account obstructive apneas (upper left), central 

apneas (upper right), hypopneas (lower left) and the full set of apneic events (lower 

right).  

 

 
Figure 7.29. Distribution of apneic events over the sleep stages for the system and the standard reference 

 

The general trend is repeated with independence of the concrete type of apneic 

event. In general, visual inspection shows some underestimation on the number of 

apneic events in REM intervals, while this difference is distributed among the other 

stages. Differences are also significant at the statistical level (𝜒(3)
2 = 33.10, p-value 

3.07x10-7 for obstructive apneas; 𝜒(3)
2  = 15.13, p-value 0.002 for central apneas; 𝜒(3)

2  = 
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95.98, p-value 0 for hypopneas; 𝜒(3)
2  201.35, p-value 0 considering apneic events in 

general). Nevertheless, the general picture shows accordance with standard reference, 

standing out that most of the apneic events take place within light sleep periods (DS) or 

during REM. An observation has to be made regarding apneic events in the W 

(wakefulness) category: it is not about apneic events occurring during stable periods of 

wakefulness, but apneic events taking place within isolated W stages caused by sleep 

disruption, probably as a consequence of an associated arousal. No statistical 

differences have been found, in general, among the medians of different distributions at 

the 0.05 significance level. The exception is over the respective hypopnea distributions 

regarding REM (p-value 0.035). On the other hand, when paired comparison is 

performed on the individual recordings, the median of the differences is in general 

statistically different from zero, with the exception of the proportion distributions of 

central events. For reasons of brevity the concrete p-values are omitted in this case.  

 

Finally, existence of possible correlation has been investigated among different 

markers for sleep breath disturbance in the system. According to design of the 

validation tests (see Chapter 6), the interest in this respect is the confrontation of the 

AHI with the rate of desaturations using different cut-offs and the ArI. The resulting 

plots can be seen in Figure 7.30. Correlation coefficients (Person’s r and Spearman’s 

rho) as well as their respective p-values for significance test are shown on the top of 

each graph. 
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Figure 7.30. Scatter plots showing correlation between AHI and different markers for sleep breath 
disruption 

 
According to Figure 7.30, significant correlation has been found in all the cases, 

being the maximum correlation found between AHI and the rate of desaturations higher 

than 2% (Figure 7.30, upper left). This correlation slightly decreases as the cut-off for 

relevant desaturations increases. The lowest correlation has been found between AHI 

and ArI (Figure 7.30, lower right), thus meaning that the number of desaturations per 

hour of sleep is a better estimator of the AHI than the ArI. It has to be said that all 

detected falls in the saturation signal are used for the calculation, regardless of their 

association, or not, with an apneic event. Correlation between AHI and ArI for the 

standard reference is also calculated and the resulting graph is displayed in subsequent 

Figure 7.31. 
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Figure 7.31. Scatter plot of AHI values and ArI values according to standard reference 

 

The found correlation in this case is higher than the one obtained for the system 

(compare Figure 7.31 with lower right subplot of Figure 7.30). The reason is probably 

because of the underestimation by the system of the total number of arousal events as 

the severity of SAHS increases. Effectively, the study of the sensitivity index for 

arousal detection as a function of the AHI of the standard reference shows a decreasing 

factor (see Figure 7.32). However the negative correlation is not significant at the 0.05 

significance level. On the other hand, one has to realize that different estimation of the 

TST between system and standard reference might also be affecting the resulting ArI 

indexes.  

 

 
Figure 7.32. Scatter plot between AHI values according to standard reference and sensitivity index for 
detection of arousal epochs by the system 
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No study for the comparison of desaturation rates for the standard reference has 

been made due to unreliable scoring of desaturations (see subsection “Design of the 

validation test” in Chapter 6).  

 

7.6. Summary of this chapter 
 

In this Chapter presentation and analysis of the results for validation of the 

constructed system to aid the physician in the diagnosis of SAHS have been carried out. 

Design of the validation strategy has been developed throughout Chapter 6 which has 

been scheduled into several validation subtasks focusing in five key aspects according 

to available annotations from the standard reference: (1) detection of EEG arousals, (2) 

characterization of the sleep macrostructure, (3) detection and differentiation of apnea 

and hypopnea events, (4) classification of apneic events as obstructive, central or mixed, 

and (5) final diagnosis. 

 

A set of 26 patients has been drawn from the SHHS database and used as 

independent validation set among the different validation subtasks in order assess real 

performance of the system. 
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8. DISCUSSION, CONCLUSIONS AND FUTURE 
WORK 

8.1. Discussion 
 

 From decade of the 1970s in which Guilleminault formally defined the sleep 

apnea-hypopnea syndrome, many approximations have been developed with the aim of 

aiding the physician in the diagnostic task. Such an interest initially emerged from the 

difficulty associated to the manual analysis of the voluminous data recorded from 

patient’s biosignals during sleep. The long duration of the PSG recording, and the 

number and the complexity of the involved signals, makes of the analysis of the PSG to 

be a very tedious and time consuming task for the clinician. 

 

Incorporation of the health management information systems into the medical 

centers represented an important first step in order to solve many of the initial problems. 

The simple fact of being able to carry out an offline analysis over the digitalized signal 

yet represents an important evolution. Advantages are many, and include the amount of 

saved paper, reduction of space requirements for archiving, exchangeability of data, 

easiness in the annotation of the detected events, support of visual revision of the PSG 

(for example allowing visualization of the signals over different time and amplitude 

scales), and in general, favoring of the documentation process and reporting. However, 

even with the support of computers on the previous tasks, automation of the manual 

PSG analysis continued to be the key milestone in the development of computer 

programs to support the physician in the diagnosis of SAHS. 

 

As with the evolution in computer’s computational power and the development of 

new techniques for signal analysis, supporting tools started to appear, that automated, at 

least in part, the analysis task. In fact, once the technology gap for the requirements of a 
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full PSG analysis has been overcome, there also started to appear approximations aimed 

at constituting comprehensive solutions for a full PSG analysis. In fact, nowadays there 

are already commercial products in this line (see Chapter 3). The reality is, however, 

that the use in practice of these systems from the medical personnel is, in general, very 

scant. 

 

In the recent years the field of sleep studies has experienced an increasing demand 

because of the growing recognition of sleep as one of the fundamental pillars for a good 

quality of life. Today, the increasing interest in sleep medicine demands for an 

important technology support, which due to the complexity of the PSG analysis, 

necessarily involves the definitive introduction of automatic analysis systems to aid the 

physician in the diagnosis. However, as stated before, the developed systems up to this 

time still present certain drawbacks which have caused their use in practice, yet to be 

very low and restricted (see Chapter 1, “Background”). These two factors (increasing 

demands in the analysis and shortages of the current developments) favor that research 

lines in the development of these systems continue today to be an open area of interest, 

and motivate the development of this doctoral thesis.  

 

Throughout Chapter 3 an analysis of the state-of-art regarding existent approaches 

in the field of automatic SAHS diagnosis has been performed. In this chapter drawbacks 

of preceding and current systems have been addressed (see Chapter 3, “Critical 

Analysis”). The conclusion is that there is still a lack of real comprehensive approaches 

that adequately handle the analysis from both the respiratory and the neurophysiological 

perspective. In addition, existent approaches rely excessively in the use of fixed 

protocols and categorical classifications. As a consequence, they are unable to deal with 

imprecision in data and to account for variability due to subjectivity of the human 

decisions. 

 

On the basis of these shortages this doctoral thesis addresses the development of an 

intelligent system to aid the clinician in the diagnosis of SAHS. The system follows a 

comprehensive approach: it does not limit to the analysis of the respiratory signals, but 

neurophysiological activity is used as a contextual framework for the interpreting the 

respiratory events. Several signal processing and artificial intelligence techniques are 

integrated for this purpose, with prominent use of fuzzy logic as supporting technology 
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in the reasoning processes, allowing adequate handling of data imprecision, avoiding 

categorical judgments and enabling explanatory mechanisms. The main objective is a 

global characterization of the respiratory disease in the sleep context by mimicking 

physician’s diagnostic procedures. 

 

The system assumes data to be taken from an EDF file according to a certain 

montage that includes the most common set of PSG signals. The use of an open and 

standard format such as EDF is aimed at minimizing the problem of format 

diversification. Input acquisition module can deal with variations in the amplitude –

dynamical range- or in the sampling rate of the signals to adapt to different recording 

configurations. Scaling and resampling operations can also be applied in the case of 

being necessary. In the our case, the concrete set of signals as well as their respective 

configuration lay in the montage of the standard reference that has been used for the 

validation of the system (see Chapter 5 “Description of the inputs”). On the other hand, 

if the available set of signals varies, then partial readaptation of the analysis algorithms 

might be necessary to adapt them for the new input montage.  

 

From a functional perspective and according to its comprehensive philosophy, the 

system is structured into two great functional groups that interact with each other 

through common interfaces (see Chapter 5, “System’s architecture”). Each of the two 

groups is in charge of carrying out the respective analysis of the neurophysiological and 

the respiratory activity.   

 

Neurophysiological analysis has as its main objective the construction of the 

hypnogram and the detection of transient EEG micro-arousal related to the occurrence 

of apneic events.  

 

The method developed for the evaluation of the macrostructure of sleep comprises 

mainly three processing tasks. The first one acts over the raw signals in order to extract 

relevant features, that include computation of the main characteristic EEG frequencies, 

EOG movements, characterization of the EMG, and the detection of important sleep 

transient events such as sleep spindles and K-complexes. The set of extracted features 

are subsequently fed into a reasoning stage organized as four fuzzy submodules, each 

one involving a different state of sleep (W, DS, DEEP, REM). A degree of membership 
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representing the continuous evolution of the corresponding sleep state is obtained as the 

output for each submodule. In the method, continuous means second-by-second. Of 

course, in the context of the processing of digital signals it would never be possible to 

achieve a real continuous output, but on the other hand, it can be asymptotically 

approximated by increasing the rate of the analysis (only limited by the sampling 

frequency of the digitalized signal).  

 

The main objective of the obtained continuous representation is to overcome 

limitations of epoch-based methodologies such as AASM and R&K regarding their low 

temporal resolution and the unnatural classification of sleep based on the labeling of 

discrete epochs [1] [2] [3]. By using fuzzy logic, categorical classifications can be 

avoided and soft transitions can be exploited. Such properties allow us approximating 

the continuous evolution of the sleep though its different states. On the other hand it is 

also an objective to keep as much as possible interpretability of the system. In this 

respect, the fuzzy approach permits us to implement medical knowledge in form of 

fuzzy rules, close to human language, which facilitates understandability and allows 

explanatory capabilities. These rules can be consulted, interpreted and eventually edited 

by the final user. Moreover, follow up of the inferential process can be performed by 

tracking the reasoning process through the set of activated rules according to the given 

input. Explanation of the outputs is therefore enabled by listing the set of activated rules 

which, as previously mentioned, are implemented using linguistic labels in natural 

language.  

 

Finally, a third processing step is applied, consisting of a series of postprocessings, 

in order to go back over the classical epoch-based hypnogram. Actually, in the 

developed system, this dual representation of the sleep macrostructure (continuous or 

epoch-based) is available. An important reason to keep the epoch-based representation -

beyond allowing validation to be performed- is that, according to current standards, 

physicians are still use to watch at the sleep in an epoch scale. Thus to keep the system 

usable for physicians, it has been decided to allow both representations, continuous and 

epoch-based, to coexist in the application. In this manner, the clinician can keep at using 

an epoch-based scale, however having available information on the intra-epoch 

evolution. 
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There are a number of approaches throughout the literature dealing with the issue of 

achieving reliable automatic sleep scoring (see Chapter 5, “Hypnogram generation”). 

Reported results vary considerably depending on the concrete technique, the validation 

methodology or the condition of the individuals. In the approximations analyzed in the 

review by Penzel and Conradt, for example, when involving normal subjects [4] [5] [6] 

[7] reliability varies between 70% and 90%. On the other hand when agreement is 

measured in disturbed sleep there is a general drop ranging from 65% to 87% [8]. Based 

on just one EEG channel the work of Flexer et al. developed a probability-based sleep 

stager accounting for three different stages: W, DEEP and REM. Validation results 

regarding recordings from two different laboratories show accuracy of 79% for W, 82% 

for deep and 68% for REM (group A, 20 training recordings, 20 testing recordings) and 

25% for W, 87% for deep and 61% for REM (group B, 14 training recordings, 14 

testing recordings). Both groups included only healthy subjects [9]. In Schaltenbrand et 

al. an automatic sleep scoring system based on ANNs is trained over a set of 12 

recordings and tested on a set of 11 recordings [10]. Agreement between visual 

consensus and the system was 80.6% with the lowest agreement involving classification 

of stage 1 and 3. The authors further improved their system and presented a bigger 

study including different disorders [11] and obtained 82.3% agreement on average, with 

higher accuracy (84.5%) for the healthy group. Roberts and Tarassenko developed a 

method based on the analysis of nine healthy subjects that derived automatic 

hypnogram generation. They did not provide quantifiable validation results but they 

were concerned about the adequateness of using an epoch-based hypnogram because of 

the poor temporal resolution and the limitation imposed by having discrete stages [12]. 

Later they presented a system based on autoregressive modeling for feature extraction 

and an artificial neural network, giving continuous measures in parallel with 

automatically calculated sleep stages [4]. This system was then used for comparison 

with manual sleep staging in clinical practice by Caffarel et al. [13] over a set of 114 

patients. In addition 28 of the 114 studies were also examined by an additional human 

scorer in order to assess human interrater reliability. This study is of special interest for 

comparative results since validation is carried out using the four categories considered 

by the system object of this doctoral thesis: wake, light-sleep (here referred as DS), deep 

sleep and REM. Results of the validation show overall agreement of automatic and 

manual scoring for the 114 studies of poor κ = 0.305. In the subgroup of 28 randomly 

selected studies, the overall agreement of automatic and manual scoring was again 
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relatively low (κ = 0.331). In this work human inter-scorer reliability was also assessed 

and found to be higher than that achieved by the system (κ = 0.641).  

 

Investigation on the magnitude of agreement between human scorers is very 

important in order to identify a target value for accuracy of automated scoring systems. 

In fact, in the pathway toward the development of an automatic scoring system with 

reliable generalization capabilities, agreement between the system and one particular 

human should not overpass this target level. Otherwise the system would lose 

generalization by resembling too much to a particular scorer, increasing disagreement 

with another one. 

 

In the work of Anderer et al. [14] validation of an e-health solution for automatic 

classification according to R&K was performed on a large database of PSG recordings. 

Validation on a set of 286 PSGs involving both healthy subjects (n = 94) and controls (n 

= 49) reported 78.3% of overall agreement (κ = 0.71) between the system and expert 

human consensus scoring. When quality control was added (affecting less than 1.1% of 

total epochs) overall agreement improved to 79.6% (κ = 0.72). In this study interrater 

human variability was found to be 76.9% (κ = 0.68). In a later publication by the 

authors, the system was modified to comply with the new AASM rules and validation 

was presented over 72 recordings (56 healthy subjects, 16 patients). Overall epoch-by-

epoch agreement between computer-assisted and the human expert scoring slightly 

increased to 82% (κ = 0.76) for the AASM version [15]. Agreement between human 

scorers regarding the AASM standard in this study was 82.1% (κ = 0.76). Another 

interesting work is the one by Pittman et al. [16] which investigated the assessment 

between automatic analysis of PSGs and two human scorers in a population of 31 

subjects with suspected sleep-disorder breathing. With respect to sleep stage scoring, 

agreement between the system and the human scorers was 77.7% (κ = 0.67) for scorer A 

and 73.3% (κ = 0.61) for scorer B. Interscorer reliability yield to 82.1% agreement (κ = 

0.73). The sleep scoring scale comprised five different stages: wake, 1, 2, delta and 

REM. When stages 1 and 2 were merged into a unique 1+2 (DS) stage, agreement 

between human scorers increased to κ = 0.80, whereas agreement between system and 

human scorers improved to κ = 0.71 when comparing scorer A, and κ = 0.65 for 

comparison with scorer B. 
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Among additional studies that assessed human interscorer variability, the following 

ones can be highlighted [17] [18] [19] [20]. The work of Danker-Hopfe et al. [17] is 

based on the assessment of interrater variability according to the R&K and AASM 

standards. Evaluation was performed using the SIESTA database, which was also used 

for validation of the system presented in [15]. Similarly, kappa values yield to κ = 0.76 

for AASM criteria and κ = 0.68 for R&K. In Norman et al. [19] evaluation of 

interobserver agreement was performed on a set of 62 recordings (52 patients) involving 

5 experienced scorers from 5 different clinical centers. Results according to the R&K 

standard showed an overall epoch-by-epoch agreement between scorers of 73% (range 

67-82%). Agreements were higher in the normal subset (mean 76%, range 65-85%) than 

in a subset of 38 patients with SDB (mean 71%, range 65-78%). The conclusion is that 

the level of agreement in sleep stage assignments varies between scorers, by diagnosis 

and by recording. In Basner et al. [18] interrater agreement according to R&K method 

was assessed on a database of 60 PSG recordings (20 OSASs patients) involving three 

clinical centers. Interscorer variability in this case resulted in κ = 0.72. Finally, the study 

of Whitney et al. [20] is of special interest since it assessed the reliability for the SHHS 

database. Procedure involved the R&K method and interscorer comparisons on epoch-

by-epoch sleep staging showed values of kappa in the range 0.81-0.83. Intrascorer 

reliability yielded to kappa values in the range 0.79-0.87. In comparison with other 

studies, agreement values in this case are relatively higher than the previous reported 

values for the R&K standard. Nevertheless, procedures to maximize reliability have 

been implemented by rigorous training of scorers, systematic reporting of signal quality, 

and explicit formulation of scoring rules [21]. In fact, according to Norman et al. this 

agreement likely represents a maximal value for interobserver agreement which may 

also be influenced by the smaller proportion of subjects with sleep disordered breathing 

in the population [19]. 

 

With regard to the proposed approach within the developed system, validation has 

been performed using an independent set of 26 recordings. Comparison has been carried 

out using the discrete output from the system to expert’s manually staging of sleep. 

Attending AUC indexes best results were achieved regarding discriminating capacities 

on wakefulness (AUC of 0.92) and REM sleep (AUC of 0.89). AUC value for deep 

sleep was 0.86 and for this stage, the highest specificity was obtained (0.97), however at 

the cost of lower sensitivity (0.75). On the other hand drowsy sleep characterization 
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showed slightly lower values of agreement with expert’s scorings (AUC of 0.85) while 

maintaining similar values of sensitivity and specificity. According to overall general 

agreement, in 84% of the epochs, human and system agreed in the classification. 

Analysis by adjusting possible agreement occurring by chance on the 26 patients, 

established an overall inter-rater agreement for the method of κ = 0.76. This value can 

be classified as substantial (0.61 ≤ κ ≤ 0.80) according to the linguistic scale provided 

by Landis and Koch [22], which is in accordance with the general reported values on 

human inter-rater reliability (see above). 

 

Attending to individual epoch misclassifications, pair-wise comparative has 

reported the highest discrepancy to be found involving stages W/DS, DS/REM and 

DS/DEEP. These three groups account for 94% of total discrepancy, respectively 

38.74%, 29.52% and 26.25%. The common factor that stage DS is present among all 

groups, showed that with regard to epoch-based sleep staging, most of the discrepancies 

between system and standard reference involve DS characterization. On the other hand 

one has to take into account that DS is by far the sleep stage in which patients spent 

most of their time (44.09% of the time according to standard reference, 42.32% of the 

time according to system’s epoch-based hypnogram). Therefore it is normal that in 

absolute terms, most of the errors are localized regarding this period. The former agrees 

with Basner et al. [18] who reported that kappa values correlate positively with the 

amount of time spent in the respective sleep stage. In fact, when looking at the relative 

error for each sleep stage, it has been revealed that DEEP was the stage with the highest 

discrepancy on the positive agreement (0.55).   

 

In the work of Danker-Hopfe et al. [17] deviating scorings between human scorers 

were analyzed with regard to both AASM and R&K procedures. In order to allow 

comparison of the results, for the R&K method stages S3 and S4 were grouped over a 

common SWS stage, equivalent to N3. In this study the combination of deviating 

scorings between SWS/N3 and S2/N2, and between S1/N1 and S2/N2, account for more 

than 60% of all discrepancies for both standards (AASM and R&K). Subsequent 

relevant misclassifications involved W/S1 and W/N1, S1/N1 and REM, and S2/N2 and 

REM. Having in mind that in the developed system, DS involves S1/N1 and S2/N2, a 

similar trend is suggested with regard to validation results obtained for the system. 

Moreover, if the combination of N1/N2 and S1/S2 into synthetic DS (DSsyn) is 
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performed, then for AASM method 50.48% of total misclassifications are obtained for 

DSsyn/N3, 28.53% for W/DSsyn and 18.77% for DSsyn/REM, which account for 97.78% 

of overall discrepancies. Analogously for R&K, 43.94% of total misclassifications are 

obtained for DSsyn/SWS, 30.73% for W/DSsyn and 23.28% for DSsyn/REM, representing 

97.95% of total discrepancy. This trend resembles much more to the one obtained for 

the proposed system, regardless of the relative order. However one should consider the 

proportion of the total time spent in each stage to evaluate this order (something not 

reported in the work of Danker-Hopfe). With regard to individual sleep stages, analysis 

of the agreement between two experts revealed the highest agreement for stage REM, 

followed by W, N3/SWS, N2/S2 and S1/N1.  

 

A similar analysis can be performed over the study of Whitney et al. [20] which 

assessed the reliability of sleep staging for the SHHS database. In this study S1 has the 

greatest discrepancies between the scorers (average 22.91% positive agreement), 

followed by delta (deep, with average 69.14% positive agreement), REM (average 

77.52% positive agreement), and N2 (78.75% positive agreement), being stage W the 

most reliably discriminated (average 88.79% positive agreement). This resembles much 

more the trend by the implemented system. In fact, by taking combination of S1/S2 into 

synthetic DS (DSsyn), then the respective trend becomes DEEP (the highest discrepancy, 

69.14%), followed by REM (77.52%), DSsyn (79.64%) and W (88.79%), which is the 

same pattern obtained in for the system (see “Sleep Staging” in Chapter 7). Taking the 

combination of deviating scorings between the different experts, discrepancies between 

SWS/S2 and S1/S2, account for almost 50% of all discrepancies. Subsequent relevant 

misclassifications involved S2/REM (17.58%), W/S2 (12.62%) and W/S1 (12.09%). 

Again, if the combination of S1/S2 is taken into synthetic DS (DSsyn), then for 36.63% 

of total misclassifications are obtained for DSsyn/SWS, 30.56% for W/DSsyn and 28.75% 

for DSsyn/REM, accounting in total for 95.94% of overall discrepancies. Recall for the 

system these three discrepancies also accounted for 94% of total discrepancies (see 

above).  

 

Taking into account the results on the SHHS database, it can be said that overall the 

system behaves as one human expert more. In other words, system’s output regarding 

discrete epoch classification is comparable to that made by a human expert. This 

support the idea that a reliable epoch-based hypnogram can be obtained from the 



Diagnosis of the Sleep Apnea-Hypopnea Syndrome: a comprehensive approach through a system to 
support medical decision 
 

406 
 

continuous fuzzy output of the system, and it suggests that the continuous representation 

preserves the information contained in the discrete hypnogram (in fact constituting a 

superset).  
 

The general approach for the detection of EEG arousals consists of a method 

comprising three different stages: (i) firstly, a signal processing stage for extraction of 

features along the different channels occurs. Two central derivations of EEG and 

submental EMG are used. In this respect a frequency-based analysis is performed 

throughout the EEG decomposing the signal into its main frequency bands. A marker 

based on changes into alpha-beta range is used for localization of possible arousal 

events and the EMG signal is analyzed searching for amplitude changes; (ii) a set of 

relevant features is extracted and a grouping process of the individual detected events is 

performed. Correlation of the individual events in time is solved by using some 

temporal aggregation rules. Grouped events form arousal patterns characterizing time 

intervals in the PSG, where the occurrence of an arousal event is possible; (iii) finally, a 

classification task is performed in order to classify those epochs associated with the 

occurrence of characteristic patterns. Several models were compared to be integrated 

into this classification stage using a first set of 42 features, and the ANN model proved 

to be the classifier with the best discriminative power.  

 

Due to the high number of inputs features (42) existence of possible redundancy is 

then explored and feature selection methods are applied at this respect. The study 

pursued a dual objective: (i) on one hand, to check whether feature selection could 

improve the results obtained using the original set of 42 features. Several feature 

selection methods including various filters and wrappers approaches were tested. The 

aim is to check if either it is possible to reduce the number of needed features, or even 

to improve classification results by reducing the effects of possible data redundancy. On 

the other hand (ii) it was also of interest to investigate the best approach for feature 

selection. In this respect, besides the comparison of the individual filter and wrapper 

methods, a combinatory approach was explored through the union and the intersection 

of the features selected by the individual methods.  

 

For this study two different machine learning methods (an ANN and a SVM) were 

used to check if improvement can be achieved independently of the used classifier. 
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Taking a look to the results (see subsection B in “Identification of EEG arousals”, 

Chapter 7) feature selection was proved to be adequate, because the number of features 

was drastically reduced while also reducing the classification error. Moreover, it can be 

checked that, independently of the classifier and the feature selection method used, 

lower errors are obtained than employing the whole set of features. In this respect, while 

obtaining the same performance with fewer features is an indicator for the presence of 

irrelevant information in the initial input set, the concurrent improvement in the 

performance implies that this irrelevancy was actually preventing the machine learning 

algorithms for achieving better prediction, and therefore blocking the learning process. 

Cancellation of this noise therefore allowed for a better performance of the classifier. 

 

To be mentioned is that, apart from classical methods –based on filters and 

wrappers- the combination of individual methods through the union and the intersection 

of different candidate subsets was investigated. In this respect, it was found that the 

union of the different rankings of relevant features provided, in general, the best results. 

This is a surprising result as one can expect that if a feature is selected by all filters, then 

it should have associated a high predictive power. This a priori reasoning effectively 

should support the intersection as a better method than the union. In fact, this is the 

assumption of Aguilar-Ruiz et al. in [23], nevertheless the results show that their 

method is not able to obtain an adequate prediction.  

 

Actually, after analysis of the results, the method that was proved to perform the 

best to reduce the number of features was the union of individual filters. Final results 

showed considerable reduction in the percentage of error compared with the results 

using the whole set of features (from 0.196 for SVM and 0.194 for ANN, to 0.150 for 

the ANN). In addition the great reduction in the number of features was achieved, 8 

versus 42, thus over 80% reduction with respect to the original set. 

 

After application of feature selection, the final resulting method was validated using 

an independent validation set composed of 26 recordings. Resulting agreement ratios 

show a sensitivity and specificity of 0.650 and 0.950 respectively, with overall 

agreement index of 0.904 and AUC of 0.800.  
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Detecting events in a multi-channel environment is a complicated task as one has to 

deal with time correlation of the individual events over the different channels. 

Developed method for detection of EEG-related arousals carries out the analysis in 

PSGs using the information available using three different channels of the PSG: EEG 

derivations (C3/A1 and C4/A2) and submental EMG. These three channels are those 

directly involved in the detection of EEG arousals according to the standard medical 

procedure [24]. Methods that work with single channel have been proposed [25] [26], 

however, they are unable to perform an accurate detection owing to the fact that they are 

discarding relevant information. For example detection of the arousal events in REM 

needs the detection of amplitude changes over the EMG signal to be done. Therefore, 

although working with two EEG derivations, the method presented in [27] should not be 

also reliable for the detection of EEG arousals in REM since it does not account for an 

EMG derivation. 

 

In section “Identification of EEG Arousals” of Chapter 5 some other methods [28] 

[29] [30] have been reported being able to work in several channels. In this category, 

the first method mentioned was the one proposed by De Carli et al. [30], in which out of 

a total of 11 recordings, 8 were used as a test. After two experts’ consensus for the 

definition of the validation criteria was obtained, two different data sets were 

considered, the first including only “definite arousals” whereas the second one included 

also a set of “possible arousals”. Average sensitivity and specificity were reported 

respectively to be 89.60% and 74.46% for the first case, and 86.41% and 88.35% for the 

second one.   

 

In the work of Sugi et al. [28] results are reported on 8 male patients in which 

parameter determination was done in a quarter of the whole available data, therefore, 

training set and testing sets were not independent. Validation was performed 

individually over each recording showing an average sensitivity of 86% with an average 

rate of false positives of 3.8%. Nevertheless the fact that the unit of measure for TN (30 

seconds) was different from the unit for the TP, FN and FP (detection time of 1.28 sec), 

makes it difficult to directly compare these results with the method proposed here.  
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Finally in Shmiel et al. [29] the number of patients involved in the study is 26, of 

which 20 are independently used as the testing set. Only sensitivity and positive 

prediction value measures are reported, (respectively 75.2% and 76.5%), on the set of 

20 patients used as a test. Again, these numbers are calculated as the average of the 

validation results over the individual recordings. Besides the EEG and the EMG, for 

these results, pulse and oxygen saturation signals of the patient are used. When only 

using information concerning the EEG and the EMG, the results in this work achieve an 

average sensitivity of 63% and mean positive predictive value of 82%.  The approach 

makes also use of data mining techniques, however the philosophy is conceptually 

different to the one proposed here: the use is aimed at discovering hidden relationships 

among the different channels. In the case of the method within the proposed system, 

instead, a more AASM-likely procedure is followed and machine learning approaches 

are used to carry out feature selection of the events detected over the different channels. 

 

Results of the implemented approach in the developed system are in the range of 

the results reported over literature. However, direct comparison with the preceding 

approaches is difficult due to different subject conditions and data processing methods. 

In this respect, it is known that characterizing the EEG and other physiological data 

differ among subjects. Moreover, considerable variability among different experts in the 

scoring of arousals has been reported [31] (see also discussion regarding final ArI 

indices below). 

 

Analysis of the respiratory activity comprises processing of the signals related with 

the breathing function, which in accordance with input montage includes airflow 

measured with thermistor, plethysmography bands for the recording of thoraco-

abdominal movements and oxygen saturation. Signal preprocessing includes the 

detection and characterization of overflow and loss of focus intervals, applying signal 

reconstruction where possible. Subsequent analysis of the signal comprises the 

identification of apneic intervals and the localization of descending (possible 

desaturations) and ascending (possible resaturations) intervals in the SaO2 signal. For 

each individual event detected, features are then extracted which characterize the event 

with quantifiable data (see Chapter 5, “Analysis of respiratory signals”).  
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Once all the respiratory signals have been analyzed, temporal correlation of the 

individual events is performed. The result of the temporal correlation is what it has been 

called apneic pattern. An apneic pattern defines a group of inter-related events as with 

potential diagnostic relevance. In this respect a first level of temporal constraints 

involves the events located in the respiratory signals. Temporal correlation is guided by 

the principle of physiological significance: saturation falling intervals detected over the 

SaO2 signal are used as triggers, defining searching intervals to establish the 

corresponding cause-effect relationships with the corresponding apneic intervals. 

 

The use of saturation events as the main triggering alert for the detection of apneic 

events relies mainly on its relative simplicity. The feature of interest in the saturation 

signal is relatively easy to extract because of its minimal features. It simply consists of a 

reduction and subsequent rise in level. This ease of recognition, together with its slow 

evolution in time (as compared with the remaining PSG signals) has obvious 

implications for its predictability and allows relatively simple artifact rejection 

mechanisms to be implemented (see Chapter 5). This simplicity, its high tolerance to 

noise, and the easiness of its interpretation, makes of the oxygen saturation signal, a 

reliable detector for the localization of apneic events. In fact, many works can be found 

over on the literature based on the use of the oxygen saturation signal as a simple apneic 

event detection method [32] [33]. The work of Taha et al. also started with the detection 

of desaturation and then analyzed the sum of RIP [34]. On the other hand, the 

correlation method also allows an apneic pattern to be formed without presence of 

significant fall in the saturation. This situation can be caused by presence of undetected 

artifacts in the saturation channel, or due to the chaining of several apneic events that, as 

a consequence of their proximity, do not reach to trigger two differenced desaturations.  

 

Once temporal correlation of the respiratory events has been performed, evidence 

of the apneic pattern is then completed with information coming from sleep stages, 

detected artifacts, sleeping position, transient electroencephalographic events and 

information from light’s state. Actually, the apneic pattern, as defined, constitutes the 

meeting ground for both the neurophysiological and the respiratory data.  
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Evaluation of the quantitative and qualitative information from the different events 

that integrate the apneic pattern is then evaluated using fuzzy inference. This approach 

contrasts with conventional approximations, which would use fixed protocols for 

evaluation of the individual features. These approximations excessively depend on the 

concrete setting of numerical limits. A typical example is the setting of a predefined 

threshold for the associated desaturation to score a hypopnea. For example if a 3% value 

is set, then an hypopnea will not be scored under the 3% desaturation even though the 

airflow reduction reflected over the respiratory channels may be more significant than 

other event with higher desaturation. In fact, higher variability is found between scorers 

and automatic scoring methods depending on the concrete setting [20] [35] [36]. In 

contrast, in the developed system, fuzzy reasoning allows implementation of reasoning 

processes based on approximation and similarity criteria. That means the apneic pattern 

is globally evaluated, not longer dependent on concrete numerical value of one feature, 

but based on its overall shape. Knowledge is implemented through IF-THEN fuzzy 

rules that use linguistic terms in natural language, and a degree of membership is 

obtained regarding each possible classification, i.e. considering the possibility of the 

pattern as being considered an apnea, a hypopnea, or to be discarded as a false positive. 

A similar process is scheduled for the subsequent classification of the apneic events as 

obstructive, central or mixed. Therefore categorical judgments are avoided, and besides, 

the use of linguistic labels enables follow up of the inferential process and explanation 

capabilities by tracking the set of activated rules according to the given input (see Chapter 5, 

“Diagnostic generation”). 

 

Final validation results of the system have been carried out considering different 

analysis levels. An epoch-by-epoch validation was firstly scheduled regarding 

capabilities for the location of the apneic events showing overall agreement of 0.89 over 

the 26 tested recordings, with sensitivity of 0.81 and specificity of 0.92. Not significant 

individual differences were detected over the recordings, however positive correlation 

was found regarding sensitivity of the system and severity of the syndrome, while 

negative correlation was found for detection accuracy (see Chapter 7 “Apneic events 

detection”).  

 

Further analysis suggested that when the proportion of apneic events in the 

recording is low, then the severity of the associated events is more reduced: that is, 
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predominant apneic events are of the very mild hypopneas. Therefore, accurate 

detection of these events for the human eye is more difficult, which increases 

subjectivity in the detection, thus agreement in the temporal detection is more reduced. 

At the same time, the proportion of negative cases is so high that total agreement tends 

to remain high. On the other hand, as the severity of the syndrome increases, it also does 

the sharpness of the associated events, which increments the proportion of true 

positives, and the sensitivity of the detection. In contrast, this has a counter effect since 

the sleep pattern and the sleep in general becomes more unstable, which slightly affects 

to the increasing proportion of FPs and FNs of the system. A general reduction in the 

agreement between human scorers has been reported in the literature as a function of the 

severity of the syndrome [19] [17] [14]. Therefore the system behaves as expected.  

 

Not many studies can be found in the literature that show the results of an epoch-

by-epoch validation regarding temporal localization of apneic events. In contrast, 

usually studies assessing reliability of computer approximations for SAHS diagnosis 

tend to present their results regarding final obtained AHI values [37] [38] [39], or they 

do not provide measurable units for scoring negative agreement [34] [40]. One of the 

few studies found that attempted such a task is the study of Pittman et al. [16], in which 

a 3x3 confusion matrix was created to identify epochs with 0, 1 or 2 events in a set of 

31 PSG recordings from 3 different scorers (two human scorers M1 and M2 and one 

automatic algorithm A). Results showed 89.7% agreement between M1 and A, 89.7% 

agreement between M2 and A, and 94.9% agreement between M1 and M2. Only epochs 

previously scored as sleep by all 3 scorers were included in the analysis. In this study 

apnea was scored if airflow was absent for 10 seconds, and a hypopnea was scored if 

thoracoabdominal movement or airflow was reduced by 30% compared to baseline for 

at least 10 seconds with at least a 4% oxygen desaturation. With this criteria, mean RDI 

events in this population was 20.6 and 22.5 respectively for human scorers M1 and M2. 

As mentioned before, our system reported a mean agreement of 89%, however mean 

AHI in the population is 50 according to standard reference, which as stated before, is 

expected to reduce the possible maximum agreement. On the other hand, while a 4% 

criteria for scoring a hypopnea event in applied in the work of Pittman et al, in the 

SHHS database hypopnea events are scored on the basis of amplitude reduction criteria, 

regardless of the associated desaturation [21]. In this respect is well-known that 

interscorer agreement strongly depends on the criteria established for desaturation 
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threshold. The study of Whitney et al. for the SHHS database, for example, showed an 

increase of ICC between human scorers from 0.74 -without any required threshold for 

associated desaturations- up to 0.99 when a 4% threshold for desaturation was required.  

 

Evaluation of discriminative capabilities of the developed system was also assessed 

on the characterization of apnea/hypopnea events, and their classification as 

obstructive/mixed/central. Results show, in the first case, overall sensitivity and 

specificity of 0.89, with AUC and agreement ratios also over 0.89. For the classification 

of apnea events, resulting sensitivity and specificity was 0.84 and 0.78 respectively for 

the obstructive category. AUC value for this case was 0.81 whereas agreement index 

was 0.82. Validation of apneic events classification required of mixed events from the 

system to be considered within the obstructive category. No attempts were performed 

by SHHS scorers neither to distinguish between obstructive and mixed, nor to classify 

hypopnea events [21].   

 

According to the obtained results, robust characterization of the apneic event as 

apnea or hypopnea is achieved by the system (no significant bias has been detected 

favoring any particular class). On the other hand, in the case of apnea classification 

statistical significance was found between classification of obstructive and central 

events, with higher sensitivity for the detection of obstructive events (see Chapter 7, 

“Apneic events classification”).  

 

Results on the classification of apnea events as obstructive or central have to be 

carefully interpreted. Firstly it has been mentioned already that validation considering as 

obstructive, both actual obstructive but also mixed events of the system. Second, it has 

to be observed that in the population of 26 recordings used for validation, the proportion 

of obstructive events (1695 in total) with respect to that of central events (854) was 

1.98. In this respect, and although the precise prevalence of central events in SAHS 

patients has not been described, studies have reported that incidence of obstructive 

events is much higher (around 10 times higher) when compared to the number of central 

events [41]. This has to be taking into account since a population with higher prevalence 

of obstructive events may lead to a significant increase in the general agreement index. 

In fact significant correlation was found between the proportion of obstructive events in 

the recording and the agreement index for classification. 
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In general, interrater reliability is higher on the scoring of apneas than hypopneas 

[42]. Clinical literature on the discrimination between apnea/hypopnea classes over 

individual events is scant, however there are several studies regarding variability of the 

associated AHI indexes by using different definitions of hypopnea. Actually regarding 

detection of hypopneas, considerable variability has been reported [35] [20]. There are 

also very few studies on the reliability of event subtypes (central, obstructive, mixed), 

although at least one study has demonstrated poor reliability for mixed apneas [43]. For 

a comparative analysis of the system’s results with other computer-based approaches in 

the detection and classification of apneic events, the reader is referred to the 

corresponding discussion in Chapter 3.  

 

In any case, besides the concrete validation results it is interesting to recall that 

fuzzy classification of events carried out by the system, provides of an intrinsic 

mechanism to deal with disagreement and interrater variability. Indeed, it has been 

stated that for validation purposes the maximum degree of membership associated with 

each detected apneic pattern is used as the final classification output (see Chapter 6, 

“Design of the validation tests”). However in practice for each formed apneic pattern 

the system does not hide the remaining classification possibilities. Moreover each 

apneic pattern is always associated with a certain degree of membership and its 

corresponding linguistic label for each one of the possible outputs; in the case of apneic 

event detection this characterization comprises categories of apnea, hypopnea and false 

positive. Then, each apneic event detected (independently if it has higher degree of 

membership for apnea or hypopnea) is assigned with a degree of membership regarding 

categories of obstructive, mixed and central. The former implies that in every moment 

the physician has weighted evidence pointing out at the possible characterizations of the 

apneic pattern under consideration. Therefore for doubtful apneic patterns –as for 

example in the case of mild hypopneas or mild apneas- the clinician has available 

individual evidence for evaluation.  Based on this evidence the clinician can then decide 

on the final classification. Even more, besides the associated degree of membership, 

explanation of the outputs using natural language and complete quantifiable information 

can be accessed through the application interface (see Chapter 5, “Main user 

interfaces”).  
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Final diagnosis evaluation of the system included analysis of different quantifiable 

parameters for sleep severity and syndrome characterization, as well as interrelation 

between neurophysiological and respiratory activity.  

 

Results on syndrome severity estimation reported consistent results with those of 

the standard reference leading to κ of 0.839. Four different categories were considered 

at this respect by using widely extended segmentation of the corresponding AHI (see 

Chapter 5, “Diagnosis generation”). Based on this segmentation, only 2 out of 26 

patients received different syndrome severity classifications, leading to 0.92 agreement 

similar to that obtained by Pittman et al. between human scorers and outperforming that 

obtained for man-machine agreement in the same study [16]. Moreover, minimal 

differences were found in the final AHI of the two recordings: 10.78 (system) vs. 9.64 

(standard reference) for one patient, and 12.63 (system) vs. 9.53 (standard reference) for 

the other (recording number 204480). Actually, this is a good example in order to 

highlight the inconvenient of using discrete ranges to delimit the diagnostic categories. 

Indeed even though from the perspective of the associated severity, it is obvious that no 

significant differences exist between, for example, a patient with AHI of 25 and other 

with AHI of 26, it also does not between a patient with AHI of 10.78 and other with 

AHI 9.64. However the use of a fixed limit (in this case AHI > 10) in order to 

differentiate patients from normal subjects, causes in this case the first one to be 

classified as patient –with mild SAHS- and not the other. In fact, there is some 

discussion about the correct setting of the threshold limiting patients and normals (it 

usually ranges from 5 to 15), or even on the adequateness of using AHI as the sole 

parameter to diagnose a patient with SAHS [44] [45].  

 

With respect to numerical comparison of the final AHI, ICC coefficient between 

the system and the standard reference was 0.98. In the work of Whitney this index was 

calculated over three human scorers for the SHHS database and obtained values ranged 

between 0.74 up to 0.99, depending on the concrete requirement for an associated 

desaturation or arousal for the scoring of an apneic event [20]. Other studies such as the 

one by Pittman et al. [16] reported ICC values in the range 0.95 and 0.99 for a 4% 

desaturation criterion. Results of the system are therefore, within the common ranges of 

human interrater agreement. Statistical analysis by means of paired test, however, 

showed some differences over individual recordings regarding AHI. On the other hand, 
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when ApI and HI were analyzed separately, only ApI reported significant paired 

differences. These differences were associated with discrepancies on TST between the 

system and the standard reference (see Chapter 7, “Final patient diagnosis”). As with 

regard to syndrome classification (OSAHS, mixed OSAHS or CSAHS) system’s 

agreement with standard reference lead to κ = 0.84 and ICC of 0.97, with only 1 out of 

26 patients under different syndrome categories. No similar studies have been found on 

the literature assessing reliability of such classifications. Similar agreement indices (κ = 

0.82 and ICC of 0.98) were obtained for SAHS characterization according to positional 

effect. Such study revealed that in our validation population there was similar 

proportion among supine positional patients (9 out of 26) and non-supine positional (10 

out of 26), whereas the was fewer number of patients absent of any positional effect (6 

out of 26). Other studies have reported that the proportion of supine positional patients 

in OSAS is more than 50%. However, differences in severity and sample stratification 

may affect the final proportion [46].   

 

Final computed arousal index (ArI) show a mean value of 24.87 within the 

population of 26 recordings. In this case no significant differences where found with 

respect to standard reference due to increase in standard deviation of the individual 

differences. Intraclass correlation coefficient leaded to agreement of 0.79 which can be 

regarded as high in comparison with interscorer ICC for the SHHS database that was 

0.54 [20]. Other studies on interscorer reliability of ArI showed different values 

depending on the study. For example different definitions of arousals were assessed by 

Loredo et al. in 20 subjects with and without obstructive sleep apnea. Arousal scoring 

that used the AASM definition had ICC of 0.84, but the value dropped to 0.19 to 0.37 

when shorter arousals were used [47]. Smurra et al. assessed the comparison of two 

different definitions of arousals in 20 patients with obstructive sleep apnea of varying 

severity. They reported ICC of 0.96 following AASM criteria [48]. Poor-to-moderate 

agreement in arousal identification has been reported in an interscorer reliability study 

of 15 accredited European laboratories. Using AASM definitions, they reported an 

overall kappa of 0.47. Agreement was best for arousals scored during deep sleep when 

the background EEG most contrasted with the faster frequencies or arousals, and for 

studies noted a priori to be easily classified [49]. An important factor to be taken into 

account over these studies is the presence of additional cues on the PSG being scored. 

Many of the previously cited studies included respiratory tracings and, while not 
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explicitly mentioned, probably also included ECGs. Thomas [50] assessed arousal 

scoring reliability using AASM criteria in 17 patients with obstructive sleep apnea 

syndrome. The event-by-event scoring agreement between scorers was 91%. However, 

when the respiratory tracings were removed from the recording, the agreement dropped 

to 59%.    

 

Further interrelation between neurophysiological and respiratory activity was 

investigated with regard to the relation between apneic events and arousals, the 

distribution of apneic events over the sleep stages, and the correlation between different 

estimators of sleep fragmentation.  

 

According to the obtained results 35% of total detected apneic events were 

associated with terminating arousal. The same results were obtained according to 

standard reference (34%). When looking at the different events separately, apneas were 

significantly more likely to be associated with EEG arousals than hypopneas. The 

former is in accordance with the results of Thomas for a study carried out in 17 patients 

with obstructive sleep disordered breathing [50]. Only for the case of central apneas, 

significant differences were found between the proportion of events associated with 

arousal between the system and the standard reference. Studying the total number of 

arousal events identified by the system, 72% had an apneic origin while this proportion 

decreased to 59% according to standard reference. Besides, significant correlation was 

found between ArI and AHI indexes, both for the system and the standard reference. 

These results support the use of EEG arousals as evidence criterion for the occurrence 

of apneic events. However, as expected, stronger correlation was obtained when using 

the rate of desaturations per hour of sleep. Similar results have been obtained in the 

study of Pitson and Stradling [45]. 

 

Finally, distribution of the apneic events over the different sleep stages showed that 

most of the events concentrate over DS and REM sleep. This distribution was 

independent of the concrete type of apneic events. Taking into account that DS accounts 

for more than 40% of sleep time and REM for about 14%, the former confirms REM as 

a stage of special prevalence of apneic events. Statistical differences were found 

regarding the exact distribution within each category between the system and the 
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standard reference; however the general picture reflects the common distribution 

reported over the clinical literature [51]. 

 
8.2. Future Work 
 

Several future research lines and extensions can be proposed for the described 

system object of this doctoral thesis. Among these, the following ones can be 

highlighted:  

  

Improvements to the sleep staging algorithm 

 

Improvements regarding the sleep staging method are one of the lines of future 

work regarding the described system. In this respect main immediate efforts will focus 

on the accommodation of the epoch-based –discrete- hypnogram output to fulfill exact 

categories of the AASM standard. That is, decomposition of the current DS stage into 

N1 and N2. The former firstly implies decomposition of the current DS submodule into 

two new submodules and provide separate degrees of membership µN1 and µN2 allowing 

continuous characterization of the respective N1 and N2 states. Subsequently, post-

processings have to be modified in order to incorporate the corresponding N1 and N2 

epochs to the discrete hypnogram.  

 

In addition, revision of the set of extracted features should be accomplished with 

the aim to detect additional transient events such as vertex sharp waves or slow eye 

movements (SEM). The motivation is to achieve a better characterization of the sleep 

process and the improvement of the inter-state discrimination capabilities. 

 

Preliminary results concerning separation of DS into N1 and N2 have been 

evaluated using the same set of 26 patients used for system validation. No additional 

features were added by the time of submitting this document, i.e. the same set of 

extracted features and transient events are used as described throughout Chapter 5. 

Resulting accumulated contingency table, as shown in the corresponding section of 

Chapter 7, is shown below in Table 8.1. 
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Table 8.1. Accumulated contingency table showing preliminary results for sleep staging using the 
AASM’s epoch-based classification 

R
EF

ER
EN

C
E 

 SYSTEM 

 W N1 N2 N3/DEEP REM 

W 12331 405 640 41 461 
N1 387 564 573 5 325 
N2 350 1367 12221 927 835 

N3/DEEP 4 0 498 2475 23 
REM 157 52 665 22 4485 

    

 

Calculation of Cohen’s kappa over the previous table yields to κ = 0.73 (κM = 0.94) 

and total agreement index of 0.81. Thus, a slight decrease in the overall agreement is 

obtained, as expected, due to separation of DS into N1 and N2 (see Chapter 7, “Sleep 

Staging”). Percent of positive agreement leads to 83% for W, 16% for N1, 67% for N2, 

62% for N3/DEEP and 64% for REM, that show the same trend as in the work of 

Whitney et al. for the SHHS database, although absolute agreements are slightly lower 

[20]. However it has to be taken into account that these are just preliminary results. The 

resulting sensitivities, specificities and AUC values are shown in the following Table 

8.2. 

 
Table 8.2. Agreement indexes for preliminary validation between expert and system using AASM 
classification (mean ± std. deviation). Sens = sensitivity; Spec = specificity; AUC = area under ROC 
curve 

 Awake N1 N2 N3/DEEP REM 

Sens. 0.89±0.08 0.34±0.19 0.77±0.12 0.77±0.21 0.83±0.12 
Spec. 0.96±0.03 0.95±0.05 0.90±0.06 0.97±0.02 0.95±0.03 
AUC 0.93±0.04 0.64±0.09 0.84±0.05 0.87±0.10 0.89±0.06 

 

 

Again, previous results are still preliminary and are given only for guidance. 

Optimization of the corresponding post-processings for generation of the epoch-based 

hypnogram has not performed yet. More research is still needed prior to incorporation 

of these preliminary developments into the system, and future research will focus on 

this regard. 

 

Additional research lines regarding the evaluation of patient’s sleep in continuum 

may explore different approximations to characterize the underlying sleep processes 
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which can then be used for the inference of the output sleep stages. One interesting 

approach in this regard is the proposal of Kemp, which allows analysis of the sleep 

process as a consequence of neuronal feedback loops occurring between the brain cells 

[52]. According to this approach continuous sleep depth scale ranging from 0-100% can 

be obtained and reflecting the NREM sleep similar to delta power and an on/off switch 

for REM sleep on the basis of 1 sec intervals [53]. This proposal assumes that both 

NREM and a REM sleep processes can be simultaneously active, and it also allows 

characterization of transient EEG events as a consequence of the activity of these neuro-

feedback loops. Besides, this model has shown nice properties such as being less 

sensitive to non-sleep related inter-subject variability effects, which suggest it as an 

interesting framework for the characterization the sleep micro-continuity. 

 
Temporal correlation of events 

 
Dealing with the time factor is of vital importance for the design of a 

comprehensive methodology for the analysis of the PSG. In accordance, throughout the 

development of the constructed system, several temporal correlation processes were 

scheduled for the detection of physiological patterns of clinical relevance over the 

different channels. For example, detection of EEG arousals involved the correlation of 

neurophysiological events over the EEG and EMG derivations (see Chapter 5, 

“Identification of EEG arousals”). Another example was the construction of apneic 

patterns in order to relate the different events of the respiratory channels, and 

subsequent integration of the neurophysiological information (see Chapter 5, “Building 

apneic patterns: temporal event correlation”). In this respect, even though the proposed 

mechanisms have proved to be effective, its implementation within the system can be 

considered of ad-hoc nature. 

 

In this context, future work will address the extension of system’s capabilities in the 

treatment of temporal information. The objective is the integration of a specific 

temporal reasoning module, in order to provide of systematic and powerful mechanisms 

to handle temporal relations between the different events in the diagnosis of SAHS. 

Specifically, research work is ongoing on the extension of the CTCN model [54] for the 

handling of imprecise information. Such extension represents a first step for its 

subsequent integration within the system. CTCN model, which states for Causal 
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Temporal Constraint Networks, has been developed as the result of a previous doctoral 

thesis of one of the members of the LIDIA research group [55]. Motivation emerged 

from the study of temporal aspects of SAHS after development of the SAMOA system 

(see Chapter 4) that revealed the importance of effective handling of the temporal 

information.  

 

The CTCN model, which takes as a reference Meiri’s general temporal constraint 

networks [56], is a general purpose temporal reasoning model. Main characteristics 

include: a) capabilities for processing quantitative, qualitative and causal constraints 

between temporal objects (points or intervals); b) the use of constraint satisfaction 

techniques to resolve reasoning tasks; c) enabling of objective causality (commonly 

accepted as public or semi-public knowledge) to be formalized; d) implementation of a 

single representation schema to represent temporal relationships that might arise 

between two events in a specific domain; or f) specification of temporal patterns for the 

inference of new knowledge. 

 

The temporal handling of information is achieved by structuring of the information 

in different interpretation contexts, which are linked to each other through an inference 

mechanism in which the consistency of the temporal information is checked. This 

mechanism abstracts the information, ultimately producing further information with a 

high level of abstraction [57]. The inference mechanism is based on identifying 

temporal patterns in a context at two levels. The first level consists of temporal intervals 

–namely reference intervals- that establish the minimum temporal conditions to be 

satisfied by a set of events. The second level is composed of event subsets -referred to 

as inference intervals- within the reference intervals, from which the occurrence of new 

events of relevance to the information analysis can be inferred. In the inferential 

process, the temporal relations between the events, their degree of imprecision, and the 

timeless or static information, are all taken into account. The new events generated are 

fed back into the temporal information handling process, and any new patterns that may 

be identified in the different contexts are analyzed. The process terminates when no new 

patterns are encountered. 

 

Based on the CTCN model, a working framework called TASAS has been 

developed and proved to be suitable for the diagnosis of SAHS [55]. In any case, and 
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abstracting an event from its temporal instant of occurrence, existentially, a temporal 

object in TASAS takes place in the domain in a binary form, that is, it exists (1 or true) 

or it does not (0, false). Therefore any interpretation or inference from itself should be 

carried out based on categorical decisions. Even though the representational CTCN 

model yet considered the possibility to deal with imprecise objects, the concrete 

mechanisms for the handling of this imprecision had not yet been defined. Therefore 

extension of CTCN to incorporate support for imprecise objects has been proposed as a 

first step for the integration of a CTCN-based temporal reasoning model into the 

system. 

 

Research agenda in this respect includes: (i) the extension of CTCN model 

incorporating support for imprecision among the temporal objects, and (ii) in the 

definition of the temporal relationships (ii). Finally, (iii) the extended model has to be 

integrated within the system to act as temporal reasoning module in charge of the 

inferential processes for the detection of relevant events. 

 

At the time of writing these lines, the first task on the research agenda has already 

been developed, but the description has been omitted from the doctoral manuscript since 

more work is still needed to achieve full integration of the CTCN model into the 

system. The interested reader is referred at consulting the corresponding paper in 

Appendix B “A framework for handling fuzzy temporal events” already submitted for 

publication. 

 
Handling of variability and imprecision 

 
Dealing with imprecision and variability in the medical diagnostics, but in artificial 

intelligence in general, is an interesting field for future research. In the developed 

system the fuzzy logic paradigm has been used as supporting framework to represent 

medical knowledge, and to implement the reasoning processes due to its nice properties 

for the concrete application domain, and enunciated throughout the text (see for 

example Chapter 3 “Handling of imprecise information” and “Critical analysis”, and in 

general, Chapter 4).  
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In this line further investigation is aimed at continuing exploration of new methods 

for knowledge acquisition and model parameterization, in the line of the neuro-fuzzy 

modeling techniques discussed in the last parts of Chapter 4. On the other hand, it is the 

intention to extend application of fuzzy inference to additional parts of the system, for 

example, for the detection of transient events in the EEG, which at this time are still not 

characterized in terms of fuzzy degrees of membership. 

 

 In addition, future work will also assess the exploration of new representational 

schemas that handle data imprecision and that enable management of subjectivity and 

uncertainty in the reasoning processes. In this respect the framework that represents the 

emergent theory of type-2 fuzzy sets offers an interesting paradigm that extends the idea 

of fuzzy sets to account for additional levels of uncertainty [58].  The basic idea is that 

of adding an extra –third- dimension to the representational form of the traditional fuzzy 

set (known under this theory as type-1 fuzzy set) so that, instead of crisp grades of 

membership, the type-2 fuzzy set has grades of membership that are, at the same time, 

fuzzy. This allows stepping forward from the modeling of words to the modeling of 

perceptions [59]. An example for the case of SAHS may be the modeling of the concept 

of severe SAHS. Under the paradigm of type-1 fuzzy sets, a fuzzy set can be modeled 

representing the category severe so that given certain value of AHI x, then a certain 

degree of membership µsevere(x) is obtained according to the given value of x. Let us say 

the value of x is 10, and that the resulting µsevere(x) is 0.8 (thus a crisp value). Now, by 

using type-2 fuzzy logic, one might model a type-2 fuzzy set that given the value of x, 

instead of 10, returns a second-level type-1 fuzzy set µsevere,10(y) that interprets the AHI 

value according to the age y of the patient. For example, the final membership value 

might be 0.8 if the age of the patient is 40, but 0.7 if the age of the patient is 60, or 0.6 if 

the age of the patient is 70. Beyond the concrete utility of the example, such a modeling 

will enable us to represent, under the same rule, different perceptions of the same 

concept, for example, depending if the subject is male or female, is an adult or a 

children, or in a general perspective, if the knowledge is acquired from one expert or 

another. It looks tempting, therefore, to explore the possibilities that this new 

representational framework may bring to handle variability and data imprecision in the 

field of SAHS. 
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Extension of the validation, use in clinical practice and technological transfer 

 

Validation of the developed system has been carried out using an independent 

random sample of 26 recordings from the SHHS database. However, to move on from 

research scene to the clinical practice, more extensive validation of the system should be 

accomplished. In this respect, within the future work it is the intention to carry out 

further validation incrementing the sample of involved PSGs. One possible limitation of 

the current validation in this regard is that the set of PSG recordings in the SHHS 

database mostly comprise adult subjects. In fact average age range in the set of 26 

patients is 68.5±7.7 (mean±std), which may bias the results of the validation for other 

population ranges.  

 

Evaluation of the system on a different database will also contribute to assess 

generalization capabilities of the system. In fact, although SHHS database results from a 

multi-center cohort study, interscorer variability is expected to be higher when using a 

completely different dataset. The former may represent an additional challenge when 

using a database that involves a different set of signals. Indeed as stated in subsection 

“Description of the inputs” of Chapter 5, usually a problem with the design of automatic 

systems for PSG analysis is that they are highly dependent on the concrete signal 

specification and montage. Readapting the system to work on a different signal montage 

is also an interesting future line of development. 

 

In this line, and although convergence to the AASM guidelines in clinical practice 

will still take some time -among other circumstances, because it implies substitution of 

previous existing hardware monitoring devices and training of current personnel in the 

new protocols- it is clear that adaptation of our system to fulfill AASM specifications 

should be addressed in the future. In this respect, it is important to comment that there 

are some differences between SHHS’s recording montage (see Chapter 5 “Description 

of the inputs”) and current AASM’s recording specifications (see [24]). Particularly the 

absence of the nasal pressure sensor may influence the detection of hypopnea events. 

Indeed, characterization of the airflow in the SHHS study is done with the only use of a 

thermistor. However, as it has been commented in Chapter 2, pressure transducers 

produce an airflow estimation more sensitive to little airflow changes. Accordingly, 

besides the thermistor, AASM’s guidelines recommend the adding of a nasal pressure 
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sensor for a better detection of the mild hypopneas. Adaptation of the software and test 

it over a database including recording of the nasal pressure would be of special interest. 

Other possible readaptations in this regard may include extension of the EEG channels 

beyond the use of central derivations, to include frontal and occipital excursions as 

recommended by the AASM. That would improve the characterization of the EEG 

activity and the detection of transient events. It is known, for example, that KCs tend to 

be maximal using frontal derivations, and that EEG-arousals can be better recorded over 

the occipital region [24]. Another difference is that the sampling rate specifications of 

the inputs do not always match AASM’s recommended values. The former, however 

might not be critical since the input acquisition module of the developed system can 

already deal with variations in the amplitude –dynamical range- or in the sampling rate 

of the signals. In addition scaling and resampling operations can be applied in the case 

of being necessary. Therefore, it is assumed that the system will be able to analyze EDF 

recordings following different sampling rates –even those proposed by the AASM- 

without any problem.  

 

In an endeavor to fulfill these requirements, clinical evaluation of the system has 

been initiated already through ongoing collaboration with the local hospital Complejo 

Hospitalario Universitario de A Coruña (CHUAC). Main objective is to assess system’s 

performance in real clinical practice and using a different set of patients from those of 

the SHHS database. Besides, with the aim to reach future technological transfer, the 

developed system is being currently integrated into a commercial solution under the 

name of MIASOFT (Intelligent Software for the Monitoring of the Sleep 

Apnea/Hypopnea Syndrome). More information on the MIASOFT project can be 

accessed through its website [60]. 

 
8.3. Conclusions 
 

This doctoral thesis has addressed the development of a system to aid the clinician 

in the diagnosis of the Sleep Apnea-Hypopnea Syndrome (SAHS). The main objective 

has been to obtain a system modeling intelligent behavior of the human scorers, and to 

be able to reduce both, time and effort, required from the medical personnel in the 

visual inspection and the scoring of the PSG.  
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Main limitations of the current computer based approximations consist in the 

scarcity of comprehensive approaches to the diagnosis and the excessive use of fixed 

protocols and categorical classifications. Therefore these systems usually limit to offer 

partial solutions to the problem and they are unable to deal with data variability and 

human subjectivity. The developed system contributes in this regard, because of (i) its 

comprehensive philosophy, in which neurophysiological activity is used as a context for 

the interpretation of the respiratory events, and (ii) the implementation of mechanisms 

to handle data imprecision, which mimic human’s diagnostic procedures under the 

principles of generalization and approximation. On the other hand, while man-machine 

discrepancy due to subjectivity and data imprecision is a problem for the final 

acceptation of the automatic scoring systems in real practice, it is clear that automatic 

systems which try to imitate visual scoring of the PSG cannot be improved very much 

beyond the agreement achieved between human scorers. Given the unavoidable 

subjectivity associated to the diagnostic analysis, a possible way of improvement should 

rely on the development of aiding tools that avoid categorical classifications and that 

produce judgments based on similarity criteria. The developed system serves of the 

fuzzy logic paradigm in order to give response to the previous issues, however without 

renouncing to the advantages of the automatic analysis in terms of savings in time and 

effort for the revision of the PSG.  

 

Despite more research has to be done, the obtained results are in general accordance 

with those reported for the agreement between human scorers. In this respect the system 

can be considered to behave as one expert more in the diagnostic task. It can be 

concluded, therefore, that the main objectives of this doctoral thesis have been 

accomplished, and that the system can be effectively used as supporting tool to aid the 

clinician in the diagnosis of SAHS. 
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Schematically, fundamental conclusions of this research work are the following: 

 

1. A system modeling intelligent behavior of human scorers has been 

developed to aid the clinician in the diagnosis of the Sleep Apnea-Hypopnea 

Syndrome 

 

2. The system simplifies the analysis task of the PSG, reducing both time and 

effort needed from the medical personnel 

 

3. The validation results have shown that the system behaves as one expert 

more with regard to the diagnostic results tested over real PSG recordings 

 

4. Limitations of the current approaches for automatic diagnosis of SAHS have 

been addressed, concretely: 

 

a. The analysis procedure is scheduled integrating both 

neurophysiological and respiratory information, leading to a 

comprehensive diagnostic approach in which respiratory events are 

interpreted in the context of the sleep macro- and microstructure, as 

well as the additional signals from the PSG 

 

b. Handling of data variability and human subjectivity has been 

performed through the implementation of fuzzy analysis techniques, 

avoiding categorical judgments, developing reasoning mechanisms 

based on similarity and approximation, and providing of explanative 

capabilities of its results close to natural language 
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A. COST FUNCTIONS FOR THE MODELING OF 
NEURO-FUZZY SYSTEMS 

A.1. Mean Squared Error (MSE) 

MSE is a risk function corresponding to the expected value of the squared error loss 

or quadratic loss. MSE measures the average of the squares of the errors. It is the second 

moment (about the origin) of the error, and thus incorporates both the variance of the 

estimator and its bias. 

 

Formally the MSE of an estimator 𝜃� with respect to the estimated parameter θ is 

defined as: 

 

𝑀𝑆𝐸�𝜃�� = 𝐸�(𝜃� − 𝜃)2� 

= 𝑉𝑎𝑟�𝜃�� +  (𝐵𝑖𝑎𝑠�𝜃�,𝜃�)2 

 

Like variance, mean squared error has the disadvantage of heavily weighting 

outliers. This is a result of the squaring of each term, which effectively weights large 

errors more heavily than small ones. This property, together with the assumption of 

gaussianity, undesirable in many applications, has led researchers to investigate the use 

alternative cost functions. 

A.2. Minimum Error Entropy (MEE) 

Entropy, which was introduced by Shannon [1], is a scalar quantity that provides a 

measure for the average information contained in a given probability function. As by 

definition, information is a function of the Probability Density Function (PDF), entropy 

as an optimally criterion, extends MSE since when entropy is minimized, all the 

moments of the error PDF (not only the second moments) are constrained. 
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Let X to be a random variable with probably distribution function fx, then the 

Renyi’s quadratic entropy [2] is defined as 

 

dxxfXH x )(log)( 2
2 ∫−= . (A.1) 

 

Given a set of data points N
iix 1}{ = drawn from X, the Parzen window estimate of the 

PDF [3] is 
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where )( ixx −σκ  is the Gaussian kernel 
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and N is the number of data points and σ the kernel size. 

 

The kernel size or bandwidth (σ) is a free parameter that must be chosen by the user 

using concepts of density estimation, such as Silverman’s rule [4] or maximum 

likelihood. It has been experimentally verified that the kernel size affects much less the 

performance of ITL algorithms than density estimation [5], but a thorough treatment of 

this issue is beyond the scope of this section. 

 

Substituting (A.3) into (A.2) and after some mathematical manipulations [6], an 

estimator for (A.1) is obtained: 

 

)(log)(ˆ
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IP(X) stands for Information Potential (IP), and represents average interactions 

among the data samples. Now, consider the error between the desired and the actual 
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outputs of the system e = d – y.  It can be demonstrated that H2(e=0) is a global 

minimum and that the nonparametric estimator 2Ĥ  preserves this property [6]. Thus 

minimization of Renyi’s quadratic entropy of the error as a criterion for parameter 

optimization is feasible, and it was demonstrated to be effective on the training of 

several types of systems, including traditional adaptive filters, neural networks, and 

various algorithms in machine learning [7]. 

 

Using (A.1), (A.5) and (A.6), minimizing Renyi’s quadratic entropy of the error 

becomes finding ξ such that 

)(ˆmin 2 EH
w

=ξ   

))(ˆlog(min 2 deef
w ∫−=   

∑∑
= =

−=
N

j

N

i
ijw

ee
N 1 1

22 )(1max σκ  (A.7) 

 

since Renyi’s quadratic entropy is a monotonic negative function of the information 

potential. This results in the so-called Minimum Error Entropy (MEE) criterion. 

A.3. Maximum Correntropy Criterion (MCC) 

Correntropy has been proposed from the ITL paradigm which incorporates both 

information of the distribution and time structure of the data [8] [9]. It has been shown 

that Correntropy involves not only the second-order moments about the data, but all the 

even-order moments [8]. These nice properties suggest the use of this measure as a new 

interesting cost function in the field of machine learning. It has been successfully 

applied to problems like robust regression [9], adaptive filtering [10], pitch detection in 

speech [11], non-linearity tests [12] or the detection of non-linear similarity in the EEG 

[13].  

 

Let },{ Τ∈ttx to be a random process with Τ being an index set and }{ d
t ℜ∈x , then 

the generalized correlation function –correntropy- )2,1( ttV is defined as a function from 

Τ x T into +ℜ as 

 
)]([),(

2121 ttttV xx −Ε= σκ , (A.8) 
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where [.]Ε  denotes mathematical expectation over the random process tx and (.)σκ

is a positive definite kernel of bandwidth σ. In this paper we will assume (.)σκ  to be 

the Gaussian kernel 
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Using a series expansion for the Gaussian kernel, (1) can be expressed as 
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and therefore one can see that it involves all the even-order moments of the 

difference 
21 tt xx − . If we take the term corresponding to n= 1 in (A.10), expanding the 

square in the expectation operator we get 

 

],[2][][
2111
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−+= σσ  (A.11) 
 

where ),( 21 ttRx  is the covariance function of the random process; thus it can be 

show that (A.8) includes the information provided by the conventional covariance 

function. It can also be demonstrated that (A.8) carries information about the quadratic 

Renyi’s entropy of the input data [8]. This dual relation with the correlation measure 

and entropy brings to this measure the so-called name of Correntropy. 

 

Now let’s take a set of N learning patterns N
iii dx 1)},({ = to be respectively the input 

and the desired output for a concrete problem, and let N
iiy 1}{ = to be the corresponding 

system’s classification output, where YyXx ii ∈∈ ,  and Ddi ∈ . We are thus interested 

in minimizing the error ei = yi – di on the classification for the pattern xi, Xxi ∈∀ . 

Consider then  

 
)]([),( DYDYV −Ε= σκ . (A.12) 
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Effectively maximizing (A.11) implies minimizing the difference between the 

random variables Y and D in terms of all their even-moments, thus reducing the error. 

Also in terms of information criteria, maximizing (A.11) turns out in reducing the 

entropy on the probability density function of the error. When applied to optimization 

problems –as in our case-, this leads to the Maximum Correntropy Criterion (MCC). In 

practice we work with a finite number of realizations of N
iii dy 1)},{( =  and therefore we 

use an estimator of correntropy 

 

∑
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yielding to be the resulting cost function: 

 

∑
=

=−=
N

i
ie

N
DYEJ

1
)(1)( σκ . (A. 14) 

 

As for the case of IP, the kernel size σ is a free parameter that must be chosen by 

the user using concepts of density estimation, such as Silverman’s rule [4]. In terms of 

the contribution to the cost function, when comparing the MSE in the space of errors, it 

has been shown [9] that Correntropy induces a new metric which is equivalent to the 2-

norm distance if the data points are close to e=0, behaves similarly to the 1-norm as 

points get further and eventually approaches the zero-norm as they are far apart. On the 

other hand, in the case of MSE, all the samples in the error space contribute appreciably 

to the value of the cost function. This locality allows MCC to be less sensitive to 

outliers and more effective in cases where the distribution of the errors is far from 

gaussianity. In this context, the selection of σ acts as a compromise between estimation 

efficiency and sensitivity to outlier rejection. 
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