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Abstract

Design of surfaces and analysis of partial differential equations defined on them are of
great importance in engineering applications, e.g., structural engineering, automotive and
aerospace. This thesis focuses on isogeometric design and analysis of surfaces, which aims
to integrate engineering design and analysis by using the same representation for both. The
unresolved challenge is to develop a desirable surface representation that simultaneously
satisfies certain favourable properties on meshes of arbitrary topology around the extraordi-
nary vertices (EVs), i.e., vertices not shared by four quadrilaterals or three triangles. These
properties include high continuity(geometric or parametric), optimal convergence in finite
element analysis as well as simplicity in terms of implementation. To overcome the challenge,
we further develop subdivision and manifold surface modelling techniques, and explore a pos-
sible scheme to combine the distinct appealing properties of the two. The unique advantages
of the developed techniques have been confirmed with numerical experiments.

Subdivision surfaces generate smooth surfaces from coarse control meshes of arbi-
trary topology by recursive refinement. Around EVs the optimal refinement weights are
application-dependent. We first review subdivision-based finite elements. We then proceed to
derive the optimal subdivision weights that minimise finite element errors and can be easily
incorporated into existing implementations of subdivision schemes to achieve the same accu-
racy with much coarser meshes in engineering computations. To this end, the eigenstructure
of the subdivision matrix is extensively used and a novel local shape decomposition approach
is proposed to choose the optimal weights for each EV independently.

Manifold-based basis functions are derived by combining differential-geometric manifold
techniques with conformal parametrisations and the partition of unity method. This thesis
derives novel manifold-based basis functions with arbitrary prescribed smoothness using
quasi-conformal maps, enabling us to model and analyse surfaces with sharp features, such
as creases and corners. Their practical utility in finite element simulation of hinged or rigidly
joined structures is demonstrated with Kirchhoff-Love thin shell examples.

We also propose a particular manifold basis reproducing subdivision surfaces away from
EVs, i.e., B-splines, providing a way to combine the appealing properties of subdivision
(available in industrial software) for design and manifold basis (relatively new) for analysis.
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Chapter 1

Introduction

1.1 Motivation

Performance-driven product design consists of two integral parts, i.e., computer-aided design
(CAD) and finite element analysis (FEA). A geometry model is created in CAD software
and a FEA simulation is run to predict the performance of the designed geometry. Based
on the FEA result, the initial design will be modified iteratively to improve its performance.
The integration of CAD and FEA systems will lead to a seamless design-analysis workflow
and thus facilitate the overall product development cycle. The integration can be possibly
achieved in an isogeometric design-analysis framework, where the same parametric rep-
resentation used for geometric modelling in CAD will also be used to discretise physical
fields in FEA. However, it is challenging to develop such a parametric representation that
simultaneously satisfies all the desirable properties on meshes of arbitrary topology, such as
high geometric or parametric continuity, optimal convergence in finite element analysis as
well as simplicity in terms of implementation. This thesis focuses on the development of
parametric representations for isogeometric design and analysis of surfaces, motivated by
their wide applications in engineering, e.g., automotive, aerospace and structural engineering.
We consider surfaces that are modelled from quadrilateral meshes of arbitrary topology and
may include sharp features such as creased edges and corners, see Figure 1.1.

Isogeometric analysis

The integration of CAD and FEA is theoretically challenging but practically necessary. In
industrial practice, the design and analysis software systems use incompatible parametric
representations mainly because they were developed independently. Research about FEA,
a widely used method for simulation, dated back to the early 1940s [1, 2], whereas it
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Introduction

(a) Control mesh (b) Manifold surface

Figure 1.1: A car with creased edges and sharp corners. (a) The control mesh has arbitrary topology
and includes extraordinary vertices shared by other than four quadrilateral faces. (b) The creases and
corners are faithfully reproduced using the new manifold-based basis functions proposed in Chapter 5.

was in the 1960s that the study of interactive free-form curve/surface design used in CAD
software began [3]. The incompatibility between CAD and FEA systems requires a tedious
meshing process to convert a geometry model created in CAD into a mesh suitable for
FEA. To generate high-quality meshes for FEA is not only time-consuming but can also be
challenging. To resolve the incompatibility and improve the efficiency of the design-analysis
workflow, the concept of isogeometric analysis was proposed about a decade ago [4].

As envisioned in [4], isogeometric analysis aims to achieve a seamless engineering design-
analysis workflow by representing geometry and discretising analysis models with the same
kind of basis functions. Therefore, until recently isogeometric analysis was dominated by
Non-Uniform Rational B-Splines (NURBS) basis functions, which are prevalent in present
CAD systems. In order to represent the surface of parts with arbitrary topology, CAD
systems resort to trimmed NURBS and boundary representations (B-Reps). As pointed out
in the extensive review [5], trimming is much more complicated than most people think and
provides a deceptively simple solution without addressing the root challenge. Furthermore,
trimming generates non-watertight geometries which pose unique challenges in the analysis
context. In order to represent surfaces of arbitrary topology without turning to trimming,
unstructured meshes containing extraordinary vertices, that is, vertices inside the domain
with other than four attached quadrilateral patches, are required.

In the community of geometric design, numerous techniques have been developed to
provide smooth watertight representations around extraordinary vertices, including geomet-
rically Gk and parametrically Ck continuous constructions, subdivision surfaces and also
manifold-based surface constructions. These smooth parametrisation techniques developed to
deal with extraordinary vertices provide promising candidate basis functions for isogeometric
analysis. The application and further development of these techniques is currently a very
active area of research in isogeometric analysis, see e.g. [6–11]. The search for easy to
implement and optimally convergent schemes, especially with Ck≥2 and Gk≥2, is still open.

2



1.2 Contributions

In this thesis, subdivision and manifold surface modelling techniques are investigated and
further developed to improve their suitability for isogeometric analysis. A more detailed
introduction of each technique can be found in Chapter 4 and Chapter 5. In a complemen-
tary line of research, there has been progress in isogeometric analysis of shells based on
trimmed surfaces and weak enforcement of mechanical continuity conditions across patch
boundaries [12, 13].

1.2 Contributions

This thesis has three main contributions to the progress of isogeometric analysis. The main
obstacle faced by the realisation of isogeometric analysis in industrial standard is that the
ideal basis functions suitable for both geometric design and simulation have not yet been
developed. Each candidate method needs more or less further improvement. This thesis
aims to improve the suitability of subdivision and manifold surface modelling techniques
for isogeometric analysis. These are two promising candidate methods in our opinion, even
though there are still remaining challenges.

Subdivision surfaces, as a generalisation of splines, were first introduced and studied
in the late 1970s [14, 15]. Before the advent of isogeometric analysis, it had already
been realised that subdivision surfaces provide also ideal basis functions for finite element
analysis, in particular, of thin-shells [6, 16–18]. As known, around extraordinary vertices the
subdivision weights need to be carefully tuned to achieve certain surface properties. However,
it is mathematically impossible to simultaneously achieve all (second order) smoothness
properties. Therefore, the optimal subdivision weights are application-dependent. While
previous research works focus on subdivision tuning for geometry modelling, this thesis
makes the first attempt to derive optimal subdivision weights for isogeometric analysis
applications. As our computations confirm, the optimised subdivision weights yield a
reduction of 50% and more in discretisation errors in the energy and L2 norms. Although, as
to be expected, the convergence rates are the same as for the classical Catmull-Clark weights,
the convergence constants are improved. The optimised weights can be easily incorporated
into existing implementations of Catmull-Clark subdivision to achieve the same accuracy
with much coarser meshes in engineering computations. This work has been published in the
journal Computer-Aided Design [11].

Manifold-based surface constructions have a rich history in geometric modelling [19–23].
Manifold-based basis functions for isogeometric analysis were first introduced about two
years ago in [24]. The proposed Ck≥1 continuous manifold basis functions can represent parts
with arbitrary topology and show optimal convergence rates in finite element computations.

3
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This thesis extends previous work on smooth manifold basis functions [24] and derives
novel manifold-based basis functions with arbitrary prescribed smoothness to represent
surfaces with sharp features. This is achieved by proposing a new quasi-conformal mapping
to parametrise the local manifold chart domains with arbitrary prescribed creases. This
extension greatly widens the range of engineering geometries that can be modelled and
analysed by manifold-based basis functions. This work has been presented at international
conferences as well as invited workshops. A paper has been submitted to the journal
Computer Methods in Applied Mechanics and Engineering.

This thesis also builds a connection between subdivision and manifold surface mod-
elling techniques by proposing a particular manifold construction that is able to reproduce
subdivision surfaces in regular region. This construction provides a foundation for a quasi-
isogeometric design-analysis framework, where geometries can be designed using subdivision
surfaces given their appealing properties in surface modelling and analysed using manifold
representations for their optimal convergence in finite element analysis. Even though this
idea differs from the conventional isogeometric paradigm, it is potentially useful to point out
a direction towards the realisation of an integrated CAD-FEA system. This work has been
included as a section of a paper to be published in the proceedings of IGAA 2018 conference.

1.3 Outline

Chapter 2 introduces the parametric geometry representations used in CAD with a focus on
the underlying basis functions, which forms a basis of the research work presented in the
following chapters. We start with univariate basis functions, including Bernstein polynomials
for Bézier curves and B-spline basis functions for splines. Then we proceed to the subdivision
construction for B-spline curves. In particular, we focus on subdivision of cubic B-spline
curves to introduce the knot insertion algorithm and boundary conditions for B-splines.

Chapter 3 motivates all the concepts required to understand subdivision-based isoge-
ometric analysis. To keep the discussion concise, one-dimensional problems are used as
illustrative examples to demonstrate in detail how to use subdivision-generated basis functions
to perform finite element analysis.

Chapter 4 presents the research work on subdivision surfaces. We investigate how to
systematically optimise subdivision weights for isogeometric analysis applications. The
proposed optimisation is demonstrated for Catmull-Clark subdivision scheme, the most
widely used subdivision technique.

Chapter 5 presents the research work on manifold-based basis functions. We extend the
smooth manifold basis functions proposed in [24] to model and perform isogeometric analysis

4



1.3 Outline

on surfaces with arbitrary prescribed sharp features. To this end a new quasi-conformal map
is proposed to parametrise the local manifold chart domains.

Chapter 6 discusses possible ways to construct a manifold representation that is able
to reproduce subdivision surfaces in regular region, i.e., tensor-product B-splines. The
discussion is restricted to the univariate setting without losing generality.

Chapter 7 summarises the thesis and points out several directions for future research.
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Chapter 2

Basics of subdivision curves

This chapter provides basic materials that will help to understand subdivision curves and thus
subdivision surfaces. We first review Bézier curves and their properties. We then proceed to
B-splines by introducing their definition, de Boor’s evaluation algorithm and Boehm’s knot
insertions algorithm. With the knot insertion algorithm in place, we introduce subdivision
curves focusing on the univariate subdivision schemes that generate cubic B-splines. At the
end of this chapter, boundary conditions and creases for subdivision curves are discussed.
We will demonstrate how to use the introduced univariate basis functions constructed by
subdivision for finite element analysis in the next chapter.

2.1 Bézier curves

A Bézier curve is a parametric curve that is frequently used to model smooth curves. It can be
constructed recursively by the de Casteljau algorithm, see e.g. [25, Chapter 3]. Alternatively,
a Bézier curve ccc(t) can be explicitly represented as

ccc(t) =
n

∑
j=0

Bn
j(t)ccc j , t ∈ [0,1] , (2.1)

where ccc j ∈ Rd are the control points in real coordinate space of d dimensions and Bn
j(t) are

Bernstein polynomials of degree n defined as

Bn
j(t) =

(
n
j

)
t j(1− t)n− j , j = 0,1,2, · · · ,n (2.2)

with
(n

j

)
= n!

j!(n− j)! denoting binomial coefficients. Figure 2.1 plots Bézier curves and
Bernstein basis of different degrees, from linear to cubic. Bézier curves have many important

7



Basics of subdivision curves

properties making them a popular technique for geometric design. A detailed introduction
of Bézier curve properties can be found in [25, Chapter 4 and 5]. In the following, we only
summarise a few that are relevant to this work.

(a) Linear

(b) Quadratic

(c) Cubic

Figure 2.1: Left: Bézier curves (solid) of different degrees and their control polygons (dashed); Right:
corresponding Bernstein basis Bn

j(t) of degree n ∈ {1,2,3} and index j ∈ {0,1, · · · ,n} .

8



2.1 Bézier curves

Affine invariance

From (2.2), it is straightforward to verify that Bernstein polynomials form a partition of unity,
i.e.,

n

∑
j=0

Bn
j(t) =

n

∑
j

(
n
j

)
t j(1− t)n− j = [(1− t)+ t]n ≡ 1 , (2.3)

leading to

AAAccc(t)+ vvv = AAA
n

∑
j=0

Bn
j(t)ccc j + vvv

n

∑
j=0

Bn
j(t) =

n

∑
j=0

Bn
j(t)(AAAccc j + vvv) . (2.4)

This means that applying an affine transformation to a Bézier curve is equivalent to simply
applying the affine map to its control points, which provides convenience for geometric
modelling.

Convex hull property

Bézier curves always fall within the convex hull of their control points, see Figure 2.2.
Given (2.2), it is clear that Bernstein polynomials are nonnegative for t ∈ [0,1] . Also, they
have been shown to sum up to one in (2.3). As a result, the convex hull property follows.

Figure 2.2: A cubic Bézier curves and the convex hull (shaded in grey) of its four control points.

Endpoint interpolation

A Bézier curve starts from its first control point and ends at its last control point, see the plots
in Figure 2.1. From the definition of Bernstein basis (2.2), we have

Bn
j(0) =

1 if j = 0

0 else
, and Bn

j(1) =

1 if j = n

0 else
, (2.5)

which together with (2.1) proves the following endpoint interpolation property:

ccc(0) = ccc0 , ccc(1) = cccn . (2.6)

9
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Derivatives

We first consider the derivatives of Bernstein polynomials,

dBn
j(t)

dt
=

d
dt

(
n
j

)
t j(1− t)n− j

=
n!

( j−1)!(n− j)!
t j−1(1− t)n− j − n!

j!(n− j−1)!
t j(1− t)n− j−1

= n
(

Bn−1
j−1(t)−Bn−1

j (t)
)
.

(2.7)

Note that by default Bn
j(t) = 0 for j /∈ {0,1, · · · ,n} . By performing the differentiation

repeatedly, we obtain the following general expression for r-th order derivatives:

drBn
j(t)

dtr =
n!

(n− r)!

r

∑
k=0

(
r
k

)
(−1)r−kBn−r

j−k(t) . (2.8)

Now we are ready to derive the r-th order derivatives of Bézier curves, i.e.,

drccc(t)
dtr =

n

∑
j=0

ccc j
drBn

j(t)

dtr

=
n!

(n− r)!

n

∑
j=0

r

∑
k=0

(
r
k

)
(−1)r−kBn−r

j−k(t)ccc j

=
n!

(n− r)!

n−r

∑
j=0

Bn−r
j (t)

r

∑
k=0

(
r
k

)
(−1)r−kccc j+k︸ ︷︷ ︸
∆rccc j

=
n!

(n− r)!

n−r

∑
j=0

Bn−r
j (t)∆rccc j

(2.9)

where ∆r is the r-th order difference operator, e.g,

∆
1ccc j = ccc j+1 − ccc j , ∆

2ccc j = ccc j+2 −2ccc j+1 + ccc j . (2.10)

As shown in (2.9), the r-th order derivatives of degree-n Bézier curves can be interpreted as
Bézier curves of degree n− r with control points n!

(n−r)!∆
rccc j. Recall the property of endpoint

interpolation (2.5), the derivatives of Bézier curves at two ends are determined by the first
and last well-defined r-th order difference, i.e.,

drccc(0)
dtr =

n!
(n− r)!

∆
rccc0 ,

drccc(1)
dtr =

n!
(n− r)!

∆
rcccn−r . (2.11)

10



2.1 Bézier curves

See (2.9) for the expression of the difference operator ∆rccc j. This shows that the r-th order
derivatives of Bézier curves at two ends only depend on the r + 1 closest control points
to each end. The first and second order derivatives are of particular interests in practice.
Plugging (2.10) into (2.11) leads to

dccc(0)
dt

= n(ccc1 − ccc0) ,
d2ccc(0)

dt2 = n(n−1)(ccc2 −2ccc1 + ccc0) ,

dccc(1)
dt

= n(cccn − cccn−1) ,
d2ccc(1)

dt2 = n(n−1)(cccn −2cccn−1 + cccn−2) .

(2.12)

In particular, Bézier curves are tangential to the first segment ccc0ccc1 and last segment cccn−1cccn

of the control polygons, see Figure 2.1.

Splines in Bézier form

A spline is a piecewise polynomial, whose pieces meet with the highest possible continuity
for the given degree. We can represent the individual pieces in the Bézier representation and
this provides more flexible local control than one single Bézier segment. With the explicit
expression for derivatives (2.11), it becomes straightforward to construct splines that are Cr-
continuous at junction nodes in Bézier form. Consider two Bézier curves of the same degree
n defined on two arbitrary consecutive parameter domains [u0,u1] and [u1,u2]. To be able to
use the derivative expressions we have obtained so far in the reference domain t ∈ [0,1], we
first map the arbitrary parameter domain u ∈ [u j,u j+1] to the reference domain t ∈ [0,1] with
a linear transformation t j(u) = (u−u j)/(u j+1 −u j). As the result, the composed piecewise
Bézier curve is defined as follows:

ccc(u) =

∑
n
j=0 Bn

j(t)ccc j , u0 ≤ u ≤ u1

∑
n
j=0 Bn

j(t)ccc j+n , u1 ≤ u ≤ u2
with t =

u−u j

u j+1 −u j
, u ∈ [u j,u j+1] . (2.13)

Then the derivatives for u ∈ [u j,u j+1] are calculated using the chain rule, i.e.,

dccc(u)
du

=
dt
du

dccc(t)
dt

=
1

u j+1 −u j

dccc(t)
dt

, (2.14)

which generalises to
drccc(u)

dur =
1

(u j+1 −u j)r
drccc(t)

dtr . (2.15)

Combining (2.12) and (2.15) gives the conditions that should be satisfied by the control
points to make the composed curve defined in (2.13) C2 continuous at the junction point u1,

11



Basics of subdivision curves

i.e.,

cccn − cccn−1

u1 −u0
=

cccn+1 − cccn

u2 −u1
, (2.16a)

cccn −2cccn−1 + cccn−2

(u1 −u0)2 =
cccn+2 −2cccn+1 + cccn

(u2 −u1)2 . (2.16b)

As an illustrative example, Figure 2.3 shows two cubic Bézier curves attached together C2

continuously. The first and second derivatives plotted in the same figure clearly indicate
the C2 continuity of the composite curve. Note that the derivatives of the x-component of
the curve are not considered, because the chosen control points lead to cx(u) = u meaning
that cx(u) is C∞ continuous at the junction node u1 = 1. The linear constraints of control
points (2.16) effectively reduce the number of degrees of freedom. The same effect can be
achieved by a basis transformation. This means a spline can be represented by unconstrained
control points and the transformed basis functions, leading to the B-spline form. In practice,
the B-spline form is easier to use since one can move each control point freely without
breaking the continuity of the spline. We will introduce the B-spline basis in Section 2.2.

Figure 2.3: A C2 continuous piecewise cubic curve composed of two Bézier pieces (left) and
the derivatives of the y-component (right). The parameter domains are [u0,u1] = [0,1] and
[u1,u2] = [1,2] . The control points take for x-coordinates [0,1,2,3,4,5,6]/3 and y-coordinates
[0,0.4,0.1,0.25,0.4,1,1] . The C2 continuity requirements (2.16) are satisfied, leading to continuous
derivatives up to second order.

Degree elevation

Any Bézier curve of degree n can also be written as a Bézier curve of degree d ≥ n. This
property is useful for the technique of creating piecewise Bézier surfaces by gluing several
Bézier patches of different degrees together. This technique will be exploited in Chapter 5
for the modelling of manifold-based surfaces with sharp features.
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2.1 Bézier curves

To keep the shape of the represented curve unchanged while elevating the degree from n
to n+1, the new control points cccn+1

j are determined as follows:

ccc(t) = [(1− t)+ t]
n

∑
j=0

Bn
j(t)ccc

n
j

=
n

∑
j=0

n!
j!(n− j)!

t j(1− t)n− j+1cccn
j +

n

∑
j=0

n!
j!(n− j)!

t j+1(1− t)n− jcccn
j

=
n

∑
j=0

n+1− j
n+1

Bn+1
j (t)cccn

j +
n

∑
j=0

j+1
n+1

Bn+1
j+1(t)ccc

n
j

=
n+1

∑
j=0

n+1− j
n+1

Bn+1
j (t)cccn

j +
n+1

∑
j=0

j
n+1

Bn+1
j (t)cccn

j−1

=
n+1

∑
j=0

Bn+1
j (t)

(
n+1− j

n+1
cccn

j +
j

n+1
cccn

j−1

)
︸ ︷︷ ︸

cccn+1
j

.

(2.17)

Note that the endpoint interpolation indicates the endpoints stay unchanged, i.e., cccn+1
0 = cccn

0

and cccn+1
n+1 = cccn

n, which are naturally implied in (2.17). Figure 2.4 illustrates the process of
degree elevation by taking quadratic and cubic curves as examples. In each case, the new
control points get closer to the curve compared with the control points at a lower degree. The
degree elevation process can be applied repeatedly and the control points will converge to
the curve represented.

(a) Quadratic to cubic (b) Cubic to quartic

Figure 2.4: Degree elevation of Bézier curves. The new control points cccn+1
j are linear averages of the

lower degree control points cccn
j according to (2.17). The new control polygon (grey solid) gets closer

to the curve compared with the control polygon (dashed black) at a lower degree.
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Basics of subdivision curves

2.2 B-splines

2.2.1 Definition of B-spline basis functions

Consider a non-decreasing knot vector U = {u0,u1, · · · ,un+1}, the B-spline basis functions
Bn

j(u) of degree n = 0 are step functions, defined as:

B0
j(u) =

1 , if u j ≤ u < u j+1

0 , otherwise
, (2.18)

and B-splines of higher degrees can be constructed by the Cox-de Boor recursion formula,
i.e.,

Bn
j(u) = α

n−1
j (u)Bn−1

j (u)+
(

1−α
n−1
j+1 (u)

)
Bn−1

j+1(u) , (2.19a)

with

α
n
j (u) =


u−u j

u j+n+1−u j
, if u j+n+1 ̸= u j

0 , otherwise
. (2.19b)

αn
j (u) is a linear function increasing from 0 to 1 for u ∈ [u j,u j+n+1], i.e. the domain where

Bn
j(u) is not zero. Figure 2.5 plots the B-splines Bn

j(u) up to degree n = 2. I would like to
point out that in this thesis we use Bn

j to denote both Bernstein polynomials and B-splines.
As we shall see in a later section, Bernstein polynomials are particular instances of B-splines.

(a) Strictly increasing knots (b) Double knots at u j+1 = u j+2

Figure 2.5: B-splines Bn
j(u) of degree n ∈ {0,1,2} , defined over two different knot vectors. In (a), at

the knot u j+1 B-splines B0
j(u), B1

j(u) and B2
j(u) are C−1, C0 and C1 continuous, respectively. In (b),

however, at the duplicated knot u j+1 = u j+2 the B-spline B2
j(u) is only C0 continuous and B1

j(u) only
C−1 continuous.
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2.2 B-splines

Local support

The support of a function is the domain where it is not zero. Each degree-n B-spline Bn
j(u)

has a local support [u j,u j+n+1] , which consists of only n+1 knot intervals.

Smoothness

B-spline Bn
j(u) is a piecewise polynomial of degree n, completely determined by the n+2

knots {u j,u j+1, · · · ,u j+n+1} as well as the prescribed degree n. Within each knot span, it is a
degree-n polynomial and thus C∞ continuous. At each knot, however, it is Cn−m continuous,
where m denotes the multiplicity of the knot. This means for a knot vector without any
repeated knots (m = 1) the B-splines of degree n reach the maximum continuity Cn−1 . From
Figure 2.5, we can notice that the knot repetition u j+1 = u j+2 reduces the smoothness of the
B-splines B1

j(u) and B2
j(u), whereas B0

j(u) is not affected by this duplication because the
knot u j+2 is outside its support.

Uniform B-splines

A commonly used knot vector is U = {0,1,2, · · ·}, containing knots that are equally-spaced
in the parametric space. This type of uniform knot vectors generate uniform B-splines, also
known as cardinal B-splines, which are shifted instances of Bn

0(u) .

Bn
j(u) = Bn

0(u− j) , j ∈ {0,1,2, · · ·} (2.20)

Figure 2.6 plots cardinal B-splines of different degrees from linear to cubic. Uniform B-
spline basis functions are much simpler in terms of computations, compared with B-splines
defined by non-uniform knots. The simplicity makes uniform B-splines popular in most
implementations, such as approximation and finite element analysis.

Two-scale relation of uniform B-splines

Consider a uniform knot vector U = {0,1,2, · · ·} and refine it by bisection, i.e., inserting new
knots halfway between existing knots. The new knot vector is Û = {0,1/2,1, · · ·}. There
is a scaling relation between the uniform B-splines defined on the initial knot vector U and
those on the refined knot vector Û , i.e.

B̂n
2 j(u) = Bn

j(2u) = Bn
0(2u− j) , (2.21)
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(a) Linear

(b) Quadratic

(c) Cubic

Figure 2.6: B-splines Bn
j(u) defined on a uniform knot vector U = 0,1, · · · ,z. Note that given a

uniform knot vector U = {0,1, · · · ,z} a complete and linearly independent piecewise polynomial
basis is only formed over part of the parameter domain n ≤ u ≤ z−n (highlighted in red) for B-splines
of degree n .

where the factor 2 scales the support size of a B-spline at the finer level with respect to the
initial support size. Moreover, the uniform B-splines of degree n defined on a knot vector U
can be represented as a linear combination of B-splines defined on the bisected knot vector
Û , i.e.,

Bn
j(u) =

n+1

∑
k=0

Sn
j,kB̂n

2 j+k(u) , with Sn
j,k =

1
2n

(
n+1

k

)
(2.22)

where Sn
j,k denotes the subdivision matrix and its entries are determined as the usual binomial

coefficients. (2.22) is known as refinability of uniform B-splines, which is one of the most
important properties of B-splines related to its application in adaptive finite element analysis.
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2.2 B-splines

The n+ 2 B-splines B̂n
2 j+k for k ∈ {0,1,2, · · · ,n+ 1} on the refined knot vector Û =

{0,1/2,1, · · ·} which can reproduce the B-spline Bn
j are called the children B-splines of Bn

j .
For example, each linear B-spline B1

j(u) can be represented by its three children as

B1
j(u) =

1
2
(
B̂1

2 j(u)+2B̂1
2 j+1(u)+ B̂1

2 j+2(u)
)
,

and each quadratic B-spline B2
j(u) can be represented by its four children as

B2
j(u) =

1
4
(
B̂2

2 j(u)+3B̂2
2 j+1(u)+3B̂2

2 j+2(u)+ B̂2
2 j+3(u)

)
.

Figure 2.7 plots a linear B-spline and a quadratic B-spline as well as their children B-splines.

(a) Linear (b) Quadratic

Figure 2.7: B-splines Bn
j(u) defined on a knot vector U can be represented by a linear combination of

their children B-splines B̂2 j+k(u) defined on the bisected knot vector Û .

2.2.2 Evaluation by de Boor’s algorithm

Consider a knot vector U = {u0,u1, · · · ,un, · · · ,un+k, · · · ,u2n+k} defining a degree-n B-
splines basis Bn

j(u) , j ∈ {0,1, · · · ,n+k−1}. The B-spline basis is complete over the domain
u ∈ [un,un+k] consisting of k intervals [u j,u j+1] , j ∈ {n,1, · · · ,n+ k−1}. For example, in
Figure 2.6 the knot vector is U = {u0,u1, · · · ,u7} and k = 3 for the quadratic n = 2 plot.
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A B-spline curve of degree-n, which is essentially a piecewise polynomial consisting of k
polynomial segments connected Cn−1 continuously at the knots, can be represented as

ccc(u) =
n+k−1

∑
j=0

Bn
j(u)ppp j = BBBTppp , (2.23)

where BBB is a vector containing all the B-spline basis functions Bn
j(u) and ppp a vector containing

all control points ppp j. Since the B-spline basis functions Bn
j(u) are uniquely determined by

the knot vector U and the prescribed degree n, the B-spline curve ccc(u) of a given degree
depends only on the knots and the control points ppp j.

The de Boor algorithm [26] points out an efficient way to evaluate the B-spline curve
at any parameter value by recursive averages. It is considered as the generalisation of de
Casteljau algorithm for Bézier curve evaluation to B-splines. Using de Boor’s algorithm, we
evaluate a B-spline recursively as follows:

ppp0
j(u) = ppp j , j = 0, ...,n,

pppr
j(u) =

u j+n+1−r −u
u j+n+1−r −u j

pppr−1
j−1 +

u−u j

u j+n+1−r −u j
pppr−1

j ,r = 1, · · · ,n, j = r, · · · ,n ,

ccc(u) = pppn
n(u) .

(2.24)

A graphical illustration of the recursive evaluation process given by de Boor’s algorithm (2.24)
is provided in Figure 2.8 taking cubic B-splines as an example.

Figure 2.8: Illustration of de Boor’s algorithm, taking as an example the evaluation of a cubic B-spline
curve segment over the interval [u3,u4].
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2.2.3 Knot insertion by Boehm’s algorithm

Knot insertion is the most important algorithm related to the application of B-splines in
computer-aided geometric design. For example, it will help us to understand the subdivision
technique in curve/surface modelling.

Given a knot vector U = {· · · ,u j,u j+1,u j+2, · · ·} , a new knot vector Û can be obtained
by inserting a new knot û anywhere as long as the non-decreasing order is still maintained.
Knot insertion involves representing the original B-spline curve defined by the knot vector U
with the refined knot vector Û , i.e.,

ccc(u) = BBBTppp = B̂BB
T

p̂pp , (2.25)

where BBB is a vector containing all the B-spline basis functions Bn
j(u) defined over the original

knot vector U and B̂BB a vector of B-spline basis functions B̂n
j(u) of the same degree but defined

over the new knot vector Û =U ∪{û} . Assume we insert a new knot û with ul ≤ û ≤ ul+1,
which results in a new knot vector Û with knots

û j = u j for j ≤ l , ûl+1 = û , û j = u j−1 for j ≥ l +2 . (2.26)

According to Boehm’s knot insertion algorithm [27], the B-spline basis functions before and
after knot insertion are related by the following linear relation:

Bn
j(u) = α̂

n
j B̂n

j(u)+(1− α̂
n
j+1)B̂

n
j+1(u) , (2.27a)

with

α̂
n
j =


1 , j ≤ l −n

û−û j
û j+n+1−û j

=
û−u j

u j+n−u j
, l −n < j < l +1

0 , j ≥ l +1

. (2.27b)

Figure 2.9 takes quadratic B-splines as an example to illustrate the linear relation (2.27) due
to knot insertion.

Given (2.25), it is clear that the relation between the B-splines BBB and B̂BB also relates the
control points p̂pp after knot insertion to original control points ppp. Boehm’s insertion algorithm
also gives

p̂pp j = α̂
n
j ppp j +(1− α̂

n
j )ppp j−1 , (2.28)
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(a) New knot û inserted to the middle knot interval (b) New knot û inserted to the last knot interval

Figure 2.9: A quadratic B-spline B2
j(u) defined by the original knot vector U is a linear combination

of the new quadratic B-splines B̂2
j(u) and B̂2

j+1(u) defined by the new knot vector Û =U ∪{û}.

where the coefficients α̂n
j are computed as (2.27b). This means we can keep the shape of the

represented B-spline curve during the knot insertion assuming the new control points are
chosen as affine averages of original control points according to (2.28).

In Figure 2.10, we take a cubic B-spline as an example to illustrate Boehm’s knot insertion
algorithm (2.27) and (2.28). In this example, we insert a new knot û to the knot interval
[u3,u4] and consequently create a refined knot vector Û = {u0, · · · ,u3, û,u4, · · ·}. Notice the
similarity between Figure 2.10a and the bottom part of the de Boor algorithm in Figure 2.8.
In fact, it has been pointed out in [28] that Boehm’s knot insertion algorithm is de Boor’s
algorithm. Boehm’s knot insertion algorithm can be applied repeatedly to insert multiple
knots one by one. As an application of Boehm’s knot insertion algorithm, we are going to use
repeated knot insertion to show the two-scale relation (2.22) for uniform cubic B-splines.

(a) Control points before (bottom) and after (top) knot insertion

(b) B-spline basis functions before (bottom) and after (top) knot insertion

Figure 2.10: Illustration of the Boehm algorithm for B-spline knot insertion, taking as an example
inserting a new knot û into the interval [u3,u4] and subdividing the cubic B-spline curve segment into
two. Dashed arrow means weight is 1. Omitted weights in (b) are the same as in (a).
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Two-scale relation as repeated knot insertion

In Section 2.2.1, we have mentioned the two-scale relation that a uniform B-spline of degree
n can be reproduced by its n+2 children B-splines defined on the bisected knot vector. Now
we are going to show the two-scale relation is a result of repeated knot insertion.

Let us consider a uniform knot vector U = {0,1,2,3,4} which defines one cubic B-spline
B3

0(u). Bisecting the knot vector means inserting four knots {1
2 ,

3
2 ,

5
2 ,

7
2}. We can apply

Boehm’s knot insertion algorithm repeatedly to insert the new knots one by one. Figure 2.11
illustrates the procedure of repeated knot insertion. For notation simplicity, we denote each
B-spline B3

j(u) by its five knots. For example, 01234 at the top of Figure 2.11 represents
the initial uniform B-spline B3

0(u). We first insert the knot 3
2 and end up with two B-splines

013
223 and 13

2234. The diagram means

B3
01234(u) =

3
2 −0
3−0

B3
01 3

2 23(u)+
4− 3

2
4−1

B3
1 3

2 234(u) =
1
2

B3
01 3

2 23(u)+
5
6

B3
1 3

2 234(u) (2.29)

which is computed from (2.27). As shown in Figure 2.11, the new knot 5
2 is inserted at the

second step (from second to third row). After that, two knots 1
2 and 7

2 are inserted at the same
time because they are so far away that the insertion of one knot does not interfere with the
insertion of the other. From the tree structure in Figure 2.11, we can compute the contribution
from each child B-spline to the original uniform cubic B-spline by multiplying the weights
associated with relevant branches. For example, the contribution from the first child B-spline
B̂3

0(u) denoted by five knots 01
213

22 is computed as

1
2 −0
2−0

·
5
2 −0
5
2 −0

·
3
2 −0
3−0

=
1
8
. (2.30)

As a result of the repeated knot insertion shown in Figure 2.11, we obtain

B3
0(u) =

1
8
(
B̂3

0(u)+4B̂3
1(u)+6B̂3

2(u)+4B̂3
3(u)+ B̂3

4(u)
)
, (2.31)

which agrees with the two-scale relation

Bn
j(u) =

n+1

∑
k=0

Sn
j,kB̂n

2 j+k(u) , with Sn
j,k =

1
2n

(
n+1

k

)
. (2.32)

Figure 2.12 plots a uniform cubic B-spline and its five children B-splines scaled with the
coefficients given in (2.31).
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Basics of subdivision curves

Figure 2.11: Knot insertion algorithm applied repeatedly to insert new knots {1
2 ,

3
2 ,

5
2 ,

7
2} to the

uniform knot vector U = {0,1,2,3,4}. The new knot vector Û = {0, 1
2 ,1, · · · ,4} defines five cubic

B-splines B̂3
j(u). All cubic B-splines are labelled by their five knots. The original B-spline and

its five children B-splines defined on the bisected new knot sequence Û are related by B3
0(u) =

1
8

(
B̂3

0(u)+4B̂3
1(u)+6B̂3

2(u)+4B̂3
3(u)+ B̂3

4(u)
)
.

Figure 2.12: Illustration of the two-scale relation for uniform cubic B-splines, i.e., B3
0(u) =

1
8

(
B̂3

0(u)+4B̂3
1(u)+6B̂3

2(u)+4B̂3
3(u)+ B̂3

4(u)
)
.

2.3 Subdivision curves

Subdivision curves, as the univariate counterpart of subdivision surfaces, are methods of
representing smooth curves by specifying a coarse piecewise linear control polygon. The
represented smooth curves can be calculated from the initial coarse control polygon as the
limit curves of recursive subdivision of each polygon segment into two. The first algorithm
for generating smooth curves through successive subdivision is known as Chaikin’s corner-
cutting algorithm [29], which has been realised to generate quadratic B-spline curves [30].
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2.3 Subdivision curves

In fact, uniform B-splines of any degree n can be constructed as the limit curves of recursive
Lane-Riesenfeld subdivision [31] with each subdivision step involving a refine stage followed
by n−1 smooth stages.

In this section, we only introduce two subdivision schemes generating uniform and non-
uniform cubic B-splines, respectively. They are the univariate instances of Catmull-Clark
subdivision [14] and NURBS-compatible subdivision schemes [32].

Central-knot labelling

In previous sections, we label each B-spline by its first knot such that a linear B-spline
B1

j(u) is defined by knots {u j,u j+1,u j+2}, see Figure 2.7. In implementation of subdivision
curves/surfaces as well as finite element analysis, however, it is more intuitive to label a
B-spline of odd degree by its central knot such that B1

j(u) is define by knots {u j−1,u j,u j+1}.
In this case, the two-scale relation for linear uniform B-splines shown in Figure 2.7 becomes

B1
j(u) =

1
2
(
B̂1

2 j−1(u)+2B̂1
2 j(u)+ B̂1

2 j+1(u)
)
. (2.33)

The central-knot labelling is used in the rest of this thesis.

2.3.1 Subdivision generating uniform cubic B-splines

For uniform B-splines, the knots are equidistant in the parameter space. To keep the uni-
formity at each subdivision step we bisect the knot vector U by inserting a new knot in the
middle of each knot interval. With the aforementioned central-knot labelling, the two-scale
relation (2.22) in terms of uniform cubic B-splines becomes

B3
j(u) =

1
8

(
B̂3

2 j−2(u)+4B̂3
2 j−1(u)+6B̂3

2 j(u)+4B̂3
2 j+1(u)+ B̂3

2 j+2(u)
)
. (2.34)

As we only discuss subdivision for cubic B-splines, the superscript denoting degree is omitted
for simplicity. Then the two scale-relation (2.34) can be written in a compact form as

BBB = SSSTB̂BB . (2.35)

where BBB is a vector containing the B-spline basis functions before subdivision and B̂BB con-
taining the B-spline basis after subdivision. The matrix SSS stores all the coefficients in (2.34).
Recall that subdivision keeps the represented B-spline curves unchanged, i.e.,

ccc(u) = BBBTppp = B̂BB
T

SSSppp = B̂BB
T

p̂pp . (2.36)
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Given that B̂BB represents a linearly independent B-spline basis, (2.36) results in

p̂pp = SSSppp . (2.37)

SSS =
1
8



. . .

1 6 1 0 0 0
0 4 4 0 0 0
0 1 6 1 0 0
0 0 4 4 0 0
0 0 1 6 1 0
0 0 0 4 4 0
0 0 0 1 6 1

. . .


(2.38)

Subdivision matrix: A matrix relates the B-splines and control points before and after
refinement such that BBB = SSSTB̂BB and p̂pp = SSSppp.

Mask: Each column of the subdivision matrix contains the set of weights indicating the
influence of a specific old control point on new ones, e.g., [1 4 6 4 1]/8 for cubic B-splines
shown in Figure 2.13. In the case of subdivision of uniform B-splines of degree n, without
considering the influence of boundaries, the mask is unique.

Stencils: Each row of the subdivision matrix contains the set of weights indicating the
contributions from multiple old control points to a specific new control point, e.g., [4 4]/8
for new control points and [1 6 1]/8 for existing control points shown in Figure (2.14). The
weights in each stencil sum up to one.

Notice that stencils in Figure 2.14 and the mask in Figure 2.13 express the same sub-
division weights in (2.38). In terms of implementation, it is also common to apply one
subdivision refinement of cubic uniform B-splines in two steps using a variant of stencils
given in Figure 2.15. In this thesis, we use stencils or their derivatives to define a subdivision
scheme.

Figure 2.13: Graphical illustration of univariate mask for cubic uniform B-splines. The mask
indicates the influence of each old control point (empty circle) on the new ones after subdivision.
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2.3 Subdivision curves

(a) Stencil for new face vertices (b) Stencil for existing vertices

Figure 2.14: Graphical illustration of univariate stencils for cubic uniform B-splines. (a): Stencil for
computing the positions of newly inserted control points (blue squares). (b) Stencil for computing the
new positions of existing control points (empty circles).

(a) Step 1: insert new edge vertices (b) Step 2: update existing vertices

Figure 2.15: Implementing one subdivision refinement of cubic B-splines in two steps: (a) new
vertices are inserted to middle of each edge; (b) existing vertices are computed as weighted average of
two adjacent new edge vertices and itself.

2.3.2 Subdivision generating non-uniform cubic B-splines

Though uniform B-splines are popular in most implementations, non-uniform knot vectors
are needed to model sharp features or fine features. Non-uniform knots are also used to
interpolate endpoints. A univariate subdivision scheme corresponding to non-uniform B-
splines of any degree is proposed in [33]. It also provides the flexibility of selective knot
insertion meaning that zero or one knot is inserted into any non-zero knot intervals in one
subdivision step. One subdivision step is factorised to a refine stage and several smooth stages.
Given the B-spline degree n, a refine stage and ⌊n/2⌋ smooth stages are needed to compute
the new control points after subdivision. The derivation is related to the blossom or polar
form of a degree-n polynomial p(t), which is a unique symmetric multiaffine polynomial
Bp(t1, t2, · · · , tn) such that Bp(t, · · · , t) = p(t). Readers who are interested in the blossom
form for B-splines are recommended to read [28] and the references therein. Here, we simply
point out that the B-spline control point ppp j, which is corresponding to the B-spline basis B3

j(u)
defined by five knots {u j−2,u j−1,u j,u j+1,u j+2}, is given by the blossom evaluated at three
consecutive knots Bp(u j−1,u j,u j+1). During the subdivision refinement, the B-spline curve
stays unchanged, meaning that the unique blossom form also stays unchanged. Therefore,
each control point ppp j is uniquely determined by the three knots {u j−1,u j,u j+1}, which we
could use to label each control point by omitting the blossom symbol.
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We follow the selective knot insertion subdivision algorithm given in [33] to derive the
subdivision weights for cubic non-uniform B-splines. For cubic B-splines with n = 3, only
one refine stage and one smooth stage are required. Consider a knot vector U of nine knots
and insert two knots ûα ∈ [u3,u4] and ûβ ∈ [u4,u5] as below:

U = {u0 u1 u2 u3 u4 u5 u6 u7 u8}
Û \U = { ûα ûβ }

.

Figure 2.16 illustrates one subdivision step. At the refine stage, new control points denoted
by u3ûαu4 and u4ûβ u5 are inserted as affine averages of the two adjacent control points. At
this stage, new knots are only allowed to be inserted to the middle of three blossom entries.
Now we have the correct number of control points but the knots used as blossom entries are
not consistent with the refined knot vector Û . Therefore, at the smooth stage, we update with
control points by inserting the knots as required, where we encounter three cases: a knot
inserted on the left and a knot inserted on the right or two knots inserted on each side. Again,
every knot insertion results in an affine average.

Figure 2.16: Graphical illustration of the refine and smooth subdivision algorithm for selective knot
insertions of non-uniform cubic B-splines. The weights for affine averages are marked on each branch.
The dashed lines with omitted 1 as weights mean copy directly.

From the tree structure and the given weights in Figure 2.16, we can extract the subdivi-
sion weights for the computation of new edge vertices,such as u3ûαu4 and u4ûβ u5. As shown
in Figure 2.17, the computation is regardless of the situation of knot insertion to adjacent
edges. Instead, the position of a new control vertex only depends on the positions of two
adjacent control points, the ratios of three relevant knot intervals and the location where the
new knot is inserted. For the subdivision of uniform B-splines, knot intervals are all equal
and each knot interval is bisected, which means ∆1 = ∆2 = ∆3 and t = 0.5. In this case, the
weights in Figure 2.17 become 1/2 and 1/2, identical to the subdivision weights for cubic
uniform B-splines in Figure 2.15a.
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2.4 Boundary conditions and creases for subdivision curves

Figure 2.17: Graphical illustration of the computation of new control vertices, such as u3ûαu4 and
u4ûβ u5 in Figure 2.16. For cubic B-splines, the position of a new control vertex (blue square) only
depends on the positions of two adjacent control points (empty circles) and three relevant knot
intervals, regardless of whether there are knot insertions at adjacent edges or not. Note that no knot
will be inserted to zero knot interval, meaning that at least ∆1 ̸= 0.

From Figure 2.16, we can also figure out how to compute the positions of existing vertices.
Figure 2.18 summarises the computation in four cases as shown in Figure 2.16: (a) no knot
inserted on either side, such as u1u2u3 and u5u6u7; (b) new knots inserted on both sides, such
as ûαu4ûβ ; (c) new knot inserted only on the left, such as ûβ u5u6; (d) new knot inserted
only on the right, such as u2u3ûα . Again, the computation of existing vertices given in
Figure 2.18b is identical to the subdivision of uniform cubic B-splines in Figure 2.15b when
∆0 = ∆1 and t0 = t1 = 0.5.

2.4 Boundary conditions and creases for subdivision curves

2.4.1 Boundary conditions

Uniform B-spline basis functions are much simpler in terms of computations, compared with
B-splines defined by non-uniform knots. Also, uniform B-splines are adequate for most
implementations, such as approximation and finite element analysis. However, uniform B-
splines of degree n≥ 2 generally do not have the endpoint interpolation property. Figure 2.19a
plots a cubic B-spline curve parametrised with uniform B-spline basis functions. It is clear
that the endpoints are not interpolated by the B-spline curve. In this section, we discuss
several techniques to create endpoint interpolation taking cubic B-splines as an example.
See [34] for a summary of different creases and boundary conditions for subdivision curves.
Open knot vectors: Knot vectors are said to be open if the end knots have a multiplicity of

n+1, where n is the degree of B-spline. An open knot vector looks like:

U = {u0, · · · ,u0︸ ︷︷ ︸
n+1 times

,u1, · · · ,ul−1,ul, · · · ,ul︸ ︷︷ ︸
n+1 times

} .
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(a) No knot inserted either side

(b) New knots inserted both sides

(c) New knot inserted left

(d) New knot inserted right

Figure 2.18: Graphical illustration of the computation of existing control vertices. For cubic B-
splines, the selective knot insertions result in four different cases as shown in Figure 2.16: (a) no
knot inserted on either side, such as u1u2u3 and u5u6u7; (b) new knots inserted on both sides, such
as ûαu4ûβ ; (c) new knot inserted only on the left, such as ûβ u5u6; (d) new knot inserted only on the
right, such as u2u3ûα .
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(a) Uniform knot sequence

(b) Open knot sequence

(c) Ghost points

(d) Modified subdivision rules

Figure 2.19: A comparison of various cubic splines (left) and the corresponding basis functions used
to parametrise them. (a) A uniform knot sequence leads to a spline curve without end-interpolation
properties. (b) An open knot sequence has a multiplicity of n+ 1 at the first and last knot values,
generating a spline curve which interpolates the end points. (c) Ghost points (black solid dots),
calculated as a linear combination of adjacent control points, are pre- and appended to create end-
interpolation spline curve. In this example of cubic splines, only one ghost point at each end is needed,
i.e., ppp−1 = 2ppp0 − ppp1 and ppp7 = 2ppp6 − ppp5. (d) A modified subdivision rule shown in Figure 2.21 is
applied to the end points (red solid dots). Their position is fixed during subdivision, leading to a limit
curve interpolating the end points.
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Figure 2.19b shows a cubic B-spline curve and the corresponding B-spline basis functions that
are defined over an open knot vector U = {0,0,0,0,1,2,3,4,4,4,4}. The represented curve
interpolates the endpoints. As a result of the multiplicity of end knots, the n B-spline basis
functions close to each end become non-uniform. In this case, generating such non-uniform
B-spline curves by recursive subdivision calls for the weights introduced in Section 2.3.2,
see Figure 2.17 and Figure 2.18.

Consider a special open knot vector

U = {0, · · · ,0︸ ︷︷ ︸
n+1 times

, 1, · · · ,1︸ ︷︷ ︸
n+1 times

}

which has 2(n+ 1) knots and defines n+ 1 B-splines of degree n. These B-splines Bn
j(u)

form a complete polynomial basis over the parameter domain u ∈ [0,1] . In this special case,
the B-splines Bn

j(u) are actually identical to Bernstein polynomials of degree n, representing
Bézier curves. Therefore, the technique of using open knot vectors to define B-splines
interpolating at the endpoints is also referred to as Bézier end conditions.

Ghost points: An alternative technique to create a B-spline curve interpolating endpoints
is to append ghost control points at both ends of the control polygon. The ghost points are
set as linear combinations of control points to fulfil the endpoint interpolation. For example,
for cubic B-spline curves one ghost point is needed at each end, see Figure 2.19c. Consider
the condition of endpoint interpolation, we have

ccc(u = 0) = B−1(0)ppp−1 +B0(0)ppp0 +B1(0)ppp1 =
1
6

ppp−1 +
4
6

ppp0 +
1
6

ppp1 (2.39a)

ccc(u = 0) = ppp0 (2.39b)

which leads to the following formula to compute the position of ghost point

ppp−1 = 2ppp0 − ppp1 . (2.40)

Similarly, the ghost point on the other end will be computed as

ppp7 = 2ppp6 − ppp5 . (2.41)
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Figure 2.20: A basis transformation resulted from the ghost point constraint. For cubic B-spline, the
ghost point is constrained to be ppp−1 = 2ppp0 − ppp1, leading to the transformation shown in this plot.
See (2.42) for the derivation of the transformation.

The constraint of ghost point is essentially a transformation of basis functions over the
element adjacent to the end.

ccc(u) = B−1(u)ppp−1 +B0(u)ppp0 +B1(u)ppp1 +B2(u)ppp2

= B−1(u)(2ppp0 − ppp1)+B0(u)ppp0 +B1(u)ppp1 +B2(u)ppp2

= [2B−1(u)+B0(u)]︸ ︷︷ ︸
B̃0(u)

ppp0 +[B1(u)−B−1(u)]︸ ︷︷ ︸
B̃1(u)

ppp1 +B2(u)ppp2

(2.42)

That is, for cubic B-splines, the effect of adding ghost point leads to the following basis
transformation B̃0(u)

B̃1(u)
B̃2(u)

=

 2 1 0 0
−1 0 1 0
0 0 0 1




B−1(u)
B0(u)
B1(u)
B2(u)

 (2.43)

which is illustrated in Figure 2.20. Plug the original uniform cubic B-spline basis functions
defined as 

B−1(u)
B0(u)
B1(u)
B2(u)

=
1
6


1 −3 3 −1
4 0 −6 3
1 3 3 −3
0 0 0 1




1
u
u2

u3

 (2.44)

into (2.43), we obtain the basis after transformation as follows:

B̃0(u)
B̃1(u)
B̃2(u)

=
1
6

6 −6 0 1
0 6 0 −2
0 0 0 1




1
u
u2

u3

 (2.45)

31



Basics of subdivision curves

which shows that in the transformed basis B̃ j(u), j ∈ 0,1,2 the quadratic term u2 is missing.
This means that adding ghost points leads to an incomplete cubic basis, which only has linear
approximation order in the knot interval adjacent to endpoint. Adding ghost points does not
influence the basis over the effective parameter domain away from the end. In fact, the same
basis can be generated by applying modified subdivision rules to the end vertices, as shown
in Figure 2.19d.

Modified subdivision rule: Another alternative technique to create B-spline curves that
fulfil the endpoint interpolation property is to apply a modified subdivision rule to endpoints.
This technique is used to generate the cubic B-spline curve shown in Figure 2.19d. For
uniform cubic B-spline curves, the subdivision stencils are [1/2,1/2] for new vertices and
[1/8,6/8,1/8] for existing vertices (empty circles). In order to interpolate the endpoints, the
stencil applied to the end vertices (red dots) is modified to be [0,1,0], see Figure 2.21. Let us
call this technique subdivision end conditions. Modifying the normal subdivision rule leads
to a different limit curve, which effectively changes uniform B-spline basis to a transformed
basis, see Figure 2.19d. The basis is in fact the same as the effective basis generated by adding
ghost points. This is easy to verify. Compare Figure 2.19c and Figure 2.19d, except the ghost
points all other control points are the same. When we apply the subdivision algorithm once,
all control points between ppp0 and ppp6 should be the same. What remains in question is the
position of endpoints. In fact, in both cases the position of the end control vertices will not
change during subdivision. This is obvious when modified subdivision rule is applied. In the
case of ghost points, it is also straightforward to show, i.e.,

p̂pp0 =
[
1/8 6/8 1/8

]ppp−1

ppp0

ppp1

=
[
1/8 6/8 1/8

]2ppp0 − ppp1

ppp0

ppp1

= ppp0 . (2.46)

Therefore we can conclude that the limit curves in both cases starting at ppp0 and ending at ppp6

are exactly the same. Consequently, adding ghost points and modifying subdivision rules
result in the same basis transformation. The new basis lacks quadratic terms and is only able
to reproduce linear functions.

2.4.2 Creases

The treatment of creases is analogous to boundaries as discussed in Section 2.4.1 in detail. In
addition to the following two methods, repetition of control points is another way to create
sharp creases [34], which also generates an incomplete basis. Repeating control points is not

32



2.4 Boundary conditions and creases for subdivision curves

(a) New edge vertices (b) Existing vertices

Figure 2.21: Modified stencil [0,1,0] is applied to the endpoint (red solid dot) to fix the endpoint at
its initial position during subdivision. Consequently, the limit curve will interpolate the endpoints. All
other existing vertices (empty circles) are computed using [1/8,6/8,1/8] as normal and new edge
vertices (blue squares) with [1/2,1/2].

as convenient as the following two techniques in terms of modelling sharp creases in finite
element analysis, because the zero element size leads to a singular mapping.

Multiple knots: One way to create degree-n B-spline basis which is only C0 continuous
at a certain interior knot is to repeat that knot to have multiplicity of n, see Figure 2.22a.

Sharp subdivision rules: As proposed in [35, 36], one can introduce sharp features,
such as creases and corners, to subdivision surfaces by modifying the subdivision rules in the
neighbourhood of a sharp feature. This means an alternative approach to model creases in
subdivision curves is to apply modified subdivision rule at creased vertices. For example,
for cubic uniform B-spline subdivision, subdivision stencil [0,1,0] is used at the prescribed
crease vertex to generate the B-spline curve in Figure 2.22b. As discussed for boundary
conditions, modifying the subdivision rule at creases leads to an incomplete basis in the knot
intervals adjacent to creases, where only linear functions can be reproduced rather than cubic.
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(a) Nonuniform knot sequence

(b) Modified subdivision rule

Figure 2.22: A comparison of various cubic splines (left) and the corresponding basis functions used
to parametrise them. (a) An open nonuniform knot sequence has a multiplicity of n at the prescribed
crease vertex, generating a spline curve which interpolates the crease vertex ppp3. (b) A modified
subdivision rule similar to Figure 2.21 is applied to the prescribed crease vertices (red solid dots).
Their position is fixed during subdivision, leading to a limit curve interpolating the sharp crease vertex
ppp3 and end points.
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Chapter 3

Subdivision-based finite elements

In this chapter, we discuss the implementation aspects of using B-spline basis functions in
finite element analysis (FEA). Even though our discussion takes as an example Poisson’s
equation, a second-order partial differential equation, all the basic ideas and concepts are
readily extended to FEA of two- or three-dimensional problems described by higher-order
partial differential equations.

From this chapter, we introduce the notation more commonly used in finite element
analysis. ui will no longer denote knots in the parameter domain as in the previous chapter.
Instead, the knots will be denoted by ξi and ui are the unknown coefficients in finite element
approximation of the physical solution u, such as temperature in heat transfer or displacement
in elasticity problems.

3.1 Review of finite element method

3.1.1 Strong form and weak form

Let us consider Poisson’s equation. The strong form of this boundary value problem is
defined as:

−∇
2u = f in Ω (3.1a)

u = u on ΓD (3.1b)

∇u ·nnn = t on ΓN (3.1c)

where f is a given source term and u the scalar solution field to be solved. On Dirichlet
boundaries ΓD the value of solution u is known, while on Neumann boundaries ΓN the flux
∇u ·nnn with nnn denoting the outward unit surface normal vector is prescribed instead. Note that
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ΓD ∪ΓN = ∂Ω denotes the complete boundary of the domain Ω. The strong form indicates
the valid solution to be twice differentiable.

The weak form of a differential problem is an integral form, from which finite element
discretisation is derived. Thus, the first step of implementing FEA is to formulate a weak form
equivalent to the strong form of the considered boundary value problem. This is achieved
by multiplying the governing equation (3.1a) by an arbitrary test function w from an infinite
dimensional space, and integrating over the computational domain Ω, i.e.,

−
∫

Ω

w∇
2udΩ =

∫
Ω

w f dΩ . (3.2)

Note that the arbitrary test function is required to be zero where Dirichlet boundary conditions
are given, i.e.,

w = 0 on ΓD . (3.3)

Apply integration by parts to the term on the left in (3.2) and notice (3.3), we obtain∫
Ω

∇w ·∇udΩ =
∫

Ω

w f dΩ+
∫

ΓN

w∇u ·nnndΓ , (3.4)

which indicates that both the test function w and the solution u are only required to be
once differentiable and their derivatives are square integrable. The second term on the right
naturally allows us to apply the Neumann boundary condition, also called natural boundary
conditions. Applying the Neumann boundary condition ∇u ·nnn = t on ΓN to (3.4) leads to the
weak formulation corresponding to the PDE described in (3.1): Find u ∈ Xu such that∫

Ω

∇w ·∇udΩ =
∫

Ω

w f dΩ+
∫

ΓN

wt dΓ ∀w ∈ X0 , (3.5)

where the infinite dimensional function spaces Xu and X0 are both subsets of the standard
Hilbert space H 1 restricted to certain boundary conditions, i.e.,

Xu = {u ∈ H 1(Ω) | u = u on ΓD}
X0 = {w ∈ H 1(Ω) | w = 0 on ΓD}

. (3.6)

3.1.2 Galerkin approximation

Let X h
u ⊂ Xu and X h

0 ⊂ X0 denote finite dimensional function spaces. Restricting the
weak form (3.5) to the finite dimensional spaces leads to the Galerkin formulation: Find
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u ∈ X h
u such that∫

Ω

∇wh ·∇uh dΩ =
∫

Ω

wh f dΩ+
∫

ΓN

wht dΓ ∀wh ∈ X h
0 , (3.7)

where uh is the best approximation of the continuous functions u in the considered finite
dimensional space X h

u . The approximation uh is discretised as

uh(xxx) =
NP

∑
j=1

N j(xxx)u j , (3.8)

where N j(xxx) are basis functions (or shape functions), u j unknown constants to be determined
and NP denotes the number of nodes or degrees of freedom. In finite element analysis,
the convention is to associate each basis function N j(xxx) and unknown constant u j with one
node in the finite element mesh. Similarly, the approximation of the test function can be
represented as

wh(xxx) =
NP

∑
i=1

Ni(xxx)wi , (3.9)

where wi are arbitrary coefficients because the test function wh ∈ X h
0 is an arbitrary smooth

function. By substituting the discretisation (3.8) and (3.9) to the Galerkin formulation (3.7),
we obtain

NP

∑
i=1

NP

∑
j=1

wi

∫
Ω

∇Ni ·∇N j dΩ︸ ︷︷ ︸
Ki j

u j =
NP

∑
i=1

wi

∫
Ω

Ni f dΩ+
∫

ΓN

Ni t dΓ︸ ︷︷ ︸
bi

. (3.10)

Given that wi are arbitrary coefficients, the above equation leads to a system of linear
equations

KKKuuu = bbb , (3.11)

where KKK is a NP×NP matrix, uuu is a column vector of size NP containing all the unknown
constants u j and the right hand side vector bbb is also a column vector of size NP. The entries
of matrix KKK and vector bbb are calculated as integrals defined in (3.10). The integrals are
computed in each element resulting in element matrix and element vector, which are then
assembled together to give the global matrix KKK and global vector bbb.

Remember that in the process of deriving the weak formulation the Dirichlet boundary
condition has not be applied yet. This means the linear system (3.11) is under-determined.
To obtain a well-defined system, Dirichlet boundary conditions should be enforced using
auxiliary techniques. For interpolating basis functions, such as Lagrange polynomials, certain
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nodal values u j can be simply determined by the Dirichlet boundary conditions. Remove
these "predetermined" degrees of freedom and then solve the reduced system of linear
equations for remaining unknowns. For non-interpolating basis functions, such as uniform
B-splines, one can use standard techniques used for constrained optimisation problems,
including Lagrange multiplier, penalty method, Nitsche method and so on. We will discuss
this in more details later using an illustrative example. After the linear equations are solved to
determine unknown constants u j, the finite element solution uh to the strong formulation (3.1)
is obtained according to (3.8).

3.1.3 Isoparametric mapping

In practice, the integrals are computed in each element and summed together to give the
matrix KKK and vector bbb. For example, one entry of matrix KKK can be computed as

Ki j =
∫

Ω

∇Ni(xxx) ·∇N j(xxx)dΩ = ∑
e

∫
Ωe

∇NI(xxx) ·∇NJ(xxx)dΩ
e︸ ︷︷ ︸

Ke
IJ

. (3.12)

where the local index I,J are introduced. The basis functions used in finite elements usually
have local support, meaning that each basis function is zero in most elements. Therefore,
when computing the integrals in one element, which leads to an element matrix KKKe, we only
need to consider a few basis functions that are non-zero over the considered element. At the
stage of assembling element matrix KKKe to global matrix KKK, a mapping to associate the local
index with the global index is needed.

However, the integral in physical domain is inefficient and can be rather difficult for
complex geometries. Furthermore, the basis functions, such as B-splines, are normally
given in a (global) parameter space, making it natural to use parametric form to represent
everything, including the test function w and the solution field u. B-splines when used
for curve/surface modelling are defined on structured topological space, where a global
parametrisation is possible. However, when it comes to unstructured meshes on top of which
subdivision surfaces are defined, a global parametrisation is not possible and not needed
either. In general, a local parametrisation provides more flexibility and greatly simplifies the
integral computing. This is exactly the spirit of isoparametric mapping, which is often used
in finite element practice.

In the context of isoparametric mapping, a local parameter domain, known as reference
element, is defined and a local mapping is created for each finite element. For example,
for B-spline based FEA, it is convenient to define the reference element as a unit square
□ := [0,1]× [0,1] ∋ ηηη = (η1,η2) in bivariate case. In each element, we have the following
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local parametrisation:

uh(ηηη) = ∑
J

NJ(ηηη)uJ , ηηη ∈ [0,1]× [0,1] , (3.13)

xxx(ηηη) = ∑
J

NJ(ηηη)xxxJ , ηηη ∈ [0,1]× [0,1] , (3.14)

where J is the local index of all the basis functions which are non-zero in the considered
element. With the isoparametric mapping, the element integral is transformed to reference
element, i.e.,

Ke
IJ =

∫
□

∇NI(ηηη) ·∇NJ(ηηη)

∣∣∣∣ ∂xxx
∂ηηη

∣∣∣∣dηηη , (3.15)

where the Jacobian matrix is computed as

∂xxx
∂ηηη

=

[
∂x1

∂η1
∂x2

∂η1

∂x1

∂η2
∂x2

∂η2

]
=

[
∂N0(ηηη)

∂η1 · · · ∂NJ(ηηη)
∂η1 · · ·

∂N0(ηηη)
∂η2 · · · ∂NJ(ηηη)

∂η2 · · ·

]
x1

0 x2
0

...
...

x1
J x2

J
...

...

 , (3.16)

and the derivative is computed as

∇NI(η) =

[
∂NI
∂x1
∂NI
∂x2

]
=

(
∂xxx
∂ηηη

)−1
[

∂NI
∂η1

∂NI
∂η2

]
. (3.17)

In finite elements, the integrals are evaluated by numerical integration techniques, such as
Gaussian quadrature, i.e.,

Ke
IJ =

m

∑
i=1

wi∇NI(ηηη i) ·∇NJ(ηηη i)

∣∣∣∣ ∂xxx
∂ηηη

∣∣∣∣
ηηη=ηηη i

, (3.18)

where (wi,ηηη i) are the weights and points given by Gaussian quadrature rules for m integration
points. Note that normally the basis functions defined over the reference element, e.g.,
uniform B-spline basis functions and Lagrange polynomials, are universally invariant for
all elements. Therefore, we only need to evaluate the basis functions NJ(ηηη i) and their
derivatives ∇NJ(ηηη i) once at each Gauss point. This explains why the element integral
evaluation becomes more efficient with the help of isoparametric mapping. When non-
uniform or locally modified uniform B-spline basis functions are used in FEA, subdivision
can be a powerful technique for efficient basis function evaluation. We will cover the
evaluation of B-spline basis in Section 3.2.3.
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3.2 When B-splines are used as basis functions

3.2.1 Concept of effective domain and ghost cells

Comparing FEA using Lagrange basis with FEA using B-spline basis, a notable difference is
the concept of the effective domain. Recall that each B-spline basis of degree n is defined
by n+2 knots and supported in n+1 knot intervals in the parameter domain. This makes
the n knot intervals close to the boundary of the parameter domain ineffective due to the
lack of a complete B-spline basis. Therefore, the effective parameter domain consists of
knots which are at least n cells away from the boundaries. The physical domain Ω, where
the PDE under consideration is defined, only corresponds to the effective parameter domain.
Unlike FEA with Lagrange basis, in which case the finite element mesh is boundary-fitted
to the physical domain Ω, the finite element mesh for B-spline based FEA is chosen to be
larger than the physical domain to have enough nodes to accommodate all B-spline basis
functions that contribute to the computation. To illustrate the concept of effective domain, a
one-dimensional example is shown in Figure 3.1. It is a topological sketch only, meaning that
the knots ξ j in parameter space and nodes x j in physical space do not have to be uniformly
distributed as they look in Figure 3.1. The finite element mesh has five elements and six nodes.
However, the physical domain Ω := [0,L] corresponds only to the effective computational
domain [x0,x3], meaning that x0 = 0 and x3 = L. The nodes x j /∈ Ω are called ghost nodes.
The elements containing ghost nodes are called ghost cells. Generally, for B-spline basis
of degree n, the finite element mesh contains ⌊n

2⌋ layers of ghost cells surrounding the
computational domain.

If interpolating basis (e.g., non-uniform B-spline basis defined on open knot vectors)
is chosen, the ghost nodes are placed on the boundaries of computational domain, i.e.,
x−1 = 0 and x4 = L. However, when non-interpolating basis (e.g. uniform B-spline of degree
n ≥ 2) is used for FEA, extra attention should be paid to ensure the computational domain
boundaries are interpolated. In the given example, we require x0 = x(ξ0) = ∑ j B j(ξ0)x j and
x3 = x(ξ3) = ∑ j B j(ξ3)x j, so ghost nodes x−1 and x4 in the finite element mesh are set at
x−1 = 2x0 − x3 and x4 = 2x3 − x2, as discussed in Section 2.4.1.

3.2.2 Methods to enforce boundary conditions

In principle, all the techniques introduced in Section 2.4.1 can be employed to interpolate
boundaries of the computational domain as well as to interpolate the Dirichlet boundary
conditions given in the strong formulation. In practice, especially for FEA of higher-
dimensional problems, adding ghost points is the least favourable approach, because it
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3.2 When B-splines are used as basis functions

(a) Physical domain

(b) Finite element mesh

(c) Parameter domain

Figure 3.1: A topological sketch of computational domain, finite element mesh and the parameter
domain for B-spline based FEA. In this plot, cubic B-splines are used as the basis functions. Each
cubic B-spline basis B j(ξ ) is defined by five knots {ξ j−2,ξ j−1,ξ j,ξ j+1,ξ j+2} and supported in four
knot spans in the parameter domain. Each basis B j is associated with its central knot ξ j and a
corresponding node x j in the finite element mesh. The finite element mesh is normally larger than the
computational domain Ω where the PDE is defined. In the finite element mesh, the number of nodes
are equal to the number of B-spline basis, whereas the computational domain only corresponds to the
effective parameter/physical domain (marked in red) where the basis is complete.

involves many constraints of the degrees of freedom u j. In contrast, open knot vectors and
modified subdivision rules lead to interpolating basis functions needing no constraints of
the degrees of freedom. In the case of open knot vectors, ghost cells are still included in the
finite element mesh but the ghost nodes can be placed on the boundaries of computational
domain. When modified subdivision rules are applied at the boundaries, no ghost cells are
needed but the resulting B-spline basis is incomplete in the elements close to the boundaries,
see the discussion in Section 2.4.1.

In addition to creating interpolating basis, alternatively auxiliary techniques can be used
to enforce Dirichlet boundary conditions in FEA where non-interpolating basis, e.g., uniform
B-spline, is used. Amongst many, penalty method and Nitsche method as well as their
variants are most common.
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Penalty method

Taking the aforementioned Poisson’s equation as an example, using Penalty method to weakly
enforce Dirichlet boundary conditions leads to the following weak formulation [37]: Find
u ∈ X such that∫

Ω

∇w ·∇udΩ+ γ

∫
ΓD

wudΓ =
∫

Ω

w f dΩ+
∫

ΓN

wt dΓ+ γ

∫
ΓD

wudΓ ∀w ∈ X , (3.19)

where the penalty parameter γ needs to be large enough. Compared with the weak formulation
in (3.5), two more terms (marked with underlines) are added in (3.19). Notice that the function
space X = H 1(Ω) for w,u are now not restricted to any boundary conditions, such as (3.6).

Penalty method is easy to implement but is known to be variationally inconsistent with
the strong formulation. A detailed prior error estimation in [37] shows that in order for (3.19)
to yield finite element errors converging optimally or sub-optimally, the penalty parameter
needs to be sufficiently large γ ≥ 1/hk, where h is the element size and k depends on the
optimal approximation order. However, such a sufficiently large penalty parameter γ can lead
to an ill-conditioned stiffness matrix KKK.

Nitsche method

Nitsche method is an alternative technique to enforce Dirichlet boundary conditions weakly.
The resulted weak formulation is variationally consistent with the strong form [38]. That is,
Find u ∈ X such that∫

Ω

∇w ·∇udΩ−
∫

ΓD

w∇u ·nnndΓ−
∫

ΓD

u∇w ·nnndΓ+ γ

∫
ΓD

wudΓ

=
∫

Ω

w f dΩ+
∫

ΓN

wt dΓ−
∫

ΓD

u∇w ·nnndΓ+ γ

∫
ΓD

wudΓ ∀w ∈ X ,
(3.20)

which can be proved to be variationally consistent with the strong form (3.1) regardless of
the choice of the parameter γ . However, the parameter γ needs to satisfy stability conditions
under which the coercivity of the derived bilinear form is guaranteed. For example, as derived
in [38], the stability condition requires γ >C, where C is a mesh-dependent constant and can
be estimated as the maximum eigenvalue of a generalised eigenvalue problem. In fact, one can
choose a valid parameter γ >C in a wide range such that the Nitsche weak formulation (3.20)
does not lead to ill-conditioned matrices. Same as penalty method, there are no boundary
condition restrictions on the function space X = H 1(Ω) for w,n. Compared with the
penalty weak formulation (3.19), three more terms (marked with underlines) are added
to the Nitsche weak formulation (3.20). This formulation is referred to as the symmetric
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Nitsche formulation. Due to the similarities between the penalty (3.19) and Nitsche (3.20)
formulations, some people regard Nitsche method as variationally consistent penalty method,
but the parameter γ in Nitsche formulation functions more like a stability parameter rather
than penalty parameter. Other variants of Nitsche method exist, such as non-symmetric
parameter-free Nitsche formulation [39].

3.2.3 Evaluation of B-spline basis by subdivision

Uniform B-splines

Uniform B-splines are B-splines that are defined on uniformly spaced knots. As a result, a
uniform B-spline basis functions are just shifted instances of each other, see Figure 2.6. This
means, for all finite elements, the basis functions look the same in the reference element. For
example, in the case of uniform cubic B-spline basis, there are four non-zero basis functions
over each reference element, see Figure 3.2. The four cubic B-spline pieces which contribute
to this considered element are computed as

B0(η)

B1(η)

B2(η)

B3(η)

=


1
6 0 0 0
2
3

2
3

1
3

1
6

1
6

1
3

2
3

2
3

0 0 0 1
6




(1−η)3

3η(1−η)2

3η2(1−η)

η3

 . (3.21)

With isoparametric mapping, in each element the geometry and the solution are represented
as

uh(η) =
3

∑
J=0

BJ(η)uJ , η ∈ [0,1] , (3.22)

x(η) =
3

∑
J=0

BJ(η)xJ , η ∈ [0,1] , (3.23)

where xJ and uJ with the local index J ∈ {0,1,2,3} denote the coordinate and the degree
of freedom that are associated to the supporting nodes of the element. For example, in
Figure 3.1, the four supporting nodes of element Ωe := [ξ0,ξ1] are nodes with global index
j ∈ {−1,0,1,2}, while for element Ωe := [ξ1,ξ2] they are nodes j ∈ {0,1,2,3}. In imple-
mentation, the indices of supporting nodes are stored in each element instance. When cubic
B-spline basis is used, the supporting nodes are all the nodes in the one-ring neighbourhood
consisting of all the elements which share at least one node with the considered element.
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Figure 3.2: Isoparametric mapping from a reference element □ := [0,1] ∋ η to the physical space
x(η) = ∑

3
J=0 BJ(η)xJ and the solution field u(η) = ∑

3
J=0 BJ(η)uJ using uniform cubic B-spline as

basis.

Irregular B-splines

In this section, we will demonstrate how subdivision can be used to evaluate irregular B-
splines. This evaluation algorithm is just a particular one-dimensional instance of Jos Stam’s
algorithm for subdivision surface evaluation. Here, we call all except uniform B-splines
irregular. The irregularity can be a result of non-uniform knots or locally modified subdivision
rules, see Figure 3.3.

(a) Open knot vector at η = 0 (b) Modified subdivision at η = 0

Figure 3.3: Irregular B-splines resulted from a non-uniform knot vector and a modification of the
subdivision weights as shown in Figure 2.21. Note that in (b) the basis function B0(η) = 0, meaning
that the leftmost node in the one-ring neighbourhood of the considered element does not have influence
in this element.

Using subdivision as an efficient technique to evaluate irregular B-splines is motivated by
two observations. One observation is that a B-spline basis function B j(ξ ) is a B-spline curve
given the control coefficients as pi = δi j, i.e.,

c(ξ ) = ∑
i

Bi(ξ )pi = ∑
i

Bi(ξ )δi j = B j(ξ ) . (3.24)

44



3.2 When B-splines are used as basis functions

Recall that if we keep refining the control polygon by subdivision algorithm in the limit
the control polygon will converge to the represented B-spline curve. Subdivision is a linear
operator mapping the control points to a finer level,

ppp1 = SSSppp , (3.25)

where ppp is a vector of initial control points and ppp1 denotes control points after one subdivision
refinement, referred to as control points at subdivision level ℓ = 1. The convention is to
denote initial control points ppp := ppp0 meaning subdivision level ℓ= 0. More generally, we
have

pppℓ+1 = SSSpppℓ = SSSℓ+1 ppp0 , (3.26)

and in the limit
ppp∞ = SSS∞ ppp0 . (3.27)

To represent a B-spline basis function B j(ξ ), we have determined the initial control co-
efficients ppp0. In this case, the limit curve ppp∞, which is the B-spline basis function itself,
totally depends on the subdivision matrix SSS. This means the subdivision weights inherit all
information that is needed to define a B-spline basis function.

Given that the represented curve stays unchanged during subdivision, we have

B j(ξ ) = c(ξ ) = BBB(0)T(ξ )ppp0 = BBB(ℓ)T(ξ )pppℓ (3.28)

implying that the B-spline basis function B j(ξ ) can be evaluated at any subdivision level
ℓ. We can guarantee that the basis functions Bl

j(ξ ) defined on a finer level (on a refined
knot vector) will be easier to evaluate than initial B-splines B0

j(ξ ). This is because uniform
subdivision, i.e., bisecting non-zero knot intervals, will create a region with more and more
uniformly distributed knots. In other words, if we apply subdivision a sufficient number
of times, the finer level basis functions Bl

j(ξ ) become uniform B-splines and are trivial to
evaluate.

As an illustrative example of the process of evaluation by subdivision, let us consider the
value of the basis B1(η) shown in Figure 3.3b at η = 0.4. Figure 3.4 provides a graphical
illustration of the subdivision process, from which it is clear that three cycles of subdivision
refinements are needed in order to embed the target parameter point η = 0.4 in an element
influenced by uniform B-splines only. Table 3.1 lists the computation of the control point
values at each subdivision level until level l = 3 where only uniform B-spline basis functions
contribute to the target element. The subdivision weights used can be found in Figure 2.21.
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(a) Initial knot vector

(b) Once subdivided knot space

(c) Twice subdivided knot space

(d) Three times subdivided knot space

Figure 3.4: Graphical illustration of the process of evaluation in a reference element influenced by
the modified subdivision rules applied at the prescribed sharp vertex (marked in red). The red line
marks a knot span in the initial knot space. At every subdivision step, a new knot is inserted to the
middle of a non-zero knot span, creating two equidistant knot spans. This means the B-spline basis
functions defined by knots located within the same initial knot span will be uniform B-splines, e.g.,
the four B-splines plotted on level three. The grey window at each level denotes the element which
contains the target parameter where the B-spline basis is to be evaluated. Note that at any subdivision
level we parametrise each knot span to a unit length, i.e.,η(ℓ) ∈ [0,1].
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Table 3.1: Numerical illustration of evaluation of irregular B-spline basis by subdivision, see Fig-
ure 3.4 for a graphical illustration.

Level Parameter Uniform B-splines? Control points update

0 η(0) = 0.4 No ppp0 =


0
1
0
0



1 η(1) = 0.8 No ppp1 = 1
8


4
8
4
1

= 1
8


4 4 0 0
0 8 0 0
0 4 4 0
0 1 6 1




0
1
0
0



2 η(2) = 0.6 No ppp2 = 1
64


64
48
33
20

= 1
82


0 8 0 0
0 4 4 0
0 1 6 1
0 0 4 4




4
8
4
1



3 η(3) = 0.2 Yes ppp3 = 1
512


385
324
266
212

= 1
83


1 6 1 0
0 4 4 0
0 1 6 1
0 0 4 4




64
48
33
20


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The initial control coefficients prescribed for B1(η) are

ppp0 = [0,1,0,0]T , (3.29)

resulting in the following control coefficients after three times of subdivision:

ppp3 =
1

512
[385,324,266,212]T . (3.30)

In addition, given (3.21) it is straightforward to evaluate the B-spline basis on level 3 for
η(3) ∈ [0,1]

BBB(3)(η) =


B(3)

0 (η)

B(3)
1 (η)

B(3)
2 (η)

B(3)
3 (η)

=
1
6


1 0 0 0
4 4 2 1
1 2 4 4
0 0 0 1




(1−η)3

3η(1−η)2

3η2(1−η)

η3

 , (3.31)

where the superscript level number in η(3) is omitted for brevity. It should be clear that the
input parameter η for B-spline BBB(ℓ)(η) is always η(ℓ), which is the parameter value mapped
recursively from the initial parameter value η(0) according to

η
(ℓ+1) =

2η(ℓ) if η(ℓ) ∈ [0,0.5]

2η(ℓ)−1 if η(ℓ) ∈ (0.5,1]
for ℓ= 0,1, · · · . (3.32)

This effectively transforms each element on level ℓ, see the grey windows in Figure 3.4, to a
reference parameter domain □ := [0,1] ∋ η(ℓ). Table 3.1 also lists the parameter transforma-
tion during the subdivision process. Now we are ready to compute B1(η) according to (3.28),
i.e.,

B1(η) =
[
B0 B1 B2 B3

]
0
1
0
0

=
[
B(3)

0 B(3)
1 B(3)

2 B(3)
3

]
385
324
266
212

/512 , (3.33)

Plug in η(3) = 0.2 into (3.31), we obtain[
B(3)

0 B(3)
1 B(3)

2 B(3)
3

]
=

1
750

[
64 473 212 1

]
at η

(3) = 0.2 . (3.34)

48



3.2 When B-splines are used as basis functions

Finally substituting (3.34) into (3.33) gives the value of the irregular B-spline basis B1(η)

resulted from modified subdivision rules given in Figure 2.21,

B1(η) =
229
375

at η = 0.4 . (3.35)

In fact, in Section 2.4.1 when we discuss different techniques to create the boundary interpo-
lation for subdivision curves, we have mentioned that applying modified subdivision rules
given in Figure 2.21 will result in basis functions equivalent to (2.45), repeated here,

B1(η)

B2(η)

B3(η)

=
1
6

6 −6 0 1
0 6 0 −2
0 0 0 1




1
η

η2

η3

 , (3.36)

which also gives the same value as (3.35) without surprise. In fact, (3.33) is valid not
only for η = 0.4 used in this example but also for any η ∈ [0.375,0.5]. This is because
η ∈ [0.375,0.5] will end up in the same target element at subdivision level ℓ = 3, thus
requiring the same evaluation process. In practice, we take the initial coefficients ppp0 as an
identity matrix of size n+1 to evaluate the n+1 non-zero B-spline basis in the considered
element, which can be easily verified analogous to (3.28), i.e.,

BBB(0)T(η) = ccc(η) = BBB(0)T(η)III = BBB(ℓ)T(η(ℓ))pppℓ . (3.37)

The algorithm of evaluation by subdivision demonstrated here can be applied to evaluate
non-uniform cubic B-spline basis functions as well, in which case the subdivision weights
for non-uniform knot vectors should be used, see Figure 2.17 and Figure 2.18. However,
it is not too difficult to derive the closed form functions for non-uniform B-spline basis or
modified B-spline basis, which can be tabulated for evaluation use. The real power of this
evaluation algorithm is that it provides the very first approach to evaluate subdivision surfaces
in irregular region around extraordinary vertices [40], where a closed form is not trivial to
derive.
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3.3 Examples

Now we have all techniques in place to perform FEA using B-splines as basis functions. As
an illustrative example, we consider the following one-dimensional Poisson’s equation:

−d2u
dx2 = f , x ∈ [0,1] (3.38a)

u(0) = u0 , u(1) = u1 . (3.38b)

Only Dirichlet boundary conditions are included because Neumann boundary conditions are
natural boundary conditions, which are easier to enforce compared with Dirichlet boundary
conditions. In order to validate the finite element solution uh, we compare it with the
analytical solution u. To this end, we prescribe the analytical solution to be u = u(x) by
computing the boundary conditions from u0 = u(0), u1 = u(1) and the source term from
f =−d2u/dx2.

The finite element discretisation error is measured in both L2 norm and energy norm,
computed as

||uh −u||L2 =

(∫
Ω

(uh −u)2 dΩ

) 1
2

,

||uh −u||E =

(∫
Ω

(∇uh −∇u)2 dΩ

) 1
2

,

(3.39)

which are evaluated by Gauss integration, same as integrals in the weak formulation. More
often we look at the normalised errors, i.e.,

||uh −u||L2

||u||L2

and
||uh −u||E
||u||E

. (3.40)

For second-order PDEs, such as Poisson’s equation, if the solution is approximated using
cubic B-spline basis functions, prior error estimations indicate that the L2 norm error ||uh −
u||L2 converges optimally at order of 4 and the energy norm error ||uh −u||E at order of 3.

3.3.1 Penalty method vs Nitsche method

As the first example, we prescribe the analytical solution to be

u = sin
(

π

2
x
)
,
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which means the boundary conditions are set to be u0 = 0, u1 = 1 and the source term

f =−d2u/dx2 =
π2

4
sin
(

π

2
x
)
.

We have mentioned two methods to enforce Dirichlet boundary conditions in a weak form in
Section 3.2.2. In this example, we compare the penalty method and Nitsche method. Uniform
cubic B-splines are chosen as the basis functions. The element integrals are evaluated by
3 Gauss quadrature points, considering that integration of a polynomial function of degree
p needs at least ⌈(p+ 1)/2⌉ Gauss points. The computational domain is discretised with
elements of a uniform size h= 1/N, where the number of elements N ∈ {4,8,16,32,64,128}.
Remember that for cubic B-splines the finite element mesh contains one layer of ghost
cells, meaning that the meshes used in our computation contain N +2 elements uniformly
distributed in the extended domain [0−h,1+h].

Figure 3.5 illustrates that the finite element solution is very sensitive to the choice of
the parameter γ when penalty method is used. As discussed in Section 3.2.2, the parameter
γ in the penalty weak formulation (3.19) needs to be sufficiently large to make sure the
finite element solution satisfies the Dirichlet boundary conditions. However, as shown in
Figure 3.5, when γ ≥ 1010 the linear system becomes ill-conditioned and overall γ = 109 is
the best choice in this particular example.

However, the solution is less sensitive to the choice of the parameter γ when the Nitsche
formulation is applied, see Figure 3.6. As discussed in Section 3.2.2, Nitsche formulation
is variationally consistent with the strong form regardless of the choice of γ . However,
as a stability parameter, there is a minimum threshold for γ to guarantee the coercivity of
the linear equation system KKKuuu = bbb, see [38]. A local or global eigenvalue problem can be
solved to provide a good estimate for the minimum value of a valid stability parameter γ .
Numerical experiments show that in this example γ ≥ 103 achieves stability for all element
sizes h = 1/N with N ∈ {4,8,16,32,64,128}.

The convergence plots for penalty method and Nitsche method are put together in
Figure 3.7 at three different parameter values γ = 103,106,109. Clearly, at γ = 103,106

Nitsche method leads to optimally converged solutions whereas the solution generated by
penalty method does not converge. However, at γ = 109 both Nitsche and penalty methods
lead to converged solutions but they deviate from the optimal convergence as the element size
h decreases. This one-dimensional example demonstrates in general Nitsche method is more
robust than penalty method for Dirichlet boundary conditions enforcement. But we would
like to point out that one might find penalty method works fine in some specific situations.
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Due to its simplicity, penalty method is still commonly used in many implementations to
enforce different types of constraints.

3.3.2 Different end conditions

In this section, we compare three different types of cubic B-spline basis generated by different
end conditions, including B-spline defined by open knot vectors (Bézier end conditions),
B-spline generated by modified subdivision rules at boundaries (subdivision end conditions),
and uniform B-splines. Just as in the previous example, the element integrals are evaluated
by 3 Gauss quadrature points and the computational domain is discretised with elements of
a uniform size h = 1/N, where the number of elements N ∈ {4,8,16,32,64,128}. In the
case of Bézier end conditions and uniform B-splines, the finite element mesh contains one
layer of ghost cells. For uniform B-splines, the mesh consists of N + 3 nodes uniformly
distributed at x j ∈ {−1,0,1,2, · · · ,N −2,N −1,N,N +1}h. For Bézier end conditions, the
finite element mesh is uniform in the middle but non-uniform close to boundaries, i.e.,
x j ∈ {0, 1

3 ,1,2, · · · ,N − 2,N − 1,N − 1
3 ,N}h, which gives a linear parametrisation of x(η)

with Jacobian being constant. In the case of subdivision boundary conditions, no ghost
cells are needed and the finite element mesh simply consists of N +1 uniformly distributed
nodes x j ∈ {0,1,2, · · · ,N −2,N −1,N}h. In fact, regardless of the basis functions, in one-
dimensional problems it is straightforward to apply Dirichlet boundary conditions, which
are simply described by linear constraints. For instance, consider the finite element solution
represented by

uh(η) =
N+2

∑
j=0

B j(η)u j (3.41)

with unknowns u j to be determined. The left boundary x = 0 refers to η = 0 in the first
element, over which only the first four B-splines are non-zero. Therefore, the Dirichlet
boundary condition u = u at x = 0 requires

uh(x = 0) =
3

∑
j=0

B j(η = 0)u j = u . (3.42)

The linear constraints can be applied by standard techniques, such as Lagrange multipliers or
rows/columns elimination. In this example, the Dirichlet boundary conditions are enforced
in a strong form with the help of Lagrange multipliers for all different types of B-spline
basis functions. For one-dimensional problems, Dirichlet boundary conditions can be easily
applied in a strong form. In two- or three-dimensional problems, however, it is not always as
straightforward as one-dimensional examples. In B-spline based FEA, Dirichlet boundary
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Figure 3.5: Uniform cubic B-splines using penalty method. Influence of penalty parameters on the
convergence of L2 and energy norm errors. As expected, when penalty parameter is too small or too
large, the finite element solution does not converge. This is because the weak formulation is only
variationally consistent for sufficiently large penalty parameter γ which unfortunately results in ill-
conditioned matrix. The numerical experiments show that γ = 109 is the best choice in this particular
example when taking the finite element errors in both L2 and energy norms into consideration.
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Figure 3.6: Uniform cubic B-splines using Nitsche method. The convergence of L2 and energy norm
errors is not sensitive to the value of stability parameter γ . Our numerical experiments indicate that in
this example Nitsche formulation with γ ≥ 1000 leads to optimally converged finite element solution.
But when γ ≥ 109 the stiffness matrix KKK becomes ill-conditioned and the finite element solution will
deviate from the optimal convergence as the element size decreasing, see Figure 3.7.
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Figure 3.7: Uniform cubic B-splines using penalty method or Nitsche method. Nitsche method
yields optimal convergence rates for both L2 and energy norm errors when the parameter γ = 103,106.
However, the solution obtained by using penalty method deviates from the optimal convergence
regardless of the parameter γ , see Figure 3.5 as well.
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conditions are often enforced in a weak form by Nitsche method. In this example, we compare
the results of weakly and strongly enforced Dirichlet boundary conditions to validate Nitsche
method.

Example 1

Same as previous example, we prescribe the analytical solution to be

u = sin
(

π

2
x
)
.

Figure 3.8 plots both L2 norm and energy norm errors of the finite element solutions obtained
by using different B-splines together with either Lagrange multipliers or Nitsche method.
From Figure 3.8, we see that weak enforcement of Dirichlet boundary conditions by Nitsche
method achieves the same accuracy as the strong enforcement by Lagrange multipliers. In
both cases, optimal convergence rates are achieved for uniform B-splines and non-uniform
B-splines with Bézier end conditions. However, as expected, for subdivision end conditions
the convergence rates are not optimal given the prescribed solution u(x) = sin(πx/2). This
is because the prescribed solution has non-zero second order derivative on the boundary
x = 1 whereas the incomplete basis in the boundary elements resulted from subdivision end
conditions lacks quadratic term and leads to zero second order derivative, see the detailed
discussion in Section 2.4.1.

Example 2

As the second example, we prescribe the analytical solution to be

u = sin(πx) ,

which has zero values and zero second order derivatives on both ends x = 0 and x = 1.
Again, we compare the performance of different bases. Figure 3.9 plots both L2 norm

and energy norm errors of the finite element solutions obtained by using different B-splines
together with either Lagrange multipliers or Nitsche method. This time optimal convergence
rates are achieved for the basis generated by subdivision end conditions as well. This is
because the prescribed solution has zero second order derivative at both boundaries x = 0
and x = 1, in which case the missing quadratic term in the basis does not influence the
convergence rates. This example shows that subdivision end conditions are not always bad.
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Figure 3.8: Convergence of finite element solutions obtained by using different B-spline basis together
with Lagrange multipliers (solid) or Nitsche method (dashed). Weak enforcement of Dirichlet
boundary conditions by Nitsche method achieves the same accuracy as strong enforcement by
Lagrange multipliers. The convergence rates for uniform B-splines and non-uniform B-splines
with Bézier end conditions are optimal. However, as expected, for subdivision end conditions the
convergence rates are not optimal given the prescribed solution u(x) = sin(πx/2). This is because
the prescribed solution has non-zero second order derivative on the boundary x = 1 whereas the
incomplete basis in the boundary elements resulted from subdivision end conditions lacks quadratic
term and leads to zero second derivatives, see the detailed discussion in Section 2.4.1.
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Figure 3.9: Convergence of finite element solutions obtained by using different B-spline basis
together with Lagrange multipliers (solid) or Nitsche method (dashed). Again, weak enforcement of
Dirichlet boundary conditions by Nitsche method achieves the same accuracy as strong enforcement by
Lagrange multipliers. This time, however, optimal convergence rates are also achieved for subdivision
end conditions given the prescribed solution u(x) = sin(πx). This is because the prescribed solution
has zero second order derivative on both boundaries x = 0 and x = 1, in which case the missing
quadratic term in the boundary elements does no harm to the convergence rates.
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Chapter 4

Subdivision surfaces with optimised
refinement weights

Subdivision curves/surfaces are methods to represent smooth curves/surfaces by coarse
control polygons/meshes. The represented curves/surfaces are calculated by recursive sub-
division refinements of the initial control polygons/meshes. In previous chapters, taking
univariate subdivision as an example we have demonstrated how subdivision construction can
be used to evaluate the B-spline basis functions in finite element analysis. In this chapter, bi-
variate subdivision schemes, i.e., subdivision surfaces, will be used for finite element analysis.
For structured quadrilateral meshes, i.e, each vertex is shared by four faces, tensor-product
of univariate B-splines gives B-spline surfaces. Quadrilateral subdivision schemes generalise
tensor-product B-spline surfaces to unstructured meshes containing extraordinary vertices,
i.e., vertices shared by other than four faces. Near extraordinary vertices, the optimal values
of subdivision weights are application-dependent. This chapter presents our work on how to
optimise subdivision weights for isogeometric analysis applications [11].

Subdivision surfaces provide an elegant isogeometric analysis framework for geometric
design and analysis of partial differential equations defined on surfaces. They are already
a standard in high-end computer animation and graphics and are becoming available in
a number of geometric modelling systems for engineering design, including Catia, PTC
Creo and Autodesk Fusion 360. The subdivision refinement rules are usually adapted from
knot insertion rules for B-splines. The quadrilateral Catmull-Clark scheme considered in
this work is equivalent to cubic B-spline surfaces away from extraordinary, or irregular,
vertices with other than four adjacent elements. Around extraordinary vertices the surface
consists of a nested sequence of smooth B-spline patches which join C1 continuously at
the point itself. As known from geometric design literature, the subdivision weights can be
optimised so that the surface quality is improved by minimising short-wavelength surface
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oscillations around extraordinary vertices. We use the related techniques to determine
weights that minimise finite element discretisation errors as measured in the thin-shell energy
norm. The optimisation problem is formulated over a characteristic domain and the errors
in approximating cup- and saddle-like quadratic shapes obtained from eigenanalysis of
the subdivision matrix are minimised. In finite element analysis the optimised subdivision
weights for either cup- or saddle-like shapes are chosen depending on the shape of the
solution field around an extraordinary vertex. As our computations confirm, the optimised
subdivision weights yield a reduction of 50% and more in discretisation errors in the energy
and L2 norms. Although, as to be expected, the convergence rates are the same as for the
classical Catmull-Clark weights, the convergence constants are improved.

4.1 Introduction

As a generalisation of splines, subdivision surfaces can provide watertight representations
for geometries with arbitrary topology. Before the advent of isogeometric analysis, it had
already been realised that subdivision surfaces provide also ideal basis functions for finite
element analysis, in particular, of thin-shells [6, 16–18], see also more recent work [41, 42].

Subdivision schemes for generating smooth surfaces were first described in the late
1970s as an extension of low degree B-splines to control meshes with non-tensor-product
connectivity [14, 15]. In subdivision a geometry is described with a control mesh and a
limiting process of repeated refinement. For parts of the mesh containing only regular
vertices, with each adjacent to four quadrilateral faces, the refinement rules are adapted from
knot insertion rules for B-splines. For the remaining parts with extraordinary vertices the
refinement rules are chosen such that they yield in the limit a smooth surface. Subdivision
refinement is a linear mapping of coordinates of the coarse control mesh to the coordinates
of the refined mesh with a subdivision matrix. Hence, the local limit surface properties
can be inferred from the eigenstructure of the subdivision matrix after a discrete Fourier
transform [15, 43]. The C1 continuity of the surface and its curvature behaviour at the
extraordinary vertex depend on eigenvalues and the ordering, i.e. Fourier indices, of the
corresponding eigenvectors. In turn, both depend on the coefficients of the subdivision matrix
that encodes the specific refinement rules applied.

As known, around extraordinary vertices short-wavelength surface oscillations, i.e. rip-
ples, may occur irrespective of C1 continuity and boundedness of curvature [44, 45]. There
have been many attempts to improve the fairness of subdivision surfaces, that is, to minimise
curvature variations, by carefully tuning the refinement rules, earlier works include [46, 47].
More recently, in [48] the refinement rules for Catmull-Clark and other quadrilateral schemes
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have been optimised such that the variation of the Gaussian curvature is minimised while
ensuring bounded curvatures. Different from the direct search method used in [48], the
refinement rules can also be obtained from a nonlinear constrained optimisation problem.
In [49] such a procedure is applied to triangular Loop and

√
3-subdivision schemes with a

multi-objective cost function comprised of terms penalising divergence of curvatures and
aiming local quadratic precision. In [50] a fairness increasing cost function containing the
third derivatives of the surface in combination with C1 continuity and bounded curvature
constraints is optimised.

In the present work, we optimise the subdivision refinement rules so that their approxima-
tion properties are improved when used in finite element analysis of thin-shells. Thin-shells
are prevalent in many engineering applications, most prominently in aerospace, automotive
and structural engineering, and are equivalent to thin-plates when their unstressed geometry
is planar [51]. The thin-shell energy functional and weak form depend on the second order
derivatives of the stressed surface. Consequently, it is crucial to reduce any short-wavelength
oscillations in the subdivision surface. As the included examples demonstrate, meshes with
extraordinary vertices usually lead to lower convergence rates than meshes with tensor-
product connectivity. For obtaining the improved isogeometric analysis adapted refinement
rules we postulate a constrained optimisation problem with a cost function measuring the
errors in approximating cup- and saddle-like quadratic shapes. Three of the weights in the
Catmull-Clark subdivision scheme around an extraordinary vertex are chosen as degrees of
freedom for optimisation. As constraints the C1 continuity of the surface is strictly enforced
and bounded curvatures are enforced as long as non-negative real weights are feasible. The
eigenstructure of the subdivision matrix is extensively used in formulating the optimisation
problem as usual in previous related work [52, Chapter 4,5] and [53, Chapter 15]. We
compute the eigenvalues and eigenvectors numerically after applying a discrete Fourier
transform that exploits the local circular symmetry around the extraordinary vertex. The
local parametrisation of the subdivision surface required for evaluating the finite element
integrals and the cost function is obtained with the algorithm proposed in [40]. Two sets
of optimised weights for cup- and saddle-like shapes are obtained. The weights for finite
element analysis are chosen depending on the dominant shape of the solution field around an
extraordinary vertex.

For completeness, we note that subdivision is not the only approach for creating smooth
surfaces on arbitrary connectivity control meshes. Over the years numerous Ck and Gk

smooth constructions with k ≥ 1 have been proposed, too many to name here. The search
for sufficiently flexible smooth surface representations, especially with Ck≥2 and Gk≥2, is
still open. It is worth mentioning that none of the existing constructions is widely used in
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commercial CAD systems. This may well be because their implementation is too complicated.
The application of basis functions resulting from smooth constructions for isogeometric
analysis is currently a very active area of research. For instance, the utility of Gk constructions
with NURBS has recently been explored in [7, 9, 54]. Alternatively, Ck constructions relying
on manifold-based surface constructions [19, 21, 24] and constructions relying on singular
parametrisations [55–57] have also been investigated. Some of these schemes are able to
provide optimal convergence rates.

The outline of this chapter is as follows. In Section 4.2 the Catmull-Clark subdivision is
introduced, with a review of the relevant theory on eigenanalysis of the subdivision matrix.
Specifically, the necessary conditions for C1 smoothness and boundedness of the curvature
are motivated, and the local parametrisation of subdivision surfaces using the characteristic
map is introduced. These are all classical results and concepts which are mostly unknown
in isogeometric analysis. In Section 4.3 the proposed constrained optimisation problem
and its numerical solution are discussed. Two sets of subdivision weights are derived that
minimise the thin-plate energy norm errors in approximating locally cup- and saddle-like
shapes. Subsequently, it is shown how a finite element solution can be locally decomposed
into cup- and saddle-like components. Depending on this decomposition and the following
choice of optimal weights, a second more accurate finite element analysis can be performed.
In Section 4.4 the proposed approach is applied to transversally loaded thin-plate problems
using meshes with extraordinary vertices and the convergence of the errors in L2 and energy
norms is reported.

4.2 Catmull-Clark subdivision surfaces

4.2.1 Refinement weights and the subdivision matrix

Catmull-Clark subdivision is a generalisation of cubic tensor-product B-splines to unstruc-
tured meshes [14]. On non-tensor-product meshes the number of faces connected to a vertex,
i.e. valence v, can be different from four. The vertices with v ̸= 4 are referred to as ex-
traordinary or star vertices. During subdivision refinement each quadrilateral face of the
control mesh is split into four faces and the coordinates of the old and new control vertices
are computed with the subdivision weights given in Figure 4.1. The weights in each of the
three diagrams have to be normalised so that they add up to one. The unnormalised weights
assigned to the extraordinary vertex (empty circle) are denoted by α , β and γ respectively.
For v = 4 and bivariate cubic B-splines the three weights take the values α = 8, β = 1
and γ = 1, which after normalisation convey the same information as tensor-product of the
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univariate subdivision stencils shown in Figure 2.14. The new vertices introduced by the
subdivision process are all regular (with v = 4) and the total number of irregular vertices in
the mesh remains constant. That is, the irregular vertices are more and more surrounded by
regular vertices.

1

11

(a) Face vertex (b) Edge vertex (c) Extraordinary vertex

Figure 4.1: Subdivision weights for the Catmull-Clark scheme with the empty circle denoting the
extraordinary vertex. The weights in each of the three diagrams have to be normalised so that they
add up to one. For Catmull-Clark scheme the three weights take the values α = v(v−2), β = 1 and
γ = 1, where v is the valence.

In order to study the smoothness behaviour of subdivision surfaces near an extraor-
dinary vertex, it is sufficient to consider only the vertices in its immediate vicinity. A
1-neighbourhood of a vertex is formed by the union of faces that contain the vertex. The
n-neighbourhood is defined recursively as the union of all 1-neighbourhoods of the (n−1)-
neighbourhood vertices. It is assumed that the considered n-neighbourhood has only one
single extraordinary vertex located at its centre. The n-neighbourhood control vertices pppℓ at
the refinement level ℓ are mapped to control vertices pppℓ+1 with the subdivision matrix SSS,

pppℓ+1 = SSSpppℓ . (4.1)

The square subdivision matrix SSS can be readily derived from the weights indicated in
Figure 4.1. The control point coordinates at level ℓ are arranged in this form

pppℓ =


pℓ1x pℓ1y pℓ1z

pℓ2x pℓ2y pℓ2z
...

...
...

 (4.2)
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with each row containing the coordinates of one control point pppℓj ∈ R3 with the index j.

4.2.2 Eigendecomposition of the subdivision matrix

For the tuning approach to be introduced in Section 4.3, it is necessary to consider the 3-
neighbourhood around an extraordinary vertex, see Figure 4.2. The 3-neighbourhood consists

Figure 4.2: Three-rings of faces around an extraordinary vertex with valence v and the numbering
of the vertices. In the index pair (s,a) the first is the segment number and the second is the vertex
number.

of v segments with each segment containing 12v vertices, excluding the extraordinary vertex
with index 0. Hence, there are (12v+ 1) vertices so that the subdivision matrix has the
dimensions (12v+1)× (12v+1). In establishing the subdivision matrix it is assumed that
the index pair (s,a) is converted to a scalar index as a+ 12(v− s). The eigenvalues and
eigenvectors of SSS are closely related to the smoothness and other properties of the subdivision
surface. The eigendecomposition of the asymmetric subdivision matrix SSS reads

SSS = ∑
j

λ jrrr j ⊗ lll j (4.3)

with

(SSS−λ jIII)rrr j = 000, lllTj (SSS−λ jIII) = 000T and ⟨lll j,rrrk⟩=

1 if j = k

0 if j ̸= k
, (4.4)

where λ j are the eigenvalues and rrr j, lll j are the right and left eigenvectors respectively.
Throughout this chapter it is assumed that the eigenvalues are sorted in descending order with
largest being λ0. The subdivision matrix SSS has a cyclical structure due to the cyclic symmetry
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4.2 Catmull-Clark subdivision surfaces

of the weights given in Figure 4.1. We assume that the vertices in the 3-neighbourhood are
enumerated according to Figure 4.2.

Because of the cyclical structure, the eigendecomposition of SSS can be best computed with
a discrete Fourier transform (DFT). As pioneered in [15], DFT is crucial in identifying the
different geometric shapes described by the different eigenvectors. For transforming SSS the
following extended DFT matrix is considered:

FFF =
1√
v



1 000T 000T 000T · · · 000T

000 III III III · · · III
000 III ωIII ω2III · · · ω−1III
000 III ω2III ω4III · · · ω−2III
...

...
...

... . . . ...
000 III ω−1III ω−2III · · · ωIII


(4.5)

with the complex number ω = exp(i2π/v) where i =
√
−1, the identity matrix III of size

(12× 12) and the zero vector 000 of size 12. The first row and column of FFF have been
introduced for the extraordinary vertex. In obtaining (4.5) the standard relations ωv+k = ωk

and ωv−k = ω−k = ω
k with the complex conjugate ω = exp(−i2π/v) are used. The inverse

transform FFF−1 is obtained by replacing ω with its complex conjugate ω . The subdivision
matrix is Fourier transformed according to

ŜSS = FFFSSSFFF−1 , (4.6)

leading to a block diagonal matrix

ŜSS =



ŜSS
(0,0)

ŜSS
(1,1)

ŜSS
(2,2)

. . .

ŜSS
(v−1,v−1)


, (4.7)

where the blocks ŜSS
(m,m)

are of size 13×13 for m = 0 and of size 12×12 for m ̸= 0. Due to
its block-diagonal structure the eigendecomposition of the transformed matrix

ŜSS = ∑
j

λ j r̂rr j ⊗ l̂ll j (4.8)
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Subdivision surfaces with optimised refinement weights

can be more readily determined. Namely, it is sufficient to consider the eigenvalue problems
for each of the v blocks ŜSS

(m,m)
separately, i.e.,(
ŜSS
(m,m)−λ

(m,m)
n III

)
r̂rr(m,m)

n = 000 , (4.9)

where the eigenvalues within each block are also sorted in descending order, i.e, λ
(m,m)
0 is the

largest eigenvalue in the block ŜSS
(m,m)

. The eigenvalues λ j and eigenvectors r̂rr j and l̂ll j are the
union of all the eigenvalues and the block-wise eigenvectors. In obtaining the eigenvectors
r̂rr j and l̂ll j, each of size 12v+1, the corresponding block-wise vectors r̂rr(m,m)

n and l̂ll
(m,m)
n are

suitably padded with zeros. The vectors r̂rr(m,m)
n and l̂ll

(m,m)
n are of size 13 for m = 0 and of size

12 for m ̸= 0. Moreover, the subdivision matrix SSS and its Fourier transform ŜSS have the same
eigenvalues λ j and their eigenvectors are related by

rrr j = FFF−1r̂rr j and lll j = FFF−1l̂ll j . (4.10)

Each block ŜSS
(m,m)

corresponds to a specific rotational frequency ω f = 2πm/v. As
pointed out, the eigenvectors r̂rr j and l̂ll j can have non-zero entries only in the components

corresponding to a specific r̂rr(m,m)
n and l̂ll

(m,m)
n . Hence, the transformation of r̂rr j and l̂ll j according

to (4.10) yields always a column of FFF−1 each of which corresponds to a specific rotational
frequency1. To this end, recall the Euler identity

ω
ms = ei2πms/v = cos(2πms/v)+ isin(2πms/v) . (4.11)

Hence, for a fixed angular frequency ω f = 2πm/v the vectors rrr j and lll j will assign each
control vertex (s,a) with a fixed index a, see Figure 4.2, a value that oscillates with the
angular frequency 2πm/v while circumnavigating the extraordinary vertex by incrementing
s ∈ {1, · · · ,v}.

Furthermore, for geometric interpretation of the eigendecomposition it is helpful to realise
that most of the eigenvalues λ j have the multiplicity of two. That is, the eigenvalues λ

(m,m)
n

and λ
(v−m,v−m)
n are identical in the blocks m ≥ 1. The corresponding eigenvectors rrr j and lll j

have the same eigenfrequency because the columns m and v−m of the DFT matrix FFF−1 are
the complex conjugates of each other.

1The first columns and rows of FFF and FFF−1 are assigned to the extraordinary vertex and do not represent
harmonics.
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4.2 Catmull-Clark subdivision surfaces

4.2.3 Limit analysis and smoothness

The eigenvalues λ j and eigenvectors r̂rr j and l̂ll j of the Fourier transformed subdivision matrix
ŜSS have to satisfy certain conditions for a subdivision scheme leading to a smooth well-defined
surface, see [15, 43, 44]. To understand this, consider the projection of control mesh vertex
coordinates at subdivision level ℓ= 0 into the eigenspace of the subdivision matrix, using
the orthogonality of left and right eigenvectors (4.4),

pppℓ=0 = rrr0⟨lll0, ppp0⟩+ rrr1⟨lll1, ppp0⟩+ rrr2⟨lll2, ppp0⟩+ · · ·+ rrr12v⟨lll12v, ppp0⟩ , (4.12)

where each of the scalar products ⟨ , ⟩ yield a row vector with 3 components. Subdividing
the 3-neighbourhood in the eigenspace, while considering the eigendecomposition (4.4),
gives

SSSppp0 = λ0rrr0⟨lll0, ppp0⟩+λ1rrr1⟨lll1, ppp0⟩+λ2rrr2⟨lll2, ppp0⟩+ · · ·+λ12vrrr12v⟨lll12v, ppp0⟩ . (4.13)

Hence, the repeated subdivision of the 3-neighbourhood can be simply achieved with

SSSℓppp0 = λ
ℓ
0rrr0⟨lll0, ppp0⟩+λ

ℓ
1rrr1⟨lll1, ppp0⟩+λ

ℓ
2rrr2⟨lll2, ppp0⟩+ · · ·+λ

ℓ
12vrrr12v⟨lll12v, ppp0⟩ . (4.14)

From this equation it is evident that the properties of a subdivision surface are widely
governed by the eigenstructure of the subdivision matrix. The subdivision matrix SSS is a
stochastic matrix, i.e. only positive entries and each row adds up to 1, so that its largest
eigenvalue is λ0 = 1 and the components of the corresponding eigenvector rrr0 are all equal
to 1. In the limit ℓ→ ∞ all control vertices converge to ⟨lll0, ppp0⟩. The first term in (4.14) can
be eliminated by translating the initial control vertex coordinates by −rrr0⟨lll0, ppp0⟩. Without
loss of generality, in the following we assume that the coordinate system for 3-neighbourhood
has been chosen so that the first term in (4.14) is zero, that is,

SSSℓppp0 = λ
ℓ
1rrr1⟨lll1, ppp0⟩+λ

ℓ
2rrr2⟨lll2, ppp0⟩+ · · ·+λ

ℓ
12vrrr12v⟨lll12v, ppp0⟩ . (4.15)

For a (symmetric) C1-continuous subdivision surface the subdominant eigenvalues λ1 and λ2

have to satisfy the following relationship:

λ1 = λ2 > λ3 . (4.16)

In addition, the corresponding eigenvectors rrr1, lll1, rrr2 and lll2 have to come from the eigen-
decomposition of the blocks ŜSS

(1,1)
and ŜSS

(v−1,v−1)
[43, 44]. As discussed in Section 4.2.2,
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Subdivision surfaces with optimised refinement weights

owing to the symmetry properties of the Fourier transformation, ŜSS
(1,1)

and ŜSS
(v−1,v−1)

have
the same eigenvalues, and the eigenvectors rrr2 and lll2 are the complex conjugates of rrr1 and lll1.
All the four eigenvectors rrr1, lll1, rrr2 and lll2 are usually complex and have the angular frequency
ω f = 2π/v. A set of real eigenvectors each of size 12v+1 representing vertex values can be
obtained as the linear combination of the complex ones, e.g., with 1

2(rrr1 + rrr2) and 1
2i(rrr1 − rrr2)

where i =
√
−1. To avoid a proliferation of symbols we will use the same symbols for the

so-computed real and complex eigenvectors.
A necessary condition for the C2-continuity of a subdivision surface (with no artificial

flat spots) is that the subsubdominant eigenvalues satisfy

λ3 = λ
2
1 , λ4 = λ

2
1 , λ3 = λ4 = λ5 > λ6 (4.17)

and the corresponding eigenvectors come from the eigendecomposition of the blocks ŜSS
(0,0)

,
ŜSS
(2,2)

and ŜSS
(v−2,v−2)

[15, 44]. Remember that λ4 = λ5 is naturally satisfied due to the
duplicity of eigenvalues from blocks ŜSS

(m,m)
and ŜSS

(v−m,v−m)
when m ≥ 1, as mentioned in

Section 4.2.2.

4.2.4 Characteristic map

As first proposed in [43] the characteristic map provides a means for parametrisation of the
surface generated by a subdivision scheme. Parametrisation of the subdivision surface, at
least a local one, is essential in order to associate the so far discrete representation based
on control vertices with a continuous differentiable representation. This is, for instance,
required for finite element analysis using subdivision surfaces. The characteristic map is
defined using the two real right eigenvectors rrr1 and rrr2 corresponding to the subdominant
eigenvalue λ1 = λ2. The characteristic control mesh shown in Figure 4.3 representing the
3-neighbourhood around an extraordinary vertex has the coordinates

ppp0
c =

[
rrr1 rrr2 000

]
, (4.18)

where the third out-of-plane coordinate is chosen as 000. As discussed in Section 4.2.2, recall
that the two eigenvectors rrr1 and rrr2 have the angular frequency ω f = 2π/v and have been
chosen so that they are orthogonal in the plane spanned by the corresponding two complex
eigenvectors. This can be done without loss of generality because the subdivision construction
is invariant under affine transformations. Hence, the coordinates of control vertices (s,a)
oscillate with cos(2πs/v) in the horizontal direction and with sin(2πs/v) in the vertical
direction leading to the shown characteristic control mesh in Figure 4.3.

68



4.2 Catmull-Clark subdivision surfaces

Figure 4.3: Characteristic control mesh of Catmull-Clark scheme for valence v = 3 (left) and v = 5
(right).

As suggested in [43], the planar surface described by the characteristic control mesh
can be used for the parametrisation of subdivision surfaces. To this end, first consider the
subdivision refinement of the characteristic mesh. According to (4.15) and the orthogonality
of left and right eigenvectors (4.4), the subdivision refinement of the characteristic mesh
simply yields a scaled version of the same mesh:

pppℓc = SSSℓppp0
c =

[
λ ℓ

1rrr1 λ ℓ
2rrr2 000

]
. (4.19)

Hence, the refined control mesh is simply obtained by scaling the control mesh by λ1 = λ2.
Repeated subdivision yields repeated scaling of the control mesh. This combined with the
fact that the Catmull-Clark scheme leads to bivariate cubic B-splines in patches with only
ordinary vertices is used for parametrising the subdivision surface. During subdivision
refinement each patch is split into four patches. In particular, in the patches adjacent to
the extraordinary vertex three of the created patches have only regular vertices and can be
parametrised with bivariate cubic B-splines.

With repeated refinement more and more of the subdivision surface can be parametrised
with cubic B-splines. A practical algorithm for efficient implementation of this parametri-
sation has been introduced in [40]. Without going into details we define the bijective
characteristic map

χ : (ηηη ,s) ∈ (Ω,s) 7→ ξξξ ∈ Ωχ (4.20)

with ηηη = (η1,η2) and ξξξ = (ξ1,ξ2), which maps a set of square domains (Ω,s) with s ∈ N+

representing the faces in the control mesh into the characteristic domain Ωχ . The smooth
parametrisation provided by the characteristic map χ is illustrated in Figure 4.4. With the
subdivision basis functions NNN(ηηη ,s), consisting of cubic B-splines and obtained according
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Subdivision surfaces with optimised refinement weights

Figure 4.4: Characteristic map from a unit square to the characteristic domain.

to [40], the characteristic map can be written as

ξξξ = χ(ηηη ,s) = NNNT(ηηη ,s)
[
rrr1 rrr2

]
. (4.21)

For brevity, in the following we omit the face index in the basis function NNN(ηηη ,s) and write
NNN(ηηη). In Section 3.2.3, taking the univariate basis as an example, we have demonstrated
the whole procedure of using Stam’s algorithm [40] to evaluate the basis functions NNN(η) in
"irregular" region with non-uniform knots. The same process is readily extended to evaluate
the bivariate basis function NNN(ηηη) around extraordinary vertices. In this case, the number of
supporting control points for each regular cubic B-spline patch (shaded in blue in Figure 4.4)
is sixteen and the subdivision weights given in Figure 4.1 should be used.

4.3 Optimisation of subdivision weights

We aim to modify the subdivision weights α,β and γ of the Catmull-Clark scheme, see
Figure 4.1, to improve its approximation properties when used in finite element analysis. As
known in CAD, not all parameters yield visually appealing surfaces even when they give
C1-continuous surfaces, for a quantitative analysis see [44]. Small surface oscillations, i.e.
ripples, appear when the represented surface is not planar.
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4.3 Optimisation of subdivision weights

4.3.1 Preliminaries

First, we consider the representation of a polynomial scalar field u(ξ1,ξ2) over the character-
istic domain Ωχ . It is assumed that the scalar field is given in the form

u(ξ1,ξ2) = c0 + c1ξ1 + c2ξ2 + c3(ξ
2
1 +ξ

2
2 )+ c4(ξ

2
1 −ξ

2
2 )+ c5(2ξ1ξ2)+ . . .

= c0u0 + c1u1(ξ1)+ c2u2(ξ2)+ c3u3(ξ1,ξ2)

+ c4u4(ξ1,ξ2)+ c5u5(ξ1,ξ2)+ . . . ,

(4.22)

where c j ∈R and the functions u j on the second line are introduced for notational convenience.
The chosen functions u0, u1(ξ1), u2(ξ2), u3(ξ1,ξ2), u4(ξ1,ξ2) and u5(ξ1,ξ2) can represent
all quadratics and their choice will be discussed further below. The approximation of u j over
Ωχ can be studied by comparing with it the limit surface resulted from the control points

ppp0
u j
=
[
rrr1 rrr2 u j(rrr1,rrr2)

]
, (4.23)

where the third coordinate is a vector formed by the scalar function u j(ξ1,ξ2) evaluated at the
vertex locations [rrr1 rrr2], row by row. The linear functions u1(ξ1) and u2(ξ2) can be exactly
represented so that we are mainly concerned about the quadratic terms u3(ξ1,ξ2), u4(ξ1,ξ2)

and u5(ξ1,ξ2).
The specific form of the quadratic functions in (4.22) is motivated by the eigenstructure

of the subdivision matrix SSS, see Section 4.2.2. Specifically, the control point values rrr3, rrr4

and rrr5 and the corresponding control point values u3(rrr1,rrr2), u4(rrr1,rrr2) and u5(rrr1,rrr2) have
matching angular frequencies over the 3-neighbourhood of the extraordinary vertex2. It is
straightforward to confirm the orthogonality relations

⟨u j(rrr1,rrr2), lllk⟩=

̸= 0 for j = k

= 0 for j ̸= k
with j,k ∈ {3,4,5} . (4.24)

According to (4.12), the projection of the control vertex coordinates ppp0
u j

into the eigenspace
of the subdivision matrix SSS, while neglecting the terms with higher orders than quadratic,
yields

ppp0
u j
=
[
rrr1 rrr2 rrr j⟨lll j,u j(rrr1,rrr2)⟩

]
. (4.25)

2In order for the phase to match, the indexing of the vertices has to begin along the edge aligned with the
ξ1-axis.
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With the eigendecomposition (4.4) the subdivision refinement of this control mesh gives

pppℓu j
= SSSℓppp0

u j
=
[
λ ℓ

1rrr1 λ ℓ
2rrr2 λ ℓ

j rrr j⟨lll j,u j(rrr1,rrr2)⟩
]
, (4.26)

That is, the subdivision refinement of the first two components yields the characteristic
domain and the third component yields the graph of the surface uh

j(ξ1,ξ2) approximating
u j(ξ1,ξ2), see Figure 4.5. The corresponding limit surface uh

j(ξ1,ξ2) has, according to (4.21),
the following form: [

ξξξ uh
j

]
= NNNT(ηηη)

[
rrr1 rrr2 rrr j⟨lll j,u j(rrr1,rrr2)⟩

]
. (4.27)

To compare the shapes uh
j(ξ1,ξ2) and u j(ξ1,ξ2) quantitatively, we introduce the thin-plate

energy norm

∥u∥2
e =

∫
Ω

(
∂ 2u
∂ξ 2

1
+

∂ 2u
∂ξ 2

2

)2

−2(1−µ)

(
∂ 2u
∂ξ 2

1

∂ 2u
∂ξ 2

2
−
(

∂ 2u
∂ξ1∂ξ2

)2
)

dΩ , (4.28)

with the Poisson ratio µ = 0.3. Moreover, the necessary conditions for C2-continuity given

(a) Cup-like geometry uh
3(ξ1,ξ2) (b) Saddle-like geometry uh

4(ξ1,ξ2)

Figure 4.5: Quadratic shapes over a characteristic control mesh with valence v = 5. Note
that uh

5(ξ1,ξ2) has the same shape like uh
4(ξ1,ξ2), but only rotated by π/4 in the ξ1ξ2-plane.

in (4.17), repeated here for convenience,

λ3 = λ
2
1 , λ4 = λ

2
1 , and λ5 = λ

2
1 with λ1 = λ2

can now be related to the curvature of the three quadratic limit surfaces resulted from repeated
refinement of ⟨u j(rrr1,rrr2), lll j⟩rrr j with j ∈ {3,4,5}. In order for the limit surfaces uh

j(ξ1,ξ2) to
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4.3 Optimisation of subdivision weights

have finite curvature at the extraordinary vertex, when the first two control vertex components
scale with λ1(= λ2) the third has to scale with λ 2

1 .

4.3.2 Constrained optimisation

The constrained optimisation problem for determining the subdivision weights α , β and γ

that minimise the error in approximating quadratic surfaces is formulated as

minimise
α,β ,γ

∥uh
j(ξ1,ξ2;α,β ,γ)−u j(ξ1,ξ2)∥e

∥u j(ξ1,ξ2)∥e
(4.29a)

subject to: λ1(β ,γ) = λ2(β ,γ) (4.29b)

λ3(α,β ,γ) = λ
2
1 (β ,γ) (4.29c)

λ4(β ,γ) = λ
2
1 (β ,γ) (4.29d)

λ5(β ,γ) = λ4(β ,γ) , (4.29e)

with j ∈ {3,4,5} and the constraints representing the necessary C2-continuity conditions
(4.16) and (4.17). As mentioned in Section 4.2.3, owing to the symmetries of the DFT, the
constraints (4.29b) and (4.29e) are automatically satisfied. Hence, the constraints reduce to
two independent equations for the three unknowns. To reduce the constrained optimisation
problem into an unconstrained one, it is convenient to first solve the nonlinear system of
equations

λ1(β ,γ) = λ , (4.30a)

λ4(β ,γ) = λ
2
1 (β ,γ) , (4.30b)

λ3(α,β ,γ) = λ
2
1 (β ,γ) . (4.30c)

That is, to determine the dependence of the weights α(λ ), β (λ ) and γ(λ ) on the variable λ .
To solve (4.30) we use in our implementation the Python library SciPy, to be more specific,
the quasi-Newton method with a BFGS update with a suitable cost function. However, β (λ )

and γ(λ ) can become complex for some λ values [48]. For Catmull-Clark, it is smaller λ

values which result in complex weights. For instance, there is no real solution for β and γ for
λ ≤ 0.608 in case of valence v = 5. Instead of excluding λ values leading to complex weights
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we relax the second constraint (4.30b) by considering the modified constraint equations

λ1(β ,γ) = λ , (4.31a)

β = γ , (4.31b)

λ3(α,β ,γ) = λ
2
1 (β ,γ) . (4.31c)

In implementations where the boundedness of curvature must be satisfied, one can constrain
the λ value in a valid range or consider more degrees of freedom for optimisation [48, 58].
In our numerical experiments, we found that considering the modified constraint equations
leads to smaller energy norm errors in comparison to constraining the range of possible λ

values. After solving (4.30) or (4.31) and determining α(λ ), β (λ ), and γ(λ ) the constrained
optimisation problem (4.29a) can now be restated as an unconstrained problem

minimise
λ

∥uh
j(ξ1,ξ2;α(λ ),β (λ ),γ(λ ))−u j(ξ1,ξ2)∥e

∥u j(ξ1,ξ2)∥e
, (4.32)

which is a one-dimensional optimisation problem that can be solved by direct search.

4.3.3 Optimised weights for valence v = 5 vertices

As an example for obtaining optimised weights, we consider the valence v = 5 vertex case.
The proposed optimisation follows the same procedure regardless of valence. It is sufficient
to consider only the approximation of the quadratic functions u3(ξ1,ξ2) = ξ 2

1 + ξ 2
2 and

u4(ξ1,ξ2) = ξ 2
1 −ξ 2

2 with cup-like and saddle-like geometries, respectively. The function
u5(ξ1,ξ2) = 2ξ1ξ2 has the same saddle-like geometry as u4(ξ1,ξ2), only rotated by π/4 in
the ξ1ξ2-plane. During optimisation the thin-plate energy norms in (4.32) are evaluated in
the 2-neighbourhood of the extraordinary vertex, which is the same as the support size of the
basis functions. This explains why we consider 3-neighbourhood around an extraordinary
vertex, see Figure 4.2, because the evaluation in the second-ring elements needs the third-ring
control vertices.

Figures 4.6a and 4.6b show the relative energy norm errors in approximating cup- and
saddle-like geometries, respectively, when the subdominant eigenvalue λ and number of
Gauss integration points are varied. It can be seen that while λ has a significant influence
on the error the number of integration points appears to be irrelevant. Figure 4.7 shows the
relative energy norm error both in cup- and saddle-like geometries when 4×4 integration
points are used. In comparison to Catmull-Clark weights, also indicated in Figure 4.7, for
λ ∈ [0.550,0.585] the optimised subdivision weights lead to a reduction of errors in both
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Figure 4.6: Relative energy norm error in dependence of the sub-dominant eigenvalue λ and number
of integration points.

cup- and saddle-like geometries. Moreover, the most optimal value for the cup-like geometry
is λ = 0.550 and for the saddle-like geometry is λ = 0.585, see Table 4.1 for the values of
the optimised weights. According to [44], the obtained subdivision surfaces, same as original
Catmull-Clark scheme, are C1-continuous at extraordinary vertices and C2 everywhere else,
because the eigenvalues satisfy the required relations and the characteristic map is regular
and injective.
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Figure 4.7: Relative energy norm error for cup- and saddle-like geometries in dependence of the
sub-dominant eigenvalue λ and for the Catmull-Clark(CC) scheme. The number of integration points
used for all data values is 4×4. The most optimal value for the cup-like geometry is λ = 0.550, while
for the saddle-like geometry it is λ = 0.585. See Table 4.1 for the values of the optimised weights.

Table 4.1: Optimised weights in Catmull-Clark subdivision scheme for valence v = 5 vertices.

α β γ λ1 = λ2
Cup 13.4575 0.999938 0.999938 0.550

Saddle 13.9851 0.824885 0.824885 0.585
Original [14] 15 1 1 0.550

4.3.4 Application-dependent choice of refinement weights

When subdivision surfaces are used for finite element analysis, the solution field has quite
often a mixture of both cup- and saddle-like components. And the solution field at a
specific extraordinary vertex is only known after the finite element analysis. Therefore,
in a first step we use the optimal weights for the cup-like geometry to obtain an initial
finite element solution. Afterwards, for each extraordinary vertex with valence v ≥ 5, a
local shape decomposition is performed to determine whether the local solution is cup or
saddle dominated. If the cup component dominates, the optimal weights for the cup-like
geometry are chosen. If instead the saddle component dominates, the optimal weights for the
saddle-like geometry are chosen. After the optimal weights for each extraordinary vertex are
chosen, a second finite element analysis is performed to obtain the final solution with smaller
discretisation errors.
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4.3 Optimisation of subdivision weights

For thin-plate and thin-shell finite element problems the decomposition of a solution
into cup- and saddle-like components may be accomplished as described in the following.
Suppose that the local finite element solution in a 3-neighbourhood of an extraordinary vertex
is denoted as ppph and has the dimensions (12v+1)×3. In a coordinate system centred at the
limit position of the extraordinary vertex, according to (4.15), we can write

ppph =
12v

∑
j=1

rrr j⟨lll j, ppph⟩ . (4.33)

The corresponding limit surface has at the extraordinary vertex the normal vector nnn ∈ R3,
defined by

nnn =
⟨lll1, ppph⟩×⟨lll2, ppph⟩
|⟨lll1, ppph⟩×⟨lll2, ppph⟩| , (4.34)

where the vectors ⟨lll1, ppph⟩ and ⟨lll2, ppph⟩ represent the two, usually non-orthogonal, tangent
vectors. Multiplying (4.33) with the normal vector gives by eliminating its first two terms

ppphnnnT =
12v

∑
j=3

rrr j⟨lll j, ppph⟩nnnT . (4.35)

The vector ppphnnnT represents the out-of-plane coordinates of the control points in a coordinate
system aligned with the tangent plane at the extraordinary vertex. The corresponding limit
surface over the characteristic domain has the following representation:

uh(ξ1,ξ2) = NNNT
(
χ
−1(ξ1,ξ2)

)
ppphnnnT

= NNNT
(
χ
−1(ξ1,ξ2)

)(
rrr3⟨lll3, ppphnnnT⟩+ rrr4⟨lll4, ppphnnnT⟩+ rrr5⟨lll5, ppphnnnT⟩+ · · ·

) (4.36)

and can be approximated with quadratic functions u3(ξ1,ξ2) = ξ 2
1 +ξ 2

2 , u4(ξ1,ξ2) = ξ 2
1 −ξ 2

2

and u5(ξ1,ξ2) = 2ξ1ξ2 , see (4.22), such that

uh(ξ1,ξ2)≈
(

λ3

λ 2
1

)ℓ ⟨lll3, ppphnnnT⟩
⟨lll3,u3(rrr1,rrr2)⟩

(ξ 2
1 +ξ

2
2 )

+

(
λ4

λ 2
1

)ℓ ⟨lll4, ppphnnnT⟩
⟨lll4,u4(rrr1,rrr2)⟩

(ξ 2
1 −ξ

2
2 )

+

(
λ5

λ 2
1

)ℓ ⟨lll5, ppphnnnT⟩
⟨lll5,u5(rrr1,rrr2)⟩

(2ξ1ξ2)+ · · ·

:= k3(ξ
2
1 +ξ

2
2 )+ k4(ξ

2
1 −ξ

2
2 )+ k5(2ξ1ξ2)+ · · · ,

(4.37)
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where ℓ denotes the refinement level required to evaluate at the point (ξ1,ξ2) using the
Stam [40] algorithm. The refinement level dependent factors always vanish when, as required
for curvature continuity, λ j = λ 2

1 for j ∈ 3,4,5. After computing the energy densities, i.e. the
integrand in (4.28), for each of the three quadratic components their ratio can be determined.
Moreover, the two last terms with saddle-like geometries are energetically equivalent so
that their components can be combined. This gives the following ratio between cup- and
saddle-like energies:

R =
k2

3∥u3∥2
e

k2
4∥u4∥2

e + k2
5∥u5∥2

e
=

k2
3

(k2
4 + k2

5)

1+µ

1−µ
. (4.38)

In numerical computations the ratio R is used to decide which set of subdivision refinement
weights to use.

4.4 Examples

We consider the finite element analysis of thin plates to demonstrate the benefits of the
optimised subdivision weights over Catmull-Clark weights. The plates are square shaped,
simply supported and subjected to either uniform or sinusoidal distributed transversal loads,
see Table 4.2. The thin plate energy functional depends on the second derivatives of the
displacement field, c.f. (4.28). Hence, the accurate approximation of the quadratic terms in
the solution field is crucial. For details of finite element implementation we refer to [6, 41].
The analytical solutions of all the computed problems are known and can be found in [59,
Chapter 5]. Two different unstructured control meshes shown in Figure 4.8 are used in the

Table 4.2: Geometry, material and loading of the computed thin plates.

Length Lx = 10, Ly = 10
Thickness t = 0.1
Young’s modulus E = 200×109

Poisson’s ratio µ = 0.3
Uniform loading p = 104

Sinusoidal loading ps = psin(2πx/Lx)sin(2πy/Ly)

numerical computations. Both meshes have extraordinary vertices with valences v = 3 and
v = 5. We do not use optimised subdivision weights for valence v = 3 vertices with sub-
dominant eigenvalues λ1 = λ2 < 0.5. During subdivision refinement their 1-neighbourhoods
shrink faster than the 1-neighbourhoods of other vertices with λ1 = λ2 ≥ 0.5, see also Fig-
ure 4.3. Hence, it can be expected that the benefits of optimising the weights of vertices with
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(a) Symmetric mesh (b) Asymmetric mesh

Figure 4.8: Initial unstructured coarse control meshes with level ℓ= 0.

v = 3 will be negligible. For each valence v = 5 vertex the optimal subdivision weights are
chosen independently based on the dominant component of the quadratic shape at the vertex.

We demonstrate the benefits of the optimised subdivision weights over the Catmull-Clark
weights by plotting the convergence of L2 and energy norm errors. The successively refined
meshes are obtained by subdivision using the Catmull-Clark weights. In all examples 4×4
Gauss quadrature points are used to evaluate the finite element integrals, which appears to be
sufficiently accurate as shown in Figure 4.6a and Figure 4.6b. See also [60] for a systematic
study on numerical integration of subdivision surfaces. For all examples in this section, the
boundaries of the plates are simply supported. We tag boundary edges as creases and the
four corner vertices as corners, which call for sharp subdivision rules [36]. In this setting, the
Dirichlet boundary conditions uuu = 000 on simply supported edges are straightforward to apply.

4.4.1 Uniform loading, symmetric unstructured mesh

As the first example, we compute the deformation of a simply supported square plate subjected
to uniform transversal loading. The plate is discretised with the symmetric unstructured
mesh shown in Figure 4.8a. Since the displacement field is usually not known prior to a
finite element analysis, we use the optimal weights for cup-like shapes to solve the plate
bending problem on a level ℓ= 2 control mesh. Afterwards, for extraordinary vertices with
valence v = 5 we decompose the local displacement field energetically to determine whether
it is cup- or saddle-dominated and choose the optimal subdivision weights accordingly. For
the considered uniform loading the shape decomposition shows that saddle dominates at all
valence v = 5 vertices with cup-saddle ratio R = 0.766. Therefore, we choose the optimal
weights for saddle-dominated shapes for all v = 5 vertices and study the convergence of the
finite element solution using meshes from levels ℓ= 1 to ℓ= 5.
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Subdivision surfaces with optimised refinement weights

Figure 4.9 shows the level ℓ= 2 control mesh and the deformed plate. The convergence
of L2 and energy norm errors are plotted in Figure 4.10. The optimised refinement weights
reduce the L2 norm error by more than 50% and the energy norm error by more than 45% in
comparison to Catmull-Clark subdivision weights.

(a) Level ℓ= 2 control mesh (b) Deformed plate

Figure 4.9: Control mesh with fourfold symmetry and the deformed plate under uniform loading.
The shown control mesh is obtained by subdividing the symmetric coarse control mesh in Figure 4.8a
twice using Catmull-Clark weights.

4.4.2 Sinusoidal loading, symmetric unstructured mesh

Next, we compute the deformation of a simply supported square plate discretised with the
unstructured mesh shown in Figure 4.8a and subjected to sinusoidal loading. Compared
with the first example, the only difference is that sinusoidal loading is applied instead of
a uniform loading. After the first finite element analysis with the optimal weights for the
cup-like geometry the local shape decomposition shows that the cup component dominates at
all valence v = 5 vertices with cup-saddle ratio R = 29.2. Therefore, we choose the optimal
weights for cup-dominated shapes for all v = 5 vertices and study the convergence of the
finite element solution using meshes from levels ℓ= 1 to ℓ= 5.

Figure 4.11 shows the level ℓ= 2 control mesh and the deformed plate. The convergence
of L2 and energy norm errors are plotted in Figure 4.12. The optimised refinement weights
reduce the L2 norm error by more than 50% and the energy norm error by more than 20% in
comparison to Catmull-Clark weights.

4.4.3 Sinusoidal loading, asymmetric unstructured mesh

In this last example, we compute the deformation of a simply supported square plate dis-
cretised with the asymmetric unstructured mesh shown in Figure 4.8b and subjected to
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(a) L2 norm error
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(b) Energy norm error

Figure 4.10: Uniform loading with symmetric unstructured mesh. Saddle dominates (R = 0.766) at
all valence v = 5 vertices. Optimisation reduces the L2 norm error by more than 50% and energy
norm error by more than 45%. See Table 4.1 for the values of the optimised weights corresponding to
λ = 0.585.

sinusoidal loading. As in the first two examples, we obtain the first finite element solution
using the optimal weights for cup-like shapes on a level ℓ= 3 control mesh. Subsequently,
for each extraordinary vertex with valence v = 5 the local displacement field is decomposed
to determine whether it is cup or saddle dominated and the optimal weights are chosen
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Subdivision surfaces with optimised refinement weights

Figure 4.11: The deformed plate under sinusoidal loading on a level ℓ= 2 symmetric control mesh.

accordingly. The local shape decomposition shows that the local solution at vertex P6 is
cup dominated with cup-saddle ratio R = 85.8 and at vertex P12 it is saddle dominated with
R = 0.0463. We choose optimised cup weights for P6 and saddle weights for P12 and study
the convergence of the finite element solution using meshes from levels ℓ= 1 to ℓ= 5.

Figure 4.13 shows level ℓ= 3 control mesh and the deformed plate. The convergence
of L2 and energy norm errors are plotted in Figure 4.14. The optimised refinement weights
reduce both L2 error and energy norm error by more than 50% in comparison to Catmull-Clark
weights.

4.5 Conclusions

We have shown that significant reductions in discretisation errors in L2 and energy norms
can be achieved when subdivision weights around extraordinary vertices are optimised for
finite element analysis. Although this was demonstrated for Catmull-Clark subdivision
surfaces, a similar approach can be developed for other subdivision schemes as well. During
finite element analysis the subdivision weights at each extraordinary vertex are chosen
depending on whether the local solution has a more cup- or saddle-like shape. Two sets
of weights, one for cup and the other for saddle, were derived which depend only on
the valence of the extraordinary vertex. We only discussed valence v = 5 because it is,
in addition to v = 3, one of the most occurring valences for quad meshes. The same
implementation applies to extraordinary vertices with v > 5 with no further modification.
For the case valence v = 3 we observed that the improvement is not significant. This is as
to be expected given that the 1-neighbourhood of a valence v = 3 vertex shrinks faster than
of other valences. In the optimisation process three of the subdivision weights, α , β and
γ in the 1-neighbourhood of an extraordinary vertex were selected as degrees of freedom.
By considering the 2-neighbourhood of a vertex it would have been possible to optimise
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(a) L2 norm error
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(b) Energy norm error

Figure 4.12: Sinusoidal loading with symmetric unstructured mesh. Cup dominates (R = 29.2) at all
valence v = 5 vertices. Optimisation reduces the L2 error by more than 50% and energy norm error by
more than 20%. See Table 4.1 for the values of the optimised weights corresponding to λ = 0.550.

more than three subdivision weights. This may lead to even larger reductions in the errors
although the considered optimisation problems become larger. Finally, subdivision surfaces
are equally well suited for finite element analysis and modelling of geometries with arbitrary
topology. With the derived optimised weights, geometric models created with subdivision
surfaces in the new engineering design systems can be analysed much more efficiently.
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(a) Level-3 control mesh (b) Deformed plate

Figure 4.13: Asymmetric control mesh and the deformed plate under sinusoidal loading. The control
mesh is obtained by subdividing the asymmetric coarse control mesh shown in Figure 4.8b three times
with Catmull-Clark subdivision weights.
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(a) L2 norm error

10−2 10−1 100 101

Element size (h)

10−3

10−2

10−1

N
or

m
al

is
ed

en
er

gy
n

or
m

er
ro

r

1

Catmull-Clark

optimised

(b) Energy norm error

Figure 4.14: Sinusoidal loading with asymmetric unstructured mesh. Cup dominates (R = 85.8) at
vertex P6 and saddle dominates (R = 0.0463) at vertex P12. Therefore, λ = 0.550 is chosen for vertex
P6 and λ = 0.585 is chosen for vertex P12. Tuning reduces both the L2 error and energy norm error by
more than 50%. See Table 4.1 for the values of the optimised weights.
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Chapter 5

Manifold basis functions with sharp
features

In geometric modelling numerous approaches have been developed to represent smooth
surfaces with control meshes of arbitrary connectivity. These surface representation tech-
niques can be applied and further developed to derive basis functions for isogeometric analysis
on unstructured quadrilateral meshes with extraordinary vertices. Subdivision surfaces, as
introduced in the previous chapter, have appealing properties for geometric modelling but
lack optimal convergence in finite element analysis in the presence of extraordinary vertices.
Alternatively, manifold-based surface construction is another neat technique to deal with
extraordinary vertices. Manifold-based basis functions for isogeometric analysis were first
introduced in [24] and the finite element simulations indicate an optimal convergence for
Poisson problems and near optimal convergence for thin-shell problems even with extraordi-
nary vertices. In this chapter, we present an extension of the previous work in [24] to derive
novel manifold-based basis functions with arbitrary prescribed smoothness to represent
geometries and solution fields with sharp features, such as creased edges and corners.

Manifold-based surface construction is a well known technique in geometric modelling.
The main concept is to construct a smooth surface by blending together overlapping charts (or,
patches) as in the differential geometry description of manifolds. Following [24], we derive
basis functions on unstructured quadrilateral meshes by combining manifold techniques with
conformal parametrisations and the partition-of-unity method. Each chart on the manifold
consists of several elements and has a corresponding planar chart with a smooth one-to-one
mapping onto the manifold. On the collection of conformally parametrised planar charts
the partition-of-unity method is used for approximation. The smooth partition-of-unity, or
blending, functions are assembled from tensor-product B-spline segments defined over a
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unit square. In contrast to [24], in the present work polynomials with prescribed degree and
continuity are used as local approximants on each chart. Sharp features are represented with
suitably chosen C0-continuous local polynomials. As will be demonstrated, the new manifold
basis functions have to be carefully constructed in order to be suitable for both geometric
modelling and analysis. This is achieved by considering several affine and quasi-conformal
mappings depending on the local connectivity of the mesh and arrangement of sharp features.
The resulting basis functions have arbitrary prescribed smoothness and approximation order.

5.1 Introduction

Manifold-based basis functions for isogeometric analysis were first introduced in [24]. The
Ck≥1 continuous manifold basis functions are defined on unstructured quadrilateral meshes,
hence can represent parts with arbitrary topology, and give optimal convergence rates in
finite element computations. Manifold basis functions resemble spline basis functions in the
sense that each basis function has local support and has one corresponding vertex. Manifold
constructions have a rich history in geometric modelling [19–23] and our specific approach
is motivated by [21]. The basis functions are obtained by blending together polynomial
approximants defined on disparate planar chart domains using the partition of unity method.
Each of the chart domains is parametrised with a quasi-conformal map which is easy to
evaluate and to invert. In this work, we extend the manifold basis functions to represent
surfaces with C0 continuous sharp features, like creases and corners, see Figure 5.1. The
crease edges are tagged as such on the control mesh by the user of CAD systems. In geometric
modelling with manifolds crease edges have been previously considered in [61–63]. As
the treatment of domain boundaries has similarities to C0 creases, the new basis functions
provide also better control over boundaries. The new manifold basis functions are constructed
by choosing the polynomial approximants on the charts differently. The new approximants
consist out of several polynomial pieces which are C0 continuously connected across the
crease edges. To realise this for an arbitrary number and arrangement of creases it is necessary
to modify the chart domains. The new chart domains are chosen such that they are partitioned
into equiangular sectors by the creases. In order to parametrise these new chart domains a
new quasi-conformal mapping is proposed.

The outline of this chapter is as follows. In Section 5.2 the manifold basis functions
introduced in [24] are reviewed. Different from [21] we emphasise the computation of the
basis functions with a focus on their implementation in isoparametric finite element software.
The treatment of sharp features is discussed in Section 5.3. Depending on the arrangement of
crease edges we distinguish between rotationally symmetric and non-symmetric charts. Both
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require a different quasi-conformal map for parametrisation. In addition, the case of charts
leading to non-convex sectors on the characteristic map requires special treatment. Section 5.4
introduces finite element analysis of thin shells with normal control. In Section 5.5 the new
manifold basis functions are applied to several Bernoulli beams and linear and nonlinear
Kirchhoff-Love shell problems. The numerical convergence with decreasing element size in
L2 norm is demonstrated.

5.2 Review of manifold basis functions

In the following we briefly review the construction of manifold basis functions with a
focus on their application in finite elements. The discussion is limited to the manifold
basis functions introduced in [24]. For the sake of brevity the underlying fundamental
manifold concepts from differential geometry and the partition of unity interpolation are only
mentioned in passing.

5.2.1 Univariate basis functions

It is instructive to first review the derivation of the univariate manifold basis functions. We
consider the polygon in Figure 5.2 representing a finite element mesh consisting of vertices
xxxJ and elements between consecutive vertices. Our aim is to derive the basis functions for one
single element highlighted in the shown mesh. Similar to isoparametric finite elements we
define a reference element □ := [0,1] ∋ η that serves as an integration element for evaluating
the finite element integrals. In the manifold approach the basis functions NJ(η) are obtained
by smoothly blending polynomials defined over several overlapping charts, or patches as

(a) Control mesh (b) Manifold surface (c) Deformed surface

Figure 5.1: Genus 2 surface with creased edges and sharp corners. On the control mesh (a) the edges
to be creased are marked in red. In the constructed manifold surface (b) the creases are faithfully
reproduced by selectively reducing the smoothness of the underlying basis functions.
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Figure 5.2: Construction of univariate basis functions by blending chart-wise defined Lagrange basis
functions ppp j using smooth weight functions w j and the approximation of a control mesh.

they were called in [24]1. In the following we consider chart domains Ω̂ j := [−1,1] ∋ ξ j

that correspond to a vertex and the union of the two elements in its 1-neighbourhood. A
1-neighbourhood of a vertex is defined as the union of elements that contain the vertex.
The n-neighbourhood is defined recursively as the union of all 1-neighbourhoods of the
(n−1)-neighbourhood vertices. Hence, each chart contains 2n elements and, in turn, the
image of each element is present on 2n charts. Using 1-neighbourhoods each reference
element □ maps to two elements in the domains Ω̂1 and Ω̂2, and there are four unique
vertices in the union of the two charts. We first define the maps

Ψ1 : η ∈ [0,1] 7→ ξ1 ∈ [0,1]

Ψ2 : η ∈ [0,1] 7→ ξ2 ∈ [−1,0]
(5.1)

from the reference element to the corresponding elements in the two charts, see Figure 5.2.
Subsequently, on each chart Ω̂ j a polynomial approximant

f j(ξ j) = pppTj (ξ j)ααα j (5.2)

1We refrain in this thesis from using the term patches because in computer-aided design literature patches
denote what are the elements in computational mechanics.
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Figure 5.3: Construction of smooth weight functions w j using cubic B-spline basis defined on a
uniform parameter space with knot interval length 1/4. B j denotes j-th cubic B-spline basis function
B j(η) that is defined on a twice uniformly bisected mesh and non-zero in the reference element
η ∈ [0,1]. See also (5.4) for a closed form expression of the weight functions w j(ξ j).

is chosen, where ppp j(ξ j) is a vector containing a polynomial basis and ααα j contains its
coefficients. It is possible to choose for ppp j(ξ j) any polynomial basis, like Lagrange, Bernstein,
Chebyshev or any other. In the example in Figure 5.2 a Lagrange basis is used. The chosen
basis on the chart Ω̂1 is quadratic, whereas on the chart Ω̂2 it is linear and only C0 continuous.
In addition to the polynomial basis we require on each chart a smooth weight function w j(ξ j)

that must satisfy the partition of unity property

w1(ξ1)+w2(ξ2) = 1 ∀η ∈ [0,1] , with ξ j =Ψj(η) . (5.3)

Weight functions w j(ξ j) can be constructed from B-spline basis. For example, Figure 5.3
illustrates how to obtain C2 continuous weight functions by combining cubic B-splines, i.e.,

w j(ξ j) = w̃ j(η) with η =Ψ
−1
j (ξ j) , (5.4a)

w̃1(η) = B1(η)+B2(η)+B3(η)+0.5B4(η) , (5.4b)

w̃2(η) = 0.5B4(η)+B5(η)+B6(η)+B7(η) . (5.4c)

It is straightforward to show that the weight functions satisfy (5.3) given that a complete
B-spline basis sums up to one. It is worth emphasising that the proposed weight functions
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are polynomial in contrast to the rational ones originally introduced in [24], see Appendix A.
Note that the construction defined in (5.4) can be easily extended to the bivariate case using
tensor product.

Finally, the approximant over the reference element is obtained by blending the approxi-
mants over the two charts

f (η) =
2

∑
j=1

w j(ξ j)pppTj (ξ j)ααα j with ξ j =Ψj(η) . (5.5)

Due to the choice of the Lagrange basis for ppp j(ξ j) the coefficients ααα j can evidently be
interpreted as vertex coefficients or degrees of freedom. The coefficients ααα j are obtained
from coefficient array fff using gather matrices PPP j filled with ones and zeros,

ααα j = PPP j fff . (5.6)

This introduced in (5.5) yields the array of manifold-based isogeometric analysis basis
functions NNN(η) for each element

f (η) =
2

∑
j=1

(
w j(ξ j)pppTj (ξ j)PPP j

)
fff = NNNT(η) fff with ξ j =Ψj(η) . (5.7)

The four basis functions in NNN(η) correspond to the four unique vertices in the union of the
two overlapping charts Ω̂1 and Ω̂2 , see Figure 5.2.

To investigate the smoothness of the basis functions it is necessary to consider the
derivatives dNNN/dη . Hence, the smoothness of the basis functions depends on the weight
functions w j(ξ j), the approximants ppp j(ξ j) and the mappings Ψj(η). To obtain Ck continuous
basis functions each of the terms has to be k-times differentiable and, in addition, the function
value and derivatives up to k-th order of the weight functions have to be zero at the chart
boundaries, i.e.,

dlw j(−1)
dξ l

j
=

dlw j(1)
dξ l

j
= 0 ∀l ≤ k . (5.8)

Note that the mappings must also have continuous derivatives at the centre of the chart
domain, i.e.

dlΨ1(0)
dη l =

dlΨ2(1)
dη l ∀l ≤ k . (5.9)

The smoothness of the basis can be pointwise reduced by selecting suitable approxi-
mants ppp j(ξ j), see Figure 5.2 with linear basis functions on one of the charts. The resulting
basis functions and their first derivatives are plotted in Figure 5.4. The smoothness of the
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(a) Basis functions

(b) First derivatives

Figure 5.4: Univariate manifold basis functions and their derivatives. Five basis functions (solid) are
non-zero over the two elements of the centre chart.

basis is reduced to C0 at the chosen vertex. This may also have an effect on the number
of non-zero basis functions NNN(η). For instance, in the element considered with the linear
basis functions there are only three non-zero basis functions. In elements with a quadratic
polynomial on each chart there are four smooth non-zero basis functions.

At last, the generated manifold basis functions can be used to represent the curve described
by the initial polygon with

xxx(η) =
4

∑
J=1

NJ(η)xxxJ . (5.10)

5.2.2 Bivariate basis functions

The bivariate manifold basis functions provide smooth approximants even on unstructured
meshes. We consider the construction of the manifold basis functions for one single element
in the quadrilateral finite element mesh shown in Figure 5.5.

The reference element is now defined as a unit square □ := [0,1]× [0,1] ∋ ηηη = (η1,η2).
Similar to the univariate case each vertex xxxJ has an associated chart domain Ω̂ j ∋ ξξξ j =

(ξ 1
j ,ξ

2
j ), which consists of all the elements in the 1-neighbourhood of the vertex. The

number of elements connected to a vertex is called its valence and denoted with v. In
quadrilateral meshes, the interior vertices with v ̸= 4 are the extraordinary vertices. The
basis functions NJ(ηηη) are obtained by smoothly blending polynomials defined over each of
the four overlapping charts, see Figure 5.6. When the domain of each chart is defined as
the 1-neighbourhood of a vertex, the number of charts relevant for the considered element is
always four because each quadrilateral has four vertices.
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Figure 5.5: An unstructured mesh with extraordinary vertices of valence v ∈ 3,5. The shaded element
is overlapped by four charts and the union of the four charts has 16 unique vertices in total.

The bivariate approximant over the reference element □ is obtained by blending the four
chart contributions

f (ηηη) =
4

∑
j=1

w j(ξξξ j) f j(ξξξ j) =
4

∑
j=1

w j(ξξξ j)pppTj (ξξξ j)ααα j with ξξξ j =ΨΨΨ j(ηηη) , (5.11)

where w j(ξξξ j) and ppp j(ξξξ j) are the partition of unity weight function and polynomial basis
of the j-th chart, respectively. In contrast to the univariate case the choice of the map
ΨΨΨ j(η) requires special care and will be discussed further below. The coefficients of all
the unique vertices in the four charts are collected in the array fff . The number of unique
vertices is not fixed and depends on the valences v j of the four vertices of the element. The
approximant (5.11) expressed in dependence of the vertex coefficients fff yields

f (ηηη) =
4

∑
j=1

(
w j(ξξξ j)pppTj (ξξξ j)AAA jPPP j

)
fff with ξξξ j =ΨΨΨ j(ηηη) , (5.12)

where we used ααα j = AAA jPPP j fff on each chart Ω̂ j. PPP j is the gather matrix. The least-squares
projection matrix AAA j is required because the number of polynomial coefficients can be less
than the number of vertices. It is worth mentioning that the projection matrix AAA j depends
only on the valence v j of the vertex and can be precomputed and tabulated. Finally, the array
of basis functions for isogeometric analysis is defined with

NNNT(ηηη) =
4

∑
j=1

w j(ξξξ j)pppTj (ξξξ j)AAA jPPP j with ξξξ j =ΨΨΨ j(ηηη) . (5.13)

As mentioned earlier, the smoothness of the basis functions depends on the smoothness
of the weight functions w j(ξξξ j), the approximants ppp j(ξξξ j) and the mappings ΨΨΨ j(ηηη). The
number of mappings contributing to a specific chart is the same as the number of elements
on it. The set of all mappings contributing to a chart is referred to as its parametrisation in
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5.2 Review of manifold basis functions

Figure 5.6: The reference element □ (center) and its four overlapping chart domain Ω̂ j with j ∈
{1,2,3,4}. The reference element is mapped with ΨΨΨ j to the blue shaded elements in the four charts
Ω̂ j. Notice that the parameter lines in the charts with η1 = const. or η2 = const. are always orthogonal
to the spoke edges which guarantees that the derivatives of Ω̂ j are continuous over the entire chart.

computer-aided design and graphics literature. In our approach conformal maps are critical
for the smooth parametrisation of charts and for the composition of smooth weight functions.
As illustrated in Figure 5.7, the mapping ΨΨΨ j : [0,1]× [0,1] ∋ ηηη 7→ ξξξ j is composed of an
auxilliary linear map ΨΨΨ lll and a quasi-conformal map ΨΨΨ ccc, that is

ΨΨΨ j =ΨΨΨ ccc ◦ΨΨΨ lll , with j ∈ {1,2,3,4} . (5.14)

To write the conformal map more succinctly, first the coordinates ηηη = (η1,η2) of points in
the reference element are expressed as a complex number

z = η
1 + iη2 = |z|(cosφ + isinφ) = |z|eiφ with

|z|=
√
(η1)2 +(η2)2 and φ = arctan(η2/η

1) ,
(5.15)
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Figure 5.7: The map from the reference element to a chart with a valence v j = 3 centre vertex in
Figure 5.6. Substitute the value j = 4, v j = 3, n j = 3 into (5.16) and (5.17) to obtain the expression
of ΨΨΨ lll and ΨΨΨ ccc in this example.

where |z| is the radius and φ the angle in the complex plane. The auxiliary linear map ΨΨΨ lll is
only responsible for translating and rotating the reference element and is given by

ΨΨΨ lll(z; j) = (z− z j)e−iπ( j−1)/2 , (5.16)

where (z−z j) is a translation and e−iπ( j−1)/2 a (rigid body) rotation. z j is the coordinate of the
j-th vertex in the reference element such that [z1,z2,z3,z4]

T = [0+0i,1+0i,1+1i,0+1i]T.
A more detailed illustration of geometry meanings of complex number operations is given in
Appendix B. The quasi-conformal map ΨΨΨ ccc maps the reference element into a wedge-shaped
domain and is chosen as

ΨΨΨ ccc(z;v j,n j) =
|z|β
|z|4/v j

z4/v jei2π(n j−1)/v j = |z|β eiφ4/v jei2π(n j−1)/v j , (5.17)

where β is a free parameter, v j denotes the valence of the centre vertex and n j is the face
number of the considered element in the j-th chart. According to the first expression in (5.17),
the map ΨΨΨ ccc is composed of a standard conformal map z4/v j followed by a scaling of the
radius with |z|β−4/v j and a rotation ei2π(n j−1)/v j . When β = 4/v j the scaling term drops and
the map ΨΨΨ ccc is a conformal map, as used in [24]. The second expression in (5.17) shows that
the radius |z| will remain constant when β = 1. Hence, in this work we choose β = 1 to
obtain a more uniform mapping ΨΨΨ j with a more uniform Jacobian. See Appendix B for an
illustration of the influence of the parameter β on the conformal/quasi-conformal images.

With the mapping ΨΨΨ j at hand we can evaluate the manifold basis functions defined
in (5.13). Given any integration point (η1,η2), we first find its image (ξ 1

j ,ξ
2
j ) in each of the

four overlapping charts. Then it is straightforward to evaluate the weight functions w j(ξξξ j)

and local polynomials ppp j(ξξξ j). The weight functions w j(ξξξ j) are defined as the tensor-product
of univariate weight functions given in (5.4).
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5.3 Creased bivariate manifold basis functions

(a) Type 1 charts (b) Type 2 charts (c) Type 3 charts

Figure 5.8: Genus 2 surface with creased edges and sharp corners. Three different types of possible
crease charts with the centre vertex marked in colour: Type 1 (red), Type 2 (blue) and Type 3 (black).
See Figure 5.1 for the manifold surface represented by this control mesh and notice the differences
between the two holes (one is square and the other is circular).

5.3 Creased bivariate manifold basis functions

In this section, we classify crease charts into three different types, depending on the local
arrangement of crease edges. Figure 5.8 illustrates all three chart types, which call for
different parametrisations discussed in the following.

5.3.1 Type 1: Rotationally symmetric charts

The crease chart Type 1 shown in Figure 5.9 has a rotationally symmetric connectivity with
respect to the arrangement of the creased edges. There can be k ≥ 2 spoke edges which
are tagged as crease edges2. Specifically, the number of elements in each of the sectors
is the same. The basic idea is to define the local approximant f j(ξ

1
j ,ξ

2
j ) in each sector

independently while ensuring the C0 continuity across each crease edge shared by two
sectors. Figure 5.9a shows one example of a Type 1 chart with k j = 2 creases. In this case,
the local approximant is chosen as

f j(ξ
1
j ,ξ

2
j ) =

 f s j=1
j (ξ 1

j ,ξ
2
j ) if ξ 2

j ≥ 0

f s j=2
j (ξ 1

j ,ξ
2
j ) if ξ 2

j < 0
with f s j=1

j (ξ 1
j ,0) = f s j=2

j (ξ 1
j ,0) . (5.18)

It is straightforward to match the approximation f s j=1
j in upper part and f s j=2

j in lower part
at the horizontal axis. However, in the case of k j ≥ 3 creases which are not necessarily
axis-aligned, further effort is needed to guarantee C0 continuity at all creases. One option is
to choose a polynomial basis bbb(θθθ) defined in a square domain such that the boundary curve

2In this section, k is used for the number of creased spoke edges, which is different from what means
regularity in Gk and Ck continuity.
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(a) v j = 6 and k j = 2 (b) v j = 6 and k j = 3

Figure 5.9: Examples of Type 1 crease chart domains. The k j tagged creased edges divide the chart
into k j sectors shaded in different colours. Notice the rotational symmetry of the sectors.

only depends on control points on the boundary. Then map the basis from a square to each
sector to obtain the sector-wise basis ppps j

j (ξξξ j). In this case, the local approximants f s j
j (ξξξ j) in

two adjacent sectors meet C0 continuously because they share the same basis and the same
control points on the common sector boundary. Therefore, for Type 1 crease charts with
k j ≥ 3 we use the quasi-conformal map introduced in Section 5.2.2, i.e.,

ppps j
j (ξξξ j) = bbb(θθθ) with θθθ =ΨΨΨ

−1
ccc (ξξξ j;k j,s j) , (5.19)

where k j is the number of creases in the considered chart and s j ∈ {1,2, · · · ,k j} denotes the
sector number. The expression of quasi-conformal map ΨΨΨ ccc is given in (5.17). As for the
polynomial basis bbb defined in a square reference domain, various choices are available, e.g.,
Lagrange or Bernstein polynomials. Obviously, the polynomial degree should be chosen such
that the number of degrees of freedom is less than or equal to the number of vertices in each
sector. More supporting nodes can be added in each chart if a higher degree basis is needed. In
our implementation, middle-face and middle-edge supporting nodes are introduced, resulting
in 6v+1 control points in each chart of valence v.

5.3.2 Type 2: Non-symmetric charts

The crease chart Type 2 has no rotationally symmetric connectivity with respect to the
arrangement of the creased edges, see Figures 5.10 and 5.11 . That is, the number of elements
in each of the sectors is not the same. In this case the map ΨΨΨ j : [0,1]× [0,1] ∋ ηηη 7→ ξξξ j from
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5.3 Creased bivariate manifold basis functions

Figure 5.10: Example of Type 2 crease chart domain. The centre vertex has valence v j = 5 and
k j = 2 crease edges.

Figure 5.11: Example of Type 2 crease chart domain. The centre vertex has valence v j = 5 and
k j = 3 crease edges.

the reference element to Type 2 crease chart is different from what is used for smooth chart
and Type 1 crease chart. Similar to (5.14), the map ΨΨΨ

II
j for Type 2 crease chart is defined as

ΨΨΨ
II
j =ΨΨΨ

II
ccc ◦ΨΨΨ lll , with j ∈ {1,2,3,4} . (5.20)

Essentially, the map ΨΨΨ ccc in (5.14) is replaced with a modified map ΨΨΨ
II
ccc , defined as

ΨΨΨ
II
ccc (ηηη j;k j,s j, ls,ms) =ΨΨΨ ccc(ηηη j;k jls,(s j −1)ls +ms) , (5.21)

where k j is the number of creases in the chart, s j ∈ {1,2, · · · ,k j} is the sector number, ls is
the number of elements in the sector and ms ∈ {1,2, · · · , ls} is the local element number in
a sector. ΨΨΨ ccc is the quasi-conformal map defined in (5.17). Figure 5.12 clarifies what these
variables mean. After the Type 2 crease chart is mapped to an equiangular domain, local
approximants are defined in each sector and matched C0 continuously along the crease edges,
using the same approach as discussed in Section 5.3.1.
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(a) Sector number s j (b) Number of elements
in a sector ls

(c) Local element num-
ber ms

Figure 5.12: Illustration of the numbering used to define the map ΨΨΨ
II
ccc in (5.21), taking the example

of the Type 2 crease chart shown in Figure 5.10. The number of creases k j = 2 takes the same value
for every element.

5.3.3 Type 3: Charts with concave corners

Convex and concave corners, while being topologically equivalent, are not differentially
equivalent and they require separate mapping rules as also pointed out in previous work on
manifold [61] and subdivision [64]. There is no C1 non-singular mapping from a convex
domain to a non-convex domain. The arrangement of crease edges in Type 2 crease chart
domains can sometimes lead to non-convex sectors on surfaces. When the map (5.20) is used
in non-convex sectors it leads to foldover in the surface as shown in Figure 5.15. To cope
with non-convex sectors, the map ΨΨΨ

III
j for Type 3 crease chart is defined as

ΨΨΨ
III
j =ΨΨΨ

III
ccc ◦ΨΨΨ lll , with j ∈ {1,2,3,4} . (5.22)

Instead of using the quasi-conformal map ΨΨΨ
II
ccc defined in (5.21), a modified map ΨΨΨ

III
ccc is

introduced as

ΨΨΨ
III
ccc (ηηη j;k j,s j, ls,ms) =

ΨΨΨ ccc(ηηη j;4(k j −1)ls,(s j −1)ls +ms) if s j < k j

ΨΨΨ ccc(ηηη j;4ls/3,ms)eiπ/2 if s j = k j
, (5.23)

where the number of creases k j, the sector number s j, the number of elements in a sector
ls and the local element number in a sector ms are defined in the same way as mentioned
in Section 5.3.2, see Figure 5.14. Essentially, the concave sector with s j = k j is mapped to
a L-shaped domain and all other sectors are mapped to the first quadrant, see Figure 5.13.
In the concave sector, i.e., the L-shaped domain, three Bézier pieces are Ck≥1 continuously
connected within the sector while they are C0 continuously matched with polynomial pieces
in other sectors along the crease edges. Here, to derive the continuity matching requirements,
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5.3 Creased bivariate manifold basis functions

we have used the algorithms of Bézier curves introduced in Section 2.1, e.g., derivatives and
degree elevation.

Figure 5.13: Example of Type 3 crease chart domain. The centre vertex has valence v j = 5 and
k j = 3 creased edges. One of the sectors is non-convex.

(a) Sector number s j (b) Number of ele-
ments in a sector ls

(c) Local element num-
ber ms

Figure 5.14: Illustration of the numbering used to define the map ΨΨΨ
III
ccc in (5.23), taking the example

of the Type 3 crease chart shown in Figure 5.13. The number of creases k j = 3 takes the same value
for every element.

5.3.4 Examples with creases

We consider the construction of the manifold basis functions for one single element in
the unstructured quadrilateral finite element mesh shown in Figure 5.16, which includes
prescribed crease edges. There are four overlapping charts, see Figure 5.17. Notice that
the mapping for the Type 2 crease chart with local vertex index j = 1 is different from the
mapping for the smooth valence-5 chart in Figure 5.6, while the mappings for other charts
are the same. Note that the presence of creased edges only changes the chart parametrisation
for the construction of local sector-wise polynomials ppp j(ξξξ j). The construction of weight
functions www j(ξξξ j) is the same for all charts regardless of the crease edges since the element-
wise smooth weight functions are defined in the reference element and mapped to each
element in the chart domains, see (5.4).

Figure 5.18 shows a geometry represented by an unstructured quadrilateral mesh, which
includes prescribed creased edges. The eight charts of valence v = 6 include a smooth chart,
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Manifold basis functions with sharp features

Figure 5.15: Behaviour of the manifold surface at concave corners. The close-up image in blue box
(middle) shows the behaviour of Type 2 mapping, which develops a fold at the concave corner. In
contrast, the close-up image in the black box (right) has no fold and demonstrates that Type 3 mapping
is required for concave corners. In close-up images the control meshes are added for the purpose of
visualisation. In Figure 5.1, the crease charts centred at the eight vertices around the square hole all
use Type 3 mapping.

Figure 5.16: An unstructured mesh with extraordinary vertices of valence v ∈ 3,5. The shaded
element is overlapped by four charts and the union of the four charts have 16 unique vertices in total.
Edges tagged as crease are coloured in red.

four Type 1 crease charts and three Type 2 crease charts. In the constructed manifold surface,
all creases are faithfully reproduced.
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5.3 Creased bivariate manifold basis functions

Figure 5.17: The reference element □ (center) and its four overlapping chart domain Ω̂ j with
j ∈ {1,2,3,4}. The reference element is mapped with Ψj to the blue shaded elements in the four
charts Ω̂ j. Notice that the parameter lines in the charts with η1 = const. and η2 = const. are always
orthogonal to the spoke edges which guarantees that the derivatives of Ω̂ j are continuous over the
entire chart.
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Figure 5.18: Four different views of a manifold surface (left) modelled by using control points on the
limit surface of Catmull-Clark subdivision given the control mesh (right). In the control mesh, crease
edges are marked as red. This mesh includes eight valence-6 vertices and the corresponding charts are
categorised as smooth chart (empty dot), Type 1 (red dot) or Type 2 (blue dot) crease charts.
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5.4 Thin-shell analysis

5.4 Thin-shell analysis

In this section, we briefly review the Kirchhoff-Love thin-shell equations and their finite
element discretisation. In addition, we introduce how we apply normal constraints in thin-
shell analysis, which will be used in the following numerical examples.

5.4.1 Kinematics

With the convected coordinates (η1,η2,η3), the position vector ϕϕϕ(η1,η2,η3) of a material
point in the deformed configuration of the shell is assumed to be

ϕϕϕ(η1,η2,η3) = xxx(η1,η2)+η
3aaa3(η

1,η2) with η
3 ∈
[
− t

2
,

t
2

]
, (5.24)

where xxx(η1,η2) is the position vector on the shell mid-surface, aaa3(η
1,η2) the unit normal

to the mid-surface and t the shell thickness. The definition in the reference configuration
follows similarly

ΦΦΦ(η1,η2,η3) = XXX(η1,η2)+η
3AAA3(η

1,η2) . (5.25)

The covariant base vectors aaaα on the mid-surface are computed as

aaa1 =
∂xxx

∂η1 , aaa2 =
∂xxx

∂η2 , aaa3 =
aaa1 ×aaa2

|aaa1 ×aaa2|
, aαβ = aaaα ·aaaβ , α,β ∈ {1,2,3} . (5.26)

The contravariant base vectors aaaα on the mid-surface are determined by

aaaα ·aaaβ = δ
α

β
, aαβ = aaaα ·aaaβ . (5.27)

The covariant base vectors AAAα and contravariant base vectors AAAα in the reference configura-
tion are defined similarly.

With these definitions, the deformation gradient can be expressed as

FFF =
∂ϕϕϕ

∂ΦΦΦ
=

∂ϕϕϕ

∂ηα

∂ηα

∂ΦΦΦ
= aaaα ⊗AAAα , (5.28)

and the Green-Lagrange strain tensor as

EEE =
1
2
(FFFTFFF − III) . (5.29)
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A straightforward calculation leads to

EEE = ααα +η
3
βββ +(η3)2 · · · , (5.30)

with the components

ααα =
1
2
(aaaα ·aaaβ −AAAα ·AAAβ )AAA

α ⊗AAAβ , (5.31a)

βββ =
1
2
(aaaα ·aaa3,β +aaaβ ·aaa3,α −AAAα ·AAA3,β −AAAβ ·AAA3,α)AAAα ⊗AAAβ . (5.31b)

5.4.2 Thin-shell energy functional and its discretisation

The potential energy of the shell consists of internal and external energy, i.e,

Π[xxx] = Π
int[xxx]+Π

ext[xxx] . (5.32)

The internal potential energy can be computed as

Π
int[xxx] =

∫
Ω

W (ααα,βββ )dΩ (5.33)

=
∫

Ω

(
1
2

Et
1−ν2 Hαβγδ

ααβ αγδ +
1
2

Et3

12(1−ν2)
Hαβγδ

βαβ βγδ

)
dΩ , (5.34)

where E is Young’s modulus, ν Poisson’s ratio, t thickness and H a constant fourth-order
tensor with components

Hαβγδ = νAαβ Aγδ +
1
2
(1−ν)(AαγAβδ +Aαδ Aβγ) .

The potential energy of applied loads takes the form

Π
ext[xxx] =−

∫
Ω

qqq · (xxx−XXX)dΩ−
∫

Γ

NNN · (xxx−XXX)dΓ , (5.35)

where qqq is the distributed loads per unit area of Ω and NNN the axial forces per unit length of Γ.
To derive discrete equations, xxx and XXX in the potential energy functional (5.32) are replaced

with the following finite element approximations

xxxh(η1,η2) = ∑
J

NJ(η
1,η2)xxxJ , XXXh(η1,η2) = ∑

J
NJ(η

1,η2)XXXJ , (5.36)
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and the integrals are evaluated with Gauss quadrature. According to the principle of minimum
potential energy, the discrete equilibrium equations can be derived as

∂Π(xxxh)

∂xxxJ
=

∂Πint(xxxh)

∂xxxJ
+

∂Πext(xxxh)

∂xxxJ
= 000 , (5.37)

which are nonlinear equations because the internal potential energy Πint(xxxJ) is a nonlinear
function of the nodal position vector xxxJ . We solve the nonlinear discrete equations using the
Newton-Raphson method, i.e.,

∂ 2Π

(
xxx(n−1)

)
∂xxxI∂xxxJ

(
xxx(n)− xxx(n−1)

)
=−

∂Π

(
xxx(n−1)

)
∂xxxI

, (5.38)

where xxx(n−1) refers to the solution obtained at the previous iteration step and xxx(n) is going to
be determined at the current iteration. It becomes clear that ∂ 2Π/∂xxxI∂xxxJ contributes to the
left-hand side matrix and ∂Π/∂xxxI to the right-hand side vector. For brevity, here we do not
include the full expression of (5.38), which can be found in [6, 65].

5.4.3 Normal constraints

When rigid joints and clamped boundaries are present, it is necessary to constrain the surface
normals, which is realised by using penalty method in our implementation. To this end
penalty terms are added to the potential energy functional (5.32) as follows:

Π
C[xxx] = Π[xxx]+

γ1

2

∫
Γr

(aaal
3 ·aaar

3 −AAAl
3 ·AAAr

3)
2dΓ︸ ︷︷ ︸

rigid edges

+
γ2

2

∫
Γc

(aaa3 −AAA3) · (aaa3 −AAA3)dΓ︸ ︷︷ ︸
clamped edges

, (5.39)

where aaal
3 and aaar

3 denote the mid-surface normal on the left and right side of the rigid joint
in the deformed configuration, and AAAl

3 and AAAr
3 in the reference configuration. γ1 and γ2 are

penalty parameters. Obviously, the penalty terms vanish in the absence of rigid joints and
clamped boundaries, in which case (5.39) is identical to (5.32).

5.5 Examples

We consider several representative examples to demonstrate the versatility of the proposed
manifold basis functions in finite element analysis. In all examples, the Kirchhoff-Love
model is used for thin-shell analysis and Gauss quadrature is used for numerical integration,
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as introduced in Section 5.4. The linear Kirchhoff-Love model is used for the bending beam
and plate problems, while a nonlinear model is solved with Newton-Raphson method for the
pinched tube example. For convergence studies in the first two examples, we use 9×9 Gauss
quadrature points per element. However, for the nonlinear simulation of the pinched tube,
we use 3×3 quadrature points due to the large number of iterations needed.

Regarding the manifold constructions, all domain boundaries are tagged as crease edges,
excluding the need of ghost cells as in [24]. In all computations, weight functions are chosen
to be cubic B-splines and local basis is (piecewise) tensor-quadratic polynomial. To be able to
use tensor-quadratic basis in all charts, middle-face and middle-edge vertices are introduced,
resulting in 6v+ 1 control points in each chart of valence v. In all examples, the normal
constraints are enforced by using penalty method, as explained in Section 5.4.3, with the
penalty parameters chosen to be γ = O(E) where E is Young’s modulus.

5.5.1 Propped cantilever beam with a hinge

As an introductory example, we compute the deformation of a beam subjected to uniform
transversal loading, see Figure 5.19. In our computations, there are three different settings at
the centre: (1) continuous beam: all interior charts are smooth; (2) hinged beam: the middle
vertex is tagged as crease; (3) joined beam: the middle vertex is tagged as crease, where
the continuity of normal is enforced. This example is used to demonstrate the ability of the
proposed manifold basis functions to model arbitrary smoothness with exact boundary and
normal control.

Figure 5.19: Geometry and loading of the propped cantilever beam with a hinge.

The analytical deflection for the continuous beam is

u(x) =
q

4Et3 (2x4 −5Lx3 +3L2x2) , (5.40)

and for the hinged beam is

u(x) =


q

2Et3 (x4 −3Lx3 +3L2x2) if x < L/2
q

2Et3 (x4 −3Lx3 +3L2x2 −2L3x+L4) if x ≥ L/2
. (5.41)
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Figure 5.20: Convergence of L2 error of the bending beam. Cubic weight functions and quadratic
local polynomials are used.

The beam is discretised with a uniform mesh. Both the left and right ends are tagged as
crease, excluding the need of ghost cells. The left end is clamped requiring the constraint of
normal, while the right end is simply supported. Figure 5.20 plots the relative L2 norm error,
which converges at the optimal rate 2 in all situations. As expected, the continuous beam and
joined beam lead to similar results.

5.5.2 Bending plate

Next, we compute the deformation of a square plate subjected to uniform loading. Two types
of boundary conditions are considered: (1) all edges are simply supported; (2) two opposite
edges are simply supported and the other two clamped. Figure 5.21 shows the problem
definition and Figure 5.22 shows two meshes used in this computation. The analytical
deflection for both boundary conditions can be found in [59, Chapter 5 and 6]. The deformed
shapes under both boundary conditions are shown in Figure 5.23. It is clear that the plate
deforms very differently close to simply supported and clamped edges.

The plate is discretised with meshes shown in Figure 5.22, which are refined with Catmull-
Clark subdivision for the convergence study. Figure 5.24 plots the relative L2 norm error for
both boundary conditions with or without clamped edges. It is noteworthy that the manifold
basis functions achieve the optimal convergence order even with the presence of extraordinary
vertices in the meshes.
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Figure 5.21: Definition of the plate bending problem. Two types of boundary conditions are
considered, either all edges simply supported (left) or two opposite edges simply supported and the
other two clamped.

Figure 5.22: The structured (left) and unstructured (right) coarse meshes used for computations.

Figure 5.23: Deformed shapes of the plate under two different boundary conditions: Left: all edges
are simply supported; Right: two opposite edges are simply supported and the other two clamped.
The deflections are scaled with the same factor in the two cases.

5.5.3 Pinched square tube

In this last example, we compute the deformation of a pinched square tube subjected to two
diametrically opposite concentrated forces, shown in Figure 5.25. The tube is discretised
with a uniform structured mesh, where the element size is h = L/16, or with an unstructured
mesh as shown in Figure 5.26. To simulate the rigid joint, relevant edges are tagged as
crease and the angle between two corresponding normals is enforced to be constant during
deformation.
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(a) Structured mesh
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(b) Unstructured mesh

Figure 5.24: Convergence of relative L2 norm error for two different boundary conditions discretised
by either structured mesh or unstructured mesh. The coarse meshes shown in Figure 5.22 are refined
up to five times with Catmull-Clark subdivision for the convergence study.

Figure 5.26 presents the deformed tubes at three different load values. It is clear that the
right angles are well preserved in all deformed shapes. The nonlinear load-displacement
curve is plotted in Figure 5.27. This example demonstrates that the proposed manifold basis
functions can be used in thin-shell analysis with rigid joints.
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Manifold basis functions with sharp features

Figure 5.25: Geometry and loading of the pinched square tube.

Figure 5.26: Deformed shapes of the pinched tube at different load values. F = 10,50,100 (left to
right).
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Figure 5.27: Load-displacement curve of the pinched square tube at the load attachment point.
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Chapter 6

Manifold-spline basis functions

A spline is a piecewise polynomial, whose pieces meet with the highest possible continuity
for the given polynomial degree. Tensor-product of spline curves generates spline surfaces
defined on structured quadrilateral meshes. In Chapter 2, we have learned that splines have
different representations, such as Bézier form and B-spline form. The B-spline representation
is so far the most convenient one in many implementations, including geometry modelling
and finite element approximation. In this chapter, we introduce the manifold construction
for splines focusing on the univariate setting. This is motivated by the observation that
manifold-based basis functions can achieve optimal convergence in finite element analysis on
unstructured meshes [24], see also the numerical examples in Chapter 5. We aim to construct
manifold-spline basis functions that reproduce spline surfaces, i.e., subdivision surfaces in
regular region, and meanwhile maintain their optimal convergence around extraordinary
vertices. To fix ideas, we consider first only univariate cubic manifold-spline basis functions.
It is however straightforward to generalise the proposed techniques to the bivariate case and
higher (odd) degree splines.

6.1 Manifold construction representing B-spline curves

We first consider a particular manifold construction that automatically leads to B-splines.
Consider the cubic uniform B-splines B3

j(ξ ) shown in Figure 6.1. Since we only discuss
about cubic B-splines, for brevity we will omit the superscript 3 in B3

j(ξ ) which denotes
polynomial degree. Thus B j(ξ ) denotes a uniform cubic B-spline basis function centred at the
knot ξ = j. To keep the discussion concise, at the moment we use a global parametrisation
rather than the local parametrsiation for each reference element □ := [0,1] ∋ η . In any
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Manifold-spline basis functions

Figure 6.1: Cubic B-spline basis functions.

interval ξ ∈ [n,n+1], a B-spline function is represented as

f B(ξ ) =
n+2

∑
j=n−1

B j(ξ )β j , ξ ∈ [n,n+1] . (6.1)

As introduced in Section 5.2.1, we consider manifold charts Ω̂ j := [ j−1, j+1] ∋ ξ j consist-
ing of two elements. As a result, any interval [n,n+1] is overlapped by two manifold charts
Ω̂n and Ω̂n+1. The corresponding univariate manifold representation reads

f M(ξ ) = wn(ξ ) fn(ξ )+wn+1(ξ ) fn+1(ξ ) , ξ ∈ [n,n+1] (6.2)

where w j(ξ ) and f j(ξ ) are the weight functions and local polynomial approximants in the
manifold chart Ω̂ j. The weight functions form a partition of unity, i.e.,

wn(ξ )+wn+1(ξ ) = 1, ξ ∈ [n,n+1] . (6.3)

One straightforward approach to reproduce the B-spline function f B(ξ ) in the considered
interval is to choose in manifold construction (6.2) the local polynomial approximants f j(ξ )

in both charts to be identical to the spline function f B(ξ ), i.e.,

fn(ξ ) = fn+1(ξ ) = f B(ξ ) ξ ∈ [n,n+1] . (6.4)

Given the particular choice (6.4) and the partition of unity (6.3), we can rewrite the manifold
representation (6.2) as

f M(ξ ) = wn(ξ ) f B(ξ )+(1−wn(ξ )) f B(ξ ) = f B(ξ ) . (6.5)

This seems to be an obvious observation that due to the partition of unity property of weight
functions w j(ξ ) the reproduction of B-spline function f B(ξ ) follows immediately when the
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6.1 Manifold construction representing B-spline curves

local polynomial approximation in each manifold chart is chosen as f j(ξ ) = f B(ξ ). Recall
that, as mentioned in Section 5.2.1, the local approximants f j(ξ ) in manifold construction
are often represented as

f j(ξ ) = pppTj (ξ )ααα j , (6.6)

where ppp j(ξ ) is a vector containing a polynomial basis and ααα j a vector containing the
coefficients. In conventional smooth manifold constructions, in each chart domain ppp j(ξ ) is a
C∞ continuous polynomial basis rather than a piecewise polynomial basis. However, if we
would like to satisfy the particular choice (6.4), the local basis ppp j(ξ ) must be chosen as a
piecewise polynomial. This is because the B-spline function f B(ξ ) is essentially a piecewise
cubic polynomial which is C2 continuous at element boundaries.

One simple approach is to choose ppp j(ξ ) as B-spline basis functions and it follows that ααα j

should be the B-spline control coefficients. There is no need for least square fitting in regular
charts. For example, we consider the domain interval ξ ∈ [2,4] overlapped by three charts
centred at ξ = 2,3,4, respectively. The local approximations in the three relevant charts read

f2(ξ ) = B0(ξ )β0 +B1(ξ )β1 +B2(ξ )β2 +B3(ξ )β3 +B4(ξ )β4 , ξ ∈ Ω̂2 := [1,3] .

f3(ξ ) = B1(ξ )β1 +B2(ξ )β2 +B3(ξ )β3 +B4(ξ )β4 +B5(ξ )β5 , ξ ∈ Ω̂3 := [2,4] .

f4(ξ ) = B2(ξ )β2 +B3(ξ )β3 +B4(ξ )β4 +B5(ξ )β5 +B6(ξ )β6 , ξ ∈ Ω̂4 := [3,5] .

(6.7)

In the knot interval ξ ∈ [2,3], which is overlapped by two manifold charts Ω̂2 and Ω̂3, we
have

f M(ξ ) = (1−w3(ξ )) f2(ξ )+w3(ξ ) f3(ξ )

= (1−w3(ξ ))B0(ξ )β0 +B1(ξ )β1 +B2(ξ )β2 +B3(ξ )β3 +B4(ξ )β4 +w3(ξ )B5(ξ )β5

= B1(ξ )β1 +B2(ξ )β2 +B3(ξ )β3 +B4(ξ )β4

= f B(ξ )

(6.8)

where we have used (6.2), (6.3), (6.7) together with B0(ξ ) = B5(ξ ) = 0 for ξ ∈ [2,3].
Similarly, we can show f M(ξ ) = f B(ξ ) for ξ ∈ [3,4].

As this approach uses the same control points as B-spline curves, it is straightforward
to interface it with B-splines and subdivision surfaces. Only close to an EV the manifold
construction becomes active. However, in this construction each chart has some supporting
vertices located outside the chart domain, which differs from the conventional manifold
concept. Next, we discuss how to reproduce B-splines through the approach of least-squares
fitting.
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Manifold-spline basis functions

6.2 Fitting manifold splines to B-splines

As discussed in previous section, the key to reproduce B-spline functions is to reproduce
B-spline functions by the local approximant in each chart, see (6.4) and (6.5). This requires

f j(ξ ) = pppTj (ξ )ααα j = f B(ξ ) , (6.9)

where the local approximation basis ppp j(ξ ) is chosen as a piecewise polynomial basis and the
coefficients ααα j are determined through least-squares fitting. Note that the B-spline function
f B(ξ ) is a piecewise cubic polynomial. To determine a cubic polynomial, four sample points
are needed. This means (6.9) can be satisfied if

1. In each chart, local basis functions are piecewise cubic polynomials, e.g., cubic B-
spline, Bézier or Lagrange. (We do not need to worry about the continuity of local
basis functions at element boundaries. This is because the continuity is inherited in the
sample points we are trying to fit to.)

2. In each chart, sufficient sample points calculated from the B-spline function f B(ξ ) are
used for least-squares fitting. For example, seven sample points (three in each element
plus one in the centre) are sufficient for C0 local basis, such as Bézier or Lagrange.
If we use cubic B-splines which are C2 continuous, five sample points are sufficient
because there are only five degrees of freedom in each chart.

In a regular chart Ω̂ j, the least squares fitting is performed as follows:

AAAααα j = xxx j with AIJ = pJ(ξ
∗
I ) , (6.10)

where the sample points xxx j in each chart are the limit positions (or, points on the B-spline
curve) computed from

xxx j = MMMβββ j with MIJ = BJ(ξ
∗
I ) . (6.11)

Notice that if we use B-splines as local basis functions in each chart, then AAA = MMM, which
leads to

ααα j = (AAATAAA)−1AAATxxx j = (AAATAAA)−1AAATMMMβββ j = βββ j (6.12)

and the local approximation becomes

f j(ξ ) = ppp j(ξ )ααα j = BBB j(ξ )βββ j = f B(ξ ) . (6.13)

which shows the least-squares fitting results in (6.4). Together with (6.5), it is straightforward
to show that this manifold construction reproduces B-spline in regular region.
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6.3 Cubic manifold-spline basis functions

Figure 6.2: Local polynomial basis in a manifold regular chart domain.

Figure 6.3: A uniform cubic B-spline basis function.

6.3 Cubic manifold-spline basis functions

In each chart domain Ω̂ j := [ j−1, j+1] ∋ ξ j, the local polynomial basis ppp j(ξ j) is chosen
to be uniform cubic B-splines as plotted in Figure 6.2 and the weight function w j(ξ j) is
constructed from cubic B-splines in the same way as introduced in Section 5.2.1. We plot
one cubic uniform B-spline basis function and mark its value at key points in Figure 6.3. All
other cubic uniform B-splines are obtained by shifting B3

0(ξ ).
In the following, we use the least-square fitting approach as discussed in Section 6.2 to

derive the cubic manifold spline basis functions. As the local basis ppp j(ξ j) has five degrees of
freedoms, five sample points are used for least squares fitting, i.e., ξξξ

∗
= [−1,−0.5,0,0.5,1].
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Manifold-spline basis functions

The least square fitting matrix in (6.10) is readily computed as

AAA =
1

48


8 32 8 0 0
1 23 23 1 0
0 8 32 8 0
0 1 23 23 1
0 0 8 32 8

 . (6.14)

Each row is the complete local basis ppp j(ξ j) evaluated at one sample point ξ ∗
I and thus sums

to one. Each column refers to one local basis function evaluated at all the samples points.
Given AAA is a square matrix, least-squares fitting (6.10) simply results in

ααα j = AAA−1xxx j =
1
6


47 −88 68 −24 3
−3 24 −22 8 −1
1 −8 20 −8 1
−1 8 −22 24 −3
3 −24 68 −88 47




x0

x1

x2

x3

x4

 . (6.15)

Therefore, in each chart the local approximant f j(ξ j) is represented as

f j(ξ j) = pppTj (ξ j)ααα j = pppTj (ξ j)AAA−1︸ ︷︷ ︸
NNNT

j (ξ j)

xxx j , (6.16)

which gives the expression for the basis functions NNN j(ξ j) in each chart. Figure 6.4 plots
the five basis functions in each chart, which are essentially linear combinations of B-spline
basis functions and thus still C2 continuous cubic splines. The global approximation f (ξ )
and basis function NNN(ξ ) are obtained by blending together the contributions from several
overlapping charts with the smooth weight functions w j(ξ j) as follows:

f (ξ ) = ∑
j

w j(ξ j) f j(ξ j) = ∑
j

w j(ξ j)NNNT
j (ξ j)xxx j =

(
∑

j
w j(ξ j)NNNT

j (ξ j)PPP j

)
︸ ︷︷ ︸

NNNT(ξ )

xxx , (6.17)

where PPP j are picking up matrices filled with ones and zeros such that

xxx j = PPP jxxx . (6.18)
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6.3 Cubic manifold-spline basis functions

Figure 6.4: Basis functions in a manifold regular chart domain.

Figure 6.5: Basis functions corresponding to the vertex point (marked as red circle) and the mid-edge
point (marked as yellow square), whose support size is four and three elements, respectively. Other
basis functions are shifted instances of these two assuming all charts are regular.

The picking up matrices PPP j essentially represent an index mapping between local control
points of each chart domain and global control points. Assuming that all charts are regular,
the basis functions in all charts are the same as shown in Figure 6.4. After blending the
contributions from the overlapping charts, we obtain the manifold-spline basis functions
plotted in Figure 6.5. The basis functions associated with vertices receive contributions
from three overlapping charts and their support size is four elements. Those associated with
mid-edge points receive contributions from two charts only and their support size is three
elements.

With the manifold-spline basis functions in place, we can reproduce B-spline functions.
For example, consider a B-spline function represented by the B-spline basis functions plotted
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Manifold-spline basis functions

Figure 6.6: Control polygons for B-spline (grey) and manifold spline (red) representations.

in Figure 6.1 and the control coefficients βββ
T = [0,1,0,2,1,0,1.5,0,0]. We can compute the

corresponding control coefficients xxx for the manifold spline function according to (6.11) and
obtain

xxxT =
1
96

[16 46 64 50 48 96 144 138 96 53 40 71 96 69 24 3 0] . (6.19)

Figure 6.6 plots the two sets of control coefficients. The B-spline representation (6.1) and
manifold-spline representation (6.17) both lead to exactly the same cubic spline function, see
Figure 6.7.

Note that B-spline functions are reproduced, but the resulting interpolating manifold-
spline basis functions plotted in Figure 6.5 are clearly different from B-spline basis in
Figure 6.1. This confirms that we have derived a manifold representation for splines.

With the technique of tensor product, the demonstrated univariate derivation can be
readily extended the bivariate case, where we can choose in regular charts C2-continuous
piecewise polynomials as the local basis but one piece of polynomial basis which is C∞ in
irregular charts centred at extraordinary vertices. In the bivariate case, subdivision surfaces
are evaluated at the sample points used for least-squares fitting. This subdivision-compatible
manifold construction differs from the manifold construction implementation reviewed in
Chapter 5 only in the choice of the local basis in regular manifold chart domains. Even
though the idea of choosing piecewise polynomials as the local basis can be found in [61] as
well, it is a totally different construction aiming to reduce derivative magnitudes and achieve
better surface quality rather than to reproduce subdivision surfaces away from extraordinary
vertices.
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6.3 Cubic manifold-spline basis functions

(a) Cubic spline function

(b) First derivative

(c) Second derivative

Figure 6.7: A cubic B-spline function (grey curve) is reproduced by the manifold spline construction
(red curve). The first and second derivatives further confirm the reproduction.
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Chapter 7

Conclusions and future research

7.1 Conclusions

This thesis contributes to the development of basis functions for isogeometric design and
analysis of surfaces on structured and unstructured quadrilateral meshes. To this end, we have
investigated and further developed two different geometry representations, i.e., subdivision
surfaces and manifold-based surface constructions.

For subdivision surfaces, we have proposed a new systematic approach to optimise the
subdivision weights around extraordinary vertices to improve their approximation properties
in finite element analysis. We first construct charateristic meshes from the eigenvectors of
the subdivision matrix and use these charateristic meshes to approximate quadratic functions.
The approximation error is measured in thin-shell energy norm and minimised to derive
the optimal subdivision weights for finite element analysis. Two sets of optimal refinement
weights can be pre-determined for two quadratic functions, cup-like and saddle-like ge-
ometries, respectively. For a given finite element problem, an initial analysis is run with
the optimal weights for cup-like functions. Then the finite element solution around each
extraordinary vertex is categorised as cup-dominant or saddle-dominant through a novel
local shape decomposition, which decides the set of optimal weights for each extraordinary
vertex independently. The proposed optimisation approach is demonstrated for Catmull-Clark
subdivision scheme with a particular focus on extraordinary vertices of valence v = 5. The
optimal weights derived can be easily incorporated into any existing implementation of the
Catmull-Clark subdivision scheme. The low-cost optimisation procedure can reduce the
finite element discretisation error by 50% or more as shown in our finite element analysis of
thin-plates, even though the convergence rate is still the same. In fact, optimal convergence
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should be achievable by C2 subdivision schemes. There is, however, a degree estimate for
subdivision surfaces based on quadrilateral polynomial patches [66] saying that the minimal
bi-degree for a parametrically C2 scheme is 6. Hence, Catmull-Clark subdivision scheme, as
a generalisation of bi-cubic B-splines, cannot converge optimally without applying further
tricks. Advanced subdivision schemes like guided subdivision surfaces [67] that are good
for geometry modelling might also be good for simulation. They might be able to achieve
optimal convergence rates, but the simplicity of standard subdivision schemes is lost.

For basis functions generated by manifold constructions, we have extended previous work
on smooth basis functions to manifold basis functions with arbitrary prescribed smoothness.
A new quasi-conformal map is proposed to parametrise the planar manifold chart domains as
well as construct piecewise local polynomial basis. The new manifold basis functions are able
to model and analyse surfaces with sharp features, such as creases and corners, which greatly
widens the range of applications of manifold-based basis functions in isogeometric analysis.
As the treatment of boundaries is similar to C0 creased edges, a precise control of boundaries
and surface normals becomes possible with the new basis functions. In particular, we have
demonstrated that hinged or rigidly joined thin-shell structures, which have wide applications
in structural mechanics, can be modelled and analysed using the introduced manifold basis
functions. Optimal convergence is achieved for both structured and unstructured meshes.

At the end, we have presented a novel manifold representation that is able to reproduce
B-spline curves/surfaces. The driving motivation is the observation that the manifold and
subdivision representations have distinct benefits as basis functions for isogeometric analysis.
The manifold scheme shows an optimal convergence in finite element analysis, whereas the
subdivision scheme has appealing properties for geometric modelling, such as the convex
hull property and the highest continuity for a given polynomial degree. Therefore, we explore
the possibility of analysing subdivision surfaces(already available in computer-aided design
software) with the recently developed manifold basis functions, which requires a subdivision-
compatible manifold scheme. To demonstrate the possibility, we derive in detail a univariate
manifold basis, with which uniform cubic B-spline curves are exactly reproduced. With the
technique of tensor product, the demonstrated univariate derivation can be readily extended
to the bivariate case, where we need to choose in regular charts C2-continuous piecewise
cubic polynomials as the local basis but one piece of cubic polynomial basis which is C∞ in
irregular charts centred at extraordinary vertices. In this bivariate setting, we can expect that
a Catmull-Clark subdivision surface can be easily converted to its manifold representation
which exactly reproduces it in regular region, that is, tensor-product uniform cubic B-splines,
and only slight differences are present in the neighbourhood of extraordinary vertices. This
provides a basis for an integrated subdivision-manifold design-analysis framework.
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7.2 Future research

To develop basis functions for isogeometric analysis on unstructured meshes, the subdivision-
compatible manifold representation looks promising as it inherits the benefits of both subdi-
vision and manifold surface modelling techniques. Along this line, we suggest the following
directions for future research:

• One can consider the reproduction of subdivision surfaces in regular region with sharp
features.

• A rigorous mathematical proof is desired for the properties, such as the approximation
order and the linear independence, of the basis functions generated by manifold
constructions.

• Further exploration is needed to reduce the magnitude of derivatives of the generated
manifold basis functions such that the finite element discretisation leads to a better
conditioned matrix.

• For different manifold constructions, the basis functions may be piecewise or rational
polynomials in one element, which requires a careful choice for numerical integration.

• By considering a non-uniform parameter space, one might be able to develop a NURBS-
compatible manifold representation.
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Appendix A

Weight functions

The weight functions proposed in this thesis are polynomial in contrast to the rational weight
functions used in [24]. The difference between the two constructions is best understood
by comparing Figure 5.3 and Figure A.1. In Figure A.1 the construction process of the
rational weight functions is illustrated. Notice that the cubic B-spline basis used within the
reference element is not complete so that it does not add up to one. Therefore, normalisation
is necessary to satisfy the partition of unity property, resulting in rational weight functions.
With the numbering introduced in Figure A.1 the rational blending functions are given by

w̃ j(η) =
B2 j(η)

∑
2
k=1 B2k(η)

with w j(ξ j) = w̃ j(Ψ
−1
j (ξ j)) and j ∈ {1,2} .

It is straightforward to extend this construction to the bivariate case. As a final remark, the
rational blending functions have one knot and the polynomial weight functions have three
knots within the reference element.
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Weight functions

Figure A.1: Construction of smooth rational weight functions from cubic B-splines defined over a
parameter space with a knot-distance 1/2.
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Appendix B

Conformal maps

In the manifold construction presented in Chapter 5, conformal maps are extensively used to
parametrise manifold chart domains as well as create piecewise polynomial basis functions
for the local approximation in creased charts. Conformal maps can be better understood in
the complex plane. As shown in Figure B.1a, any point in the complex plane is expressed as
a complex number z and it corresponds to a point in a two-dimensional Cartesian coordinate
system (η1,η2) as follows:

(η1,η2) = (|z|cosφ , |z|sinφ) and |z|=
√
(η1)2 +(η2)2 , φ = arctan(η2/η1) (B.1)

z = η
1 + iη2 = |z|(cosφ + isinφ) = |z|eiφ (B.2)

where |z| denotes the radius and φ the phase. Any operation leading to only the change of the
radius |z| is a radius scaling and only the change of the phase φ is a rotation. For example,
Figure B.1b illustrates that zeiθ = |z|ei(φ+θ) is obtained by rotating z anticlockwise by the
angle of θ , while 1/2z = |z|/2eiφ is obtained by scaling the radius to half length. Rotation
and radius scaling can be composed and they commute.

With the operation of rotation and scaling in mind, we can understand the geometry
meaning of the conformal map defined as

z4/v = |z|4/vei4φ/v , (B.3)

where v is the valence of the centre vertex of the chart. When v = 4 the conformal map is
an identity map. When v ̸= 4 the angle is stretched from φ to 4φ/v and the radius from |z|
to |z|4/v. The angle is uniformly scaled but the radius is not. In the manifold construction
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(a) Complex plane (b) Rotation and scaling in complex plane

Figure B.1: Illustration of a complex number in the complex plane and the operations of rotation and
scaling.

proposed in this thesis, we use a quasi-conformal map defined as

|z|β−4/vz4/v = |z|β ei4φ/v . (B.4)

Figure B.2 illustrates the influence of the parameter β on the conformal images. The value
β = 4/v defining a conformal map is used in [24], while β = 1 defining a quasi-conformal
map is used in this thesis to provide smooth parametrisations for crease charts as defined
in (5.21) and (5.23).
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(a) Conformal map with β = 4/v

(b) Quasi-conformal map with β = 1

Figure B.2: Comparison of the iso-parameter lines for the confomal and the quasi-conformal map
depending on the value of the parameter β for valences v ∈ {3,4,6}. See the definition in (B.4).
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