44 research outputs found

    Modeling and Control of the Cooperative Automated Fiber Placement System

    Get PDF
    The Automated Fiber Placement (AFP) machines have brought significant improvement on composite manufacturing. However, the current AFP machines are designed for the manufacture of simple structures like shallow shells or tubes, and not capable of handling some applications with more complex shapes. A cooperative AFP system is proposed to manufacture more complex composite components which pose high demand for trajectory planning than those by the current APF system. The system consists of a 6 degree-of-freedom (DOF) serial robot holding the fiber placement head, a 6-DOF revolute-spherical-spherical (RSS) parallel robot on which a 1-DOF mandrel holder is installed and an eye-to-hand photogrammetry sensor, i.e. C-track, to detect the poses of both end-effectors of parallel robot and serial robot. Kinematic models of the parallel robot and the serial robot are built. The analysis of constraints and singularities is conducted for the cooperative AFP system. The definitions of the tool frames for the serial robot and the parallel robot are illustrated. Some kinematic parameters of the parallel robot are calibrated using the photogrammetry sensor. Although, the cooperative AFP system increases the flexibility of composite manufacturing by adding more DOF, there might not be a feasible path for laying up the fiber in some cases due to the requirement of free from collisions and singularities. To meet the challenge, an innovative semi-offline trajectory synchronized algorithm is proposed to incorporate the on-line robot control in following the paths generated off-line especially when the generated paths are infeasible for the current multiple robots to realize. By adding correction to the path of the robots at the points where the collision and singularity occur, the fiber can be laid up continuously without interruption. The correction is calculated based on the pose tracking data of the parallel robot detected by the photogrammetry sensor on-line. Due to the flexibility of the 6-DOF parallel robot, the optimized offsets with varying movements are generated based on the different singularities and constraints. Experimental results demonstrate the successful avoidance of singularities and joint limits, and the designed cooperative AFP system can fulfill the movement needed for manufacturing a composite structure with Y-shape

    Introduction to an Efficient Process for Automatic Offline Pro-gram Generation for a Robotic Spot Welding Assembly Line.

    Get PDF
    One of the most important applications of industrial robots is spot welding which is used in high production applications mostly in automotive industries where mass production is required. The speed, precision, efficiency and the resulting cost reduction due to mass production are well accepted and well documented advantages of automation of spot welding process using robots. In order to meet the new challenges of increased global competition, manufacturers are forced to seek new technologies for improved production and cost reduction. Such cost cutting efforts can only be achieved by improving the offline programming method. Offline programming is one of the most crucial parts of modern automotive manufacturing process. In this Master’s thesis a process was developed for faster and efficient offline programming of industrial manipulators in spot welding application. The thesis work has been conducted in Visual Components Oy, Espoo, Finland. In traditional practice there are lots of manual steps involved in the robotic spot welding area. The whole process design of the robotic spot welding is not simple and includes CAD design of the part, shape and complexity of the parts which needs to be spot weld, design of the robot work cell, design and selection of spot weld gun, required production rate, offline programming tool, robot calibration, work cell calibration, work piece positioner design etc. In this report an approach to implement the offline programming of robot based on simulation software with the process knowledge of car-body in white was proposed and partially developed. Some common problems such as motion simulation, collision detection and calibration can be partly solved by this approach. The thesis consisted of a theoretical section to investigate the current state of art of offline programming tools and methods and a practical section to develop working prototype for demonstration. The implementation of the prototype used the application programmer’s interface (API) available with the simulation software. A prototype was developed to propose an efficient process for putting the whole spot welding process starting for CAD design, work cell setup, offline programming and calibration in a closed loop

    Robot Control and Programming: Class notes.

    Get PDF
    The term robot is quite complex because it can mean different things to different people. Mostly, it recalls us images of science fiction robots, such as the famous C3PO and R2D2 of Star Wars Trilogy. However, we have to focus on other types, and wait a little for the progress of the technology. If we focus on the real robots, we can find different types. However, the vast majority are classified into the industrial robot category. Industrial robots are recognised easily since their shape usually reminds the human arm. The term industrial shows the fact that those robots work in factories as components of larger manufacturing systems and processes. This book are focused on the lectures that Emilio Sánchez delivers in the frame of Robot Control and Programing subject in TECNUN, where the reader can find and introduction to the basic problems and control and programming techniques of industrial robots. Despite the fact the book is based on classnotes, the author prepared them very carefully to give to them the appearance of a real book. The book starts with a discussion about what is and what isn't a robot, classification and a very brief note about robotics history. The course will cover the different and basic programming and control strategies. Another issue discussed will be the morphology classification. The most important section is the kinematics model. This problem can be solved by means of Denavit-Hartenberg method and homogeneous transformations among coordinate systems. The last chapters are devoted to position control strategies and path planning. Finally the author encourages the reader to open and read this book since he really thinks that Robotics is a very large and interesting field, involving many different disciplines: mechanical design, sensors, actuation (pneumatic, hydraulic, electrical...), control, programming... For this reason, the term mechatronics is also used to express the link between the mechanics and electronics

    Topics in Machining with Industrial Robot Manipulators and Optimal Motion Control

    Get PDF
    Two main topics are considered in this thesis: Machining with industrial robot manipulators and optimal motion control of robots and vehicles. The motivation for research on the first subject is the need for flexible and accurate production processes employing industrial robots as their main component. The challenge to overcome here is to achieve high-accuracy machining solutions, in spite of the strong process forces required for the task. Because of the process forces, the nonlinear dynamics of the manipulator, such as the joint compliance and backlash, may significantly degrade the achieved machining accuracy of the manufactured part. In this thesis, a macro/micro-manipulator configuration is considered to the purpose of increasing the milling accuracy. In particular, a model-based control architecture is developed for control of the macro/micro-manipulator setup. The considered approach is validated by experimental results from extensive milling experiments in aluminium and steel. Related to the problem of high-accuracy milling is the topic of robot modeling. To this purpose, two different approaches are considered; modeling of the quasi-static joint dynamics and dynamic compliance modeling. The first problem is approached by an identification method for determining the joint stiffness and backlash. The second problem is approached by using gray-box identification based on subspace-identification methods. Both identification algorithms are evaluated experimentally. Finally, online state estimation is considered as a means to determine the workspace position and orientation of the robot tool. Kalman Filters and Rao-Blackwellized Particle Filters are employed to the purpose of sensor fusion of internal robot measurements and measurements from an inertial measurement unit for estimation of the desired states. The approaches considered are fully implemented and evaluated on experimental data. The second part of the thesis discusses optimal motion control applied to robot manipulators and road vehicles. A control architecture for online control of a robot manipulator in high-performance path tracking is developed, and the architecture is evaluated in extensive simulations. The main characteristic of the control strategy is that it combines coordinated feedback control along both the tangential and transversal directions of the path; this separation is achieved in the framework of natural coordinates. One motivation for research on optimal control of road vehicles in time-critical maneuvers is the desire to develop improved vehicle-safety systems. In this thesis, a method for solving optimal maneuvering problems using nonlinear optimization is discussed. More specifically, vehicle and tire modeling and the optimization formulations required to get useful solutions to these problems are investigated. The considered method is evaluated on different combinations of chassis and tire models, in maneuvers under different road conditions, and for investigation of optimal maneuvers in systems for electronic stability control. The obtained optimization results in simulations are evaluated and compared

    Intuitive Instruction of Industrial Robots : A Knowledge-Based Approach

    Get PDF
    With more advanced manufacturing technologies, small and medium sized enterprises can compete with low-wage labor by providing customized and high quality products. For small production series, robotic systems can provide a cost-effective solution. However, for robots to be able to perform on par with human workers in manufacturing industries, they must become flexible and autonomous in their task execution and swift and easy to instruct. This will enable small businesses with short production series or highly customized products to use robot coworkers without consulting expert robot programmers. The objective of this thesis is to explore programming solutions that can reduce the programming effort of sensor-controlled robot tasks. The robot motions are expressed using constraints, and multiple of simple constrained motions can be combined into a robot skill. The skill can be stored in a knowledge base together with a semantic description, which enables reuse and reasoning. The main contributions of the thesis are 1) development of ontologies for knowledge about robot devices and skills, 2) a user interface that provides simple programming of dual-arm skills for non-experts and experts, 3) a programming interface for task descriptions in unstructured natural language in a user-specified vocabulary and 4) an implementation where low-level code is generated from the high-level descriptions. The resulting system greatly reduces the number of parameters exposed to the user, is simple to use for non-experts and reduces the programming time for experts by 80%. The representation is described on a semantic level, which means that the same skill can be used on different robot platforms. The research is presented in seven papers, the first describing the knowledge representation and the second the knowledge-based architecture that enables skill sharing between robots. The third paper presents the translation from high-level instructions to low-level code for force-controlled motions. The two following papers evaluate the simplified programming prototype for non-expert and expert users. The last two present how program statements are extracted from unstructured natural language descriptions

    Annals of Scientific Society for Assembly, Handling and Industrial Robotics

    Get PDF
    This Open Access proceedings present a good overview of the current research landscape of industrial robots. The objective of MHI Colloquium is a successful networking at academic and management level. Thereby the colloquium is focussing on a high level academic exchange to distribute the obtained research results, determine synergetic effects and trends, connect the actors personally and in conclusion strengthen the research field as well as the MHI community. Additionally there is the possibility to become acquainted with the organizing institute. Primary audience are members of the scientific association for assembly, handling and industrial robots (WG MHI)

    Technology 2000, volume 1

    Get PDF
    The purpose of the conference was to increase awareness of existing NASA developed technologies that are available for immediate use in the development of new products and processes, and to lay the groundwork for the effective utilization of emerging technologies. There were sessions on the following: Computer technology and software engineering; Human factors engineering and life sciences; Information and data management; Material sciences; Manufacturing and fabrication technology; Power, energy, and control systems; Robotics; Sensors and measurement technology; Artificial intelligence; Environmental technology; Optics and communications; and Superconductivity

    Multi-scale metrology for automated non-destructive testing systems

    Get PDF
    This thesis was previously held under moratorium from 5/05/2020 to 5/05/2022The use of lightweight composite structures in the aerospace industry is now commonplace. Unlike conventional materials, these parts can be moulded into complex aerodynamic shapes, which are diffcult to inspect rapidly using conventional Non-Destructive Testing (NDT) techniques. Industrial robots provide a means of automating the inspection process due to their high dexterity and improved path planning methods. This thesis concerns using industrial robots as a method for assessing the quality of components with complex geometries. The focus of the investigations in this thesis is on improving the overall system performance through the use of concepts from the field of metrology, specifically calibration and traceability. The use of computer vision is investigated as a way to increase automation levels by identifying a component's type and approximate position through comparison with CAD models. The challenges identified through this research include developing novel calibration techniques for optimising sensor integration, verifying system performance using laser trackers, and improving automation levels through optical sensing. The developed calibration techniques are evaluated experimentally using standard reference samples. A 70% increase in absolute accuracy was achieved in comparison to manual calibration techniques. Inspections were improved as verified by a 30% improvement in ultrasonic signal response. A new approach to automatically identify and estimate the pose of a component was developed specifically for automated NDT applications. The method uses 2D and 3D camera measurements along with CAD models to extract and match shape information. It was found that optical large volume measurements could provide suffciently high accuracy measurements to allow ultrasonic alignment methods to work, establishing a multi-scale metrology approach to increasing automation levels. A classification framework based on shape outlines extracted from images was shown to provide over 88% accuracy on a limited number of samples.The use of lightweight composite structures in the aerospace industry is now commonplace. Unlike conventional materials, these parts can be moulded into complex aerodynamic shapes, which are diffcult to inspect rapidly using conventional Non-Destructive Testing (NDT) techniques. Industrial robots provide a means of automating the inspection process due to their high dexterity and improved path planning methods. This thesis concerns using industrial robots as a method for assessing the quality of components with complex geometries. The focus of the investigations in this thesis is on improving the overall system performance through the use of concepts from the field of metrology, specifically calibration and traceability. The use of computer vision is investigated as a way to increase automation levels by identifying a component's type and approximate position through comparison with CAD models. The challenges identified through this research include developing novel calibration techniques for optimising sensor integration, verifying system performance using laser trackers, and improving automation levels through optical sensing. The developed calibration techniques are evaluated experimentally using standard reference samples. A 70% increase in absolute accuracy was achieved in comparison to manual calibration techniques. Inspections were improved as verified by a 30% improvement in ultrasonic signal response. A new approach to automatically identify and estimate the pose of a component was developed specifically for automated NDT applications. The method uses 2D and 3D camera measurements along with CAD models to extract and match shape information. It was found that optical large volume measurements could provide suffciently high accuracy measurements to allow ultrasonic alignment methods to work, establishing a multi-scale metrology approach to increasing automation levels. A classification framework based on shape outlines extracted from images was shown to provide over 88% accuracy on a limited number of samples

    Advanced Strategies for Robot Manipulators

    Get PDF
    Amongst the robotic systems, robot manipulators have proven themselves to be of increasing importance and are widely adopted to substitute for human in repetitive and/or hazardous tasks. Modern manipulators are designed complicatedly and need to do more precise, crucial and critical tasks. So, the simple traditional control methods cannot be efficient, and advanced control strategies with considering special constraints are needed to establish. In spite of the fact that groundbreaking researches have been carried out in this realm until now, there are still many novel aspects which have to be explored
    corecore