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resumo 

 
 
Por parte da indústria de estampagem tem-se verificado um interesse 
crescente em simulações numéricas de processos de conformação de chapa, 
incluindo também métodos de engenharia inversa. Este facto ocorre 
principalmente porque as técnicas de tentativa-erro, muito usadas no passado, 
não são mais competitivas a nível económico. O uso de códigos de simulação 
é, atualmente, uma prática corrente em ambiente industrial, pois os resultados 
tipicamente obtidos através de códigos com base no Método dos Elementos 
Finitos (MEF) são bem aceites pelas comunidades industriais e científicas 
Na tentativa de obter campos de tensão e de deformação precisos, uma 
análise eficiente com o MEF necessita de dados de entrada corretos, como 
geometrias, malhas, leis de comportamento não-lineares, carregamentos, leis 
de atrito, etc.. Com o objetivo de ultrapassar estas dificuldades podem ser 
considerados os problemas inversos. No trabalho apresentado, os seguintes 
problemas inversos, em Mecânica computacional, são apresentados e 
analisados: (i) problemas de identificação de parâmetros, que se referem à 
determinação de parâmetros de entrada que serão posteriormente usados em 
modelos constitutivos nas simulações numéricas e (ii) problemas de definição 
geométrica inicial de chapas e ferramentas, nos quais o objetivo é determinar a 
forma inicial de uma chapa ou de uma ferramenta tendo em vista a obtenção 
de uma determinada geometria após um processo de conformação.     
São introduzidas e implementadas novas estratégias de otimização, as quais 
conduzem a parâmetros de modelos constitutivos mais precisos. O objetivo 
destas estratégias é tirar vantagem das potencialidades de cada algoritmo e 
melhorar a eficiência geral dos métodos clássicos de otimização, os quais são 
baseados em processos de apenas um estágio. Algoritmos determinísticos, 
algoritmos inspirados em processos evolucionários ou mesmo a combinação 
destes dois são usados nas estratégias propostas. Estratégias de cascata, 
paralelas e híbridas são apresentadas em detalhe, sendo que as estratégias 
híbridas consistem na combinação de estratégias em cascata e paralelas.    
São apresentados e analisados dois métodos distintos para a avaliação da 
função objetivo em processos de identificação de parâmetros. Os métodos 
considerados são uma análise com um ponto único ou uma análise com 
elementos finitos. A avaliação com base num único ponto caracteriza uma 
quantidade infinitesimal de material sujeito a uma determinada história de 
deformação. Por outro lado, na análise através de elementos finitos, o modelo 
constitutivo é implementado e considerado para cada ponto de integração.   
Problemas inversos são apresentados e descritos, como por exemplo, a 
definição geométrica de chapas e ferramentas.  
Considerando o caso da otimização da forma inicial de uma chapa metálica a 
definição da forma inicial de uma chapa para a conformação de um elemento 
de cárter é considerado como problema em estudo. Ainda neste âmbito, um 
estudo sobre a influência da definição geométrica inicial da chapa no processo 
de otimização é efetuado. Este estudo é realizado considerando a formulação 
de NURBS na definição da face superior da chapa metálica, face cuja 
geometria será alterada durante o processo de conformação plástica. 
 
 
 
 



 

 
 

 
 
 
 
 
 
 
 
 
No caso dos processos de otimização de ferramentas, um processo de 
forjamento a dois estágios é apresentado. Com o objetivo de obter um cilindro 
perfeito após o forjamento, dois métodos distintos são considerados. No 
primeiro, a forma inicial do cilindro é otimizada e no outro a forma da 
ferramenta do primeiro estágio de conformação é otimizada. Para parametrizar 
a superfície livre do cilindro são utilizados diferentes métodos. Para a definição 
da ferramenta são também utilizados diferentes parametrizações.  
As estratégias de otimização propostas neste trabalho resolvem eficientemente 
problemas de otimização para a indústria de conformação metálica.  
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abstract 

 
The interest of the stamping industry in the numerical simulation of sheet metal 
forming, including inverse engineering approaches, is increasing. This fact 
occurs mainly because trial and error design procedures, commonly used in the 
past, are no longer economically competitive. The use of simulation codes is 
currently a common practice in the industrial forming environment, as the 
results typically obtained by means of the Finite Element Method (FEM) are 
well accepted by both the industrial and scientific communities. 
In order to obtain accurate stress and strain fields, an effective FEM analysis 
requires reliable input data such as geometry, mesh, non-linear material 
behaviour laws, loading cases, friction laws, etc.. In order to overcome these 
difficulties, a possible approach is based on inverse problems. In this work, the 
following inverse problems in computational Mechanics are presented and 
analysed: (i) parameter identification problem, that refer to the definition of input 
parameters to be used in constitutive models for numerical simulations, based 
on experimental data, and (ii) initial blank and tool design problem, where the 
aim would be to estimate the initial shape of a blank or a tool in order to 
achieve the desired geometry after the forming process. 
New optimization strategies in parameter identification problems that lead more 
efficiently to accurate material parameters are introduced and implemented. 
The aim of these strategies is to take advantage of the strength of each 
selected algorithm and improve the overall robustness and efficiency of 
classical optimization methodologies based on single stages. Deterministic 
algorithms, evolutionary-inspired algorithms or even the combination of these 
two algorithms are used in the proposed strategies. Strategies such as 
cascade, parallel and hybrid approaches are analysed in detail. In hybrid 
strategies, cascade and parallel approaches are integrated. 
Two different approaches are presented and analyzed for the evaluation of the 
objective functions in parameter identification processes. The approaches 
considered are single-point and FE analyses. The single infinitesimal point 
evaluation seems to characterize an infinitesimal amount of material subjected 
to all kind of deformation history. On the other hand, in all FE analysis codes, 
the constitutive model is implemented and accounted for in each element 
integration point.  
Inverse problems, such as blank and tool design, are presented and described. 
In the case of the initial blank optimization process the design of a carter is 
presented. Also related to the initial blank optimization process, a study of the 
influence of the initial geometry definition in the optimization process is 
conducted. This study is performed considering the NURBS formulation to 
model the blank upper surface that will be changed during the optimization 
process. 
In the case of the tool design problem, a two-stage forging process is 
presented. In order to achieve a straight cylinder after forging, two different 
approaches are analyzed. In the first one, the initial geometry of the cylinder is 
optimized and, in the other one, the shape of the first stage tool is optimized. 
To parameterize the free surface of the cylinder different methods are 
presented. Furthermore, in order to define the tool in this example, different 
parameterizations are presented. 
The optimisation strategies proposed in this work efficiently solve optimisation 
problems for the industrial metal forming. 
 

 





 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
“Every great advance in science has issued 

from a new audacity of imagination.” 
 

John Dewey 
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Chapter 1 
 

 

Introduction 
 

 

 

 

An introduction to the presented work is performed. This 

introduction comprises an historic background, the main 

objectives as well as the importance of the present work in the 

current reality. Themes like metal forming processes, Finite 

Element Method, definition of inverse problems and the coupling 

between FEM and optimization are also introduced. A reading 

guide and a list of the publications, published in the scope of this 

thesis, is provided. 

 

 

 

 

1.1   Background 

The Industrial Revolution was an important mark that completely changed the course of the 

Humankind. It was a period from 1750 to 1850, in which a set of technological changes were 

registered with an intense impact in the social, economic and cultural conditions of those times. It 

had begun in the United Kingdom and subsequently spread to the Western Europe, North 

America, Japan and then to the rest of the world. Until the Industrial Revolution, manufacturing 

was done at a job-shop level. In those times the demanding of manufactured needs was everyday 

increasing and with the advent of new power sources, came the ability to manufacture on a larger 

scale. Innovation and automation progressively increased with an accompanying increase in the 

complexity of products [1]. With the Industrial Revolution, metal forming processes appear and 

with the passing of times the evolution of the machining and the standardization of the processes 

lead to a huge increase of the forming process knowledge. However, during those times, the 
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possibility to perform simulations of sheet forming processes was an unattainable desire in the 

sheet forming industry.  

 It was in the 1960s that the first attempts of a numerical approximate solution of sheet 

metal forming processes were performed. This first numerical solution was obtained by Finite 

Difference Methods. These methods could not establish themselves due to the serious drawback 

of not applying boundary conditions in a general manner as it could be done elegantly in the 

Finite Element Method (FEM) [2]. 

 The real breakthrough of metal forming simulation emerges with the appearance of the 

FEM. The first reference to the well known designation of Finite Element Method emerges in 1960 

with the work of Ray Clough. This work was about the analysis of elastic problems in plane stress. 

In its original paper, Ray Clough [3] defined the nomenclature that is still on use, and established 

systematic procedures that are in the basis of FEM’s computational implementation, in the 

resolution of discrete problems [4]. In those times, process engineers wanted to minimize the 

need for expensive modifications of the tool in trial-and-error processes. This minimization was 

only possible if the process engineers were able to reveal any possible forming defects at an early 

stage. To accomplish this, engineers needed an accurate metal forming simulation. 

In the early days of FEM, in the 1960s and early 1970s, the theoretical perspective of the 

forming processes was considered a difficult task because modelling sheet metal forming requires 

accurate characterization of effects, such as nonlinear material behaviour, large deformations and 

complex contact condition between the tool and the blank. It was in 1970 that the first 

theoretically accurate FE-formulation of the large deformation problem was presented by Hibbitt 

et al. [5]. This formulation was written in a Total Lagrangian formulation (TL-formulation). In 1975, 

McMeeking and Rice [6], and Bath et al. [7] proposed an Updated Lagrangian formulation (UL-

formulation). In those times, forming processes simulation were considered as either plane-strain 

or axisymmetric problems, due to simplification reasons [8]. 

It was in 1978 that the first theoretically precise 3D formulation of a sheet metal forming 

process was proposed by Wang and Budiansky [9]. Also in this year, other pioneering works 

appear, such as the works of Gotoh and Ishire [10] and Wifi [11]. The following decade had seen a 

high activity in the field. The first 3D applications are known by Tang et al. [12] and Toh and 

Kobayashi [13]. In those times, a differentiation between different approaches used to apply the 

FEM analysis was considered based on the choice of motion description, the type of constitutive 

relations and the solution procedures. Six main groups were considered, such as, the solid 

approach, the static-implicit approach, the rigid-plastic approach, the static-explicit approach and 

the flow approach. All the studies previously referred are of static-implicit or static-explicit type. 

In the 1980s, the flow and rigid-plastic approaches were more common than the static-

implicit one. This fact occurred mainly because the flow and the rigid-plastic formulations were 

more stable and allowed considerably larger time-steps. During those days, the practical 

application of the sheet metal forming simulations was computationally very expensive, even 

when small problems were considered.  

Since the beginning of 1990s, it was verified a massive increase of the use of sheet forming 

simulations in the industrial community.  In the middle of that decade most companies within the 

automotive industry were performing sheet forming simulations on a regular basis. In those 

times, dynamic and explicit codes were dominating the software market. General-purpose codes 
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like LS-DynaTM and Abaqus®/Explicit, as well as specialized codes such as PAM-STAMP® and 

OPTRIS®, are examples of codes used in those times. Other codes based on static-explicit 

approaches were used, in the Japanese industrial environment. In the German automotive 

industry a few static-implicit codes were used, like INDEED®, and in the Ford Motor Company the 

MTLFORM® static-implicit code was considered for the metal forming simulations. The static-

implicit codes were at those times (and still in the actuality) more used in the academic 

communities. In the early 1990s, the AutoForm® program was created from a research project at 

ETH in Zurich. AutoForm® is a highly specialized static-implicit code for stamping simulations and 

used some innovative algorithms to enhance stability and computational efficiency. In its original 

form, the code adopted bending-enhanced membrane elements and an iterative linear solver. 

However, with the time, the code was further developed to include conventional shell elements. 

This code, for forming applications, is competitive or even superior to dynamic and explicit codes 

when the efficiency and robustness are considered [8].   

 Since 2009, AutoForm® is the most commonly used code in the metal forming industry. In 

addition, the software market is still dominated by various dynamic-explicit codes like LS-DYNATM, 

Abaqus®, PAM-STAMP 2G® and STAMPACK®. In the industry, the use of other codes is now only 

marginal [8]. 

Nowadays the knowledge in the simulation of sheet metal forming is increasing, however 

the scientific and the industrial communities want more exactness and still have some goals to 

achieve. These goals can be summarized in three main groups, such as, (i) time reduction, (ii) cost 

reduction and (iii) increase of product quality. Time reduction encompasses the early checking of 

producibility of workpieces, the reduction of the development times, the reduction of the try-out 

times and the quick response to modification wishes. Cost reduction means having cheaper 

products, reduce the die costs and increase the reliability. The increase of product quality means 

the production of more complicated parts, the accumulation of know-how for new materials, the 

process repeatability and the optimization by variants. These are actual goals that will be 

achieved with the increasing of the accurateness of the FEM and optimization software [14]. 

Nowadays, the conjugation of FEM software with optimization software is a new trend in metal 

forming industry in which the companies are expending their time and money. It is based on this 

idea that the present work is proposed, trying to expose some optimization strategies and new 

optimization procedures in the sheet metal forming domain. 

 

1.2   Aims and goals of the present work 

The stamping industry is increasing more and more the interest in numerical simulation of metal 

forming processes. This interest appears because trial and error design procedures, based on 

experience previously obtained by engineers, lead to large economical costs and, consequently, 

lost of competitiveness. Nowadays it is possible to simulate with FEM software the complexities 

inherent to plastic forming processes such as large deformations, contact, friction, springback, 

wrinkles in formed parts, among others. Also, optimization procedures are more robust and the 

coupling between FEM software and optimization software is receiving a special attention in the 

last years. 
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It is based on this idea, and trying to increase the knowledge in these areas, that the 

present work was conducted. As the title suggests, the work has as the main objective the 

development of numerical methodologies for parameter identification and shape optimization in 

metal forming simulations. Considering this, it is possible to understand that “metal forming 

processes” is assumed as one of the keywords of this work.  

In order to correctly simulate metal forming processes, it is imperative to use complex 

material models and reliable input data. For this reason, one of the present work objectives is the 

development and implementation of optimization methodologies able to correctly calculate the 

material parameters of a constitutive model suitable for a specific material.  

Other objective of the present work relies on the fact that the use of only one optimization 

method do not usually lead to an efficient solution of the previous mentioned inverse problems. It 

is then fundamental to develop new methodologies accounting for more than a single type of 

optimization method. The study and implementation of these strategies is another target of this 

work. Special attention is given to gradient-based methods and evolutionary algorithms (EAs). 

These optimization methods are used in strategies that can faster lead to the final objective, by 

means of cascade, parallel and hybrid solution procedures. With the combination of different 

optimization algorithms it is possible to take advantage of the strength of each algorithm and 

increase the probability to reach the global minimum.  

In the parameters optimization processes the evaluation of the objective function is one of 

the fundamental points that should be carefully considered. In the present work, it is intended to 

understand how the use of “single-point” or metal forming FE analysis in the evaluation of the 

objective function influences the optimization process. In the case of single infinitesimal point 

evaluation, all the material is considered as an infinitesimal point subjected to all kind of 

deformation history. Using FE analysis codes, the constitutive model is implemented and 

accounted for each element integration point. These two approaches are presented and analysed 

in the present work. 

The determination of the initial blank shape is one of the most important optimization 

process, with a direct influence on the quality of the finished part, as well as reducing the final 

cost and product development time. Based on this idea, a methodology to find the optimized 

initial blank shape for a carter forming processes is proposed in the present work. In addition, a 

study that allows to understand the influence of the parametric geometry definition in the 

optimization process is presented. 

The preform tool design is assumed to be the most important step for product quality 

control. It is considered that a reasonable preform tool shape reduces the raw material cost and 

improves material flow, reducing manufacturing cost and eliminating following processes. 

Consequently, preform tool shape optimization is still an interesting theme. However, one way to 

avoid the preform tool design is to determine an initial shape of the specimen to obtain the final 

objective. Therefore, these two approaches can be applied to the same goal. The last objective of 

the present work is to compare two different approaches to solve a specific inverse problem. Both 

approaches try to find a desirable final shape of a specimen after a forging process. The first 

approach optimizes the initial shape of the specimen and the second one optimize the preform 

tool shape. In the present work the results are compared for both approaches. 
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1.3   Metal forming processes 

Nowadays, a diverse range of manufacturing methods are accessible in the industrial 

environment. The choice of which method will be used in order to produce a specific component 

should be performed considering the advantages and disadvantages of each method. The chosen 

method should be the one that provides a product with proper function and properties at the 

lowest cost [15]. Considering the norm DIN8580 [16], the manufacturing processes are classified 

into six main groups: primary shaping, material forming, dividing, joining, modifying material 

property and coating, as it can be seen in Figure 1.1 [17]. 

 

Figure 1.1 - Classification of manufacturing processes according to the norm DIN8580 [16]. 

The “primary shaping” consists in the creation of an initial shape from the molten, gaseous 

or formless solid state. Processes such casting, melt extrusion, die casting and pressing of metal 

powder are examples of primary shaping. “Dividing” is the local separation of material, and 

examples of this kind of processes are sawing, turning, milling and broaching. “Joining” is the 

assembly of individual pieces to create other components and also the filling and saturation of 

porous pieces. Examples of joining processes are welding, riveting and shrink fitting. “Modifying 

the material properties” intend to alter material characteristics of a component trying to achieve 

certain useful properties. Such processes include heat treatment processes such as hardening or 

recrystallization annealing. “Coating” consists in the application of thin layers on the component. 

Examples are galvanization, painting and foil wrapping. “Material forming processes” are 

processes where the material is formed by plastic deformation. Forming processes are classified 

in accordance with norm DIN 8582 [18] depending on the main direction of the applied stresses. 

They can be classified as [17]: 

 Forming under compressive conditions; 

 Forming under combined tensile and compressive conditions; 

 Forming under tensile conditions; 

 Forming by bending; 

 Forming under shear conditions. 

The DIN 8582 [18] differentiates 17 distinct forming processes according to the relative 

movement between die and workpiece, die geometry and workpiece geometry. For the category 

of forming under compressive conditions 5 processes are considered, such as, rolling, open die 

forming, closed die forming, coining and forming by forcing through an orifice. In the case of the 
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forming under compressive and tensile conditions 5 processes are considered. The processes are 

stripping, deep drawing, flanging, spinning, wrinkle, wrinkle bulging. For the forming under tensile 

condition the processes considered are extending by stretching, expanding and stretch forming. In 

the case of forming by bending, the bending with linear die movement and the bending with 

rotary die movement processes are considered. For the forming under shearing conditions the 

displacement and twisting methods are considered [17]. In Figure 1.2 it is possible to see a 

graphical summary of these methods. Information about these methods can be found in 

references [15-18]. 

 

Figure 1.2 - Classification of production processes used in forming, in accordance to DIN 8582 [18]. 

Metal forming processes have, among all manufacturing processes, a special place since 

they help to produce metal parts of superior mechanical properties with minimum waste of 

material [17,19]. For the metal forming processes, the material has a relatively simple initial 

geometry. This material is then plastically deformed, in one or more operations, into a component 

of relatively complex shape. However, metal forming usually requires relatively expensive tooling. 

Therefore, the process is economically attractive only when a large number of parts must be 

produced and/or when the mechanical properties required in the finished component can be 

obtained only by forming processes.  

Forming processes are normally used together with other manufacturing processes, in 

order to complete the transformation from the raw material into the final component. The 

materials have as desirable properties low yield strength and high ductility. These properties are 

conditioned by the temperature and the rate of deformation. For higher temperatures, the 

ductility is increased and the yield strength is decreased. The temperature allows to define the 
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forming processes as cold forming (when the component is initially at room temperature), warm 

forming (when the component is heated above room temperature and below the recrystallization 

temperature) and hot forming (when the component is heated above the  recrystallization 

temperature) [19]. 

Metal forming, among other manufacturing processes, represents a highly significant group 

of processes for producing automotive, industrial, aerospace, packaging, military components, 

etc.. A few components produced by metal forming can be enumerated as following [19]: 

 Components for industrial plants and equipments as well as for automobiles and 

machine; 

 Hand tools, such as hammers, pliers and surgical instruments; 

 Fasteners, such as screws, nuts and rivets; 

 Containers, such as metal boxes, cams and canisters; 

 Construction elements used in tunnelling, mining and quarrying; 

 Fittings used in building industry, such as doors and windows. 

 

Some examples of formed components are presented in Figure 1.3. 

 

Figure 1.3 - Examples of some components obtained by metal forming processes. 

For the design, analysis and optimization of forming processes an analytical knowledge 

regarding the metal flow, stresses and heat transfer is needed, as well as technological 

information related to lubrication, heating and cooling techniques, material handling, die design 

and manufacture and forming equipment. Most of this information can be found in the literature 

[19].   

 

1.4   The Finite Element Method 

As previously mentioned, the Finite Element Method (FEM) emerged in the early 1960s and at the 

present it is widely used in engineering analysis and, being expected that this use will increase 

significantly in the years to come [20]. The FEM is an indispensable technology that allows the 

modelling and simulation of workpieces for every field of engineering. Fields like housing, 

transportation, communications, packaging, automotive, among others are examples of fields 

where the FEM analysis is assumed as essential for the achievement of high quality products at 

low cost. At the beginning, FEM was used to solve problems of stress analysis and since that it has 

been applied to many other problems such as thermal analysis, fluid flow analysis, piezoelectric 

analysis, and many others. Therefore, the FEM is used to determine the distribution of some field 
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variables like the displacement in stress analysis, the temperature or heat flux in thermal analysis, 

the electrical charge in electrical analysis, etc. [21].  

The FEM is a numerical method and, as a consequence, is an approximation method. It is 

necessary to not forget that the FEM solves complex problems, however gives only an 

approximate solution. This kind of methods should be avoided in the case that simpler analytical 

solutions exist. Therefore, the method is used in the search of complex problems’ solution from 

diverse fields of knowledge for which the exact solution doesn´t exist or cannot be expressed in 

an analytic way [4].     

The way that a system behaves during a specific phenomenon depends upon the geometry 

or domain of the system, the properties of the material, the boundary and the initial and loading 

conditions. For a specific engineering system, the geometry as well as the boundary and initial 

conditions can be very complex. It is then very difficult to solve the governing differential 

equation with an analytical formulation, being necessary to solve the problem with a numerical 

procedure, such as the FEM [21]. 

From a user point of view, the computational application of the FEM consists of four steps: 

 Modelling of the geometry; 

 Meshing (discretization); 

 Specification of the material properties; 

 Specification of boundary, initial and loading conditions. 

Real structures, components or domains are normally very complex and have to be reduced to 

a manageable geometry. The curved parts of the geometry are represented by a set of elements 

that tries to approximate the curves and curved surfaces by piecewise straight lines or flat 

surfaces if linear elements are used. Therefore, the accuracy of the representation of the curved 

parts is controlled by the number of elements used. More elements will allow a more accurate 

definition of the curved parts. Unfortunately, more elements means longer computational time to 

solve the problem. Therefore, the optimum number of elements should always be selected based 

in a good relation between the CPU time and the geometric accuracy given by the number of 

elements [21]. 

The geometry model can be created considering points, lines and curves, surfaces and 

solids. The points are created by keying the coordinates; the lines and curves can be created by 

connecting points; surfaces can be created by connecting, translating or rotating the existent lines 

or curves; and the solids can be created by connecting, translating or rotating the existent 

surfaces [21]. 

There are numerous Computer Aided Design (CAD) software packages that have graphic 

interfaces that help in the creation and manipulation of geometrical objects.  For the modelling 

step the knowledge, experience and engineering judgment are keywords allowing the correct 

definition of the system. In some cases, finely detailed geometrical features play only an aesthetic 

role and have negligible effects on the performance of the engineering system. In these cases 

these features can be deleted, ignored or simplified. However, for other cases these detailed 

geometrical features are essential in the simulation results and it is the engineer that should 

evaluate these cases based on his experience [21]. 
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Another important step is the meshing, which is performed in order to discretize the 

geometry created into small pieces called elements. The solution of a mechanical problem can be 

very complex and varies in a way that can be unpredictable using functions across the whole 

domain of the problem. However, the problem can be divided (meshed) into small elements that 

are connected by nodes. In this case the solution within an element can be approximated very 

easily using simple functions. The solution of the whole problem domain will be the combination 

of all solutions for all elements. An example of this discretization is presented in Figure 1.4, where 

a carter is divided in small elements.  

 

Figure 1.4 - Carter discretization in elements [22].  

The mesh generation is an important task in the pre-process and can be very time 

consuming. During the mesh generation step, all domain is divided into small elements of specific 

shapes, such as for example in 2D, triangles and quadrilaterals. During this step also the 

information about the element connectivity must be created for a future use in the construction 

of the FEM equations. The use of triangular elements is commonly available in most of the pre-

processors and this technique is flexible in the modelling of complex geometries and its 

boundaries. However, it have one disadvantage which is related to the fact that the results 

obtained are less accurate than the ones obtained with quadrilateral elements. Quadrilateral 

meshes, on the other hand, are generally more difficult to generate in an automated manner 

when compared with triangular meshes [21]. 

Most of the engineering systems consist of more than one material.  The materials 

properties can be defined for a group of elements or for each individual element.  The input of 

material’s properties is normally straightforward and the user only needs to insert the material 

properties and associate them to a specific group of elements. The definition of these properties 

is, however, not always easy and there are commercially available material databases to choose 

from [21]. 

The correct specification of the boundary, initial and loading conditions is a decisive step for 

the correct application of the FEM. These conditions normally are easy to input in commercial 

pre-processors and often interfaced with graphics. The user can specify these conditions either to 

geometrical identities or to elements of the mesh. This is a step that requires experience, 

knowledge and proper engineering judgments and differs from problem to problem [21]. 
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In summary, the application of the FEM to realistic engineering problems is conditioned by 

the capacity of the available computational devices. As a consequence, the development of the 

FEM is growing at the same time that the computers are getting computationally more powerful 

[4].  

 

1.5   Definition of inverse problems 

In order to obtain accurate stress and strain fields, an effective FEM analysis requires secure input 

data such as geometry, mesh, non-linear material behaviour laws, loading cases, friction laws, etc. 

This sort of problems can be defined as direct problems, in which the quality of the results relies 

on the quality of the input data that are not always available. In order to overcome these 

difficulties, a possible approach are the inverse problems, for instance, with the definition of input 

parameters to be used in geometric or constitutive models for numerical simulations, based on 

experimental data. The interest of the forming industry in inverse engineering approaches is 

increasing. This fact occurs mainly because trial and error design procedures, commonly used in 

the past, are no longer competitive [3]. Considering the need to evaluate the input data, distinct 

inverse problems can be formulated.  

One category of inverse problems is called “parameter identification”. The aim of these 

problems, for instance, is to estimate material parameters for constitutive models. The 

development of new materials and the effort to characterize the existent materials lead to the 

formulation of new complex constitutive models. However, many of these constitutive models 

demand the determination of a large number of parameters adjusted to the material whose 

behaviour is to be simulated. In cases where the number of parameters is high, it might be 

necessary to solve the problem as a non-linear optimization problem. The parameters’ 

determination should always be performed confronting mathematical and experimental results.  

The experimental data allows the determination of the different parameters needed for the 

mathematical formulation of the model. This can be accomplished solving an inverse problem 

which consists of searching for a set of parameter values for which the experimental reality and 

the numerical simulation are similar. The comparison between the mathematical model and the 

experimental data results in a function that must be evaluated and minimized. This will be the 

objective function of these problems [24-27].   

The parameters identification problem can be reduced to a curve-fitting problem if physical 

constraints were not taken into account. However, most material constitutive models have 

physical constraints such as material parameter boundary values and mathematical relations 

between them, guaranteeing the physical meaning of the material parameters [28]. The 

formulation for the solution of the constitutive model parameters identification is as follows. 

First, a physical system whose behaviour can be described by a numerical model and which 

experimental results are available should be considered. A set of measurable variables that can be 

experimentally determined should also be considered. This set of variables is defined as 

               . In the case that simple mechanical tests are considered (such as tensile and 

shear tests), these measurable variables would be the stresses or strains. Considering this 

information, then it is possible to formulate the solution of the identification problem as the 

minimization of a function that measures the difference between theoretical predictions      
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(obtained by the numerical model) and experimental data. This function is known as the objective 

function     , and can be formulated as [29,30]:  

            

 

   

                                                                    

with 

      
 

       
                    

            
  

  

                                

In equation 1.2,               
  is the set of the     constitutive model parameters and 

     is the known experimental value of   in the   experimental tests. The time period of the 

generic test   is given by        .    is a given weight matrix associated to the test   and can be 

formulated as [28]: 

   
 

  
        

       
                                                                       

In equation 1.3,   
    and   

    are the absolute and relative weights for the   test, respectively. 

These coefficients should be chosen considering the uncertain nature of the observed variables 

and the different magnitudes of the measured variables. It is important to have a special attention 

when   
      and   

      for values of      near zero because in that case      and this 

will conduct to unfeasible results [28]. 

Equation 1.2 can be simplified with the approximation of the integral to a finite sum where 

the difference between the model and the experimental values is only evaluated at the    

instants of observation, i.e. [28]: 

      
 

  
  

                   

  
      

           
 

 

                                              

  

   

 

For this specific case, the optimization problem can be formulated as: 

                                                                                                                                                                      

                       s.t.:                                          

                                                                                                                 

                                                                             
         

                   

In the formulation 1.5,   are the number of inequalities       and   are the number of 

equalities        [31]. The search-space is limited and, as a consequence, the optimization 

parameters should fill in it. In the case that direct search optimization methods are considered, 

the concern of the variables limits can be done directly in the generation of new parameters. In 
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the case of gradient-base methods this limitations should be considered as constraints for the 

case of constrained optimization problems or as interior penalties for the case of unconstrained 

optimization methods. In the case of unconstrained optimization problems the parameters can be 

transformed as follows [28]: 

                   
   

                                                        

In equation 1.6,      and    is the initial value of   for an existing      and   normalized. 

Following the same logic, a similar expression can be formulated for      with     . 

Inequalities constraints can also be considered for the case of unconstrained problems. In 

this case the modified objective function must obey the conditions of continuity and existence of 

derivative in any point of its universe and for any direction. As a consequence, the problem can be 

minimizing the following equation [28]: 

            

 

   

     
               

 

   

     
         

 

   

                         

where             are the penalty coefficients that lead to the evolution of the optimization 

process. The second and third terms of the equation 1.7 are called exterior penalty functions [28]. 

The other category of inverse problems considered in the present work is the “initial shape 

optimization”. This class of inverse problems intends to determine the initial geometry/shape of a 

body when the final geometry or shape is already known. When applied to sheet metal forming 

processes, its aim would be to estimate the initial shape of a specimen (or a blank) in order to 

achieve the desired geometry after the forming process. In tool optimization problems, the 

objective is to find the initial shape of the tool knowing the final shape of the specimen that will 

be deformed by the tool. It is important not to confuse the initial shape optimization, which is an 

inverse problem, with the well known “shape optimization problem”. In the case of shape 

optimization problems, the optimization process tries to find a geometry or shape that is optimal, 

in the sense that it minimizes a certain objective while satisfying given constraints [23].  

The initial shape optimization problem can be similar to the parameter identification 

problem if the shape to be optimized is defined by a finite number of parameters. Therefore, both 

problems can be solved by the same approach. The major difference between these two 

approaches is that, for the constitutive model parameters identification, the variables can have 

different magnitudes. However, in the case of initial shape optimization problems, all the 

variables define geometrical shapes and contours, being all with the same magnitude. The 

objective function for the initial shape optimization problems can be written as equation 1.1 

suggests, however,        is now formulated as [28]: 
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where    is a function that characterizes the shape of the solid and it can be a function of 

structural properties, such as the stress   and the strain   fields. The general formulation of the 

initial shape optimization problem is similar to the formulation considered in 1.5 for the 

constitutive model parameters identification. 

 

1.6   FEM and optimization coupling 

In general terms, sheet metal forming is a complex deformation process controlled by parameters 

such as blank shape, tools’ geometry, sheet thickness’ values, blank holding force, friction, etc. 

[32]. Due to its complexity, and the higher combination level of all these input variables, 

optimization procedures are fundamental tools in the proper design of the process parameters, 

useful in the prediction and correction of undesirable forming defects such as fracture, 

springback, wrinkling, shape deviations and unbalanced residual stresses [33]. Due to the high 

level and robustness of commercial FEM codes, it can be attractive to use FEM simulation results 

as objective function estimators in a more comprehensive optimization procedure [23]. 

It was in 1960 that Lucien Schmit recognized the potential for combining optimization 

techniques and structural design [34]. Since then, shape optimization problems have been 

intensively studied in the literature. Some works performed in this area are [35-41].  

The initial shape design optimization problem is generally solved using a methodology that 

couples a FEM software with an optimization algorithm. If a commercial FEM software is used,  

and considering that usually these software codes are black-box featured, an interface program 

can be developed in order to (i) send the information to the FEM software, (ii) execute the FEM 

program, (iii) retrieve the results, (iv) calculate the objective function and constraints, (v) send the 

information to the optimization algorithm and (vi) obtain new and improved optimization 

variables that would be sent again, directly or indirectly, to the FEM software [28,42]. 

 This 6-step typical methodology seems to be straightforward. However, usually FEM 

software codes do not directly accept optimization variables as input information. These 

optimization variables can define a geometry (or a shape of a specimen) that must be previously 

discretized into elements (and nodes) in order to be properly used in the numerical simulation. 

This task, called geometry parameterization and discretization, is not straightforward and can 

influence the entire optimization process as well as its success [28]. In Figure 1.5, it is possible to 

see how a FEM program (in the present work the Abaqus® software) and an optimization 

algorithm can be integrated. As it was mentioned before, an interface algorithm should be 

developed, which will allow the correct connection between the optimization algorithm and the 

Abaqus®  program. In this case, the initial set of optimization parameters should be firstly written 

in the *.coe file, which only contains the optimization variables values. The interface will then 

read this file and write the *.inp file, that is a file with all information needed for the correct 

simulation of the specific mechanical problem. Then, the FEM program Abaqus®  reads the *.inp 

file and performs the correct simulation. After the simulation, the results are written in the *.dat 

file. The interface will then compare the results from the *.dat file with an *.exp file that contains 

only the experimental results. This comparison is performed evaluating the objective function 

value. The objective function value will be after analysed by the optimization algorithm, which will 
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verify if the stopping criteria are achieved and, in the positive case, all the optimization process 

stops. In negative case the optimization algorithm will evolve for a new set of parameters.   

 

Figure 1.5 - Scheme of the FEM and optimization coupling [43], as example. 

In the shape optimization performed in the present work the coupling between the 

optimization program and the FEM software was made as it is explained in Figure 1.5. 

 

1.7   Reading guide 

The present work is organized in five main parts. The first part is the Outline, which is composed 

of one generic chapter that gives a background for a better understanding of the proposed work. 

The second part is the Mathematical formulation and implementation. In this part all the 

fundamental mathematical concepts that the present work comprises are introduced. The third 

part refers to the Parameter identification which presents an experimental material 

characterization, optimization strategies for non-linear material parameters identification in metal 

forming processes and a study where the evaluation of the objective function, for parameter 

identification of material constitutive models, is performed considering a single-point analysis or a 

FE analysis. In the fourth part, the Inverse problems of blank and tool design and methodologies 

for blank shape design and for tool shape optimization are presented. The part five deals with the 

Final Remarks where some generic conclusions are underlined and discussed, and the future 

works, where some ideas of how this work can be continued in the future, are presented. The 

description of each chapter is as follows: 

Chapter 1 - An introduction to the presented work is performed. This introduction comprises an 

historic background, the main objectives as well as the importance of the present work in the 
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current reality. Themes like metal forming processes, Finite Element Method, definition of inverse 

problems and the coupling between FEM and optimization are also introduced. A reading guide 

and a list of the publications, published in the scope of this thesis, is provided. 

Chapter 2 - Some concepts related to parametric curves and surfaces are introduced. A special 

focus on the parametric Bézier, B-spline and NURBS curves and surfaces is considered. The main 

properties of each parameterization are underlined, allowing to understand the advantages and 

disadvantages of each representation.  

  

Chapter 3 - A review of the main topics in the kinematics of nonlinear continuum mechanics is 

presented. Concepts such motion, deformation gradient, strain, velocity gradient, rate of 

deformation and continuum spin are considered. The polar decomposition theorem is described. 

 

Chapter 4 - The fundamentals of constitutive modelling are introduced. The elastic, as well as the 

plastic behaviour of a material, is formulated. In order to mathematically express a material 

behaviour, the concepts of yield surface, associated flow rule and hardening law are established. 

Finally, a summary of the main isotropic and anisotropic yield functions is presented. 

 

Chapter 5 - The Abaqus® user subroutine RSURFU is extensively described, and the formulation 

presented in chapter 2 is considered for the Bézier and NURBS’ curves implementation. The Bézier 

and NURBS RSURFU are validated for the cases of a linear and a spherical tool. 

Chapter 6 - The optimization problem is described and presented. Several one-dimensional and 

multidimensional unconstrained methods are presented as well as multidimensional constrained 

problems.  

Chapter 7 - A brief introduction underlining the importance of the SDL Optimization Lab is 

performed. The general structure of the program is explained as well as the problem definition for 

the correct implementation of optimization problems. Issues like integration methods and the 

gradient calculation are also presented. 

Chapter 8 - The parameter identification problem consists in the comparison between 

experimental results (coming from mechanical tests) and a constitutive model that characterizes 

the studied material. Concerning this, in the present chapter, the mechanical characterization of 

the aluminium alloy AA6082 is presented. This is a generic procedure in the characterization of 

sheet metal forming materials. Tensile, shear and bulge tests are conducted. The mechanical 

characterization is performed using the ARAMIS system. 

Chapter 9 - Parameter identification inverse problems are studied in order to achieve the best 

material parameters for specific constitutive models. A non-linear elastic-plastic hardening model, 

a hyperelastic model, and an elasto-viscoplastic model with isotropic and kinematic work-

hardening were considered. Two different optimization algorithms were used: (i) the gradient-

based Levenberg-Marquardt algorithm, and (ii) a real search-space evolutionary algorithm (EA). 

Strategies such as cascade, parallel and hybrid approaches are analysed in detail. 
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Chapter 10 - In the present chapter two different approaches are presented and analysed: the 

single-point and FE analysis. The use of these different methodologies for the evaluation of 

objective function in the parameter identification process is still an open question and the interest 

in this field has been increasing among the metal forming community. To discuss this issue, two 

different constitutive models suitable for metals were used, i.e. an non-linear elasto-plastic 

hardening model and an elasto-viscoplastic model with isotropic and kinematic hardening. The 

determined material parameters for the two models, the respective objective function values and 

the CPU time required to perform the simulations are presented and discussed. 

Chapter 11 - A numerical procedure for the blank shape design is described and studied. 

Considering the proposed methodology, the design of a carter blank is presented. The other main 

objective is the study of the influence of the initial geometry definition in the optimization 

process. This study is performed considering the NURBS formulation to model the blank upper 

surface that will be changed during the optimization process. 

Chapter 12 - The shape optimization of a two-stage forging process is presented. In order to 

achieve a straight cylinder after the forging, two different approaches are analyzed. In the first 

one, the initial geometry of the cylinder is optimized and, in the other one, the shape of the first 

stage tool is optimized. To parameterize the free surface of the cylinder different methods are 

presented. Furthermore, in order to define the tool in the last example, also different 

parameterizations are presented. 

Chapter 13 - The main conclusions of the present work are underlined. Some future works in the 

domain of the present work are presented. 

 

1.8   List of publications in the scope of this thesis 

During the work presented in this thesis some publications and oral presentations were 

conducted. The scientific work performed, in the scope of this thesis, is following described: 

 

International journal papers  

 

- de-Carvalho R, Valente R, Andrade-Campos A (2010) On the objective function evaluation in 

parameter identification of material constitutive models- Single-point or FE analysis. 

International Journal of Material Forming 3:33-36.  

- de-Carvalho R, Valente R, Andrade-Campos A (2011) Optimization Strategies for Non-Linear 

Material Parameters Identification in Metal Forming Problems. Computers and Structures 

89:246-255.  

- Andrade-Campos A, de-Carvalho R, Valente R (2012) Novel criteria for determination of 
material model parameters. Journal of Mechanical Sciences 54:294-305.  
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- de-Carvalho R, Silva S, Valente R, Andrade-Campos A (2012) Blank optimization in a stamping 

process – Influence of the geometry definition. Finite Elements in Analysis and Design 61:75-84.  

International conference proceeding papers 

- de-Carvalho R, Valente R, Andrade-Campos A (2009) Optimization Strategies for Non-Linear 
Material Parameters Identification in Metal Forming Problems. Proceedings of ESMC2009 – 7th 
EUROMECH Solid Mechanics Conference, Lisboa, Portugal. 

- de-Carvalho R, Valente R, Andrade-Campos A (2010) On the objective function evaluation in 
parameter identification of material constitutive models - Single-point or FE analysis. 
Proceedings of 13th ESAFORM Conference on Material Forming, Brescia, Italy. 

- de-Carvalho R, Silva S, Valente R, Andrade-Campos A (2011) The Geometry Definition Influence 
in Inverse Analysis – Application to Carter Forming Process; Proceedings of 14th ESAFORM 
Conference on Material Forming, Belfast, Ireland. 

- de-Carvalho R, Andrade-Campos A, Caseiro J, Valente R (2011) On the use of optimization 
methodologies in sheet metal forming and mechanical characterization. Proceedings of the 
CMNE 2011, Coimbra, Portugal. 

- de-Carvalho R, Andrade-Campos A, Valente R (2012) Defining analytical rigid curves/surfaces in 
tool optimization problems. Proceedings of the 1st ECCOMAS Young Investigators Conference, 
Aveiro, Portugal. 

- de-Carvalho R, Andrade-Campos A, Valente R (2012) Defining analytical rigid curves and surfaces 

in tool optimization problems. Proceedings of the 3rd International Conference on Engineering 

Optimization, Rio de Janeiro, Brazil. 
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Chapter 2 
 

 

Parametric Curves and Surfaces 
 

 

 

 
Some concepts related to parametric curves and surfaces are 

introduced. A special focus on the parametric Bézier, B-spline and 

NURBS curves and surfaces is considered. The main properties of 

each parameterization are underlined, allowing to understand the 

advantages and disadvantages of each representation.  

 

 

 

 

2.1   Introduction 

During the past decades, computer aided design (CAD) tools have played an increasingly 

important role for a variety of applications in many fields such as: industrial design and 

manufacture, electrical and mechanical engineering, robotics, computer vision, image processing, 

computer graphics, biomedicine, etc., either for functional or aesthetic reasons [1-3]. It was noted 

that when different scientific communities were treating very similar problems, they applied 

different approaches that had lead to different developments in that areas of research. Recently, 

the increasing complexity of applications leads to the necessity of interconnection between 

different areas of knowledge to solve these new problems. This interconnection lead to novel 

technologies in the geometric design field, and simultaneous an intensive research in 

mathematical theory, representation and analysis of curves and surfaces [2,3].  

It is considered that the evolution of CAD had its origins in the work of two French 

automotive engineers, Pierre Bézier (of Renault) and Paul de Faget de Casteljau (of Citroën) [4]. In 

his first works [5-7], Bézier used the Bernstein polynomial basis [8] to generate curves and 

surfaces. The Bézier works were published in 1966, 1967 and 1972. Casteljau, in 1959, had 

developed similar ideas although these have never been published. The term spline was 
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introduced earlier in the mathematical literature by Schoenberg at 1946. His work drew attention 

to the possibilities of spline approximations and was published in 1966 [9]. In these years, the 

Coons patch [10] had been putted aside, being the methods of Bézier and Casteljau the methods 

chosen for CAD representations [4]. During the 1970s, the CAD representation had significantly 

evolved with the publications of Reisenfeld´s Ph.D. thesis on B-splines in 1972 [11] and the 

publication in 1975 of the Versprille´s Ph.D. thesis [12] on rational B-splines, which gave rise to 

the well known NURBS.  

Recently, a new class of splines was introduced, the T-splines. They are a generalization of 

NURBS and allow to describe the same NURBS surface by removing unnecessary control vertices. 

The T-spline model and the NURBS model are geometrically equivalent but the first one doesn´t 

consider redundant control vertices. Redundant control vertices can lead also to ripples in the 

NURBS surface [13]. 

Regarding the parametric representations, splines are mainly used in the geometric design 

of curves and surfaces. A spline curve is defined by a set of two or more coordinate positions 

called control vertices. These control vertices are then the vertices of a piecewise-linear control 

polygon. In Figure 2.1 it is possible to see the control polygon, with four control vertices, and the 

final resultant spline. 

 

Figure 2.1 - Control vertices in a spline. 

Splines can be considered as interpolation splines or as approximation splines if the curve/ 

surface passes through all the control vertices or if the curve/surface passes near the control 

vertices, respectively. There are different sort of splines including Cardinal Splines, Kochanec-

Bartlet Splines, Bezier Splines, B-Splines and NURBS. Bézier, B-Splines and NURBS curves and 

surfaces are the most popular and used parametric representations among these.  

The nonuniform rational B-spline (NURBS) curves and surfaces are the ones with greater 

flexibility and precision, that allows an accurate description of complex curves and surfaces. 

Therefore, NURBS are assumed as the standard in the computer graphics industry and in 

computer aided design [13]. Chronologically the first ones to appear were the Bézier 

curves/surfaces, followed by the B-spline curves/surfaces and then the NURBS curves/surfaces, in 

the search for greater flexibility and precision.  B-splines and NURBS curves/surfaces are 

generalizations of Bézier curves/surfaces and are manipulated in similar ways as Bézier surfaces 

[1]. 

The mathematical formulation of these curves/surfaces is based in the so-called basis 

functions. The Bézier surfaces are based on Bernstein basis, which limit their flexibility. This 
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reduction of flexibility happens because the degree of the surface in each parametric direction is 

one less than the number of control vertices in that direction, and due to the global nature of the 

Bernstein basis. This means that the change of a control vertex will affect all the shape of the 

surface. There is another class of basis functions, called the B-spline basis, which contains the 

Bernstein basis as a special case. These basis are generally nonglobal, which means that each 

vertex is associated with a unique basis (support) function. As a consequence, each vertex affects 

the shape of a curve only over a range of parameter values. In the B-spline basis, the maximum 

possible order of the surface in each parametric direction is equal to the number of control 

polygon vertices in that direction [1].  

 The NURBS curves and surfaces formulation is based in the rational B-spline basis 

functions, which are a generalization of the nonrational B-spline basis functions. These curves and 

surfaces have more flexibility by the introduction of weights that allows to control how a control 

vertices influences the whole curve or surface.  

In the present chapter only the Bézier, B-spline and NURBS curves and surfaces are 

considered regarding the main scope of the presented work.  

 

2.2   Parametric curves and surfaces formulation 

Curves and surfaces are mathematically represented explicitly, implicitly or parametrically. Explicit 

surfaces can be written in the form          and are useful in many applications. However, 

explicit surfaces are axis dependent, cannot adequately represent multiple-valued functions and 

cannot be used where a constraint involves an infinite derivative. Implicit surfaces can be written 

in the form            and are able to represent multiple-valued functions. However, these 

are still axis dependent. Parametric surfaces, on the other hand, can be represented as 

                              , with   and   being the function parameters. Therefore, 

the surface is said to be biparametric. Parametric and implicit surface definitions are predominant 

in the academic, industrial and commercial fields [1,2].  

In the parametric form, each of the coordinates of a point on the curve is represented 

separately as an explicit function of an independent parameter [15]. Therefore, parametric curves 

can be represented as [1]: 

                                                                                          

In this equation,   is the independent parameter and although the interval       is arbitrary, 

normally it is normalized to       [14].  Due to its intrinsic formulation, parameter representations 

are extremely flexible, are axis independent and these have additional degrees of freedom 

compared to either explicit or implicit formulations [1]. 

Even very powerful, the parametric form has some disadvantages. In parametric form some 

typical operations are more difficult, such as: determining the intersection of two parametric 

curves, finding the distance from a point to a curve or specifying an unbounded geometry [1,14]. 

Following the same logic, a surface can be parametrically represented as: 
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where the surface is said to be biparametric, being   and   independent parameters. An 

isoparametric curve can be formed in the surface if one of the parameters value is held constant 

while the other is varied. If both parameters are held constant then a point is represented. To 

form the edges of the surface it is necessary to hold constant the minimum or maximum value of 

one of the parameters and vary the other parameter [1]. 

 

2.3   Bézier curves  

2.3.1 Bézier curve definition 

Letting      be the position vector along the Bézier curve, a parametric Bézier curve can be 

mathematically defined as follows [1,14]: 

                                                                                         

 

   

 

where   is the position vector of the control vertices, and          is the     Bernstein basis 

function with order  , defined as: 

          
 
 
                      

 
 
  

  

        
                                           

Considering the equation 2.3, it is possible to formulate the first Bézier curve derivative as: 

     

  
               

                                                                     

 

   

 

In an equivalent way, the second derivative can be given as: 

      

   
                

                                                                      

 

   

 

 

2.3.2 Bézier curve properties 

The shape of a parametric curve is determined by a control polygon. This control polygon is a set 

of control vertices, varying the number of control vertices with the desired degree of the curve. 

The properties of the Bézier curves are determined by the basis functions properties that 

formulate the Bézier curves. These functions are known as Bernstein basis. The properties can be 

summarized as [1]: 

 The basis functions are real; 

 The degree of the curve is one less than the number of control polygon points; 

 The curve usually follows the shape of the control polygon; 
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 The first and last points on the curve are the same of the first and last points of the 

control polygon; 

 Considering the last point, it is possible to assume that the tangent vectors at the ends of 

the curve have the same direction as the first and the last polygon spans, respectively.  

 

2.4   B-spline curves  

2.4.1 B-spline curve definition 

Mathematically, a parametric B-spline curve can be defined as follows [1]: 

                                                

   

   

                                           

In this equation,   is once more the position vector of the     control vertices, and           are 

the normalized B-spline basis functions of order   and degree    . The B-spline basis functions 

are defined by the Cox-de-Boor recursion formula as follows:  

          
                    
                                       

                
                

         
 
                    

         
    

      

In this equation,     are the elements of a knot vector that satisfies the relation             and t 

varies from      to      along the B-spline. Further information about this topic can be found, for 

instance in references [1,2]. 

Regarding equation 2.7, it is possible to formulate the first B-spline curve derivative as 

     

  
               

                                                                     

   

   

 

and the second derivative as: 

      

   
                

                                                                  

   

   

 

 

2.4.2 B-spline curve properties 

Considering that a B-spline basis is the base of B-spline curve definition, several properties can be 

underlined, such as [1]: 

 The sum of the B-spline basis functions for any parameter value   is 1; 

 Each basis function is positive or zero for all parameters values; 
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 The maximum order of the curve equals the number of control polygon vertices and the 

maximum degree is less one;  

 The curve usually follows the shape of the control polygon; 

 The curve is transformed by transforming the control polygon vertices. 

 

2.5   NURBS curves  

2.5.1 NURBS curve definition 

A non-uniform rational B-spline (NURBS) curve can be mathematically defined as follows [1]: 

                

   

   

                                                                

where   is the position vector of the     control vertices, and          are the normalized 

rational B-spline basis functions of order   and degree    . The rational B-spline basis functions 

are defined as follows:  

          
          

           
   
   

                                                          

In the previous formula,     are the weights for each control vertices. In the case all weight are 

equal to 1 this curve simplifies to a B-spline curve. 

Considering the equations 2.11 and 2.12, it is possible to formulate the first rational B-

spline curve derivative as: 

     

  
               

                                                               

   

   

 

where 

     
       

       
      

           
   
   

 
       

             
         

   

            
   
    

                                  

and the second derivative as 

      

   
                

                                                           

   

   

 

where 
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2.5.2 NURBS curve properties 

Since rational B-splines basis functions and curves are a generalization of nonrational B-spline 

basis functions and curves, their properties are similar to the nonrational B-splines. In particular 

[1]: 

 Each basis function is positive or zero for all parameters values; 

 The sum of the rational B-spline basis functions for any parameter value t is 1; 

 A rational B-spline curve of order   (degree  -1) is      continuous; 

 The maximum order of the rational B-spline curve is equal to the number of control 

polygon vertices; 

 The rational B-spline curve generally follows the shape of the control polygon; 

 The rational B-spline curve is transformed by transforming the control polygon vertices. 

 

2.5.3 An example of a NURBS curve  

An example of a second degree rational B-spline curve (NURBS) is presented. The control vertices 

are:  

              

            , 

            , 

            , 

            , 

            , 

with weights of 1.0, 1.0, 2.0, 2.0, 1.0, 1.0, respectively. In Figure 2.2 it is shown the polygon 

control vertices and the correspondent NURBS curve. In Figure 2.3 the respective basis functions 

are also presented. 
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Figure 2.2 - Example of rational B-spline curve. 

 

 

Figure 2.3 - Example of rational B-spline basis functions. 
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2.6   Bézier surfaces  

2.6.1 Bézier surface definition 

A Bézier surface can be defined as [1]: 

                              

 

   

 

   

                                                      

In the equation,      are the control vertices and the indices   and   are less one than the 

number of control vertices in the   and   directions, respectively. The         and          are 

the Bernstein basis functions in the   and   parametric directions, and can be computed as: 

          
 
 
                      

 
 
  

  

        
                                           

and  

          
 
   

                    
 
   

  

        
                                    

Considering equation 2.17, the first and second parametric partial derivatives can be calculated 

as: 

  

  
                    

            

 

   

 

   

                                                    

  

  
                           

    

 

   

 

   

                                                     

   

    
 

   

    
                     

    

 

   

 

   

     
                                                       

   

   
                     

             

 

   

 

   

                                                   

   

   
                            

     

 

   

 

   

                                                    

 

2.6.2 Bézier surface properties 

As it was mentioned for Bézier curves, Bézier surfaces properties are determined by the Bernstein 

basis functions that formulate the Bézier curves. These properties can be summarized as [1]: 
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 The basis functions are real; 

 The degree of the surface in each parametric direction is less one than the number of 

control net points in that direction; 

 The continuity in each parametric direction is two less than the number of control vertices 

in that direction; 

 The surface usually follows the shape of the control net; 

 The corner points of the control net are coincident with the resulting Bézier surface. 

 

2.7   B-spline surfaces  

2.7.1 B-spline surface definition 

A B-spline surface can be defined as [1]: 

                             

   

   

 

   

   

                                                 

where         and          are the B-spline basis functions in the biparametric   and   

directions, respectively, and can be calculated as follows: 
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The B-spline derivatives are given by the expressions: 
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2.7.2 B-spline surface properties 

Considering that a B-spline basis is the base of B-spline surface definition, several properties can 

be underlined, such as [1]: 

 The maximum order of the curve in each direction is equal to the number of control 

vertices in the respective direction; 

 The continuity in each parametric direction is less two than the number of control vertices 

in that direction; 

 The surface is transformed by transforming the control net vertices; 

 The influence of each control vertex is limited to   
  ,   

   spans in each parametric 

direction. 

 If the number of control vertices is equal to the order in each parametric direction and 

there are no interior knot values the B-spline surface reduces to a Bézier surface. 

 

2.8   NURBS surfaces  

2.8.1 NURBS surface definition 

A NURBS surface can be defined as [1]: 

                     

   

   

   

   

                                                                

where   are once more the position vector of the control vertices.             are the bivariate 

rational B-spline basis functions of order   and degree    . The rational B-spline basis functions 

are defined as follows:  

           
                  

                         
   

   
   

                                                          

In the previous formula,    , as instance, are the weights for each control vertices. Further 

information about this topic can be found, for instance, in references [1,14]. 

Considering the equation 2.33 and 2.34, it is possible to formulate the derivatives of the 

rational B-spline surface as: 
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2.8.2 NURBS surface properties 

Since rational B-splines basis functions and surfaces are a generalization of nonrational B-spline 

basis functions and surfaces, their properties are similar to the nonrational B-splines. In particular 

[1]: 

 Each basis function is positive or zero for all parameters values; 

 The sum of the rational B-spline basis functions for any parameter value of   and   is 1; 

 A rational B-spline surface of order  ,   (degree  -1,  -1) is      and      continuous 

respectively; 

 The maximum order of the rational B-spline surface in each parametric direction is equal 

to the number of control vertices in that direction; 

 The rational B-spline surface generally follows the shape of the control net; 

 The rational B-spline surface is transformed by transforming the control net vertices; 

 The influence of each control vertex is limited to   
  ,   

   spans in each parametric 

direction; 

 If the number of control vertices is equal to the order in each parametric direction and 

there are no duplicate interior knot values the NURBS surface reduces to a rational Bézier 

surface. 

 

The present chapter assumes as fundamental for the mathematical formulation of the curves 

and surfaces used in the presented work. In Chapter 11 the NURBS surface formulation is 

considered in the initial blank shape definition. In Chapter 12, the Bézier and NURBS curves 

formulation is considered in order to define the geometry of a tool used in a forging process. 
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Chapter 3 
 

 

Continuum Kinematics 
 

 

 

 

A review of the main topics in the kinematics of nonlinear 

continuum mechanics is presented. 

Concepts such motion, deformation gradient, strain, velocity 

gradient, rate of deformation and continuum spin are considered. 

The polar decomposition theorem is described. 

 

 

 

 

3.1   Introduction 

The main focus of the present work is the parameter identification of constitutive models and the 

initial shape optimization of forming processes. In both cases the process simulation needs a good 

description of the phenomena that take place in an infinitesimal amount of material. These 

phenomena are described considering the kinematics mathematical formulation for continuum 

mechanics. Considering this fact, in the present chapter a review of the main topics in the 

kinematics of nonlinear continuum mechanics is performed.  

In forming processes, the body typically undergoes large deformations. Deformation usually 

comprises stretch, rigid body rotation and translation. The stretch contributes for the shape 

change, while the rigid body rotation and translation does not contribute to shape change or 

internal stress [1]. Considering a continuum mechanics point of view, the large deformations in 

solids are analysed considering a referential coupled to the body and that deforms with it [2-4].   

This chapter begins with the description of motion and the deformation gradient. Strain 

field can be defined in many ways in nonlinear continuum mechanics, and some of these 

definitions are presented, with the polar decomposition theorem being described. Further 

information about continuum mechanics can be obtained, for instance, in references [5-7]. 
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3.2   The motion’s description 

To perform the motion’s description, and for a better understanding of kinematics, it is necessary 

to introduce the terms “point” and “particle”. The term “point” is used to refer a spatial position, 

while “particle” refers to a small part of a material continuum. The motion of a particle can be 

defined considering either a Lagrangian or an Eulerian descriptions [8].   

In the Lagrangian (or material) description, the independent variables are the position   of 

the particle at time   =0 and the time  . Therefore, the motion can be expressed as [8]: 

                                                                                         

In the Eulerian (or spatial) description, the independent variables are the present time   and the 

present position   of the particle that occupied the point   at time    . Therefore, the attention 

is fixed to a given point instead of a certain particle of a continuum. The motion may be expressed 

as [8]: 

                                                                                        

The Eulerian or spatial description is best suited for fluid mechanics problems, as it focuses 

attention on a certain region in space, which enables the analysis of a flow in a considered point. 

Solid and structural mechanics problems usually adopt the Lagrangian formulation, since at some 

stage of a formulation the constitutive behaviour of the material particle must be taken into 

account, which involves a material description [5,8]. Considering this, in the following a particular 

focus will be put on the Lagrangian approach, being this one of the most suitable for the forming 

processes simulation. 

 

3.3   Deformation gradient 

In the description of the motion of a body (and deformation), it is necessary to have a 

configuration which the equations are referred to, known as the reference configuration. 

Considering Figure 3.1, it is possible to observe the initial undeformed configuration    and the 

current deformed configuration    of an element of material [6]. 

It is considered that the element of material   undergoes combined stretch, rigid body 

rotation and translation. The deformation gradient   is the key quantity in finite deformation 

analysis, appearing in all equations relating quantities before deformation to corresponding 

quantities after or during deformation [6]. The deformation vector   maps the infinitesimal vector 

   into its deformed state    as follows [1]: 

                                                                                         

The relation 3.3 can be written, in the component form, as [8]: 
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From equation 3.4, it is possible to define the deformation gradient as [8]: 

  
  

  
                                                                                   

 

Figure 3.1 - An element of material represented in the undeformed and deformed configuration [8]. 

By means of the deformation gradient, a complete description of deformation (excluding 

rigid body translations) is possible, including stretch as well as rigid body rotation. Pure translation 

is not considered because does not change any vector or its components. In the case of pure 

translation the deformation gradient is equal to identity. The shape, size change or internal 

stresses of the element of material   are not influenced by the rigid body rotation. Therefore, in 

solving problems it is necessary to separate the stretch from the rigid body rotation contained 

within the deformation gradient [1,8].  

 An useful form of the strain tensor is obtained when it is formulated as a function of 

displacement gradients. To do so, it is first necessary to represent the deformation gradient as a 

function of displacement gradients. To this end, the displacement can be defined as: 

                                                                                      

and then the deformation gradient can be written as: 
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Where   is the second order identity tensor. 

 

3.4   Strain measures 

In order to determine the different strain tensors, it is necessary to first define the left Cauchy-

Green tensor   and the right Cauchy-Green tensor  .  The left Cauchy-Green tensor can be in the 

form [8] 

                                                                                      

and the right Cauchy-Green tensor as 

                                                                                     

With these auxiliary tensors, different formulations can be used to express the strain tensors. For 

instance, the Eulerian( or Almansi) strain tensor can be defined as [8]: 

  
 

 
                                                                                   

Another measure of strain is the logarithmic (or true) strain, that can be defined as [8]: 

  
 

 
                                                                                  

Finally, the material Green-Lagrange strain tensor is defined as [8]: 

  
 

 
        

 

 
 
  

  
  

  

  
 
 

  
  

  
 
   

  
                                           

 

3.5   Velocity gradient, rate of deformation and continuum spin 

Plasticity is an incremental process, and to be implemented in a finite element code plasticity 

models are written in rate form. In this context, it is possible to define the increment of velocity 

that occurs over an incremental change in position,   , in the form [1]: 

   
  

  
                                                                                 

The gradient considered in this equation is the velocity gradient, and describes the spatial rate of 

change of the velocity, in the form [1]: 
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The velocity gradient can be decomposed into a symmetric (stretch-related) and an antisymmetric 

(rotation-related) parts, as follows:  

                                                                                    

The symmetric part   is called the rate of deformation, and is formulated as: 

  
 

 
                                                                                

while the antisymmetric part represents the continuum spin, being given by [1]: 

  
 

 
                                                                                

 

3.6   Polar decomposition 

Considering that a deformation comprises a translation, a rigid body rotation and a stretch, and 

taking into account the considerations stated before, it is possible to formulate the so-called 

“polar decomposition theorem”. This theorem states that any non-singular, second-order tensor 

can be uniquely decomposed into the product of an orthogonal tensor (rotation) and a symmetric 

tensor (stretch) [5]. The polar decomposition of the deformation gradient can be expressed as 

follows: 

                                                                                   

or, alternatively, as 

                                                                                   

where   and   are the left and right symmetric stretch tensors, respectively [6]. 

In Figure 3.2 it is possible to understand how the polar decomposition acts from the 

undeformed configuration to the deformed one. The represented axes are attached to the 

material point P. 

 

3.7   Elastic and plastic deformation gradient decomposition 

Considering Figure 3.3, it is possible to understand that if the deformable body have an 

elasto-plastic behaviour it is important to separate the elastic from the plastic contributions for 

the deformation gradient. 
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Figure 3.2 - Schematic representation of both methods for the polar decomposition [6]. 

 
Figure 3.3 - Elastic and plastic decomposition of the deformation gradient [5]. 

In order to achieve this separation, an intermediate configuration (known as the relaxed 

configuration) is considered, corresponding t the domain    in Figure 3.3 [8]. This intermediate 

configuration is obtained considering that the deformed body has undergone a purely plastic 

deformation, and that    is now    . For each material point belonging to    a position vector    

is considered [9]. It is now possible to define an elastic and an plastic deformation gradients as 

follows: 
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Finally, the deformation gradient can be expressed as a function of these two tensors, leading to: 

                                                                                 

This is known as the classical multiplicative decomposition [8] of the deformation gradient. 
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Chapter 4 
 

 

Constitutive Modeling 
 

 

 

 
The fundamentals of constitutive modelling are introduced. The 

elastic, as well as the plastic behaviour of a material, is 

formulated. In order to mathematically express a material 

behaviour, the concepts of yield surface, associated flow rule and 

hardening law are established. Finally, a summary of the main 

isotropic and anisotropic yield functions is presented. 

 

 

 

 

4.1   Introduction 

The present chapter has the purpose to make an introduction to constitutive modelling. It is 

assumed throughout the chapter that only small strains are considered in the absence of large 

rigid body rotations. As mentioned in chapter 3, after the kinematic transformation have 

eliminated the rotation effects in the tensor quantities (by the use of corotational framework), 

the procedures are similar to the ones of small strain formulations. 

 The material behaviour can be mathematically described by a constitutive equation which 

gives the stress as a function of the deformation history of the body. Different constitutive 

relations allow to distinguish different kind of materials [1]. Generally, in metal forming processes, 

the materials have a linear behaviour at the early stages of deformation. In these cases, it is said 

that the stress-strain relation is elastic, being given by the Hooke´s law. However, if a certain 

criterion is reached, it is assumed that the material undergoes irreversible deformations [2]. In 

this case, it is said that the material had deformed plastically, not being capable of recovering its 

initial shape. The transition from the elastic to the plastic behaviour is determined by the yield 

surface or the yield stress value in 1D problems.  
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The plasticity of materials that exhibit rate effects is known as viscoplasticity. It is 

considered that viscoplasticity describes rate-dependent plasticity in which crystallographic slip is 

the dominant deformation process. For the case of viscoplasticity the elastic-plastic strain 

decomposition still holds, and yield is determined as for the time-independent plasticity with a 

yield function [3].   

In general terms, the yield function can be defined by means of a micromechanical or a 

phenomenological approach. In the case of the micromechanical approach, the determination of 

plastic process and the related variables is done at the atomic, molecular or crystalline levels. In 

the case of the phenomenological (macroscopic) approach, on the other hand, the experimental 

data is approximated by an analytical function. 

 It is possible to enumerate some advantages for the use of phenomenological approaches 

instead the micromechanical ones [4]. Usually, a phenomenological methodology: 

 Presents a  simpler mathematical form; 

 Is computationally easier to be implemented in Finite Element codes; 

 Can be generalized to describe anisotropic behaviour of materials. 

However, the phenomenological approaches have, as the main disadvantage, a relatively 

poor accuracy under multi-axial and non-proportional loading conditions [4]. 

 Phenomenological models comprise a yield surface in conjunction to isotropic/kinematic 

hardening laws, and can be of associate and non-associate types. Other models, known as unified 

phenomenological models, are also available and, in this case, there is no yield surface [5].  

The constitutive formulation presented in the following allows for a better understanding 

of the material formulation considered in the mechanical problems presented in chapters 9, 10, 

11 and 12. 

 

4.2   Linear elasticity  

The simplest constitutive model is the linear elasticity. Although the existence of nonlinear 

elasticity, in the present work only elastic linearity is considered. For certain values of strain, the 

stress-strain relation is considered to be linear. In this case it is said that if a body is submitted to a 

specific external solicitation and then this solicitation is removed, it will retrieves its initial shape. 

In this case the body only had suffered elastic deformations [2]. The stress-strain linear evolution 

is formulated considering the Hooke´s law, which is represented in the matricial form as [3]: 

       

 
 
 
 
 
 
      

      
      

   
   
   

                       
                       
                       

   
   
    

 
 
 
 
 

 
 
 
 
 
 
   

   

   
   

   

    
 
 
 
 
 

                                            

In the equation,   and   are the Lamé constants given by: 
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and 

  
 

      
                                                                            

 

4.3   Plasticity 

The present work deals mainly with metals, which are made of crystals where  atoms are stacked 

in a regular array. The origin of plasticity in crystalline materials, such as the metals, is related to 

crystal slip. From this, a number of very important phenomena in macroscopic plasticity become 

apparent, such as: the plastic slip does not lead to volume change (this is known as the 

incompressibility condition of plasticity), the plastic slip is a shearing process (i.e. the hydrostatic 

stress can often be assumed not to influence slip), and in a polycristal, the plastic yielding is often 

considered too be an isotropic process [3].  

 In Figure 4.1 it is shown the classical stress-strain curve obtained for a purely uniaxial 

tensile test [3].  

 

Figure 4.1 - The classical stress-strain representation [3]. 

As it is possible to observe in Figure 4.1, first the material has a linear elastic behaviour until 

it reaches the yield stress (   . After this point, the yield stress can increase with higher values of 

plastic strains, a phenomenon known as strain hardening, since the stress is increasing relative to 

perfect plastic behaviour [3]. If the material is unloaded, making the applied stress equal to zero, 

the remaining strain is the plastic strain (  ), the recovered strain is the elastic strain (  ), and the 

real strain is the sum of these two components: 

                                                                                                                         

The plastic behaviour comprises some particular phenomena, such as the strain hardening, the 

plastic anisotropy, the elastic hysteresis and the Bauschinger effect. To define the plastic 

behaviour of a material in a general stress state, three elements are required [4]: 



50                                                                                                                               4. Constitutive Modeling  
 

 A yield criterion, that express the relation between the stress components at the moment 

that plastic yielding occurs; 

 An associated flow rule, that expresses the relation between the components of the 

strain-rate and stress-rate; 

 An hardening law, that describes the evolution of the initial yield stress during the 

forming process. 

In the following sections these three points are explained in detail. 

 

4.3.1 Yield criterion 

As previously mentioned, the material transits from the elastic to the plastic state when the 

equivalent stress value equals the yield stress coming from the tension test. In the uniaxial case it 

is easy to find the yield point, however in multiaxial stress state it is more difficult, being 

necessary to define a criterion that model the transition from the elastic to the plastic state [4]. 

This criterion defines a relation between the principal stresses, and should specify the conditions 

under which plastic flow occurs. Such relation is named yield function, and it is normally defined 

in the form of an implicit function such as [6]: 

                                                                                          

where   is the stress tensor and   is a set of variables that influence the hardening behaviour [7]. 

The equation 4.5 mathematically represents a surface in three dimensional stress space. This 

surface must be closed, smooth and convex.  All the points located inside the surface (    ) 

correspond to elastic stress levels. Points located on the surface (    ) are related to a plastic 

state, and the points located outside of the surface (    ) have no physical meaning [4]. 

 The yield surface function is formulated on the basis of some phenomenological 

considerations concerned to the transition from the elastic to the plastic state. The yield function 

may be defined considering two different ways such as: (i) assuming that the plastic yield begins 

when some physical quantity attains a critical value or (ii) approximating experimental data by an 

analytical function. The last formulation is purely phenomenological not considering the 

crystallographic structure of the material.  

 

4.3.2 Associated flow rule 

The yield criterion and the hardening law define the yield surface. However, there is no 

information about the evolution of the plastic deformation [7]. After the yield limit, the material 

deforms plastically and the normality hypothesis of plasticity enables to determine the “direction” 

of flow. This hypothesis states that the increment in the plastic strain tensor is in a direction (i.e. 

relative to the principal stress directions) which is normal to the tangent to the yield surface at 

the load point. This is schematically represented in Figure 4.2 (for the specific case of von Mises 

yield surface) [3]:  
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Figure 4.2 - The plastic strain increment for the specific case of von Mises yield surface [3]. 

 

The normality hypothesis can be formulated as: 

      
  

  
                            

  

  
                                                  

where       gives the direction of plastic strain increment (or, equivalently, the plastic strain 

rate) while the magnitude is determined for the plastic strain rate by   , that is known as the 

plastic multiplier. 

 

4.3.3 Hardening rule  

Several metals show hardening when deformed plastically. This means that the stress required to 

cause further plastic deformation increases. This increase is usually a function of the accumulated 

plastic strain [3]. This function is known as the strain hardening law and represents the evolution 

of the yield surface. There are three main groups of hardening laws, such as isotropic hardening 

laws, kinematic hardening laws and combined hardening laws. In the last one, isotropic and 

kinematic hardening occurs [6]. If there is no hardening after yielding, for further plastic 

deformation, the yield surface remains unaltered and the equivalent stress remains equal to   , 

as can be seen in Figure 4.3. In this case it is said that the material is perfectly plastic. 

In Figure 4.4, it is represented the yield surface evolution and the respective stress-strain 

curve in the case of isotropic hardening. It is possible to observe that the yield surface expand 

uniformly in all directions of the stress space.  

In the case of isotropic materials, the yield function can be given as:  

                    
                                                                     

where       is a convex function of the stress tensor and is known as the yield function.      
   is 

the hardening function, being dependent on the equivalent plastic strain (   ), and establishes the 

dimension of the yield surface. 
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Figure 4.3 - Yield surface and respective stress-strain curve, when no hardening is present [3]. 

 

Figure 4.4 - Evolution of the yield surface with isotropic hardening [3]. 

 

There are many formulations for the isotropic hardening function. Common examples are 

the the Ludwick (1909), the Prager (1938), the Hollomon (1944), the Swift (1947), the Voce (1948) 

and the Fernandes et al. (1998) laws. These hardening laws can be formulated as [7]: 

Ludwick                                  
                                                                                                 

Prager                                    
     

   

   

                                                                                      

Hollomon                                                                                                                                      

Swift                                                                                                                                     

Voce                                        
       

    
             

                                        

Fernandes et al.                                     
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In these equations,   ,    
, and      

 are respectively the flow stress, the initial yield stress and 

the saturation stress under uniaxial tension. Also    and     are the logarithmic equivalent stress 

strain and the equivalent plastic stress respectively. The other parameters are material constants 

that need to be determined experimentally [7].   

It is often assumed that any hardening that occurs is isotropic. However, in the cases that 

there is reverse loading, isotropic hardening leads to a very large elastic region. This phenomenon 

doesn´t occurs experimentally, and is called the Bauschinger effect [3]. In this case it is said that 

the material hardens kinematically. In Figure 4.5 it is represented the kinematic hardening, where 

the yield surface suffers a translation in the stress space [6].  

 

Figure 4.5 - Evolution of the yield surface with kinematic hardening [3]. 

Considering the yield function in equation 4.7 it is possible to formulate the same function 

with kinematic hardening as: 

                         
                                                      

where        is often called “backstress”. This variable is defined in the stress space having the 

same number of components as the stress tensor [3]. 

In 1955, Prager [8] proposed the following kinematic hardening law: 

                                                                                  

where   is a material constant that should be determined experimentally. Considering this law, 

the yield surface translate in the normal direction. In 1959, Ziegler [9] proposed a modification to 

the Prager´s law as follows: 

                                                                                     

where   is a scalar determined with the consistency condition. Instead of moving the yield surface 

in the normal direction, this law makes the yield surface move in the radial direction defined by 

the tensor    . 
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 The previous hardening law only models linear kinematic hardening. Considering this, 

Lemaitre and Chaboche [10] had proposed in 1985 a kinematic hardening law that is non-linear 

with saturation, and formulated as follows: 

      
    

  
                                                                     

where    and      are material parameter that should again be determined experimentally and 

  is the deviatoric stress tensor [7]. 

Other materials show hardening effects both kinematically and isotropically (see Figure 

4.6), which usually happens in cyclic plasticity. In these cases, for an individual cycle the kinematic 

hardening is the dominant process. However, over a quite large number of cycles the material 

also hardens isotropically, which is represented by an expansion of the yield surface [3].   

 

Figure 4.6 - Evolution of the yield surface with combined isotropic and kinematic hardening [3]. 

In these cases, the yield function of equation 4.6 can be formulated in the form [3]: 

                                                                                 

 

4.4   Yield criteria for isotropic materials 

There are two main groups of yield criteria, based on their capability to represent the material 

anisotropy. One group is named isotropic yield criteria, when under a specific loading the material 

properties are equal in all directions. If these properties depend on the direction considered, the 

material is then said to be anisotropic.  

The first isotropic yield criterion was proposed by Tresca in 1864 [11], based on the 

observation that plastic strains appear by crystallographic gliding under shear stresses. This 

criterion has as main idea that a material passes from elastic to plastic state when the maximum 

shear stress reaches a critical value [4]. Generically the criterion can be formulated as follows: 
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In this equation   ,    and    are the principal stresses and    is the uniaxial yield stress from the 

tension test. 

Later on, the Huber-Mises-Hencky isotropic yield criterion was proposed independently by 

Huber in 1904 [12] and von Mises in 1913 [13], being further developed by Hencky [14]. This 

criterion is usually known as von Mises yield criterion and is based on the idea that a hydrostatic 

pressure cannot cause plastic yielding of the material. The criterion can be formulated as follows: 

the material passes from elastic to plastic state when the accumulated elastic energy of distortion 

reaches a critical value that is independent of the type of the stress state [4]. The von Mises 

criterion can be expressed as: 

            
         

         
     

                                   

Drucker, in 1949 [15], proposed an isotropic yield criterion in order to represent the experimental 

data located between the Tresca and von Mises yield surfaces. The criterion can be formulated as: 

        
      

                                                                  

where     and    are the second and third invariants of the stress tensor, respectively, and    is a 

constant. 

The Hershey [16] isotropic yield criterion is a generalization of these three yield criteria and 

was proposed in 1954 [4,6]. The criterion can be formulated as: 

            
         

         
     

                               

In the previous equation,    is the uniaxial yield stress and   is an exponent which is determined 

based on the crystallographic structure of the material. This criterion reduces to the von Mises 

criterion if    , whereas for     (and in the limit case that    ) the criterion reduces to 

the Tresca yield condition [4]. In the case that      , the corresponding surface lies outside 

the von Mises circular cylinder, whereas for       and for     it lies between Tresca and 

von Mises. 

4.5   Yield criteria for anisotropic materials 

In 1984, Hill [17] proposed an anisotropic yield criterion that is a generalization of the Huber-

Mises-Hencky isotropic yield criterion. It is one of the most used yield criterion in the material 

behaviour definition (particularly for steels), mostly because of its simplicity. In the last decades 

the increasing use of anisotropic alternative materials in metal forming has lead to the 

development of new, and more complex, yield criteria, that, when integrated in FEM, allow to 

represent more accurately the material behaviour. In Table 4.1 a resume of the main yield criteria 

developed as well as the parameters needed for the identification process is presented. The 

possibility of 3D extension of the yield criterion is also represented. In the table,   ,    ,    ,     

and    , are respectively the uniaxial yield stresses at 0, 30, 45, 75 and 90° from the rolling 

direction, while   ,    ,    ,     and    , are respectively the Lankford’s coefficients at 0, 30, 45, 75 
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and 90° from the rolling direction. Also,    is the biaxial anisotropy coefficient. The Lankford’s 

coefficients     can be defined as [4]: 

   
      

    
                                                                          

where        is the plastic strain rate associated to the width (inclined at the angle     ° with 

respect to the rolling direction) and      is the plastic strain rate associated to the thickness. 

Nowadays, the most frequently used yield criteria are the Hill 1948, the Hill 1990 and the 

Barlat 1989 [4]. Considering this fact, the formulation of these three models is presented in detail 

in the following. 

 In the Hill 1948 criterion the material is supposed to show anisotropy over three 

orthogonal symmetry planes. The Hill 1948 yield criterion is expressed by the following quadratic 

function [4]: 

                  
            

            
       

       
       

         

       

where   is the yield function and  ,  ,  ,  ,   and   are constants specific to the anisotropy 

state of the material. For the case of sheet metals, the axis 1 is usually parallel to the rolling 

direction, 2 is parallel to the transverse direction and 3 is collinear with the normal direction [4]. 

The six anisotropy constants in equation 4.24 can be computed as functions of the Lankford’s 

coefficients, as: 

  
 

   
        

 

    
               

 

 

                

         
                      

For the specific case of sheet metal it is not possible to determine experimentally the anisotropic 

constants   and  . They can be considered equal to N, which corresponds to the situation where 

the yield stresses in shear are equal for the planes    ,     and    . Alternatively, they can be 

considered equal to 1.5, which corresponds to the isotropic situation [18]. 

 The Hill 1990 yield surface is formulated as follows [4]: 

                
     

               
      

  
   

     
     

      
  

       
        

     
             

           

       

In this equation    is the yield stress in equibiaxial tension,   is the yield stress in pure shear 

deformation         , and   and   are material constants. The value of the exponent   can 

be achieved by the function [4]: 
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Table 4.1 - Summary of the main yield criteria and its parameters [4]. 

Yield criterion                                             3D 

Hill´s family              
Hill 1948 x      x  x  x  x 
Hill 1979 x     x x      x 
Hill 1990 x  x  x x   x     
Hill 1993 x    x x x    x   

Lin, Ding 1996 x    x x x  x  x   
Hu 2005     x x x  x  x  x 

Leacock 2006     x x x  x  x   
Hershey´s family              

Hosford 1979 x      x    x  x 
Barlat 1989 x      x    x   
Barlat 1991 x  x  x x       x 

Karafillis Boyce 1993 x  x  x  x  x  x  x 
Barlat 1997 x  x  x x x  x  x  x 
BBC 2000 x  x  x x x  x  x  x 

Barlat 2000 x  x  x x x  x  x   
Bron, Besson 2003 x  x  x x x  x  x x x 

Barlat 2004 x  x  x x x  x  x x x 
BBC 2005 x  x  x x x  x  x x x 

Drucker´s family              
Cazacu-Barlat 2001 x x x x x x x x x x x  x 
Cazacu-Barlat 2003 x x x x x x x x x x x  x 

C-P-B 2006 x x x x x x x x x x x  x 
Polinomial criteria              

Comsa 2006 x  x  x x x  x  x x x 
Soare 2007(Poly 4) x x x  x x x  x  x x x 

 

The constants   and   can be determined as follows [4]: 

  
 

 
  

   

   
 

 

  
   

  
 

 

                                                          

and  

  
 

 
   

   

  
 

 

  
   

   
 

 

     
   

   
 

 

                                         

The ratio    
      can also be formulated as a function of    , in the form: 

 
  

 
 

 

                                                                    

The formulation of the Barlat 1989 yield criterion is given by [4]: 
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where    is the equivalent stress and the coefficients    and    can be calculated as [4]: 

   
        

 
            

        

 
 

 

      
  

   

                      

Here  ,  ,   and   are material parameters identified by [4]: 

      
  

  
   

 
 

     
  
   

 
 

   
  
   

 
 

    
  
   

 
      

  

   
     

  

   
 

 

      
 

   

                  

In the previous equation     and     are yield stresses for two different types of shear tests: 

        for           and       for             . 

 

4.6   Considerations in the choice of anisotropic yield criteria  

As it was previously referred, there are a large number of anisotropic yield criteria in use. In order 

to select a specific yield criterion, some important factors can be summarized currently [4]: 

 The yield criterion should predict accurately the yield locus, the uniaxial yield stress and 

the uniaxial coefficients of plastic anisotropy; 

 It should  be computational efficient and easy to implement; 

 The yield criterion should be flexible and general; 

 It is important the number of mechanical parameters needed for the identification 

process; 

 It should be easy to integrate in an identification process; 

 It should be user-friendly and well accepted by the scientific and the industrial 

communities.  
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Chapter 5 
 

 

User Subroutine RSURFU 
 

 

 

 
The Abaqus® user subroutine RSURFU is extensively described, 

and the formulation presented in chapter 2 is considered for the 

Bézier and NURBS’ curves implementation. The Bézier and NURBS 

RSURFU are validated for the cases of a linear and a spherical 

tool. 

 

 

 

 

5.1 Introduction 

The present chapter is proposed in order to allow the definition of complex rigid tools, such as the 

ones considered in the mechanical problem of chapter 12. The geometric definition of tools can 

be performed by means of analytical functions, parametric surfaces, point clouds or finite 

elements [1,2]. All these approaches shows advantages and disadvantages. In a comparative way, 

the main advantages and disadvantages can be described as [2-5]: 

 The analytical description simplifies the numeric calculus, however doesn´t allow for the 

description of tools with complex geometry; 

 The parametric definition allows for the description of exact complex tools, resulting in a 

smoother surface description, which can reduce contact noise; 

 The point data process allows a quick simulation, however can´t define some geometric 

details due to the intrinsic nature of this method; 

 The finite element discretization is the most common strategy in use, however the 

accuracy of the discretization depends on the number of finite elements and, being the 
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FEM an approximate method in terms of geometry, it is only theoretically exact for an 

infinite number of elements in the mesh. 

It is considered that, when one of the contact bodies is rigid, the use of analytical or 

parametric discretization improves the solution, since this kind of surfaces presents C1 continuity, 

avoiding finite variations of the surface normal [2, 5]. 

Based on this discussion and considering that only parametric surfaces allow complex 

discretization, in this work, the parametric tool approach will then be considered.  

 

5.2 RSURFU, an user subroutine to define rigid surfaces 

For some applications, the capabilities provided in Abaqus® [3] for defining a rigid surface are too 

restrictive, not allowing the formulation of complex curves/surfaces. In these cases, a user 

subroutine RSURFU can be implemented in order to define a more complex analytical rigid 

surface. This user subroutine is called for each point on the slave surface of a contact pair. The 

user subroutine should perform the following calculations for each deformable point A [3]: 

 A point A’ must be found on the rigid surface (see Figure 5.1), whose normal to the 

surface passes through A’. However, if there is not a unique point A’, the user subroutine 

must choose the most suitable point, that usually is the closest point to A; 

 The distance   must be calculated, by which A has penetrated into the surface below A’. 

If   has a negative value, it means that A is outside the surface of the rigid body; 

 When the surfaces are in contact, RSURFU must define the local surface geometry. 

 

Figure 5.1 - Local geometry on a rigid surface [3]. 

The local surface geometry mentioned in the last point is specified by two orthogonal 

tangents in the rigid surface at A’, and the rates of change of the normal at A’ with respect to local 

surface coordinates S1 and S2. These rates of change of the normal vector are required to define 

the local curvature of the surface. The two tangents to the surface at A’ must be defined so that 

their positive cross product is the outward normal to the surface [3]. The generic code for the 

RSURFU implementation is presented in Table 5.1.  

 



5. User Subroutine RSURFU                                                                                                                         63 

Table 5.1 - RSURFU code [3]. 

 

SUBROUTINE RSURFU(H,P,TGT,DNDS,X,TIME,U,CINAME,SLNAME, 

     1 MSNAME,NOEL,NODE,LCLOSE) 

  

     INCLUDE 'ABA_PARAM.INC' 

 

     CHARACTER*80 CINAME,SLNAME,MSNAME 

 

     DIMENSION P(3),TGT(3,2),DNDS(3,2),X(3,3),TIME(2),U(6,2) 

           

        user coding to define H, P, TGT, and DNDS 

      

     RETURN 

     END 

 

 

Regarding the correct implementation of the RSURFU user subroutine, it is necessary to 

define the variables  ,  ,     and     , which are output variables. Considering a sequential 

calculation, first it must be determined the position vector   of the point A’ on the surface of the 

rigid body, where A’ should be the closest point to point A on the surface of the deformable body. 

These calculations will direct or indirectly conduct to the other three variables, as it will be 

explained in the following.  

 

5.2.1 Position vector of point A´( ) 

The vector   is the position of the point A’ closest to point A. The determination of the position of 

point A’ is considered the most important and difficult task in the RSURFU implementation. The 

correct determination will influence all the curve determination as well as the convergence of 

Abaqus®. 

For the determination of the point A’, and its coordinates, it was considered that the 

desired point has a 90 degrees angle between their    tangent and the outward normal, as can be 

seen in Figure 5.2 [6]. 

 
Figure 5.2 - Localization of the first tangent and the normal to the surface [6]. 
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For this case the following relation is valid: 

                                                                               

Here, the inner product between the first tangent and the normal vector is  . In the case that 

more than one point is found, the algorithm calculates the distance between A´ and A and 

chooses the nearest point [6]. 

It is important to add the dislocation of the tool (  ) to the P(2)      value, to give motion 

to the rigid body as follows [6]: 

             

                                                                              

                             

   

where      ,       and       are the coordinates of the cubic Bézier/NURBS curve obtained by 

the equations 2.3 and 2.11, respectively. 

 

5.2.2 Direction cosine matrix (   ) 

    is the direction cosines matrix of the two unit tangents,    and   , to the surface at point A′. 

For the two-dimensional cases, only the first two components of    are needed to  be given since 

in this case Abaqus®/Standard assumes that    is equal to (0, 0, −1) and this is the case of the 

present work. After finding the point A´, it is possible to calculate the tangents to the surface at 

this point. To find the     values it is only needed normalize the tangent values and take this 

values as negative due to the intrinsic nature of this problem. This calculation is performed as 

follows [6]: 

          
      

       
        

 

                                                             

          
      

       
        

 

                                                             

where        and        are the   and   components of the first derivative of the cubic 

Bézier/NURBS curve, depending on the parametric definition considered.  

 

5.2.3 Matrix of rates of change of the surface normal (     ) 

     is the matrix with the rates of change of the surface normal,  , at A′, with respect to the 

distance measuring coordinates S1 and S2, along    and   . For the two-dimensional case only the 

first two entries in the first column of      are required [3]. To perform this calculation, the 

Frenet-Serret formulation was applied. The Frenet formulas are valid exclusively for unit-speed 
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curves. However, the speed   of the curve can be considered as the correlation factor to adapt 

the Frenet formulation for the formulation applied to regular not unit-speed curves, that is the 

present case [7,8]. 

In this case, if   is a regular curve in    with    , then [7]: 

                                                                                                                       

where   is the curvature function,   is the torsion function,   is the unit tangent,   is the principal 

normal and   is the Binormal.  

The RSURFU user subroutine requires the calculation of the  
  

  
 , which can be defined as 

follows:   

   
  

  
 

  

  
 
  

  
                                                                        

    

and    
  

  
, which leads to 

  

  
 

  

 
                                                                           

Considering   a regular curve in    with speed  , it is possible to compute the following variables 

[8]: 

   
  

  
  

  
  

    
  

  
      

        
                                                                        

  
        

     
  

  
             

         
    

          

 

 

In the present problem, however, there is no torsion of the curve, which simplifies to  
  

  
     . 

Further information on this topic can be found in references [7,8]. Thus, this calculation is 

performed as follows [6]: 
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5.2.4 Penetration value ( ) 

After defining the position of the point A´, it is easy to compute  , which corresponds to the 

penetration value of the point A into the surface of the rigid body, measured down the outward 

normal to the rigid surface. This value must be calculated in a way that   must have a negative 

value when A is outside the rigid surface, and can be computed as [6]: 

                                                                                       

with 

                                                                          

 

5.3 Validation of the RSURFU user subroutine for the Bézier curve 

implemented 

The RSURFU formulation here presented is used in chapter 12 to define two different 

parameterization of the considered tool, such as a cubic Bézier curve and a cubic NURBS curve. 

The formulation of these two curves was described in chapter 2. One important step before the 

use of these RSURFU user subroutines is their validation. In the present section this validation is 

performed in a compression test. For this test two situations are considered: one where a linear 

tool compress the specimen and another where a spherical tool compress the specimen. For each 

situation three approaches are considered. The first approach is called “linear/spherical tool with 

Bézier RSURFU”, in which the tool is formulated considering the RSURFU user subroutine and the 

Bézier/NURBS implementation. Other approach is called “linear/spherical tool with geometric 

RSURFU”, in which the tool is formulated considering geometric relations implemented in the 

RSURFU user subroutine. The last one is called “linear/spherical tool”, in which the tool is 

formulated without the RSURFU. The obtained results are compared for the three approaches [6]. 

 

5.3.1 Description of the compression test  

The present example consists in the compression of an axisymmetric cylindrical billet to 60% of its 

initial height This initial value is equal to 100 mm, and the example is schematically shown in 

Figure 5.3 [9,10]. 
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Figure 5.3 - Schematic representation of the compression test, before and after deformation [9]. 

In this example, the billet is defined as a deformable axysimetric body, while the tools were 

modeled as rigid bodies. The von Mises elasto-plastic material model was used for the 

constitutive formulation, considering a linear hardening model. The classical isotropic Coulomb 

friction law was used to model the contact conditions between the billet and the tool [10]. In 

order to reduce the computational time, only one-quarter of the cross section was considered, 

since the deformation is symmetric about the vertical and the horizontal axes. The FEM 

simulations were performed in the Abaqus® program [3], and the material properties used as 

input are presented in Table 5.2. 

Table 5.2 - Mechanical properties of the billet [10]. 

Mechanical properties  

Density [kg/m3] 2710 

Young´s module [MPa] 71000 

Plastic yield [MPa] 100 

Poisson´s ratio [-] 0.33 

Friction coefficient [-] 0.1 

 

The studied mesh was based on the work of Grešovnik [10] and the element used was a 

CAX4R, a 4-node bilinear axisymmetric quadrilateral element with reduced integration and 

hourglass control [3]. In Figure 5.4 it is possible to observe the mesh used in this work.  

  

Figure 5.4 - Mesh area considered in the validation test. 
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5.3.2 Linear tool validation 

The first validations are performed considering a linear tool and a spherical punch. For both cases 

the comparisons are carried out considering the results obtained for the node identified in Figure 

5.4. For both cases the initial position of the tool is 5 mm above the billet. In Table 5.3, the code 

for the implementation of the linear tool with geometric RSURFU is presented [6]. 

 

Table 5.3 - RSURFU core code for the linear tool [6]. 

C      

C     A(3) is the node position of the deformable body 

C      

           A(1) = x(1,1) 
      A(2) = x(2,1) 

      A(3) = x(3,1)     

C      

C     yr is the position of the reference point that is  

C     associated to the tool 

C        
      yr = x(2,2) 

             

      P(1)= A(1) 

      P(2)= yr 

      P(3)= A(3) 

 

      TGT(1,1)  =  -1. 

      TGT(2,1)  =  0. 

      TGT(3,2)  =  -1. 

 

      DNDS(1,1) =  0. 

      DNDS(2,1) =  0. 

 

      H = A(2)-P(2) 

 

 

In the Appendix the code that formulates the tool considering a Bézier and a NURBS curve 

is presented. The linear tool doesn´t use the RSURFU user subroutine in the tool implementation, 

needing only the *.inp file from Abaqus®. In this case the tool definition can be performed 

considering the LINE function from Abaqus®. Considering the von Mises equivalent stresses and 

the billet deformations, the obtained results are the same for the three different approaches, 

being presented in Figure 5.5. In Table 5.4, the main results, obtained for the three approaches, 

are shown. The step time number until establish contact is also presented. The          , the 

        , the           and the           are the values obtained during the calculation 

using the equations 5.3, 5.4, 5.9 and 5.10, respectively [6]. 

In Table 5.4 it is also shown the average of the distance between nodes after the forming 

for the three approaches. Considering the similarity that is shown in both von Mises stresses and 

the RSURFU internal variables, the Bézier RSURFU user subroutine was considered to be validated 

for the linear case.  
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Figure 5.5 - von Mises results for the three different approaches. 

 

 

Table 5.4 - Results for the linear tool validation. 

 
Linear tool with Bézier 

RSURFU 

Linear tool with 
geometric RSURFU 

Linear tool 

Step time number until the 
contact is establish 

60 60 - 

    (1,1) [m] -1.0 ± 0.0 -1.0 ± 0.0 - 

    (1,2) [m] 0.0 ± 0.0 0.0 ± 0.0 - 

     (1,1) [m-1] 0.0 ± 0.0 0.0 ± 0.0 - 

     (1,2) [m-1] 0.0 ± 0.0 0.0 ± 0.0 - 

Average of the final distance 

between nodes for the 

linear tool with Bézier 

RSURFU and the… [m] 

- 0.0 ± 0.0 0.0 ± 0.0 

Average of the final distance 
between nodes for the 

linear tool with geometric 
RSURFU and the… [m] 

- - 0.0 ± 0.0 

 

 

5.3.3 Spherical tool validation 

After the linear validation stage, it is still needed to validate the implemented RSURFU with a 

more complex problem. It is in this context that the following validation was performed. To 

validate the Bézier RSURFU, the three different approaches considered in the previous section 

were considered, however in this case a spherical tool was used instead of the previous linear 

tool. The geometry considered is schematically represented in Figure 5.6.  

The “spherical tool with geometric RSURFU” was performed considering the geometric 

RSURFU given in Abaqus® documentation, with the code being presented in Table 5.5 [3]. 
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Figure 5.6 - Schematic representation of the modeled (one-quarter) mesh area [6]. 

 

Table 5.5 - Spherical punch RSURFU code [3]. 

 

C     A  = RADIUS 'A' OF THE SPHERICAL HEAD 

C     Z0 = ORIGINAL 'Z' COORDINATE OF POINT 'Q' 

      A=0.04 

      Z0=0.09 

      ZQ=Z0 + U(2,2) 

C      

C     SPHERE 

C      

         B=SQRT(X(1,1)**2 + (X(2,1)-ZQ)**2) 

         H=A-B 

         COSB=X(1,1)/B 

         SINB=(ZQ-X(2,1))/B 

         P(1)=A*COSB 

         P(2)=ZQ-A*SINB 

         TGT(1,1)=-SINB 

         TGT(2,1)=-COSB 

         DNDS(1,1)=-SINB/A 

         DNDS(2,1)=-COSB/A 

 

 

Considering that it is impossible to draw an analytically exact circle with one Bézier curve, 

an approximation was therefore considered to simulate the spherical punch with the Bézier 

RSURFU [10]. To this end, an approximation of a unit quarter of circle (90 degree) by a cubic 

Bézier curve with an error of 1,96x10-4 in the radius [11] was considered. For the case of a quarter 

of circle (as the one in Figure 5.6) with radius   and centre in (0,0), it is possible to infer that the 

control points of the cubic Bézier curve are given by the expressions [12]: 
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where   is a constant1 and is equal to 0.5522847498. More details about this approximation can 

be found in [12]. 

The three approaches were implemented and simulated, and in Figure 5.7 the simulation 

results in terms of von Mises stresses for each one of them are presented. Considering the von 

Mises equivalent stresses for the three approaches, it can be seen that these are not the same, 

however they are extremely close. To understand what was going inside the RSURFU, the output 

variables were compared for the two approaches that need the RSURFU implementation. The 

point where this analysis was performed is indicated in the Figure 5.4, having an initial value of 

(0,0.05) [m]. Some of these values are systematized and compared in Table 5.6, as well as in the 

graphs from Figure 5.8 to Figure 5.10. 

 
 

                      a)                                                       b)                                                             c) 

Figure 5.7 - Results for a) spherical tool with Bézier RSURFU, b) spherical tool with geometric RSURFU and c) 
spherical tool. 

As it is possible to observe in Table 5.6, the two different approaches needed the same 

number of time steps to establish contact. Additionally, the first component of the first derivative 

is the same for both approaches. However, the second component for the spherical tool with 

geometric RSURFU approach is not exactly zero, although its value is very low (residual values). It 

is possible to observe that the first component of the normal derivative is not the same, however 

it is very close and remains constant in all simulation for both approaches. The same conclusions 

as the ones considered for the second component of the first tangent can also be applied to the 

         .  

 

 

                                                           
1
   in literature is very often called as “magic number”. 
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Table 5.6 - Results for the spherical tool validation. 

 
Spherical tool with 

Bézier RSURFU 

Spherical tool with 
geometric RSURFU 

Spherical tool 

Time steps number until 
the contact is establish 

44 44 - 

    (1,1) [m] -1.0 ± 0.00 -1.0 ± 0.00 - 

    (1,2) [m] 0.00 ± 0.00 3.39 x10-33 ± 1.24 x10-31 - 

     (1,1) [m-1] -24.46 ± 0.0 -25.00 ± 0.0 - 

     (1,2) [m-1] 0.00 ± 0.00 8.47 x10-32 ± 3.11 x10-30 - 

Mean of the final 

distance between nodes 

for the spherical tool 

with Bézier RSURFU and 

the… [m] 

- 4.39x10-4  2.19 x10-6  

Mean of the final 
distance between nodes 

for the spherical tool 
with geometric RSURFU 

and the… [m] 

- - 4.39 x10-4  

 

 

Figure 5.8 - Final shapes of the billet for the three approaches. 

The distance between the nodes in the billet surface coming from the three approaches were also 

calculated (Table 5.6). From the three approaches presented, the two that obtained more similar 

results, when the difference in the final shape is considered, are the “spherical tool with Bézier 
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RSURFU” and the “spherical tool approach”. Although these two approaches obtained more 

similar results the three approaches are really similar in a geometric point of view and this fact 

can be emphasized with the results presented in Figure 5.8. 

 

 
Figure 5.9 - Time evolution with the step time number. 

 
Figure 5.10 - Penetration value in function of the step time number. 

Considering the results presented in Table 5.6, it is possible to conclude that the two 

RSURFU approaches needed the same number of steps to establish contact. This fact can be also 
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observed in Figure 5.10, where the penetration value is zero in iteration 44.  However, as it is 

possible to observe in Figure 5.9,  the shape of the time evolution is only similar in the initial part 

(approximately until iteration 150) of the simulation for both approaches. For the case of the 

spherical tool formulated with a geometric RSURFU, the contact is lost at approximately iteration 

150. This lost of contact is according to the fact that after 150 iterations the time evolution starts 

to diverge. For both approaches the shape of the time evolution curve is similar but it seems to be 

out of phase. As it is possible to observe in Figure 5.9, after the contact is established the time 

evolution with the step time number is the same for both approaches. 

Based on the ideas stated before, it is possible to conclude that the approach considering 

the Bézier RSURFU had achieved better results in terms of convergence. Considering the 

similarities of both approaches the Bézier RSURFU implemented is considered validated. 

 

5.3.4 Results for the NURBS subroutine  

In this section a NURBS subroutine was implemented in the same way that the Bézier 

subroutine was implemented, varying only the equations of the cubic curve. The NURBS curve 

was validated considering that if a cubic NURBS with four control vertices have all the weights 

equal to one, the NURBS curve transforms itself into a Bézier curve with the same four control 

vertices. This fact was verified, leading these two RSURFU subroutines to the same results when 

this simplification is considered. Considering the stated before, the RSURFU user subroutine for 

the NURBS curve was considered validated.  
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Chapter 6 
 

 

Optimization Algorithms 

 
 

 
The optimization problem is described and presented. Several 

one-dimensional and multidimensional unconstrained methods 

are presented as well as multidimensional constrained problems.  

 

 

 

 

6.1  Introduction 

Optimization is one of the main topics of the present work. Concerning this, this chapter presents 

an introduction to the most used optimization methodologies. 

 Throughout the ages, optimization processes have made part of the man daily routine. In 

the past, even the choice for the better day to plant the crops could be considered as an 

optimization process. These processes were merely based in the common sense and in the 

experience obtained during the decades.  

 With the advance of the ages, empirical processes have been replaced by mathematical 

rules. The interest in optimization has taken a giant leap with the advent of the digital computer 

in the early fifties. Additionally, with the increasing of the computers efficiency, optimization 

techniques advanced rapidly in recent years, being now possible to solve complex optimization 

problems which were thought intractable only a few years ago [1]. 

  Optimization problems can be multidisciplinary, and occur in disciplines such as 

engineering, physics, mathematics, economics, administration, commerce, social sciences and 

even politics. Engineering optimization can be applied in a variety of fields, such as electrical, 

mechanical, civil and chemical. Considering the present work, a special focus on the optimization 

related to the mechanical engineering will be carried out [1]. 
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 The large majority of real-life optimization problems can present several solutions, being 

sometimes possible an infinite number of solutions. In these cases, the optimization problem 

consists in finding the best solution of the problem considering a specific performance criterion. 

In order to solve an optimization problem, several general approaches are available such as 

analytical methods, graphical methods, experimental methods and numerical methods [1].  

 Being the most important general approach, optimization based on numerical methods is 

the main theme of this chapter. In this kind of process, numerical procedures are used to 

generate a series of progressively improved solutions to the optimization problem and start with 

an initial estimate solution. This process will be finished when some convergence criterion is 

achieved. These numerical methods can be used to solve highly complex optimization problems of 

the type that cannot be solved analytically [1].  

 

6.2 Mathematical programming 

Mathematical programming is the discipline that encompasses the theory and practice of 

numerical optimization methods. It is possible to enumerate a few branches of mathematical 

programming, such as linear, integer, discrete, quadratic, nonlinear and dynamic programming. 

Each one of these branches consists on the optimization techniques that are suited to a specific 

class of optimization problems. The differences between the branches are related to the structure 

of the objective function and the nature of the constraints [1]. 

Linear programming (LP) defines a wide range of optimization problems in which the 

objective function to be minimized is linear in the unknown variables and the constraints are a 

combination of linear equalities and inequalities. This kind of problems occurs, for example, in 

many real-life economic situations where profits are to be maximized (or costs minimized) with 

constraints (limits) on resources. Linear programming is also used for solving nonlinear 

programming problems (NLP). In these problems, successive linearization of a nonlinear problem 

leads to a sequence of LP problems which can be efficiently solved. This technique, in particular, is 

called sequential linear programming (SLP) [2]. 

In certain optimization problems, at least some of the variables are required to assume only 

integer values. Some examples are the number of cars that can be purchased, the number of 

operators that can be assigned to jobs, etc.. This class of optimization problems is known as 

integer programming problems. In cases where some variables have to be integers and other ones 

can take fractional values, the problem is then known as mixed integer programming problem 

[1,2]. 

 Other class of mathematical programming is the discrete programming. In this sort of 

problems, the variables are to be chosen from a discrete set of variables. Several engineering 

problems fall into this category, such as the selection of shaft sizes, beam sections, engine 

capacities, etc. [2]. 

 The quadratic programming (QP) is a family of optimization methods used to minimize 

quadratic objective functions subject to linear constraints. The convex quadratic programming is 

an important class of QP, in which the objective function is a convex quadratic function. A 

generalization of convex QP is convex programming (CP) in which the objective function is convex, 

however not necessarily quadratic ,and the feasible region is convex [1]. 
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 One of the most general classes of mathematical programming is the nonlinear 

programming. In this case, the objective function and usually the constraint functions are 

nonlinear. Linear programming and quadratic programming can be considered as special cases of 

nonlinear programming. It is possible to solve linear or quadratic programming by using nonlinear 

programming algorithms. However, there are specialized algorithms for linear or quadratic 

programming that are much more efficient [1]. 

The dynamic programming is used for optimization processes where decisions must be 

made in sequence and subsequent decisions are influenced by the earlier ones. In these cases, a 

number of optimization processes have to be performed in sequence and a general strategy may 

be required to achieve an overall optimum solution. Dynamic programming is usually based on 

the use of linear, integer, quadratic or nonlinear optimization algorithms [1]. 

 

6.3 The optimization problem 

In general terms, optimization can be described by the minimization or maximization of a function 

subjected to constraints on its variables. For the optimization problem formulation a performance 

criterion   is needed, that depends on the   parameters   ,   ,...,   . This performance criterion 

can be stated as 

                                                                               

where   is a scalar quantity. Based in equation 6.1, the most basic optimization problem can be 

formulated as follows: 

minimize                                                                       

In optimization problems,   is usually referred to as the objective or cost function. A more 

compact formulation can be adopted as follows: 

minimize               for                                                         

where                and    represent the  -dimensional Euclidean space. 

In some problems, the goal is to find the maximum of a function instead of the minimum 

calculation. However, this is an easy task since the maximization of a function is equal to the 

minimization of its negative function  , followed by the change of the sign of the minimum. This 

can be mathematically expressed as: 

                                                                              

For the resolution of the minimization problem numerous optimization algorithms are available. 

In a general way, the optimization algorithms follow a typical pattern. In Table 6.1, a general 

structure for optimization algorithms is presented [1]. 
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Table 6.1 - General structure of an optimization algorithm [1]. 

Step 1              

Set     and initialize   . 

Compute         . 

Step 2 

Set        

Compute the changes in    given by column vector    , where 

         
                

by using an appropriate procedure. 

Set            . 

Compute          and             

Step 3 

Check if convergence has been achieved by using an appropriate criterion. If this is the case, 

continue to step 4, otherwise go to step 2. 

Step 4 

Output       and         . 

Stop 

 

Considering the knowledge about the optimization problem, normally the optimization 

procedure starts initializing the vector   , that is the initial guess.  Steps 2 and 3 are repeated 

until the convergence is achieved. Each execution of step 2 and 3 constitutes an iteration. In this 

specific case,   is the iterations’ number [1].     

 The step 4 is executed after the convergence, and in this case,    and     are outputs. The 

column vector       
    

     
   is said to be the optimum (minimum) solution point or simply 

the minimizer. Also,    is said to be the optimum or minimum value of the objective function. 

Considering this, the pair    and     is the solution of the optimization problem [1]. 

The convergence achievement depends on the optimization problem and the optimization 

technique used. One example of a convergence criterion is when the reduction of the objective 

function value between any two iterations has become insignificant. This can be expressed by the 

following expression: 

                                                                                   

where    is the optimization tolerance for the objective function. Another usual convergence 

criterion is to stop the optimization algorithm when the changes in all variables have become 

insignificant. This can be written by the following expression: 

               for                                                                     

where    is an optimization tolerance for variables             A more complex criterion can be 

adopted, as the combination of the previous ones, and in this case the convergence is considered 

only when the last two criterions are satisfied simultaneously [1]. 

 Some optimization problems are conditioned by physical relations and may entail a set of 

equality constraints and a set of inequality constraints. In this specific case, the problem is said to 
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be a constrained optimization problem. Mathematically, a constrained problem can be 

formulated as: 

Minimize                           for      

                                                        subject to:                   for                                          

                                          for           

If a problem does not entail any equality or inequality constraints it is then said to be an 

unconstrained optimization problem. As expected, constrained optimization problems are more 

difficult to solve than unconstrained optimization problems. Constrained problems can be 

reformulated as unconstrained ones, making them easier to be solved. This process can be 

performed redefining the objective function such that the constraints are simultaneously satisfied 

when the objective function is minimized. 

Each point   that respects all the equality constraints as well as the inequality constraints is 

known as a feasible point of the optimization problem. The set of feasible points is the feasible 

domain region of       [1]. 

 

6.4 Gradient information 

Several optimization methods are gradient-based methods. In these methods, the evolution for a 

new optimum solution needs the gradient information pertaining to the objective function.  Some 

optimization methods need both the first and the second derivatives of the objective function. 

Considering        , that means that       has continuous first-order partial derivatives, 

the gradient vector of      can be defined as: 

            
  

   
 
  

   
   

  

   
  
 

                                                   

Considering        , that means that       has continuous second-order partial derivatives, 

the Hessian matrix of      can be written as: 

            

 
 
 
 
 
 
 
 
   

   
 

   

      
 

   

      
   

      

   

   
  

   

      
 

   

      

 
   

      

 
 

 
   

   
  

 
 
 
 
 
 
 

                                        

For the case when        , it is possible to deduce that 
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and in this case      is given by a     square symmetric matrix. 

The gradient methods may only use the gradient information or both gradient and Hessian 

information. However, in certain applications it may be expensive, time consuming or impossible 

to compute these tensors. In these cases, optimization methods that do not require the gradient 

information are preferred [1]. 

 

6.5 Function extrema 

The maxima and minima of a function are its extrema. The points at which a function has minima 

or maxima are known as minimizers or maximizers, respectively. It is possible to distinguish the 

weak local minimum, the strong local minimum and the global minimum [1,2]. 

 A point    is a weak local minimum of      if there exists a distance    , such that: 

                                                                                

for all         . 

A point    is a strong local minimum of      if there exists a distance    , such that  

                                                                                

for all         . 

Finally, a point    is a global minimum of      if, for all    , 

                                                                               

In Figure 6.1 it is possible to graphically illustrate these definitions.  

 

Figure 6.1 - Function extrema. 

The main goal of an optimization problem is to find the global minimum (or maximum) of 

the cost function. Considering that a function can have several local minima, and that the 

optimization algorithms are iterative procedures, it is possible to understand that the final 

achieved solution by a gradient-based method is dependent of the considered initial point. In fact, 
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the global minimum can be missed and a suboptimal solution can be found, and this solution can 

be or not acceptable. This problem can be solved performing the optimization method several 

times, with different initial estimates, and choosing in the end the best minimizer. Although this 

solution can be acceptable from a practical point of view, it is not possible to guarantee that the 

global minimum was achieved. Only for a specific class of problems (where the function satisfy 

certain convexity properties) any local minimum is also a global minimum and the optimal 

solution can be assured [1].  

 

6.6 Optimization algorithms 

In this chapter, a focus on nonlinear optimization problems is made due to the nonlinear 

character of the most of the engineering problems to be treated. The nonlinear optimization 

problems can be divided in three main classes, which are one-dimensional unconstrained 

problems, multidimensional unconstrained problems and multidimensional constrained 

problems. 

 The one-dimensional unconstrained problems are the easiest to solve and the 

multidimensional constrained are the most difficult ones. In fact, multidimensional constrained 

problems can be reduced to multidimensional unconstrained problems [1].   

6.6.1 One-dimensional unconstrained optimization 

For the one-dimensional optimization methods, two general classes can be considered: the search 

methods and the approximation methods. The search methods start from a bracket         that 

contains the minimum   , and then is repeatedly reduced until the new bracket             be 

sufficiently small. The minimizer is assumed to be at the centre of this new interval.  

The approximation methods consist in the approximation of the function to be minimized 

by a low-order polynomial, which will be then minimized considering elementary calculus. The 

interval         is reduced and this processes is repeated until a precise value of    is reached. 

This approach needs a continuous and differentiable optimization function, while the search 

methods do not pose this requirement [1].    

There are several one-dimensional unconstrained optimization algorithms, such as, 

dichotomous search, Fibonacci search, golden-section search, quadratic interpolation method, 

cubic interpolation method, Davis, Swann and Campey method, secant method, Newton-Raphson 

method, bisection method [1,3]. 

In the present session the bisection method, the secant method and the Newton-Raphson 

method are described more in detail, since these methods are the most used in mathematical 

programming.  

 

6.6.1.1 Bisection method 

The bisection method can be applied to the optimization of a unimodal function in the search 

interval, i.e., a function that has only one maximum or one minimum. In this case, the method can 
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be efficiently applied if both the function value and the derivative of the function are available. In 

this method a first interval        (where         and        ) is considered. Its midpoint 

can be calculated as: 

  
   

 
                                                                           

The derivative at point   should be calculated. If        , then the interval       is eliminated 

from the search. On the other hand, if         then it is the interval       that is eliminated.  

After the choice of the new interval the middle point is recalculated, and this iterative process is 

performed until the convergence is reached. The process is purely based on the sign of the 

derivative, not using its magnitude. On the other hand, the secant method is a method that uses 

both the sign and the magnitude of the derivative [4]. 

 

6.6.1.2 Secant method 

The secant method can be applied also for a unimodal function. Considering the interval       , 

such that their derivatives are opposite in sign, the secant algorithm approximates the derivative 

       with a straight line between these two points. This line is known as a “secant line”. After 

this approximation, the algorithm determines the next point where the secant line is zero, that 

implies that the         . Therefore, the next approximation of the point    is given by: 

    
     

                   
                                                  

If          , the algorithm had reached the optimum value   . Otherwise, the interval between 

  and one of the points   and   (selected in order that their derivatives are opposite in sign) is 

considered. The next value should be calculated again considering the equation 6.15 and this 

iterative process should be performed until the convergence is reached [4].    

 

6.6.1.3 Newton-Raphson method 

The Newton-Raphson method can only be applied to determine minimums of functions twice 

differentiable. The iterative process start with a point   , that is the initial estimate for the root of 

the equation        . Then, a linear approximation at point    is computed and the point 

where the linear approximation vanishes is taken as the next approximation. Mathematically, 

given the point    as the initial estimate, the linear approximation of the function       at    is 

defined as [4]: 

                                                                            

The objective is to find the point where this approximation vanishes. Therefore, it is possible to 

calculate the next approximation point as [4]: 
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6.6.2 Multidimensional unconstrained optimization 

The methods for solving multidimensional unconstrained problems can be classified in two broad 

categories. These categories are based on the type of information that the algorithm needs to find 

the minimum. The categories are the (i) direct-search methods and the (ii) gradient-based 

algorithms.  

The direct-search methods only need the objective function value to find the minimum. The 

gradient-based methods need also the objective function and the second-order methods needs 

both the first and the second derivatives of     . Several algorithms belonging to these categories 

are presented, since single method (or class of methods) can solve all problems with equal 

efficiency. Usually, it will be the engineer to choose the best method for each specific 

optimization problem. This choice should be performed based in the available computer storage, 

the time needed for each evaluation, the accuracy needed in the final result, the possibility to 

obtain the derivatives of the objective function, among other factors [4]. 

In the followings sections it is considered that      has a single minimum in the domain 

considered. For the cases where      is a multimodal function the minimum found can be a local 

or the global minimum. 

6.6.2.1 Direct-search methods 

The direct-search methods can be applied to problems where the gradient does not exist or, 

alternatively, is very complex. The direct-search methods can be classified into metaheuristic 

techniques and theoretically based techniques. The metaheuristic techniques are random search 

methods normally based in natural processes that only guarantee empirical results. The 

theoretically based techniques have a mathematical foundation guaranteeing convergence under 

restricted conditions [4]. 

As examples of metaheuristic methods, it is possible to consider the genetic algorithm [5], 

simulated annealing [6], particle swarm optimization [7], ant colony optimization [8], artificial 

neural networks [3] and evolutionary [9] algorithms. The most important theoretically based 

method is the Powell’s conjugate direction method, among others [4,10]. Considering the scope 

of the present work, more attention will be given to the metaheuristic methods. The 

metaheuristic methods generate new points in the search space by applying operators to current 

points and statistically moving toward more optimal places in the search space. This search is 

considered an intelligent search of large (but finite) solution space using statistical methods. 

These algorithms doesn´t need the objective function derivatives and therefore, can deal with 

discrete variables and noncontinuous cost functions, being based in natural processes that are 

remarkably successful in optimizing natural phenomena. Considering the main objective of the 

present work, the Evolutionary Algorithms are described in detail and a brief introduction to a 
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nature-inspired optimization algorithm is performed. More information can be found, for 

instance, in reference [10]. 

The simulated annealing method, as the name suggests, simulate the annealing process in 

which a substance is heated above its melting temperature and then is gradually cooled to 

produce the crystalline lattice, which minimizes its energy probability distribution. This crystalline 

lattice is composed of millions of atoms that are perfectly aligned, being one example of the 

nature finding an optimal structure. However, if the rate of change of the temperature is not 

controlled, the quickly cooling or quenching the liquid retards the crystal formation and leads to 

an amorphous mass with a higher energy state than the optimum state. The simulated annealing 

method is analogue to this process and begins with a random guess for the cost function. Heating 

corresponds to randomly modify the variables values, as the heat increases the random 

fluctuations increases as well. After modifying the variables values, the cost function returns the 

output. If the output decreases, then the new set of variables replaces the old one and If the 

output increases, then the output is accepted provided that [10]:      

                                                                                         

where    is an uniform random number and   is a variable analogous to temperature. Otherwise, 

the new set of variables is rejected. Therefore, even if a variable set leads to a worse cost, it can 

be accepted with a certain probability. The new set of variables is achieved by taking a random 

step from the old variable, such as [10]: 

                                                                                       

The variable   can be either uniformly or normally distributed about     . This is the control 

variable that sets the step size and forces the algorithm to make larges changes in the variables 

values at the beginning of the process. Sometimes it will force the algorithm to go away from the 

optimum, allowing to explore new regions of variable space. After some iterations the new set of 

variables doesn´t lead to lower values of the cost function. At this time, the values   and 

  decrease by a certain percentage and the algorithm repeats. The algorithm will stop when 

   . This decrease in   is called the cooling schedule, being possible different cooling 

schedules. Considering that the initial temperatures is    and the ending temperature is   , then 

the temperature at step   is given by [10]: 

                                                                                      

in which   decreases with time. Some potential cooling schedules can be considered such as: 

 Linear decreasing :                   

 Geometrically decreasing:               

Other variations are possible and the temperature is usually lowered slowly so that the 

algorithm is able to find the correct valley before trying to get to the lowest point in the valley. 

The Evolutionary Algorithms have many different variants, although the common idea 

behind all these techniques is the same. The idea is that for a given population of individuals the 
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environment pressure causes natural selection, surviving the fittest and this will cause a rise in the 

fitness of the population. Considering a quality function that should be maximized, a randomly set 

of candidates solutions can be considered in the calculation of the quality function and it is then 

assumed that the higher solution is the better solution. It will be based on this fitness that some 

of the better candidates are chosen to seed the next generation, by applying recombination 

and/or mutation to them. Recombination is an operator where two or more selected candidates 

(called parents) are combined resulting one or more new candidates (the children). Mutation is 

applied to one candidate resulting in a new candidate. The recombination and mutation lead to a 

set of new candidates (the “offspring”) that will compete with the old ones for a place in the next 

generation. This process can be iterated until a good candidate is found or a previously 

computational limit is reached, and a schematic representation of it is presented in Figure 6.2 

[11]. 

 

Figure 6.2 - The general scheme of an Evolutionary Algorithm [11]. 

The combination of the variation operators (recombination and mutation) generally leads 

to the improvement of the fitness values in consecutive populations. 

As Figure 6.2 suggests, the most important components in an Evolutionary/Genetic 

Algorithm are the representation (definition of individuals), the evaluation function (or fitness 

function), the population, the parent selection mechanism, the variation operators 

(recombination and mutation) and the survivor selection mechanism [11]. 

 The representation is the first step in Evolutionary/Genetic Algorithms. In this case it is 

intended to link the “real world” with the “EA/GA world”. To perform this task, objects forming 

possible solutions within the original problem are known as phenotypes and their encoding, the 

individuals within EA/GA, are known genotypes. In the representation step, the phenotypes are 

mapped onto the genotypes that represent these phenotypes and this process is known as 

encoding. The inverse mapping is usually called decoding [11]. 

The evaluation function is commonly called the fitness function and is technically a function 

or procedure that assigns a quality measure to genotypes. 

The population is a set of genotypes and its role is to hold possible solutions. The 

individuals are static objects that not change or adapt, however the population does. The parent 

selection is related to the population, distinguishing among the individuals, based on their quality, 

the better individuals to become parents of the next generation. An individual, if selected, 

become a parent. Together with the survivor selection the parent selection, is responsible to 

improve the quality [11].  
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The variation operators are the mutation and the recombination operators. Their role is to 

create new individuals from old ones. The mutation operator is applied to one genotype and 

delivers a modified mutant, known as the child or offspring. This operator is always stochastic. 

The recombination or crossover merges information from two parent genotypes into one or two 

offspring genotypes. This operator is also a stochastic operator. The principle behind 

recombination is that by mating two individual with different but desirable features it is possible 

to produce an offspring which combines both of those features [11].  

The survivor selection can be called also as environmental selection and distinguish among 

individuals based on their quality, being similar to parent selection. However, it is performed in a 

different stage of the evolutionary cycle. It consists in deciding which individuals will be allowed in 

the next generation. This decision is made considering their fitness, however sometimes the 

concept of age is also used. In this case, this process is often deterministic [11].  

The initialization is a simple step, being the first population a seed by randomly generated 

individuals. The termination condition occurs if the optimal fitness level is achieved. However, 

EA’s are stochastic and there are no guarantees to reach the minimum. For these cases, 

computational constraints can be considered such as the allowed CPU time, the total number of 

generations and, for a given period of time, the fitness improvement remains under a threshold 

value [11].        

 

6.6.2.2 Gradient-based methods  

The direct methods referred in the previous section are important because very often, in practical 

engineering problems, the objective function values are the only reliable information. However, 

the direct methods require an excessive number of function evaluations to find the minimum. It is 

based on the idea that the direct methods are very time consuming that the gradient-based 

methods are considered as good bets. As the name suggests, the gradient methods are based on 

gradient information. The gradient methods range from simple to highly sophisticated methods 

[1]. Examples of gradient-based methods are the steepest descent method, the Newton´s 

methods, the conjugate direction methods and the quasi-Newton methods. In this section some 

of these methods are briefly introduced. 

Considering      a real-valued differentiable function, it can be proved that the gradient 

acts in such a direction that for a given small displacement, the function       increases more in 

the direction of the gradient than in any other direction. Therefore, the direction in which the 

      points is the direction of maximum rate of increase of   at  . As a consequence, the 

direction in which        points is the direction of maximum rate of decrease of   at  . Based on 

these facts, the direction of negative gradient is a good direction to search for the minimum [3]. 

The above idea can be expressed by a simple algorithm, which starts at a given point   . 

The next point      is found moving    an amount        
  , where    is a positive scalar 

called the step size. The relation to compute       is as follows: 
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This relation is known as a gradient descent algorithm (or simply a gradient algorithm). During the 

search the gradient varies, tending to zero as it approaches the minimizer. Many different 

methods use the explained philosophy, however the most popular is the steepest descent 

method [3]. 

The steepest descent method is a gradient method in which the step size    is chosen to 

achieve the maximum amount of decrease of the objective function at each individual step. The 

step size should be always positive and can be achieved by: 

         
 

                                                                

In a summarized way, the steepest descent algorithm starts at    and at each step a line search in 

the         direction is conducted. This line search tries to find the step size that respects 

equation 6.22, and after this search the new      is calculated. This process is repeated until the 

minimum is found. Due to its intrinsic nature, the steepest descent method moves in orthogonal 

steps [3].  

The steepest descent method uses only the first derivatives in the search direction. This 

method can be improved if second order derivatives are used. This is the case of the Newton´s 

method, which uses both first and second derivatives and improves the obtained results by the 

steepest descendent method if the initial point is close to the minimizer. This method starts with 

an initial guess, where a quadratic approximation of the objective function is constructed. This 

quadratic function should have the same first and second derivatives as the original objective 

function. Then the approximation function will be minimized, instead the original objective 

function. After this minimization, the minimum found for the approximation function will be 

considered as the initial guest for the next iteration. It is easy to understand that if the objective 

function is a quadratic function, the algorithm only needs one iteration to find the minimum. The 

quadratic approximation in the point    can be defined considering the Taylor series expansion of 

     as follows: 

                 
 
   

 

 
      

 
                                   

The function      have to be twice continuously differentiable and        have to be positive 

definite. Considering that the minimum is achieved (when         ), this leads to: 

                                                                         

With this information it is possible to deduce that      reaches the minimum at: 

                                                                           

This equation represents the Newton´s method and               is the search direction [3]. 

The Levenberg-Marquardt is a modification of the Newton´s algorithm. This algorithm is 

based on the idea that if the Hessian matrix      is not positive definite, then the search 

direction    may not point in a descent direction. To avoid this problem, a simple technique to 
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ensure that the search direction is a descent direction is introduced. This technique is the so-

called Levenberg-Marquardt modification of the Newton´s algorithm. This modification can be 

shown by the following equation [3]: 

                   
                                                       

in which     . 

The idea behind the Levenber-Marquardt modification is as follows. First, consider the 

symmetric matrix  , that may not be positive definite, where          are its eigenvalues and 

        its eigenvectors. The eigenvalues are real but not necessary all positive. Next, the matrix 

       (with    ) is considered. Considering this, it is possible to deduce that: 

                   

                                                                                  

          

           

The previous deduction proves that, for all        ,    is an eigenvector of    with eigenvalue 

    . Thus, if   is sufficiently large, then all the eigenvalues of   are positive and   is positive 

definite. Considering this, if the parameter    in the Levenberg-Marquardt modification of 

Newton´s algorithm is large enough, then the search direction                
     always 

points in a descent direction. This fact results from a theorem that says that: let      be the 

sequence generated by Newton´s method for minimizing a given objective function      if 

         and      then the direction  

               
                                                       

from    to      is a descent direction for  , existing an      such that for all         . In this 

case 

                                                                           

According to this, it is also possible to introduce a step size    in the Levenberg-Marquardt 

modification of Newton´s algorithm as follows:  

              
       

                                                 

and the descent property still holds. The Levenberg-Marquardt modification reduces to the pure 

Newton´s method if     . If     , the algorithm approaches a pure gradient method with 

small step size [3]. 

Other subgroup of the gradient-based algorithms are the conjugate direction methods. For 

the previously described multidimensional optimization methods, the direction of search in each 

iteration depends on the local properties of the objective function, such as the gradient and the 
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Hessian matrix [1]. As a consequence, methods in which exists a relation between successive 

search directions are needed. These methods are known as conjugate-direction methods. The 

conjugate direction methods can be viewed as an intermediate case between the method of 

steepest descent method and Newton´s method. The conjugate direction methods normally have 

better performances than the method of steepest descent method, however not as well as the 

Newton´s method [3]. As for the Newton´s method, the conjugate direction methods are 

developed for the quadratic optimization problem and then are extended to the general 

optimization problem [1].  

The most important methods of this class are the conjugate-gradient method, the 

conjugate-direction method, the Fletcher-Reeves method, the Powell´s method, the Partan 

method, the Hestenes-Stiefel method and the Polak-Ribière method. In the present section, the 

conjugate direction method, the conjugate gradient method and the Fletcher-Reeves, the 

Hestenes-Stiefel and the Polak-Ribière modifications are presented. 

 When the conjugate direction method is applied to a quadratic function of   variables it 

reaches the solution after   steps. The quadratic function considered in the conjugate direction 

method is given by [3]: 

     
 

 
                                                                 

The conjugate directions are computed based on the following definition. Let   be a real 

symmetric     matrix, the directions               are  -conjugate if for all    , 

         [1]. The conjugate direction algorithm for the equation 6.31 says that, given a 

starting point    and  -conjugate directions                 for     , the next point can be 

computed as [1]: 

                                                                        

    
     

      
                                                                

           
                                                               

Other conjugate direction method is the conjugate gradient method. This method does not use 

specified conjugate directions, but instead computes the directions as the algorithm progresses. 

In this method, at each algorithm iteration the direction is calculated as a linear combination of 

the previous direction and the current gradient, in such a way that all the directions are mutually 

 -conjugated. Also, in this method and for a quadratic function of   variables, the minimizer can 

be achieved performing   searches along mutually conjugate directions [1].  

The conjugate gradient algorithm starts in the initial point    and finds the next point 

considering the steepest descent direction, i.e.: 

                                                                               

and  
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in which 

     
     

      
                                                                     

In the following     steps, the direction      is computed as a linear combination of      and 

  . This is represented by: 

              
                                                                

The coefficients    are defined by: 

   
        

      
                                                                 

In the conjugate gradient method the computations are relatively simple, being only more 

complicated when compared with the steepest descent method. In this method, no line searches 

are required. Problems associated with the inversion of the Hessian matrix are absent in this 

method. Additionally, for non-quadratic problems the convergence may not be achieved in rare 

occasions [1]. 

As it was described, the conjugate gradient method is a conjugate direction method. This 

algorithm can be extended to nonlinear function if  equation 6.31 is interpreted as a second-order 

Taylor series approximation of the objective function. These functions behave approximately as 

quadratics when are near the solution. In quadratics functions, such as equation 6.32, the   

matrix is the Hessian matrix and is constant. However, in the case of nonlinear functions the 

Hessian is a matrix that should be re-evaluated at each iteration of the algorithm and this process 

can be computationally expensive. Based on this idea the following methods appear, trying to 

avoiding the Hessian evaluation at each iteration. Considering the conjugate gradient method, it 

was observed that the Hessian   only appeared in the    and    calculations and the    

calculation can be easily replaced by a line search procedure. Therefore, the following methods 

only concerns with the modification of the    formula (equation 6.39) and are modifications of 

the conjugate gradient method. This modifications are algebraically manipulations of the    

formula that allows to eliminate  . Three different modifications are presented. The first one is 

the Hestenes-Stiefel formula, given by [3]: 

   
              

            
                                                         

The other modification corresponds to the Polak-Ribière formula and is given by [1]: 

   
              

     
                                                          

The last modification is the well known Fletcher-Reeves formula, and is as follows [1]: 
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In the quadratic case, these three formulas are all equal. However, this doesn´t happen in the 

general nonlinear case.  

 The quasi-Newton methods are another class of methods that do not require explicit 

expressions for the second derivatives. As the name suggests, the foundation of these methods is 

the classical Newton method. In the quasi-Newton methods, the direction of search is based on a 

    direction matrix   which serves the same purpose as the inverse Hessian in the Newton 

method. This matrix is an approximation of the Hessian inverse matrix (   ) and is computed 

from the available data. As the number of iterations increases, the   matrix becomes 

progressively more identical to the     matrix. For the case of convex quadratic objective 

functions, the   matrix is equal to the     matrix in     iterations. The quasi-Newton methods 

ranks among the most efficient methods available and are extensively used in numerous 

applications [3]. 

In the last years, several distinct quasi-Newton methods have evolved, such as, the rank-

one method, the Davidon-Fletcher-Powell method (known as DFP method), the Broyden-Fletcher-

Goldfarb-Shanno method (known as BFGS method) and the Fletcher method. The DFP and BFGS 

methods are explained in the following [3]. 

The DFP method was originally developed by Davidon in 1959, and was subsequently 

modified by Fletcher and Powell in 1963, as the name suggests. The approximation matrix   for 

the DFP method is as follows [1]: 

    
       

         

         
 
               

           
                                              

with 

       
                                                                    

and 

                                                                           

The BFGS method was independently suggested in 1970 by Broyden, Fletcher, Goldfarb and 

Shanno. The approximation matrix   for the BFGS method is given as [1]: 

 

     
          

           

         
 
         

         
 
                         

 

         
             

 

6.6.3 Multidimensional constrained problems 

The optimization algorithms so far presented are only valid for the solution of 

unconstrained optimization problems.  
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A constrained problem presents a number of technical issues that are not encountered in 

unconstrained problems. As an example, it is possible to consider the unconstrained optimization 

problem where the search is performed in the direction of the negative gradient. However, this 

problem cannot be extrapolated to constrained problems because the points along such search 

direction may not satisfy the constraints and, in this case, the search will not conduct to the real 

solution of the problem. As a consequence, new methods to solve constrained optimization 

problems have to be considered [3]. 

Most of the constrained optimization methods are based on the unconstrained 

optimization methods. In the case that the constraints are simply given in terms of lower and/or 

upper limits on the parameters, the problem can be converted into an unconstrained problem. 

Other methods transform the constrained problems into a sequence of unconstrained 

minimization problems. In the present section the optimization problem from equation 6.2 is 

considered [3]. 

Different constrained optimization algorithms exists, such as, the gradient-based method 

Rosen´s gradient projection method for linear constraints, the Zoutendijk´s method of feasible 

directions, the generalized reduced gradient method, the sequential quadratic programming 

method, penalty methods, projection methods, among others [2]. In the present section, a 

projection method is presented as well as the penalty methods.  

For a better understanding of the presented constrained methods, it is needed to introduce 

the feasible point concept. A feasible point is a point that satisfies all inequalities and equalities 

constraints [2]. The projection method is based on the considered methods, where  

             
                                                                      

and     is normally a function of       . This algorithm cannot be directly applied to solve an 

constrained optimization problem. Consider the following optimization problem 

minimize                                                                                    

                                                               subjected to:          

The algorithm from equation 6.47 can lead to a point    that doesn´t satisfy the constraints, that 

is, is not a feasible point. Based on this fact, the projection method is formulated. In the 

projection algorithm, if        
  is in  , then              

 . On the other hand, if 

       
  is not in  , then a projection to   is performed before the       calculation [1]. 

The point      is known as the projection of   onto  . In fact,      is the closest point in   

to  . Considering the projection operator  , the previous unconstrained algorithm can be 

modified to: 

               
                                                               

Now, all the       lies inside  . Generically the projection onto   can be defined as: 
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For the penalty methods, the optimization problem considered in equations 6.7 is taken into 

account. The feasible region   is defined as              . The constrained problem 

considered can be converted in the unconstrained optimization of a new composite function: 

                                                                           

where     is called the penalty parameter, and this value controls the degree of penalty for 

violating the constraints.      is the penalty function, and is defined as: 

             
 

 

   

                
 

 

   

                                       

For the cases that   is inside of the feasible region, the penalty function assumes as null. 

Afterwards, the initial problem is now the unconstrained minimization of     . If the constrains 

are violated, a big term will be added to      function, such that the solution is pushed back 

towards to the feasible region. Since the convergence is from the outside of the feasible region, 

these methods are called “exterior penalty methods” [2,12]. 

 There are other methods that approach the optimum from the interior of the feasible 

region, being known as interior point or barrier methods. For these methods, only inequality 

constraints are allowed, being the feasible region defined as           . In these methods, 

the new unconstrained function is defined as: 

            
 

 
                                                              

In this case,      is the interior penalty function or barrier function. This function has to be 

continuous, and also        and        as   approaches the boundary of   . The most used 

interior penalty functions are the inverse barrier function, defined as [2]: 

       
 

     

 

   

                                                                

and the log barrier function, defined as: 

                  

 

   

                                                        

 

6.7 Algorithms used in the present work 

6.7.1 Evolutionary Algorithm (EA) 

In the present work, an evolutionary algorithm was used in the optimization process, being 

schematically presented in Table 6.2. It is possible to see that all the processes considered in 
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section 6.6.2.1 are presented. Further information about the implementation of this algorithm 

can be found in [12,14] 

Table 6.2 - Evolutionary Algorithm. 

Initialize the population with random candidate solutions 

Evaluate the objective function at each candidate 

REPEAT  

Select parents 

Recombine pairs of parents 

Mutate the resulting offspring 

Evaluate new candidates 

Select individuals for the next generation 

UNTIL convergence is reached or the maximum number of iteration is achieved 

End 

 

6.7.2 Levenberg-Marquardt (LM) algorithm 

The gradient-based optimization methods are known by its computational efficiency and 

assurance of the convergence to a local minimum [13,14]. In the present work, the gradient-based 

algorithm used combines two classical minimization techniques: i) the steepest descent method, 

used to enhance the starting set of parameters, and ii) the Levenberg-Marquardt method [15], 

used to accelerate the convergence towards the ending stages of the optimization process [14]. In 

Table 6.3 it is presented the gradient-based algorithm adopted in the present work. 

Table 6.3 - Levenberg-Marquardt algorithm. 

Chose the starting set (initial guess) and other initial process parameters 

Evaluate the objective function at the initial guess 

Chose the Levenberg-Marquardt parameter    

Convergence by Levenberg-Marquardt method: 

REPEAT  

Calculate the gradient      

Solve the equations system                    
       

Update              

Check for convergence 

Update    

UNTIL convergence is reached or the maximum number of iteration is achieved 

End 

 

 



6. Optimization Algorithms                                                                                                                       97 

 
 

References 

[1] Antoniou A, Lu W (2007) Practical Optimization – Algorithms and Engineering Applications. 

Springer-Verlag.  

[2] Belegundu A, Chandrupatla T (1999) Optimization Concepts and Applications in Engineering. 

Prentice-Hall. 

[3]. Chong E, Zak S (2001) An Introduction to Optimization. John Wiley and Sons. 

[4] Ravindran A, Ragsdell K, Reklaitis G (2006) Engineering optimization – Methods and 

applications. John Wiley and Sons. 

[5] Holland J (1975) Adaptation in natural and artificial systems. Ann Arbor: University of Michigan 

Press. 

[6] Kirkpatrick S, Gelatt C, Vecchi M (1983) Optimization by simulated annealing. Science 220:671-

680. 

[7] Parsopoulos K, Vrahatis M (2002) Recent approaches to global optimization problems through 

particle swarm optimization. Kluwer Academic, 1:235-306. 

[8] Dorigo M, Maria G (1997) Ant colony system: a cooperative learning approach to the traveling 

salesman problem. IEEE Trans. Evol. Comput. 1:53-66. 

[9] Schwefel H (1995) Evolution and optimum seeking. John Wiley and Sons. 

[10] Haupt R, Haupt S (2004) Practical genetic algorithms. John Wiley and Sons. 

[11] Eiben A, Smith J (2007) Introduction to evolutionary computing. Springer-Verlag. 

[12] de-Carvalho R, Valente R, Andrade-Campos A (2011) Optimization strategies for non-linear 

material parameters identification in metal forming problems. Computer & Structures 89:246-

255. 

 [13] Pilvin P (1990) Approches multichelles pour la prévision du comportement anélastique des 

métaux. PhD thesis. Université Paris (in French).  

[14] Andrade-Campos A, Thuillier S, Pilvin P, Teixeira-Dias F (2007) On the determination of 

material parameters for internal variable thermoelastic-viscoplastic constitutive models. 

International Journal of Plasticity 23:1349-1379. 

[15] Marquardt D (1962) An algorithm for least-squares estimation of nonlinear parameters. 

Journal of the Society for Industrial and Applied Mathematics 11:431-441. 

 



98                                                                                                                       6. Optimization Algorithms 
 

 

 

 

 

 

 

 

 

 

 



99 
 

 

 

 

 

Chapter 7 
 

 

The Program SDL Optimization Lab 
 

 

 

 

A brief introduction underlining the importance of the SDL 

Optimization Lab is performed. The general structure of the 

program is explained as well as the problem definition for the 

correct implementation of optimization problems. Issues like 

integration methods and the gradient calculation are also 

presented. 

 

 

 

 

7.1 Introduction 

Nowadays optimization processes are increasing and becoming a fundamental stage in 

engineering processes. Process and product optimization, inverse problems, shape optimization 

and topology optimization are frequent problems in both industry and scientific communities [1-

8]. In order to solve this kind of problems, general mathematical/technical computing software, 

such as MatLab [9] and Mathematica [10], programming languages (e.g. C++, Fortran, java, etc.) or 

the combination of these and Finite Element Analysis (FEA) commercial software (e.g. Abaqus® 

[11], LS-DYNA [12]) are generally used [8]. 

 MatLab and Mathematica are used in wide fields of engineering and have their own 

optimization toolboxes. However, they are general-purpose software and are not adapted for 

solving complex mechanical problems. In this case, these can be combined with FEA software, 

being this approach more versatile. Other commonly used approach is the combination of 

programming languages and FEA software. In these cases, it is necessary to write and implement 

the whole optimization algorithm, including the objective function, the optimization method, the 
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input/output data, etc.. Although computationally efficient, this approach can be time consuming, 

and requires a full knowledge of programming languages [8].  

New commercial engineering optimization software packages start to be used by many 

researchers and technicians. ModeFrontier [13], Knitro [14], Heeds [15], among others, are 

multidisciplinary and multi-objective software, written to allow an easy coupling to any computer 

aided engineering (CAE) tool, being easily adapted to mechanical problems resolution. However, 

these packages have the disadvantage of being a kind of “closed black-box”, where the user 

cannot change any details in the optimization methodologies or, in some cases, cannot implement 

new optimization methods [8]. 

In the present chapter an engineering optimization framework that aims to overcome the 

previously mentioned disadvantages is presented. The SDL Optimization Lab [8] is a non-

commercial framework designed for specific engineering inverse problems (such as parameter 

identification, initial shape optimization and initial tool shape optimization) [5-7,16,17] and shape 

optimization problems [18,19]. 

The shape optimization problem can be similar to the parameter identification problem if 

the shape to be optimized is defined by a finite number of parameters. Therefore, both problems 

can be solved by the same approach [8]. 

The SDL Optimization Lab inherits the large experience coming from the SIDOLO code [16,20] 

and adds the latest developments in direct search optimization algorithms. It can also be used by 

researchers that wishes to control every step of the engineering optimization procedure or by 

users with no experience in programming languages, that want to try an intuitive graphical 

interface. The user subroutines capabilities in SDL Optimization Lab allow the program to be 

customized for particular applications or, alternatively, to implement new optimization methods 

and strategies [8]. The SDL Optimization Lab framework is still being developed, particularly for 

parameters identification and inverse shape optimization problems in the GRIDS research group. 

 

7.2 General structure 

The SDL Optimization Lab is an interface where the user can define the optimization problem. It 

allows to define: i) initial and problem data information; ii) objective function definition; iii) 

gradient calculations; iv) core algorithm definition. It also allows to have a real time monitoring 

and graphically see the results. It is possible to observe in Figure 7.1 the problem data definition 

for an example problem. In Figure 7.2 the real time monitoring is presented and in Figure 7.3 the 

results are shown. 

The first step in using the SDL Optimization Lab is to define the type of formulation used in 

the mathematical/numerical relations that the considered model use in the determination of the 

observable variables. The observable variables      are the variables that can be measured, such 

as stress, strain, forces etc.. 
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Figure 7.1 - SDL Optimization Lab GUI: problem data definition. 

 

Figure 7.2 - SDL Optimization Lab GUI: real time monitoring. 

 

Figure 7.3 - SDL Optimization Lab GUI: results. 
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Three types of formulation in the observable variables determination can be considered: 

i) explicit; ii) differential and iii) external. It is possible to see this option in Figure 7.1 in the right 

side. The explicit option should be considered if the explicit relations are used in the observable 

variables determination, i.e.: 

                                                                                        

In this case,      is a function of  , which are the model parameters, and  , which represents the 

time, the incremental evolution of an event, instants of observation or different points of 

observation. An example of this relation can be the elastic relation: 

                                                                                      

In cases where the determination of      requires the resolution of a system of first order 

differential equations, a differential model should be chosen. The evolution of a differential 

problem can be defined by a system of equations expressed by: 

  

  
                                                                                        

                                                                                         

In this case      is also a function of               
 , which represents the set of   variables 

defined in differential (or rate) form. One example can be the evolution of the yield function, 

considering isotropic and kinematic hardening: 

                  
            

                                                  

where the backstress can be formulated by a differential equation, such as, the Prager kinematic 

hardening law: 

                                                                                 

Exists one more option which is the external model. This option should be considered when 

the      calculation is performed by an external program. In this case, it is necessary to build up 

an interface between the simulation program and the SDL Optimization Lab. A general interface is 

available in SDL Optimization Lab, however this interface requires little modifications in order to 

take in account specific characteristics of the program. For simulation programs widely spread 

(such as Abaqus®, Msc.Marc, DD3Imp, among others) pre-developed interfaces are available [8]. 

In the present work, differential mode was used in the parameters optimization, and the 

external mode was used for the initial shape optimization and initial tool shape optimization. 

 

7.3 Problem definition 

After correctly choose the model type, it is fundamental to define the initial and problem data 

information. The optimization variables should be defined with the respective names and 
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boundaries. This task can be performed in the SDL Optimization Lab interface, as shown in Figure 

7.1. The names of the measured variables should also be defined. The objective function and the 

mathematical models (in the case of parameter optimization) should be implemented considering 

the code editor present in the SDL Optimization Lab interface. To finish the problem definition, 

experimental values should be defined. With all this information, the problem is correctly 

established and it is then possible to create an executable file. This file is self-sufficient and can be 

used in other platforms, such as single computers or clusters, without any adjustment. For the 

result analysis real time monitoring is available in SDL Optimization Lab [8]. 

 

7.4 Integration methods 

One issue that is important when a differential problem is considered, refers to know which 

integration methods are used in the resolution of the first order partial derivatives (see equation 

7.3). For this sort of problems, the SDL Optimization Lab can use the Runge-Kutta explicit 

integration methods of second (rk21), fourth (rk43) and fifth (rk54) orders. The explicit Runge-

Kutta methods for the solution of the differential equations 7.3 are of the form: 

              

 

   

                                                                 

with 

                                                                                   

                                                                                                

                                                                                           

   

   

      

These methods have proved to be efficient, and this efficiency is more evident when using an 

adaptive time step algorithm [16], which is the case of SDL Optimization Lab.  

 

7.5 Gradient evaluation 

In gradient-based algorithms, one of the main tasks is the efficient computation of the objective 

function gradients. This process can be also called “sensitivity analysis”. The simplest way to 

obtain the derivatives is using a numerical difference method, such as the Newton´s forward 

difference formula. In this case, considering   as the objective function whose sensitivities are 

needed to be computed, it is possible to write: 
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In equation 7.8,   is the divided difference parameter and each variable is perturbed (one at a 

time), and   is then re-evaluated. As a consequence, it is possible to understand that     

function evaluations are needed to compute the gradient of   at  . This scheme is not 

recommended in problems where each function evaluation is computationally time consuming. 

For greater accuracy, at a higher CPU cost, the central difference formula can be used [8]: 

     

   
 
                                             

 
                     

 

 

References 

[1] Andrade-Campos A, Thuiller S, Pilvin P, Teixeira-Dias F (2007) On the determination of material 

parameters for internal variable thermoelastic-viscoplastic constitutive models. International 

Journal of Plasticity 23:1349-1379. 

[2] Ponthot J, Kleinermann J (2006) A cascade optimization methodology for automatic parameter 

identification and shape/process optimization in metal forming. Computational Methods in 

Applied Mechanics and Engineering 195:5472-5508. 

[3] Belegundu A, Chandrupatla R. (1999) Optimization Concepts and Applications in Engineering. 

Prentice-Hall. 

[4] Ceretti E, Braga D, Giardini C (2010) Optimization of process parameters and part geometry for 

high diameter tube hydroforming. Proceeding of the 13th ESAFORM conference 2010, Brescia 

University, Italy. 

[5] de-Carvalho R, Valente R, Andrade-Campos A, (2011) Optimization strategies for non-linear 

material parameters identification in metal forming problems. Computer and Structures 

89:246-255. 

[6] de-Carvalho R, Silva S, Valente R, Andrade-Campos A (2011) The geometry definition influence 

in inverse analysis – Application to carter forming process. Proceeding of the 14th ESAFORM 

Conference 2011, Belfast, Ireland. 

[7] de-Carvalho R, Andrade-Campos A, Valente R (2012) Defining analytical rigid curves/surfaces in 

tool optimization problems. Proceeding of the 1st Young Investigators Conference 2012, 

Aveiro, Portugal. 

[8] Andrade-Campos A (2001) Development of an optimization framework for parameter 

identification and shape optimization problems in engineering. International Journal of 

Manufacturing, Materials, and Mechanical Engineering 1:57-79. 



7. The program SDL Optimization Lab                                                                                                      105 

 
 

[9] Matlab (2007) The Language of technical Computing, User Manual, v. R2007. The Mathworks 

Inc.. 

[10] Mathematica (2009) Wolfram Mathematica 7, Wolfram Research, Inc..  

[11] ABAQUS 6.7 (2007) User Manual, Simulia Inc, Dassault Systémes. 

[12] LS-DYNA Theory Manual Livermore Software Technology Corporation. 

[13] ModeFrontier (2008) ESTECO ModeFrontier - multi-objective optimization and design 

environment software, v4.0, ESTECO. 

[14] KNITRO Optimization software (2007), Ziena Optimization Inc.. 

[15] Heeds (2009) Professional Design Optimization Software, Red Cedar Technology Inc.. 

[16] Cailletaud G, Pilvin P (1994) Identification and inverse problems related to material 

behaviour, Proceedings of the International Seminar on Inverse Problems, France, 79-86. 

[17] Liu G, Han X (2003) Computational Inverse Techniques in Nondestructible Evaluation, CRC 

Press, USA. 

[18] Maniatty A, Zabaras N (1996) Investigation of regularization parameters and error estimating 

in inverse elasticity problems. International Journal for Numerical Methods in Engineering, 

37:1039-1052. 

[19] Fourment L, Balan T, Chenot  J (1996) Optimal design for non-steady-state metal forming 

processes. II. Application of shape optimization in forging. International Journal for Numerical 

Methods in Engineering, 39:51-65. 

[20] Andrade-Campos A, Thuiller S, Pilvin, P,  Teixeira-Dias F (2007) On the determination of 

material parameters for internal variable thermoelastic-viscoplastic constitutive models. 

International Journal of Plasticity, 23:1349-1379. 

 

 

 

 

 

 

 



106                                                                                                     7. The program SDL Optimization Lab 
 

 

 

 



107 
 

 

 

 
 

 

 

 

III Parameter Identification 
  



 

 



109 
 

 

 

 

 

Chapter 8 
 

 

Experimental Material Characterization for Parameter 

Identification 

 
 

The parameter identification problem consists in the comparison 

between experimental results (coming from mechanical tests) 

and a constitutive model that characterizes the studied material. 

Concerning this, in the present chapter, the mechanical 

characterization of the aluminium alloy AA6082 is presented. This 

is a generic procedure in the characterization of sheet metal 

forming materials. Tensile, shear and bulge tests are conducted. 

The mechanical characterization is performed using the ARAMIS 

system. 

 

 

 

 

8.1 Introduction 

Aluminium alloys are one of the most used materials in sheet metal forming industry. This is due 

to their advantageous strength to weight ratio. The metallic sheet is obtained by means of rolling 

process. However, only a few of this aluminium alloys are important for the metal forming 

industry.  The aluminium alloys are categorized considering the metallic element that is more 

abundant. The aluminium alloys from 6XXX series correspond to approximately 80% of the annual 

worldwide production of extrusion components. In this alloy, the Magnesium and Silicon are the 

principal metallic elements, however these alloys have small quantities of copper, chromium and 

manganese [1]. 

 In order to correctly simulate a forming process, it is necessary, a priori, to know the 

parameters that define the constitutive model that traduces the material behaviour. This 

identification process is known parameter identification problem and is one of the main topics of 
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the present work. The number of mechanical tests to perform, in order to characterize 

mechanically the material, depends on the constitutive model chosen.  

The sheet metal forming process allows the achievement of complex shapes starting from a 

metallic sheet. This metallic sheet has small thickness, and this fact influence the mechanical tests 

that can be performed in order to characterize the material. Considering this, the mechanical 

tests performed need to be in the sheet plane, however this characterization is simple considering 

the conventional tests: tensile, shear, bulge, etc.. Compression tests in the sheet plane are 

impossible to execute leading to difficulties in finding some constitutive parameters. The more 

relevant information that can be obtained from these tests is the young modulus, the yield stress 

and the anisotropy coefficients [2].  

In order to determine the constitutive parameters, the information more relevant is the 

stress evolution with the strain, the well-known stress-strain curves. In this chapter the 

experimental tests more used in the characterization of metallic sheets are shortly presented. 

Tensile, shear and bulge tests were performed in order to characterize mechanically the AA6082, 

and the tests were performed using the ARAMIS device [3]. The present chapter intends to 

demonstrate how a material should be mechanically characterized for a correct parameter 

identification. However, it should be mentioned that the results obtained here are not used in the 

other chapters of this work, since, it was intended to compare the results with the ones of the 

literature, where a different material is considered. 

 

8.2 Material used 

The material characterized in the present work is the aluminium alloy AA6082. The Aluminium 

alloy 6082 was considered due to its main characteristics, being a medium strength alloy with 

excellent corrosion resistance. Concerning the 6000 series, this alloy has the highest strength and 

is known as a structural alloy. It is the alloy most commonly used in machining and, as a relatively 

new alloy, has replaced the 6061 in many applications due to its higher strength. In this alloy, the 

addition of a large amount of manganese controls the grain structure and this leads to a stronger 

alloy. It is complicated to extrude being the extrude surface finish not as smooth as other similar 

strength alloys in 6000 series. The AA6082 is typically used in highly stressed applications, trussed, 

bridges, cranes, transport applications, ore skips, beer barrels, milk churns, etc.. Different heat 

treatments can be considered for this alloy, however the most common are the T6 (solution heat 

treated and artificially aged), T4 (solution heat treated and naturally aged to substantially stable 

condition) and T651 (solution heat treated, stress relieved by stretching then artificially aged). The 

alloy 6082 is usually supplied as a channel, angle, tee, square bar, square box section, rectangular 

box section, flat bar, tube and sheet (that is the case of the present work) [4]. The chemical 

composition of the aluminium alloy 6082 is presented in Table 8.1.   

 

Table 8.1 - Chemical composition for the aluminium alloy 6082 [5]. 

%SI %Fe %Cu %Mn %Mg %Zn %Ti %Cr %others %Al 

0.70-1.30 0.50 0.10 0.40-1.00 0.60-1.20 0.20 0.10 0.25 0.10 
The 

remaing 
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The material was received as a sheet with 2 mm thickness, however nothing was said about 

the heat treatment considered. Comparing the results with the ones presented in [5], it is possible 

to conclude that the material considered have a heat treatment T6/T651. The main mechanical 

properties are presented in Table 8.2, where    is the maximum value of the nominal stress, 

      is the nominal stress for a 0.2% of deformation and   the Young modulus. 

 

Table 8.2 - Main mechanical properties of the  aluminium alloy 6082 with a heat treatment T6/T651 [5]. 

   
[MPa] 

     
[MPa] 

E 
[MPa] 

340 310 70 

 

8.3 The ARAMIS system 

ARAMIS1 is a non-contact optical 3D deformation measuring device that allows to analyse, 

calculate and document deformations. The ARAMIS device is composed by two digital cameras 

that recognize the surface structure of the object to be measured and the software allocates 

coordinates to the image pixels. In the deformation measuring processes, one initial photo is 

taken and this image will be considered as the undeformed object state. During the mechanical 

deformation process, further images are recorded and compared between them in order to track 

the pixels. This process allows to calculate directly the displacement and deformation of the 

object. In the case that the measuring object is homogeneous, the surface must be prepared in 

order to have contrast between the pixels considered by the cameras. One of the most suitable 

methods to perform this preparation is by applying a stochastic colour spray pattern, as shown in 

Figure 8.1. The ARAMIS device is used in different fields such as material testing, component 

dimensioning, examination of non-linear behaviour, strain computation, etc. [3]. 

 

Figure 8.1 - Stochastic spray pattern applied in a metal specimen. 

8.4 Mechanical tests 

The mechanical behaviour of the AA6082 is investigated under three different stress and strain 

states, i.e. uniaxial tension, simple shear (both of these tests are performed at several 

orientations to the rolling direction or RD) and bulge test. The experimental procedure is 

described in the following paragraphs. 

                                                           
1
 ARAMIS is a registered mark from gom - Optical Measuring Techniques. 
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 To perform the mechanical tests and use the ARAMIS device it is necessary to prepare the 

specimens as it was mentioned before with the stochastic colour spray pattern. In the figures are 

presented the tensile, shear and bulge specimens prepared to be analysed with the ARAMIS.  

The main results are presented in the following. These results are obtained considering the 

ARAMIS system. The first set of stress-strain curves are obtained considering the average of the 

deformation in the considered useful area of the specimen. Later on, some stress-strain curves 

are presented, where the strain measurement is performed for a specific point. This is one of the 

main potentialities of the ARAMIS system. 

 

 
Figure 8.2 - Tensile specimen prepared to be analysed with the ARAMIS device. 

 

Figure 8.3 - Shear specimen prepared to be analysed with the ARAMIS device. 

 

 

Figure 8.4 - Bulge specimen prepared to be analysed with the ARAMIS device. 

8.4.1 Uniaxial tensile tests 

The uniaxial tensile tests were carried out in specimens with the dimensions presented in Figure 

8.5. The free edges of the specimens were machined in order to eliminate the hardened areas 

induced by the cutting and consequently to increase the range of homogeneous deformation. 
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Components of the strain tensor in the sheet plane are calculated by image correlation, 

considering the ARAMIS system. 

 

 

Figure 8.5 - Dimensions of the tensile specimen. 

A set of monotonic tensile tests were performed along five different rolling directions (RD) 

in order to study the material anisotropy. The five directions are oriented by 0°, 22.5°, 45°, 67.5° 

and 90° respective of the RD. The universal tensile machine from the LIMATB, University of 

Bretagne-Sud, presented in Figure 8.6 was used to perform all the tests. In this figure the 

universal machine is adapted to the tensile tests. It is also possible to see in the image the two 

cameras used for the ARAMIS analyses.  

 

Figure 8.6 - Universal tensile machine from the LIMATB, University of South Brittany. 

 

 The test is controlled by the evolution of     with time and by constraining          . 

The Cauchy stress is calculated as      load/(actual section) and the nominal stress as 

   load/(initial section). 

In Figure 8.7 it is presented the evolution of the Cauchy and the nominal stresses with the 

logarithmic strain for the five different rolling directions. 

y 

x 

z 
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Figure 8.7 - Evolution of Cauchy and nominal stress with the strain for the five rolling directions. 

In Figure 8.7 it is possible to observe that the rupture of the specimens occurred at 

different values of deformation. However was not verified a tendency of the deformation values 

with the angle. Also different yield stresses where obtained for the different tests.  

In Table 8.3, it is shown the main mechanical properties obtained for the five rolling 

directions, where    is the maximum value of the nominal stress,    are the anisotropy 

coefficients and are given by        
 

    
  . The       is the nominal stress for a 0.2% of 

deformation. In the table are presented the means of these values considering the tests 

performed. 

 

Table 8.3 - Summary of the main mechanical properties for AA6082. 

Directions [°] 0 22,5 45 67,5 90 

    
[MPa] 

334,3±2,8 347,9±0,0 324,5±0,4 349,8±0,5 338,5±3,0 

  [GPa] 60,07 70,5 62,02 67,7 69,16 

     0,535±0,005 0,605±0,005 0,695 ±0,015 0,645±0,015 0,51±0,0 

   0,00128 0,00133 0,00135 0.00130 0,00135 

       307,7±0,1 316,8±0,0 294,8±0,0 315,8±0,0 312,4±0,2 
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Considering the results obtained for the five rolling directions and the mechanical 

properties given in Table 8.2 it is possible to conclude that this material have similar properties to 

the properties presented for the aluminium alloy 6082 with T6/T651.  

In Figure 8.8 it is presented a comparative study for the influence of the velocity of 

deformation in the evolution of the Cauchy stress. As can be seen, when different velocities are 

considered the hardening is not equal to the hardening for the tensile test made at constant 

velocity and equal to 10 mm/min. It is then possible to conclude that the Cauchy stress depends 

on the velocity of deformation.  

 

Figure 8.8 - Evolution of Cauchy stress with the strain for tests at 0°. T00 with  =10 mm/min and 

T00_DV with three different velocities,   =1mm/min,   =10 mm/min,   =100 mm/min and 

  =10mm/min. 

8.4.2 Simple shear tests 

The shear tests were performed in rectangular specimens with the dimensions represented 

in Figure 8.9. 

 

Figure 8.9 - Dimensions of the shear specimen. 
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A set of shear tests were performed in three different rolling directions (RD). The three 

directions are 0°, 45° and 90° of the RD. In Figure 8.10 it is possible to see the universal machine 

adapted to the shear tests.  

 

Figure 8.10 - Universal tensile machine adapted to shear tests from the LIMATB, University of South 

Brittany. 

The shear device is presented in detail in [6]. The gauge area of  =4 mm is presented in 

Figure 8.11 and the shear direction is along the shear specimen. 

 

 

Figure 8.11 - Shear specimens before and after deformation, respectively. 

In Figure 8.12 it is shown the evolution of the nominal stresses with the logarithmic strain 

for the three different rolling directions. It is important to remember that         . 
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Figure 8.12 - Evolution of nominal stress with the strain for the three rolling directions. 

Considering the results presented in Figure 8.12 for the 0° and 90° to the RD the results in 

terms of stress-strain evolution are approximate. However, the specimen at 45° to the RD has a 

light higher yield stress and the rupture happened at lower deformations when compared to the 

other two specimens.   

In order to characterize the kinematic hardening of the AA6082 samples, two Baushinger 

tests at 0.05 and 0.1 of deformation for 0° of the RD were performed. In Figure 8.13 the results 

and the comparison with the shear test at 0° of the RD are presented. 

 

Figure 8.13 - Baushinger tests for 0.05% and 0.1% of deformation for the 0° of the RD. 
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 The tests were performed only for 0.05 and 0.1 values of deformation because as it is 

possible to observe in Figure 8.13 the rupture for the shear test occurs approximately at 0.14 of 

deformation. For the initial stresses (without inversion of loading) the three curves are very 

similar. After the inversion of the loading the two curves, at 0.05 and 0.1, have shape very similar 

also. 

8.4.3 Bulge tests 

The bulge tests were performed in specimens with the dimensions represented in Figure 8.14. 

 
Figure 8.14 - Dimensions of the bulge specimen. 

In Figure 8.15 it is possible to see the universal machine adapted to the bulge tests.  

In the bulge test, the circular blanks are clamped by screws between a blank holder and a 

die and a fixed volume of water is pressed under the blank by the displacement of an actuator. 

The fluid pressure is given by a pressure sensor and the strain field is measured in the area around 

the center point by a digital correlation. During the test the strains      and     are recorded and 

as     is parallel to the RD and     is perpendicular in the sheet plane it can be shown that the two 

components are very close to each other, though only one is presented. In Figure 8.16 it is 

presented the evolution of the pressure with the logarithmic strain [7].  

 

 

 

Rolling direction 



8. Experimental Material Characterization for Parameter Identification                                           119 

 
 

 

Figure 8.15 - Universal tensile machine adapted to bulge tests from the LIMATB, University of South 

Brittany. 

 

 
Figure 8.16 - Evolution of the pressure with the logarithmic strain. 
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8.4.4 Tensile results with ARAMIS system 

In the present section it is studied the influence of considering the mean of deformation for the 

stress-strain curves (as it was considered in the previous sections) or consider the deformation for 

a specific point in the specimen. This study is performed for the tensile test. In Figure 8.17 it is 

possible to observe the deformation field obtained by the ARAMIS system during the tensile test.  

 

Figure 8.17 - Tensile results obtained with the ARAMIS software. 

As it is possible to observe for the same time, different deformation values are registered for 

different zones of the specimen. In the previous results the deformation used was a mean where 

it is assumed that the entire specimen behaves homogeneously. As it is possible to observe in 

Figure 8.17  this simplification is not completely correct and it is important to understand what 

really is going on the specimen during the tensile test.  

The localization of the four different points is shown in Figure 8.18 where US means upper 

side, BS means bottom side, CP1 and CP2 are respectively the central point 1 and 2. 

 

Figure 8.18 - Localization of the four different points for the ARAMIS results. 

In Figure 8.19 it is represented the evolution of the Cauchy stress for four different points situated 

in the tensile specimen and possible to see that it is for the two central points that higher 

deformation values are achieved. Considering these results it is possible to conclude that in terms 
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of stresses values obtained no difference was achieved being the stress-strain curves very similar.  

For parameter identification problems, in this case, it is indifferent which curve will be considered. 

 

 
Figure 8.19 - Cauchy stress for the ARAMIS tensile results. 
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Chapter 9 
 

 

Optimization Strategies for Non-linear Material 

Parameters Identification  
 

 
Parameter identification inverse problems are studied in order to 

achieve the best material parameters for specific constitutive 
models. A non-linear elastic-plastic hardening model, a 

hyperelastic model, and an elasto-viscoplastic model with 
isotropic and kinematic work-hardening were considered. Two 

different optimization algorithms were used: (i) the gradient-
based Levenberg-Marquardt algorithm, and (ii) a real search-

space evolutionary algorithm (EA). Strategies such as cascade, 
parallel and hybrid approaches are analysed in detail. 

 

 

 

 

9.1 Introduction 

As introduced in chapter 1, one category of inverse problems is called parameter identification. 

The main goal of these problems is the material parameters estimation for constitutive models. 

The parameters determination is performed confronting mathematical and experimental results, 

being the difference between them evaluated through a specific function, called the “objective 

function” [1-3].   

 Usually, there is no unique algorithm robust enough to deal with every possible 

mechanical problem [1]. In 1996, Patnaik [4] performed a study that analysed the performance of 

eight different optimization algorithms in the resolution of 41 different structural problems. The 

main conclusion of his work was that none of the eight optimization algorithms could successfully 

solve all the problems [4]. In order to alleviate the convergence difficulties, in 1997 Patnaik 

proposed the so-called “cascade optimization” strategy [5]. The cascade strategy uses several 

optimization methods, one followed by another, in a specific sequence, being the main aim of this 
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strategy to take advantage of the strength of each optimization algorithm [1]. This cascade 

strategy is also used by Papadrakakis et al. [6-9], where consider that this approach is a very 

promising one, and proved to be robust and efficient. Patnaik et al. have other publication in this 

field, such as the references [10,11]. Ponthot et al. [1] studied eight different cascade approaches 

that combine: the conjugate gradient method, the BFGS, the Gauss-Newton, the Levenberg-

Marquardt and the globally convergent method of moving asymptotes. 

In previous works it was possible to find the combination of different deterministic 

algorithms, the combination of different evolutionary algorithms or even the combination of 

these two sort of algorithms.       

In the present work, and in order to determine the best parameters set, optimization 

methods are applied. In this chapter, it is intended to develop and study new optimization 

strategies that efficiently can lead to accurate material parameters for different constitutive 

models, considering a-priori that these constitutive models are the relevant ones for the studied 

materials.  

The constitutive models accounted for this study are a non-linear elastic-plastic hardening 

model, a hyperelastic model and an elasto-viscoplastic model with isotropic and kinematic work-

hardening. The aim of these strategies is to take advantage of the strength of each selected 

algorithm and improve the overall robustness and efficiency of classical optimization 

methodologies based on single stages. Deterministic algorithms, evolutionary-inspired algorithms 

or even the combination of these two algorithms are used in the proposed strategies. Two 

different optimization algorithms are used: (i) the Levenberg-Marquardt algorithm, which is 

gradient-based, and (ii) a real search-space evolutionary algorithm (EA). Strategies such as 

cascade, parallel and hybrid approaches are analysed in detail. In hybrid strategies, cascade and 

parallel approaches are integrated. 

 

9.2 Definition of the objective function 

An accurate constitutive parameters determination requires the definition of the error function 

between experimental and numerical data. This error function is the objective function which will 

be subjected to optimization methods. As mentioned before, different optimization methods, 

such as gradient-based and evolutionary-based algorithms, have been applied in the study of this 

kind of objective functions. Therefore, a correct definition of this function is essential to all the 

optimization process and the determination of the constitutive parameters.  

An ideal objective function must respect the following criteria [3,12]: (i) prior to the 

optimization process the experimental data should be filtered; (ii) all experimental data should be 

considered in the optimization as having equal opportunities to be optimized; (iii) in the multi-

curves optimization, all experimental curves have equal opportunity to be optimized even if the 

number of experimental points is different for each curve; (iv) an objective function should be 

able to deal with multi-sub-objective problems. The units of the sub-objective problems can be 

different, but all of them should have an equal opportunity to be optimized. Different units 

and/or number of curves in each sub-objective should not affect the overall performance of the 
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fitting and (v) the above criteria should automatically be respected without choosing weighting 

factors manually. 

The experimental data used in this type of optimization process consists of several discrete 

values representing measured points, leading to an experimental curve. For the particular case of 

constitutive material models, being given by a set of (experimentally-based) stress-strain points, a 

stress-strain curve is obtained, which will be afterwards compared to the numerical constitutive 

curve (see Figure 9.1). 

One of the most used error functions consists on the sum of the squares of the stress 

difference at different strain levels [2]. This gap between an experimental point and the 

corresponding point on the numerical curve can be seen in Figure 9.1. 

 

Figure 9.1 - Stress-strain numerical curve and experimental data. 

 

Considering the parameters identification optimization problems, the objective function 

can be defined as 

           
  
   

   
      

           
    

        

   

 

      

   

                                            

where the numerator is the difference between the experimental and the numerical stress for the 

 -th value of strain, while      and      are weighting factors that must be adapted to the 

optimization problem in study. In this work this objective function was considered due to its 

simplicity, others objective function can also be used [13]. Analysing the objective function, it can 

be observed that if the correspondence between the physical experiment and the numerical 

model is perfect, then         would be equal to zero. The reality is that this fact never happens 

and it is only expected that          takes a low non-zero value [3]. The existence of local 

minimums also leads to practical difficulties in the interpretation and selection of the obtained 

results. Therefore, during the analysis of the results it is necessary to remember that it is possible 
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to obtain several distinct sets of parameters for which the objective function assumes reasonable 

values. In these cases, it is the duty of the user to evaluate the obtained results considering the 

physical definition and the meaning of each parameter. 

 

9.3 Constraints 

The identification process of constitutive model parameters has to consider specific constraints to 

ensure a real physic behaviour of the materials. In the minimization problem, the constraints were 

considered using exterior penalties. Penalty method transforms constrained problems to 

unconstrained ones [14]. In this work, it is intended to minimize the objective function (       ) 

subjected to constraints       . Applying the penalty function      to the objective function, it 

will lead to a new unconstrained function. This penalty function will be activated only when the 

objective function needs to be constrained (active constraint). 

An often-used class of penalty functions is: 

                    
 

 

   

                                                 

It is noted that  if    ,      is called the linear penalty function. This function may not be 

differentiable at points where         for some  . Setting     is the most common in 

practice, being called the quadratic penalty function [15]. Therefore, in this work it will be used 

   .  

Afterwards, the initial problem is now the unconstrained minimization of     . If the 

constrains are violated, meaning        , a big term will be added to the      function such 

that the solution is pushed back towards the feasible region. Since the convergence is from the 

outside of the feasible region, these methods are called exterior penalty methods [14,16]. 
 

9.4 Constitutive models 

In this section, three constitutive models, whose parameters will be determined with the 

developed optimization strategies, are briefly presented. These models were selected in order to 

represent distinct material types. It was considered a priori that these constitutive models are the 

relevant ones for the studied materials. 

 

9.4.1 Non-linear elasto-plastic hardening model 

The first application of the proposed optimization strategies is the parameters identification of a 

constitutive elastic-plastic model with non-linear hardening for a stainless steel AISI 304. 

Experimental tests were carried out in proportional loading for uniaxial tension, and the 

hardening law can be described by the following equation [1]: 
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                                         ,                     (9.3) 

where                 is the equivalent plastic strain and       is the plastic strain tensor. 

Considering a one-dimensional analysis, this elastic-plastic model with non-linear hardening 

contains 5 parameters: the elastic parameter E and the plastic parameters:   ,   ,   and  . 

This constitutive model leads to feasible stress-strain results only when      . 

Therefore, during the formulation of the minimization problem, this constraint must be taken into 

account. For this constitutive model, it was chosen a weighting factor equal to 10 during the 

definition of the objective function. This assumption is based on the objective function values. 

 

9.4.2 Hyperelastic model – Ogden model 

The selected material to perform in this part of the present work was silicone-rubber. The 

experimental results used for the determination of the hyperelastic model parameters were 

obtained by Martins et al. [17] for this material, when it was subjected to uniaxial tension tests. 

Silicone-rubber belongs to the hyperelastic material category and exhibits strong nonlinear elastic 

behaviour for a high degree of deformation. In this study, it was assumed that silicone-rubber has 

a mechanical behaviour similar to incompressible hyperelastic materials [17]. 

The most applied models in the simulation of the hyperelastic materials behaviour are the 

Humphrey [18], Martins [19], Mooney-Rivlin [20,21], Neo-Hookean, Ogden [22], Veronda-

Westman [23] and Yeoh [17] models [3]. Martins et al. [17] and Andrade-Campos et al. [3] have 

pointed out that the Ogden, Yeoh and Martins models are the ones that best fit the silicone-

rubber experimental data. Considering these three hyperelastic models, the one which the 

parameter determination is more difficult is the Ogden model [22] due to its relatively high 

number of parameters [3]. In this work, it is intended to evaluate the performance of different 

optimization strategies. If these strategies efficiently lead to accurate parameters when applied to 

complex constitutive models, consequently they will work when applied to simple models. Taking 

into account these reasons, the Ogden model was considered.  

The unidimensional Ogden stress function for incompressible isotropic elastic materials [22] 

is given by: 

          
           

 

   

                                                  

which can easily be simplified in the equivalent equation (for    )  

      
               

               
               

                     

In equation 9.4 and 9.5, σ represents the uniaxial stress,       is the stretch, while    are the 

Ogden´s material parameters.  

In Ogden et al. [22], it is explained that for     the material parameters differ 

considerably for the different experimental tests. However, for    , the difference between 

the tests is very small and this fact justifies the introduction of the fourth term, although there is 
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no obvious physical basis for it [21]. This reason justified the use of the Ogden´s stress-

deformation function for incompressible isotropic elastic materials with      

To be sure about the previous assumption,     and     models were studied. 

Although both models are very close to the experimental silicone-rubber data, it is possible to 

note that for M=4 the numerical model can fit substantially better the experimental data. This 

fact was expected due to the higher number of parameters. Superior values of M were not tested 

because they lead to an increase in the function complexity, without any gain for the material 

characterization. 

Analytical formulations show that a constraint should be considered in order to get a 

realistic response. If this constrain is not taken into account, a good fit to the experimental values 

can be obtained but stress values can be negative for very low deformations levels, which is 

physically impossible. 

To ensure a real response in a monotonic uniaxial tensile test, the stress σ should always be 

a non-negative value for all levels of stretch. Considering that the stress is zero when  =1, then 

   

  
 
   

                                                                  

Applying these conditions to equation 9.5 the following constrain is obtained: 

                                                                                      

The constitutive models constrains were taken into account using a penalty function and for this 

constitutive model, a weighting factor equal to 0.01 was considered during the definition of the 

objective function. 

 

9.4.3 Elasto-viscoplastic model with isotropic and kinematic work-hardening  

For the elasto-viscoplastic constitutive model, the material studied was a hardening mild steel 

E220BH. The experimental data used was obtained by Thuillier et al. [24]. This data comprises 

experimental values of monotonous tensile and shear tests, both carried out at 0° to the RD 

(rolling direction), and of three tests performed in order to highlight the Bauschinger effect and to 

determine kinematic work-hardening parameters. The constitutive model was analysed by 

Thuillier et al. [24], and it is based on the elasto-plastic criterion of Hill [25] taking into account the 

kinematic work-hardening and the viscous character of the material.  

The yield criterion takes into account the orthotropic symmetry of the sheet in its reference 

frame, with the axis     aligned with the RD, the axis     with the transverse direction (TD) and the 

axis     with the normal direction.  

The yield criterion considered is given by: 
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where    represents the deviatoric part of  ,    is the equivalent stress and   is the matrix 

representation of the 4th order Hill’s constitutive tensor. The 6 non-zero coefficients of   depend 

on the 6 coefficients  ,  ,  ,  ,  ,   of the quadratic Hill’s criterion. The condition on the initial 

elastic limit along the RD imposes the relation      . The vectorial representation of the 

second-order tensor   represents the backstress and   the term of isotropic work-hardening. 

The viscoplastic component of the strain follows a flow rule derived from a viscoplastic 

potential  , which is a power function of the yield function (Lemaitre and Chaboche [15]): 

     
  

    
 
  

   

    

                                                          

where    is the strain rate sensitivity coefficient,    a weighting coefficient of the  viscous part of 

the stress and    the positive part of  . The behavior is thus elastic if     and if     the 

viscoplastic strain rate is written as: 

        
  

  
      

  

  
                                                               

in order to obtain     for plastic deformation. 

The equivalent viscoplastic strain rate     
  

 is defined from the plastic work conservation 

principle: 

      
  

 
           

  
                                                                

The work-hardening combines isotropic and kinematic contributions, and the evolution of the 

isotropic work-hardening is related to the accumulated plastic strain following the swift law, i.e.  

       
  
    

                   
  
 
 
   

                                            

where   is a material parameter,   the hardening coefficient and    is the initial yield stress in 

tension along the RD.  

The non-linear evolution law of the kinematic work-hardening is based in the Armstrong 

and Frederick (1966) [26] law with a linear component of Prager type: 

  
 

 
    

 

 
   

                                  
  
                                

where   is the internal variable associated to  ,       determines the intensity of the non-linear 

kinematic work-hardening and    is the slope of the linear kinematic work-hardening [24]. 

These models were implemented considering the integration methods explained in section 

7.4.  
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9.5 Optimization strategies 

There is no unique algorithm robust enough to deal with every optimization problems and 

guarantee without any doubts that the global minimum is reached. Therefore, if different 

optimization methods can be used and combined, it is possible to take advantage of the strength 

of each algorithm and increase the probability to reach the global minimum.  

The gradient-based methods are objective and have a low computational cost. 

Nevertheless, the performance of these methods is highly dependent on the starting point and, 

facing non-convex functions, they have high probability to converge to local minimum. On the 

other hand, evolutionary algorithms have proved to be independent of the initial point and have a 

large probability to find the global minimum. However, these advantages are reached with the 

increasing of the CPU time and the number of objective function evaluations. Analysing the 

features of these two algorithms it seems that these have opposing strengths and weaknesses. 

Consequently, these have a high potential to be used in combined optimization strategies [3]. 

The two algorithms used in this work were the Levenberg-Marquardt algorithm (LM) and an 

Evolutionary Algorithm (EA), mentioned previously. The strategies studied here combine 

algorithms in cascade, parallel and hybrid arrangements. 

The criteria chosen to switch from one optimizer to another were: (i) if from one iteration 

to another the relative decrease of the objective function is less than 1x10-15, or (ii) the maximum 

admissible iteration number (which is a predetermined value) is reached. 

 

9.5.1 Cascade strategies 

The cascade strategy is a multi-stage procedure where various optimizers are activated one after 

another in a pre-specified sequence. Four cascade strategies were studied, such as the LM+EA, 

the EA+LM, the LM+EA+LM and the EA+LM+EA strategy. The use of single-stages optimizers was 

performed and compared to the cascade strategies. These strategies were applied to the 

constitutive models presented previously.  

9.5.2 Parallel strategies 

Through the use of parallel strategies it is possible to transform the single-stages strategies in new 

strategies where different starting points can be considered. In Figure 9.2 the single-stage and the 

parallel strategies are represented. The starting point, x, represents the parameters set and n is 

the number of different starting points. The parameters set are generated randomly.   
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             a)                                                                        b) 

Figure 9.2 - Optimization strategies: a) single-stage and b) parallel strategy. 

For each one of these starting points an optimization algorithm (OA) is applied, and x* is 

the optimized  parameters set. In the parallel strategy, each optimized parameters set enters in 

the selection box and the best solution is chosen based on the achieved value of the objective 

function.    

The comparison between single and parallel strategies was performed considering just the 

Levenberg-Marquardt algorithm. The gradient-based algorithms have a unique starting point, 

leading to the starting point dependency. With the parallel strategy it is possible to transform the 

single stages strategies for the gradient-based algorithms in algorithms less dependent on the 

starting point, acquiring “probabilistic features”. This is called “multistart strategy”. 

It was considered that the improvements of a parallel strategy, for probabilistic 

optimization algorithms such as evolutionary algorithms, are not significant. The evolutionary 

algorithm has intrinsic parallel and probabilistic features that make this algorithm to be 

independent of the starting point. 

In the parallel strategies studied here, eight starting points were considered. During their 

generation, the model constrains are taken in account.  

 

9.5.3 Hybrid strategies 

The hybrid strategies combine both potentialities of the cascade and the parallel strategies. In 

Figure 9.3 it is possible to observe the strategies studied. For the strategies a, b, c and g the 

starting point is the same as the one considered for the cascade strategies. Therefore the results 

and the analysis performed are related to this starting point. For the others strategies the starting 

set was obtained randomly. In Figure 9.3, it is possible to observe the two critical stages where 

the objective function is analyzed, also listed in Table 9.4. All the decisions relatively to the 

optimization parameters only take into account the objective function value.   
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                      a)                                   b)                                   c) 

 
            d)                            e) 

               
                f)                                  g) 

Figure 9.3 - Hybrid strategies: a) EA followed by a parallel strategy between LM and EA, b) parallel strategy 
between EA and LM followed by LM algorithm, c) parallel strategy between EA and LM followed by EA 

algorithm, d) parallel strategy between four cascade strategies (EA+LM), e) parallel strategy between four 
cascade strategies (LM+EA), f) parallel strategy between two cascade strategies (LM+EA) and two cascade 

strategies (EA+LM) and g) EA followed by a parallel strategy between ten LM algorithms. 

 

9.6 Results and discussion 

9.6.1. Cascade strategies 

The results for the non-linear elasto-plastic hardening model and for the Ogden model, obtained 

with the different cascade strategies, are presented in Table 9.1. A maximum number of 3000 

generations, with a population size of 10, was chosen for the EA method when used as the first 

optimization algorithm and, when used in the middle or in the end of a strategy, 1000 

generations, with a population size of 10, were performed. The evaluations are also presented in 

Table 9.1. As an example, for the case of the EA+LM+EA strategy, for the hardening model, are 

registered 3000+52+1000. This means that the first EA algorithm made 3000 evaluations, 

followed by the LM algorithm that had made 52 evaluations and finished with an EA algorithm 

with 1000 generations. 
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Table 9.1 - Initial and optimal values for the hardening and the hyperelastic model parameters 
identification. 

Constitutive model Hardening model Hyperelastic model 

Parameters 
 
Initial values (xi) 

{ σ0, σ∞ , δ , ζ }T 

 
{ 400, 700 , 20 , 400, 300000 }T 

{ c1, c2, c3, c4, c5, c6, c7, c8 }
T 

 

{ 0.8196, 0.0717
 
, 1.7192 , 0.5399, 

2.3369, 2.6695, 1.2160, -0.8551 }
T 

     Boundaries 

 [σ
0

min, σ
0

max] [250,350] 

[ci
min

, ci
max

] [-5,5] 
 [σ

∞
min, σ

∞
max] [600,1000] 

 [δmin, δmax] [2,20] 

 [ζmin, ζmax] [300,1000] 

 [Emin,Emax] [250000,450000] 

LM 

        1.2761 16.3224 

Evaluations 60 175 
x

* 
{ 316.9, 731.0, 5.8, 682.9, 

381740 }
T
 

{0.8481, 0.0282, 3.5771, 0.3479, 
0.1603, 4.1244, 0.7438,  -1.2811 }

T
 

EA 

        2.2199 13. 5207 

Evaluations 3000 3000 
x

* 
{ 318.12, 844.8, 4.9, 470.3, 
300000 }

T
 

{ 0.6149, 3.1860, -0.7421, 2.0073, 
2.9125, 0.2508, 0.3045,  -0.9093 }

T
 

LM + EA 

        1.2759 7.0841 

Evaluations 60+1000 175+1000 
x

* 
{ 316.9, 730.3, 5.8, 683.4, 

381736 }
T
 

{ 0.6149, 0.0042, 3.8672, 0.3675, 
0.1529, 4.2059, 0.9647,  -1.2397 }

T
 

EA + LM 

        1.3009 13.3277 

Evaluations 3000+52 3000+10 
x

* 
{ 318.0, 881.5, 4.6, 410.5, 

380420 }
T
 

{ 0.6149, 3.1860, -0.7421, 2.0073, 
2.9125, 0.2508, 0.3060,  -0.9138 }

T
 

LM + EA + LM 

        1.2759 6.6565 

Evaluations 46+1000+7 175+1000+10 
x

* 
{ 316.9, 730.3, 5.8, 683.4, 

381736 }
T
 

{ 0.5523, 0.0042, 3.8863, 0.3675, 
0.1529, 4.2059, 0.9647,  -1.2397 }

T
 

EA + LM + EA 

        1.3008 10.4211 

Evaluations 3000+52+1000 3000+10+1000 
x

* 
{ 318.1, 881.5, 4.6, 411.1, 

380420 }
T
 

{ 0.6679, 3.1033, -0.8250, 1.8086, 
2.6794, 0.0921, 0.0007,  -0.9732 }

T
 

 

From the results presented, it is possible to conclude that for the hardening model all the 

strategies lead to satisfactory results and similar final parameters. As can be seen from these 

results, the LM method, when used separately, is more efficient than the EA. This efficiency is 

evaluated through the computational quality/cost relation (the computational cost is proportional 

to the number of iterations and generations). In fact, the LM method needs only 60 iterations 

(equivalent to the 60 evaluations of the objective function) versus the 3000 EA generations, with a 

population size of 10, and reach to a lower value of the objective function. This significant 

difference can be attributed to the size of the EA search universe. In the LM+EA strategy the 

results were better than for the single LM strategy but the numerical effort does not reward such 

improvement. The LM+EA+LM strategy does not bring any improvement comparatively with the 

LM+EA strategy.  
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 For the strategies where EA method is used in first place, it is possible to conclude that the 

introduction of the LM method in cascade leads to better values in terms of objective function 

values. The strategy EA+LM+EA is not considered to be advantageous because it leads to the 

increasing of the evaluations without a significant improvement of the objective function.  

It is possible to conclude that for the parameters determination of the considered non-

linear elastic-plastic hardening model the LM method is more efficient than EA and a cascade 

strategy turns out not to be necessary to identify the parameters. In Figure 9.4 it is possible to 

observe the evolution of the objective function for the LM method. It is possible to observe that it 

is in the first 20 iterations that the objective function value has the bigger decrease, being this 

value in the next iterations near the optimum value reached.    

 

Figure 9.4 - Objective function evolution with the evaluations number of the better result of the cascade 
strategy for the hardening model. 

For the hyperelastic model, the strategies also lead to satisfactory results for the same 

initial parameters set, but reaching completely different parameters. Considering this fact, it is 

possible to conclude that this constitutive model has a numerous number of local minimums, thus 

the next conclusions refer specifically to the starting set used. As can be seen from these results, 

when used separately, the EA method leads to better values of the objective function. However, 

this improvement required a higher numerical effort. This was expected because this function has 

a large number of local minimums. Thus, a probabilistic method will lead, with greater probability, 

to a lower local minimum or to the global minimum. In the LM+EA strategy a considerable 

improvement was observed, relatively to the single LM method, what derives from the reason 

stated before. The LM+EA+LM  strategy improves the results from the LM+EA, because probably 

the LM+EA reach to a point very close to a local/global minimum and a gradient method is perfect 

to achieve it. For the strategies where EA method is firstly used it is possible to conclude that the 

introduction of the LM method in cascade does not lead to any improvement. For the EA+LM+EA 

strategy an improvement is registered in spite of being added a probabilistic method, which is 

ideal for this function.  
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It is possible to conclude that, for the parameters determination of the considered 

hyperelastic model, cascade strategies, such as the LM+EA and the LM+EA+LM approaches, 

achieve better material parameters1 than the single-stages methods. In Figure 9.5 it is presented 

the evolution of the objective function value with the evaluations number for the LM+EA+LM 

strategy. Analysing the graph it is possible to conclude that is the first LM method that have the 

higher decrease in terms of objective function value. The following EA method also leads to a 

decrease of the objective function and the decrease obtained with the last LM method is very 

small. 

 

Figure 9.5 - Objective function evolution with the evaluations number of the better result of the cascade 
strategies for the hyperelastic model. 

 

9.6.2. Parallel strategies 

For both models, it was considered the same boundaries mentioned in Table 9.1. For each 

strategy (1-single-stage and 2 -parallel strategy), the starting points, the respective optimized 

parameters and the objective function values are represented in Table 9.2, for the hardening 

model, and in Table 9.3 for the hyperelastic model. From the results presented in Table 9.2, it is 

possible to conclude that all strategies lead to satisfactory results and similar final parameters for 

the hardening model. Different values were achieved for the objective function. From these 

results it is rather difficult to predict if the global minimum is inserted in the set of optimum 

solutions obtained.  

It is within this context that the parallel strategies assume an important role. In the single 

stage strategies only one starting point exists, that leads to only one set of optimized parameters. 

Instead of this, the parallel algorithm uses a number of starting points defined by the user and 

                                                           
1
 Better material parameters in the sense of achieving a minor objective function. 
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with the increasing of   the possibility to reach the global minimum, or even to obtain a local 

minimum lower, increases.  

Table 9.2 - Initial and optimal values for the hardening model. 

Strat. x σ
0 

σ
∞

 δ ζ E Sobj(x) 

1 
x1 299.4 962.4 3.8 321.5 283960 --- 

x1* 318.9 966.9 4.1 283.0 380680 1.3132 

2 

x1 279.1 725.5 2.9 775.6 384360 --- 

x1* 316.7 707.7 6.0 744.3 382480 1.2755 

x2 319.7 686.1 4.8 494.6 349320 --- 

x2* 316.9 761.1 5.5 622.8 380640 1.2815 

x3 342.3 836.5 12.7 961.4 305600 --- 

x3* 314.1 585.3 8.5 999.9 382110 1.2642 

x4 312.5 644.4 2.6 407.8 446950 --- 

x4* 317.4 702.3 6.1 746.9 382900 1.2750 

x5 275.9 921.3 4.8 547.5 404260 --- 

x5* 317.5 820.2 4.9 517.3 381970 1.2907 

x6 271.6 997.0 19.4 986.4 370110 --- 

x6* 314.4 615.4 7.6 927.9 382070 1.2626 

x7 340.9 707.6 2.6 718.3 338860 --- 

x7* 317.3 741.2 5.6 668.1 382080 1.2794 

x8 400.0 700.0 20.0 400.0 300000 --- 

x8* 316.6 731.3 5.7 682.5 382020 1.2761 

 

 In Figure 9.6 it is presented the evolution of the objective function value for the better LM 

result within the 8 parallel LM methods considered. The higher decrease in terms of objective 

function is during the 38 first iterations. The other iterations are really closer to the optimum 

value reached. 
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Table 9.3 - Initial and optimal values for the hyperelastic model. 

Strat. x 
c1 

[MPa
2
] 

c2 

[ ] 

c3 

[MPa
2
] 

c4 

[ ] 

c5 

[MPa
2
] 

c6 

[ ] 

c7 

[MPa
2
] 

c8 

[ ] 

Sobj(x) 

[MPa
2
] 

1 
x1 -0.989 -1.417 -1.907 2.089 1.971 2.920 -2.083 1.029 --- 

x1* -0.884 -1.373 -1.949 1.909 2.186 2.469 -1.947 1.031 13.30 

2 

x1 0.921 -1.523 0.437 -0.275 0.884 0.838 0.638 1.327 --- 

x1* 1.347 0.541 -0.174 0.501 -1.490 0.721 0.367 3.442 9.864 

x2 2.370 1.002 -0.041 1.027 -0.059 0.367 1.608 -0.692 --- 

x2* 0.251 3.708 -0.123 -0.166 0.126 -0.439 -0.045 -2.801 22.93 

x3 -2.957 -1.100 2.307 -0.754 0.734 -1.678 -1.993 -2.003 --- 

x3* -4.695 0.496 0.124 -0.885 1.399 -3.034 -1.879 -4.819 22.51 

x4 -2.270 1.097 -0.116 2.464 2.736 2.533 1.253 1.969 --- 

x4* -3.568 1.617 -0.189 2.481 2.069 1.519 1.435 2.661 16.71 

x5 -0.503 -2.851 -0.223 -2.592 2.761 1.369 -2.715 -0.249 --- 

x5* -1.427 -0.336 -0.096 -1.803 0.177 4.066 2.102 -0.118 17.91 

x6 -1.499 0.961 -1.794 -2.963 -0.956 1.808 2.095 -0.826 --- 

x6* -0.001 -0.648 -1.305 -4.981 -1.656 -1.256 3.969 -1.668 14.01 

x7 -0.351 0.028 0.441 2.211 1.207 0.138 -0.494 2.195 --- 

x7* -0.002 0.036 0.257 3.789 1.508 0.107 -0.121 1.738 6.356 

x8 1.359 -1.116 -2.423 -2.616 -1.812 2.063 0.565 -1.860 --- 

x8* 1.456 -2.784 -1.881 -4.855 -3.543 -0.099 1.102 -3.393 12.63 

 

As it can be observed in Table 9.3, for each starting point a different optimum solution is 

achieved for the hyperelastic model. This fact is related with the high number of local minimums. 

Considering these results and the benefits of the parallel strategies, it is possible to conclude that 

for the optimization of functions with a high number of local minimums this strategy conducts to 

good results. According to the results, the parallel strategy leads to better results than the single 

stage strategy reaching a lower objective function value. Therefore, the parameters reached by 

the parallel strategy fits better the experimental hyperelastic model for the silicone-rubber than 

the ones reached by the single stage strategy. In Figure 9.7 it is presented the evolution of the 
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objective function value with the number of iterations/generations for the better LM result within 

the 8 parallel LM methods considered. It is possible to conclude that the higher decrease in terms 

of objective function occurs during the first 90 iterations. 

 

 
Figure 9.6 - Objective function evolution with the evaluations number of the better result of the parallel 

strategies for the hardening model. 

 

Figure 9.7 - Objective function evolution with the evaluations number of the better result of the parallel 
strategies for the hyperelastic model. 
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9.6.3. Hybrid strategies 

Table 9.4 presents the results of the hybrid strategies for the three constitutive models studied in 

this work. Considering the results of the strategies applied to the hardening and the hyperelastic 

models, it was decided to analyse the elasto-viscoplastic model only considering hybrid strategies. 

As mentioned, this kind of strategies combine both potentialities of cascade and parallel 

strategies. In Table 9.4 the evaluations number is presented. For these results when appears 1000 

means 1000 evaluation with the genetic algorithm, with a population size of 10. For example, the 

strategy a for the hardening model made 1000+26 evaluations. This means that 1000 evaluations 

were made with the genetic algorithm and then was the LM algorithm that gave better results 

and had made 26 evaluations. 

 

Table 9.4 - Optimal values for the hybrid strategies. 

Strategie Hardening model Hyperelastic mode Viscoplastic model 

 { σ
0
, σ

∞ 
, δ , ζ ,E}

T 
{ c1, c2, c3, c4, c5, c6, c7, 

c8 }
T 

{   , K, n, Qx, Hp, bx }
T 

a 

     |       1.6962 | 1.2783 11.1200 | 8. 5953 281.4934 |243.58 
Evaluations 1000 + 26 1000 + 10 1000 + 134 

x
* { 316.9, 738.8, 5.7, 

665.7, 380915 }
T
 

{ -1.4894, -0.1869, 1.4050, 
0.4754, 1.3050, 2.9300,             

-1.7300,  2.2100 }
T
 

{ 229.91, 774.25, 0.324, 
69948.76, 193.16, 533,74 }

T
 

b 

     |       1. 2761 | 1. 2761 5.4895 | 5. 4253 243.5708 | 243.5655 

Evaluations 60 + 7 159 + 10 104 + 24 

x
* { 316.9, 731.0, 5.8, 682.9, 

381740 }
T
 

{ -0.5183, 1.2441, 0.0465, 
0.0283, -0.6522,-1.0743, 

0.2510,  -3.8530 }
T
 

{ 230, 773.75, 0.323, 
69999.97, 193.66, 534,47 }

T
 

c 

     |       1. 2761 | 1.2759 5.4895 | 5. 4895 243.5708 | 243.5601 

Evaluations 60 + 1000 159 + 1000 104 + 1000 

x
* { 316.7, 730.0, 5.8, 683.5, 

381734 }
T
 

{ -0.5183, 1.2441, 0.0463, 
0.0282, -0.6493, -1.0691, 

0.2515,  3.8528 }
T
 

{ 229.1, 753.75, 0.323, 
69989.14, 189.77, 532,71 }

T
 

d 

     |       1. 9027 | 1.2624 13.5843 | 13.5843 343.1154 | 243.5691 

Evaluations 1000 + 91 1000 + 10 1000 + 200 

x
* { 314.7, 613.7, 7.7, 930.4, 

382573 }
T
 

{ 2.7331, -1.0766, -1.0819,       
-3.0661, -1.5193, 1.2764, 

1.0013,  2.6089 }
T
 

{ 229.98, 774.78, 0.324, 
69987.47, 193.38, 534,10 }

T
 

e 

     |       1. 2638 | 1.2635 10.2299 | 7.3346 236.2208 | 236.0032 

Evaluations 59 + 1000 105 + 1000 175 + 1000 

x
* { 314.2, 590.3, 8.3, 986.9, 

381911 }
T
 

{ -3.5489,0. 3062, -1.1464,       
-2.1641,1.2204, 

-1.2076, 0.3313,  
3.5045 }

T
 

{ 218.76, 740.38, 0.4, 
69921.13,172.45, 446.60 }

T
 

f 

     |       1.6962 | 1.2783 5.9576 | 5.9576 275.1006| 243.5655 

Evaluations 1000 + 26 161 + 1000 1000 + 96 

x
* { 316.9, 738.8, 5.7, 665.7, 

380915 }
T
 

{ -0.1837, 1.0452, -0.0592,       
-3.0092, 0.2042, 3.9779, 

0.8789,  0.2457}
T
 

{230, 775.46, 0.33, 
69999,193.31, 533.94 }

T
 

g 

     |       1.6962 | 1.2654 11.1213 | 5.4583 281.4934 | 236.0471 

Evaluations 1000 + 56 1000 +165 1000 + 103 

x
* { 315.7, 656.4, 6.8, 837.8, 

382810 }
T
 

{ -1.3325, 0.8525, 2.5264, 
0.4968, 0.2079, 3.9889,             

-1.5818,  -0.0218 }
T
 

{ 217.44, 741.13, 0.4, 
69919.61, 174.70, 447.23 }

T
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For the elasto-viscoplastic model, it was considered the following boundaries of each 

starting point:                                                                   and 

              These boundaries consider the physical limitations and ensure the convergence of 

the optimization methods. For this model, the value of the objective function for the Levenberg-

Marquardt single-stage optimizer was       
            MPa2 with 106 iterations. For the 

Evolutionary algorithm it was seen that       
            MPa2 for 1000 iterations. 

Considering the results for the hybrid strategies applied to the hardening model it is 

possible to conclude that all the strategies lead to satisfactory and similar results. Comparing with 

the single-stage approaches, the strategies a, d, f and g have registered good improvements. For 

the other strategies, in terms of the objective function value at point 1 and 2, it is not possible to 

register improvements. In Figure 9.8 it is presented the better hybrid strategy results in terms of 

the objective function evolution for the hardening model, that is, the strategy d. It is possible to 

observe that the first 1000 generations from the EA method lead to a good decrease in the 

objective function value. However the LM method considered after also lead to a good decrease 

in terms of objective function value in only 91 iterations. 

 

Figure 9.8 - Objective function evolution with the evaluations number of the better result of the hybrid 
strategies for the hardening model. 

For the hyperelastic model all the hybrid strategies lead to satisfactory results even with 

the difference in the obtained parameters. This fact is related to the high number of local 

minimums. Comparing with the single-stage strategies, the strategies a, e and g have registered 

good improvements in the objective function value. For the other strategies, in terms of the 

objective function value at point 1 and 2, it is not possible to register considerable improvements.  

In Figure 9.9 it is presented the evolution of the objective function value for the better 

hybrid strategy for the hyperelastic model, that is the strategy b. It is possible to observe that the 

second LM method considered, after the 159 iterations from the first LM, doesn´t lead to a 

significant decrease of the objective function value. 
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Figure 9.9 - Objective function evolution with the evaluations number of the better result of the hybrid 
strategies for the hyperelastic model. 

Also for the elasto-viscoplastic model the hybrid strategies lead to satisfactory results and 

similar results. Comparing with the single-stage EA, it is possible to conclude that all the strategies 

lead to good improvements considering the objective function values. Comparing with the LM 

single-stage optimizer, only the strategies e and f leads to good improvements in terms of the 

objective function value. For the other strategies, in terms of the objective function value at point 

1 and 2, it is not possible to register considerable improvements. In Figure 9.10 it is possible to 

observe the evolution of the objective function with the evaluations number for the strategy e. As 

it is possible to observe the higher decrease in terms of objective function value is registered for 

the first LM method applied. In this case the EA method doesn´t bring significant improvements. 

 

Figure 9.10 - Objective function evolution with the iterations/generations number of the better result of the 
hybrid strategies for the elasto-viscoplastic model. 
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However, it is worth mentioning that the fact of having parallel algorithms, cascade 

algorithms or even both leads to a major probability to reach the global minimum. These 

conclusions can be easily extrapolated to other problems with a previous analysis. 

The initial and the optimized curves are compared for the three models presented. For the 

generation of the optimized curves it was used the best set of parameters found with the 

strategies previously proposed, being represented in Figure 9.11. It is shown that for the three 

constitutive models the optimized curve fits very well the experimental data.   
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                                     (c) 

Figure 9.11 - Experimental data and optimized curves for: a)  hardening model, b) hyperelastic model and c) 
elasto-viscoplastic model. 
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9.7 Conclusions 

In this chapter, the parameter’s determination of three constitutive models was performed. The 

constitutive models studied are an elastic-plastic model with non-linear hardening, a hyperelastic 

model, the Ogden model, and an elasto-viscoplastic model with isotropic and kinematic work-

hardening. It was considered a priori that these constitutive models are the relevant ones for the 

studied materials. Cascade, parallel and hybrid strategies were developed and studied. These 

strategies are based in the combination of a gradient-based algorithm and an evolutionary 

algorithm. The aim of these strategies was to take advantage of the strength of each selected 

algorithm and improve the overall robustness and efficiency of classical optimization 

methodologies based on single stages.  

The obtained results for the constitutive models leads to numerical curves that fit quite well 

the experimental data. The developed strategies lead to better values of the objective function 

than the single stage optimization procedures. During the strategy selection for a specific 

constitutive model all the strategies should be analysed in detail.    

From the results here presented, it was considered that for the non-linear model the hybrid 

strategies b, c and e are the only ones that do not give any improvement at all relatively to the 

classical single-stage methods. For the hyperelastic model, the strategies a and d are not 

recommended in the parameters determination. The others strategies here proposed reach good 

parameters set.   
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Chapter 10 
 

 

On the Objective Function Evaluation – Single-Point 

or FE Analysis 
 

 
In the present chapter two different approaches are presented 
and analysed: the single-point and FE analysis. The use of these 

different methodologies for the evaluation of objective function 
in the parameter identification process is still an open question 

and the interest in this field has been increasing among the metal 
forming community. To discuss this issue, two different 

constitutive models suitable for metals were used, i.e. an non-
linear elasto-plastic hardening model and an elasto-viscoplastic 
model with isotropic and kinematic hardening. The determined 

material parameters for the two models, the respective objective 
function values and the CPU time required to perform the 

simulations are presented and discussed. 

 

 

 

 

10.1 Introduction 

The present chapter deals with parameter identification processes and, as it was mentioned 

before, the aim of these problems is to estimate material parameters for constitutive models. The 

determination of the constitutive models parameters can be accomplished solving an inverse 

problem, which consists in searching for a set of parameter values for which the experimental and 

the numerical simulation results are similar. The comparison between the results of the 

mathematical model and the experimental data is performed by an objective function that is 

subjected to optimization methods.  

The use of Finite Element (FE) or single-point analysis for the evaluation of objective 

functions in the identification process is still an open question. By definition, a constitutive model 

is a mathematical representation of the phenomena that take place in an infinitesimal amount of 



148                                                                                                                    10. Single Point or FE Analysis 
 

material (according to the continuum mechanics theory). On one hand, the single infinitesimal 

point evaluation seems to characterize an infinitesimal amount of material subjected to all kind of 

deformation history. Although it is computationally very inexpensive, it cannot be used to account 

phenomena such as localized necking or springback. On the other hand, in all FE analysis codes, 

the constitutive model is implemented and accounted for each element integration point. 

Numerical approximations of the FE method include iteratively accumulated errors, and can 

impair the whole identification process. Additionally, the Finite Element Method is still a 

numerical approximation method for the continuum. Nonetheless, FE analyses allow to model the 

specimen used in the experimental procedure and predict geometric phenomena such as necking 

and springback. The main difference between the two approaches is the time and space 

integration methods used in each one. This fact influences the obtained results in the evaluation 

of the objective function and afterwards the optimization process. For the single-point analysis, 

the numerical method used to integrate in time is a second order Runge-Kutta method with 

adaptive time step and error control [1]. The Finite Element analysis was performed using the 

implicit FE code Abaqus®/STANDARD that generally uses Newton’s method as a numerical 

technique for solving the nonlinear equilibrium equations. For each time increment, the implicit 

methods need to converge leading to a large computation time when compared with the explicit 

methods. However the explicit methods can iteratively accumulate errors [2]. 

In this work, the use of single-point or metal forming FE analysis for the evaluation of the 

objective function in the identification process is analysed. The objective function considered is 

described in equation 9.1, from the previous chapter. This study is conducted considering two 

different constitutive models and two different steels commonly used in metal forming processes. 

The models are a non-linear elasto-plastic hardening model and an elasto-viscoplastic model, in 

which the work-hardening combines isotropic and kinematic contributions. In order to determine 

the best parameters set, a gradient-based Levenberg-Marquardt [3] optimization algorithm was 

applied. It was considered as the stopping criterion a maximum number of 200 iterations or, as an 

alternative, a stagnation value of 1x10-30, in terms of objective function value for each iteration. 

The objective function sensibilities are calculated by means of forward finite differences with a 

perturbation value of 5x10-3. 

 

10.2 Constitutive models 

10.2.1 Non-linear elasto-plastic hardening model 

The first constitutive model here studied is the elasto-plastic model with non-linear hardening for 

stainless steel AISI 304 presented in the previous chapter in section 9.4.1. However in this model 

the elastic part is considered constant and defined as  =380 GPa and  =0.29.  

10.2.2 Elasto-viscoplastic model with isotropic and kinematic hardening  

For this constitutive model the material studied was a hardening mild steel E220BH with       

GPa. The experimental data used was obtained by Thuillier et al. [4] and is the same used in the 

previous chapter in section 9.4.3. The model considers the following yield criterion: 
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where    represents the deviatoric part of  ,    is the equivalent stress and   is the matrix 

representation of the 4th order Hill’s constitutive tensor.  

The viscoplastic component of the strain follows the flow rule (Lemaitre and Chaboche [5]): 

     
  

    
 
  

   

    

                                                          

where    is the strain rate sensitivity coefficient,    a weighting coefficient of the  viscous part of 

the stress and    the positive part of  . The behavior is thus elastic if     and if     the 

viscoplastic strain rate is written as: 

        
  

  
      

  

  
                                                               

in order to obtain     for plastic deformation. The equivalent viscoplastic strain rate     
  

 is 

defined from the plastic work conservation principle: 

      
  

 
           

  
                                                                

The work-hardening combines isotropic and kinematic contributions, and the evolution of the 

isotropic work-hardening is related to the accumulated plastic strain following the swift law, i.e.  

       
  
    

                   
  
 
 
   

                                            

where   is a material parameter,   the hardening coefficient and    is the initial yield stress in 

tension along the RD.  

The non-linear evolution law of the kinematic work-hardening is based in the additive 

combination of a purely kinematic term (linear Ziegler hardening law) and a relaxation term (the 

recall term), which introduces the nonlinearity. This law is expressed as 

   
 

  
         

  
       

  
                                                          

where   and   are material parameters that must be determined, with   being the initial 

kinematic hardening module, and   defining the rate at which the kinematic hardening module 

decreases with the increasing of the plastic deformation [2,6]. 
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10.3 Numerical results and discussion 

The parameter identification process based on the single-point analysis was achieved with the SDL 

optimization software [7,8]. For the FE analysis the Abaqus® code was integrated with the SDL 

optimization program. In Abaqus®, two different specimens were considered in order to simulate 

the tensile and the shear tests for both constitutive models here studied. For both specimens, the 

nonlinear effects of large deformations were considered. Considering the symmetry inherent of 

the tensile tests only a quarter of the specimen was modelled for this test. Therefore, the 

dimensions considered were        mm3 and an equal spaced mesh of         elements 

was applied. The specimen subject to the shear test has          mm3 and an equal spaced 

mesh of          was applied. For both specimens a 4-node bilinear plane stress quadrilateral 

element with reduced integration and hourglass control was applied. In Figure 10.1 it is possible 

to observe the final meshes for one of the tensile and the shear tests performed.  

During the parameter identification process an absolute weight factor equal to 1 was 

defined for the objective function evaluation. In Table 10.1, the results obtained with the single-

point and the FE analysis, for the non-linear elasto-plastic model, are presented. For this model all 

the optimization parameters boundaries where considered equal to          MPa. 

 

Table 10.1 - Single-point and FE analysis results for the non-linear elasto-plastic hardening model. 

 

Parameters Starting set Single-point FE analysis 

     [MPa] 310 314.51 320.09 
    [MPa] 700 614.19 680.72 
  7 7.74 6.72 
       [MPa] 800 929.84 768.49 

        [MPa2] - 126.34 141.99 

Iterations - 86 57 

CPU1 [s] - 2 780 

 

The results presented in Table 10.1 allow to conclude that for the elasto-plastic hardening 

model the single-point analysis leads to more satisfactory results in terms of objective function 

value. For both approaches the boundaries of the optimization variables were not achieved and 

the optimum values are quite similar. 

Figure 10.2 highlight the fact that the single-point approach reaches lower objective 

function values. For the FE analysis there are some peaks that correspond to values where the 

constraint was active (this constraint, implemented as penalty, is referred in section 9.4.1).  

                                                           
1
 CPU time expended in an Intel® Core

TM
 2 Quad CPU Q 9400 at 2.66GHz with 3.25GB of  RAM. 
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            a)                                                b) 

Figure 10.1 - The finite element mesh after the a) tensile and b) shear test. 

 

 

Figure 10.2 - Objective function evolution with the iteration number for the non-linear elasto-plastic 
hardening model. 

Considering the CPU time, the single-point method also leads to better results. For the 

elasto-plastic hardening model it is considered that the single-point analysis is more efficient in 

terms of objective function value/computational cost relation, however both approaches leads to 

good values of the stress-strain curve as it is possible to observe in Figure 10.3. 
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Figure 10.3 - Experimental and numerical curves for the non-linear elasto-plastic hardening model. 
 

In Figure 10.4 and Figure 10.5 the evolution of the optimization variables during the 

optimization process is presented. For the single-point approach it is possible to see that for the 

initial decrease of the objective function value the variable that have significantly contributed was 

the   .  After, during the optimization process, it seems that both   ,   and   have contributed 

to a light decrease of the objective function. It also seems that    has not contributed to the final 

result, showing stagnation during almost all process. 

 

 
Figure 10.4 - Optimization variables evolution of the single-point approach for the non-linear elasto-

plastic hardening model. 

In the case of the FE analysis for the non-linear elasto-plastic hardening model, the initial 

and more considerable decrease happen mainly with the modification of the variables     and  .  
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During the remaining iterations it seems that all the optimization variables lead to a light decrease 

of the objective function. However,    had the smallest variation, as already was observed in 

single-point analysis. 

 

 
Figure 10.5 - Optimization variables evolution of the FE approach for the non-linear elasto-plastic 

hardening model. 
 

In the case of the elasto-viscoplastic model with isotropic and kinematic hardening, it is also 

observed that the single-point analysis leads to better results when we consider the error 

function value and the CPU time. The boundaries considered for the model parameters were 

            MPa,             MPa,          ,             MPa and          . 
 

Table 10.2 - Non-linear elasto-viscoplastic model with isotropic and kinematic hardening. 

 

Parameters Starting set Single-point FE analysis 

     [MPa] 180 160.535 188.090 
      [MPa] 1000 8598.673 1069.300 
  28 99.998 28.053 
           550 323.264 547.280 
  0.2 0.204 0.220 

         [MPa2] - 1239.16 4877.49 

         [MPa2] - 299.57 4744.65 

         [MPa2] - 433.90 593.76 

         [MPa2] - 541.32 108.24 

         [MPa2] - 537.14 1638.35 

        
       
   

 

[MPa2] 
- 3051.09 11962.49 

Iterations - 200 40 

CPU2 [s] - 480 28800 

                                                           
2
 CPU time expended in an Intel® Core

TM
 2 Quad CPU Q 9400 at 2.66GHz with 3.25GB of  RAM. 
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In Figure 10.6 it is evident that the single-point analysis leads to better results in terms of 

objective function value. In Table 10.2 the error function values for each test is also presented, 

being         the error function value for the tensile test (        ), the shear test (        ), the 

cyclic test with inversion at 0.3 value of deformation (        ), the cyclic test with inversion at 

0.2 value of deformation (        ) and the cyclic test with inversion at 0.1 value of deformation 

(        ). In both tests it was for the tensile test that the optimized parameters lead to poorer 

results. Also in this case it is considered that the single-point analysis gives good improvements in 

terms of objective function value when compared with the FE analysis (as it possible to observe in 

Figure 10.7) and the CPU time is really advantageous for the single-point analysis. However, for 

this constitutive model, the optimum set reached for both strategies are quite dissimilar (with 

special enphasis in the   and   parameters) which contributes for the large discrepancy of the 

final objective function value. It is also noted that only the   optimization variable (in the single-

point strategy) reached the boundaries, activating the boundary restriction. In terms of 

optimization process, this could mean that the optimum can be outside the search universe. 

 

Figure 10.6 - Objective function evolution with the iteration number for the non-linear elasto-viscoplastic 
model with isotropic and kinematic hardening. 

 In Figure 10.8 to Figure 10.9 is presented the optimization variables evolution during the 

optimization process, for the two approaches, when applied to the non-linear elasto-viscoplastic 

model with isotropic and kinematic hardening. For the single-point, it is possible to observe that 

for the initial decrease of the objective function, the variable that more contributed was  . 

Afterward, the   ,  ,   and   were significantly changed to obtained a lower objective function. 

Stagnation of the optimization process can be observed after iteration 75.  
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Figure 10.7 - Experimental and numerical curves for the non-linear elasto-viscoplastic model with 

isotropic and kinematic hardening 

 

 

Figure 10.8 - Optimization variables evolution of the single-point approach for the non-linear elasto-

viscoplastic model with isotropic and kinematic hardening. 

 

Considering the FE approach, it is the variation of the   optimization variable that more 

contributes for the variation of the objective function. However, for this approach the value of the 

optimization variables doesn´t vary enough to conduct the objective function to lower values.  
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Figure 10.9 - Optimization variables evolution of the FE approach for the non-linear elasto-

viscoplastic model with isotropic and kinematic hardening. 

 

After the results presented, other study was performed. This study had consisted in considering 

the optimum set of material parameters obtained with the single-point as the material 

parameters for the FE analysis. The opposite was also considered, i.e., the optimum set of 

material parameters obtained with the FE analysis was considered as inputs in the single-point 

analysis. This study was performed for both constitutive models. In Figure 10.10 it is presented 

the constitutive curves obtained for the non-linear elasto-plastic hardening model. The FE analysis 

represented in the figure is considering the FE analysis with constitutive parameters obtained 

with the single-point approach (the optimum set). The single-point analysis represented is the 

opposite. In terms of constitutive curves, both approaches lead to good results, very near to the 

experimental data. In terms of objective function value the FE analysis reached a value of 

155.7633 MPa2 and the single-point reached a value, of 140.5595 MPa2. In this case quite good 

results were obtained and it seems that the parameters identified with a different strategy can be 

used, i.e. single-point parameters can be used in FE analysis and FE analysis parameters can be 

used in single-point analysis. 

The same study was performed for the non-linear elasto-viscoplastic model with isotropic and 

kinematic hardening and the results obtained are presented in Figure 10.11. As it is possible to 

observe when the optimum set obtained with the FE analysis is considered as material 

parameters for the single-point analysis, the results fit quite well the experimental data and a 

objective function value of 10651.32 MPa2 was achieved (more than 3x the value reached with 

the initial single-point strategy). However, for the FE analysis with the single-point optimum set, 

the results do not fit the experimental data, reaching a value of objective function of 

49636.9354_MPa2. Therefore, the FE strategy seems to be dependent of its approach for 

identifying the constitutive model parameters. This can be called a more conservative approach. 

The single-point analysis seems to be a more general approach, well accepting parameters 
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identified by other approach. Consequently, for this constitutive model it is possible to conclude 

that the results achieved depend on the strategy considered. 

 

 

Figure 10.10 - Experimental and numerical curves for the non-linear elasto-plastic hardening model 

for the study with initial optimization set changed. 

 

 

Figure 10.11 - Experimental and numerical curves for the non-linear elasto-viscoplastic model with 

isotropic and kinematic hardening, for the study with initial optimization set changed. 
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10.4 Conclusions 

A comparative study between the use of the single-point and the FE analysis in the 

parameters determination problems was performed. The constitutive models studied were a non-

linear elasto-plastic hardening model and a non-linear elasto-viscoplastic model with isotropic and 

kinematic hardening. For both constitutive models the single-point analysis was considered more 

efficient in terms of objective function value/computational cost relation. It was considered that 

both of the strategies presented can be applied depending on the studied problem. The FE 

analysis allows the user to know all the history deformation of a complex geometry and predict 

geometrical phenomena such as necking, springback and stress concentration. In the problems 

that the geometrical phenomena doesn´t exist the single-point is more appropriate considering 

the good relation between the CPU time and the objective function values. 

 It was verified that for the non-linear elasto-plastic hardening model the single-point 

parameters can be used in FE analysis and FE analysis parameters can be used in single-point 

analysis. 

For the non-linear elasto-viscoplastic model with isotropic and kinematic hardening it was 

verified that the results achieved depend on the strategy considered. 

 

 

References 

[1] Andrade-Campos A (2001) Development of an optimization framework for parameter 

identification and shape optimization problems in engineering. International Journal of 

Manufacturing, Materials, and Mechanical Engineering 1:57-79. 

[2] ABAQUS 6.7 (2007) User Manual, Simulia Inc, Dassault Systémes. 

[3] Marquardt D (1962) An algorithm for least-squares estimation of nonlinear parameters. 

Journal of Society for Industrial and Applied Mathematics 11:431-441. 

[4] Thuillier S, Manach P (2009) Comparison of the work-hardening of metallic sheets using tensile 

and shear strains paths, International Journal of Plasticity, 733-751.  

[5] Lemaitre J, Chaboche J (1996) Mécanique des Matériaux Solides. Editions Dunod, Paris-France. 

[6] de-Carvalho R, Valente R, Andrade-Campos A (2010) On the objective function evaluation in 

parameter identification of material constitutive models - Single-point or FE analysis. 

Proceedings of 13th ESAFORM Conference on Material Forming, Brescia, Italy 

[7] de-Carvalho R, Valente R, Andrade-Campos A (2009) Optimization strategies for non-linear 

material parameters identification in metal forming problems. Proceedings of EUROMECH 

Solid Mechanics Conference 2009, Lisbon, Portugal. 



 

159 
 

 

 

 
 

 

 

 

IV Inverse Problems of Blank 

and Tool Design 
  



 

 

 



161 
 

 

 

 

 

Chapter 11 
 

 

Blank Shape Design – Influence of the Geometry 

Definition 
 

 
A numerical procedure for the blank shape design is described 

and studied. Considering the proposed methodology, the design 

of a carter blank is presented. The other main objective is the 

study of the influence of the initial geometry definition in the 

optimization process. This study is performed considering the 

NURBS formulation to model the blank upper surface that will be 

changed during the optimization process. 

 

 

 

 

11.1   Introduction 

The interest of the stamping industry in numerical simulation of sheet metal forming, 

including inverse engineering approaches, is increasing. This fact occurs mainly because trial and 

error design procedures, commonly used in the past, are no longer economically competitive. The 

use of simulation codes is currently a common practice in the industrial forming environment, as 

the results typically obtained by means of Finite Element Method (FEM) software codes are well 

accepted by both the industrial and scientific communities. 

In general terms, sheet metal forming is a complex deformation process controlled by 

parameters such as blank shape, tools’ geometry, sheet thickness’ values, blank holding force, 

friction, etc. [1]. Due to its complexity, and the higher combination level of all these input 

variables, optimization procedures are a fundamental tool in the proper design of the process 

parameters, accounting for the prediction and correction of undesirable forming defects such as 

fracture, springback, wrinkling, shape deviations and unbalanced residual stresses [2].  
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Within this context, the initial blank shape can be set as one of the most important process 

parameters to be considered, with a direct influence on the quality of the finished part. In this 

sense, accounting for an initial shape design procedure can effectively reduce the final cost and 

the product development time associated with the plastic forming operations [2]. The optimum 

blank shape improves as well the deep drawing quality, thickness distribution, formability of the 

part and minimizes the forming defects [3]. Therefore, many initial blank design methodologies 

have been reported in the literature to determine optimum initial blank shape profiles for diverse 

constraints and objective functions [1]. It is possible to categorize some of these methods in 

deformation path iteration approaches [4], backward tracing methods [5-7], ideal forming [4,8], 

inverse approach (IA) [2,3,9,10], slip line field method [11-14], geometrical mapping [15], 

sensitivity analysis method [16,17], and, finally, trial and error methods based on FEA [18-22]. 

In order to solve initial blank design optimization problems a methodology that couples a 

FEM software with an optimization algorithm is needed. It is then necessary to develop an 

interface that connects both software’s [23]. This connection should be performed considering a 

stage called geometry parameterization and discretization, where the optimization variables that 

define the geometry are transformed into nodes (and elements) in order to be properly used in 

the numerical simulation 

The shape (geometry) of three-dimensional pieces can be defined by their surfaces. 

Therefore, shape optimization or initial geometry problems can be reduced to surface definition 

optimization problems where optimization variables are defined concerning the selected surface 

type. The mathematical surface representation can be performed explicitly, implicitly or 

parametrically. The non-uniform rational B-spline (NURBS) surfaces are parametric surface 

representations, such as Bézier surfaces, that can be defined by a relatively small set of variables 

(control vertices) and are appropriate to this kind of problem [24]. Nevertheless, their use and 

definition can still influence the final optimized result. Therefore, in the present work this 

approach is adopted, and the sensitivity of the obtained results to the parametric surface is 

studied for initial geometry problems [23]. Doing so, the superplastic forming of a metallic carter 

[1] is used as benchmark problem, considering four distinct NURBS control vertices distributions 

and an improved objective function, and leading to a more robust and comprehensive approach 

when compared to preliminary results by the authors [23]. Although being a conceptual problem, 

the idea is that it could drive the formulation and systematization of a mathematical inverse 

methodology that could be extrapolated to other industrial benchmarks. 

 

11.2   Mechanical problem 

An important problem in sheet metal forming is the design of the initial blank geometry, with 

interest in studying the influence of the initial geometry on the optimization process. In order to 

perform this study, the case study of a superplastic forming of a carter [25] was selected.  

 In Figure 11.1 it is possible to observe the geometry of the die and the metal blank 

considered in the present work.  
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          a)                                                                     b) 

Figure 11.1 - a) Blank and b) die geometry definitions [19]. 

 

The material used in the blank is assumed to have an elasto-viscoplastic behaviour, with 

properties that roughly represent the 2004 based commercial superplastic aluminium alloy Supral 

100 (Al-6Cu-0.4Zr) at a temperature of 470 °C. The material presents a Young’s modulus of about 

71 GPa and a Poisson’s ratio of 0.34. The flow stress is assumed to follow a power law strain 

hardening function, given by [26]: 

                           
 

                                                               

where  ,   and   are material parameters equal to 3.41x10-11, 2 and 0, respectively. Also       

represents the uniaxial equivalent creep strain rate and is equal to  
           ,     is the uniaxial 

equivalent deviatoric stress and      is the equivalent creep strain. 

For this problem, the blank thickness was initially considered uniform and equal to 4 mm. A 

maximum pressure of 100 MPa was considered. Other technological variables were not 

considered in the scope of the present example.  

With this scenario, after the whole blank is formed it is possible to verify that the strain 

fields are not uniform in the whole surface, then leading to a non-homogeneous thickness 

distribution in the final geometry (Figure 11.2). This non-uniform thickness distribution can lead to 

thinning zones where subsequent rupture is prone to happen. 

 
Figure 11.2 -  Final thickness distribution of the FE analysis. 
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To avoid this problem, and in the context of the inverse methodology proposed in the 

present work, an initial (undeformed) blank with non-uniform thickness is conceptually proposed 

in order to obtain a regular thickness profile of the final component, even with non-homogeneous 

strains. This non-uniform thickness blank, a tailored-blank, can be achieved by means of, for 

instance, metal casting (foundry) or forging operations. Therefore, the final uniform thickness 

profile can be defined a-priori and set up to a specific value which, for this study, was chosen to 

be equal to 4 mm. 

 

11.3   Sensitivity analysis on numerical parameters 

A sensitivity analysis on the numerical parameters of the process assumes an important role on 

the understanding and improvement of a modelling process, since it is essential to determine the 

influence of such parameters, in order to improve the results [27]. In this section two sensitivity 

studies are presented, namely, the influence of the finite element size in the results of the 

numerical simulation of forming process, as well as the influence of the blank surface definition in 

the optimization process. 

 

11.3.1 FE mesh size 

The chosen finite element size is a numerical parameter that, usually, has a noticeable influence 

on the solution outcome. A finer mesh can improve the results accuracy when compared to a 

coarse mesh, however it is computationally more expensive. Therefore, an optimum balance 

between the finite element size and the computational requirements should be achieved [27]. 

To perform the present analysis, the forming process was carried out with six different 

meshes that differ on the total number of elements for the discretization of the blank mesh. 

Distinct meshes consisting of 1845, 2750, 3300, 5032, 6478 and 7380 elements with uniform 

distribution were considered, with one element through the thickness direction. The element 

type considered was C3D8 (8-node, trilinear hexahedral with full integration) [26]. 

Figure 11.3 shows the evolution of the pressure needed for the blank forming as a function 

of the z-displacement (forming direction), as measured at the blank geometric centre.     

Figure 11.4 shows the pressure needed for the maximum z-displacement with the number 

of finite elements and Figure 11.5 represents the simulation CPU time with the number of finite 

elements. 

Considering the graph from Figure 11.3, it is possible to conclude that the influence of the 

element size in the applied pressure have no significant difference for the studied meshes. The 

pressure needed to achieve the maximum displacement seems to have converged considering the 

results from Figure 11.4. However, it was for meshes 2 and 4 that less pressure was needed in 

order to achieve the same displacement. Based on this fact, and from the analysis of Figure 11.5 

(where it is noticeable that the CPU time increases with the number of elements), mesh 2 was 

chosen as the reference one to be adopted in this work. The mesh 2 has 55x50x1 (2750) 

elements, respectively in the highest, lowest dimension and thickness. 
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Figure 11.3 - Evolution of the applied pressure for different meshes in the carter forming process. 

 

 

 

Figure 11.4 - Influence of the number of finite elements in the pressure needed for the maximum 
displacement. 
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Figure 11.5 - Simulation CPU time with the number of finite elements. 

 

11.3.2 Initial geometry definition 

In order to understand the initial geometry influence in the optimization process the blank upper 

surface was defined by means of a NURBS surface, where the z-coordinates of specific NURBS 

control vertices were taken as optimization variables.  

Considering the symmetry conditions of this problem, only one quarter of the die and the 

blank was considered during the FE simulation. The blank mesh was achieved in order to have a 

good description of the mechanical problem allied to the less CPU time for the FE simulation 

(direct problem), as detailed in the previous section. An efficient combination of these two factors 

is important in this sort of problems in order to reduce the time required to solve the inverse 

problem.  

Regarding the initial geometry influence, four different studies were performed. These 

studies differ in the number of control vertices that formulates the NURBS surface, thus leading to 

different locations of the NURBS control vertices. The studies in the present work considered 9, 

16, 25 and 36 optimization variables, corresponding to 16, 25, 36 and 49 control vertices, 

respectively, in the NURBS surface formulation. In all studies, the distribution of the control 

vertices was considered to be uniform in the mesh, as seen in Figure 11.6. The control vertices 

located in the free edges of the blank (as an example for the first study 

d4,d8,d12,d13,d14,d15,d16) are not optimized in this example. A uniform open knot vector was 

assumed and the weighting factors     were considered to be equal to one in the formulation of 

the NURBS surface. 

This parametric definition allows for a sensitivity study focusing in the influence of the 

number and the localization of the control vertices in the optimization process.   
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Figure 11.6 -  NURBS control vertices distribution: a) 16 control vertices, b) 25 control vertices, c) 36 control 

vertices and d) 49 control vertices. 

The algorithm applied in the NURBS surface implementation is listed in Table 11.1. 

 

11.4   Principle of the blank optimization procedure 

The presented optimization procedure was performed using a combination of a finite element 

commercial program and an optimization software code. The FE analysis was performed with 

Abaqus® [26], while the optimization process was carried out with the SDL optimization software 

[28]. The communication between these two programs was ensured by a interface developed in 

FORTRAN, where the new geometry is parameterized and then the relevant input variables 

written in the finite element input file. This numerical procedure can run with no operator 

intervention once it has started. Figure 11.7 illustrates the numerical procedure performed in 

order to achieve the optimum blank shape, which is based on inverse and incremental approach 

in combination with the optimization algorithm. 
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Table 11.1 - NURBS algorithm used in the carter forming process [18]. 

Specify the number of control vertices in the   and   directions. 

Specify the order of the surface in each of the   and   directions. 

Specify the number of isoparametric lines in each of the   and   directions. 

Specify the control net. 

Calculate the uniform open knot vector in the   direction. 

Calculate the uniform open knot vector in the   direction. 

For each parametric   value  

Calculate the basis functions          

For each parametric value   

Calculate the basis functions        . 

Calculate the Sum function. 

For each control vertex in the   direction 

For each control vertex in the   direction 

Calculate the surface point       . 

end loop 

end loop 

end loop 

end loop 

 

 
Figure 11.7 - Initial blank shape optimization procedure. 

The initial process parameters (tools geometry, mechanical properties of the blank sheet, 

blank holder force, etc.) are constant during the optimization process. Also, and as stated before, 
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an initial value for the blank thickness is given (4 mm) which, when combined with the NURBS 

surface formulation, will allow to iteratively re-design the initial blank shape. 

The parameterized initial blank shape is then exported to the FE code Abaqus® in order to 

perform the numerical simulation of the stamping plastic forming process, in this case with the 

use of an implicit algorithm (Abaqus® Standard). After the first simulation, the calculation of the 

deviations between desired and modelled part is performed considering the objective function. If 

the stopping criterion is achieved then all the process could be stopped and the optimum initial 

blank shape is assumed to have been found. Otherwise the blank shape is modified through the 

combination of the NURBS surface formulation and the optimization algorithm. Afterwards, the 

new blank is remeshed and used for the second simulation procedure. The same calculation is 

repeated for the following steps until the stopping criterion is finally achieved. 

The success of the optimization procedure strongly depends on the correct definition of the 

objective function, which turns to be essential to the efficient determination of the optimization 

variables effectively minimizing the objective function [28]. One of the most used objective 

functions consists on the sum of squares and, for this specific case the problem can be defined as: 

               
          

        
   

       
                                                                   

                                                                                                                                                       

in which  
      

  is the number of surface nodes,    are the observable relevant variables (in the 

present context, the final thickness of each element of the blank) and      corresponds to the 

optimum (required) final thickness (that is 4 mm). Also,      is the set of the optimization variables 

that represent the initial thickness of the blank, i.e. the thickness before the forming process. 

Figure 11.8 shows the procedure adopted for the final thicknesses calculation.  

In this work, a Levenberg-Marquardt gradient algorithm [29] was used to minimize the 

objective function. Considering the least-squares type of the LM algorithm, the objective function 

choosen (sum of squares, where                        ) guarantees the convergence of the 

optimization problem. It was considered as the stooping criterion a maximum number of 300 

iterations or, as an alternative, a stagnation value of 1x10-30, in terms of objective function value 

between each iteration. The objective function sensibilities are calculated by means of forward 

finite differences and the perturbation size considered is 5x10-3. 

 

11.5   Results and discussion 
 

In this section the results that synthesize the current study are presented and discussed. In Figure 

11.9 it is possible to observe the evolution of the normalized objective function value with the 

iteration number, for the different analyses. In Figure 11.10 it is presented the evolution of the 

optimization variables and the objective function with the optimization process, for the study 

with 9 optimization variables. 
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Figure 11.8 - Final thicknesses calculation. 

 

 

Figure 11.9 - Evolution of the normalized objective function value. 

 

In Table 11.2 the values of the optimum variables and the respective objective function, for 

each study, are presented.  

Regarding the results presented in Figure 11.9, as well as the values of the objective 

function from Table 11.2, it is possible to verify that the four studies considered have achieved 

good results in terms of objective function values. The objective function values show decreases 

that vary from 69.7%, for the 25 optimization vertices, to 81.2%, for the 16 optimization vertices, 

relative to the initial trial simulation (considering a blank with a uniform 4 mm thickness). 

It is possible to observe that the best value of objective function was achieved for the study 

with 16 optimization variables. However, for this study, the optimization method has needed 
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twice as many iterations to reach stagnation. Also, a tendency for the evolution of the objective 

function, with the optimization variables number, was not clearly verified.  

 

Figure 11.10 - Evolution of the optimization variables z-coordinate for the study with 9 
optimization variables. 

 

Table 11.2 - Values of the optimization variables (in millimetres) and the objective function for the best 

iteration. 

Op.var. d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 d12 d13 ... 
9vertices 5.2448 5.9266 5.4551 - 5.1874 6.2075 5.659 - 5.5125 5.5826 5.9584 - - ... 

16vertices 5.1889 5.2901 5.5974 5.3058 - 5.5495 6.0632 6.4116 5.2089 - 5.5134 4.4786 5.8311 ... 

25vertices 3.7866 4.4368 6.0688 4.3885 3.5395 - 4.6669 5.9201 6.8653 6.1069 4.8017 - 6.2191 ... 

36vertices 4.5273 4.0089 4.7542 4.7814 5.6966 6.0772 - 5.0606 4.5223 7.8016 6.6657 4.9714 4.9598 ... 

 

d14 d15 d16 d17 d18 d19 d20 d21 d22 d23 d24 d25 d26 ... 
- - - - - - - - - - - - - ... 

5.4825 - 4.9893 6.0191 5.1159 5.5671 - - - - - - - ... 

5.5936 5.0101 5.777 5.7575 - 6.0147 5.0224 5.8394 3.2367 6.8665 - 4.4438 4.2894 ... 

4.0746 7.4977 4.8431 4.2511 6.2052 - 6.7544 4.3991 5.3244 6.8045 5.3746 5.5439 - ... 

 

d27 d28 d29 d30 d31 d32 d33 d34 d35 d36 d37 d38 d39 F (%) 

- - - - - - - - - - - - - 22.4 

- - - - - - - - - - - - - 18.8 

5.7769 4.9559 5.1153 - - - - - - - - - - 30.3 

4.6045 4.0831 5.9371 4.002 5.6371 4.0436 - 6.6808 4.4406 6.3958 5.1132 6.1315 3.7955 23.3 

 

The evolution of the optimization variables with the iteration number was presented only 

for the study considering 9 optimization variables (see Figure 11.10), being the evolution of the 
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optimization variables for the other studies similar. It is possible to observe that the highest 

variation in this values occur in the first iterations, leading to the highest decrease of the objective 

function. It is also possible to observe that after these initial iterations the optimization variables 

remain approximately constant until approximately iteration 85, where the optimization variables 

change significantly.  However, this variation didn´t lead to considerable changes in the objective 

function value. 

Figure 11.11 and Figure 11.12 presents the contour graphs for the thickness of the blank (in 

millimetres). Both initial and final thicknesses are presented for the best iteration of each study. 

In Figure 11.13, the blank thickness range evolution with the number of optimization variables is 

presented. Thickness range was considered to be the difference between the higher and the 

lower values of thickness for a specific blank. 

 

 

 
                                       (a)                                                                                          (b) 

 
                                       (c)                                                                                          (d) 

Figure 11.11 -  Blank thickness of the best iteration for the: a) initial and b) final blank for 9 optimization 

variables, c) initial and d) final blank for 16 optimization variables. 
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                                      (e)                                                                                          (f) 

 
                                      (g)                                                                                          (h) 

Figure 11.12 - Blank thickness of the best iteration for the: e) initial and f) final blank for 25 optimization 
variables, g) initial and h) final blank for 36 optimization variables. 

 

 
Figure 11.13 - Blank thickness range of the best iteration. 
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From the results presented in Figure 11.11 and Figure 11.12, it is possible to conclude that 

increasing the number of optimization variables and, consequently, the number of control 

vertices allows the formulation of a more complex shape for the initial surface of the blank. 

Furthermore, in Figure 11.13 it is possible to observe that if the number of optimization variables 

increases, then the thickness range also increases for the initial and final blanks. This fact was 

expected considering that increasing the optimization variables the complexity of the surface can 

also increase. 

Considering the final thickness of the optimized blanks (Figure 11.11 and Figure 11.12 b), d), 

f) and h)) and comparing those with the final thickness of the blank that have an initial thickness 

of 4 mm (Figure 11.2) it is possible to observe that the minimum thickness value had increased for 

all the optimized blanks. This minimum point is located in the same region for the four studies, as 

it is possible to observe in Figure 11.11 and Figure 11.12.  

It was for the study considering 9 optimization variables that the highest values of the 

minimum thickness were observed. However, comparing this fact with the results concerning the 

objective function value evolution, it is seen that when dealing with 16 optimization variables 

then a minimum value of objective function was achieved. 

It is possible to conclude that the increase from 9 to 16 optimization variables leads to 

better results, when considering the value of the objective function. The increase to 25 and 36 

optimization variables, on the other side, has lead to a more complex and flexible initial surfaces 

of the blank. However, and taken into account the objective function results, no improvements 

were inferred. This fact may occur due to the fact that, when increasing the number of 

optimization variables, the vertices are not granted to be located in the same places for the 

distinct meshes, considering that they can be in more critical areas. 

These results and discussion are for this specific problem. Each stamping problem has 

different thinning zones where subsequent rupture is prone to happen, and therefore ideal 

optimization variables location varies between different problems. For other mechanical 

problems this method can be considered, however the initial geometry definition should be 

analysed in detail.  

 

11.6   Conclusions 
 

A sensitivity study was performed considering the influence of the finite element mesh size in the 

forming process and the initial geometry definition in the optimization process.  Considering the 

mesh studied, a blank mesh that has a good description of the mechanical problem allied to the 

less CPU time for the FE simulation was achieved. 

The influence of the geometry definition in a carter forming process was presented. Four 

studies were performed with differences in the number and location of control vertices that 

formulate the NURBS surface. The studies considered 9, 16, 25 and 36 optimization variables that 

correspond respectively to 16, 25, 36 and 49 control vertices in the NURBS surface formulation. In 

all the studies the location of the control vertices were considered to be uniform in the mesh. The 

four studies had achieved good values for objective function, having a minimum decrease of 

69.7% for the 25 optimization vertices and a maximum decrease of 81.2% for the 16 optimization 
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vertices, relative to the initial simulation that considered a blank with a uniform 4 mm thickness. 

It was for the study with 16 optimization variables that the best value of objective function of 

18.8% was achieved.  
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Chapter 12 
 

 

Shape Optimization of a Forging Process 
 

 

 

 
The shape optimization of a two-stage forging process is 

presented. In order to achieve a straight cylinder after the forging, 

two different approaches are analyzed. In the first one, the initial 

geometry of the cylinder is optimized and, in the other one, the 

shape of the first stage tool is optimized. To parameterize the free 

surface of the cylinder different methods are presented. 

Furthermore, in order to define the tool in the last example, also 

different parameterizations are presented. 

 

 

 

 

12.1 Introduction 

As in all mechanical processes, the achievement of final high-quality products is the keyword in 

metal forging processes [1]. Forging process belongs to the metal forming process category and, 

in this process, the change in the shape of the workpiece is made through the application of 

compressive forces [2]. Generally, in the design of a forging process, the only factors that are 

known are the material and the final shape of the component. Therefore, the engineer will have 

to design a process that makes the desired part subjected to limitations of shape, properties, cost, 

time, etc.. If the final component shape is complex, the workpiece won´t be deformed in one 

stage [2]. To solve this problem, two different approaches can be considered: the initial shape 

optimization of the workpiece or the optimization of a preform tool. The advantages of the initial 

shape optimization process were mentioned in the previous chapter. The preform tool design 

assumes as the most important step for product quality control [3]. It is considered that a 

reasonable preform tool shape reduces the raw material cost and improves material flow, 
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reducing manufacturing cost and eliminating following processes. Consequently, preform tool 

shape optimization is still of considerable interest [1]. Several works in this preform tool 

optimization thematic can be found in [1,2,4-6].  

The present chapter appears in the tool shape optimization thematic. The mechanical 

problem considered is the two stage forging of a cylindrical billet, one example merely academic, 

however that allows to validate the optimization methodologies that could be applied in real 

optimization processes [7,8]. 

It is well known that after the compression of a cylindrical billet, it gets a barrel shape. This 

phenomenon can be observed in the experimental study carried out by Santos et al. [8]. Aiming to 

avoid this phenomenon and get a straight cylindrical billet after the forging, two different 

approaches are presented. In the first one, the initial geometry of the billet is optimized and in the 

other one the shape of the first stage tool of a two stage forging process is optimized. These two 

inverses methodologies will be presented and discussed. 

 This is a problem that allows to create an inverse methodology to be used in tool 

optimization problems. However, it is known that the barrel shape problem in forging can be also 

technologically controlled by lubrication, by the roughness between the compression plates and 

by the difference of temperatures between the two compression plates, in the case of hot 

forging. When a perfect cylindrical billet, after the forging, is wanted it is also possible to use 

technological processes such as, for instance, precision forging. This process allows the reduction 

or elimination of finishing secondary operations and heat treatments, optimizing the raw material 

used, reducing the energy consumption and reducing or eliminating the costs associated to the 

transformation of the waste [9].   

 

 

12.2 Initial shape optimization of a cylindrical billet in a two stage forging 

process 

 

12.2.1 Mechanical problem 

The present example consists in the compression of an axisymmetric cylindrical billet up to 60% of 

its initial 100 mm height [7,8]. The main mechanical properties of this problem are the same as 

the ones considered in section 6.3.1 and are presented in Table 12.1.  

Table 12.1 - Mechanical properties of the billet [8]. 

Mechanical properties  

Density [kg/m3] 2710 
Young´s modulus [GPa] 71 

Yield stress [MPa] 100 
Poisson´s ratio [-] 0.33 

Friction coefficient [-] 0.1 
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The aim of this example is to modify the initial geometry of the billet in order to achieve a 

straight cylindrical billet after forging. The example is graphically described in Figure 12.1. The 

mesh considered in this problem is presented in Figure 12.2. 

 

Figure 12.1 - Initial geometry optimization of a cylindrical billet [6]. 

 

12.2.2 Objective function definition 

As it was mentioned in previous chapters the optimization procedure strongly depends on the 

correct definition of the objective function. Once again the objective function used was based in 

the work of Igor Grešovnik [7], where the objective function tries to find the minimum difference 

between the billet after the forming process and a straight cylindrical billet. This can be achieved 

by the minimization of the following objective function [7]: 

                
        

   

 

   

  
        

   
  

 

   

                                          

in which    are the coordinates of the nodes on the contact surface of the billet and    are the 

coordinates of the nodes on the free surface of the billet, and   and   are respectively the 

number of nodes on each surface of the billet. The values    and    are the average values of the 

correspondent coordinates and can be computed as: 

    
  

 

 

   

                  
  

 

 

   

                                                           

In the first approach, as the tools are both flats,    is equal to zero. This variable has significance 

for the second approach where the irregular shape of the first tool can conduct to a non-flat 

upper surface of the billet in the end of the forging process. 
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12.2.3 Parameterization influence 

In the present section, the results obtained are presented and also a study of the 

parameterization influence is conducted. In order to minimize the previous objective function, a 

parameterization of the free surface of the billet was performed. A Levenberg-Marquardt 

gradient algorithm was used to minimize the objective function. It was considered that the 

algorithm has converged if a maximum number of 200 iterations or a stagnation value of 1x10- 60 

is achieved. In Figure 12.2 the 21 parameterized nodes are presented. 

 

Figure 12.2 - The 21 parameterized nodes. 

For the optimization process three different methods were used. The first method consists 

in the use of the  -coordinate of the 21 parameterized nodes as optimization variables. The 

results obtained for this method are presented in Figure 12.3 and this method will be referred as 

the set of points method for a better understanding. The initial (gray line) and the final results are 

presented for four different iterations during the optimization process. The iterations presented 

are the first, the optimum iteration and two iterations in between this two.  

Following the same logic, in Figure 12.4 the results obtained considering for the 

parameterization a cubic Bézier curve are presented. In this case the optimization variables are 

the  -coordinates of four points equally spaced in the billet height. These four points are the 

control vertices that define the Bézier curve that passes through the 21 nodes mentioned before. 

This method will be referred as the cubic Bézier method. 

Considering the same logic, in Figure 12.5 it is possible to observe the results when a cubic 

NURBS is considered for the parameterization. In this case, four points are also used, however the 

optimization variables are eight, four  -coordinates and four NURBS weights. This method will be 

referred as the cubic NURBS method. 

In order to compare the results obtained with the three different parameterizations, it is 

possible to observe the evolution of the objective function during the optimization process in 

Figure 12.6 and Figure 12.7. Figure 12.7 has the same information than Figure 12.6, however has a 

zoom where the lowest values in terms of objective function value are reached. In Figure 12.8 it is 

possible to compare the three final geometries obtained. 
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a)                                                                             b) 

 

 

 
c)                                                                            d) 

Figure 12.3 - Initial and final shape for the set of points method: a) iteration 0, b) iteration 22, c) iteration 28 
and iteration 33 (optimum iteration). 
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a)                                                                             b) 

 

 

 
c)                                                                            d) 

Figure 12.4 - Initial and final shape for the cubic Bézier method: a) iteration 0, b) iteration 7, c) iteration 14 

and iteration 20 (optimum iteration). 
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a)                                                                             b) 

 

 

 

 
c)                                                                            d) 

Figure 12.5 - Initial and final shape for the cubic NURBS method: a) iteration 0, b) iteration 7, c) iteration 14 
and iteration 20 (optimum iteration). 
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Figure 12.6 - Evolution of the objective function value in function of the evaluations number. 

 

 
Figure 12.7 - Zoom of the evolution of the objective function value in function of the evaluations number. 
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Figure 12.8 - Final geometries of the cylindrical billet, after forging, for the three methods. 

 

In Table 12.2 and Table 12.3 the main results are presented. In Table 12.3 the results are 

shown for the three methods, considering for the set of points methodology 21 optimization 

variables that are correspondent to the 21   node coordinates. In the case of the cubic Bézier 

methodology, the four optimization variables are the four control vertices, and in the cubic 

NURBS methodology the eight optimization variables are the four control vertices and the four 

correspondent weights.  

 

 

Table 12.2 - Results for the three methods considered in the optimization of the initial cylindrical billet. 

Parameterization 

method 

Optimum 

objective function 

value 

Number of 

iterations until 

the optimum 

CPU time 

until the 

optimum1  

[s] 

Set of points 8.2729x10-7 35 525 

Cubic Bézier 2.0x10-9 21 315 

Cubic NURBS 1.95x10-9 43 627 

 

 

 

 

                                                           
1
 CPU time expended in an Intel® Core

TM
 2 Quad CPU Q 9400 at 2.66GHz with 3.25GB of  RAM. 
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Table 12.3 - Optimum sets for the three methods considered in the optimization of the initial cylindrical 
billet. 

 Set of points 
[m] 

Cubic Bézier 
[m] 

Cubic NURBS 

X1 0.49678 x10
-1

 0.49440 x10
-1

 0.49376 x10
-1

m 

X2 0.49688 x10
-1

 0.49425 x10
-1

 0.49331 x10
-1

m 

X3 0.49701 x10
-1

 0.49780 x10
-1

 0.50151 x10
-1

m 

X4 0.49710 x10
-1

 0.51390 x10
-1

 0.51321 x10
-1

m 

X5 0.49731 x10
-1

  0.99889 

X6 0.49758 x10
-1

  1.00086 

X7 0.49783 x10
-1

  1.002070 

X8 0.49828 x10
-1

  1.001657 

X9 0.49871 x10
-1

   
X10 0.49935 x10

-1
   

X11 0.50001 x10
-1

   
X12 0.50094 x10

-1
   

X13 0.50087 x10
-1

   
X14 0.50220 x10

-1
   

X15 0.50473 x10
-1

   
X16 0.50542 x10

-1
   

X17 0.50732 x10
-1

   
X18 0.50888 x10

-1
   

X19 0.51132 x10
-1

   
X20 0.51362 x10

-1
   

X21 0.50725 x10
-1

   

 

12.2.4 Discussion and conclusions 

Considering the presented results, it is possible to observe that the minimum value in terms of 

objective function was reached for the cubic NURBS method and is 1.95x10-9. However, this is the 

most expensive method when it is considered the computational time dispended to reach the 

minimum. 

Comparing the cubic Bézier method with the cubic NURBS method it is possible to verify 

that both methods reach close values of objective function and the cubic Bézier method needs 

only approximately half of the time than the cubic NURBS method to reach the minimum. This fact 

may occur because the cubic NURBS method has twice optimization variables, that allows a more 

flexible curve at the cost of much more time for finding the optimum. In geometric terms, 

considering the results presented in Figure 12.4 and Figure 12.5, it is possible to observe that for 

these two approaches the final shape of the billet is a straight billet, being this the main objective 

of this procedure.   

The results obtained with the set of points method reach also quite good results although 

not so good as the other methods. This fact is due to the simple parameterization method used. 

This fact can be observed in Figure 12.3, where it is possible to see that the initial free surface of 

the billet is not smooth leading to a non-straight surface after the forging. 
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In conclusion, for a specific problem, if a method that only focus in the better results of the 

objective function is needed, the cubic NURBS method should be selected. However, if the 

computer efficiency should be also accounted for, the cubic Bézier method should be chosen.  

 

12.3 First stage tool optimisation in a two stage forging process 

12.3.1 Mechanical problem 

The main difference between this mechanical problem and the previous one is the method used 

to find the straight cylindrical billet after the forming process. In this problem the shape of the 

initial billet remains constant during all the simulations. However, to achieve a straight cylindrical 

billet after the forming process, a shape optimization process of the first stage tool was applied. 

The second tool is a flat tool that gives the final shape of the billet as it is shown in Figure 12.9. 

 

Figure 12.9 - Schema of the second approach. 

 

The material properties for this problem remain the same as considered for the previous 

mechanical problem. Table 12.4 and Figure 12.10 present the geometry of this problem. The RP 

marked in Figure 12.10 is the reference point, i.e., is a point which the tool is assigned and the 

displacement conditions of the tool are applied to this point. 

 

Table 12.4 - Tool and billet dimensions.  

Dimensions 

Tools radius,   [m] 0.075 

Reference point position,    [m] 0.030 

Optimization zone,    [m] 0.015 

Cylinder height,   [m] 0.050 

Cylinder radius,   [m] 0.050 

 

 

  

 

                                                                                                          Figure 12.10 - Geometry problem. 
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12.3.2 Optimization procedure 

In the present problem the main objective is to optimize the first tool shape. Two different 

parametric definitions of the curve were considered, such as a Bézier cubic curve and a NURBS 

cubic curve. Both curves were validated in the chapter 6. For both approaches the optimization 

procedure first starts with an initial set of parameters that formulate the parametric curve. This 

parametric formulation is implemented in Abaqus® by means of the RSURFU user subroutine. 

Then, the Abaqus® simulation of the two stage forging problem is performed. Subsquently, the 

results are analysed and the deviations between the desired and the numerical data are 

computed considering the previous objective function. After this calculation, the stopping criteria 

are analysed, ending the process if verified. However, if the stopping criteria aren´t verified a new 

set of parameters is considered in the parametric definition of the first tool and this procedure 

cyclically continues until the stopping criteria are achieved. This process is presented in the 

flowchart of Figure 12.11. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12.11 - Flowchart of the presented forging optimization process. 
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12.3.3 Results for the Bézier subroutine  

After the Bézier RSURFU validation, the optimization of the first stage tool was performed. Four 

different approaches were studied. The first one, called 4 optimization variables have four 

optimization variables that are the  -coordinates of the four control points of the cubic Bézier 

curve. For this case the displacement of the first stage tool is constant and equal to -0.025m. The 

other three approaches use five optimization variables: four  -coordinates of the control points 

and the displacement of the first tool. The difference between these three approaches is the 

starting value of the displacement variable ( ) in the optimization process. The values considered 

were -0.015m, -0.020m and -0.025m. This study considering three different values of initial 

displacement was considered in order to understand how the initial displacement of the first tool 

influences all the optimization process. In order to perform this optimization process a Levenberg-

Marquardt gradient algorithm was used to minimize the objective function. The objective 

function is the same as the one defined in section 12.2.2 section. A maximum number of 200 

iterations or a stagnation value of 1x10-60 are considered as stopping criteria. 

 In Figure 12.12 the evolution of the objective function for the four different approaches is 

represented and Figure 12.13 is a zoom from Figure 12.12 that allows a better view of the 

evolution of the objective function for the four approaches.  

 

 

Figure 12.12 - Evolution of the objective function value in function of the evaluations number. 
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Figure 12.13 - Evolution of the objective function value in function of the evaluations number. 

 

From Figure 12.14 to Figure 12.29 the results obtained for each method, in different 

iterations, during the optimization process are presented.  The von Mises equivalent stress is also 

ploted. 

 

 

                   a)                                                     b)                                                         c) 

Figure 12.14 - Initial and final shapes of the billet and the tools for the 4 optimization variables in 
 iteration 0. 
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                   a)                                                     b)                                                         c) 

Figure 12.15 - Initial and final shapes of the billet and the tools for the 4 optimization variables in 
 iteration 10. 

 
                   a)                                                     b)                                                         c) 

Figure 12.16 - Initial and final shapes of the billet and the tools for the 4 optimization variables in 
 iteration 18. 

 
                   a)                                                     b)                                                         c) 

Figure 12.17 - Initial and final shapes of the billet and the tools for the 4 optimization variables in  
iteration 26. 
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                   a)                                                     b)                                                         c) 

Figure 12.18 - Initial and final shapes of the billet and the tools for the 5 optimization variables in iteration 0 
with initial displacement of -0.015 m. 

 
                   a)                                                     b)                                                         c) 

Figure 12.19 - Initial and final shapes of the billet and the tools for the 5 optimization variables in iteration 
25 with initial displacement of -0.015 m. 

                   a)                                                     b)                                                         c) 

Figure 12.20 - Initial and final shapes of the billet and the tools for the 5 optimization variables in iteration 
55 with initial displacement of -0.015 m. 
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                   a)                                                     b)                                                         c) 

Figure 12.21 - Initial and final shapes of the billet and the tools for the 5 optimization variables in iteration 
83 with initial displacement of -0.015 m. 

 
                   a)                                                     b)                                                         c) 

Figure 12.22 - Initial and final shapes of the billet and the tools for the 5 optimization variables in iteration 0 
with initial displacement of -0.02 m. 

 

                   a)                                                     b)                                                         c) 

Figure 12.23 - Initial and final shapes of the billet and the tools for the 5 optimization variables in iteration 
15 with initial displacement of -0.02 m. 
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                   a)                                                     b)                                                         c) 

Figure 12.24 - Initial and final shapes of the billet and the tools for the 5 optimization variables in iteration 
30 with initial displacement of -0.02 m. 

                   a)                                                     b)                                                         c) 

Figure 12.25 - Initial and final shapes of the billet and the tools for the 5 optimization variables in iteration 
46 with initial displacement of -0.02 m. 

                   a)                                                     b)                                                         c) 

Figure 12.26 - Initial and final shapes of the billet and the tools for the 5 optimization variables in iteration 0 
with initial displacement of -0.025 m. 
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                   a)                                                     b)                                                         c) 

Figure 12.27 - Initial and final shapes of the billet and the tools for the 5 optimization variables in iteration 
10 with initial displacement of -0.025 m. 

                   a)                                                     b)                                                         c) 

Figure 12.28 - Initial and final shapes of the billet and the tools for the 5 optimization variables in iteration 
20 with initial displacement of -0.025 m. 

                   a)                                                     b)                                                         c) 

Figure 12.29 - Initial and final shapes of the billet and the tools for the 5 optimization variables in iteration 
32 with initial displacement of -0.025 m. 
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In Figure 12.30 to Figure 12.33 the shape of the first tool is presented for some iterations 

during the optimization process. 

In Figure 12.34 the optimum first tool shapes for the four approaches considered are 

represented. 

In Table 12.5 and Table 12.6 the most important results obtained with the different four 

approaches for the optimization with the Bézier cubic curve implementation are systematized. 

 

 
Figure 12.30 - Shape of the first tool for the 4 variables approach. 

 

Figure 12.31 - Shape of the first tool for the 5 variables approach with starting displacement of -0.015 m. 
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Figure 12.32 - Shape of the first tool for the 5 variables approach with starting displacement of -0.02 m. 

 

 

 

Figure 12.33 - Shape of the first tool for the 5 variables approach with starting displacement of -0.025 m. 
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Figure 12.34 - Optimum shape of the first tool for the 4 approaches considered. 

 

 

Table 12.5 - Results for the Bézier RSURFU implementation. 

Parameterization 

method 

Optimum 

objective function 

value 

[-] 

Number of 

iterations until 

the optimum 

CPU time 

until the 

optimum2 

 [s] 

4 variables 8.8827x10-8 26 1294 

5 var. 0.015 1.8950x10-7 83 4133 

5 var. 0.02 2.2235x10-7 46 2290 

5 var. 0.025 6.1434 x10-8 32 1594 

 

 

Table 12.6 - Best parameters sets for the Bézier RSURFU implementation. 

Parameterization 

method 
x1 [m] x2 [m] x3 [m] x4 [m] x5 [m] 

4 variables 0.055 0.055 0.055 0.05918774 - 

5 var. 0.015 0.055 0.055 0.055 0.06559008 -0.02160044 

5 var. 0.02 0.055 0.055 0.06299601 0.06302654 -0.02105060 

5 var. 0.025 0.05560831 0.055 0.05542591 0.05996363 -0.025 

 

                                                           
2
 CPU time expended in an Intel® Core

TM
 2 Quad CPU Q 9400 at 2.66GHz with 3.25GB of  RAM 
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12.3.4 Results for the NURBS subroutine  

After the NURBS RSURFU validation (see chapter 6) the optimization of the first tool shape was 

performed. The shape of the first tool was implemented considering the NURBS RSURFU (see 

Table A2 in Appendix). 

Four different approaches were considered, being the first one, called 8 optimization 

variables. This approach have 8 optimization variables that are the 4  -coordinates of the control 

points and the 4 correspondent weights, being the descendent displacement of the first stage tool 

constant and equal to 0.025 m. The other three approaches have 9 optimization variables, the 8 

considered in the last method, and in addition, the displacement of the first stage tool. The 

difference between these three approaches is the starting value of the displacement in the 

optimization process. The starting displacement ( ) considered were -0.015 m, -0.020 m and -

0.025 m. In order to perform this optimization process a Levenberg-Marquardt gradient algorithm 

was used to minimize the objective function. The objective function considered was defined in 

section 12.2.2. As convergence conditions, it was considered a maximum number of 200 

iterations or a stagnation value of 1x10-60. In Figure 12.35 the objective function value in function 

of the evaluations number for the four different approaches is represented. Figure 12.36 shows a 

zoom of Figure 12.35 that allows to see how the objective functions behave near the zero. 

  

 
Figure 12.35 - Objective function value in function of the evaluations number. 
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Figure 12.36 - Objective function value in function of the evaluations number. 

 

 

The results obtained for each method, in different iterations during the optimization 

process, can be seen in figures 12.37-52. The von Mises equivalent stress can also be observed in 

these figures. 

 

 

 
                   a)                                                        b)                                                            c) 

Figure 12.37 - Initial and final shapes of the billet and the tools for the 8 optimization variables in  
iteration 0. 
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                   a)                                                        b)                                                            c) 

Figure 12.38 - Initial and final shapes of the billet and the tools for the 8 optimization variables in 
 iteration 11. 

 
                   a)                                                        b)                                                            c) 

Figure 12.39 - Initial and final shapes of the billet and the tools for the 8 optimization variables in 
 iteration 20. 

 
                   a)                                                        b)                                                            c) 

Figure 12.40 - Initial and final shapes of the billet and the tools for the 8 optimization variables in 
 iteration 36. 
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                   a)                                                        b)                                                            c) 

Figure 12.41 - Initial and final shapes of the billet and the tools for the 9 optimization variables in iteration 0 
with initial displacement -0.015 m. 

 
                   a)                                                        b)                                                            c) 

Figure 12.42 - Initial and final shapes of the billet and the tools for the 9 optimization variables in iteration 
11 with initial displacement of -0.015 m. 

 

                   a)                                                        b)                                                            c) 

Figure 12.43 - Initial and final shapes of the billet and the tools for the 9 optimization variables in iteration 
14 with initial displacement of -0.015 m. 
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                   a)                                                        b)                                                            c) 

Figure 12.44 - Initial and final shapes of the billet and the tools for the 9 optimization variables in iteration 
16 with initial displacement of -0.015 m. 

                   a)                                                        b)                                                            c) 

Figure 12.45 - Initial and final shapes of the billet and the tools for the 9 optimization variables in iteration 0 
with initial displacement of -0.02 m. 

                   a)                                                        b)                                                            c) 

Figure 12.46 - Initial and final shapes of the billet and the tools for the 9 optimization variables in iteration 
15 with initial displacement of -0.02 m. 
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                   a)                                                        b)                                                            c) 

Figure 12.47 - Initial and final shapes of the billet and the tools for the 9 optimization variables in iteration 
30 with initial displacement of -0.02 m. 

                   a)                                                        b)                                                            c) 

Figure 12.48 - Initial and final shapes of the billet and the tools for the 9 optimization variables in iteration 
43 with initial displacement of -0.02 m. 

                   a)                                                        b)                                                            c) 

Figure 12.49 - Initial and final shapes of the billet and the tools for the 9 optimization variables in iteration 0 
with initial displacement of -0.025 m. 
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                   a)                                                        b)                                                            c) 

Figure 12.50 - Initial and final shapes of the billet and the tools for the 9 optimization variables in iteration 
25 with initial displacement of -0.025 m. 

                   a)                                                        b)                                                            c) 

Figure 12.51 - Initial and final shapes of the billet and the tools for the 9 optimization variables in iteration 
55 with initial displacement of -0.025 m. 

                   a)                                                        b)                                                            c) 

Figure 12.52 - Initial and final shapes of the billet and the tools for the 9 optimization variables in iteration 
84 with initial displacement of -0.025 m. 
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The shape of the first tool for the different iterations during the optimization process is 

presented in figures 13.52 to 13.55. 

In Figure 12.57 the optimum first tool shapes for the four approaches considered are 

represented. 

The most significant results obtained with the different four approaches are systematized in 

Table 12.7 and Table 12.8.  

 

 
 

Figure 12.53 - Shape of the first tool for the 8 variables approach. 

 
 

 
Figure 12.54 - Shape of the first tool for the 9 variables approach with starting displacement of -0.015 m. 
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Figure 12.55 - Shape of the first tool for the 5 variables approach with starting displacement of -0.02 m. 

 

 

 

 

Figure 12.56 - Shape of the first tool for the 5 variables approach with starting displacement of -0.025 m. 
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Figure 12.57 - Optimum shape of the first tool for the 4 approaches considered. 

 

 

Table 12.7 - Results for the NURBS RSURFU implementation. 

Parameterization 

method 

Optimum 

objective function 

value 

Number of 

iterations until 

the optimum 

CPU time 

until the 

optimum3  

[s] 

8 variables 8.8648x10-8 36 2160 

9 var. 0.015 3.6550x10-5 16 960 

9 var. 0.02 1.0577x10-5 43 2580 

9 var. 0.025 2.0989 x10-7 84 5040 

 

 

12.3.5 Discussion and conclusions 

In Figure 12.12 and Figure 12.13 the evolution of the objective function values in function of the 

evaluations number for the Bézier RSURFU is presented. Considering these results and the ones 

systematized in the Table 12.5 it is possible to conclude that the method with five variables and 

initial displacement of -0.015 was the only method that didn´t lead to good results in terms of 

CPU time expended. However, all the four approaches lead to very good results when considering 

the results in terms of objective function value. When considering the objective function value the 

better results were obtained for the approach with five optimization variables with the starting 

value of displacement of -0.025 m. 

                                                           
3
 CPU time expended in an Intel® Core

TM
 2 Quad CPU Q 9400 at 2.66GHz with 3.25GB of  RAM. 
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Table 12.8 - Best parameters sets for the Bézier RSURFU implementation. 

Parameterization 

method 
x1 [m] x2 [m] x3 [m] x4 [m] x5 [m] 

8 variables 0.055 0.055 0.055 0.05919277 1.000355 

9 var. 0.015 0.055 0.055 0.05645975 0.05618449 1.0 

9 var. 0.02 0.055 0.055 0.06158015 0.06175001 0.9997298 

9 var. 0.025 0.055 0.055 0.05573808 0.05879218 0.9995975 

 

x6 [m] x7 [m] x8 [m] x9 [m] 

1.001272 1.001142 0.9999793 - 

1.0 1.0 1.0 -0.01528399 

1.0 1.0 1.0 -0.02004371 

1.001160 1.002941 1.000853 -0.025 

 

Considering the results obtained, one should choose the approach with five optimization 

variables and -0.025 starting displacement if wants a method that better minimize the considered 

objective function. Furthermore, the approach with four optimization variables should be 

considered in cases that a good balance between the objective function value and the 

computational time is desired. 

In Figure 12.34 is represented the optimum shape of the first tool for the four studies 

conducted. As it was mentioned before all strategies lead to good resukts in terms of objective 

function value, however the optimum shapes are different. This fact shows that this optimization 

problem have a multiplicity of solutions.  

In Figure 12.35 and Figure 12.36 is presented the objective function value in function of the 

evaluations number for the NURBS RSURFU. Considering these results and the ones presented in 

Table 12.7 it is possible to conclude that was for the method with 8 optimization variables that 

better results in terms of objective function value were reached. In this case it was considered 

that it was the 8 variables method that reached better results for a good balance between CPU 

time expended and objective function value. 

With these results it is possible to conclude that the increase of the curve complexity from 

a Bézier curve to a NURBS curve didn´t lead to better results. 

When comparing these results with the ones obtained for the initial geometry optimization 

of the billet it is possible to conclude that the initial geometry optimization of the billet generically 

lead to better results in terms of objective function and is less expensive in terms of 

computational cost. 

As it was verified for the Bézier approach, in the NURBS approach, different optimum first 

tool shapes were obtained for the four methodologies. This fact underlines the existence of 

multiple solutions of the presented optimization problem. 

In Figure 12.58 it is possible to observe a comparison between the better result achieved 

for the tool optimization approach and the one obtained by Igor Grešovnik [7]. In terms of 
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objective function value the results obtained can´t be compared because they are dissimilar. This 

fact may occur because no correct information about the friction coefficient was found. In 

geometric terms both solutions lead to the main objective, reaching a straight cylindrical billet 

after the forging.   

 

 
Figure 12.58 - Results comparison between the better result achieved for the tool optimization approach 

and the one obtained by Igor Grešovnik [7]. 

 

 

References 

[1] Tang Y, Zhou X, Chen J (2008) Preform tool shape optimization and redesign based on neural 

network response surface methodology. Finite Elements in Analysis and Design 44:462-471. 

[2] Castro C, Sousa L, António C, César de Sá J (2001) An efficient algorithm to estimate optimal 

perform die shape parameters in forging. Engineering computations 18:1057-1077. 

[3] Vieilledent D, Fourment L (2001) Shape optimization of axisymmetric preform tools in forging 

using a direct differentiation method. International Journal for Numerical Methods in 

Engineering 52:1301-1321. 

[4] Chenot J, Massoni E, Fourment L (1996) Inverse problems in finite element simulation of metal 

forming processes. Engineering Computations 13:190-225. 



12. Shape Optimization of a Forging Process                                                                                     213 

 
 

[5] António C, Castro C, Sousa L (2004) Optimization of metal forming processes. Computer and 

Structures 82:1425-1433. 

[6] Kleinermann J (2000) Identification parametrique et optimisation des procedes de mise a 

forme par problemes inverses. PhD Thesis. University of Liége (in French). 

[7] Grešovnik I (2000) A general purpose computational shell for solving inverse and optimization 

problems – Applications to metal forming processes. PhD Thesis. University of Wales. 

[8] Santos A, Duarte J, Reis A, Barata da Rocha A, Neto R, Paiva R (1999) Finite element simulation 

of closed die forging for prediction of material behaviour and optimization of process. 

Proceedings of the Second ESAFORM Conference on Material Forming, Portugal. 

[9] Rodrigues J, Martins P (2005) Tecnologia Mecânica – Tecnologia da Deformação Plástica Vol. II 

Aplicações Industriais. Escolar Editora. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



214                                                                                    12. Shape Optimization of a Forging Process 
 

 

 

 

 

 

 



 

215 
 

 

 

 
 

 

 

 

V Final Remarks 
  



 

 

 



217 
 

 

 

 

 

Chapter 13 
 

 

Conclusions and Future Works 
 

 

 

 
The main conclusions of the present work are underlined. Some 

future works in the domain of the present work are presented. 

 

 

 

 

13.1 General Conclusions 

The present work was proposed considering that the interest of the stamping industry in 

numerical simulation of sheet metal forming, including inverse engineering approaches, is 

increasing. As it was mentioned before, the present work has, as the main objective, the 

development of numerical methodologies for parameter identification and shape optimization in 

metal forming simulations. 

 The quality of the Finite Element Analysis (FEM) results relies on the input data, such as, 

the material constitutive models. In order to achieve the best material parameters for the 

material constitutive models, parameter identification inverse problems are considered. 

Regarding this, in the present work, first an introduction to the kinematics mathematical 

formulation for continuum mechanics and constitutive modelling was performed in order to 

understand the behaviour of the materials. Also in this topic, it was described how the inverse 

problems can be classified and as a transversal theme the optimization algorithms were classified 

and explained in detail. A practical example of parameter identification was performed in chapter 

9 where new optimization strategies that efficiently can lead to accurate material parameters 

were proposed. These strategies were proposed in order to take advantage of the strength of 

each selected algorithm and improve the overall robustness and efficiency of classical 

optimization methodologies based on single stages. Strategies such as, cascade, parallel and 

hybrid were considered. It was verified that, generically, the developed strategies lead to better 
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values, in terms of objective function value, than the single stage optimization procedures. This 

fact confirms that these strategies take advantage of the strength of each selected algorithm and 

improve the overall robustness and efficiency of classical optimization methodologies based on 

single stages. 

The parameters determination should always be performed confronting mathematical and 

experimental results. The experimental data should be accurate and the number of mechanical 

tests needed depends on the number of parameters that defines the constitutive model. In this 

work it was presented the experimental tests more used in the characterization of metallic 

sheets. Being these tests used to characterize mechanically the AA6082. 

The evaluation of the objective function is one of the fundamental points that should be 

considered carefully. In the present work, a comparative study between the use of the single 

point and the FE analysis in the parameters’ determination problems was performed. For the 

studied constitutive models, the single-point analysis was considered more efficient in terms of 

objective function value/computational cost relation. Also, for the constitutive models studied, it 

was considered that both strategies lead to good results in terms of objective function value. In 

the problems that the geometrical phenomena do not exist, the single-point is more appropriate 

considering the good relation between the CPU time and the objective function values. However, 

the FE analysis seems to be a more conservative approach. 

Other main topic in this work starts from the idea that sheet metal forming is a complex 

deformation process controlled by parameters such as blank shape, tools’ geometry, sheet 

thickness’ values, blank holding force, friction, etc.. Considering this, in the present work, the 

inverse problems of blank and tool design were studied. To perform a correct study in this field It 

was necessary to describe in detail the metal forming processes, the Finite Element Method and 

the coupling between the FEM software and the optimization software needed to perform the 

shape optimization processes. 

In this context a methodology to find the optimized initial blank shape for a carter forming 

processes was proposed. Also in this field, a study that allows to understand the influence of the 

parametric geometry definition in the optimization process was presented. Four studies were 

performed with differences in the number and location of control vertices that DEFINE the NURBS 

surface. The four studies had achieved good values in terms of objective function value. It was 

considered that the optimization results are influenced by the parametric definition of the blank. 

It was for the study with 16 optimization variables (25 control vertices) that the best value of 

objective function was achieved.  

Concerning the study of the initial blank shape design and the study of the tool design, it 

was necessary to present in detail the parametric formulations used to define the curves and 

surfaces of these problems. Bézier, B-spline and NURBS curves (and surfaces) were described 

regarding the main scope of the presented work.  

In the tool shape optimization thematic, the two stage forging of a cylindrical billet 

problem was proposed. Two different approaches, which try to find a desirable final shape of a 

specimen, after a forging process, were compared. The first approach optimizes the initial shape 

of the specimen and the second one optimizes the preform tool shape. With the results obtained 

it was possible to conclude that the increase of the curve complexity from a Bézier curve to a 

NURBS curve didn´t lead to better results. When comparing the two different approaches it is 
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possible to conclude that the initial shape optimization of the billet generically leads to better 

results in terms of objective function value and in terms of computational cost.  

Generically, in this work new optimization methodologies in the field of parameters 

identification problems, initial shape design and tool shape design are presented. 

 

13.2 Future works 

This work is a compilation of different research areas, all in the computational mechanics and 

engineering optimization field. Considering the work presented, some future guidelines of 

research are suggested. Some of the work presented are preliminary studies allowing having the 

possibility to be continued. 

Concerning the new strategies presented for the parameter identification problems it is 

possible to suggest as a future work the use of new optimization algorithms with different 

potentialities, trying also to improve the overall robustness and efficiency of classical optimization 

methodologies based on single stages. Additionally, a study considering the presented strategies 

can be extended to other different constitutive models, in order to understand how these 

behaves for other constitutive models. 

In the present work, the use of single-point or metal forming FE analysis for the evaluation 

of the objective function in the identification process is another research line that could be 

improved. Also in this case, this study can be extended to other constitutive models in order to 

generalize the conclusions performed. An interesting study that can be accomplished is the use of 

ARAMIS experimental results in the evaluation of the objective function.  

A blank shape design and a study of the influence of the geometry definition are presented 

in chapter 11. The study presented can be continued considering a study where other parametric 

definitions, such as Bézier surfaces, B-spline surfaces, among others, are used in the geometric 

definition of the upper-surface of the blank. This study will allow to understand how different 

parametric surfaces influence the optimization procedure. 

In the chapter 12, a tool shape optimization problem is proposed. The mechanical problem 

considered is the two stage forging of a cylindrical billet, a merely academic example. However, 

that allows to validate the optimization methodologies that could be applied in real optimization 

processes. This study can be improved in few ways. One possible improvement is the use of the 

validated RSURFU to more complex mechanical engineering problems. In the meanwhile, 

extensions to this work are being started within the research group the author is involved with. 

Also an interesting improvement is the extension of the considered RSURFU formulations to 3D 

cases. 
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Appendix 
 

Table A.1 - RSURFU code for the Bézier RSURFU. 

      subroutine rsurfu(h,p,tgt,dnds,x1,time,u,ciname,slname,msname, 

     1                  noel,node,lclose) 

c 

      include 'aba_param.inc' 

c 

      character*80 ciname,slname,msname 

      double precision  tgt(3,2),dnds(3,2),x1(3,2),u(6,2),h,P(3) 

      double precision  A(3),yr,CV(4,3),step,m,distf 

      double precision  bxm,bym,dist,pos 

      double precision DSDT1m,DSDT2m,DDSDDT1m,DDSDDT2m 

      double precision tang1m,tang2m,n(3) 

      double precision  normDSDT,cross(3),normcross,k,v,T(3),AAl(3) 

       

       

c set abig to: 1.d27 for vax under vms, 1.d30 for non-unix ibm, 

c              1.d40 all other machines. 

c 

      parameter( zmax = 25.d0, zero  = 0.d0,  

     +           one  =  1.d0, two    = 2.d0,  abig   = 1.d27,  

     +           small = 1.d-8 ) 

c 

c initialize variables to be returned by rsurfu 

c 

 

      h = -abig 

      do 50 k1=1, 2 

        do 25 k2=1, 3 

           tgt(k2,k1)  = zero 

           dnds(k2,k1) = zero 

           p(k2)       = zero 

 25   continue 

 50   continue 

 

c 

c coordinates on deforming body 

c 

 

      A(1) = x1(1,1) 

      A(2) = x1(2,1) 

      A(3) = x1(3,1) 

       

c 

c simplification needed for convergence 

c 

 

      if (x1(1,1)<0.)then 

        A(1) = 0. 

      end if 
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c 

c tool displacement 

c 

       

      yr = u(2,2) 

 

c 

c import the control vertices 

c 

      open(16,file='C:\data.txt') 

           

      read (16,*) CV(1,1) 

      read (16,*) CV(1,2) 

      read (16,*) CV(1,3) 

      read (16,*) CV(2,1) 

      read (16,*) CV(2,2) 

      read (16,*) CV(2,3) 

      read (16,*) CV(3,1) 

      read (16,*) CV(3,2) 

      read (16,*) CV(3,3) 

      read (16,*) CV(4,1) 

      read (16,*) CV(4,2) 

      read (16,*) CV(4,3) 

 

      close(16)  

       

c 

c find closest point P(3)- position of the point A´ on the surface  

c                          of the rigid body 

c 

 

 

      step=1./99. 

      m=0 

      distf=100000. 

 

        

      do while (m<99) 

       

      bxm=((1-m*step)**3.)*CV(1,1)+(3.*m*step*(1-m*step)**2.)*CV(2,1) 

     &+3.*(m*step)**2.*(1-m*step)*CV(3,1)+(m*step)**3.*CV(4,1) 

      bym=((1-m*step)**3.)*CV(1,2)+(3.*m*step*(1-m*step)**2.)*CV(2,2) 

     &+3.*(m*step)**2.*(1.-m*step)*CV(3,2)+(m*step)**3.*CV(4,2) 

       

dist=sqrt((A(1)-bxm)**2+(A(2)-(bym+yr))**2) 

       

      if (dist<distf)then 

        distf=dist 

        pos=m 

      else 

        distf=dist 

      end if 

         

      m=m+1 

 

      end do  

 

c         Determination of the coordinates of point A´ and its first and 

c         second derivatives 
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      bxm=((1-pos*step)**3.)*CV(1,1)+(3.*pos*step*(1-pos*step)**2.) 

     &*CV(2,1) 

     &+3.*(pos*step)**2.*(1-pos*step)*CV(3,1)+(pos*step)**3.*CV(4,1) 

      bym=((1-pos*step)**3.)*CV(1,2)+(3.*pos*step*(1-pos*step)**2.) 

     &*CV(2,2) 

     &+3.*(pos*step)**2.*(1.-pos*step)*CV(3,2)+(pos*step)**3.*CV(4,2) 

      DSDT1m=-3.*(1.-pos*step)**2.*CV(1,1)+(3.*(1.-pos*step)**2.-6. 

     &*pos*step*(1.-pos*step))*CV(2,1) 

     &+(6.*pos*step*(1.-pos*step)+(-3.*(pos*step)**2.))*CV(3,1)+3.* 

     &(pos*step)**2.*CV(4,1) 

      DSDT2m=-3.*(1.-pos*step)**2.*CV(1,2)+(3.*(1.-pos*step)**2. 

     &-6.*pos*step*(1.-pos*step))*CV(2,2) 

     &+(6.*pos*step*(1.-pos*step)+(-3.*(pos*step)**2.))*CV(3,2)+3. 

     &*(pos*step)**2.*CV(4,2) 

      DDSDDT1m=6.*(1-pos*step)*CV(1,1)-6.*(2.-3.*pos*step)*CV(2,1) 

     &+6.*(1-3.*pos*step)*CV(3,1)+6.*pos*step*CV(4,1) 

      DDSDDT2m=6.*(1.-pos*step)*CV(1,2)-6.*(2.-3.*pos*step)*CV(2,2) 

     &+6.*(1.-3.*pos*step)*CV(3,2)+6.*pos*step*CV(4,2) 

       

      tang1m=-DSDT1m/sqrt(DSDT2m**2.+DSDT1m**2.) 

      tang2m=-DSDT2m/sqrt(DSDT2m**2.+DSDT1m**2.) 

 

c         Determination of the normal vector 

 

      n(1)=-tang2m 

      n(2)= tang1m 

      n(3)=0 

        

      P(1)= bxm 

      P(2)= bym +yr 

      P(3)= A(3) 

 

c 

c Determination of the direction cosines of the two unit tangents to the  

c surface t1 and t2 at point A´. 

c   

   

      TGT(1,1) = tang1m 

      TGT(2,1) = tang2m 

      TGT(3,2) =-1. 

          

c 

c Determination of the rates of change of the normal surface, n, at A´, 

c with respect to distance measuring coordinates S1 and S2 along t1 and 

c t2. 

c  

c 

c         Considering the frenet equations to compute de DNDS and  

c         considering this a planar curve where torsion doesn´t exist 

c         DNDS = -kT 

c         k = curvature function 

c         v = velocity of the curve 

c         T = unit tangent 

c  

c         calculation of the norm of the DSDT (first derivative of the 

c         curve) 

 

          normDSDT = sqrt(DSDT1m**2.+DSDT2m**2+DSDT3m**2.) 
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c 

c         curvature function k  

c  

c         cross product between first and second derivatives of the  

c         curve 

c         DSDT X DDSDDT 

           

          cross(1) =  DSDT2m*DDSDDT3m - DDSDDT2m*DSDT3m 

          cross(2) = -DSDT1m*DDSDDT3m + DDSDDT1m*DSDT3m  

          cross(3) =  DSDT1m*DDSDDT2m - DDSDDT1m*DSDT2m 

 

c         norm of the cross product between first and second  

c         derivatives  of the curve ||DSDT X DDSDDT|| 

! 

          normcross = sqrt (cross(1)**2.+cross(2)**2.+cross(3)**2.) 

          k = normcross /((normDSDT)**3.)             

c 

c         velocity of the curve v = ||DSDT|| 

c 

          v = normDSDT  

c 

c         unit tangent T 

c  

          T(1) = -DSDT1m / normDSDT   

          T(2) = -DSDT2m / normDSDT  

          T(3) = -DSDT3m / normDSDT  

 

      DNDS(1,1) =-( - k * T(1))  

      DNDS(2,1) =-( - k * T(2)) 

 

c 

c Determination of the penetration(H) of the point A on the deforming  

c structure into the surface of the rigid body, measured down the 

c outward  

c normal to the rigid surface.  

c 

      

      do i=1,3 

        AAl(i)=P(i)-A(i) 

      end do 

     

      H=AAl(1)*n(1)+AAl(2)*n(2)+AAl(3)*n(3) 

 

      return 

      end 

       

        end 
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Table A.2 - RSURFU code for the NURBS RSURFU. 

      subroutine rsurfu(h,p,tgt,dnds,x1,time,u,ciname,slname,msname, 

     1                  noel,node,lclose) 

c 

      include 'aba_param.inc' 

c 

      character*80 ciname,slname,msname 

      double precision  tgt(3,2),dnds(3,2),x1(3,2),u(6,2),h,P(3) 

      double precision  A(3),yr,CV(4,3),h1,h2,h3,h4,step,m,distf 

      double precision  sum,bxm,bym,dist,pos 

      double precision dsum,DSDT1m,DSDT2m,DDSDDT1m,DDSDDT2m 

      double precision dR14,dR24,dR34,dR44 

      double precision ddsum,ddR14,ddR24,ddR34,ddR44 

      double precision tang1m,tang2m,n(3) 

      double precision  normDSDT,cross(3),normcross,k,v,T(3),AAl(3) 

       

       

c set abig to: 1.d27 for vax under vms, 1.d30 for non-unix ibm, 

c              1.d40 all other machines. 

c 

      parameter( zmax = 25.d0, zero  = 0.d0,  

     +           one  =  1.d0, two    = 2.d0,  abig   = 1.d27,  

     +           small = 1.d-8 ) 

 

c 

c initialize variables to be returned by rsurfu 

c 

 

      h = -abig 

      do 50 k1=1, 2 

        do 25 k2=1, 3 

           tgt(k2,k1)  = zero 

           dnds(k2,k1) = zero 

           p(k2)       = zero 

 25   continue 

 50   continue 

 

c 

c coordinates on deforming body 

c 

 

      A(1) = x1(1,1) 

      A(2) = x1(2,1) 

      A(3) = x1(3,1) 

       

c 

c simplification needed for convergence 

c 

 

      if (x1(1,1)<0.)then 

        A(1) = 0. 

      end if 

 

c 

c tool displacement 

c 
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      yr = u(2,2) 

 

c 

c import the control vertices 

c 

      open(16,file='C:\data.txt') 

           

      read (16,*) CV(1,1) 

      read (16,*) CV(1,2) 

      read (16,*) CV(1,3) 

      read (16,*) CV(2,1) 

      read (16,*) CV(2,2) 

      read (16,*) CV(2,3) 

      read (16,*) CV(3,1) 

      read (16,*) CV(3,2) 

      read (16,*) CV(3,3) 

      read (16,*) CV(4,1) 

      read (16,*) CV(4,2) 

      read (16,*) CV(4,3) 

      read (16,*) h1 

      read (16,*) h2 

      read (16,*) h3 

      read (16,*) h4 

      close(16)  

       

c 

c find closest point P(3)- position of the point A´ on the surface  

c                          of the rigid body 

c 

 

 

      step=1./99. 

      m=0 

      distf=100000. 

 

        

      do while (m<99) 

       

      sum=((1-m*step)**3.)*h1+(3.*m*step*(1-m*step)**2.)*h2 

     &+3.*(m*step)**2.*(1-m*step)*h3+(m*step)**3.*h4 

  

      bxm=(((1-m*step)**3.)*h1*CV(1,1)+(3.*m*step*(1-m*step)**2.) 

     &*h2*CV(2,1)+3.*(m*step)**2.*(1-m*step)*h3*CV(3,1) 

     &+(m*step)**3.*h4*CV(4,1))/sum 

       

       

      bym=(((1-m*step)**3.)*h1*CV(1,2)+ 

     &(3.*m*step*(1-m*step)**2.)*h2*CV(2,2) 

     &+3.*(m*step)**2.*(1.-m*step)*h3*CV(3,2) 

     &+(m*step)**3.*CV(4,2)*h4)/sum 

           

       

dist=sqrt((A(1)-bxm)**2+(A(2)-(bym+yr))**2) 

       

      if (dist<distf)then 

        distf=dist 

        pos=m 

      else 

        distf=dist 
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      end if 

         

      m=m+1 

 

      end do  

 

c         Determination of the coordinates of point A´ and its first and 

c         second derivatives 

 

       m=pos   

       sum=((1-m*step)**3.)*h1+(3.*m*step*(1-m*step)**2.)*h2 

     &+3.*(m*step)**2.*(1-m*step)*h3+(m*step)**3.*h4 

  

      bxm=(((1-m*step)**3.)*h1*CV(1,1)+(3.*m*step*(1-m*step)**2.) 

     &*h2*CV(2,1)+3.*(m*step)**2.*(1-m*step)*h3*CV(3,1) 

     &+(m*step)**3.*h4*CV(4,1))/sum 

       

       

      bym=(((1-m*step)**3.)*h1*CV(1,2)+ 

     &(3.*m*step*(1-m*step)**2.)*h2*CV(2,2) 

     &+3.*(m*step)**2.*(1.-m*step)*h3*CV(3,2) 

     &+(m*step)**3.*CV(4,2)*h4)/sum 

           

       

      

      dsum=3*(-h1+h2)+6*m*step*(h1-2*h2+h3)+ 

     &3*(m*step)**2*(-h1+3*h2-3*h3+h4) 

      

      ddsum=6*(h1-2*h2+h3)+6*(m*step)*(-h1+3*h2-3*h3+h4) 

 

     

      dR14=(h1*(-3*(1-m*step)**2))/sum 

     &-((h1*(1-m*step)**3)*dsum)/(sum**2) 

      

      dR24=(h2*(3-12*m*step+9*(m*step)**2))/(sum) 

     &-((h2*3*m*step*(1-m*step)**2)*dsum)/(sum**2) 

      

      dR34=(h3*(6*m*step-9*(m*step)**2))/(sum) 

     &-((h3*3*(m*step)**2*(1-m*step))*dsum)/(sum**2) 

      

      

      dR44=(h4*3*(m*step)**2)/(sum) 

     &-(h2*(m*step)**3*dsum)/(sum**2) 

      

      ddR14=(h1*(6*(1-m*step)))/(sum) 

     &-((2*h1*(-3*(1-m*step)**2))*dsum)/(sum**2) 

     &-(ddsum*h1*(1-m*step)**3)/(sum**2) 

     &+(2*h1*((1-m*step)**3)*dsum**2)/(sum**3) 

      

 

       

      ddR24=(h2*(-12+18*m*step))/(sum) 

     &-((2*h2*(3*(1-m*step)**2)-6*(1-m*step))*dsum)/(sum**2) 

     &-(h2*(3*m*step*(1-m*step)**2)*ddsum)/(sum**2) 

     &+((2*h2*(3*(1-m*step)**2))*(dsum**2))/(sum**3) 

      

       

      ddR34=(h3*(6-18*m*step)/(sum) 

     &-((2*h3*(6*m*step*(1-m*step)-3*(m*step)**2))*dsum)/(sum**2) 
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     &-((h3*(3*((m*step)**2)*(1-m*step)))*ddsum)/(sum**2) 

     &+(2*h3*((3*(m*step)**2)*(1-m*step)))*dsum**2)/(sum**3) 

      

     

       

      ddR44=(h4*6*m*step)/(sum) 

     &-(2*h4*3*((m*step)**2)*dsum)/(sum**2) 

     &-(ddsum*h4*(m*step)**3)/(sum**2) 

     &+(2*h4*((m*step)**3)*dsum)/(sum**3) 

      

       

      DSDT1m=CV(1,1)*dR14+CV(2,1)*dR24+CV(3,1)*dR34+CV(4,1)*dR44 

       

      DSDT2m=CV(1,2)*dR14+CV(2,2)*dR24+CV(3,2)*dR34+CV(4,2)*dR44 

       

      DDSDDT1m=CV(1,1)*ddR14+CV(2,1)*ddR24+CV(3,1)*ddR34+CV(4,1)*ddR44 

       

      DDSDDT2m=CV(1,2)*ddR14+CV(2,2)*ddR24+CV(3,2)*ddR34+CV(4,2)*ddR44 

       

      tang1m=-DSDT1m/sqrt(DSDT2m**2.+DSDT1m**2.) 

      tang2m=-DSDT2m/sqrt(DSDT2m**2.+DSDT1m**2.) 

 

c         Determination of the normal vector 

 

      n(1)=-tang2m 

      n(2)= tang1m 

      n(3)=0 

        

      P(1)= bxm 

      P(2)= bym +yr 

      P(3)= A(3) 

 

c 

c Determination of the direction cosines of the two unit tangents to the  

c surface t1 and t2 at point A´. 

c   

   

      TGT(1,1) = tang1m 

      TGT(2,1) = tang2m 

      TGT(3,2) =-1. 

          

c 

c Determination of the rates of change of the normal surface, n, at A´, 

c with respect to distance measuring coordinates S1 and S2 along t1 and  

c t2. 

c  

c 

c         Considering the frenet equations to compute de DNDS and  

c         considering this a planar curve where torsion doesn´t exist 

c         DNDS = -kT 

c         k = curvature function 

c         v = velocity of the curve 

c         T = unit tangent 

c  

c         calculation of the norm of the DSDT (first derivative of the 

c         curve) 

 

          normDSDT = sqrt(DSDT1m**2.+DSDT2m**2+DSDT3m**2.) 
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c 

c         curvature function k  

c  

c         cross product between first and second derivatives of the  

c         curve 

c         DSDT X DDSDDT 

           

          cross(1) =  DSDT2m*DDSDDT3m - DDSDDT2m*DSDT3m 

          cross(2) = -DSDT1m*DDSDDT3m + DDSDDT1m*DSDT3m  

          cross(3) =  DSDT1m*DDSDDT2m - DDSDDT1m*DSDT2m 

 

c         norm of the cross product between first and second  

c         derivatives  of the curve ||DSDT X DDSDDT|| 

! 

          normcross = sqrt (cross(1)**2.+cross(2)**2.+cross(3)**2.) 

          k = normcross /((normDSDT)**3.)             

c 

c         velocity of the curve v = ||DSDT|| 

c 

          v = normDSDT  

c 

c         unit tangent T 

c  

          T(1) = -DSDT1m / normDSDT   

          T(2) = -DSDT2m / normDSDT  

          T(3) = -DSDT3m / normDSDT  

 

      DNDS(1,1) =-( - k * T(1))  

      DNDS(2,1) =-( - k * T(2)) 

 

c 

c Determination of the penetration(H) of the point A on the deforming  

c structure into the surface of the rigid body, measured down the 

c outward  

c normal to the rigid surface.  

c 

      

      do i=1,3 

        AAl(i)=P(i)-A(i) 

      end do 

     

      H=AAl(1)*n(1)+AAl(2)*n(2)+AAl(3)*n(3) 

 

      return 

      end 

       

        end 

 

 

 

 


