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Abstract

Forearm rotation (pro-/supination) involves a non-trivial combination of rotation and trans-

lation of two bones, namely, radius and ulna, relatively to each other. Early works regarded

this relative motion as a rotation about a fixed (skew) axis. However, this assumption turns

out not to be exact. This thesis regards a spatial-loop surrogate mechanism involving two de-

grees of freedom with an elastic coupling for better forearm motion prediction. In addition,

the influence of the bone morphology and position of elbow on kinematics are also consid-

ered. The model parameters are not measured directly from the anatomical components, but

are fitted by reducing the errors between predicted and measured values in an optimization

loop. For non-invasive measurement of bone position, magnetic resonance imaging (MRI) is

employed. We present a method to self-calibrate the arm position in the MRI scanning tube

and to fit the model parameters from a few, coarse MRI scans. Results show a good con-

cordance between measurement and simulation. Moreover, the minimum distance changing

between bones during forearm rotation is elucidated, which is not yet proved in anatomi-

cal and clinical literatures. The minimum distance is calculated by searching for the global

shortest distance between bone contours on ulna and radius by a two-level selection and a

following multidimensional Newton-Raphson algorithm. To this end, the methodology is ex-

tended from healthy bones to deformed arms and an angulated forearm model is developed.

The 3D angulated bone geometry is obtained by manually separating the bone structure at

the broken position, and the minimum distance and the range of motion of fractured fore-

arms are analyzed. As shown for a single case validation, simulated results show very small

deviations from anatomical data. Furthermore, the simulations discussed above are visual-

ized using interactive interfaces, which facilitates the application of the model in clinical

planning.
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Zusammenfassung

Die Unterarmrotation beinhaltet eine nicht triviale Kombination einer Rotation und Transloka-

tion zweier Knochen, Radius und Ulna relativ zu einander. Frühere Arbeiten betrachteten

diese relative Bewegung als eine Rotation um eine fixierte Achse. Allerdings scheint diese

Annahme ungenau zu sein. Diese Arbeit betrachtet ein Spatial-Loop Surrogat Mechanismus

unter Berücksichtigung von zwei Freiheitsgraden mit einer elastischen Gelenkverbindung für

eine bessere Prognose der Unterarm-Bewegung. Zusätzlich wird der Einfluss der Knochen-

morphologie und die Position des Ellenbogens auf die Kinematik berücksichtig. Die Mod-

ellparameter werden nicht direkt von den anatomischen Komponenten bestimmt, sondern

unter Berücksichtigung der Abweichung von Annahme und Messung. Zur nicht invasiven

Messung der Knochenposition wird die Methode der Magnetresonanztomographie (MRT)

angewendet. Wir stellen hier eine Methode um die Arm-Position in das MRI Scan-Rohr

selbst zu kalibrieren und die Modellparameter aus einige grobe MRT-Aufnahmen zu passen.

Die simulierten Ergebnisse zeigen sehr kleine Abweichungen von anatomischen Daten. Eine

minimale Änderung der Distanz zwischen den Knochen während der Unterarmrotation wird

beleuchte, die bisher nicht in der anatomischen und klinischen Literatur beschrieben ist. Die

Berechnung der minimalen Distanz erfolgt über die Ermittlung der gesamt kürzesten Dis-

tanz. Zu diesem Zweck wird die Methodik von gesunden Knochen auf deformiere Arme

und ein angewinkeltes Unterarmmodel entwickelt. Die 3D gewinkelte Knochen-Geometrie

ergibt sich aus der Knochenstruktur an der gebrochener Position manuell zu trennen, und

darauf werden der Mindestabstand und der Bereich der Bewegung von dem gebrochenen

Unterarm analysiert. Wie dies bei einer einzelnen Fall Validierung, zeigen die simulierten

Ergebnisse sehr kleine Abweichungen von anatomischen Daten. Darüber hinaus werden die

oben beschrieben Simulationen mit interaktiven Benutzeroberflächen visualisiert, welche die

Anwendung des Modells in der klinischen Planung erleichtert.
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Chapter 1

Introduction

Lately the number of surgical operations is growing rapidly and the quality of the standards

is being improved as well. The demand for a tool to help surgeons and prosthesis designers to

optimize their actions, enhance rehabilitative techniques and minimize the treatment risks for

patients, is progressively increasing [1], [2]. Consequently, as effective methods to predict

the effect of the medical treatment, computer simulations and physical devices are being used

more and more often in diagnosis [3], [4]. With the growth of the forearm fracture treatment

in modern surgical treatment, many computer-aided biomechanical investigation have been

developed in the last years to understand the axial rotation of the forearm, i.e. the motion of

forearm from supination (palm up) to pronation (palm down).

1.1 Problem statement

The forearm is the distal region of the upper limb, between the elbow and the wrist. It

includes two bones, ulna and radius. The forearm motion is a complex movement, in which

the radius, the ulna, the distal and proximal radioulnar joint, the interosseous membrane

and the forearm rotator muscles are all involved. The rotational motion brings the hand

from the position of supination to pronation around the longitudinal axis, and vice versa.

This investigation on the forearm movement is particularly interesting because it is a key

functional motion of the upper extremity in the daily life, such as turning a door handle, and

also due to the growing need of surgical treatment on forearm fracture in last years.

The benchmark procedure for the treatment of forearm fractures in adults is via open reduc-
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tion in order to prevent malunion, but it is with the risk of postoperative infection, non-union,

delayed union, or failure of fixation. In children the treatment is often by closed reduction

and immobilization due to the fact that their bone healings in less than anatomic position

are still compatible with later unrestricted function as the result of their corrective potentials

during skeletal growth. The maximum acceptable displacement in children depends on the

age, the fracture level, and the type of displacement and remains controversial [5], [6]. Of

course the unstable fracture by children is also necessary to be treated surgically.

The criteria to evaluate the degree of success in the treatment mainly refer to: (1) union

of the fracture, and (2) restoration of function. As has been demonstraed by cadaver and

retrospective studies, the function loss in pronation or supination results from the axial or

rotational misalignment or encroachment of the interosseous space.

Currently the contralateral healthy side is used as a reference in the clinical treatment, but

it is not satisfying due to the existence of side to side variability in the healthy population

[7], [8]. Since computer-based planning is not essentially dependent on the healthy side,

it is attracting a great clinical interest with the effort to improve the surgical reliability and

the outcome [9]. In the forearm clinical treatment, such kind of computer-aided simulation

could help to predict on the correlation of the degree of possible misalignment between the

bone fragment axes after healing to pro-/supination function limitations. Thus, it would be a

powerful tool to help decide whether a corrective surgery is required. In case the correction

is necessary, it would give a clue on how to minimize the correction in order to reduce the

risk of the occurrence of impairment of function as much as possible. Therefore, doctors,

technicians and biomechanics are demanding the computer-aided tool to assist them planning

the treatment and predicting the consequence even prior to the treatment.

Since even small positioning errors, misalignments or misfits can result in the failure of

the treatment, the accuracy of the computer-aided modeling is very critical. There exists

substantial research concerning the significance of accuracy of human upper limb modeling

on the prediction of the success of prosthetic device or the protocols of rehabilitations [1],

[2], [10]. In biomechanics, an optimal model for developing an accurate computer-aided

tool for forearm treatment shall include all the elements and the interrelationship among

bones, joints and ligaments. It is capable as well to reduce the interrelationship to a few

characteristic motion quantities and thus simulate the motion sufficiently and precisely.
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1.2 State of art

In last decade much research has been done to understand the human forearm mobility and

to simulate the pro- and supination motion in both normal and abnormal motion.

Forearm kinematics has been studied in various settings from in vitro to in vivo. Fick pro-

posed the first kinematic model in 1904. In this model he described the forearm motion in a

way that the forearm rotated around the ulna as a constant axis of rotation [11] (Fig. 2.10a).

As a quite simplified model it has an unrealistic strong tilting at the maximal pronation

(Fig. 2.10b).

In the following work, the mechanical axis of the forearm has been investigated by using

mechanical axis locaters [12], radiography [13], sonic digitzers [14], computed tomography

(CT) [15], and magnetic resonance imaging [13]. Hollister et al. described a fixed axis

extending from the center of the radial head proximally to the ulnar styloid distally [12].

Youm et al. also noted a single axis that extended from the center of the capitellum to the

distal ulna [14]. Hagert showed a single axis extending from the center of the radial head to

the center of the ulnar head distally [16]. Robbin reported in a study that the axis of rotation

is a variable screw axis [17]. All the above studies indicate that axis of rotation of the ulna

changes its position during forearm pro- and supination motion, and thus that forearm motion

cannot be recognized as a simple rotation about a fixed axis. The reason for the discrepancy

is that most of the previous studies are performed in-vitro, which makes the investigations

lacking of physiological muscle loading, passive simulation of forearm rotation, and artificial

fixation of the ulna. The argument is that absence of these parameters may very possibly lead

to deviations [18].

More comprehensive kinematic models including ulna’s motion were developed recently

based on MRI technology. Kapandji [19], Nakamura et al. [20], [21], and Weinberg [22]

revealed the forearm rotational motion is not around a constant axis, but is a complex motion

comprising rotation and translation of radius relative to ulna. Due to this effect, the carpus

is allowed to remain perpendicular to the forearm. Fig. 2.10c depicts the evasive and lateral

swaying motion of ulna, which ensures the parallelism of the hand to the elbow.

A surrogate mechanism was presented by Kasten and Weinberg et al. for the pro- and supina-

tion. In this mechanism the joints were considered by a simplified mechanical analogy [3],

[23]. They fitted the kinematics to the patient-specific anatomy by manually measuring geo-

metric properties from radiographs, e.g. bone lengths.
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In a later study Kecskeméthy and Weinberg introduced a two-degree-freedom surrogate

mechanism into model mentioned above. This updated model contains virtual springs to

incorporate elastic components, for instance ligaments [24]. It is featured by an elastokine-

matic coupling between axial displacement and lateral swaying of the humero-ulna (elbow)

articulation. The lateral swaying motion predicted by this model has been proved [25]. Re-

cently this mechanism is being applied in investigations including the design of external

surrogate mechanism [26], simulation of forearm motion for pre-operative planning [27],

[28], trajectory generation of CPM device to control forearm pro-/supination [29] and elbow

joint [30] for post-operative treatment, and development of robot-assisted hand rehabilitation

[31], [32].

Concerning on the absence of physiological parameters, complex musculoskeletal models

of the upper limb have been developed. In these models soft tissues were simulated [33]

[34]. However, the usability of these models is limited by their inherent insufficiencies:

the swaying angle of the ulna was neglected in the simulation of the pro-/supination [34];

patient-specific anatomy cannot easily be incorporated in [33].

The other series of work are dedicated to the shape analysis. Burdin et al. investigated a

collision technique which can be used to deduce the influence of the bone morphology on

the magnitude of the pro- and supination motion [35]. Fürnstahl et al. introduced a motion

model of the forearm which was based on a patient’s joint morphology. He presented the

morphology of the articulations by 3-dimensional splines and expressed the gliding motion

in the distal radioulnar joint and the evasive ulna movement in a closed-form [28].

With the development of 3D (three-dimensional) CT registration techniques, several studies

based on these techniques have been recently performed. Tay et al. found the proximal-distal

translation of the radius with respect to the ulna during the forearm rotation, and proposed

that distal forearm kinematics may be affected by the position of elbow [36]. Fu et al. verified

that the influence of elbow position on the kinematics of the distal radioular joint (DRUJ),

which is predominately affected by the forearm motion and secondarily by the elbow flexion

[37]. Kim et al. studied the congruency index of proximal radioulna joint (PRUJ) in vivo

and the translation motion of the radial head with regard to the lesser sigmoid notch with

forearm rotation. He verified that PRUJ congruency changed during forearm rotation [4].

In addition, some investigations focused on the dynamics change in the shape of IOM and

also on the quantification of the distance change during the forearm rotation [13], [38]. Marai

et al. introduced a modeling method to determine bony contact areas and ligaments paths
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in articulation. In this method, bones are modeled both implicitly (scalar distance field) and

parametrically (manifold surface). Thus inter-bone distances are computed by this double

representation [39].

Furthermore, limitation of the range of forearm pronation-/supination is a topic that is of-

ten encountered in the treatment of forearm bones’ fractures. It was shown in cadaver and

retrospective studies that the direction and magnitude of the angulation, as well as narrow-

ing of the interosseous space between the radius and ulna, can affect the forearm function

significantly. Tarr et al. researched the limitation of forearm rotation caused by angular de-

formity of forearm bones. A cadaver study showed that the soft-tissue tension, especially

of the IOM, rather than impingement between the forearm bones limited the rotation of the

forearm [5]. In another report, Yasutomi et al. presented the correlation between the posi-

tions of pronation-/supination axis and narrowing of the interosseous space [40]. Later on,

Kasten et al. developed a computer program based on angular deformities, for the simulation

of forearm rotation and the prediction of impairment [3]. However, the real bone geometry

was not taken into account in this model.

1.3 Objective

Based on an elasto-kinematic forearm model proposed by Kecskeméthy and Weinberg [24],

the primary objective of this thesis is to develop a method to automatically determine the

model parameters as well as the relative location of the bone geometry with respect to the

links in the mechanism. The model parameters will be fitted by searching for the minimum

error between predicted and measured values (MRI) by an optimization routine. The influ-

ence of the bone morphology, as well as the position of elbow on the kinematics will be also

considered. After the fitting process, the accuracy of the simulation will be evaluated.

Based on this automatic determination of the model parameters, a 3D visualized user-friendly

interface will be developed with the multi-body programming library M � �

� �

BILE . Thus,

the interactive window could facilitate the application of the model in medical training and

surgical treatments.

Another objective of this thesis is to elucidate the minimum distance changes taking place

during forearm rotation, which is not yet proved in anatomical and clinical literatures. During

the forearm rotation, the value and location of the minimum distance between these two fore-

arm bones actually varies at different cross-section levels as well as different pro-/supination
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angles. The methods for this investigation in 2D model (MRI slice) and 3D model (rotating

bones) will be established, and results will be analyzed.

Moreover, in this thesis, the mechanism will be extended to the deformed forearm. Several

examples will be analyzed based on the data from a literature, since there no testers avail-

able with bone fractures. The value and location of the minimum distance change between

bones and the maximum pronation angle of the forearm deformity will be evaluated. A good

preliminary result will enlighten the potential application of the fractured mechanism in the

prediction of the impairment of function, and the need for a more detailed investigation in

the future.

The present work validates the theoretical derivations on a single subject only. Future work

may be devoted at generalizing the findings to larger subject sets, which is however out of

the scope of this thesis.

1.4 Outline

The outline of this work is as following:

Chapter 1 states the reason why the computer-based simulation of forearm motion is becom-

ing more and more important, and chronically describes the works which have been done on

the forearm motion modeling.

Chapter 2 details the basic anatomic units in the arm that are involved in the pro- and supina-

tion, and describes the 2DOF surrogate mechanism employed in this study. The modeling

conditions, e.g. coordinate, environment and used classes, are also introduced in detail.

Chapter 3 starts from the description of the MRI measurements which are the databases

for the studies. Two kinds of MRI measurements are performed: fine static scans and dy-

namic motion scans, at 5 rotational angles, 3 torque conditions and series of cross-section

levels, respectively. A semi-automatic segmentation algorithm is then used to gain the three-

dimensional bone geometry, based on which the distribution of the bone centroid line is

determined. In the next step, following the described fitting principles, model parameters are

then optimized by the fitting process which includes a self-calibration process to determine

the arm position in the MRI scanning tubes. Thereafter, the results computed by using this

model are compared with the measured values, in order to evaluate the simulation accuracies.

The simulation model is visualized at the interface of object-oriented multibody program li-
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brary M � �

� �

BILE. To the end, the results obtained from the 2DOF mechanism is compared

with those from a fixed-axis mechanism.

Chapter 4 explains how the minimum distance between forearm bones is calculated. In 2D

model (MRI slices) forearm bones are recognized as series of bone contours with B-Spline

curves. The point cloud of bone contour is fitted with a smooth and continuous spline curve

and the minimum distance between two spline curves is computed by an algorithm with two

selection levels. In the next step, the calculation is extended to a 3D model (two rotating

forearm bones in space) with regarding the surfaces of forearm bones as series of parallel

segment lines, and the distance changing is presented as a function of the pro-/supination

angle. At last, the results are analyzed and compared with clinical knowledge.

Chapter 5 extends the distance calculation described in Chapter 4 to fractured forearms. A

broken forearm model is developed based on the aforementioned 2DOF kinematic mecha-

nism. To predict the range of motion by forearm impairment, the maximal pronation angle is

separately analyzed by two different methods: (1) calculating the minimal distance between

the vectors that represent bone ulna and radius in the angulated kinematic model; (2) calcu-

lating the minimal distance between the surfaces of two bones ulna and radius in the model.

Both results are analyzed and compared to literature data.

Chapter 6 summarizes the results in this work and suggests possible topics of future research.
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Chapter 2

Design of Elastokinematic Surrogate

Mechanism

In this chapter, the basic biomechanical properties of the human forearm structure and the

2DOF surrogate forearm mechanism are described.

2.1 Basic functional properties of pro- and supination

The human arm is constituted by the humerus bone and the forearm bones which consist of

the radius and the ulna. The elbow joint is the connecting articulation between the humerus

and forearm bones. The wrist is constituted by metacarpal bones. The carpals form the hand,

and the phalanges form the fingers and thumbs. A diagram of human arm bones is shown in

Fig. 2.1.

Bone ulna and radius

As the constituents of the forearm, bone ulna and radius are coupled at two ends, resembling

a parallel mechanism. As in Fig. 2.2, the proximal ends are jointed to the humerus at the

elbow by the radial head (a spherical pit rotation on a spherical condyle of the humerus) and

trochlear notch of the ulna (a rotation about the elbox axis due to the clamped shape). The

other end connected to the wrist by a radio-ulnar joint enables a sliding and rotating relative

motion. The bones are firmly bonded together at the joints by ligaments, with the assistance

of the stress from the membrane interossea,. The rotation of the hand about the longitudinal

axis brings the hand from supination (palm up) to pronation (palm down) and vice versa.
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Fig. 2.1: Diagram of human arm bones.

Bone ulna is at the side of foream adjacent to the body in the anatomical position while the

palm of the hand facing forward. Structurally it is prism-shaped, and with a broader proximal

side and a narrower distal side. Proximally, there are an olecranon process and a structure

looking like a hook, which fits into the olecranon fossa of the humerus, forming a hinge point

with the trochlea of the humerus. This construction helps to prevent the hyperextension. The

distal end has a styloid process. Functionally the ulna can support the forearm and allow its

motion, and in addition it is also the support for many muscles and ligaments. For example,

the muscles attached to the ulna contain the pronator teres muscle, the flexor digitorum

superficialis muscle, triceps brachii muscle, supinator muscle and pronator quadratus muscle

etc [41].

Bone radius is located from the lateral side of the elbow to the thumb side of the wrist in

the anatomical position, functioning as an articulation with the capitulum of the humerus,

the radial notch and the head of the ulna. Structurally it is of prismatic form and slightly

curved in the longitudinal direction, parallel to the ulna, but shorter and smaller compared

to the latter. It consists of a body and two extremities. There is a cylindrical head at the

upper extremity which is the site to articulate with the humerus and the ulna, a neck and a

double tuberosity. The somehow quadrilateral shaped lower extremity of the radius renders

the articular site for the ulna, scaphoid and lunate bones. The distal end of bone radius forms

9



a palpable point, named the styloid process. Many muscles are attached to bone radius, e.g.

the biceps, supinator, flexor digitorum superficialis etc [41].

Fovea capitis radii

Lig. anulare radii

Tendo m. bicipitis brachii

Chorda obliqua

Incisura trochlearis

Lig. collaterale ulnare

Corpus ulnae 
(Facies anterior)

Membrana interossea 
antebrachii

Corpus radii
(Facies anterior)

Processus styloideus radii

Articulatio radio-ulnaris distalis
(Capsula artikularis)

Processus styloideus ulnaeFacies articularis
carpea radii

Lig. collaterale radiare

olecranon

ϕ = 85◦

ϕ = −90◦ ϕ

humerus

radius

ulna

elbow

axis

pronation

supination

Fig. 2.2: Anatomy of forearm bones (adapted from Rauber [42] and Kapandji [19]).

Ligaments

Also known as articular ligaments, the ligaments are fibrous tissues to connect bones and thus

to stabilize them. The ligament of the forearm is called the interosseous membrane, which

is strong and flexible. The interosseous membrane consists of the central band, accessory

bands and proximal interosseous bands. Functionally it connects the radius and the ulna

along their length, and thus increases the stability between the two bones, but also allows

for the twisting of the forearm. Along the motion of forearm from pronation to neutral

and to supination position, the interosseous membrane fibers change from a relaxed state,

to a tense state, and then become relaxed again in a respective sequence. Furthermore, the

interosseous membrane is the support for the attachment of muscles, through which forces

could be transmitted from the radius, to the ulna, to the humerus.

Articulation

The trochlea of the humerus fitting into the trochlear notch of the ulna forms the humeroulnar

joint, and the capitulum of the humerus articulating with the fovea on the head of the radius

forms the humeroradial joint. The articulation of the radius and ulna with each other at their
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proximal and distal ends at synovial joint are termed as the proximal and distal radioulnar

joints, that enable the pronation and supination. At the location of the proximal articulation,

the radial head is kept in the position of the radial notch of the ulna by the strong annular

ligament that is a fibrous collar in a U shape and is attached to the anterior and posterior

margins of the radial notch. At the location of distal articulation, the rounded side of the head

of the ulna articulates with the ulna notch at the distal end of the radius by a fibrocartilage

articular disc.

Range of motion

The active range of motion (ROM) of the forearm is usually taken as 85◦ in supination and

75◦ in pronation while the elbow is flexed at 90◦ (Fig. 2.3). In the figure, the shaded region

represents the range sufficient for most activities of daily living, such as eating, using a

telephone [42]. A loss of up to 20◦is usually considered acceptable, either at supination or at

pronation. The active ROM can be different among patient groups to be examined, and it is

also dependent on demographics and laxity of the joint and its surrounding tissues. In 1979

Boone and Azen have measured a mean value of 82.1±2.8◦ for supination and 75.8±5.1◦ for

pronation with the neutral being with the forearm in mid-position [43]. Some other reported

data are listed in Table 2.1.

Supination Pronation

85◦
75◦

50◦ 50◦

Fig. 2.3: Normal range of forearm rotation.

Table 2.1: Reported range of supination and pronation of the forearm
Supination (◦) Pronation (◦)

Dempster (1955) [44] 113 77
Schnelle (1964) 70-85 60-80

Nakamura et al. (1999) [20] 75-97 62-103
Weinberg et al. (2000) [22] 79-90 60-74

When the radius and ulna are not injured, the adjacent soft tissue is not compromised in

the forearm rotation and the muscles between tissues operate at their optimum scale. In
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case of mal-union and rotational mal-aligned forearm fractures, the curvature of the radius is

deteriorated. Consequently, there is a reduction of the interosseous space between the radius

and ulna which leads to a limited ROM.

2.2 Forearm surrogate mechanism model

2.2.1 Classic forearm model

There are two basic assumptions in the classic forearm model regarding the motion of the

forearm bones related to humerus: (1) the radius head’s surface is sufficiently concave and

cup-shaped to articulate with the corresponding spherical surface of the capitulum of the

humerus, which allows a fixed-point rotation of the radius; (2) the ulna has proximally an

olecranon process with a hook-like structure that fits into the olecranon fossa of the humerus,

functioning as a hinge joint that allows only a rotation about the elbow axis. In other words,

the motion of ulna is presumed to be held with respect to the humerus during pro- and

supination in the classical model.

In this model, the relative motion between bone ulna and radius is simplified by regarding the

proximal and distal radioulnar as spherical articulations, due to the correspondingly shaped

contact surfaces [11] (Fig. 2.4). Herewith, the proximal articulation between the radial head

and the sigmoid fossa of ulna is achieved by compelling the ends of radius and ulna to-

gether through the annular ligament and the ligament of denuce, while the distal articulation

between the radial notch and the ulna head is bounded by the triangular ligaments, volar

radioulnar ligament and dorsal radioulnar ligament. Furthermore, both bones are held to-

gether by a cross-fibered membrane called the membrana interossea antebracii, which joins

the medial border of the radius to the lateral border of the ulna. Therefore, the pro- and

supination motion in the classic model is defined as a fixed ulna and a pure rotation of the

radius around a fixed axis. The axis is a straight line going through the two centers of the

spherical articulations which model the proximal and distal radioulnar joints (Fig. 2.9a and

Fig. 2.10a).

The derived mechanism based on this classical model can be illustrated as the diagram in

Fig. 2.5. The vectors r1 and r3 represent the bony axis of the ulna and the radius, and the

vectors r2 and r4 represent the hand and the elbow, respectively. S1 and S2 are the spherical

joints representing the contact location at proximal and distal radioulnar articulations.
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olecranon
Incisura trochlearis

Lig. anulare radii

Fovea capitis radii

Corpus ulnae

Corpus radii

Membrana interossea

Facies articularis carpea radii

Articulatio radio-ulnaris distalis
Processus styloideus ulnae

Fig. 2.4: Basic modeling of relative motion between ulna and radius.

S1

S2

xy

z

ulna

radius

wrist

elbow
r1

r2

r3

r4

Fig. 2.5: Fick’s fixed-axis forearm model.

2.2.2 Forearm kinematic surrogate mechanicsm with 1DOF

During the improvement of the above-mentioned classic model, more comprehensive kine-

matic models were developed which take the motion of the ulna bone into consideration

[20], [23]. Weinberg et al. introduced a surrogate mechanism with one degree of freedom

(1DOF) for the pro-/supination. In this mechanism, the effect of joints on the motion were

considered by a simplified mechanical analogy. As shown in Fig. 2.6, it is a quadruple linked

mechanism. The vectors r1 and r3 represent the bony axis of the ulna and the radius. And

the vectors r2 and r4 represent the distal and proximal radioulnar articulations, respectively.

Vector r5 represents the shifting of the ulna in the linear splint.
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Fig. 2.6: One-degree-of-freedom surrogate mechanism for pro- and supination.

In addition, there are four theoretical joints in this mechanism to reflect the actual motion of

supination and pronation. The theoretical joints (I) and (IV ) represent the elbow anatom-

ically. The linear prismatic joint (I) is for the translational evasive movement of the ulna.

Although this joint cannot exactly reflect the evasive motion of the ulna, it fairly approaches

the real movement to a high level. The spherical joint (IV ) is used to produce the proximal

contact of the ulna and radius. Joints (II) and (III) correspond to the distal radioulnar and

radiocarpal joint. The univalent rotational joint (III) between the radius and wrist is applied

so that the tilting of the wrist during the motion can be realized. As a bivalent cardan joint,

joint (II) comprises the pro-/supination angle α, as well as a torsional rotation of radius with

respect to ulna.

The whole set of vectors ri forms a closed kinematic chain, written as:

5∑
i=1

ri =
5∑
i=1

⎡
⎢⎣ rxi

ryi

rzi

⎤
⎥⎦ = 0 (2.1)

Giving the initial conditions α = 90◦ = αs at supination position, one has

r1(αs) = l1·

⎡
⎢⎣ 0

1

0

⎤
⎥⎦ ; r2(αs) = l2·

⎡
⎢⎣ 1

0

0

⎤
⎥⎦ ; r3(αs) = l1·

⎡
⎢⎣ 0

−1

0

⎤
⎥⎦ ; r4(αs) = l2·

⎡
⎢⎣ −1

0

0

⎤
⎥⎦ ; r5(αs) = 0

(2.2)

14



2.2.3 Forearm elastokinematic surrogate mechanism with 2DOF

A new mechanism is proposed by Kecskeméthy and Weinberg [24]. They integrated virtual

springs to model the elastic components, for example ligaments, in their surrogate mecha-

nism. The operating presumption of this mechanism is that it is at a fixed flexural position of

the elbow, and therefore the proper elbow joint is not shown. Fig. 2.7 shows the correspond-

ing surrogate mechanism that allows one to model the effects described above [24].

 

x
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y
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z
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K1

K2

K3

0R1

Rϑ

elbow

s

cϑ
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radius link
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r1

r2

r3

r4

ψ1

ψ2

ϕ+ π
2

γ1, γ2, γ3

S

H

P

wrist

ϑ

cϕ

ϕ∗

Fig. 2.7: Two-degrees-of-freedom surrogate mechanism for pro- and supination.

The surrogate mechanism consists of a closed kinematic chain with four joints and two de-

grees of freedom. The prismatic joint P and the revolute R on the proximal end of ulna,

represent a small dislocation s and and a small lateral swaying ϑ of the ulna with respect

to the humerus. The Hooke joint H represents the distal radio-ulnar joint, consisting of the

actual pro-/supination angle ϕ and the torsional angle ψ1. The joint R2 describes the aperture

ψ2 between ulna and radius, and the spherical joint S represents the radial head at the proxi-

mal end of radius. The vectors r1, r2, r3, r4 represent the corresponding link lengths. At the

humero-ulnar joints, two virtual springs with corresponding spring stiffnesses cs and cϑ are

placed in order to summarize all elastic effects at these joints, including ligaments, capsules

etc. For kinetostatic analysis, a control moment ensuring motion at the other joints is applied

on the ulnar axis with a described pronation angle ϕ and with user supplied input values, cϕ
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and ϕ∗, for the stiffness and the offset of the deflection of a torsional spring respecively.

As the global home system, the inertial frame K0 is introduced. In this system, MRI data is

collected. For the forearm description, we introduce an elbow frame K1 which may move

with respect to the inertial frame from measurement to measurement with corresponding

radius vector 0r1 and relative rotation matrix 0R1. The frames K2 and K3 are bone-fixed and

are placed at the origin of the corresponding links.

To mathematically describe the rotation, a concept named kinetostatic coupling is defined

as the ratio of cϑ/cs. As shown in Fig. 2.8, the larger this ratio is, the smaller the rotational

angle is. When the value is close to ∞, the rotational angle becomes so small that it can be

ignored, thus only the translational behavior can be observed in the case. Conversely, when

this ratio is close to 0, no translational behavior but a large swaying can be observed. The

relation of this kinetostatic coupling to the motion will be verified in the later chapter.

r1

r4

cϑ
cs

→ ∞ cϑ
cs

→ 0
s

r1

⇒ ϑ small ⇒ ϑ large

Fig. 2.8: Kinetostatic coupling.

This 2DOF mechanism is compared with the aforementioned fixed-axis one in Fig. 2.9. In

the fixed-axis model the ulna is assumed to remain fixed with respect to the elbow, and the

radius is supposed to rotate about the axis passing through the center of the radial head and

the radio-ulnar articulation joints [11]. However, these assumptions prove to be non-realistic

by MRI measurements which shows that the ulna performs a small lateral swaying rotation

and a small axial sliding along its axis with respect to the elbow (lateral motion of point B in

Fig. 2.9b). This result indicates that the humero-ulnar (elbow) joint allows some tilting and

dislocation.

The effect of the improvement of motion reproduction by the new mechanism is depicted

in Fig. 2.10. According to Fick’s fixed-axis model, the hand could not stay parallel to the

elbow during rotation, and it would tilt unrealistically to the side of the body in the pronation

position (Fig. 2.10b). In order to compensate this tilting, there is a need of a small penetration

and a small lateral swaying of ulna at the elbow joint (Fig. 2.10c). This requirement demands
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a) fixed-axis model b) 2-DOF model

Fig. 2.9: Simple and extended model of forearm pose at supination and pronation (right
hand).

an additional revolute joint and an additional prismatic joint between elbow and ulna at point

A. Furthermore, an additional revolute joint between radius and wrist is laid at point C.

These two degrees of freedom are actually featured in the new 2DOF mechanism. It is

worth mentioning that Joint C can be thought as a virtual rotation center within the radius

corpus (Fig. 2.11). It is not a physical articulation but represents the center of curvature

of the projection of the contact surface between radius and ulna at their distal radio-ulnear

articulation on the plane spanned by ulna axis and distal radioulnar contact point.

AD

C B

radius ulna

AD

C

B

unrealistic hand
adduction

A
D

C
B

a) supination b) tilting of hand in pronation c) compensation of tilting

Fig. 2.10: Deficiencies of the fixed-axis model.

17



wrist

ulna
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Fig. 2.11: Virtual rotation center at distal radius head.

2.2.3.1 Position Kinematics

To abstract the kinematics of this mechanism into mathematical expression, homogeneous

vectors and the corresponding homogeneous transformation matrices which are usually ap-

plied for the characterization of rigid-body motions are used here [45]. The homogeneous

coordinates are determined by the notation

H
p=

⎡
⎢⎢⎢⎢⎣
px

py

pz

1

⎤
⎥⎥⎥⎥⎦ (2.3)

and the homogeneous matrices are defined as

A =

[
R r

0 1

]
=

⎡
⎢⎢⎢⎢⎣
ρ11 ρ12 ρ13 rx

ρ21 ρ22 ρ23 ry

ρ31 ρ32 ρ33 rz

0 0 0 1

⎤
⎥⎥⎥⎥⎦ (2.4)

The notation p = [px, py, pz]
T is a general vector in the three-dimensional space. In the matri-

ces, R is the orthogonal rotation matrix, in which the components ρij depict the coordinates

of the rotated unit vectors of the target frame in the base frame. r is the displacement vector,

and its components define the position of the origin of the moving frame in coordinates of

the base frame. In this way, the body-fixed coordinates p′ = [px′, py′ , pz′]
T regarding to the

moving frame can be transformed to the fixed coordinates p = [px, py, pz]
T with respect to

the base frame as [
p

1

]
=

[
R r

0 1

] [
p′

1

]
. (2.5)
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The elementary transformations are introduced as:

Rot [ e1,Θ ] =

⎛
⎜⎜⎜⎝

1 0 0 0

0 cosΘ − sinΘ 0

0 sinΘ cosΘ 0

0 0 0 1

⎞
⎟⎟⎟⎠ , Trans[ e1, s ] =

⎛
⎜⎜⎜⎝

1 0 0 s

0 1 0 0

0 0 1 0

0 0 0 1

⎞
⎟⎟⎟⎠ ,(2.6a)

Rot [ e2,Θ ] =

⎛
⎜⎜⎜⎝

cosΘ 0 sinΘ 0

0 1 0 0

− sinΘ 0 cosΘ 0

0 0 0 1

⎞
⎟⎟⎟⎠ , Trans[ e2, s ] =

⎛
⎜⎜⎜⎝

1 0 0 0

0 1 0 s

0 0 1 0

0 0 0 1

⎞
⎟⎟⎟⎠ ,(2.6b)

Rot [ e3,Θ ] =

⎛
⎜⎜⎜⎝

cosΘ − sinΘ 0 0

sinΘ cosΘ 0 0

0 0 1 0

0 0 0 1

⎞
⎟⎟⎟⎠ , Trans[ e3, s ] =

⎛
⎜⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 1 s

0 0 0 1

⎞
⎟⎟⎟⎠(2.6c)

where ei are the unit vectors in direction of the three coordinate axes, and Θ is a rotation

angle, and s is a translation. Furthermore, a pure rotation and a pure translation can be

denoted as:

Rot [R ] =

[
R 0

0 1

]
; Trans[ r ] =

[
I3 r

0 1

]
, (2.7)

where In is a n× n identity matrix. The loop closure condition could be written as:

Trans[ y, s ] ◦ Rot [ z, ϑ ] ◦ Trans[ y,−r1 ] ◦ Rot [ y, ϕ+ π/2 ] ◦ Rot [ x, ψ1 ]

◦ Trans[ x,−r2 ] ◦ Rot [ z, ψ2 ] ◦ Trans[ y, r3 ] ◦ Rot [ y, γ1 ] ◦ Rot [ z, γ2 ]
◦ Rot [ x, γ3 ] ◦ Trans[ x, r4 ] = I4 (2.8)

where ◦ is the composition operator used to define the concatenation of two subsequent

transformations. Referring to

A−1 =

[
RT −RT r

0 1

]
(2.9)

and that Trans[ x,−r2 ] and Rot [ x, ψ1 ] commute for the particular geometry at hand,
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the individual transformations in Eq. (2.8) can be reorganized to render an alternative loop

closure condition,

Rot [ x, ψ1 ] ◦ Rot [ z, ψ2 ] ◦ Trans[ y, r3 ] ◦ Rot [ y, γ1 ] ◦ Rot [ z, γ2 ] ◦ Rot [ x, γ3 ]
= Trans[ x, r2 ] ◦ Rot [ y,−(ϕ+ π/2) ] ◦ Trans[ y, r1 ] ◦ Rot [ z,−ϑ ] ◦ Trans[ y,−s ]

◦Trans[ x,−r4 ] . (2.10)

From this equation, it can be seen that the transformation from the wrist point C to the

humero-radial joint S , after commuting Trans[−r2 ] and Rot [ x, ψ1 ], can be described

by two sets of sequences, either through ψ1, ψ2, r3, γ1, γ2, γ3, or through the sequence −r2,
−ϕ, −r1, −ϑ, −s, −r4.

In matrix form, Eq. (2.10) becomes⎡
⎢⎢⎢⎢⎣

1 0 0 r2

0 1 0 0

0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎥⎦ ·

⎡
⎢⎢⎢⎢⎣

− sinϕ 0 − cosϕ 0

0 1 0 0

cosϕ 0 − sinϕ 0

0 0 0 1

⎤
⎥⎥⎥⎥⎦ ·

⎡
⎢⎢⎢⎢⎣

1 0 0 0

0 1 0 r1

0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎥⎦ ·

⎡
⎢⎢⎢⎢⎣

cosϑ sinϑ 0 0

− sinϑ cosϑ 0 0

0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎥⎦ ·

⎡
⎢⎢⎢⎢⎣

1 0 0 0

0 1 0 −s
0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎥⎦ ·

⎡
⎢⎢⎢⎢⎣

1 0 0 −r4
0 1 0 0

0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

1 0 0 0

0 cosψ1 − sinψ1 0

0 sinψ1 cosψ1 0

0 0 0 1

⎤
⎥⎥⎥⎥⎦ ·

⎡
⎢⎢⎢⎢⎣

cosψ2 − sinψ2 0 0

sinψ2 cosψ2 0 0

0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎥⎦ ·

⎡
⎢⎢⎢⎢⎣

1 0 0 0

0 1 0 r3

0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎥⎦ ·

⎡
⎢⎢⎢⎢⎣

0

RS 0

0

0 0 0 1

⎤
⎥⎥⎥⎥⎦

(2.11)

where RS = R(γ1, γ2, γ3) is the rotation matrix at the spherical joint.

From this matrix equation, proper scalar equations can be extracted to determine the three

unknown parameters: ϕ (pro-/supination angle), ψ1 (torsional angle between ulna and ra-

dius) and ψ2 (aperture angle) between ulna and radius. There are 12 nonvanishing equa-

tions in Eq. (2.11) and six of them are independent. There are 8 elementary degrees

of freedom at the joints in the surrogate mechanism, which are denoted by the variables
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β = [s, ϑ, ϕ, ψ1, ψ2, γ1, γ2, γ3]
T. Due to the particular geometry of the loop, its degrees of

freedom are constrained to 2 (s and ϕ) and the other 6 variables are functions of the two

degrees of freedom, which can be determined in closed form. Such a kind of closed-form

solution can be solved by an approach, which is proposed by Kecskemethy and Hiller [46],

in order to find a suitable sequence of equations automatically. This is reproduced here for

better reference.

In the approach since the position of all the bodies of the loop can be determined by com-

puting the variables ϑ, ψ1, ψ2, there is no need to take the spherical joint angles γ1, γ2, γ3
into account. One can multiplicate the basis vectors Eq. (2.12) from the left and right of Eq.

(2.11) to get the scalar equations.

H
e1=

⎡
⎢⎢⎢⎢⎣

1

0

0

0

⎤
⎥⎥⎥⎥⎦ ,

H
e2=

⎡
⎢⎢⎢⎢⎣

0

1

0

0

⎤
⎥⎥⎥⎥⎦ ,

H
e3=

⎡
⎢⎢⎢⎢⎣

0

0

1

0

⎤
⎥⎥⎥⎥⎦ ,

H
o=

⎡
⎢⎢⎢⎢⎣

0

0

0

1

⎤
⎥⎥⎥⎥⎦ . (2.12)

In this equation,
H
ei , i = 1, 2, 3 are the three orientation vectors in the direction of three

coordinate axes, respectively, which are perpendicular to the coordinate planes.
H
o is the

position vector describing the origin of the coordinate system. Note that, for orientation

vectors, it holds

A−1 H
e= AT H

e . (2.13)

Due to this property, multiplication from the left of a homogeneous matrix is defined for an

orientation vector:
H
u TA =

(
AT H

u
)T

=
(

A−1 H
u
)T
. (2.14)

The ‘homogeneous norm’ for positional vectors can be defined as:

‖ ξ ‖H =
√
‖ ξ ‖2 − 1 , (2.15)

where || · || denotes the Euclidean norm. It features

‖A
H
o ‖H = ‖A−1 H

o ‖H . (2.16)

This equation describes that the distance between the origins of a fixed and a moving frame

doesn’t depend on the direction of transformation.
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When Eq. (2.11) is multiplied with
H
o from the right by the homogeneous norm, the effects

of the spherical joint as well as the two rotations ψ1 and ψ2 are evidently excluded. The

derived fact is that the distance between the center of the spherical joint and the radial-side

intersection point of the two axes for ψ1 and ψ2 is independent of the corresponding joint

variables.

Equating the square of the homogeneous norms on both sides yields for the remaining un-

known ϑ

A(s, ϕ) cosϑ+B(s, ϕ) sin ϑ+ C(s) = 0 , where

⎧⎪⎨
⎪⎩

A = 2 (r2 r4 sinϕ− r1 s)

B = 2 (r2 s sinϕ− r1 r4)

C = r21 + r22 + r24 + s2 − r23
(2.17)

This equation can be rewritten as

C cos(ϑ− ϑ∗) + C = 0 , where C =
√
A2 +B2 , tanϑ∗ =

B

A
, (2.18)

and

sinψ2 = −r2 + sinϕ (r4 cos ϑ+ s sin ϑ)

r3
. (2.19)

tanψ1 = −cosϕ ( r4 cosϑ+ s sinϑ )

r1 + r4 sinϑ− s cosϑ
. (2.20)

Hence, the three variables ϑ, ψ1, ψ2 for the determination of the closed from solution can be

derived from the two degrees of freedom s and ϕ.

2.2.3.2 Velocity relationships

In the kinetostatic modeling, it is needed to transmit the degrees of freedom to the pro-

/supination angle ϕ, and therefore the Jacobian of the transmission is required. From Eq.

(2.17) it follows

Aϑ ϑ̇+ As ṡ+ Aϕ ϕ̇ = 0 , (2.21a)

where⎧⎪⎨
⎪⎩

Aϑ = r4 ( r1 cosϑ− r2 sin ϑ sinϕ ) + s ( r2 cos ϑ sinϕ+ r1 sinϑ )

As = r2 sinϑ sinϕ+ r1 cosϑ

Aϕ = r2 ( r4 cosϑ+ s sinϑ ) cosϕ

(2.21b)
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thus

ϑ̇ = [Js , Jϕ]

[
ṡ

ϕ̇

]
= J q̇ (2.22a)

where J = [Js, Jϕ] is the Jacobian of the transmission, and q = [s, ϕ]T is the vector of input

coordinates. The Jacobian coefficients Js and Jϕ follow as

Js = −As
Aϑ

= − r2 sin ϑ sinϕ+ r1 cosϑ

r4 ( r1 cos ϑ− r2 sin ϑ sinϕ ) + s ( r2 cosϑ sinϕ+ r1 sinϑ )
,(2.22b)

Jϕ = −Aϕ
Aϑ

= − r2 ( r4 cosϑ+ s sinϑ ) cosϕ

r4 ( r1 cos ϑ− r2 sin ϑ sinϕ ) + s ( r2 cosϑ sinϕ+ r1 sinϑ )
.(2.22c)

Typically ϑ << 1, therefore the denominator is always positive and the transmission is

free from singularities. On the other hand, the Jacobian coefficient Jϕ becomes zero at the

supination and pronation positions when ϕ = π/2 and ϕ = −π/2. This indicates that this

model advocates that the swaying motion of the ulna is "locked" with respect to axial rotation

of the forearm at supination and pronation. In the other word, lateral forces do not generate

a tendency at pronation and supination, but do at other axial rotations.

2.2.3.3 Kinetostatics

As discussed above in the kinematics of the mechanism, the forearm motion can at the end

be described in the model as functions of two degrees of freedom, the dislocation s and the

swaying angle ϑ at the humero-ulnar joint. Typically for pro- and supination the rotation with

respect to the ulnar axis (denoted by ϕ) is prescribed, with the motion at the other joints as

resultants. However, the two degrees of freedom make the distribution of the rotation on the

individual relative joint motions, non-unique. As a solution for these small perturbations, two

virtual springs are therefore introduced into the mechanism at the two humeroulnar joints,

with yet unknown stiffness coefficients cs and cϑ respectively (Fig. 2.7). Thus, the forearm

motion can be actuated by a torque applied in direction of the pronation angle, which can

be imagined in the way that the hand is twisted with an external moment applied about the

middle finger. The consequent effect on the two degrees of freedom is that one of them will

be more deflected than the other. This effect is up to the ratio of the two spring stiffness cs and

cϑ. When the modeling result is compared to the measured one, e.g. by MRI, the stiffness

ratio can be determined in order to reproduce the observed geometric motion. Along this

line, the problem mentioned at the beginning concerning on the accuracy of the two degrees
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of freedom mechanism can be solved by measuring the global gross motion behavior and

then defining the stiffness ratio.

To determine the ratio from geometric measurements, the force transmission is described

by a simple relationship between motion and force proposed by Kecskemethy [47]. The

relationship is regarded as a kinetostatic transmission element which can transmit the motion

and force in an ideal way without bringing the change of power (Fig. 2.12).

q

q̇

ϑ = f(q)

ϑ̇ = Jq̇

Q
q
= JTQϑ Qϑ

motion

force

Fig. 2.12: Model of the kinetostatic transmission element.

Mathematically, the force at the prismatic joint P is defined as Qs , the torque with respect

to the revolute joint Rϑ as Qϑ, and the torque about the pronation rotation ϕ as Qϕ. The

force and torque at the input joints can be described by a vector Q
q
= [Qs, Qϕ]

T. The power

equality at input and output is

QT
q
q̇ = Qϑ ϑ̇ . (2.23)

When the kinematical relationship (2.23a) is introduced, it becomes

QT
q
q̇ = Qϑ J q̇ .

Since the relationship must hold independently of the input velocity, the coefficients q̇ can

be removed from both sides and the following equation can be obtained:

Q
q
= JT Qϑ , (2.24)

which means that the transmission of forces can be performed by the transposed Jacobian in

the opposite direction to the velocities.

The deflection at the joints is arised while applying the forces and torques at the virtual

springs. A control moment along the pronation axis is used which is regulated by an addi-
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tional spring law with the form

Qϕ = cϕ (ϕ− ϕ∗ ) , (2.25a)

In this form ϕ∗ and cϕ need to be input. ϕ∗ stands for the offset of the deflection, and cϕ
denotes the stiffness of a torsional spring applying with respect to the pronation axis. Since

it holds Qs = cs s and Qϑ = cϑ ϑ at the humeroulnar degrees of freedom, based on Eq.

(2.24) the following equations can be derived

cs s = Js cϑ ϑ , (2.25b)

cϕ (ϕ− ϕ∗ ) = Jϕ cϑ ϑ . (2.25c)

For a given ϕ∗, these equations can be solved by a Newton-Raphson solver to result the

three variables ϕ, ϑ, s which determine the subsequent static equilibrium position. Since the

variables are dependent on the input value ϕ∗, a sequence of equilibrium positions s(ϕ∗),

ϑ(ϕ∗), ϕ(ϕ∗) obtained for given ϕ∗. Therefore the computed functions sC(ϕ) and ϑC(ϕ)

can be constructed to describe the deflections at the degrees of freedom for a given pronation

angle. Because the computed functions depend on the applied stiffness coefficients, the

kinetostatic coupling of ϑ and s is in terms of new independent input ϕ∗.

Therefore, in Eq. (2.25c), if a sping stiffness coefficient cϕ is set arbitrarily and the spring

offset ϕ∗ is chosen according to user specified values, the loop will then move to its new

equilibrium position. In the point view of the user, it looks like the operation is done by a

single given input ϕ∗.

2.3 Visualisation of human forearm motion

2.3.1 Coordinate of bone geometry

For the visualisation of the human forearm motion, it is required to define appropriate coor-

dinate systems. For the right forearm, these are as follows (Fig. 2.13):

1. The humeral origin is placed at the midpoint of trochlea of humerus; the z axis is

parallel to the shaft pointing to the shoulder; the y axis is directed towards the ulna
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styloid; and the x axis points laterally.

2. The radial origin is placed at the centroid of capitulum of the humerus; the y axis is

parallel to the shaft; the x axis points laterally; and the z axis points anteriorly.

3. The ulnar origin is defined as the middle point on the sagittal ridge of the greater

sigmoid notch; the y axis is parallel to the shaft; the x axis points laterally; and the z

axis points anteriorly.

xx

x

y
y

y

z

z

z

Fig. 2.13: Anatomic coordinate systems embedded for bones.

2.3.2 Programming environment

The object-oriented multi-body programming library M � �

� �

BILE [48] is used for the imple-

mentation of the model and the visualisation of the forearm motion. The software M � �

� �

BILE

is a C++ library used for the modeling of multi-body systems. It consists of not only classes

representing state objects and kinetostatic transmission elements (including objects for solv-

ing constraint equations), but also objects to generate, solve and integrate the equations of

motion.

In order to provide the end user a vivid appearance of the forearm bones motion, surface

models of the bones are attached to the moving frames (Fig. 2.14). As shown in this figure,

beside the window for the visualization of the modeling, there is a panel on the left side for

the adjustment of parameters via sliding bars. Thus, the pro- and supination motion can be
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visualized online for any given setting, e.g. rigid body motion parameters from inertial frame

to elbow frame, spring stiffnesses, offset, and pro-/supination angle.

Fig. 2.14: Screen shot of the developed simulation environment for pro-/supination.

27



Chapter 3

Model Parameter Fitting from MRI

Measurements

To obtain model parameters from the measured data, an automatic fitting method was devel-

oped which can self-calibrate the arm position in the MRI scanning tube and fit the model

parameters from MRI scans. The fitting process was run by reducing the errors between the

simulated and measured values in an optimization loop. Thereafter, a multibody program-

ming library was used to implement the model into its graphical user interface in order to

animate the forearm motion and provide a 3D visualisation. Finally the 2DOF model used

for this study was compared to the fixed-axis model described in Section 2.2.1, in terms of

absolute motion of bone ulna and bone radius relative to the humerus, and the relative motion

between ulna and radius.

3.1 MRI measurements

1. MRI background:

In previous studies, different methods have been used to get information on the forearm ge-

ometry, from in-vitro to in-vivo. The application of the in-vitro method on forearm motion

analyses has inherent limitations such as the absence of physiological muscle loading, pas-

sive simulation of forearm rotation, and artificial fixation of the ulna bone. As a non-invasive

medical imaging method, magnetic resonance imaging was used in many investigations, al-

though it is still a relatively new technology. The MRI image was firstly published in 1973
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[49]. In January 1974, its first application on getting cross-sectional images from a living

mouse was reported. MRI can be used to visualize detailed internal structure and limited

function of the body. In the MRI scanning, the magnetization of some atoms in the body can

be initialized under a powerful magnetic field, and the alignment of this magnetization can

be tuned by the radio frequency fields. The generated rotating magnetic field can be detected

by the scanner, and the signal can be manipulated by additional magnetic fields to build up

so much information that an image of the scanned area of the body can be constructed. Com-

pared to computed tomography (CT), it can provide much better contrast between the soft

tissues. Moreover, there is no ionizing radiation in MRI measurements.

2. Subject:

In this study, only one test was perforamed with a male subject of age 30. Moreover, data

collected in a previous measurement in the clinic of Heiderburg in 2007 was also inlcuded in

this setting. All the tests followed the same measurement protocol.

3. Torque device:

In order to observe the influence of wrist load on forearm kinematics, a special torque gen-

eration device was prepared and used (Fig. 3.1(a)). It is a plastic device featuring a rotatable

handle on a box placed at the end of the MRI scanning tube (Fig. 3.2). The device allowed

us to produce, via a Bungee cord, a resisting torque while operating the handle to a corre-

sponding rotational angle which could be read directly from the goniometer (Fig. 3.1(b)).

The torque generated by this device was in the range from 0 to 8.3 Nm. Five blocks (shown

as position 1-5 in Fig. 3.1(a)) asured the obtained torques roughly constant (ca. 4.2 Nm in

the experiments) at prescribed rotational angles.

Considering the operation condition of MRI (no magnetic elements permitted), the raw ma-

terial of the box was made of PVC, and the long rotational stick (black) was made of carbon

fiber. This device had an optimal dimension fitting to the height of MRI scanning tube and

the operating place, so that the tester could hold/rotate the handle without uncomfortableness

(Fig. 3.2).
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Fig. 3.1: Schematic of the torque device and the calibration graph.

Fig. 3.2: Schematic location of the torque device in MRI scanning.

4. Scanning protocol:

The position of the subject (tester) inside the MRI scanner tube was carried out on the table

with the elbow in 45◦ flexion (Fig. 3.3(a)). An adjustable support cushion under the sub-

ject’s arm and chest increased the comfort of the subject during scanning and thus helped to

maintain the subject’s position stable. Gripping the goniometer at 0◦ of rotation aligned the

dorsopalmer axis with the x axis of the scanner, the length of the forearm with the y axis of

the scanner, and the radioulnar axis of the wrist with the z axis of the scanner. MRI scanning

was performed from the distal humerus to the proximal carpal row.

In this study two sets of MRI measurements, fine scans and motion scans, were performed:
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(a) tester on MRI table

Sup90◦ Sup45◦ 0◦

Pro45◦ Pro90◦

(b) holding the handle at defined rotational angles

Fig. 3.3: MRI device and defined rotational positions.

(1) Fine MRI scans were carried out for the determination of the bone geometry and the

result was used as the reference in the later study. For each tester, around forty images

were taken with the forearm at a fixed position. From these reference scans, a quite

smooth distribution of the bone marrow centroid lines and the cross-sectional areas

along the MRI axial direction could be obtained by using automatic segmentation.

The derived bone geometry was used as a reference in subsequent applications of the

simulation package.

(2) Motion scans recorded the forearm rotational motion. For each tester series of the

images were taken at three torque conditions and at defined rotational pro-/supination

angles from maximum supination, 45◦ supination, neutral, 45◦ pronation to maximum

pronation (as shown in Fig. 3.3(b)). The toque conditions were (1) no resistive torque,

(2) torque of 4.2Nm against pronation, and (3) torque of 4.2Nm against supination.

This active torque was generated by the device while the tester grasped the handle and

held the forearm against the grip at defined rotational positions as described above. At

each condition for each tester, five/seven (in clinic of Heidelberg/Essen respectively)

cross-section MRI slices were taken along the forearm length with fixed distance be-

tween each other (Table 3.5).

The fine MRI scan was performed only at one angle position, with a scanning time of ap-

proximately 4 min. In the case of motion scan a limited set of MRI slices S1, . . . , SM (M

=5/7) were scanned under each condition, where the time duration for each series was less

than 30 seconds. Since the slices for one angle position were taken roughly simultaneously,
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they could represent the same forearm position. In the analysis the images were recon-

structed with a display field of view, such as 240*240mm and an in-plane resolution of

0.9375*0.9375mm2. The following Table 3.1 and Table 3.2 detail the parameters for acqui-

sition:

Table 3.1: Image parameters taken at clinic Heidelberg
image parameters repetition time echo time field of view slice matrix slice thickness slice number slice distance

(ms) (ms) (mm2) (mm) (mm)

fine scan 3657.4 15 160*160 0.3125*0.3125 5 40 10
motion scan 143.3 13.8 240*240 0.9375*0.9375 5 5 37

Table 3.2: Image parameters taken at clinic Essen
image parameters repetition time echo time field of view pixel spacing slice thickness slice number slice distance

(ms) (ms) (mm2) (mm) (mm)

fine scan 3000 11 146*199 0.5208*0.5208 3 47 6
motion scan 3000 11 146*200 0.7813*0.7813 3 7 36

5. MRI images and the corresponding information:

The MRI image data were saved in DICOM format. DICOM (Digital Imaging and Com-

munications in Medicine) is a standard for handling, storing, printing, and transmitting in-

formation in medical imaging, such as CT and MRI scans. It defines a data dictionary, data

structures, file formats, client and server services, workflow, etc. A DICOM file contains

both a header portion, including items such as patient ID, study time, series time, acquisition

data etc, as well as the image data such as the image pixels.

6. Coordinate systems in DICOM:

A single patient-centered coordinate system is used in the DICOM standard to locate points

in three-dimentional space. This system is defined with respect to the patient’s body. Di-

com standard contains the following tags recording the information of image position and

orientation:

1. Image Position (0020, 0032): specifies the x, y, and z coordinates of the upper left

corner of the image. This tag defines the coordinates of the first voxel transmitted.

2. Image Orientation (0020, 0037): specifies the direction cosines of the first row and the

first column with respect to the patient. This data allows one to uniquely determine

the mapping between the image and the cooresponding view plane. Hereby, the x axis

points to patient’s left-hand side, the y aixs points to the posterior side of the patient,

and z axis increases toward the head of the patient.
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3. Patient position (0018, 5100): describes the location relative to the equipment required

for MR images. The often used descriptors are: HFP (head first-prone), HFS (head

first-supine), HFDR (head first-decubitus right), HFDL (head first-decubitus left), FFP

(feet first-prone), FFS, FFDR, FFDL. In our MRI measurements the tester was nearly

aligned on the table, and thus HFP was used.

x

y

z

P

Fig. 3.4: DICOM patient-space coordinate.

7. MRI slices in the Open Inventor suite:

Open Inventor is a library of objects and methods used to create interactive 3D graphics

application [50]. In order to draw MRI images in space, two classes were used, SoIndexed-

FaceSet and SoTexture2. SoIndexedFaceSet represents a 3D shape formed by constructing

faces (polygons) from vertices located at the coordinates specified in the vertexProperty field.

The SoTexture2 defines a texture map and parameters for this map that is used to apply tex-

ture to subsequent shapes as they are rendered. An example series of visualized MRI slice in

sequence is shown in Fig. 3.5.

xy

z

K0

Fig. 3.5: Visulized MRI slices in coordinate.
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8. Bone landmarks:

In the following setting, two kinds of bone landmarks were employed: one set from the finely

scanned MRI which was used to determine the bone geometry, and the other was from the

motion scans recording the forearm rotation.

(1) For the fine scans the pertinent osseous features were used as landmarks on the radius

and ulna, which was digitized according to xyz coordinates from axial images as shown

in Fig. 3.6 and Fig. 3.7. These landmarks denote the ulnar fovea (UF), the center of ulnar

head (COUH) at the distal radioulnar joint (DRUJ), and the center of radial head (CORH) at

the proximal radioulnar joint (PRUJ), respectively. All of them were manually identified by

using the ImageJ tool.

The slice location of DRUJ was identified as the most distal axial slice with the first complete

and continuous cortical outline of the ulnar head, containing the visible ulnar fovea while it

was viewed in the direction from distal to proximal. The location of UF was then defined

from this slice by taking the center point of the ulnar fovea pit. Thereafter, COUH was

also derived from the same slice. As shown in (Fig. 3.6), the image in the middle met

this criterion. On this image the digitized position of UF, indicated as the red dot, could

be distinguished. Since on the right image UF appeared obscured by the base of the ulnar

styloid and became not distinct any longer, it was not applicable for the analysis. The center

of ulnar head (COUH) was semi-automatically digitized as the red circle with cross by using

the ImageJ tool.

Fig. 3.6: Axial images through the distal radioulnar joint (DRUJ).

The location of PRUJ slice was determined as the axial slice containing the largest area of

the radial head, as shown in Fig. 3.7. In the axial images through the proximal radioulnar

joint, the image in the middle showed the largest visible cross-sectional area of the radial

head, therefore it was taken as PRUJ slice. The CORH was then determined from the same
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slice, and was semi-automatically digitized (red circle with cross) by using the ImageJ tool.

Fig. 3.7: Axial images through the proximal radioulnar joint (PRUJ).

(2) The second bone landmark was the bone marrow center, which was recognized from

the cross-section slices of bone radius and ulna in motion scans. As shown in Fig. 3.8,

the bone marrows of ulna and radius could be differentiated from cortical bone due to their

different gray shading: cortical bone tissue shows low signal intensity (black) while bone

marrow shows high intensity (gray). In this study, the characteristic curves of the bones were

associated to the centroids of the bone marrow cross sections, and thereafter an automatic

segmentation program was used to recognize the bone contours and their centroid position.

This process will be explained in Section 3.2.

Fig. 3.8: Recognized bone marrows (ulna (red) in upper, radius (green) in lower).

3.2 Forearm bone segmentation

As known, in the surgical planning information of geometry and functional parameters of

the patient’s bone are highly valuable. In terms of reducing the workload of the surgeons, an
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automatic medical image analysis can become a very important tool. However, such a tool is

difficult to be realized because of the inherent limitations of the medical images, such as the

limited grey level resolution, bad image contrast and image noise etc. Except that, human

tissues’s complex structure limits the capability of automatic medical image analysis method

as well.

This section describes the process to segment the forearm bones between the proximal

humerus head and distal wrist portion on MRI. In this process, the position of point clouds

of the bone contour and their geometric centers were the first issue to be addressed. Subse-

quently, the segmented 3D object was used to match the measured forearm motions, and the

distance between these two bones was further investigated.

3.2.1 Segmentation overview

The set of segmentation methods presented in this study was developed for the human gait

analysis, and the bone geometry represented as triangular meshes was acquired by using a

segmentation algorithm based on gray scale [51]. The segmentation program used DICOM

MRI images as inputs, thresholding and region growing to process the analysis to extract

the functional parameters. After the 3D reconstruction, text files were generated as outputs.

Fig. 3.9 shows an overview of the processing flow of the whole segmentation procedure.

Thresholding

DICOM Image (MRI)

Region Growing

Binary images

Contrast Adjustment

3D Reconstruction

Outputs : text files

Fig. 3.9: Segmentation processing flow.
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3.2.2 Processing

A library named DCMTK was used to read the DICOM images. The library loads all the

DICOM images to memory, reads the head of DICOM to get the coordinates of each image

center, voxel size and patient name, and then re-sorts all images based on the coordinate of

each image center. In order to obtain an optimal binary image with bones as foreground and

other tissues as background, the contrast of the DICOM image was adjusted. Here, in order

to make the grey level of bone structures more homogenous, the Gauss filter and median

filter were used to sieve out the noise in the image.

For thresholding, two threshold values were set: one for the background and the other for the

bones. Hereby, since the illumination varies in different sections of the body, the thresholds

are section dependent.

In the binary images, bones were presented in black color and the other tissues were in white.

However, since some soft tissues in the MRI images had the same grey level as bones, after

thresholding, the black region on these binary images contained not only bones but also some

small soft tissues. Therefore, after the floodfill method was used to take out the background

of the image, some tissues were still left on the image. Region growing was run through the

whole MRI images to eliminate these tissues.

Fig. 3.10 shows an example of the process. The left image is an original MRI image, the

middle one is the binary image after thresholding process and the right one is after region

growing process. It can be seen clearly on the middle image that some tissues are also black

and stay on the image after the thread holding process, but disappear after the region growing

process.

original MRI images after thresholding after region growing

Fig. 3.10: MRI image processing.
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3.2.3 User application

The user interactive interface was developed for the visualisation of 2D segmentation and the

following 3D reconstruction. This interface is based on C++, QT and some special libraries,

such as OpenCV for image processing, DCMTK for DICOM reading, and VTK for 3D

reconstruction.

As shown in Fig. 3.11, series of MRI images could be loaded into the window on the left side

by clicking the option ’Load’. Images could be worked one by one by scrolling the bar, with

the slice number shown as the ’Current’. On each image, the resolution of bone structures

could be optimized via adjusting the parameter slider ’ContrastH’ or ’ContrastL’. Then the

region of bone of interest could be highlighted with red color by choosing the parameters

for ’Backgroud’, ’Low Threshold’ and ’High Threshold’. As discussed above, due to the

similar grey level of some soft tissues as bones, they also had red color. Therefore, in the

next action, ’Seeds’ were set manually by clicking the mouse on some position of the bone,

and the optimal value was used to remove those noise-bringing tissues by ’Region Growing’.

Fig. 3.11: User interface of bone image segmentation window. The left window shows the
original DICOM images and the preview of thresholding result. The right window is the
working area for region growing.

Fig. 3.12 shows the result window after choosing ’Show Results’. The window on the left

side shows both the DICOM image and the segmentation result, and the right side shows the

segmentation result individually.

The binary image in BMP format is then loaded in the 3D reconstruction interface. As shown
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Fig. 3.12: User interface of bone segmentation result window.

in Fig. 3.13, there are two options to realize the reconstruction: iso-surface and delaunary.

The Iso-surface method uses binary BMP images as inputs. It connects the points having the

same grey level on each adjacent pair of images, and thus a surface is generated based on

these polygon curves. The delaunary method allocates the 3D coordinates of the edges in the

binary images. From the voxel size, the 2D coordinates in pixel and the images’ index, 3D

object is produced.

DAT file reconstructed bone ulna reconstructed bone radius

Fig. 3.13: User interface of 3D Reconstruction using the delaunary method.

The forearm bones segmented from the series of fine MRI scans using the delaunary method

are displayed at the left side of Fig. 3.14 and the derived 3D reconstruction is shown at the

right side. The spherical yellow ball represents the center of radius head. This patient-based

specific bone geometry was applied in the further forearm motion study.
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Fig. 3.14: 3D presentation of the segmented bones with MRI.

3.2.4 Segmentation accuracy

Since the change of bone contour along the forearm is one important parameter, a high seg-

mentation accuracy is required. In an effort to check the degree of accuracy of the automatic

segmentation, its results were compared with functional parameters which were manually

specified by considering the bone area and contour’s center respectively. Fig. 3.15(a) is the

original MRI. Fig. 3.15(b) shows the bone contours recognized manually (red), automatically

(black) and the overlap of these two, from left to right, respectively. The overlap reached

96%. The high accuracy proves the applicability of the automatic segmentation method.

(a) original MRI image (b) recognized bone cross section

manual program overlapping ratio = 96 %

Fig. 3.15: Matching of bone contour by the automatic and manual method.

The details of the comparisons on bone areas and center positions for ulna and radius are

shown in Table 3.3 and Table 3.4.
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Table 3.3: A comparison of the automatic method and manual procedure for extracting the
bone area.

Manual setting Automatic method Deviation Ratio
(mm2) (mm2) (mm2) (%)

Bone ulna area 110.547 112.631 2.084 97.2%
Bone radius area 123.112 125.784 2.672 96.1%

Table 3.4: A comparison of the automatic method and manual procedure for extracting the
bone center.

Manual setting Automatic method Deviation
(mm) (mm) (mm)

Bone ulna center (-101.687, -87.308) (-101.342, -87.767) 0.574
Bone radius center (-72.428, -98.259) (-72.684, -98.881) 0.655

3.3 Model parameter fitting

The geometric and elastic parameters of the surrogate mechanism, such as the link length and

spring coefficient, cannot be directly determined from the image data. It is necessary to have

a fitting process to optimize the mechanism parameters such that the computed results are

consistent with the measured values. In this section, a proposed fitting procedure to analyze

MRI slices at different rotational configurations is described.

3.3.1 Measured bone marrow centroid

As shown in the example MRI slice in Fig. 3.16, the bone marrows of both ulna and radius

can be differentiated from the cortical bone according to their different gray level. Cortical

bones show comparatively low signal intensities (black) and bone marrows show relatively

higher intensities (gray). The interosseous membrane of the forearm appears is recognizable

as thin dark line with low signal intensity.

In image analysis, as described in Section 3.2, the bone contour of interest was recognized

and the position of the bone marrow centroid with respect to the body-fixed frame was ob-

tained. Here, the notation i
jbb denotes a vector from the origin of frame Kj to the origin of

frame Kb in coordinates of frame Ki. iRb denotes the orthogonal rotation matrix transforming

coordinates with respect to frame Kb to coordinates with respect to Ki (here is K0).

1. The upper left point P0 is defined as the origin of the body-fixed frame Kb, and ex
and ey as the unit vectors spanning the slice plane. These geometric entities define the
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Fig. 3.16: Coordinate transfer.

image position and orientation in DICOM’s patient coordinate.

2. The location of the measured centroid of bone radius and ulna in the body-fixed frame

are presented as br
m
radius and br

m
ulna, where m means measured, and the additional in-

cluded index ulna or radius defines the corresponding slice for bone ulna and radius,

respectively.

3. The position of the bone marrow centroid can be further transformed into the inertial

frame K0, where MRI data is collected, by a transformation matrix 0Rb given as

0ez =
0ex × 0ey , (3.1)

0Rb = [0ex,
0ey,

0ez] . (3.2)

4. Series of corresponding vectors 0
0r
m
radius and 0

0r
m
ulna which point to the bone marrow

centroids of radius and ulna from discrete MRI slices are presented in the MRI refer-

ence coordinate frame by the affine transformations.

0
0r
m
radius = 0rb +

0Rb · brmradius , (3.3)

0
0r
m
ulna = 0rb +

0Rb · brmulna . (3.4)

5. The connection of each pair of adjacent marrow centroids forms a polygon line, termed

here as "measured skeleton line" (Fig. 3.17).
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measured skeleton line (ulna)

measured skeleton line (radius)

Fig. 3.17: Measured skeleton lines with MRI slices.

3.3.2 Computed bone marrow centroid

Based on the surrogate mechanism model, the vectors which point to the bone marrow

centroids from MRI slices were computed. The polygon line connecting the computed

points of the bone marrow centroids on radius or ulna is named as "computed skeleton line"

(Fig. 3.18).

computed skeleton line (ulna)

computed skeleton line (radius)

K0

K2

K3

R, r

3r
c
radius

2r
c
ulna

0
0r

c
radius

Fig. 3.18: Computed skeleton line with surrogate mechanism.

Hereby, the following procedure is applied:

1. The position vectors of the bone marrow centroids are fixed to the link ulna and radius

in the local coordinate of K2 and K3, respectively. R and r denote the location of the

surrogate mechanism in the MRI reference frame.
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2. The location of the computed positions of the bone marrow centroids 2r
c
ulna and 3r

c
radius

are obtained by a self-calibrating procedure for the determination of the centroid points

of the forearm bones at a set of scan slices. This procedure will be detailed in Sec-

tion 3.3.4.

3. The computed vectors in the respective body-fixed frame are then expressed in the

reference frame K0 as 0
0r
c
ulna and 0

0r
c
radius, by using the corresponding transformation

R and r.

The computed positions of bone marrow centers depend on the model parameters (link

length, spring coefficient), as well as the location of the mechanism (R and r ).

3.3.3 Parameter fitting principle

In the surrogate model, the bone is regarded as a polygon line with a series of discrete mar-

row centroid points along the forearm. During the fitting process, the curve connecting the

measured/computed centroids of the bone marrow cross sections is generated and named as

the measured/computed skeleton line. When the forearm rotates, the centroid points change

their spatial positions. The model parameters are then optimized such that square error be-

tween the measured and computed skeleton line is minimal over all positions. To calculate

the square error, the inertial frame K0 is introduced as the global home system where MRI

data is collected (Fig. 3.19). The elbow Frame K1 may move with respect to the inertial

frame from measurement to measurement with corresponding radius vector 0r1 and relative

rotation matrix 0R1. The frames K2 (ulna) and K3 (radius) are bone-fixed and are placed at

the origin of the corresponding links.

The model fitting procedure is:

1. Let rmi,j denote the radius vector to the measured centroid at the j-th slice of the i-th

measurement (corresponding to a pro-/supination angle).

2. Let rci,j denote the corresponding computed radius vector to the same target point.

3. Both vectors are assumed to be decomposed in K0.

4. An additional index U or R is included for denoting the corresponding slices for the

ulna or radius bones, respectively.
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Fig. 3.19: Computed and measured bone marrow centroid line.

5. The minimization target is then

min
x :

N∑
i=1

M∑
j=1

{|| rmU,i,j − rcU,i,j ||2 + || rmR,i,j − rcR,i,j ||2
}

(3.5)

In the minimization, design variables x are composed of

1. the mechanism kinetostatic parameters r1,r2,r3,r4,cs, cϑ (Fig. 2.7)

2. the rigid-body motion of the elbow, for each measurement, represented by three trans-

lations xj0, y
j
0, z

j
0 and three rotations χj1, χ

j
2, χ

j
3 (i.e. 3T − 3R)

3. the relative location of bone geometry frame KB with respect to the link reference

frame, involving three constant translations, κ1, κ2, κ3 and three constant rotations

ε1, ε2, ε3 for each bone(e.g. 2rB, 2RB)

4. the pro-/supination angle (ϕ)j , which rotates the mechanism to the optimal configura-

tion.
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All design variables must be determined simultaneously, as they are highly coupled. There

are thus in total 18 + 7N design variables for N measurements.

3.3.4 Automatic axial calibration of motion scans along bone axis

While the forearm rotates, it is unlikely that changes of the forearm position from measure-

ment to measurement will not occur when the measurement is performed in vivo. In order

to compensate this variability, a self-calibrating procedure is developed for determining the

location of forearm bones at a series of scan slices.

3.3.4.1 Bone cross-section’s variability

As already mentioned in Section 3.1, a fine MRI scan with a set of slices is performed to

provide the information of smooth bone geometry, and also as a reference for the motion

scans. The fine scan shows that the shape and cross-sectional area of bone ulna and radius,

as well as the distance between them vary along the bone axis (Fig. 3.20). Hereby, the

following features can be recognized:

1. Change of the bone shape:

The proximal end of bone radius is smaller than its distal end. The shape of bone radius

changes from a circular cylinder to a prismatic-triangular shape, somewhat concave

towards the ulna, and then becomes broader distally, and quadrilateral in cross section

[41].

The ulna is more irregular in shape at the proximal end. Its cross section then changes

from triangular in the middle segment to circular in the distal third section and then

irregular again [41].

2. Size of the cross-sectional area:

By using automatic segmentation, the area of each bone contour (inner and outer) at

a slice position can be directly calculated. An example of the measured profile of

cross-sectional areas is shown in Fig. 3.21. They are ploted based on data from the

fine scan. On the figure the solid red line represents the area of the outer cortical

bone contour and the blue line represent the inner cortical bone area. Obviously, the

varying of contour areas is irregular, and cannot be interpreted as a simple increasing

or decreasing along the bone axis.
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Fig. 3.20: Scheme of the cross-section change of the radius and ulna along forearm.

3. Distance between ulna and radius:

The distance between ulna and radius also varies along the bone axis, which is rela-

tively shorter at the proximal side, larger at the middle, and again shorter at the distal

side. During the forearm rotational motion, the radius crosses over the ulna, indicating

that the distance also depends on the pro-/supination angle. The detailed analysis of

the complex distance change will be described in Chapter 4.

The cross-sectional area of the bones can now be utilized in the calibration, since its change

along the forearm is smooth and significant.

3.3.4.2 Axial calibration

Since a change of forearm location in the in-vivo measurement is not avoidable, a self-

calibrating procedure is proposed for the determination of the bone marrow centroids of

forearm bones at a series of scan slices. In such a procedure, an offset s∗ needs to be de-

termined to facilitate the synchronization of the profile of measured cross-sectional areas at
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motion slices with the interpolated contours of cross-sectional area achieved from fine scans.

This is conducted by using the quadratic error minimization [27].

As described above, the change of the cross-sectional area is smooth and significant (Fig. 3.21),

and can thus be used for automatic calibration along the axial direction. Calibration along

transversal direction is easily accomplished by the optimization procedure described in Sec-

tion 3.3.3.
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Fig. 3.21: Cross-sectional area of ulna and radius (supination angle ϕ = 90◦).

The axial calibration procedure consists of the following steps:

1. Calculate the cross-sectional area of bone ulna and radius at each slice i of fine MRI

scan (i = 1, 2, 3 · · ·L, L is the slice number in fine scans), named as As
U,i and AsR,i.

The outer and inner area are plotted verse the axial location as solid red line and dotted

blue line shown in Fig. 3.21(a) and (b), respectively.

2. Calculate the cross-sectional area from the measured motion scans, named as Am
U,j

and AmR,j , where j is the number of motion scans at defined pro-/supination angle

(j = 1, 2, 3 · · ·M , M=5 in this study).

3. Extract the constant distance between each two adjacent slices for the motion scan,

defined as ds from the DICOM data base.

4. Assume that the aixal offset of the first slice is s, then the axial location of all slices of

the same series are sj = s+ (j − 1) ∗ ds, j = 1, 2, 3 · · ·M .
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5. Calculate the interpolated cross-sectional areas Aint
U,j and AintR,j for the fine scans at the

axial locations sj .

6. Run the quadratic error minimization (3.6) to determine s∗, where the indexes U and

R correspond to bone ulna and radius, respectively, so that the cross-sectional areas of

the corresponding slices of motion scans match the reference well. It is noted here that

s∗ should be same for ulna and radius, apart from a possible constant offset, i.e. the

offset of ulna and radius is coupled.

min
s :

M∑
j=1

||AmU/R,j −AintU/R,j(sj)||2 (3.6)

7. Repeate the process 2 to process 6 for the calculation of the offset s∗ at a new pro-

/supination angle.

8. Once the location of s∗ are identified, sj = s∗ + (j − 1) ∗ ds, (1 ≤ j ≤ M) can be

obtained subsequently. Therefore, the bone-fixed coordinates of bone marrow centers

can be determined by linear interpolation of the reference bone marrow centroid, and

the corresponding bone-fixed vectors B
Bξi,j are obtained. Referring to Fig. 3.19, the

corresponding computed bone marrow centers then become

rc i,j = r2/3 +
0R2/3 (

2/3
2/3rB,+

2/3RB
B
Bξi,j ) (3.7)

where, the indexes 2 and 3 correspond to bone ulna and radius, respectively, and the

index B denotes for their corresponding bone reference frame (ulna or radius). The

notation i
ibB defines a vector from the origin of frame Ki to the origin of frame KB

decomposed in the coordinates of frame Ki. The iRj define the orthogonal rotation

matrix transforming coordinates with respect to frame Kj to coordinates with respect

to Ki. Here, 2/3
2/3rB and 2/3RB are the (unknown) design parameters describing the

constant pose of the bone geometry with respect to the corresponding mechanism link.

3.3.5 Geometric and kinetostatic parameter fitting

The model parameters of the surrogate mechanism cannot be determined directly from the

image data. A fitting procedure is necessary to optimize the parameters, and thus the com-

puted results coincide with the measured values. This procedure consists of two basic steps:
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(1) to obtain initial geometric parameters (link lengths) from medial view of the forearm; (2)

to determine the kinetostatic parameters (geometric quantities and stiffness coefficients of

the two virtual springs) using the optimization procedure of Eq. (3.5).

3.3.5.1 Geometric initial parameter estimation

The geometric initial parameter estimation is based on a medial MRI scan (Fig. 3.22) and

fine cross-sectional MRI scans (Fig. 3.23). The initial model parameters r1=r3=l, r2=r4=b

are estimated from the medial MRI scan with the assumption that the surrogate mechanism

is roughly a parallelogram in the supination configuration. The length l is defined as the

distance from the proximal point of the radius head to the distal point of the styloid process

of ulna. The width b is defined as the largest diameter of the radius head, which can be

deduced from medial MRI image (Fig. 3.22). For example, in the case of the Heidelberg

measurement, l and b were measured as 252[mm] and 25[mm], respectively.

hand elbow

r2 r4

slice 1 2 3 4 5

ds

l
b

r1 = −r3

Fig. 3.22: Geometry bone parameters from axial image.

K0

K2

slice 1

2

3

4
5

ds

R, r

xy

z

Fig. 3.23: Location of MRI slices for the right arm.
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The dimensions of testers’s forearms in these two measurements are summarized in Ta-

ble 3.5.

Table 3.5: Initial measured bone geometry data and slice offsets
r1 r3 r2 r4 number of slices dr number of slices ds

(mm) (mm) (mm) (mm) reference scans (mm) motion scans (mm)
Heidelberg 252 252 25 25 42 10 5 37

Essen 246 246 23 23 94 3 7 36

3.3.5.2 Kinetostatic parameter fitting

The database for the fitting are series of MRI slices, which consist of scanning bone cross sec-

tions of the forearm at different pro-/supination angles ϕ1, . . . , ϕN . For each pro-/supination

angle, a reduced set of MRI slices S1, . . . , SM (M=5/7) is scanned as described in Sec-

tion 3.1. Fig. 3.23 presents the location of the slices from motion scans along the forearm

axial direction, with the defined space ds between each two adjacent slices.

Taking the Heidelberg measurement as an example, the reference scan contained 42 slices

with 10mm distance to each other, and the motion scans contained 5 slices with 37mm dis-

tance. The hand rotated from vertical palm (ϕ= 0◦) to supination (ϕ=90◦) in two steps with

45◦ angle in each step, and then to pronation (ϕ=-90◦) in the same way. The angles were

prescribed by the aforementioned device featuring a rotatable handle on a box placed at the

end of the MRI tube. The device can produce, via a Bungee cord, a resisting torque while

operating the handle. The three runs were (1) no resistive torque, (2) torque of 4.2Nm against

pronation, and (3) torque of 4.2Nm against supination.

Fig. 3.24 shows the resulting MRI images of one run (without torque) from the perspective

of the wrist. The rows from top to bottom display the images of the chosen slices along

the forearm length from proximal elbow portion to distal wrist portion, and the columns

from left to right show the cross sections at maximum supination, 45◦ supination, neutral,

45◦ pronation and maximum pronation. The two small circles represent the radius (red) and

ulna (green) respectively, and the grey parts inside the circle are bone marrows. From these

images, the relative rotation of the radius around the ulna can be observed.

The same phenomenon were also observed in the MRI slices with ±4.2Nm torque, shown in

Fig. 3.25 and Fig. 3.26, respectively.
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Fig. 3.24: MRI slices measured without torque (perspective view of the wrist).
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Fig. 3.25: MRI slices measured with resisted pronation torque (perspective view of the wrist).
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Fig. 3.26: MRI slices measured with resisted supination torque (perspective view of the
wrist).

To determine the axial displacement of ulna, Weinberg et al. used the in-vitro measurements

on a cadaveric probe to measure the axial displacement at the humero-ulnar articulation as

a function of pro- and supination [24]. A CCD camera was used to record the opening at

the humero-ulnar joint from ventral view for three positions under loading conditions (no

loading, varus stress and valgus stress). In this work, the dislocation was not determined by

such in-vitro measurements, but by fitting in-vivo data under different physiologic loading

conditions (Fig. 3.31). It is necessary to note that the opening at the humero-ulnar joint, i.e.

the gap from ventral view, does not represent the axial displacement s at the humero-ulnar

joint directly, but comprises also an additional displacement of the edge of lateral swaying

rotation due to the offset between the bone axis and the edge of the trochleus (Fig. 3.27).

Hence, the observed gap is s = −s + lo sinϑ + s0, where s0 is a fixed constant relating the

model variable s with the measured gap through a fixed offset [24].

3.4 Simulation results

Based on these measurements, the optimization procedure described in Eq. (3.5) was carried

out with the built-in Matlab function fmincon, and thus the values for cs and cϑ were
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Fig. 3.27: Opening of the gap (pronation).

determined. The typical computational time for one optimization run was 30 minutes in this

study.

Fmincon stops when the predicted change in the objective function is less than the default

value of the function tolerance and constraints are satisfied to within the default value of the

constraint tolerance. The development of cost function over iteration steps are plotted, by

taking the Heidelberg measurement as an example, for fixed-axis model and 2DOF model

in Fig. 3.28. It can be observed that in both model the cost function decreases by 80% from

its initial value after the first 20 iterations and becomes already quite stable after 30 iteration

steps. The cost value in 2DOF model is much less than that in fixed-axis model, which

proves that 2DOF model has a better computation match to the measurements.
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Fig. 3.28: Development of the cost function over the iteration steps.
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3.4.1 Numerical data

The measured data obtained from the fine MRI scanning is shown here as a reference. As

initial values, the anatomical lengths described in Section 3.3.5.1 were chosen. The subse-

quent computed results for the cases of no-torque, pron-resist torque and supin-resist torque,

are shown in Table 3.6 for Heidelberg measurement, and Table 3.7 for Essen measurement.

Table 3.6: Identified mechanism dimensions and stiffness coefficients (Heidelberg measure-
ment)

radius ulna elbow wrist cs cϑ ratio ϑmax smax

(mm) (mm) (mm) (mm) (N/mm) (N mm) cϑ/cs (◦) (mm)
Measured 252 252 25 25 - - - - -

Computed

without torque 252.13 252.08 24.71 24.07 0.091 19.97 219.45 7.93 0.597
pron. torque 252.31 252.22 24.82 24.43 0.092 20.32 220.87 7.85 0.605
supin. torque 252.73 252.54 24.61 24.24 0.094 20.28 215.74 7.83 0.583

average 252.39 252.28 24.71 24.25 0.092 20.19 218.68 7.87 0.595
S.D. 0.26 0.21 0.10 0.15 0.002 0.19 2.65 0.05 0.011

Table 3.7: Identified mechanism dimensions and stiffness coefficients (Essen measurement)
radius ulna elbow wrist cs cϑ ratio ϑmax smax

(mm) (mm) (mm) (mm) (N/mm) (N mm) cϑ/cs (◦) (mm)
Measured 246 246 23 23 - - - - -

Computed

without torque 246.57 246.31 23.14 22.98 0.131 23.56 179.84 7.98 0.615
pron. torque 246.82 246.61 23.05 22.87 0.145 25.85 178.28 7.94 0.656
supin. torque 246.64 246.25 22.74 22.68 0.134 24.48 182.68 8.01 0.662

average 246.68 246.39 22.97 22.84 0.137 24.63 180.27 7.97 0.644
S.D. 0.13 0.19 0.21 0.15 0.007 1.15 2.23 0.03 0.025

In both cases the average computed bone length and width are almost identical to the mea-

sured values. Moreover, the results show only minor deviations among different torque con-

ditions, which indicates there is no dependency of the mechanism parameters, i.e. the link

length and the stiffness of the virtual springs, on the external torque (4.2Nm). Hereby, the

presented stiffness coefficients do not represent real absolute values of the stiffnesses in-

duced by the tendon system, but are scaled quantities for the kinetostatic coupling. This

scaled value is stable, which demonstrates that only the ratio of these two coefficients is

relevant during the fitting of swaying and axial motion of the ulna. Thus, deformations at

the humero-ulnar joint (swaying angle ϑ and dislocation s) are basically decoupled from the

external loads. Moreover, the resulting translational dislocation is so small that it does not

impair the functionality of the humero-ulnar joint, while allowing the important sway motion

of the ulna to take place by approximately 8◦ at full pronation.
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As there are two degrees of freedom in 2DOF model, the distribution of the pronation rotation

on the individual relative joint motions is thus not unique. Refering to (2.25c) (cϕ (ϕ−ϕ∗ ) =

Jϕ∗cϑ∗ϑ), the control torque cϕ (ϕ−ϕ∗ ) along the pronation axis is distributed at the relative

joint Rϑ and the prismatic joint P , which are placed at the proximal ulna head in the model.

As shown in Fig. 3.29, the distributed torque value cϑ ∗ ϑ at Rϑ is plotted in red colour,

where the blue curve is the control torque applied at the Hooke joint which is plotted here

as a reference. As it can be seen from the figure, the control torque is much smaller than the

torque at the elbow, therefore the torque at the elbow does not constrain the motion at the

spring.
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Fig. 3.29: Torque distribution as a function of pro-/supination angle.

The relationship between the stiffness ratio cϑ/cs and rotational angle ϕ is analyzed by fixing

2DOF mechanism parameter and re-run the rotational motion. As in Fig. 3.30, it is found

that the stiffness ratio cϑ/cs is a non-linear equation during the pro- and supination, which

deviated from our computed average ratio value 218.68 in a small range (≤3). However,

since the deviation is so small, the stiffness ratio can be regarded as a constant value for the

whole rotational process for an individual subject.
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Fig. 3.30: Plot of stiffness ratio cϑ/cs as a function of pro-/supination angle.

3.4.2 Histories of elbow variables as functions of pronation angles

Fig. 3.31 shows the resulting plots for the swaying angle ϑ, the humero-ulnar gap at the

trochlea edge s, the radio-ulnar torsion angle ψ1 and the aperature angle ψ2 as a function

of the pronation angle ϕ, respectively. There are three plots on each figure, corresponding

to the three loading conditions. As shown in the figure, the maximum supination angles

under three torque status are 82◦, 78◦ and 76◦, and the maximum pronation angles are 72◦,

65◦, 67◦ respectively. These results are consistent with the results from a clinical study

performed by Weinberg et al. [52] (supination: [84.4±5.49◦], pronation [66.4±7.6◦]). Fur-

thermore, it can be observed from the figures that the three curves (without wrist torque (red),

pronation-resisted 4.2Nm torque (blue) and supination-resisted 4.2Nm torque (green)) have

nearly identical behavior. This fact proves that the lateral swaying and displacement of ulna

with respect to humerus have no observable dependency on the outer torque, and the same do

the radio-ulna torsion and apertures. In other words, the wrist load has no apparent influence

on the forearm kinematics, and the virtual springs at the two degrees of freedom virtually

operate like a kinematical coupling between the two degrees of freedom of the surrogate

mechanism. Hence, the model is applicable for all cases with realistic wrist torques.
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Fig. 3.31: Histories of elbow variables with different load status.

Known from clinical studies [52], the predominant valgus motion in the transverse plane is

7.1◦ (SD 0.8◦, min 6◦/max 8◦), and the axial dislocation from a cadaveric arm measurement

is 0.6mm. Our simulated results agree with these anatomical results very well, e.g.: (1) in the

Heidelberg measurement, the amplitude of the lateral sway angle ϑ under different loading

status are 7.93◦, 7.85◦, 7.83◦, and the axial gap are 0.597 mm, 0.605 mm, 0.583 mm; (2)

in the Essen measurement, the amplitude of the lateral sway angle ϑ under different loading

status are 7.98◦, 7.94◦, 8.01◦, and the axial gap are 0.615mm, 0.656mm, 0.662mm. The

good coincidence of simulated motions to the anatomical data indicates the reasonability of

the surrogate mechanism and the applicability of the simulation approach.

In Fig. 3.32, the resulting swaying angle ϑ is plotted against the humero-ulnar gap at the

trochlea edge s under different torque conditions. It can be observed there exists an almost

linear relationship between them.
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Fig. 3.32: Lateral sway against humeral ulna gap with different load status.

Fig. 3.33 shows the motion of the surrogate model at five rotational positions from supination

to pronation, which are respectively colored by blue for sup90◦, purple for sup45◦, green for

neutral, brown for pro45◦ and red for pro90◦. The link representing ulna is highlighted

boldly. Here, x-axis pointing laterally towards the radius and the y-axis along the forearm

pointing to the ulna styloid, are defined as positive direction. A significant swaying motion

of the ulna distal end towards radius side (right) can be observed. Comparetively, at the

proximal end, only a delicate axial displacement along y-axis occures. The position of both

ends of ulna in this coordinate are listed in Table 3.8 and Table 3.9 for the Heidelberg and

Essen measurements, respectively.
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Fig. 3.33: Motion of the forearm mechanism from supination to pronation.
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Table 3.8: Identified positions of ulna proximal and distal ends (Heidelberg measurement)
ulna proximal end ulna distal end

sup 90 ◦ (0, 0 ,0) (0, 252.39, 0)
sup 45◦ (0, -0.21, 0) (6.02, 252.11, 0)

0◦ (0, -0.65, 0) (18.43, 251.07, 0)
pro 45◦ (0, -1.09, 0) (30.98, 249.39, 0)
pro 90◦ (0, -1.28, 0) (36.30, 248.48, 0)

Table 3.9: Identified positions of ulna proximal and distal ends (Essen measurement)
ulna proximal end ulna distal end

sup 90 ◦ (0, 0, 0) (0, 246.57, 0)
sup 45◦ (0, -0.22, 0) (7.07, 246.25, 0)

0◦ (0, -0.60, 0) (19.00, 245.24, 0)
pro 45◦ (0, -0.98, 0) (31.11, 243.62, 0)
pro 90◦ (0, -1.15, 0) (36.27, 242.74, 0)

To consider the relative motion between ulna and humerus, the instant rotation center of bone

ulna relative to humerus is plotted for the Heidelberg and Essen measurements, respectively,

as shown in Fig. 3.34. The instant centre of rotation, also called instantaneous centre, is the

point in a body undergoing planar movement that has zero velocity at a particular instant of

time. In the figure, x-axis points laterally towards the radius, and the y-axis points to the ulna

styloid along the forearm. The instant rotation axis is vertical to the x-y plane through each

instant center at instant of time. During the complete forearm rotation, the x-axis position

of the instantaneous rotation center varies within a large range, especially at sup/pro 65-66 ◦

for the Heidelberg measurement and 62-63 ◦ for the Essen measurement. However, its y-axis

position deviates only slightly.
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Fig. 3.34: Instant center of roation of bone ulna relative to bone humeurs.
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3.4.3 Optimization accuracy

During optimization, the best fitting of computed positions of bone marrow centroids in

spatial coordinates to the measured data, is searched. Matching errors for the Heidelberg

measurement under three loading conditions are shown in Table 3.10, Table 3.11 and Ta-

ble 3.12, respectively. Hereby, 50 centroid points are analyzed for each load condition. In

the case without torque, 94% points show errors less than 1.5mm, and the maximal error

is 1.79mm. Together with the measurements under torque, totally 150 centroid points are

processed. In total, 92% points show an error smaller than 1.5mm, and the maximal error

among them is less than 2mm.

Table 3.10: Matching errors of bone marrow centroids (without torque) for the Heidelberg
measurement

pro-
/supination
angle ϕ in ◦
(identified)

Error between computed and measured marrow centroid (in mm)
(without resistive torque)

cross-section 1 cross-section 2 cross-section 3 cross-section 4 cross-section 5
radius ulna radius ulna radius ulna radius ulna radius ulna

-82 0.15 0.22 0.47 0.30 0.84 0.82 0.83 0.85 0.91 0.68
-45 0.92 0.61 0.35 0.57 0.85 0.23 0.69 0.45 0.66 0.88
0 0.63 0.39 0.38 0.99 0.44 0.77 1.11 0.67 1.37 1.14

45 0.78 0.87 0.94 0.95 1.29 1.24 1.49 1.43 1.31 1.71
68 0.86 0.76 0.77 1.36 1.36 1.43 1.68 0.93 1.79 1.07

Table 3.11: Matching errors of bone marrow centroids (with pron-resist torque) for the Hei-
delberg measurement

pro-
/supination
angle ϕ in ◦
(identified)

Error between computed and measured marrow centroid (in mm)
(with resisted pronation torque)

cross-section 1 cross-section 2 cross-section 3 cross-section 4 cross-section 5
radius ulna radius ulna radius ulna radius ulna radius ulna

-82 0.70 0.85 0.76 0.96 0.82 0.42 0.88 0.18 0.92 0.99
-45 0.81 0.89 1.09 0.81 0.81 0.96 0.92 0.84 0.96 1.03
0 0.97 0.68 1.19 1.12 0.62 1.02 1.14 1.23 1.16 1.30

45 0.86 1.14 0.82 0.92 0.87 1.21 1.06 1.39 1.29 0.97
68 1.05 1.27 0.95 1.46 1.29 1.32 1.68 0.83 1.96 1.62

Table 3.12: Matching errors of bone marrow centroids (with supin-resist torque) for the
Heidelberg measurement

pro-
/supination
angle ϕ in ◦
(identified)

Error between computed and measured marrow centroid (in mm)
(with resisted supination torque)

cross-section 1 cross-section 2 cross-section 3 cross-section 4 cross-section 5
radius ulna radius ulna radius ulna radius ulna radius ulna

-82 0.74 0.76 0.67 0.87 0.81 0.95 0.89 0.77 0.95 0.93
-45 0.87 0.93 0.97 1.01 0.94 0.78 1.04 0.89 1.15 1.05
0 0.76 1.13 1.04 0.78 1.17 1.36 1.25 1.08 1.44 1.24

45 1.11 0.97 1.49 1.13 1.32 1.49 1.17 1.33 1.35 1.13
68 1.22 0.98 1.34 1.53 1.73 1.73 1.98 1.42 1.89 1.57
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Matching errors for the Essen measurement are shown in Table 3.13, Table 3.14 and Ta-

ble 3.15. Most errors from 150 processed centroid points are less than 1.5mm, with the

maximum 2.11mm occuring at the maximam pronation (palm down).

Table 3.13: Matching errors of bone marrow centroids (without torque) for the Essen mea-
surement

pro-
/supination
angle ϕ in ◦
(identified)

Error between computed and measured marrow centroid (in mm)
(without resistive torque)

cross-section 1 cross-section 2 cross-section 3 cross-section 4 cross-section 5
radius ulna radius ulna radius ulna radius ulna radius ulna

-82 0.55 0.80 0.39 0.92 0.54 0.45 0.34 0.65 0.73 0.95
-45 0.87 0.98 0.56 0.79 0.89 0.83 0.96 0.88 1.12 0.99
0 0.68 0.64 1.02 0.89 0.73 0.66 0.84 0.65 1.18 0.86

45 0.66 0.60 1.18 0.51 0.92 0.94 0.81 0.44 1.43 1.04
68 0.72 1.01 1.19 0.84 0.99 0.97 1.37 1.77 1.38 1.28

Table 3.14: Matching errors of bone marrow centroids (with pro-resist torque) for the Essen
measurement

pro-
/supination
angle ϕ in ◦
(identified)

Error between computed and measured marrow centroid (in mm)
(with resisted pronation torque)

cross-section 1 cross-section 2 cross-section 3 cross-section 4 cross-section 5
radius ulna radius ulna radius ulna radius ulna radius ulna

-82 0.85 0.69 0.69 0.83 0.75 0.43 0.94 0.65 0.73 0.87
-45 0.77 0.87 0.96 1.03 0.82 0.96 0.85 0.88 1.32 0.96
0 0.95 0.85 0.97 0.85 0.94 0.89 0.91 0.65 1.48 0.97

45 1.06 0.79 0.87 0.91 0.72 1.34 1.06 0.44 1.23 1.34
68 1.45 1.03 1.21 0.89 1.32 1.46 1.87 2.05 1.56 1.76

Table 3.15: Matching errors of bone marrow centroids (with supin-resist torque) for the
Essen measurement

pro-
/supination
angle ϕ in ◦
(identified)

Error between computed and measured marrow centroid (in mm)
(with resisted supination torque)

cross-section 1 cross-section 2 cross-section 3 cross-section 4 cross-section 5
radius ulna radius ulna radius ulna radius ulna radius ulna

-82 0.89 0.78 0.46 0.78 0.87 0.55 0.67 0.89 0.83 0.75
-45 0.97 0.87 0.78 0.86 0.78 0.69 1.04 0.94 1.54 0.99
0 0.59 0.69 0.83 0.75 0.69 0.97 1.43 0.74 1.53 0.86

45 0.84 0.78 0.56 0.91 0.92 0.85 0.97 0.99 1.37 1.04
68 1.02 0.95 0.96 1.04 0.96 1.53 1.62 2.11 1.88 1.63

Two possible reasons for the deviations are: (1) imperfect extraction of the original data

from MRT slices, e.g. a little drift of the end point of the computed vector from the mea-

sured centroid point in the reconstruction step; (2) shift of the subject’s forearm during the

MRI scanning, which can blur the images. However, the deviations are so small that these

computed values coincide well with measured ones, indicating the feasibility of the described

fitting procedure for clinical purposes.
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From above-described results, it can be seen that each tester has an individual coefficient

ratio cϑ/cs. In order to test the plausibility of the computed values, artificial variations of

the coefficient ratio were carried out in the computations for the Heidelberg measurement

and the results were compared with the measured bone marrow centers. From Table 3.16,

Table 3.17 and Table 3.18, it can be observed that some errors computed with a coefficient

ratio decreased by 20% (coefficient 180) are higher than previous results (coefficient ratio

218 in Table 3.10, Table 3.11 and Table 3.12), thus showing that the computed coefficient

ratio is plausible for the measured case.

Table 3.16: Matching errors of bone marrow centroids (without torque) for the Heidelberg
measurement, with decreasing cϑ/cs by 20%

pro-
/supination
angle ϕ in ◦
(identified)

Error between computed and measured marrow centroid (in mm)
(without resistive torque)

cross-section 1 cross-section 2 cross-section 3 cross-section 4 cross-section 5
radius ulna radius ulna radius ulna radius ulna radius ulna

-82 0.15 0.22 0.48 0.30 0.83 0.82 0.83 0.85 0.91 0.69
-45 0.97 0.61 0.42 0.57 0.98 0.23 0.85 0.45 0.66 0.78
0 0.66 0.21 0.32 1.23 0.18 0.98 1.07 1.34 1.26 1.93

45 1.10 0.64 1.24 1.50 0.98 1.54 1.79 2.51 1.33 2.28
68 0.96 0.76 0.93 1.36 2.19 1.43 1.82 1.43 1.69 1.77

Table 3.17: Matching errors of bone marrow centroids (with pron-resist torque) for the Hei-
delberg measurement, with decreasing cϑ/cs by 20%

pro-
/supination
angle ϕ in ◦
(identified)

Error between computed and measured marrow centroid (in mm)
(with resisted supination torque)

cross-section 1 cross-section 2 cross-section 3 cross-section 4 cross-section 5
radius ulna radius ulna radius ulna radius ulna radius ulna

-82 0.74 0.76 0.67 0.87 0.81 0.96 0.89 0.80 0.95 0.94
-45 0.77 0.89 1.27 0.75 1.34 0.92 1.75 1.13 1.65 1.15
0 0.76 1.07 0.96 0.86 1.42 1.08 2.15 1.16 1.59 1.52

45 1.12 1.09 1.50 1.25 1.63 1.24 1.78 1.27 2.35 1.58
68 1.18 1.18 1.56 1.61 1.23 2.30 1.97 1.02 2.47 1.72

Table 3.18: Matching errors of bone marrow centroids (with supin-resist torque) for the
Heidelberg measurement, with decreasing cϑ/cs by 20%

pro-
/supination
angle ϕ in ◦
(identified)

Error between computed and measured marrow centroid (in mm)
(with resisted pronation torque)

cross-section 1 cross-section 2 cross-section 3 cross-section 4 cross-section 5
radius ulna radius ulna radius ulna radius ulna radius ulna

-82 0.70 0.85 0.77 0.95 0.83 0.78 0.99 0.95 0.89 0.99
-45 0.55 0.65 1.03 0.87 0.84 1.16 1.04 1.29 1.21 1.05
0 0.86 0.88 1.22 0.93 0.96 1.36 1.20 1.54 1.49 1.26

45 1.21 1.09 1.05 1.44 1.11 1.96 1.45 1.79 1.44 1.82
68 1.35 1.47 1.33 2.04 1.31 2.15 1.86 1.95 2.06 2.35
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To summarize, the described computation provides reasonable parameters: (a) for the two

different subjects, different coefficient ratios due to their different physical parameters, e.g.

bone lengths, were obtained; (b) the computed bone physical parameters are very close to

the measured values; (c) the matching errors between computed and measured bone marrow

centroids based on the optimized coefficient have accepted deviations; (d) the matching er-

rors based on a manipulated stiffiness coefficient value (e.g. decreasing by 20%) are slightly

higher.

3.5 Modeling visualisation

The object-oriented multibody programming library M � �

� �

BILE [48] based on C++ is utilized

to implement the model and simulate the forearm motion. Its graphical user interface is used

to animate the forearm motion, based on which a bone geometry is attached to the moving

frames of the mechanism for realistic visualisation. Thus, the simulation of pro-/supination

can be visualized online while searching for parameters, e.g. pronation angle (Fig. 3.35), for

an optimal result.

Fig. 3.35: Screenshot of the developed environment for pro-/supination simulation.
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Fig. 3.36 and Fig. 3.37 present the 3D lateral swaying and dislocation between bone ulna and

humerus, which shows an obvious changing process of ϑ and s during the rotational motion

from supination to pronation.

lateral ulna sway

-45◦ 0◦ 45◦max.sup max.pro

radius

ulna

Fig. 3.36: Visible lateral swaying between ulna and humerus.

gap

-45◦ 0◦ 45◦max.sup max.pro

radius

ulna

Fig. 3.37: Visible dislocation between ulna and humerus.

The continuous interpolation of intermediate positions of radius with respect to ulna can ren-

der a visually smooth motion of radius with respect to ulna, which is required for the medical

diagnosis. Moreover, its utilization will in this work be extended to angulated bone geometry

in one example analysis, with the aim that the surgery to correct a fracture could be planned

and thus unnecessary operation could be prevented. Another add-on of this visualisation

program for clinical application is that it can be used relatively easily to assess the distance

between bone ulna and radius at random rotational position.
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3.6 Comparison of two forearm mechanism models

In order to compare the applicability of this 2DOF model (Section 2.2.3) to the fixed-axis

model described in the literature (Section 2.2.1), the absolute motions of bone ulna, bone

radius motion with respect to the humerus and the relative motions between bone radius and

ulna in these two models were studied.

3.6.1 Comparison of absolute motion

In Section 3.4, the simulation process based on the 2DOF model was presented. In this

study, the similar optimization routine (Eq. (3.5)) was applied to the fixed-axis model. The

optimization procedure was carried out with the built-in Matlab function fmincon, and the

development of cost function over iteration steps was plotted in Fig. 3.28(a).

In the minimization, there are four sets of design variables:

1. the mechanism proper parameters r1,r2,r3,r4 (Fig. 2.5).

2. the rigid-body motion of the elbow, represented by three translations xj0, y
j
0, z

j
0 and

three rotations χj1, χ
j
2, χ

j
3 (i.e. 3T − 3R) for each measurement.

3. the relative location of bone geometry frame KB with respect to reference frame of the

link, compromising three constant translations, κ1, κ2, κ3 and three constant rotations

ε1, ε2, ε3 for each bone (e.g. 2rB , 2RB).

4. the offset of the pro-/supination angle (ϕ∗)j , which turns the mechanism to the optimal

configuration.

All these design variables must be determined simultaneously, as they are highly coupled.

There total 16 + 7N design variables for N measurements. The initial values were chosen

close to the anatomical data, which is shown together with the corresponding simulated

results for the Essen measurement in Table 3.19.

During optimization, the best fitting of the computed positions of bone marrow centroids in

spatial coordinates to the measured data is searched. Matching errors under three loading

conditions are shown in Table 3.20, Table 3.21 and Table 3.22, respectively. Matching errors

from the fixed-axis model are obviously much larger compared to those obtained in the 2DOF
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Table 3.19: Identified mechanism dimensions
radius (mm) ulna (mm) elbow (mm) wrist (mm)

Measured 246 246 23 23

Computed

without torque 245.72 245.83 23.24 23.44
pron. torque 246.26 246.15 22.63 22.37
supin. torque 246.61 246.26 22.19 21.95

average 246.23 246.14 22.69 22.58
S.D. 0.46 0.27 0.53 0.77

model, with a maximum of 4.94mm. And this phenomenon is especially pronounced at the

distal portion of the forearm and at the pronation position by this tester.

Table 3.20: Matching errors of bone marrow centroids (without torque)
pro-
/supination
angle ϕ in ◦
(identified)

Error between computed and measured marrow centroid (in mm)
(without resistive torque)

cross-section 1 cross-section 2 cross-section 3 cross-section 4 cross-section 5
radius ulna radius ulna radius ulna radius ulna radius ulna

-82 0.79 0.86 0.88 0.99 1.18 0.83 1.15 0.75 1.19 1.06
-45 1.11 1.01 1.79 1.07 1.77 0.91 1.74 0.77 1.77 1.16
0 1.39 0.88 1.62 1.09 1.47 0.82 1.42 1.51 2.42 1.42

45 0.96 1.51 1.25 1.07 1.75 1.53 1.24 1.83 1.82 1.67
68 1.06 1.02 2.09 1.12 3.54 2.45 3.87 2.54 4.32 1.95

Table 3.21: Matching errors of bone marrow centroids (with pron-resist torque)
pro-
/supination
angle ϕ in ◦
(identified)

Error between computed and measured marrow centroid (in mm)
(with resistive torque against supination)

cross-section 1 cross-section 2 cross-section 3 cross-section 4 cross-section 5
radius ulna radius ulna radius ulna radius ulna radius ulna

-82 0.58 0.80 0.19 0.92 0.38 0.45 0.27 0.65 0.35 0.75
-45 1.09 0.41 1.25 0.79 1.59 0.83 1.74 0.78 1.82 0.78
0 2.23 0.64 3.12 0.89 2.66 0.66 2.76 0.69 3.43 0.85

45 3.22 0.98 3.88 1.31 4.43 1.44 3.63 1.64 4.49 1.25
68 3.48 1.79 4.83 2.09 4.63 2.24 4.35 2.69 4.89 2.84

Table 3.22: Matching errors of bone marrow centroids (with supin-resist torque)
pro-
/supination
angle ϕ in ◦
(identified)

Error between computed and measured marrow centroid (in mm)
(with resistive torque against pronation)

cross-section 1 cross-section 2 cross-section 3 cross-section 4 cross-section 5
radius ulna radius ulna radius ulna radius ulna radius ulna

-82 0.67 0.78 0.45 0.98 0.56 0.49 0.35 0.78 0.44 0.71
-45 1.15 0.41 1.25 0.74 1.59 0.83 1.69 0.88 1.82 0.99
0 1.99 0.69 2.96 0.96 2.48 0.78 2.99 1.65 3.43 1.86

45 2.88 1.10 3.57 1.18 4.39 1.84 3.71 2.44 4.49 2.04
68 3.67 1.43 4.68 2.07 4.58 1.86 4.14 2.57 4.94 3.28
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The bone matchings at maximal pronation in these two models are also compared as shown

in Fig. 3.38. Hereby, the automatically segmented bone contour on each MRI slice is high-

lighted with red color. Clearly, the computed bone positions in the fixed-axis model deviate

much more from the measured one than those in the 2DOF model at each cross-section level,

indicating the better applicability of the 2DOF model.

(a) fixed-axis model (b) 2DOF model

Fig. 3.38: Simulated bones at max. pronation in two models matching to MRI.

Furthermore, the simulated position of the distal radius and ulna at different rotational po-

sitions in these two models are compared as shown in Fig. 3.39. In the fixed-axis model,

the ulna is fixed and the radius rotates about it. However, in the elasto-kinematic model, the

swaying and lateral translation are considered. With cross sections of ulna highlighted with

varying colors, the pronounced difference of the absolute motion of bone ulna and radius

relative to bone humerus in the two models can be clearly observed.

(a) fixed-axis model

(b) 2DOF model
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Fig. 3.39: Simulated absolute motion of bone radius around ulna at the distal portion.
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3.6.2 Comparison of relative motion

In order to explain the complex motion of radius and ulna in a more simple way, here the bone

movements are referred to the ulna instead of the humerus. Thus, only the transformation of

the radius with respect to the ulna needs to be considered. With this simplication, the simple

fixed-axis (spherical-spherical) model and the extended 2DOF model (Fig. 2.9(a) and (b))

are compared in the following.

3.6.2.1 Comparison of relative motion of radius to ulna (radius pose)

The spherical concave shape of the proximal articulation of the radius (the fovea capitis radii)

allows it to perform a fixed-point, i.e., spherical rotation about the correspondingly shaped

surface of the humerus (termed the condyle) as shown in Fig. 3.40(a). This spherical joint

representing the fixed-point rotation of radius with respect to humerus, is denoted as S in the

fixed-axis model and 2DOF model. The center of this spherical joint is digitized by taking

the coronal slice using ImageJ (yellow circle with cross), as shown in Fig. 3.40(b).

x
y

z

S

(a) (b)

Fig. 3.40: Spherical concave shape of the proximal articulation of bone radius.

The radius pose with respect to bone ulna during pro-/supination motion is obtained by

transforming everything from the inverse of the transformation of inertia frame to ulna frame,

after that one can compare the computed radius pose with measured one in two forearm

models.

The distance between the computed radius pose and the measured one in the two models is

summarized in Table 3.23. Here Δx, Δy and Δz represent the components of distance vec-

tors between computed and measured radius spherical center decomposed in the coordinate

of bone ulna. Δd is the distance between them. As can be seen, the distance error in the
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fixed-axis model increase from supination to pronation where the biggest error is 4.95mm.

Limited by the intrinsic shortcoming of the fixed-axis model, its proximal radius head stays

at a constant position during the forearm rotational motion. The comparatively large devi-

ation of the result from this modeling indicates that the relative motion between radius and

ulna cannot be recognized only as a simple rotation, it also contains a lateral swaying and ax-

ial translation. In contrary, the 2DOF model shows a quite well consistency to the measured

motion with comparatively very small deviations, with the maximal value of only 0.48mm

occuring at pronation position. The other observation from the summarized results is that the

main distance deviation comes from y direction, along the forearm shaft to the distal ulna

styloid. This phenomenon is reasonable since bone radius has a relative translation towards

distal of ulna.

Table 3.23: Matching errors of computed and measured radius spherical head
pro-
/supination
angle ϕ in ◦
(identified)

Error between computed and measured radius spherical head
Error between computed and measured radius spherical head

in (mm)
fixed-axis model 2DOF model

Δx Δy Δz Δd Δx Δy Δz Δd
-82 -0.07 -0.69 0.07 0.70 -0.07 -0.39 0.07 0.40
-45 -0.83 -1.40 0.53 1.72 -0.07 -0.41 -0.09 0.43
0 0.15 -2.97 0.36 2.99 0.08 -0.28 0.36 0.47

45 0.22 -4.66 -0.08 4.67 0.05 -0.34 -0.08 0.36
68 -1.08 -4.92 -0.44 4.95 0.05 0.08 -0.47 0.48

To have a closer look on the relative rotational and translational motion, a simulation of

the motion of bone radius around bone ulna at the proximal portion is shown in Fig. 3.41.

Bone radius is highlighted with different colors at a set of positions from maximum supina-

tion (dark yellow), supination 45◦ (purple), neutral (red), pronation 45◦ (blue) to maximum

pronation (light purple), whereas bone ulna is kept in a fixed position and colored by green.

From the color overlap, it can clearly be seen that the radius translates along the distal direc-

tion in the 2DOF model, whereas it stays at a constant position in the fixed-axis model. In

the local zoomed-in view, it shows the positions of the radius, shown as the spherical balls

in the figure, where the yellow balls represent the computed radius spherical centers, and

the measured ones are represented by the different color balls with the same colors as their

corresponding bone radiuses at the different pro-/supination angles. At each defined pro-

/supination angle in the fixed-axis model, the measured spherical center deviates away from

the computed one (yellow balls stay at a constant position, away from color balls). However,

in 2DOF model the varying computed spherical center match closely to the measured series

(color balls follow closely to the yellow balls) .
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Based on above discussions, it can be concluded that the 2DOF model shows a good agree-

ment with the measurements both on the relative rotational and translational motion of radius

about ulna, whereas the fixed-axis model cannot reflect the reality.

(a) fixed-axis model (b) 2DOF model
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Fig. 3.41: Comparison of the radius poses between fixed-axis model and 2DOF model. (yel-
low balls represent the computed radius spherical head center, other colour balls represent
the measured ones corresponding to different pro-/supination angles).

The simulated relative motions of bone radius with respective to bone ulna at the distal

portion in these two models are also slightly different, which can be observed from the

overlapping pattern of the color regions in Fig. 3.42. For example, as pointed out by the

white arrow, the region representing bone radius at maximum supination is not completely

covered by the region representing supination 45◦ in the fixed-axis model, whereas it does in

the 2DOF model. As marked by the yellow arrow, the exposed blue part, resulting from the

overlap of the regions at 45◦ pronation and maximum pronation, in the fixed-axis model is

larger than that in 2DOF model.

(a) fixed-axis model (b) 2DOF model

max.supmax.sup

sup.45sup.45
neutralneutral

pro.45pro.45

max.promax.pro

Fig. 3.42: Comparison of the distal pose of radius and ulna between fixed-axis model and
2DOF model.

3.6.2.2 Comparison of relative motion of radius to ulna (finite helical axis)

To describe the motion of the radius from supination to pronation, kinematic transforma-

tions were calculated for the motion of the radius with respect to the ulna. Hereby, the pose
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of bone ulna at each rotated condition was transformed to the inertial frame, so that the ulna

could be kept at a constant position in the whole rotational process. Afterwards the maxi-

mum supination (MS), supination 45◦ (S45), pronation 45◦ (P45), and maximum pronation

(MP) was transformed to the neutral position (N) by transformations MU, as in Fig. 3.43.

Thereafter, the resulting transformation matrices were applied to the corresponding rotated

radius, so that each radius dataset was placed in the same coordinate system (tMS and tMP).

As following, a second transformation matrix was then created to transmit the radius at each

rotated position to the neutral position N by transfornation MR. According to the principles

of Kinzel et al. [53], this resultant transformation can be described as a rotation about, and a

translation along, a unique axis located somewhere in space. This axis is directly analogous

to the instant center of rotation for plane motion and is called the screw axis, or finite helical

aixs (FHA), as called in the biomechanics community.

  MR MR

MP

NN

Maximum PronationMaximum Supination Neutral

MS

MUMU

tMS tMP

Fig. 3.43: Illustration of the generation of the transformation matrix from max.sup/max.pro
to the neutral.

The relative transformation of the radius frame with respect to the ulna frame was then used

to calculate the parameters of FHA. The deduced FHA parameters were used to define the

location of the forearm axis, and provided a unique and comprehensive description of the

kinematics of this enigmatic joint. Table 3.24 lists the computed values of FHA variables:

a scalar translation t along the helical axis, and a scalar rotation angle θ around the helical

axis.

The rotational amount measured at the grip goniometer was 80◦ and 65◦ for maximum

supination and pronation respectively. Here, the rotations at supination were defined as neg-

ative, and at pronation as positive. The computed FHA parameters for rotation θ in both
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Table 3.24: Radius helical parameters at four forearm positions in two models
fixed-axis model 2DOF elasto-kinemactic model

θ (◦) t(mm) θ (◦) t(mm)
max.sup 80◦ -78.75 0 -77.40 -2.37

sup 45◦ -43.09 0 -42.13 -1.66
pro 45◦ 40.95 0 40.35 1.64

max.pro 65◦ 63.93 0 62.91 2.25

models are quite close to the measured angle. The proximal and distal translation along the

FHAs, t, at max.sup, sup45, pro45 and max.pro were zero in the fixed-axis model. This

result is reasonable, since this model assumes a pure rotation of bone radius about ulna. The

2DOF model proved that the proximal-distal translation of the radius relative to the ulna

occurs during forearm motion. Here, the translation from distal to proximal along the heli-

cal axis was defined as positive. The translations at corresponding positions were -2.37mm,

-1.66mm, 1.64mm, and 2.25mm, respectively. The total radius translation in a proximal

direction along the FHA from maximum pronation to maximum supination was 4.62 mm,

which was consistent with a number of studies which reported translations of the same order

of magnitude of 1.5mm in [15], 1.67mm in [54], 0.98mm (95% CI, -0.09 to 2.06) in [55].

Hence, helical axis analysis proves that it can provide not only a geometrical interpretation of

the axis of rotation of the forearm, but also to quantify the amount of rotation and translation

that occurs around the axis at each forearm position in the 2DOF model.

With the complete set of helical axis parameters, the position and direction of the finite

helical axes were plotted onto three dimensional images of forearm bones for visualisation

by using the M � �

� �

BILE program. The FHAs pass through the radial head at the PRUJ, and

also pass through the posterior portion of the ulnar head at the DRUJ (Fig. 3.44). The FHAs

in fixed-axis model is a constant axis. However, in the 2DOF model, the FHAs pass through

the radial head and ulnar head with a slight variance (four colored axis), which can be closer

observed in Fig. 3.45. The result based on the 2DOF model coincides well with findings in

previous studies. For example, Nakamura et al. performed in-vivo studies using magnetic

resonance imaging and reported the movement of the rotational center almost through the

radial head to the ulnar head within a small range [20]. Moore et al. found the location of the

axis of the DRUJ in the central region of the ulnar head [56]. Another study, using helical

axis calculations, also located the DRUJ axis in the central region of the ulnar head [57].
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Fig. 3.44: Diagram of the helical axis (left: fixed-axis model, right: 2DOF model).
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Fig. 3.45: The forearm rotation axis at proximal (left) and distal end (right) (white dot is the
centroid of radius/ulna head).

3.6.2.3 Comparison of relative motion of radius to ulna (instantaneous screw axis)

The relative motion of radius was further analyzed by the instantaneous screw axis analysis.

Different from above-mentioned finite axis which describes a finite motion, an instantaneous

axis describes only an infinitesimal relative motion between two neighboring poses.

As shown in Fig. 3.46, the instantaneous screw axis in the fixed-axis model is a constant axis,

whereas in the 2DOF model it varies in a small range at different rotational positions (here

0.5mm in x direction, 0.3mm in z direction). This result obtained from the 2DOF model

reflected the reality that bone ulna has a small lateral swaying and light axial dislocation
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relative to the bone humerus, instead staying at a fixed position.
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Fig. 3.46: 3D location of the instantaneous screw axis (left: fixed-axis model, right: 2DOF
model).
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Chapter 4

Distance Study between Forearm Bones

The computation of the minimum distance between two objects is an important topic in many

fields such as collision detection [58], virtual prototyping in haptic rendering [59], interfer-

ence avoidance in NC verification [60], robot path planning [61], and physical simulation in

computer graphics [62]. The general principle to calculate a minimum distance between two

objects, e.g. A1 and A2, is to find the nearest point pair (p, q) such that p ∈ A1, q ∈ A2, and

the distance between p and q holds minimum. The exact computation is actually a minimiza-

tion or root-finding method to solve a set of equations which define the conditions for the

minimum distance as a common perpendicular line of two free-form objects [62]. It needs

to be mentioned that some of the roots in the computation do not fall into the nearest points,

and thus are not necessary to be worked out. Moreover, the root-finding method is quite

sensitive to the initial guess. As Johnson mentioned [61], the root-finding method has low

robustness and low efficiency.

Limaiem presented a method to get a convergence to the local minimal distance between

convex curves and surface by insistently updating the nearest points on alternating curves

or surfaces [63]. Lin computed the minimum distance between concave surfaces by using

bounding polyhedron to obtain the initial values [64]. Both approaches utilized Newton-

Raphson method to solve some distance equations to find the roots. To achieve the conver-

gent result, a good initial value is necessary, however, this is hard to be obtained since the

surfaces have complex shapes [65].

The minimum-distance computation between curves and surfaces may be categorized into

five distance cases: point-curve, point-surface, curve-curve, curve-surface and surface-surface.

All these five cases can be solved by a root-finding process of a non-linear equation solver
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[61], [66]. For example, in a case of curve-curve with two objects named A1 and A2 and two

given curves P = P (u) and Q = Q(v) in three-dimensional Cartesian spaces (Fig. 4.1), the

squared distance between them is defined as

D(u, v) = |P (u)−Q(v)|2 = (P (u)−Q(v)) · (P (u)−Q(v)) (4.1)

D(u, v)

A1

A2Pu

Qv

P (u)

Q(v)

p

q

Fig. 4.1: Examples of distance calculations in curve-curve case.

This is a map of (u, v) to non-negative reals. When the nearest points are both inner points

of the two curves, the stationary points of D(u, v) satisfy the following equations:

Du(u, v) = 0 (4.2)

Dv(u, v) = 0 (4.3)

where the subscript denotes differentiation with respect to u or v. This equation can be

rewritten by using Eq. (4.1) as

(P (u)−Q(v)) · Pu(u) = 0 (4.4)

(P (u)−Q(v)) ·Qv(v) = 0 (4.5)

where Pu and Qv are the tangential vectors of the two curves at points p and q, respectively.

When the condition for the shortest distance is satisfied, the projection of Duv (i.e. |pq|) on

the tangential direction is 0.

In this work, the shortest distance between two forearm bones is regarded as the minimal

distance between two rigid objects. Since forearm bones can be recognized to be comprised

by a series of bone contours with B-spline curves (Section 4.2.2.3), the process can thus be

categorized as the minimum-distance computation between two curves. In this chapter, the
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generation of the bone contour with a B-spline curve will be firstly described, followed by

the method to calculate the shortest distance between them using the fast algorithm proposed

by Ma et al. [67].

4.1 General description of the distance between forearm

bones

As shown in Fig. 4.2, the distance d between two forearm bones varies at different cross-

section levels (from proximal to distal), as well as at different pro-/supination angles. And

from proximal to distal end, this distance increases firstly to a maximum and then decreases.

proximal

middle

distal

supination neutral pronation

radius ulna

d1 d2 d3

Fig. 4.2: Distance change between two forearm bones (right arm).

As in Fig. 4.3, the rotation is simplified as the relative motion of radius (with different colors

at different positions) about ulna (green), therefore the position of bone ulna is not altered.

The difference among d1, d2 and d3, which stands for the distance at supination (blue),

neutral (red) and pronation (purple) at the same cross-section level respectively, shows the

change of distance for varying rotational angles.

To study the distance change between two forearm bones during the rotational motion is a

useful tool to evaluate the effect of angular deformities on forearm kinematics, and to predict
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d1 = 3.06mm

d2 = 3.17mm

d3 = 2.89mm

d1 = 14.48mm

d2 = 14.77mm

d3 = 12.26mm

d1 = 12.91mm

d2 = 13.13mm

d3 = 11.59mm

supination
supination

pronation

pronation

proximal middle distal

Fig. 4.3: Distance change between two bone contours on the right arm (the dashed circle is
the tangital circle to show the shortest distance between bone cross-sections).

the maximum rotational angle by forearm fractures. Therefore, some researches have been

done work to address this problem [23], [3].

Weinberg et al. used a kinematic model with vectors to illustrate the bony axis, and a vector

compensation system to depict the deformed bones [23]. Based on this kinematic model,

Kasten developed a computer program that allows the simulation of forearm rotation and

predicts impairment based on existent angular deformities [3]. In the program, the deformed

bone was represented by two partial vectors that illustrate the mid-axis of the deformed bone

proximally and distally, and the health bone was represented as a vector. The basic idea

of predicting the influence of angulations on the range of forearm motion was to calculate

the minimal distance between the two bones of the healthy forearm, which was in turn used

as the minimum allowable distance of the angulated forearm. However, in his simulation,

the real geometries of forearm bones were not considered. Since each of the forearm bones

features a complex and irregular geometry, such a simplification could result in errors to

some degree.

For clinical applications, it is a requisite to take the geometry of forearm bones into account.

Therefore, in this work, the shape of the bone is considered by using the bone outer contour

(obtained from MRI slice) as the database. Our study starts from the distance change between

two healthy forearm bones, and then the method is extended to the angulated forearm. The

former will be discussed in this chapter, and the latter will be detailed in Chapter 5.
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4.2 Generation of bone contour with a curved joint

As discussed above, the distance calculation between two forearm bones is based on the

analysis on bone contours from cross-section images (MRI slices) taken at different forearm

length levels. The calculation of the distance between each bone contour pair on one slice

can be realized by using the algorithm proposed by Ma et al. [67], [68]. Along this way, the

shortest distance between the two complete forearm bones can be regarded as the search for

the minimum result among a series of MRI slices covering nearly the whole forearm length,

i.e., the global minimum from the selected (candidate) pairs.

To calculate the minimum distance between each bone pair on one slice involves seven steps

as following:

1. Identify the bone contours from corresponding MRI slices (point clouds) (Section 4.2.1).

2. Approximate the bone contours with defined cubic B-spline curves C(u) (contour of

ulna) and C(v) (contour of radius) (Section 4.2.2).

3. Calculate the shortest distance dsi between ith bone contour pair C(u)i C(v)i by an

algorithm [67] (Section 4.3).

4. Create a series of bone body pairs by connecting each two adjacent bone contours

BP (u)i (ith bone body of ulna) and BP (v)i (ith bone body of radius).

5. Calculate the shortest distance di between each bone body pair.

6. Search the global minimum distance dmin based on the results from the sequence of

bone body pairs di of step 5 for one rotational angle.

7. Repeat step 6 for different rotational angles di(ϕ) and search for the pro-/supination

minimum dmin(ϕ).

4.2.1 Bone contour recognization

As described in Section 3.2.1, an automatic procedure was performed to segment the con-

tours of bone radius and ulna by the image analysis. Some example binary images are shown

in Fig. 4.4 to show the change of 2D bone contours from distal to proximal end. In the figure
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Radius

Ulna
distal proximal

Fig. 4.4: Recognized bone contour from MRI slices.

the upper loop represents the contour of bone radius, and the lower one stands for that of

bone ulna.

In the next step, the recognized binary images can be further processed to output point sets

for the construction of the outer and inner bone contours for the corresponding 3D structure.

Fig. 4.5 shows an example of the plotted bone contour. The left diagram shows the point sets

in a XZ plane, which present the cross-section image on a MRI slice. After the Y coordinates

of the points are derived from the axial positions of the slice, the 3D contour can be build

up as shown in the right diagram. The inner contour points do not need to be considered

during the minimum-distance calculation, due to the fact that the minimal distance between

two forearm bones can only lie between the outer contour surfaces.
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(a) segmented point sets of bone contour in
2D
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(b) segmented point sets of bone contour in 3D

Fig. 4.5: Segmented bone contour points (red is for bone ulna, blue is for bone radius).

4.2.2 Bone contour integration

Parameterizing the trajectories of curves is most conveniently achieved by splines, which

has become an established method in computer-aided geometric design (CAGD), in curve
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fitting and in finite element methods (FEM) [69], [70]. Bézier [71] and de Boor [72] firstly

developed the conceptions of Bézier curve and B-splines, respectively. Afterwards, some

other concepts were introduced, such as the general X-Spline by Blanc and Schlick [73],

Pythagorean hodograph curves by Farouki et al. [74], etc. However, Bézier and B-spline are

still the standard parameterization for curves and surfaces and are utilized the most.

In this work, the recognized bone contour is parameterized with a cubic B-spline curve by

sampling the spline curve with a degree of 3 for equally spaced curve parameters uk and

approximating the obtained sample contour point sets (from MRI slice) using the Dierckx

routine concur [75].

4.2.2.1 Bézier curve parameterization

The Bézier curve parameterization was developed in the 1960’s by Pierre Bézier and Paul

de Castlejau, with the first application in automobile design. Today it is widely used, e.g.

in OpenGL [76]. A Bézier curve is a parametric curve, which is described by polynomials

based on control points. Any number of control points can be used, but 3 or 4 are most

common. A Bézier curve passes through its first and last control points, but, in general, not

through others.

Given the set of control points, P0, P1, P2, ..., Pn, a Bézier curve of degree n is defined by

P (u) =
n∑
i=0

Pi Bi,n(u) (4.6)

where

Bi,n(u) =

(
n

i

)
(1− u)n−i ui, i = 0, 1, · · · , n (4.7)

are the Bernstein polynomials of degree n, and u ranges between 0 ≤ u ≤ 1.

A Bézier curve is characterized by:

1. P0 and Pn are on the curve.

2. The curve is tangent to the control polygon at the endpoint.

3. The sum of base functions at a fixed u is 1 ("Partition of unity").
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4. The curve lies completely within the convex hull of its control points ("Convex hull

property").

5. No straight line/plane intersects a Bézier curve more times than it intersects the control

polyline of the curve ("Variation diminishing property").

The Bézier curve defined over an arbitary parameter interval by Pa,b(u) (4.8) is a modifica-

tion of (4.6):

Pa,b(u) =

∑n
i=0

(
n

i

)
(b− u)n−i (u− a)i Pi

b− a
=

n∑
i=0

(
n

i

)
(
b− u

b− a
)n−i(

u− a

b− a
)iPi (4.8)

4.2.2.2 B-spline parameterization

A piecewise collection of Bézier curves, connected end to end, can be called a spline curve.

The B-spline is a more general type of polynomial curves, which overcomes the main prob-

lem of lacking of local control by the Bézier curve .

A B-spline is defined as

Δr(u) =

n∑
j=1

cj Nj,k+1(u) (4.9)

as a function of a curve parameter u with spline coefficients cj ∈ IR3 and n basis splines

Nj,k+1 of degree k. The coefficients of this spline curve are determined based on position

control points Δri and fitted to these points by the Dierckx routine concur [75]. The basis

splines Nj,k+1(u) are defined over a set of knots or support points

λ = [λ1, . . . , λn+k+1] , (4.10)

which, together with the spline coefficients cj , are geometrical parameters of the spline curve.

The domain of the spline curve is defined by the knots λk+1 = uB and λn+1 = uE. To

parameterize spatial trajectories, coincident knots are commonly used at the beginning and

the end of the spline, because boundary conditions of coincident knots can be more easily

prescribed. This leads to the knot vector

λ = [λ1, λ2, . . . , λk+1︸ ︷︷ ︸
≡uB(k+1 knots)

, λk+2, λk+3, . . . λn︸ ︷︷ ︸
n−k−1 internal knots

, λn+1, . . . λn+k+1︸ ︷︷ ︸
≡uE(k+1 knots)

] (4.11)
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where uB and uE are the curve parameters at the beginning and the end of the spline curve,

respectively.

The B-spline base functions are usually computed with given knots by employing the recur-

sive scheme described by de Boor [72]

Nj,�(u) = ωj,� Nj,�−1(u) + (1− ωj+1,�)Nj+1,�−1(u) (4.12)

where

Nj,1(u) =

⎧⎨
⎩1 if u ∈ [λj , λj+1]

0 if u /∈ [λj , λj+1]
, (4.13)

ωj,�(u) =

⎧⎨
⎩

u−λj
λj+�−1−λj if λj< λj+�−1

0 otherwise
. (4.14)

This recursion follows the local support property of B-splines basis functions, which means

that a modification of a control point cj influences the curve only in the domain [λj , λj+k+1]

Nj,k+1(u) =

⎧⎨
⎩> 0 if u ∈ [λj , λj+k+1]

0 otherwise.
(4.15)

The derivatives of the recursion can be computed as

d Nj,�

du
(u) = (�− 1)

(
ω
[1]
j,� Nj,�−1(u)− ω

[1]
j+1,� Nj+1,�−1(u)

)
, (4.16)

where ω[1]
j,� and ω[1]

j+1,� are assumed to be constant. This equation shows that a B-spline of

degree k can be at least (k − 1) times continously differentiated.

B-spline properties:

B-spline curves share many important properites with Bézier curves, since it is developed

from the former. In addition, B-spline curves have more desired properties than Bézier

curves. Some most important properties of B-spline curves are listed as following:

1. A B-spline curve Cu is a piecewise curve with each component curve of degree k.

2. A clamped B-spline curve Cu passes through the two control points P0 and Pn at the
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ends.

3. A B-spline curve is located in the convex hull of its control polyline ("Strong convex

hull property").

4. Given a set of position control points Δr i, changing the position of a control point ci
only affects the curve Cu within the interval [λi, λi+k+1] ("Local modification scheme").

5. Cu is Cn−k continuous at a knot of multiplicity k.

6. If the curve is in a plane, no straight line intersects a B-spline curve more times than it

intersects the curve’s control polyline ("Variation diminishing property").

7. Bézier Curves are special cases of B-spline curves. When n = k (i.e., the degree k

of a B-spline curve is equal to n, the number of control points minus 1), and there are

2(k+1) = 2(n+1) knots with k+1 of them clamped at each end, this B-spline curve

is reduced to a Bézier curve.

The property 4, 5 and 7 will be further utilized in Section 4.3.

4.2.2.3 Spline as a CurveJoint

The application of CurveJoint is as described in [77]. The bone contour curve is integrated

in the basis library for multibody analyis M � �

� �

BILE . Input frame K1 and the path coordinate

u to the motion of a coordinate frame fixed on the moving body (Darboux/Frenet/Parallel

transport frame) on the curve as output frame K2. In this context, the curved joint contour C
is parameterized using B-splines as a function of a curve parameter uwith spline coefficients

cj and n basis splines Nj,k+1 of degree k:

Δr(u) =

n∑
j=1

cj Nj,k+1(u). (4.17)

The spline coefficient vectors cj ∈ IR3 are determined based on position control points Δr i
and fitted to these points by the Dierckx routine concur [75] with smoothing optimization

over the complete length of the spline, and prescribed boundary conditions for positions,

tangents and curvature. The curve is then parametrized by arc length, therefore one can

substitute the curve parameter u with the path coordinate s. The rotation matrix ΔR trans-

forming coordinated from K2 to K1 is then ΔR = [1t(s) 1n(s) 1b(s)], where t(s) is the
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tangent vector, n(s) = Δr
′′
(s)/κ(s) is the normal vector, κ(s) =

∥∥Δr′′
(s)

∥∥ is the curvature

and b(s) = t(s)×n(s) is the binormal vector of curve C. An additional rotation, the so-called

banking, is introduced as a tangential revolute joint after K2 with angle β(s) modelled as a

one dimensional spline determined by angular control points βm in the same sense as the

position control points Δri determine C. With that, the orientation of the output frame of the

curved joint is defined by ΔR
′
= ΔR(s) ◦Rot[x, β(s)].

In this Dierckx algorithm, the FORTRAN code concur generates splines of degree one,

three, or five. Hereby, two types of optimizations are processed, the weighted least square

and constrained smoothing spline optimization. Throughout this study, k = 3 is set due to

its typification. As shown in Fig. 4.6, the smooth cubic curves presented as blue and red

curve for contour of bone radius and ulna are the interpolated B-spline curves, which well

approximates the measured point sets (dense green points) of the bone contour. The com-

puted control points for contour of bone radius and bone ulna are different ones, shown here

as pink and blue circles for their corresponding B-spline curves, which are then connected to

form the control polygons.

ulna
radius

control polygon

measured points

generated B-spline curve

Fig. 4.6: Bone contour integrated with B-spline by Curvejoint and its control polygon.

4.3 Minimum distance between two bone contours

After the generation of bone contours, the next step is to find an effective method to calculate

the minimum distance between them (outer contour of bone ulna and radius). Since the bone

contour is traced as a cubic B-spline curve, the minimum distance is then calculated between

these two B-spline curves.

In one example MRI slice (Fig. 4.7), the outer contours of bone ulna and radius are presented

as Cu (u) and Cr (v) in three-dimensional Cartesian spaces. Ku and Kr are the moving frame
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along the B-spline, presenting as r1 (u) and r2 (v) relative to the base frame K0. t1 (u), t2 (v)

are the tangent vectors at an arbitrary point on the curve. Δr(u, v) is the distance vector

between these two bone contours, which depends on the path parameters u and v, where

Δr(u, v) = |r1 (u)− r2 (v)| = |C (u)− C (v)| (4.18)

u.q = 0 u.q = 0

v.q = 0 v.q = 0

radius radius

ulna ulna

K0 K0

Ku
Ku

Kr

Kr

r1(u) r1(u)

r2(v)

r2(v)

t1(u) t1(u)

t2(v)

t2(v)

Δ
r(u, v)

Δr(u, v)

(a) (b)

Fig. 4.7: Distance calculation between two forearm curves. (a) distance between two arbi-
trary points along spline contours, (b) shortest distance between two spline contours.

The distance point pairs between the two contours for various u and v are a map from IR2 to

the set of non-negative real number, as plotted in Fig. 4.8.
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Fig. 4.8: Plot of distance changing between two B-spline curves with variables u and v.

To determine the minimum distance, the following two conditions f1(u, v) and f2(u, v) be-
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tween these two B-spline curves need to be reached:

f1(u, v) = t1(u) ·Δr(u, v) = 0 (4.19)

f2(u, v) = t2(u) ·Δr(u, v) = 0 (4.20)

In these equations the conditions for the minimum distance are defined as a common perpen-

dicular line of two curves. These systems of equations can be solved by the Newton-Raphson

(NR) method, however, it is hard to predict good initial values in this method to achieve con-

vergence to the correct result, due to the complexity of the curve’s shape.

In this work, an alternative method is applied to compute the minimum distance between two

2D spline curves. Although the contours of the MRI cross-sectional scans are mostly closed

convex curves, for which a special elementary solution is possible, we chose here, the more

generalized approach of Ma et al. [67] in order to warrant a fully automated procedure even

in the presence of non-convex cross-sectional profiles, as can appear at some locations of

ulna and radius. This approach represents a fast, accurate and robust algorithm, which has

been already used to find the minimum distance between general 2D and 3D NURBS (non-

uniform rational B-spline) curves. Since the B-spline curve is a special form of NURBS,

this method is principally applicable to the B-spline curve. This calculation is carried out by

decomposing both of the Spline curves into their piecewise-Bézier forms. Then, candidate

curve pairs for the minimum distance, as a subset of all possible pairs, are extracted by a two-

level selection process. The first-level selection uses upper-lower bounds of Bézier subcurve

to pre-filter pairs. The second-level selection is the test on the spatial relationship between

a pair of Bézier curves. After candidate pairs are obtained, an iterative multi-dimensional

Newton-Raphson method is applied on them to approximately calculate the local minimum

distances. Finally, by comparing all these local minimum distances, we are able to find

the global minimum distance. To improve the accuracy of the result, the multi-dimensional

Newton-Raphson method is applied at last on the last candidate pair to get the final result.

4.3.1 Outline of the algorithm

As already mentioned above, there are two basic steps in the algorithm. In the pre-processing

step, two B-spline curves are decomposed into their piecewise-Bézier forms, and the bound-

ing spheres of these Bézier subcurves are determined. The next step comprises two-level

selections to find candidate pairs and local minimum-distance calculations on them. A com-
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parison among the local results can render the global minimum distance. The following

shows more details.

Algorithm 1: Mini_Distance (Cu, Cv)
Input: Cu is the first B-spline curve. Cv is the second B-spline curve.
//first part: pre-processing
begin

Decompose Cu into a set of Bézier subcurves A. (Section 4.3.2)
Decompose Cv into a set of Bézier subcurves B. (Section 4.3.2)
Test "valid" control polygon for both A and B. (Section 4.3.3)
Calculate the bounding spheres for both A and B. (Section 4.3.4)

end
//second part: run-time computation
begin

Use upper-lower bounds to remove pairs. (Section 4.3.5)
Use the spatial relationship to continue to remove pairs. (Section 4.3.6)
Use the multi-dimensional NR method to compute approximate local distances between a candidate pair. (Section 4.3.7)
Find the global minimum distance by comparing all local minimum distances.
Use the multi-dimensional NR method to increase the accuracy of global minimum distance.

end

return the minimum distance

4.3.2 Pre-processing

Pre-processing involves decomposing B-spline curves into their piecewise-Bézier forms and

then calculating the bounding spheres of these Bézier subcurves.

4.3.2.1 Decomposing the B-spline curve

The decomposition of B-spline curves into their Bézier subcurves is realized by the Boehm’s

knot insertion method [78]. The insertion of new knots into present knot systems by using the

blossoming formula does not have influence on the curve shape. The insertion is a loop until

the interior knots all have multiplicity of k − 1. When the process is finished, the maximum

number of obtained Bézier subcurves is n − k, where n is the number of control points and

k is the degree of the B-spline curve.

Let us assume that the new knot u is located in the knot span [λj , λj+1]. Since a B-spline

curve lies in the convex hull of its control polyline, the corresponding curve point Pu is

also in the convex hull which is defined by control points Pj , Pj−1, ..., Pj−k , and all other

basis functions are equal to zero. Hence, calculation of the knot insertion can be restricted on

control points Pj, Pj−1, ..., Pj−k. The way of inserting u is to find k new control pointsQj on

leg Pj−1Pj, Qj−1 on leg Pj−2Pj−1, ..., andQj−k+1 on leg Pj−kPj−k+1, so that the old polyline

between Pj−k and Pj (Fig. 4.9 black line with square) is replaced by Pj−kQj−k+1...QjPj
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(Fig. 4.9 red line with circle) by cutting the corners at Pj−k+1, ..., Pj−1. Here, except that

k − 1 control points of the original control polyline are removed and replaced with p new

control points, all other control points are unchanged. After inserting a new knot, the knot

vector becomes λ1, . . . , λj , u, λj+1, ..., and λn+k+1. If the new knot u is equal to λk, the

multiplicity of λk is increased by one.

Pj

Pj−1

Pj−2

Pj−3

Pj−4

Pj−k+1

Pj−k

Qj

Qj−1Qj−2

Qj−3

Qj−k+1

Fig. 4.9: Diagram of the original control points removed and replaced by inserting a new
kont.

The formula for computing the new control point Qj on leg Pj−1Pj is the following:

Qi = (1− ai)Pj−1 + ai Pi (4.21)

where the ratio ai is defined as below:

ai =
u− λi
λi+k − λi

, j − k + 1 ≤ i ≤ j (4.22)

A B-spline curve is known as a composite Bézier curve if its interior knots all have multi-

plicity equal to k − 1. Therefore, converting a B-spline curve into a composite Bézier curve

is equivalent to repeatedly inserting the knots into the knot vector until all the interior knots

have multiplicity equal to k − 1.

4.3.3 Tests of "valid" control polygons

To test the validity of a polygon, i.e. whether it is convex, a convenient method is to inspect

the dot product results of its two vectors. As shown in Fig. 4.10, a control polygon of a

Bézier curve with degree p (p > 2) has control points P0, P1, . . . , Pn−1, Pn, where P0 and

Pn are at the two ends. The points V1 and V2 are projected from the vertex Pi and one of
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the endpoints, Pn (i < (n/2)) or P0 (i ≥ (n/2)), to the line segment Pi−1Pi+1, respectively.

The sign of the dot product R = V1Pi · V2Pn (i < (n/2)) or R = V1Pi ·V2P0 (i ≥ n/2)) can

be used to judge whether vertex Pi is in the "convex" direction or not. If the sign is positive,

this vertex is in a "concave" direction, otherwise not. All the vertices except of the end points

are checked one by one until one positive sign is obtained. If all the results are negative, the

control polygon can be concluded as a 2D/3D convex polygon. Based on this, if both the first

interior angle � P1P0Pn and the last interior angle � Pn−1PnP0 are less than 90◦, this convex

polygon is regarded as a "valid" polygon.

P0

P1

Pi−1

Pi Pi−2

Pn−1

Pn

V1

V2

Fig. 4.10: A 2D "valid" polygon.

Algorithm 2: Is_Valid_Polygon
begin:

for i = 1 to i < n by i++ do
if i < (n/2) then
R = V1Pi · V2Pn;
else

R = V1Pi · V2P0;
if R > 0 then

return FALSE
end

end
R1 = P0P1 · P0Pn;
R2 = PnPn−1 · PnP0;
if R1 < 0 or R2 < 0 then

return FALSE
end
// It is a valid polygon
return TRUE

end

After the types of 2D/3D control polygons are classified, analyses are performed to determine

the spatial relationship between two "valid" control polygons or between one "valid" control

polygon and one "invalid" control polygon. Their spatial relationship is useful to judge the

existence of a common perpendicular line between these two Bézier curves.
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4.3.4 Search for bounding spheres of Bézier objects

To calculate the distance between bones during motion, it is better to use bounding spheres

than bounding boxes, since global rotating transformations have no influence on the distance

between two spheres. As it is known that a Bézier subcurve is located in the convex hull of its

control polygon according to the strong convex hull property, the problem can be solved by

searching for the bounding spheres of the control polygons of Bézier subcurves. Although

this process does not yield the smallest bounding, it is efficient enough to remove a large

percentage of candidates in the first-level selection described in Section 4.3.5.

There are several steps towards finding the bounding sphere of a Bézier subcurve: (1) among

all pairs of control points of the Bézier subcurve we find the longest edge; then the center

of the longest edge is used as the center of the bounding sphere; (2) the distances from the

center of the sphere to all control points is calculated; (3) if a distance is larger than the radius

of the sphere, the radius is updated with this distance. When there are n control points, the

total number of calculations is n(n + 1)/2. Fig. 4.11 shows example bounding spheres of

decomposed B-spline curves.

(a) A general decomposed B-spline (b) closed B-spline of the bone con-
tour

Fig. 4.11: Boundary spheres of a decomposed B-spline curve.
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4.3.5 First-level selection

In the first-level selection, all possible pairs between two Bézier subcurves with each from

one B-spline curve representing one forearm bone are analyzed. For each pair, the upper and

lower bound distances between their bounding spheres are calculated as Dmax and Dmin,

respectively, as illustrated in Fig. 4.12. The found minimum upper-bound distance among

all pairs is used as the reference to remove any pair whose lower-bound distance is larger

than this value.

Dmin

Dmax

Fig. 4.12: Lower-bound distance Dmin and upper-bound distance Dmax.

4.3.6 Second-level selection

In the second-level selection, the spatial relationship is studied on the remaining pairs of

Bézier subcurves after the previous step. If the test turns TRUE (i.e. if there is a possible

perpendicular between them), then it is a candidate pair, and vice versa.

There are three possible combinations of different types of control polygons:

1. two "valid" control polygons

2. one "valid" and one "invalid" control polygon

3. two "invalid" control polygons

Case 1 and case 2 can be carried out using the procedure described below. However, as

the proof of the existence of a possible common perpendicular line between two "invalid"

control polygons from a pair of Bézier curves (case 3) is impossible, we select them here as

candiate pairs, since the percentage of the such case is quite low.
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4.3.6.1 Two "valid" control polygons

A four-dot condition can be used to examine the spatial relationship between a point and a

"valid" control polygon of a Bézier curve. As shown in Fig. 4.13(a), if a perpendicular line

from a point towards the Bézier curve is to exist, the point must lie inside the area AP0PnB

or the area CP0PnD. The location of this point can be determined by solving the four-dot

condition: R1 = P0P ·P0P1,R2 = PPn ·Pn−1Pn,R3 = PnP0 ·PnP , andR4 = PnP0 ·P0P . If

IfR1 < 0 orR2 < 0 andR3∗R4 > 0, the point must be outside area AP0PnB and CP0PnD.

Therefore, "R1 < 0 or R2 < 0 andR3 ∗R4 > 0" is used as the criteria (Fig. 4.13(b)) to judge

whether there is a perpendicular line between the point and the curve.

P0

P1Pn−1

Pn

AB

CD

P

(a) The spatial relationship

R1 < 0R2 < 0

R3 ∗R4 > 0 R3 ∗R4 > 0R3 ∗R4 < 0

(b) Four-dot condition

Fig. 4.13: Spatial relationship and four-dot conditions.

In Fig. 4.14(a), all control points of C2(u) are inside the area AP0C, therefore, the minimum

distance is from P0 to the closest point on C2(u). It still needs one more condition to ensure

all control points (Q0, · · · , Qm) are either inside the area AP0C or inside the area BPnD. It

is to check the sign of the dot product R1 for all control points. If the signs do not change,

all control points are in one area, otherwise, they are distributed within two areas, and the

conditions of minimum distance would be satisfied (Fig. 4.14(b)). If the "four-dot condition"

is satisfied and all control points are on the same side, according to the convex hull property

of B-spline curves, any pointQc on the curve C2(u)must also satisfy the "four-dot condition".

Thus, the closest point on C1(u) for Qc must be one of the endpoints (P0 or Pn) and the

minimum distance between C1(u) and C2(u) is from one of them to the closest point on the

other curve.

Along this way, the minimum distance between two control polygons can be categorized in

two cases. If the sign of dot productR1 for all control pointsQ0, · · · , Qm) do not change, the
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polygon has no points lying either in AP0PnB or in CP0PnD (Fig. 4.14(a)). As discussed

above, there is no perpendicular line from any point at C2(u) to C1(u), and therefore the

minimum distance is from one of the endpoints of C1(u) to the closest point on C2(u) (P0

in Fig. 4.14(a)). If the signs change, the polygon contains point(s) in the two areas, and

the "four-dot condition" described above can be satisfied (Fig. 4.14(b)). According to the

convex hull property of B-spline curves, any point on the curve C2(u) can satisfy the "four-

dot condition". Thus, the minimum distance between C1(u) and C2(u) is from one point on

one of them to the closest point on the other curve.

P0

P1Pn−1

Pn

AB

CD

E

F

G

H

Q0

Q1

Qn−1

Qm

C1(u)

C2(v)

(a) Relationship test

A
B

C D

P0 Pn

Q0 Qm

(b) A special case

Fig. 4.14: Relationship test and a special case.

The details is seen in Algorithm 3.

Algorithm 3: Poly(P)_vs._Poly(Q)
Input: P is the first "valid" control polygon. Q is the second "valid" control polygon.
Output: TRUE if there is a possible perpendicular between P and Q,

FALSE otherwise.
begin

Flag = FALSE;
for each control point on P do

test the four-dot condition;
if a condition is not satisfied or sign of R1 changed then

Flag=TRUE;
break;

end
end
if Flag=FALSE then

return FALSE
end
Flag=FALSE
Repeat same procedure for the control polygon Q
return Flag

end
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4.3.6.2 One "invalid" control polygon and one "valid" control polygon

In this case it needs only to carry out tests on all control points of the "invalid" control

polygon according to the "four-dot" condition, as shown in Algorithm 4.

Algorithm 4: InvalidPoly(P)_vs._ValidPoly(Q)
Input: P is an "invalid" control polygon. Q is a "valid" control polygon.
Output: TRUE if there is a possible perpendicular between P and Q,

FALSE otherwise.
begin

Flag = FALSE;
for each control point on P do

test the four-dot condition;
if a condition is not satisfied or sign of R1 changed then

Flag=TRUE;
break;

end
end
retrun Flag

end

4.3.7 Multidimensional Newton-Raphson method

A multidimensional Newton-Raphson (NR) method is used to compute the minimum dis-

tance between a pair of Bézier subcurves. This method is well-known for solving non-linear

equations in multidimensional spaces. With given approximate initial value, the NR method

provides a new approximate solution based on the local linearization process about the cur-

rent point by using the Jacobian matrix, which results in a linear system to be solved as:

Xi+1 −Xi = −[J(Xi)]
−1F (Xi) (4.23)

This process is repeated and a convergence can be achieved quadratically, if the initial guess

is "near" to the solution. The conditions for determining the minimum distance between two

curves are considered as two scalar functions described as following:

f(u, v) = (C1(u)− C2(v)) · C ′
1(u) = 0 (4.24)

g(u, v) = (C1(u)− C2(v)) · C ′
2(v) = 0 (4.25)

substitutingXi = [ui, vi]
T , F (Xi) = [f, g]T , J(Xi) =

[
fu fv

gu gv

]
into Eq. (4.23) yields
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[
ui+1

vi+1

]
−

[
ui

vi

]
=

[
A B

C D

]−1 [ C1(ui)
C2(vi)

]
, (4.26)

where A = C′′
1 (ui) · (C2(vi)−C1(ui))− [C ′

1(ui)]
2, B = C ′

1(ui) · C ′
2(vi), C = −C ′

2(vi) · C ′
1(ui),

D = [C ′
2(vi)]

2 + C ′′
2 (vi) · (C2(vi)− C1(ui)).

With candidate pairs obtained after the second-level selection, the multidimensional NR

method is conducted to compute the minimum distance for each pair. Hereby, u = (u0 +

un)/2 is set as the initial value for C1(u), and v = (v0 + vm)/2 is set as the initial value for

C2(v), where n and m are the highest indices for the knots of C1(u) and C2(t), respectively.

Because both curves are simple shapes and initially guessed values are actually quite close

to optimal results, the iteration cycles of the multidimensional NR method is less than 2 or 3

until an accuracy of 0.01 is reached. Therefore, 5 iterations are set in the calculation to find

the local approximately minimum distance. If the NR method fails to converge within the

iteration limit, the minimum distance must be from the edge points of one curve to the other

one as discussed above, and this pair is then abandoned. After comparing the local minimum

values, the pair to give the global minimum distance can be found. In the following step,

to improve the accuracy of the final solution, this pair is computed again by using the NR

method with the previous result as the initial value and 3 or 4 iterations to ascertain a good

accuracy. Finally, the distances between all the endpoint pairs with one from each of of the

two curves are also calculated and considered so that the case when the minimum distance

is between endpoints cannot be missed.

4.4 Performance analysis

Fig. 4.15 illustrates the process of the minimum-distance calculation between two B-spline

curves which are integrated from the point sets of the contour of bone ulna and radius. (a)

shows the decomposition of the B-spline curve into Bézier subcurves. Each subcurve is dif-

ferentiated from each other by color difference and enclosed in their corresponding bounding

spheres. (b) shows the remaining subcurves after the first-level selection. (c) shows the pairs

left after the second-level selection. (d) shows the last pairs rendering the minimum distance

(d=9.39mm). Another two examples have minimum distance of 11.15mm and 16.02mm

respectively, as shown in Fig. 4.16.

Table 4.1 lists the number of candidate pairs during the process. Taking the case shown in

97



dis

(a) Bézier subcurves with their boundary sphere (b) after first level

(c) after second level(d) minimum distance between two curves

radius ulna

Fig. 4.15: Calculation process of the minimum distance.
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Fig. 4.16: Two examples of the minimum-distance calculation.

Fig. 4.15 as an example, the contour of bone ulna (object A) has 11 Bézier subcurves and

that of bone radius (object B) has 9 Bézier subcurves, therefore the sum of possible pairs of

Bézier subcurves are 99. After the determination of the bounding spheres of Bézier objects,

bone ulna has 3 "valid" and 8 "invalid" control polygons, whereas bone radius has 5 "valid"

and 4 "valid" ones. After the first-level selection the remaining "valid" pairs in total are 15,

and this value goes down to 5 after the second-level selections. The finally left 5 candidate

pairs are further processed with NR method.
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Table 4.1: Data obtained during selections

Figure Total pairs
Object A (ulna) Object B (radius) Remaining

pairs after
level 1

Remaining
pairs after
level 2

"valid" "invalid" "valid" "invalid"

Fig. 4.15 99 3 8 5 4 15 5
Fig. 4.16 (a) 72 7 2 8 0 27 6
Fig. 4.16 (b) 80 6 2 5 5 25 13

Table 4.2 lists the corresponding total consumed time (based on 1.86GHz CPU and 1024

MB memory) and the individual time consumed in the pre-processing, selection levels and

calculation with NR methods (including calculation of approximate local minimum distances

and the final accurate global minimum distance). The last column shows the accuracy of the

finally achieved results in 5 iterations.

Table 4.2: Consumed time and result accuracy
Figure Total pairs Pre-processing Level 1 Level 2 Newton method Accuracy

(sec) (sec) (sec) (sec) (sec)

Fig. 4.15 0.518 0.286 0.006 0.073 0.153 6.9e-7
Fig. 4.16 (a) 0.593 0.305 0.004 0.152 0.131 1.3e-5
Fig. 4.16 (b) 0.613 0.332 0.004 0.095 0.181 6.2e-5

4.5 Distance between two forearm bones

With the algorithm described in Section 4.3, a point pair between two B-spline curves can

be found giving the shortest distance between two corresponding contours of bone ulna and

radius recognized in one MRI slice. However, this distance calculation is limited to 2D slice

pairs. Due to the complicated relative motion of bone radius rotating around bone ulna,

the relative position between radius and ulna changes as a function of the pro-/supination

angle ϕ, and thus also the value of shortest distance as well as its location varies with ϕ. To

determine the shortest distance between the two relative rotating forearm bones (3D model),

not only the minimum distance and its location need to be quantified, but also the change of

the distance relative to the pro-/supination angles need to be clarified. Noting that the slices

of ulna and radius remain almost coplanar during pro-/supination, this task can be achieved

in the following steps:

1. Assuming that the MRI slices are close enough (in our application with a slice distance

of 6−10mm), the radius and ulna bones are divided in small cylindrical pieces whose
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surface is approximated by a ruled surface with a pair of MRI slices as their ends and

parallel edges in axial direction (Fig. 4.17).

2. Take point pairs with the shortest distance from the corresponding MRI slices (refer to

Section 4.3.7), and use their positions as initial values for the iteration in axial direction

(step 3).

3. Calculate the shortest distance between each two corresponding segment pairs (one

from bone ulna, one from bone radius), as well as between their adjacent segment

pairs. For each pair of segment bodies, extend the search to its ± 5◦ region along

the spline curve, and compare the local shortest distances to get the point pair for the

shortest distance within this region. Thereafter, update the point pair (Section 4.5.1).

4. Repeat the same process for each pair and get the shortest distance between each bone

pairs (green arrows in Fig. 4.17).

5. Compare the local shortest distances to get the shortest one, as shown by the red arrow

in Fig. 4.17.

6. Repeat the procedure for each pro-/supination angle ϕ and keep the shortest distance

of all.

Fig. 4.17: Diagraph of the shortest distance calculation between forearm bones.

4.5.1 Distance between pairs of segmented bone bodies

In the present work, the surfaces of the forearm bones are simplified as ruled surfaces with

line segments parallel to the axial direction, instead of curved surfaces on 2D slices, in order

to reduce computational complexity. Here, one example will be explained to elucidate the

process details (Fig. 4.18).
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BBU i BBU i+1

BBRiBBRi

Qi−2Qi−2 Qi−1Qi−1
Qi Qi

Qi+1Qi+1

Pi−1Pi−1 Pi Pi Pi+1Pi+1

jth

jth

kthkth

radius

ulna

(a) distance between Pi−1Pi and Qi−1Qi (b) distance between PiPi+1 and Qi−1Qi

Fig. 4.18: Distance calculation between two bone surfaces (violet: ulna, blue: radius), by
simplifying bone surface as parallel segmented lines.

As shown in the figure, bone ulna is colored with violet, and bone radius is with light blue.

Pi−1, Pi, Pi+1 present the point sets of (i − 1)th, ith, (i + 1)th MRI cross-sections on bone

ulna, andQi−1,Qi,Qi+1 present the point sets of (i−1)th, ith, (i+1)th cross-sections on bone

radius (i = 1, 2, 3...L, where L is the number of the cross-sections in fine MRI scans). The

surfaces of bone ulna and radius are simplified as line arrays, presented by Pi−1Pi, PiPi+1,

andQi−1Qi,QiQi+1 respectively, which connect the corresponding points on adjacent cross-

sections. The ith, (i + 1)th segmented bone body of ulna is termed as BBU i and BBU i+1,

and of radius as BBRi and BBRi+1, respectively.

Now the search for the shortest distance between bone body pairs, such asBBU i andBBRi,

can be solved by calculating the shortest distance between line arrays Pi−1Pi and Qi−1Qi,

with steps as following:

1. Set ui−1
cur , vi−1

cur , uicur, v
i
cur, u

i+1
cur and vi+1

cur as the current path parameters of u (ulna) and

v (radius) on (i − 1)th, ith, (i + 1)th MRI slices, where ui−1
0 , vi−1

0 , ui0, v
i
0, u

i+1
0 and

vi+1
0 are the initial point pairs calculated by the algorithm (Section 4.3) for the shortest

distance.

2. Use the initial values ui−1
0 and ui0 for the path parameter ui−1

cur and uicur at beginning,
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and then extend the path parameter within α=± 5◦ along an arc on the B-spline (high-

lighted with pink as shown in Fig. 4.18 and Fig. 4.19). Within the ± 5◦ arc region,

nα = 10 points were taken at each contour curve which are evenly distributed on the

curve. The point positions can be calculated based on their corresponding curve path

parameter from the CurveJoint. Connecting the points which has the same increasing

or decreasing path steps about the initial values ui−1
0 and ui0 along the arc from the two

adjacent slice contour, series corresponding line arrays between the two arcs can be

obtained and form part of the surface of the bone ulna.

ui−1
0

ui−1
cur

vi−1
0

vi−1
cur

ui0

uicur

vi0

vicur

BBU i (Ulna)

BBRi (Radius)

jth

kth

5o5o

5o 5o5o 5o

5o5o

Fig. 4.19: Zoomed-in diagram of the distance calculation between two bone surfaces by
simplifying bone surface as parallel segmented lines.

3. Repeat last step to vi−1
cur and vicur to form part of the surface of bone radius.

4. These two parts of bone surfaces are the regions of interest for studying the shortest

distance between BBU i and BBRi. As the continuous bone surface is simplified as

an array of discrete segment lines, the shortest distance between two bone surfaces is

calculated by searching for the shortest distance between these series of segment lines,

which can then be solved by a system of equations (see Eq. (4.27) to Eq. (4.33) further

below).

5. For m segment lines BBU i (j = 1, 2, 3...m) of the bone body and n segment lines

BBRi (k = 1, 2, 3...n) of the bone body, an order of m ∗ n calculations needs to be

performed for the shortest distance between them, stored as dcur(i
′
). The calculation

can be confined to the small region defined by the small ± 5◦ arcs about the initial

values obtained on MRI slices.
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6. Considering the relative motion between two bones, the shortest distance between a

pair of the ulna segment body and the corresponding radius segment body, such as

BBU i and BBRi, for example, could move to the adjacent pair of bone bodies such

asBBU i+1 andBBRi, as shown in Fig. 4.18(b). Therefore, one needs to calculate the

shortest distance between BBU i+1 and BBRi as well. The shortest distance is then

stored as dcur(i
′′
).

7. Take the shorter distance from dcur(i
′
) and dcur(i

′′
), termed here as d(i), to describe

the distance between bone ulna to BBRi.

8. Due to the relative motion between these two bones, the shortest distance of d(i) can

only exist between the pairs of BBU i and BBRi, BBU i+1 and BBRi, but not be-

tween BBU i and BBRi−1, BBU i and BBRi+1. Therefore, the latter two pairs are

not considered.

9. Rotating the bones to the next position, the obtained curve path parameters ui−1
cur , uicur,

ui+1
cur , vi−1

cur , vicur and vi+1
cur from the previous position, are used to define the initial lo-

cation for the calculation at this new position. The initial distance d(i) is used as the

reference for this step. Finding the shortest distance within ± 5◦ of the new region,

and updating the new value and its location.

10. Repeat the whole processes for each pair of bone segments at each defined pro-/supination

angle. A series of the shortest distance d(i) between all available BBU 1, BBU2

...BBU i ... BBUL, and BBR1, BBR2 ...BBRi ... BBRL can be obtained, where L

is the number of the cross-sections taken during fine MRI scans. The overall shortest

distance dmin is then derived from this series.

4.5.2 Distance calculation between line segments

The distance calculation between two line segments is briefly discussed here. As shown in

Fig. 4.20, if there are two lines defined as:

Line 1 : P (u) = P0 + u · (P1 − P0) = P0 + u · s (4.27)

Line 2 : Q(v) = Q0 + v · (Q1 −Q0) = Q0 + v · t (4.28)

the shortest distance between the two lines by taking the perpendicular vectorwc = w(uc, vc)
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L1

L2

P0

Q0

s

t

P (uc)

Q(vc)

wc

Fig. 4.20: Distance between two lines.

between the two line direction vectors s and t, defined by:

s · wc = 0 (4.29)

t · wc = 0 (4.30)

and expressed by P (uc)−Q(vc), and inserting this expression into (4.29)and (4.30), leading

to

uc =
b · e− c · d
a · c− b · b (4.31)

vc =
a · e− b · d
a · c− b · b (4.32)

where a = s · s, b = s · t, c = t · t, d = s · w0, e = t · w0, and w0 = P0 −Q0.

Then, the distance between them is:

d(L1, L2) = |P (uc)−Q(vc)| =
∣∣∣∣(P0 −Q0) +

(b · e− c · d) · u− (a · e− b · d) · v
a · c− b2

∣∣∣∣ .
(4.33)

It is to be noted here that the distance between line segments may not be equal to the distance

between their extended lines, because the closest points for infinite lines could be outside

the range of the segments. Therefore, after the determination of uc and vc for L1 and L2, the

positions of the points need to be checked. If the points are inside the involved line segments,

then they are the right answers for the two segment lines; if not, the minimum distance occurs

at the endpoints of the segments [79].
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4.6 Results of the minimum distance between forearm bones

As mentioned above, the location and value of the minimum distance between bones change

during forearm rotation. Here, one example is analyzed in detail. Results of the shortest

distance between two forearm bones at random rotational position are summarized.

Within the α=± 5◦ arcs along B-splines, nα=10 points were taken at each contour curve

which are evenly distributed on the curve. Taking more points can of course improve the

calculation accuracy, but will require a longer processing time. 10 points were sufficient

here for both good accuracy and efficiency.

As shown in Fig. 4.21, a list of the distances changing along bone axial direction at the

rotational angle ϕ=82◦ is presented. Here, the green arrows represent the shortest distance

between each bone pair BBU i/BBU i+1 and BBRi, and the red arrow, which exists only at

the proximal portion, is the overall shortest distance at this pro-/supination angle (ϕ=82◦).

Other parameters, such as the rotational angle (Ang_phi [◦]), the calculation time (time[sec]),

the shortest distance dmin (6.528mm) and the distance value di (i=1,2,. . . ,20) between each

bone pair, are also shown in the list. The plotted red and blue polygons are the boundary

lines which are the trajectory of the shortest distance between two bones from proximal to

distal portion.

Four more examples of the distance changing along axial direction at defined rotational an-

gles are presented in Fig. 4.22. At sup45◦, neutral, pro45◦, pro70◦, the shortest distance is

5.015mm, 3.125mm, 2.902mm and 2.061mm, respectively.

Fig. 4.23 plots the distance changing along the bone axial direction at five rotational angles,

displayed with different colors. It can be observed that the distance changing is not regular,

i.e. it has different profiles at different angles. In addition, the shortest distance exists al-

ways at the proximal portion. However, due to the limitation of the segmentation program

and the resolution of MRI slices, the 3D bone model at the proximal and distal raidioulnar

articulation are not complete, and therefore the distance at the articulation portion could not

be exactly evaluated. The calculation was on the points which were actually very near to the

articulation. Although there are some deviations due to this simplification, the results are

actually quite close to the real anatomic parameters. In the future, a finer segmenting of the

bone articulation would be of much interest.

Fig. 4.24 displays the shortest distance between two forearm bones during the rotational

motion. The shortest distance achieves its minimal value at its maximal pronation position,
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dmin

bounday distance line of bone ulna

bounday distance line of bone radius

Fig. 4.21: Screenshot of the distance mapping between bone ulna and radius (green arrows
are the distance between each bone pair, red arrow is the shortest one between bone ulna and
bone radius at a rotation angle ϕ, here 82◦).

sup45o, dmin = 5.015mm neutral, dmin = 3.125mm

pro45o, dmin = 2.902mm pro70o, dmin = 2.061mm

Fig. 4.22: Screen shot of the distance mapping between bone ulna and radius at defined
rotational angles.

with a value of 1.281mm in this case. This figure includes additional five small screen shots

above the red curve in order to give a clue of the location of the shotest distance more clearly.

Starting from the supination 90◦, the shortest distance between two bones exists at the radius

proximal head, and after pronation 60◦ the shortest distance moves to the neck of the radius.
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Fig. 4.23: Distance mapping between two forearm bones at five rotational positions.
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Fig. 4.24: Mapping of the shortest distance between bone ulna and radius during rotational
motion.
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Chapter 5

Angulated Forearm Bones

Forearm fractures are the most frequent fractures occuring at an extremity in the adult and the

paediatric population [3]. Surgical treatments to bone fractures have risks: open reduction

and internal fixation could end with non-union or failure of fixation, while closed reduction

might leave malunion and functional deficits. These treatment failures can cause the im-

pairment of the forearm rotational motion [5]. For example, in Fig. 5.1 a person who has

impairment on the left forearm cannot achieve the same pronation rotational range as on the

healthy side.

Fig. 5.1: Pronation on the impaired left forearm [3].

To understand the effect of the direction and magnitude of the angulation on forearm func-

tion, much cadaver and retrospective studies have been performed [3], [5], [80]. In this

study, an agulated forearm kinematic model was developed based on the described 2DOF

kinematic mechanism in order to evaluate how the angular deformities affect the impairment

of rotational function. The 3D simulation is visualized by a GUI interface which allows one

to predict the range of forearm motion’s impairment and possible medical treatment.

108



As we did not have direct access to patients with forearm fractures, the geometrical data

used in this chapter were taken from a literature [3]. We examined two examples by using

this extended angulated kinematic model, and compared the predicted results with literature

values.

5.1 Angulated forearm kinematic model

The present approach is based on the method of Weinberg et al., who presented a kinematic

model with a vectorial compensation system to illustrate the deformed bones and developed

a computing procedure to predict the impairment [3], [23]. In this work, the method of

Weinberg et al. is extended by using the 2DOF kinematic mechanism described in Section 2

and inserting an additional vector for each angulation. Thus, each angulated bone is treated

by two partial vectors and is embedded on the 2DOF surrogate mechanism motion. In the

following, three cases are analyzed: angulated ulna, angulated radius and both angulated.

Fig. 5.2 shows the angulated forearm model, where the new vectors r11 and r12 relate to the

angulated ulna, while the other two vectors r31 and r32 correspond to the angulated radius.

The geometric parameters ku1 , ku2 , ku3 , kr1, kr2, kr3 are local components to present the location

of the angulation, which characterize it in the axial, sagittal and frontal plane in the local

coordinate of the fractured bone.

 x 

z 
y xy

z

elbow

ulna

radius

r1

r2
r3

r4
r11

r12

r31

r32

wrist

ku1

ku2
ku3

kr1

kr2

kr3

Fig. 5.2: Angulated forearm mechanism.
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The vector coordinates of r11, r12 , r31 , r32 are in the home (supination) position:

r011 =

⎡
⎢⎣ ku1

−ku2
ku3

⎤
⎥⎦ ; r012 =

⎡
⎢⎣ −ku1
l + ku2

−ku3

⎤
⎥⎦ ; r031 =

⎡
⎢⎣ −kr1

kr2

kr3

⎤
⎥⎦ ; r032 =

⎡
⎢⎣ kr1

l − kr2

−kr3

⎤
⎥⎦ ; (5.1)

where l is defined again as the distance from radial head to ulnar styloid. By rewriting the

loop closure condition Eq. (2.8) using the angulated vectors r11, r12, r31, r32 instead of r1 and

r3, the deformity of one or both bones can be integrated into the mathematical formulation

described in Section 2.2.3.

Fig. 5.3 shows as an example radiography of a deformed radius. The parameters ku/ri are

obtained directly from the X-ray picture, as well as the sagittal kr1 in the lateral view and the

frontal kr3 in the a.p. view. The local y component kr2 is taken as the distance from the radial

head to the projection of point C at the length direction of bone radius, where point C is the

crossing point of the two middle axes h and i of the deformed bone.

Fig. 5.3: Measured parameters of deformity on orthogonal radiographs [3].
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5.2 Determination of maximal pronation angle

The maximal pronation angle can be determined via two different methods: (1) by calcu-

lating the minimal distance between the vectors that represent bone ulna and radius in the

angulated kinematic model and stopping the motion when this distance is less than a given

threshold value; or (2) by calculating the minimal distance between the two bone surfaces of

ulna and radius in the model and applying the same stopping criterion as in (1).

5.2.1 Method 1: distance between vectors

The prediction of the influence of angulations on the range of forearm motion using vector

polygons can be performed as follows:

1. Calculate the distance between the bones of the healthy forearm during its rotational

process, that is the distance between vectors r1 and r3 representing bone ulna and

radius in the kinematic model (Fig. 2.7). The resulting distance dhealthy results as a

function of the pronation angle ϕ.

2. Calculate the minimal distance dmin from dhealthy(ϕ) at its maximal pronation position,

and set this value equal to the minimum allowable distance for the angulated forearm.

This assumption has been proved in a study [23] by taking the influence of the bending

of the bones to the range of motion of forearm into consideration.

3. Calculate the minimal distance between the polygons of the angulated bone pairs

(Fig. 5.2). In the case of one fractured bone, the distance calculation is between either

the segment along r11 and r12 and the segment along r3 for angulated ulna, or between

the segment along r31 and r32 and the segment along r1for angulated radius. The re-

sults are denoted by d1 and d2 as functions of ϕ. In the case of both angulated bones,

the distance calculations need to examine four four segment pairs: between r11 to r31,

r11 to r32, r12 to r31 and r12 to r32. The results are denoted by d1(ϕ), d2(ϕ), d3(ϕ),

d4(ϕ), respectively.

4. Find the minimal distance ddeformed(ϕ) from all the values obtained from step3.

5. When ddeformed(ϕ) reaches the minimal distance of healthy bones dmin, the calculation

stops. The corresponding ϕ is the seeked maximal pronation angle for the deformed

forearm.
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During the rotational process of radius with respect to ulna, the distances between the fore-

arm bones is rendered as a function of the pro-/supination angle. The program will stop when

the distance between the vectors reaches the minimal distance of the healthy arm.

Based on this angulated kinematic model, a simulation tool for the angulated forearm can

be established, as shown in two examples. The program combines MATLAB and M � �

� �

BILE

[48], which are used to implement the user interface (Fig. 5.4 and Fig. 5.5) and to implement

the mechanism model and simulate the forearm motion (Fig. 5.6), respectively.

As shown for the examples in Fig. 5.4 (both bones angulated) and Fig. 5.5 (one bone angu-

lated), on the interface the input values include:

1. Choosing the deformed bones: ulna, radius or both;

2. Entering the geometric parameters of bone length and width;

3. Entering the maximal pronation angle of the healthy forearm;

4. Entering fracture parameters ki extracted from the radiographs (refer to literautre [3]).

Output results include 3 diagrams:

1. Diagram 1 at the left bottom presents the vectorial compensation system illustrating

the deformed bones.

2. Diagram 2 at the right upper plots the distance between bones as a function of the

pro-/supination angle. The diagram contains the distance plots between:

a) two healthy bones (red in Fig. 5.4 and Fig. 5.5)

b) the angulated ulna proximal end and the angulated radius proxiaml end (blue in

Fig. 5.4)

c) the angulated ulna distal end and the angulated radius proximal end (green in

Fig. 5.4)

d) the angulated ulna proximal end and the angulated radius distal end (yellow in

Fig. 5.4)

e) the angulated ulna distal end and the angulated radius distal end (pink in Fig. 5.4)

f) the angulated radius distal end and the healthy ulna (green in Fig. 5.5)

g) the angulated radius proximal end and the healthy ulna (blue in Fig. 5.5)
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Fig. 5.4: User interface to calculate the distance between two angulated bones.
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Fig. 5.5: User interface to calculate the distance between angulated radius and healthy ulna.
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3. Diagram 3 on the right bottom plots the minimal distance between healthy bones

dhealthy(ϕ) (red) and angulated bones ddeformed(ϕ) (black) along pro-/supination an-

gles.

The procedure for determining the maximal pronation angle is illustrated in the following

by the example of Fig. 5.4. First, the distance at maximal pronation angle of the healthy

bone structure at 89◦ is defined as the minimal allowable distance. By choosing the option

"max pronation angle", the distance at maximal pronation angle of healthy bones is shifted

horizontally until it intersects the minimal distance curve of the deformed bones. Pulling

down vertically this point until it intersects the x-axis and gives the sought result, in this

example approximately 65◦.

angulated ulna

angulated radiusangulated radius

(a) radius with fracture (b) both bones with fracture

Fig. 5.6: Simulated 3D model with the angulated vector.

Based on the program, the reference data of fractured bones obtained from a clinical report

[3] were simulated. Data from 17 people having different ages and different impairment of

bones were analyzed. Pronation and supination were measured clinically with a goniometer.

The possible pronation of the healthy side was included as a value representing the mini-

mal distance of both forearm bones on pronation. The results from the literature and by our

simulation are compared in Table 5.1. This table contains: the bone length and width (col-

umn "Patient"); fractured bone(s) (column "Bone"); fractured parameters in the literature

(columns "Radius" and "Ulna"); clinically measured maximal pronation angles of healthy

and fractured bones (column "Measured angle"); simulated maximal pronation angle in the

literature (column "Liter.data"); simulated maximal pronation angle using the 2DOF model

with stiffness coefficient ratios derived from the correlation with bone length based on two

measurements (column "Simulation").

All 17 samples were analyzed based on the angulated model and the predicted stiffness co-

efficient ratios, and results are summarized on Table 5.1. It is encouraging that the computed
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Table 5.1: Clinical measurements and simulated results are compared.
Patient   Bone   Radius   Ulna   Measured  angle     

( °)   
Liter.  
data   Simulation   

l(mm ) 
  

b(mm)     k 1   
(mm)   

k 2   
(mm)   

k 3   
(mm)   

k 1   
(mm)   

k 2   
(mm)   

k 3   
(mm)   α   healthy   α   deformed     α   sim   C υ /C s     α   sim   

237   20   Both   1   157   12   0   180   - 5   89   65   6 2   1 72   6 5   
248   19   Radius   0   60   3         85   75   7 4   192   7 4   
269   25   Radius   5   195   3         90   85   8 1   231   8 0   
195   19   Ulna         5   95   3   62   20   2 3   95   25   
195   15   Both   2   50   2   5   50   0   85   70   65   95   66   
275   25   Both   0   130   4   1   130   0   60   33   40   242   39   
250   25   Both   - 5   92   - 5   5   100   12   90   70   67   196   66   
208   19   Ulna         0   80   4   65   45   4 6   1 19   48   
193   16   Radius   - 15   62   3         85   65   65   92   65   
265   26   Radius   5   180   4         85   80   75   223   77   
230   17   Ulna         1   110   3   80   70   7 1   160   6 0   
235   21   Radius   5   120   - 2         80   80   8 8   16 9   87   
235   21   Both   4   110   0   2   110   0   85   85   85   16 9   85   
218   19   Radius   3   70   8         85   55   46   1 38   49   
253   21   Radius   0   95   8         85   55   47   2 01   49   
185   15   Radius   3   95   7         85   75   7 6   7 7   7 5   
225   21   Radius   0   100   3         85   70   70   15 0   7 1   

                            
233   21     1   109   4   3   107   3   80   65   65   166   65   
27   3     6   44   4   2   38   6   9   17   17   49   16   

X
S.D.

results are very well consistent with those measured in the clinical investigations and com-

parable to those in the literature. This indicates the potential applicability of the proposed

angulated model in clinical application. The possible reasons for the small discrepancies

between our simulated data and measured ones can result from the measurement noise, or

the computational method, which could be extended to take account of the actual surface

contacts of the involved joint interconnections.

Hereby, as the ratio of the stiffness coefficients cs and cϑ is obtained from the correlation

between the ratio and bone length based on two measurememts, its accuracy is to some

degree limited, although the results show a good matching with the experimentally measured

values, which shows their applicability. Further analysis with larger subject sets may confirm

this empirical finding, which is a topic of future research outside of the scope of this thesis

5.2.2 Method 2: distance between bone surfaces

In method 1, the distance calculation was based on straight vectors without regard of the ac-

tual surface geometry of the bones. Therefore, in this section, a second method to determine

the maximal pronation angle is described which takes into account the bone surface. In this

method, the calculation stops when the shortest distance between the surfaces of bone ulna

and radius reaches a minimal threshold, signalling a collision.
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Input values in this method are, as in method 1:

1. Choosing the deformed bones: ulna, radius or both.

2. Entering the geometric parameters of bone length and width.

3. Entering the fracture parameters ki extracted from the radiographs [3].

Two examples analyzed by using method 1 are computed here again.

Example1: angulated radius

Geometric parameters: length l = 253mm, width b = 21mm.

Fracture parameters of radius: kr1 = 0mm, kr2 = 95mm, kr3 = 8mm.

In this case, bone ulna is healthy and bone radius is angulated at a given position into two

parts: the proximal portion (pink) and the distal portion (blue) (Fig. 5.7). With the algorithm

to calculate the minimal distance between two bone surfaces as described in Section 4, the

minimal distances between the healthy ulna and each of the two angulated radius parts can

be calculated. The red arrow represents here the minimal distance between bone ulna and

fractured radius at current position.

proximal portion of the angulated bone radius

site of broken
distal portion of the angulated bone radius

healthy bone ulna

d(ϕ)

Fig. 5.7: Simulated angulated bone model for example 1 with bone surface in a.p.view and
side view (radius in fracture).
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The minimal distance as the function of the pro-/supination angle is plotted in Fig. 5.8.

Clearly, at pronation 53◦ the bone radius crosses bone ulna, describing the position where

the angulated bone radius achieves its maximal pronation relative to the healthy bone ulna.
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max.pronation angle=53 ◦

Fig. 5.8: Distance between forearm bones as a function of pro-/supination angle for example
1.

Example2: both radius and ulna angulated

Geometric parameters: length l = 250mm, width b = 25mm.

Fracture parameters of ulna: ku1 = 5mm, ku2 = 100mm, ku3 = 12mm.

Fracture parameters of radius: kr1 = −5mm, kr2 = 92mm, kr3 = −5mm.

In this case, both bones are angulated. With the same procedure as described in the first

example, the minimal distance between two fractured bones is illustrated by the red arrow

in Fig. 5.9. The minimal distance as a function of the pro-/supination angle is shown in

Fig. 5.10. Here, at pronation 67◦, bone radius crosses ulna, where the angulated bone radius

achieves its maximal pronation with respect of bone ulna.

The two samples discussed above were analyzed using both methods 1 and 2. The results

are compared with clinical values as shown in Table 5.2. Both simulations show a small

deviation from anatomical data, and the 2nd method seems comparatively better, which is
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proximal portion of the angulated bone radius

proximal portion of the angulated bone ulna

site of broken

distal portion of the angulated bone radius

distal portion of the angulated bone ulna

d(ϕ)

Fig. 5.9: Simulated angulated bone model for example 2 with bone surface in a.p.view and
side view (both bone in fracture).
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Fig. 5.10: Distance between two angulated forearm bones as a function of por-/supination
angle for example 2.
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reasonable since the irregular bone shape is considered in this method. As we do not have

measurememts with subjects featuring fractures, the 3D angulated bone geometry is actually

obtained by manually separating the bone structure from a fine MRI scan into two partial

bones at a given position defined by the clinical parameters. It is believed that the accuracy

could be improved if the analysis would be based on the true deformed forearm structures.

Table 5.2: Clinical measurements and simulated results are compared with method 1 and
method 2.

Patient Bone Radius  Ulna  Pronation angle (°) Method 1 (°) Method 2 (°) 

l(mm) b(mm)  k1 (mm) k2(mm) k3(mm)  k1 (mm) k2(mm) k3(mm)  α healthy α deformed α sim α difference α sim α difference 
253 21 Radius 0 95 8      85 55 50 5 53 2 
250 25 Both       -5 92 -5  5  100 12  90 70 66  4  67 3 
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Chapter 6

Summary and Outlook

Recent years have seen the substantial increase of investigations on forearm pro-/supination

motion. These studies are mainly motivated by three aspects: the desire for kinetostatically

consistent replacement joints at the elbow, the need for biofidelic computer models and the

clinical interest in comparing normal and pathological motion for better therapy planning.

In this thesis, motivated by the potentially wide application possibilities of computer simu-

lations in the clinical treatment of forearm, an in-vivo kinematic study of forearm rotation

based on a 2DOF kinematic mechanism has been performed with data from magnetic reso-

nance images. The main contributions of this work are:

1. Parameter fitting for a two-degrees-of-freedom surrogate mechanism for pro-/supi-

nation based on MRI scans.

The basis of this contribution is a special surrogate mechanism for human pro-/supination

comprising two degrees of freedom proposed in [24]. The surrogate mechanism consists of

a closed kinematic chain with four joints and two degrees of freedom. The prismatic and

revolute joint lie on the proximal end of bone ulna, representing a small lateral swaying and

a light dislocation of the ulna bone with respect to the humerus, respectively. The revolute

joint at the distal end of bone radius describes the aperture between bone ulna and radius. The

Hooke joint represents the real physical radio-ulnar joint at the distal end, consisting of the

actual pro-/supination angle and the torsional angle. The spherical joint represents the radial

head at the proximal end of bone radius. At the humero-ulnar joints, two degrees of freedom

are bound by virtual springs with corresponding spring stiffnesses, which characterize the

coupling elastic effects at these joints.
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As a new contribution, model parameters were obtained automatically by a fitting process

based on MRI images. At the beginning, two kinds of MRI measurements were performed:

fine static scans and dynamic motion scans. Fine scans comprise numerous slices and were

performed in order to determine a good approximation of the bone geometry for reference in

the dynamic fitting. The motion scans record the forearm rotational motion under different

torque conditions at a few rotational positions (maximum supination, 45◦ supination, neutral,

45◦ pronation and maximum pronation) and at a few (five or seven) cross-section positions

along the forearm length at each rotational angle, allowing for quick scans.

The fitting of the model parameters (link lengths and spring coefficients) is conducted via an

optimization loop by searching for the minimal square error between the simulated positions

of the bone-marrow centers and those obtained from MRI measurements. In this process, the

self-calibration feature of this model enabled the optimization of the absolute location of the

surrogate mechanism with respect to the MRI reference frames, as well as the location of the

bone marrow centerline with respect to the links.

The good coincidence of simulated results to the observed motion rendered an insight of

the application of this model in the functional anatomy of the lower arm without surgical

interventions. Furthermore, the results under various loading conditions demonstrated the

applicability of this model under different torque conditions in reality. Finally, to make the

model user-friendly, the simulation of the forearm motion was visualized in 3D effect at the

interface of the object-oriented multibody program library M � �

� �

BILE.

As shown, the 2DOF model yields more realistic results than the fixed-axis model. By

comparing the relative pose of the radius with respect to ulna as a finite helical axis (FHA),

results show that the motion of bone radius with respect to ulna does not correspond to a

pure fixed-axis rotation, but that it also contains a translation along the screw axis.

2. Distance calculation between forearm bones during rotational motion.

The distance between two forearm bones during rotation varies at different axial positions

as well as at different pro-/supination angles. When it is zero (e.g. in angulated bones) the

bones touch each other and the pro-/supination motion is stopped. The investigation of the

distance change during the rotational motion thus is valuable to evaluate the effect of angular

deformities on forearm kinematics, and to predict the maximal rotational angle by forearm

fractures. In this research, the distance calculation was firstly performed in cross-sectional

plane, and then this result was employed for distance computation in the full 3D model.
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In the cross-sectional plane, the shapes of real bones were considered, and the corresponding

outer contours (obtained from MRI slices) were represented by closed B-spline curves, and

the minimum distance between two 2D spline curves was computed by using a fast and

robust method described in [67]. This algorithm was carried out firstly by decomposing both

of the spline curves into a number of their piecewise-Bézier subsets. Candidate pairs from the

subsets were extracted based on a two-level selection process. The first-level selection used

upper-lower bounds of the Bézier subcurves to do the filtration. The second-level selection

was based on the spatial relationship between a pair of Bézier curves. After obtaining the

candidate pairs, an iterative multidimensional Newton-Raphson method was applied on them

in order to approximately calculate the corresponding locally minimal distance. In the last

step, all local minimal distances were compared to provide the overall minimal distance.

In order to obtain the shortest distance between the 3D model of the two rotating forearm

bones, the surfaces were simplified as chains of small ruled-surface cylinders parallel to the

bone axis with thickness equal to the distance between two fine scans and end faces with

boundaries equal to the outer contours of the cross-sectional scans where the density of the

axially parallel lines is chosen by a discretization of the contour plots. Starting with the result

obtained in the 2D model as the initial position, an arc of ±α (in our case α =5◦) about the

minimal distance footpoint of each cylinder was chosen and the minimal distance of all pairs

of such selected axial lines was determined, from which the shortest distance between any

neighboring pair of cylinders and thus the overall minimal distance between the bones could

be determined. Based on this minimal distance and the allowed threshold before the bones

touch each other, the maximal pronation angle can be determined.

3. Distance calculation for deformed forearm bones.

Forearm fractures are common in both adult and paediatric population. The prediction of the

range of motion due to forearm impairment is thus highly valuable for the medical training

or surgical treatment. The aforementioned 2DOF kinematic mechanism was extended to

consider also malunited forearm bones after fracture, and a computer program was developed

to simulate the maximal pronation angle for given angular deformities and their positions

within radius and ulna.

The maximal pronation angle was determined via two different methods: (1) by calculating

the minimal distance between vector segments representing bone ulna and radius in an an-

gulated kinematic model; (2) by calculating the minimal distance between the surfaces of

bone ulna and radius with the 3D surface segmentation by MRI scans. As we had no test
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subjects with fractured bones available for this work, the second method was tested by vir-

tually separating a healthy bone structure from a fine MRI scan into two misaligned bone

segments.

Seventeen examples were analyzed by using the first method, and two of them were checked

with the second method. Both results show a very small deviation from anatomical data. The

second method seemed comparatively better than the other one, which is reasonable since

the irregular bone shape gives a better notion of collision.

Altogether, this work has developed a method to automatically determine the model pa-

rameters as well the relative location of the bone geometry with respect to the links of an

elasto-kinematic 2DOF surrogate model for forearm pro-/supination. The methodology has

proved to be suitable to describe the in-vivo forearm kinematics with a good accuracy and

reliability. Moreover, the minimal distance between ulna and radius during forearm motion

was determined for both the cases of healthy and fractured forearm bones. A fractured fore-

arm model was developed based on the 2DOF mechanism, which can be used to predict the

range of motion of forearm impairment in several examples. To facilitate the application of

the model in the mechanical training and surgical treatments, a 3D user-friendly visualisation

interface was developed with the multibody programming library M � �

� �

BILE [48].

Outlook

The present work validates the theoretical derivations on a single subject only. Future studies

could assess a larger subject pool in order to further validate the present preliminary results.

In this study, only a geometrical database for healthy forearm bones was utilized. The in-

vestigation on fractured bones was by manually separating a healthy forearm and locating

them at a relative deformed angle. Future studies could consider real malaligned MRI scans

to prove the applicability of the model in clinical treatment.

Finally, the bone motion interpolation method using a 2DOF surrogate mechanism could be

validated using dynamic MRI scans or fluoroscopy recordings.
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