77 research outputs found

    Algorithms for curve design and accurate computations with totally positive matrices

    Get PDF
    Esta tesis doctoral se enmarca dentro de la teoría de la Positividad Total. Las matrices totalmente positivas han aparecido en aplicaciones de campos tan diversos como la Teoría de la Aproximación, la Biología, la Economía, la Combinatoria, la Estadística, las Ecuaciones Diferenciales, la Mecánica, el Diseño Geométrico Asistido por Ordenador o el Álgebra Numérica Lineal. En esta tesis nos centraremos en dos de los campos que están relacionados con matrices totalmente positivas.This doctoral thesis is framed within the theory of Total Positivity. Totally positive matrices have appeared in applications from fields as diverse as Approximation Theory, Biology, Economics, Combinatorics, Statistics, Differential Equations, Mechanics, Computer Aided Geometric Design or Linear Numerical Algebra. In this thesis, we will focus on two of the fields that are related to totally positive matrices.<br /

    New strategies for curve and arbitrary-topology surface constructions for design

    Get PDF
    This dissertation presents some novel constructions for curves and surfaces with arbitrary topology in the context of geometric modeling. In particular, it deals mainly with three intimately connected topics that are of interest in both theoretical and applied research: subdivision surfaces, non-uniform local interpolation (in both univariate and bivariate cases), and spaces of generalized splines. Specifically, we describe a strategy for the integration of subdivision surfaces in computer-aided design systems and provide examples to show the effectiveness of its implementation. Moreover, we present a construction of locally supported, non-uniform, piecewise polynomial univariate interpolants of minimum degree with respect to other prescribed design parameters (such as support width, order of continuity and order of approximation). Still in the setting of non-uniform local interpolation, but in the case of surfaces, we devise a novel parameterization strategy that, together with a suitable patching technique, allows us to define composite surfaces that interpolate given arbitrary-topology meshes or curve networks and satisfy both requirements of regularity and aesthetic shape quality usually needed in the CAD modeling framework. Finally, in the context of generalized splines, we propose an approach for the construction of the optimal normalized totally positive (B-spline) basis, acknowledged as the best basis of representation for design purposes, as well as a numerical procedure for checking the existence of such a basis in a given generalized spline space. All the constructions presented here have been devised keeping in mind also the importance of application and implementation, and of the related requirements that numerical procedures must satisfy, in particular in the CAD context

    Desenvolvimento de metodologias para identificação de parâmetros e otimização de forma em simulações numéricas de processos de conformação plástica

    Get PDF
    Doutoramento em Engenharia MecânicaPor parte da indústria de estampagem tem-se verificado um interesse crescente em simulações numéricas de processos de conformação de chapa, incluindo também métodos de engenharia inversa. Este facto ocorre principalmente porque as técnicas de tentativa-erro, muito usadas no passado, não são mais competitivas a nível económico. O uso de códigos de simulação é, atualmente, uma prática corrente em ambiente industrial, pois os resultados tipicamente obtidos através de códigos com base no Método dos Elementos Finitos (MEF) são bem aceites pelas comunidades industriais e científicas Na tentativa de obter campos de tensão e de deformação precisos, uma análise eficiente com o MEF necessita de dados de entrada corretos, como geometrias, malhas, leis de comportamento não-lineares, carregamentos, leis de atrito, etc.. Com o objetivo de ultrapassar estas dificuldades podem ser considerados os problemas inversos. No trabalho apresentado, os seguintes problemas inversos, em Mecânica computacional, são apresentados e analisados: (i) problemas de identificação de parâmetros, que se referem à determinação de parâmetros de entrada que serão posteriormente usados em modelos constitutivos nas simulações numéricas e (ii) problemas de definição geométrica inicial de chapas e ferramentas, nos quais o objetivo é determinar a forma inicial de uma chapa ou de uma ferramenta tendo em vista a obtenção de uma determinada geometria após um processo de conformação. São introduzidas e implementadas novas estratégias de otimização, as quais conduzem a parâmetros de modelos constitutivos mais precisos. O objetivo destas estratégias é tirar vantagem das potencialidades de cada algoritmo e melhorar a eficiência geral dos métodos clássicos de otimização, os quais são baseados em processos de apenas um estágio. Algoritmos determinísticos, algoritmos inspirados em processos evolucionários ou mesmo a combinação destes dois são usados nas estratégias propostas. Estratégias de cascata, paralelas e híbridas são apresentadas em detalhe, sendo que as estratégias híbridas consistem na combinação de estratégias em cascata e paralelas. São apresentados e analisados dois métodos distintos para a avaliação da função objetivo em processos de identificação de parâmetros. Os métodos considerados são uma análise com um ponto único ou uma análise com elementos finitos. A avaliação com base num único ponto caracteriza uma quantidade infinitesimal de material sujeito a uma determinada história de deformação. Por outro lado, na análise através de elementos finitos, o modelo constitutivo é implementado e considerado para cada ponto de integração. Problemas inversos são apresentados e descritos, como por exemplo, a definição geométrica de chapas e ferramentas. Considerando o caso da otimização da forma inicial de uma chapa metálica a definição da forma inicial de uma chapa para a conformação de um elemento de cárter é considerado como problema em estudo. Ainda neste âmbito, um estudo sobre a influência da definição geométrica inicial da chapa no processo de otimização é efetuado. Este estudo é realizado considerando a formulação de NURBS na definição da face superior da chapa metálica, face cuja geometria será alterada durante o processo de conformação plástica. No caso dos processos de otimização de ferramentas, um processo de forjamento a dois estágios é apresentado. Com o objetivo de obter um cilindro perfeito após o forjamento, dois métodos distintos são considerados. No primeiro, a forma inicial do cilindro é otimizada e no outro a forma da ferramenta do primeiro estágio de conformação é otimizada. Para parametrizar a superfície livre do cilindro são utilizados diferentes métodos. Para a definição da ferramenta são também utilizados diferentes parametrizações. As estratégias de otimização propostas neste trabalho resolvem eficientemente problemas de otimização para a indústria de conformação metálica.The interest of the stamping industry in the numerical simulation of sheet metal forming, including inverse engineering approaches, is increasing. This fact occurs mainly because trial and error design procedures, commonly used in the past, are no longer economically competitive. The use of simulation codes is currently a common practice in the industrial forming environment, as the results typically obtained by means of the Finite Element Method (FEM) are well accepted by both the industrial and scientific communities. In order to obtain accurate stress and strain fields, an effective FEM analysis requires reliable input data such as geometry, mesh, non-linear material behaviour laws, loading cases, friction laws, etc.. In order to overcome these difficulties, a possible approach is based on inverse problems. In this work, the following inverse problems in computational Mechanics are presented and analysed: (i) parameter identification problem, that refer to the definition of input parameters to be used in constitutive models for numerical simulations, based on experimental data, and (ii) initial blank and tool design problem, where the aim would be to estimate the initial shape of a blank or a tool in order to achieve the desired geometry after the forming process. New optimization strategies in parameter identification problems that lead more efficiently to accurate material parameters are introduced and implemented. The aim of these strategies is to take advantage of the strength of each selected algorithm and improve the overall robustness and efficiency of classical optimization methodologies based on single stages. Deterministic algorithms, evolutionary-inspired algorithms or even the combination of these two algorithms are used in the proposed strategies. Strategies such as cascade, parallel and hybrid approaches are analysed in detail. In hybrid strategies, cascade and parallel approaches are integrated. Two different approaches are presented and analyzed for the evaluation of the objective functions in parameter identification processes. The approaches considered are single-point and FE analyses. The single infinitesimal point evaluation seems to characterize an infinitesimal amount of material subjected to all kind of deformation history. On the other hand, in all FE analysis codes, the constitutive model is implemented and accounted for in each element integration point. Inverse problems, such as blank and tool design, are presented and described. In the case of the initial blank optimization process the design of a carter is presented. Also related to the initial blank optimization process, a study of the influence of the initial geometry definition in the optimization process is conducted. This study is performed considering the NURBS formulation to model the blank upper surface that will be changed during the optimization process. In the case of the tool design problem, a two-stage forging process is presented. In order to achieve a straight cylinder after forging, two different approaches are analyzed. In the first one, the initial geometry of the cylinder is optimized and, in the other one, the shape of the first stage tool is optimized. To parameterize the free surface of the cylinder different methods are presented. Furthermore, in order to define the tool in this example, different parameterizations are presented. The optimisation strategies proposed in this work efficiently solve optimisation problems for the industrial metal forming

    曲線折り動作のモデル化と可視化に関する研究

    Get PDF
    筑波大学 (University of Tsukuba)201

    An Improved 2DOF Elastokinematic Surrogate Model for Continuous Motion Prediction and Visualisation of Forearm Pro-and Supination for Surgical Planning

    Get PDF
    Forearm rotation (pro-/supination) involves a non-trivial combination of rotation and translation of two bones, namely, radius and ulna, relatively to each other. Early works regarded this relative motion as a rotation about a fixed (skew) axis. However, this assumption turns out not to be exact. This thesis regards a spatial-loop surrogate mechanism involving two degrees of freedom with an elastic coupling for better forearm motion prediction. In addition, the influence of the bone morphology and position of elbow on kinematics are also considered. The model parameters are not measured directly from the anatomical components, but are fitted by reducing the errors between predicted and measured values in an optimization loop. For non-invasive measurement of bone position, magnetic resonance imaging (MRI) is employed. We present a method to self-calibrate the arm position in the MRI scanning tube and to fit the model parameters from a few, coarse MRI scans. Results show a good concordance between measurement and simulation. Moreover, the minimum distance changing between bones during forearm rotation is elucidated, which is not yet proved in anatomical and clinical literatures. The minimum distance is calculated by searching for the global shortest distance between bone contours on ulna and radius by a two-level selection and a following multidimensional Newton-Raphson algorithm. To this end, the methodology is extended from healthy bones to deformed arms and an angulated forearm model is developed. The 3D angulated bone geometry is obtained by manually separating the bone structure at the broken position, and the minimum distance and the range of motion of fractured forearms are analyzed. As shown for a single case validation, simulated results show very small deviations from anatomical data. Furthermore, the simulations discussed above are visualized using interactive interfaces, which facilitates the application of the model in clinical planning.Die Unterarmrotation beinhaltet eine nicht triviale Kombination einer Rotation und Translokation zweier Knochen, Radius und Ulna relativ zu einander. Frühere Arbeiten betrachteten diese relative Bewegung als eine Rotation um eine fixierte Achse. Allerdings scheint diese Annahme ungenau zu sein. Diese Arbeit betrachtet ein Spatial-Loop Surrogat Mechanismus unter Berücksichtigung von zwei Freiheitsgraden mit einer elastischen Gelenkverbindung für eine bessere Prognose der Unterarm-Bewegung. Zusätzlich wird der Einfluss der Knochenmorphologie und die Position des Ellenbogens auf die Kinematik berücksichtig. Die Modellparameter werden nicht direkt von den anatomischen Komponenten bestimmt, sondern unter Berücksichtigung der Abweichung von Annahme und Messung. Zur nicht invasiven Messung der Knochenposition wird die Methode der Magnetresonanztomographie (MRT) angewendet. Wir stellen hier eine Methode um die Arm-Position in das MRI Scan-Rohr selbst zu kalibrieren und die Modellparameter aus einige grobe MRT-Aufnahmen zu passen. Die simulierten Ergebnisse zeigen sehr kleine Abweichungen von anatomischen Daten. Eine minimale Änderung der Distanz zwischen den Knochen während der Unterarmrotation wird beleuchte, die bisher nicht in der anatomischen und klinischen Literatur beschrieben ist. Die Berechnung der minimalen Distanz erfolgt über die Ermittlung der gesamt kürzesten Distanz. Zu diesem Zweck wird die Methodik von gesunden Knochen auf deformiere Arme und ein angewinkeltes Unterarmmodel entwickelt. Die 3D gewinkelte Knochen-Geometrie ergibt sich aus der Knochenstruktur an der gebrochener Position manuell zu trennen, und darauf werden der Mindestabstand und der Bereich der Bewegung von dem gebrochenen Unterarm analysiert. Wie dies bei einer einzelnen Fall Validierung, zeigen die simulierten Ergebnisse sehr kleine Abweichungen von anatomischen Daten. Darüber hinaus werden die oben beschrieben Simulationen mit interaktiven Benutzeroberflächen visualisiert, welche die Anwendung des Modells in der klinischen Planung erleichtert

    Tissue-scale, patient-specific modeling and simulation of prostate cancer growth

    Get PDF
    Programa Oficial de Doutoramento en Enxeñaría Civil . 5011V01[Abstract] Prostate cancer is a major health problem among aging men worldwide. This pathology is easier to cure in its early stages, when it is still organ-confined. However, it hardly ever produces any symptom until it becomes excessively large or has invaded other tissues. Hence, the current approach to combat prostate cancer is a combination of prevention and regular screening for early detection. Indeed, most cases of prostate cancer are diagnosed and treated when it is localized within the organ. Despite the wealth of accumulated knowledge on the biological basis and clinical management of the disease, we lack a comprehensive theoretical model into which we can organize and understand the abundance of data on prostate cancer. Additionally, the standard clinical practice in oncology is largely based on statistical patterns, which is not sufficiently accurate to individualize the diagnosis, prediction of prognosis, treatment, and follow-up. Recently, mathematical modeling and simulation of cancer and their treatments have enabled the prediction of clinical outcomes and the design of optimal therapies on a patient-specific basis. This new trend in medical research has been termed mathematical oncology. Prostate cancer is an ideal candidate to benefit from this technology for several reasons. First, patient-specific clinical approaches may contribute to reduce the rates of overtreatment and undertreatment of prostate cancer. Multiparametric magnetic resonance is increasingly used to monitor and diagnose this disease. This imaging technology can provide abundant information to build a patient-specific mathematical model of prostate cancer growth. Moreover, the prostate is a sufficiently small organ to pursue tissue-scale predictive simulations. Prostate cancer growth can also be estimated using the serum concentration of a biomarker known as the prostate specific antigen. Additionally, some prostate cancer patients do not receive any treatment but are clinically monitored and periodically imaged, which opens the door to in vivo model validation. The advent of versatile and powerful technologies in computational mechanics permits to address the challenges posed by the prostate anatomy and the resolution of the mathematical models. Finally, mathematical oncology technologies can guide the future research on prostate cancer, e.g., proposing new treatment strategies or unveiling mechanisms involved in tumor growth. Therefore, the aim of this thesis is to provide a computational framework for the tissuescale, patient-specific modeling and simulation of organ-confined PCa growth within the context of mathematical oncology. We present a model for localized prostate cancer growth that reproduces the growth patterns of the disease observed in experimental and clinical studies. To capture the coupled dynamics of healthy and tumoral tissue, we use the phase-field method together with reaction-diffusion equations for nutrient consumption and prostate specific antigen production. We leverage this model to run the first tissue-scale, patient-specific simulations of prostate cancer growth over the organ anatomy extracted from medical images. Our results show similar tumor progression as observed in clinical practice. We leverage isogeometric analysis to handle the nonlinearity of our set of equations, as well as the complex anatomy of the prostate and the intricate tumoral morphologies. We further advocate dynamical mesh adaptivity to speed up calculations, rationalize computational resources, and facilitate simulation in a clinically relevant time. We present a set of efficient algorithms to accommodate local h-refinement and h-coarsening of hierarchical splines in isogeometric analysis. Our methods are based on Bézier projection, which we extend to hierarchical spline spaces. We also introduce a balance parameter to control the overlapping of basis functions across the levels of the hierarchy, leading to improved numerical conditioning. Our simulations of cancer growth show remarkable accuracy with very few degrees of freedom in comparison to the uniform mesh that the same simulation would require. Finally, we study the interaction between prostate cancer and benign prostatic hyperplasia, another common prostate pathology that causes the organ to gradually enlarge. In particular, we investigate why tumors originating in larger prostates present favorable pathological features. We perform a qualitative simulation study by extending our mathematical model of prostate cancer growth to include the equations of mechanical equilibrium and the coupling terms between them and tumor dynamics. We assume that the deformation of the prostate is a quasistatic phenomenon and we model prostatic tissue as a linear elastic, heterogeneous, isotropic material. This model is calibrated by studying the deformation caused by either disease independently. Our simulations show that a history of benign prostatic hyperplasia creates mechanical stress fields in the prostate that hamper prostatic tumor growth and limit its invasiveness.[Resumen] El cáncer de próstata es un gran problema de salud en hombres de edad avanzada en todo el mundo. Esta patología es más fácil de curar en sus estadios iniciales, cuando aún es órgano-confinada. Sin embargo, casi nunca produce ningún síntoma hasta que es demasiado grande o ha invadido otros tejidos. Por tanto, el enfoque actual para combatir el cáncer de próstata es una combinación de prevención y exámenes rutinarios para una detección precoz. De hecho, la mayoría de casos de cáncer de próstata son diagnosticados y tratados cuando aún está localizado dentro del órgano. A pesar de la riqueza del conocimiento acumulado sobre las bases biológicas y la gestión clínica de la enfermedad, carecemos de un modelo teórico completo en el que podamos organizar y comprender la enorme cantidad de datos existentes sobre el cáncer de próstata. Además, la práctica clínica estándar en oncología está basada en gran medida en patrones estadísticos, lo cual no es suficientemente preciso para individualizar el diagnóstico, la predicción de la prognosis, el tratamiento y el seguimiento. Recientemente, la modelización y la simulación matemáticas del cáncer y sus tratamientos han permitido predecir resultados clínicos y el diseño de terapias óptimas de forma personalizada. Esta nueva corriente de investigación médica se ha denominado oncología matemática. El cáncer de próstata es un candidato ideal para beneficiarse de esta tecnología por varios motivos. En primer lugar, un enfoque clínico personalizado podría contribuir a reducir las tasas de tratamiento excesivo o insuficiente de cáncer de próstata. La resonancia magnética multiparamétrica se usa cada vez más para monitorizar y diagnosticar esta enfermedad. Esta tecnología de imagen puede proporcionar abundante información para construir un modelo matemático de crecimiento de cáncer de próstata personalizado. Además, la próstata es un órgano suficientemente pequeño para perseguir la realización de simulaciones predictivas a escala tisular. El crecimiento del cáncer de próstata también se puede estimar usando la concentración en sangre de un biomarcador conocido como el antígeno prostático específico. Adicionalmente, algunos pacientes de cáncer de próstata no reciben tratamiento pero son monitorizados clínicamente y se les toman imágenes médicas periódicamente, lo que abre la puerta a la validación in vivo de modelos. El desarrollo de tecnologías versátiles y potentes en mecánica computacional permite hacer frente a los retos derivados de la anatomía prostática y la resolución de los modelos matemáticos. Finalmente, las tecnologías de oncología matemática pueden guiar las investigaciones futuras sobre cáncer de próstata, por ejemplo, proponiendo nuevas estrategias de tratamiento o descubriendo mecanismos involucrados en el crecimiento tumoral. Por tanto, el objeto de esta tesis es proporcionar un marco computacional para la modelización y simulación del crecimiento del cáncer de próstata órgano-confinado de forma personalizada y a escala tisular dentro del contexto de la oncología matemática. Presentamos un modelo de crecimiento de cáncer de próstata localizado que reproduce los patrones de crecimiento de la enfermedad observados en estudios experimentales y clínicos. Para capturar las dinámicas acopladas de los tejidos sano y tumoral, usamos el método de campo de fase junto con ecuaciones de reacción-difusión para el consumo de nutriente y la producción de antígeno prostático específico. Empleamos este modelo para realizar las primeras simulaciones personalizadas a escala tisular del crecimiento de cáncer de próstata sobre la anatomía del órgano extraída de imágenes médicas. Nuestros resultados muestran una progresión tumoral similar a la observada en la práctica clínica. Utilizamos el análisis isogeométrico para resolver la no-linealidad de nuestro sistema de ecuaciones, así como la compleja anatomía de la próstata y las intricadas morfologías tumorales. Adicionalmente, proponemos el uso de adaptatividad dinámica de malla para acelerar los cálculos, racionalizar los recursos computacionales y facilitar la simulación en un tiempo clínicamente relevante. Presentamos un conjunto de algoritmos eficientes para introducir el refinamiento y el engrosado locales tipo h en análisis isogeométrico. Nuestros métodos están basados en la proyección de Bézier, que extendemos a los espacios de splines jerárquicas. También introducimos un parámetro de balance para controlar la superposición de funciones de base a través de los niveles de la jerarquía, lo cual conduce a un condicionamiento numérico mejorado. Nuestras simulaciones de crecimiento de cáncer muestran una notable precisión con muy pocos grados de libertad en comparación con la malla uniforme que la misma simulación requeriría. Finalmente, estudiamos la interacción entre el cáncer de próstata y la hiperplasia benigna de próstata, otra patología prostática común que hace crecer al órgano gradualmente. En particular, investigamos por qué los tumores que se originan en próstatas más grandes presentan características patológicas favorables. Realizamos un estudio de simulación cualitativo extendiendo nuestro modelo matemático de crecimiento de cáncer de próstata para incluir las ecuaciones de equilibrio mecánico y los términos de acoplamiento entre estas y la dinámica tumoral. Asumimos que la deformación de la próstata es un fenómeno cuasiestático y modelamos el tejido prostático como un material elástico lineal, heterogéneo e isotrópico. Este modelo es calibrado estudiando la deformación causada por cada enfermedad independientemente. Nuestras simulaciones muestran que un historial de hiperplasia benigna de próstata crea campos de tensión mecánica en la próstata que obstaculizan el crecimiento del cáncer de próstata y limitan su invasividad.[Resumo] O cancro de próstata é un gran problema de saúde en homes de idade avanzada en todo o mundo. Esta patoloxía é máis fácil de curar nos seus estadios iniciais, cando aínda é órgano-confinada. Porén, case nunca produce ningún síntoma ata que é demasiado grande ou ten invadido outros tecidos. Polo tanto, o enfoque actual para combater o cancro de próstata é unha combinación de prevención e exames rutinarios para unha detección precoz. De feito, a maioría de casos de cancro de próstata son diagnosticados e tratados cando aínda está localizado dentro do órgano. Malia a riqueza do coñecemento acumulado sobre as bases biolóxicas e a xestión clínica da doenza, carecemos dun modelo teórico completo no que podamos organizar e comprender a enorme cantidade de datos existentes sobre o cancro de próstata. Ademais, a práctica clínica estándar en oncoloxía está baseada en gran medida en patróns estatísticos, o cal non é suficientemente preciso para individualizar a diagnose, a predición da prognose, o tratamento e o seguimento. Recentemente, a modelización e a simulación matemáticas do cancro e os seus tratamentos permitiron predicir resultados clínicos e o deseño de terapias óptimas de forma personalizada. Esta nova corrente de investigación médica denomínase oncoloxía matemática. O cancro de próstata é un candidato ideal para beneficiarse desta tecnoloxía por varios motivos. En primeiro lugar, un enfoque clínico personalizado podería contribuír a reducir as taxas de tratamento excesivo ou insuficiente de cancro de próstata. A resonancia magnética multiparamétrica úsase cada vez máis para monitorizar e diagnosticar esta enfermidade. Esta tecnoloxía de imaxe pode proporcionar abundante información para construír un modelo matemático de crecemento de cancro de próstata personalizado. Ademais, a próstata é un órgano suficientemente pequeno para perseguir a realización de simulacións preditivas a escala tisular. O crecemento do cancro de próstata tamén se pode estimar usando a concentración en sangue dun biomarcador coñecido como o antíxeno prostático específico. Adicionalmente, algúns pacientes de cancro de próstata non reciben tratamento pero son monitorizados clinicamente e se lles toman imaxes médicas periodicamente, o que abre a porta á validación in vivo de modelos. O desenvolvemento de tecnoloxías versátiles e potentes en mecánica computacional permite facer fronte aos retos derivados da anatomía prostática e a resolución dos modelos matemáticos. Finalmente, as tecnoloxías de oncoloxía matemática poden guiar as investigacións futuras sobre cancro de próstata, por exemplo, propoñendo novas estratexias de tratamento ou descubrindo mecanismos involucrados no crecemento tumoral. Polo tanto, o obxecto desta tese é proporcionar un marco computacional para a modelización e simulación do crecemento do cancro de próstata órgano-confinado de forma personalizada e a escala tisular dentro do contexto da oncoloxía matemática. Presentamos un modelo de crecemento de cancro de próstata localizado que reproduce os patróns de crecemento da enfermidade observados en estudos experimentais e clínicos. Para capturar as dinámicas acopladas dos tecidos san e tumoral, usamos o método de campo de fase xunto con ecuacións de reacción-difusión para o consumo de nutriente e a produción de antíxeno prostático específico. Empregamos este modelo para realizar as primeiras simulacións personalizadas a escala tisular do crecemento de cancro de próstata sobre a anatomía do órgano extraída de imaxes médicas. Os nosos resultados amosan unha progresión tumoral similar á observada na práctica clínica. Utilizamos a análise isoxeométrica para resolver a non-linealidade do noso sistema de ecuacións, así como a complexa anatomía da próstata e as intricadas morfoloxías tumorais. Adicionalmente, propoñemos o uso de adaptatividade dinámica de malla para acelerar os cálculos, racionalizar os recursos computacionais e facilitar a simulación nun tempo clinicamente relevante. Presentamos un conxunto de algoritmos eficientes para introducir o refinamento e o engrosado locais tipo h en análise isoxeométrica. Os nosos métodos están baseados na proxección de Bézier, que estendemos aos espazos de splines xerárquicas. Tamén introducimos un parámetro de balance para controlar a superposición de funcións de base a través dos niveis da xerarquía, o cal conduce a un condicionamento numérico mellorado. As nosas simulacións de crecemento de cancro amosan unha notable precisión con moi poucos graos de liberdade en comparación coa malla uniforme que a mesma simulación requiriría. Finalmente, estudamos a interacción entre o cancro de próstata e a hiperplasia benigna de próstata, outra patoloxía prostática común que fai crecer ao órgano gradualmente. En particular, investigamos por que os tumores que se orixinan en próstatas máis grandes presentan características patolóxicas favorables. Realizamos un estudo de simulación cualitativo estendendo o noso modelo matemático de crecemento de cancro de próstata para incluír as ecuacións de equilibrio mecánico e os termos de acoplamento entre estas e a dinámica tumoral. Asumimos que a deformación da próstata é un fenómeno cuasiestático e modelamos o tecido prostático como un material elástico lineal, heteroxéneo e isotrópico. Este modelo é calibrado estudando a deformación causada por cada enfermidade independientemente. As nosas simulacións amosan que un historial de hiperplasia benigna de próstata crea campos de tensión mecánica na próstata que obstaculizan o crecemento do cancro de próstata e limitan a súa invasividade

    Developable Quad Meshes

    Full text link
    There are different ways to capture the property of a surface being developable, i.e., it can be mapped to a planar domain without stretching or tearing. Contributions range from special parametrizations to discrete-isometric mappings. So far, a local criterion expressing the developability of general quad meshes has been lacking. In this paper, we propose a new and efficient discrete developability criterion that is based on a property well-known from differential geometry, namely a rank-deficient second fundamental form. This criterion is expressed in terms of the canonical checkerboard patterns inscribed in a quad mesh which already was successful in describing discrete-isometric mappings. In combination with standard global optimization procedures, we are able to perform developable lofting, approximation, and design. The meshes we employ are combinatorially regular quad meshes with isolated singularities but are otherwise not required to follow any special curves. They are thus easily embedded into a design workflow involving standard operations like re-meshing, trimming, and merging operations
    corecore