
NAVARRA UNIVERSITY

UPPER ENGINEERING SCHOOL

San Sebastián

Robot Control and Programming:
Class notes

Dr. Emilio José Sánchez Tapia

August, 2010



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Servicio de Publicaciones de la Universidad de Navarra 

987‐84‐8081‐293‐1 



ii



Viaje a ’Agra de Cimientos’

Era yo todavı́a un estudiante de doctorado cuando cayó en mis manos una tesis de
la cual me llamó especialmente la atención su capı́tulo de agradecimientos. Bueno,
realmente la tesis no contaba con un capı́tulo de ’agradecimientos’ sino más bien con
un capı́tulo alternativo titulado ’viaje a Agra de Cimientos’.

En dicho capitulo, el ahora ya doctor redactó un pequeño cuento épico inventado por
él mismo. Esta pequeña historia relataba las aventuras de un caballero, al más puro
estilo ’Tolkiano’, que cabalgaba en busca de un pueblo recóndito. Ya os podéis imaginar
que dicho caballero, no era otro sino él mismo, y que su viaje era más bien una odisea
en la cual tuvo que superar mil y una pruebas hasta conseguir su objetivo, llegar a Agra
de Cimientos (terminar su tesis). Sólo deciros que para cada una de esas pruebas tuvo
la suerte de encontrar a una mano amiga que le ayudara.

En mi caso, no voy a presentarte una tesis, sino los apuntes de la asignatura ”Robot
Control and Programming´´ que se imparte en inglés.

Aunque yo no tengo tanta imaginación como la de aquel doctorando para poder
contaros una historia, sı́ que he tenido la suerte de encontrar a muchas personas que
me han ayudado en mi viaje hacia ’Agra de Cimientos’.

Y eso es, amigo lector, al abrir estas notas de clase vas a ser testigo del final de
un viaje que he realizado de la mano de mucha gente que de alguna forma u otra han
contribuido en su mejora. Por ello estoy profundamente agradecido.

Me gustarı́a citar a cada una de las personas que han colaborado en la redacción del
texto, pero por falta de espacio me resulta imposible. No obstante, citaré a algunos de
ellos y seguro que todavı́a me seguiré olvidando de los más importantes.

Ası́ que envı́o un fuerte abrazo a Iñaki Dı́az, Tim Smithers, Arthur Siro, Luis Zaldúa,
Jeff Diamond, Javi Martı́n, Joan Savall, Jose Luis Olazagoitia, Janelcy Alferes, Belén
Gisbert, Marc Oakley, Joaquı́n Prada y a todos los alumnos que tienen paciencia de
trabajar con estos apuntes.

Sólo me queda animaros a que los leáis con cariño y me comuniquéis cualquier errata
y metedura de pata para no dar más la lata.

c©Emilio José Sánchez, Donostia-San Sebastián, 26 de junio de 2009

iii



iv



Contents

I Introduction to Robotics 1

1 Introduction 3

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 A Little about the History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 The Technological Roots of Robotics . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 First Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4.1 Science Fiction Robots . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4.2 Toy Robots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4.3 Real Robots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.5 Basic Terminology in Robotics . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.5.1 Kinematic Chain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.5.2 Mechanism/Manipulator . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.5.3 Degree of Freedom (DoF) . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.5.4 End Point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.5.5 Cartesian Space vs. Joint Space . . . . . . . . . . . . . . . . . . . . . 18

1.5.6 Workspace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.5.7 Accuracy, Precision, Repeatability, Resolution . . . . . . . . . . . . . 19

1.6 Some Things to Think About . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2 Introduction to Industrial Robotics 23

2.1 Some Definitions of Industrial Robots . . . . . . . . . . . . . . . . . . . . . . 23

v



vi CONTENTS

2.1.1 Robotics Industry Association (RIA)’s Industrial Robot definition . . 23

2.1.2 French Standards Association’s Industrial Robot definition . . . . . 23

2.1.3 International Federation of Robotics (IFR)’s Industrial Robot defini-
tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2 Robot generations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3 Industrial Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3.1 Welding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3.2 Surface Treatment and Painting/Spraying . . . . . . . . . . . . . . . 28

2.3.3 Cutting/Machining . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3.4 Assembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3.5 Disassembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3.6 Machine Tending/Handling . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3.7 Packaging/Palletizing . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

II Industrial Robotics 31

3 Industrial Robot Programming 33

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 Levels of Robot Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3 Robot Programming Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3.1 On-line Programming Methods . . . . . . . . . . . . . . . . . . . . . . 37

3.3.2 Off-line Programming Methods . . . . . . . . . . . . . . . . . . . . . . 40

3.3.3 Robot Programming Architecture . . . . . . . . . . . . . . . . . . . . 41

3.4 Examples of Robot Programming Languages . . . . . . . . . . . . . . . . . . 41

3.5 Robot programming Language Architecture . . . . . . . . . . . . . . . . . . 42

3.6 Robot Program Development Process: the six steps . . . . . . . . . . . . . . 43

3.6.1 Step 1: Task Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.6.2 Step 2: Identify Placements for Pe . . . . . . . . . . . . . . . . . . . . 46

3.6.3 Step 3: Identify Subroutines . . . . . . . . . . . . . . . . . . . . . . . 48

3.6.4 Step 4: Robot Programming and Documentation . . . . . . . . . . . 50



CONTENTS vii

3.6.5 Step 5: Program Testing . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.6.6 Step 6: Test the program on the real robot. . . . . . . . . . . . . . . 50

3.7 Some Things to Think About . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4 Robot Geometry 53

4.1 Dimensions and Degrees of Freedom (DoF) . . . . . . . . . . . . . . . . . . . 53

4.2 Types of Joints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.3 The Geometry of Robot Manipulators . . . . . . . . . . . . . . . . . . . . . . 58

4.3.1 Serial Geometries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.3.2 Parallel Geometries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.3.3 Wrists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.3.4 Some Things to Think About . . . . . . . . . . . . . . . . . . . . . . . 69

5 Basic Components of Robots 71

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.2 Links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.3 Actuators and Motors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.3.1 Pneumatic Actuators . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.3.2 Hydraulic Actuators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.3.3 Electric Actuators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.4 Reduction mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.4.1 Harmonic-Drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.4.2 Cyclo-Drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.4.3 Other reduction and Transmission mechanisms . . . . . . . . . . . 86

5.5 Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.5.1 Internal Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.5.2 External Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.6 End-Effectors and Terminal Devices . . . . . . . . . . . . . . . . . . . . . . . 101

5.7 Some Things to Think About . . . . . . . . . . . . . . . . . . . . . . . . . . . 102



viii CONTENTS

III Robot Mathematical Modelling and Control 103

6 Coordinate frames and homogeneous transformation 105

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.2 The Representation of Position in 3D Space . . . . . . . . . . . . . . . . . . 106

6.3 The Representation of Orientation in Space . . . . . . . . . . . . . . . . . . . 108

6.3.1 Rotation Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.3.2 Properties of the Rotation Matrix . . . . . . . . . . . . . . . . . . . . . 110

6.3.3 Basic 3D rotation matrices . . . . . . . . . . . . . . . . . . . . . . . . 111

6.3.4 The Composition of Basic Rotation Matrices . . . . . . . . . . . . . . 113

6.3.5 Formulation Singularity in Euler Angles . . . . . . . . . . . . . . . . 114

6.3.6 Rotation Axis- Rotation Angle Representation . . . . . . . . . . . . . 116

6.3.7 Quaternions or Euler Parameters . . . . . . . . . . . . . . . . . . . . 116

6.4 Homogeneous Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.4.1 Position and Orientation in Space . . . . . . . . . . . . . . . . . . . . 117

6.4.2 Homogeneous Coordinates . . . . . . . . . . . . . . . . . . . . . . . . 118

6.4.3 Homogeneous Transformation . . . . . . . . . . . . . . . . . . . . . . 120

6.4.4 Inverse Homogeneous Transformation Matrix . . . . . . . . . . . . . 122

6.4.5 Basic Translation Homogeneous Transformation Matrix . . . . . . . 122

6.4.6 Basic Rotation Homogeneous Transformation Matrix . . . . . . . . . 125

6.4.7 Composition of Translation and Rotation Matrices . . . . . . . . . . 128

6.4.8 Composition of Homogeneous Transformation Matrices . . . . . . . 131

7 Kinematics of Manipulators 137

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

7.2 Forward and Inverse Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . 137

7.3 Geometric Parametres of Robotic Mechanisms . . . . . . . . . . . . . . . . . 138

7.3.1 Link Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

7.3.2 Joint Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

7.4 Denavit and Hartenberg method . . . . . . . . . . . . . . . . . . . . . . . . . 141



CONTENTS ix

7.5 Forward Kinematics Examples . . . . . . . . . . . . . . . . . . . . . . . . . . 143

7.6 Inverse Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

7.6.1 Multiple Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

7.6.2 Inverse Kinematics of a Serial Robot . . . . . . . . . . . . . . . . . . 158

8 The Jacobian Matrix 169

8.1 Calculating the Jacobian Matrix . . . . . . . . . . . . . . . . . . . . . . . . . 170

8.2 Speed Propagation Method to Compute the Jacobian Matrix . . . . . . . . . 173

8.3 Static of Robotic Manipulators . . . . . . . . . . . . . . . . . . . . . . . . . . 173

8.4 Force/Torque Propagation Method to Compute the Jacobian Matrix . . . . 175

8.5 Singularities and Singular Configurations . . . . . . . . . . . . . . . . . . . 176

9 Path planning 179

9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

9.2 Types of Trajectories in Kinematic Control . . . . . . . . . . . . . . . . . . . 184

9.3 Trajectory interpolation in joint-space . . . . . . . . . . . . . . . . . . . . . . 186

9.3.1 Linear interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

9.3.2 Cubic interpolation (spline interpolation) . . . . . . . . . . . . . . . . 188

9.3.3 Trapezoidal interpolator . . . . . . . . . . . . . . . . . . . . . . . . . . 190

10 Control of robot manipulators 193

10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

10.1.1 Analogy between Mechanical and Electrical Physis . . . . . . . . . . 194

10.1.2 Types of robotic control loops . . . . . . . . . . . . . . . . . . . . . . 195

10.1.3 Sources of Instability in Robot Control Loops . . . . . . . . . . . . . 197

10.2 Linear Position Control of a Single Joint . . . . . . . . . . . . . . . . . . . . 198

10.2.1 Linear Dynamic Model of 1-DoF joint . . . . . . . . . . . . . . . . . . 198

10.2.2 Proportional error control of a single joint . . . . . . . . . . . . . . . 200

10.2.3 The Steady State Error Problem . . . . . . . . . . . . . . . . . . . . . 204

10.2.4 The Overshoot Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 206



x CONTENTS

10.2.5 Speed Sensing and Control of a Joint System . . . . . . . . . . . . . 207

10.2.6 Feedforward and Feedback Compensations . . . . . . . . . . . . . . 208

10.3 Computed Torque Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

10.3.1 Linear Dynamic Model of n-DoF Joint Manipulator . . . . . . . . . . 211

10.3.2 Computed Torque Algorithm . . . . . . . . . . . . . . . . . . . . . . . 211

10.4 Adaptive Position Control of Joint Systems . . . . . . . . . . . . . . . . . . . 214

10.4.1 Gain Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

10.4.2 Model Reference Adaptive Control (MRAC) . . . . . . . . . . . . . . . 216

10.4.3 Computed Torque Adaptive Control . . . . . . . . . . . . . . . . . . . 217

10.5 Some Things to Think About . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

IV Exercises 219

i Kinematic structures and programming 221

ii Transformations in space (homogeneous transformation) 233

iii Forward Kinematics 245

iv Inverse Kinematics 271

v Jacobian 287

V Appendix 297

A Robot History 299

A.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299

A.2 Greek Mythology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299

A.3 Middle ages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301

A.4 XVIII-XIX centuries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302

A.5 XX Century: Robot Timeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304



CONTENTS xi

B Mobile Robot Samples 309

B.1 Microbots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309

B.2 Legged Robots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309

B.2.1 AIBO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309

B.2.2 SDR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309

B.2.3 ASIMO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310

C Robotic Wrists 313

D Glossary 315



xii CONTENTS



List of Figures

1.1 A representation of a Rossum’s Universal Robot. . . . . . . . . . . . . . . . 4

1.2 First teleoperated device. It was designed for radioactive material handling. 6

1.3 Samples of Science Fiction Robots: HAL, R2D2, C3PO, T1000 (Terminator). 7

1.4 Samples of Toy Robots: Bender, R2D2. . . . . . . . . . . . . . . . . . . . . . 7

1.5 Samples of Industrial Robots: an old Puma 7000; HAZBOT II, a robot for
handling explosives. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.6 Samples of Service Robots: a tank filling robot (Reis Robotics, Germany);
a cleanning robot,(HACOmatic, Hakoberke, Germany), pet robot QRIO
(Sony), pet robot Aibo (Sony). . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.7 Samples of biomedical robots for planning (left) and performing (right)
surgery. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.8 A picture of: Mars PATHFINDER and SOJOUNER on Mars; ROBICEN, a
climbing robot (CEIT), KISMET (MIT). . . . . . . . . . . . . . . . . . . . . . . 11

1.9 Sample of Teleoperation device: SIMANTEL, CEIT. . . . . . . . . . . . . . . 11

1.10 Teleoperation architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.11 The bidirectionality of the haptic channel. . . . . . . . . . . . . . . . . . . . 13

1.12 Example of a haptic system. . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.13 Two commercial haptic devices with tactile feedback through vibrations. . 14

1.14 PHANToM haptic devices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.15 Exoskeletons designed by PERCRO (left) and the University of Washington
(right) for medical rehabilitation. . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.16 Open kinematic chain (left) vs. closed kinematic chain (right). . . . . . . . 16

1.17 Serial mechanism/manipulator (left) vs. parallel mechanism/manipulator
(right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

xiii



xiv LIST OF FIGURES

1.18 Hybrid mechanism/manipulator. . . . . . . . . . . . . . . . . . . . . . . . . 17

1.19 A manipulator and the human body analogy (left); squematic diagram
of an arm (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.20 Accuracy versus precision. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.21 Accuracy, repeability and resolution. . . . . . . . . . . . . . . . . . . . . . . 20

2.1 Robot applications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2 Number of robots used in car manufacturing vs other sectors. . . . . . . . 26

2.3 Distribution of the Spanish robots depending on economial sectors. . . . . 27

2.4 Different examples of welding processes. . . . . . . . . . . . . . . . . . . . . 28

2.5 Painting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.6 Cutting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.7 Assembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.8 Handling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.9 Palletizing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.1 Control loop of a robot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2 Kawasaki’s teach pedant (left); motoman’s teach pedant (right). . . . . . . 38

3.3 Programming by pasive guiding vs. programming by teach-pendant. . . . . 39

3.4 Relationship between On-line and Off-line programming. . . . . . . . . . . 41

3.5 Common symbols used in flowcharts. . . . . . . . . . . . . . . . . . . . . . . 43

3.6 A simple assembly task. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.7 Flowchart sample. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.8 Definition of a simple assembly task. . . . . . . . . . . . . . . . . . . . . . . 47

3.9 Get-Put subroutine, written using pseudocode. . . . . . . . . . . . . . . . . 48

3.10 Flowchart of the Get-Put subroutine. . . . . . . . . . . . . . . . . . . . . . . 49

4.1 Reasons to use extra DoFs or redundant robots. . . . . . . . . . . . . . . . 55

4.2 Basic types of DoFs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3 Types of joints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.4 Cartesian robot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59



LIST OF FIGURES xv

4.5 Cylindrical robot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.6 Spherical robot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.7 Anthropomorphic robot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.8 Scara robot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.9 2D parallel robot with only 1-DoF . . . . . . . . . . . . . . . . . . . . . . . . 63

4.10 Samples of 2-DoF parallel robots: two prismatic. . . . . . . . . . . . . . . . 63

4.11 Samples of 3-DoF parallel robots: Star Robot (left); Mianouwski’s . . . . . 64

4.12 The Stewart Platform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.13 Hybrid robots:Hybrid parallel robot (left), Hybrid serial robot (right) . . . . 65

4.14 The drilling task needs the placement of robot’s end-effector and orienta-
tion as well. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.15 Wrist sample: gripper with two fingers. . . . . . . . . . . . . . . . . . . . . . 67

4.16 Conventional Aeronautics Terminology . . . . . . . . . . . . . . . . . . . . . 68

4.17 RPY-wrist. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.18 RP-wrist. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.19 RPR-wrist. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.1 Mechanical structure of the PA10 . . . . . . . . . . . . . . . . . . . . . . . . 72

5.2 Compressed-air preparation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.3 Types of pneumatic actuators. . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.4 A model of a DC motor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.5 A PWM signal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.6 A PFM signal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.7 An H-bridge. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.8 Full-stepper motor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.9 Half-stepper motor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.10 Stepper motor: rotor types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.11 Bipolar windings vs. Unipolar windings. . . . . . . . . . . . . . . . . . . . . 81

5.12 A RC servomotor: internal parts (left), external appearance (right) . . . . . 82

5.13 Commanding a RC servomotor. . . . . . . . . . . . . . . . . . . . . . . . . . 82



xvi LIST OF FIGURES

5.14 Robotic redutor mechanism simulation. . . . . . . . . . . . . . . . . . . . . 84

5.15 Components of a Harmonic-Drive. . . . . . . . . . . . . . . . . . . . . . . . . 85

5.16 Harmonic-drive working sequence. . . . . . . . . . . . . . . . . . . . . . . . 85

5.17 Schematic of a Cyclo-drive. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.18 Cyclo-drive animation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.19 Sensivity and range for a given sensor . . . . . . . . . . . . . . . . . . . . . 88

5.20 Sensor resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.21 Accuracy, offset and linearity for a given sensor . . . . . . . . . . . . . . . . 89

5.22 Sensor hysteresis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.23 Dead zone and saturation for a given sensor . . . . . . . . . . . . . . . . . . 91

5.24 Sensor response time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.25 Sensor bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.26 Resolver and Synchro. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.27 Scott-T transformer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.28 Resolver-to-Digital converter. . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.29 LVDT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.30 LVDT output signal conditioner (left) and signal characteristic response. . 96

5.31 Encoder’s working principle . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.32 Incremental Encoder: one channel (left), two channel (quadrature encoder,
right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.33 Time diagram of a quadrature encoder. . . . . . . . . . . . . . . . . . . . . . 98

5.34 Gray code used in absolute encoders. . . . . . . . . . . . . . . . . . . . . . . 99

6.1 Relationship among different coordinate systems related to robot. . . . . . 106

6.2 Cartesian coordinates of a point. . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.3 Cylindrical coordinates of a point. . . . . . . . . . . . . . . . . . . . . . . . . 107

6.4 Spherical coordinates of a point. . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.5 Two different frames with different orientation, but the same origin. . . . . 108

6.6 Sample of rotation in 2-D. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.7 Rotation around x̂A axis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111



LIST OF FIGURES xvii

6.8 Rotation around ŷA axis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.9 Rotation around ẑA axis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.10 Rotation Axis- Rotation Angle Representation of orientation. . . . . . . . . . 116

6.11 The relation between frames {A} and {B} involves both a translation plus
a rotation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.12 Translation of a frame. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.13 Translation of a position with a fixed frame. . . . . . . . . . . . . . . . . . . 124

6.14 Rotation pi/2 around axis ẑ. . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.15 Translation plus rotation of a frame. . . . . . . . . . . . . . . . . . . . . . . 128

6.16 Translation plus rotation of a frame: Rotation and translation are not
commutative. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

7.1 Forward Kinematics vs. Inverse Kinematics. . . . . . . . . . . . . . . . . . . 138

7.2 Link parameters: Link Length (ai) and Link Twist (αi). . . . . . . . . . . . . 139

7.3 Joint parameters: Link Offset and Joint Angle. . . . . . . . . . . . . . . . . 140

7.4 Example 1: 3 DoF planar robot. . . . . . . . . . . . . . . . . . . . . . . . . . 144

7.5 Forward Kinematics. First two steps: numbering the joints and numering
the links. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

7.6 Forward Kinematics. Third step: defining reference systems. . . . . . . . . 145

7.7 Example 2: a three DoF robot with one prismatic joint. . . . . . . . . . . . 148

7.8 Example 3: a 3DoF manipulator: three rotational joints, 2 axes intersect-
ing axes and 2 parallel axes. . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

7.9 First two solutions for example 3. . . . . . . . . . . . . . . . . . . . . . . . . 150

7.10 Second two solutions for example 3. . . . . . . . . . . . . . . . . . . . . . . 151

7.11 Example 4: a cylindrical robot. . . . . . . . . . . . . . . . . . . . . . . . . . . 152

7.12 Reference systems for example 4. . . . . . . . . . . . . . . . . . . . . . . . . 153

7.13 Example 5: a 4 DoF SCARA robot. . . . . . . . . . . . . . . . . . . . . . . . . 154

7.14 Reference systems for example 5. . . . . . . . . . . . . . . . . . . . . . . . . 155

7.15 Example 1: an 5 DoF anthropomorphical robot. . . . . . . . . . . . . . . . . 158

7.16 Example 1: Denavit frames associated with a 5 DoF anthropomorphical
robot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159



xviii LIST OF FIGURES

7.17 Example 1: Kinematic decoupling of a 5 DoF anthropomorphical robot. . . 160

7.18 Example 1: one solution for the inverse kinematics of an anthropomorphic
positioner. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

7.19 All inverse kinematic solutions of an antropomorphic positioner. . . . . . . 165

7.20 Wrist inverse kinematics of an 5DoF anthropomorphic manipulator. . . . . 166

7.21 Wrist inverse kinematics of an 5DoF anthropomorphic manipulator. . . . . 167

8.1 Jacobian relatioship. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

8.2 Calculation of the Jacobian Matrix via velocity propagation method. . . . . 174

8.3 Calculation of the Jacobian Matrix via force/torque propagation method. . 177

9.1 Trajectory Generation vs. Joint Control. . . . . . . . . . . . . . . . . . . . . 180

9.2 Definition of a straight line trajectory (cartesian space). . . . . . . . . . . . 181

9.3 Sampling (in space) of the straight line trajectory (cartesian space). . . . . 181

9.4 Sampled trajectory (joint space). . . . . . . . . . . . . . . . . . . . . . . . . . 182

9.5 Interpolated trajectory (joint space). . . . . . . . . . . . . . . . . . . . . . . . 182

9.6 Sampling, in time, the trajectory (joint space). . . . . . . . . . . . . . . . . . 183

9.7 Joint reference values for the every joint. . . . . . . . . . . . . . . . . . . . . 183

9.8 Specified trajectory vs. actual robot’s trajectory. . . . . . . . . . . . . . . . . 183

9.9 Point to point trajectories and joint by joint motion. . . . . . . . . . . . . . 184

9.10 Point to point trajectories and simultaneous joint motion. . . . . . . . . . . 185

9.11 Coordinated or synchronous trajectories. . . . . . . . . . . . . . . . . . . . . 185

9.12 Continuous trajectories. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

9.13 Time sampling in the Joint Space. . . . . . . . . . . . . . . . . . . . . . . . . 187

9.14 Linear interpolator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

9.15 Cubic interpolator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

9.16 Trapezoidal interpolator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

9.17 Trapezoidal interpolator: parabolic link between to adjacent interpolators. 192

10.1 Position and Force control loops. . . . . . . . . . . . . . . . . . . . . . . . . 194

10.2 Mechanical-electrical analogy. . . . . . . . . . . . . . . . . . . . . . . . . . . 194



LIST OF FIGURES xix

10.3 Position and Force control loops. . . . . . . . . . . . . . . . . . . . . . . . . 198

10.4 1-DoF Proportional Error position control. . . . . . . . . . . . . . . . . . . . 201

10.5 Step response types of systems: ω2
i > 0 → overdamped system, ω2

i = 0 →
critically damped system, and ω2

i < 0→ underdamped/oscillatory system. 203

10.6 1-DoF PID position control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

10.7 1-DoF PID position control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

10.8 Basic PID control algortimh. . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

10.9 Feedforward compensation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

10.10 Feedback compensation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

10.11 Computed-Torque control algorithm. . . . . . . . . . . . . . . . . . . . . . . 213

10.12 Gain Scheduling control algorithm. . . . . . . . . . . . . . . . . . . . . . . . 215

10.13 Model Reference Adaptive Control. . . . . . . . . . . . . . . . . . . . . . . . . 216

10.14 Computed-Torque Adaptive Control. . . . . . . . . . . . . . . . . . . . . . . 218

i.1 Fur classification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

i.2 Photo of Scorbot Robot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

i.3 Dimension plot of Scorbot Robot. . . . . . . . . . . . . . . . . . . . . . . . . 222

i.4 RT3300 Robot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

i.5 Which geometries?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

i.6 Moving blocks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

i.7 Scorbot’s DoFs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

i.8 Scobot’s kinematic chain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

i.9 RT3300’s DoFs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

i.10 RT3300’s kinematic chain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

i.11 Anthropomorphic Robot, sample 1. . . . . . . . . . . . . . . . . . . . . . . . 228

i.12 SCARA Robot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

i.13 Anthropomorphic Robot, sample 2. . . . . . . . . . . . . . . . . . . . . . . . 229

i.14 Programming example points. . . . . . . . . . . . . . . . . . . . . . . . . . . 230

ii.1 Robot with camera: initial configuration. . . . . . . . . . . . . . . . . . . . . 235



xx LIST OF FIGURES

iii.1 Peg-in-hole task. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

iii.2 2-DoF manipulator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246

iii.3 3-DoF manipulator with multiple D-H solutions. . . . . . . . . . . . . . . . 247

iii.4 PUMA manipulator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

iii.5 3R non-planar robot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

iii.6 Planar robot RPR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

iii.7 RRP manipulator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249

iii.8 RRR manipulator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249

iii.9 SCARA manipulator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250

iii.10 Cylindrical robot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250

iii.11 MALIBA manipulator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251

iii.12 SCORBOT robot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252

iii.13 RT3300 robot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

iii.14 D-H coordenate systems for a 2-DoF manipulator. . . . . . . . . . . . . . . 254

iii.15 3-DoF manipulator 1st and 2nd solutions. . . . . . . . . . . . . . . . . . . . . 255

iii.16 3-DoF manipulator 3rd and 4th solutions. . . . . . . . . . . . . . . . . . . . . 256

iii.17 Solution to an unknown robot. . . . . . . . . . . . . . . . . . . . . . . . . . . 257

iii.18 PUMA DoFs and D-H coordinate systems. . . . . . . . . . . . . . . . . . . . 257

iii.19 D-H coordenate systems for a 3R non-planar robot. . . . . . . . . . . . . . 258

iii.20 D-H coordinate systems for a planar robot RPR. . . . . . . . . . . . . . . . . 260

iii.21 D-H coordinate systems for a RRP manipulator. . . . . . . . . . . . . . . . . 261

iii.22 D-H coordinate systems for a RRR manipulator. . . . . . . . . . . . . . . . . 262

iii.23 D-H coordinate systems for a SCARA manipulator. . . . . . . . . . . . . . . 264

iii.24 D-H coordinate systems for a cylindrical manipulator. . . . . . . . . . . . . 265

iii.25 D-H coordinate systems for MALIBA manipulator. . . . . . . . . . . . . . . 267

iii.26 D-H coordinate systems for SCORBOT robot. . . . . . . . . . . . . . . . . . 268

iii.27 D-H coordinate systems for RT3300 robot. . . . . . . . . . . . . . . . . . . . 269

iv.1 RP manipulator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271



LIST OF FIGURES xxi

iv.2 RPR manipulator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272

iv.3 Planar arm with two joints. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273

iv.4 SCARA robot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273

iv.5 D-H coordinate systems of a RP manipulator. . . . . . . . . . . . . . . . . . 275

iv.6 D-H coordenate systems of a RPR manipulator. . . . . . . . . . . . . . . . . 277

iv.7 Inverse kinematic equations of a RPR manipulator. . . . . . . . . . . . . . . 278

iv.8 Workspace of a planar arm with two joints. . . . . . . . . . . . . . . . . . . 279

iv.9 D-H coordenate systems of a SCARA robot. . . . . . . . . . . . . . . . . . . 279

iv.10 Inverse kinematic equations of a SCARA robot. . . . . . . . . . . . . . . . . 281

iv.11 D-H coordenate systems of a anthropomorphic robot. . . . . . . . . . . . . 282

iv.12 Inverse kinematic equations of a anthropomorphic robot. . . . . . . . . . . 283

iv.13 D-H coordenate systems of a spherical robot. . . . . . . . . . . . . . . . . . 284

iv.14 Inverse kinematic equations of a spherical robot: right-arm solution. . . . 284

iv.15 Inverse kinematic equations of a spherical robot: left-arm solution. . . . . 285

v.1 RR planar manipulator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288

v.2 RR planar manipulator with an end-point frame. . . . . . . . . . . . . . . . 289

v.3 RRR planar manipulator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290

A.1 The return of Hephaestus to Olympus. . . . . . . . . . . . . . . . . . . . . . 300

A.2 Death of Talus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301

A.3 Fryer Bacon’s speaking head. . . . . . . . . . . . . . . . . . . . . . . . . . . 301

A.4 Cock of the Strasbourg Cathedral. . . . . . . . . . . . . . . . . . . . . . . . . 302

A.5 Vauncanson’s duck: a diagram of its interior and a replica of it at Le
Museé de Automates de Grenoble. . . . . . . . . . . . . . . . . . . . . . . 302

A.6 Von Kempelen’s chess player. . . . . . . . . . . . . . . . . . . . . . . . . . . . 303

A.7 Droz’s dolls at the Art and History Museum in Neuchâtel, Switzerland. . . 303

A.8 Maillert’s automaton and two of its drawings . . . . . . . . . . . . . . . . . 303

B.1 Samples of Micro-robots: Sumo Fighter (MAZO),line-tracking (PIONERO),
Microrobotics Club of TECNUN. . . . . . . . . . . . . . . . . . . . . . . . . . 309



xxii LIST OF FIGURES

B.2 AIBO (SONY): http://www.sony.com.au/aibo . . . . . . . . . . . . . . . . . 309

B.3 SDR 3x (SONY): http://au.playstation.com/technology/sonyrobot.jhtml . 310

B.4 SDR 4x (SONY): http://au.playstation.com/technology/sonyrobot.jhtml . 310

B.5 ASIMO (HONDA): http://world.honda.com/ASIMO . . . . . . . . . . . . . . 311

B.6 Specifications of ASIMO. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311

B.7 Evolution of ASIMO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312



List of Tables

1.1 Mechanical features of two PHANToM haptic devices. . . . . . . . . . . . . 14

3.1 Computer programming vs. robot programming. . . . . . . . . . . . . . . . 34

3.2 Specification of the positions needed in the program. . . . . . . . . . . . . . 46

4.1 Comparison between serial and parellel robots. . . . . . . . . . . . . . . . . 65

5.1 The transistor only dissipates power in the linear region. . . . . . . . . . . 77

5.2 Transmition Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.3 Internal sensors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

7.1 List of variable parameters according to the type of DoF. . . . . . . . . . . . 141

7.2 DH parameters for example 1. . . . . . . . . . . . . . . . . . . . . . . . . . . 145

7.3 DH parameters for example 1, including the end-effector frame. . . . . . . 147

7.4 DH parameters for example 2. . . . . . . . . . . . . . . . . . . . . . . . . . . 148

7.5 First set DH parameters for example 3. . . . . . . . . . . . . . . . . . . . . . 149

7.6 Second set DH parameters for example 3. . . . . . . . . . . . . . . . . . . . 150

7.7 Third set DH parameters for example 3. . . . . . . . . . . . . . . . . . . . . 151

7.8 Fourth set DH parameters for example 3. . . . . . . . . . . . . . . . . . . . 151

7.9 DH parameters for example 4. . . . . . . . . . . . . . . . . . . . . . . . . . . 153

7.10 DH parameters for example 5. . . . . . . . . . . . . . . . . . . . . . . . . . . 155

7.11 Number of solutions for inverse kinematics. . . . . . . . . . . . . . . . . . . 157

10.1 Summary of the analogy between mechanics and electricity. . . . . . . . . 195

xxiii



xxiv LIST OF TABLES

iii.1 D-H table of an unknown robot. . . . . . . . . . . . . . . . . . . . . . . . . . 247



Notation

Coorditane Systems

{0}, fixed universal coordinated system, used by default.

{e}, coordinate system attached to pe (Robot’s end-point).

{i}, coordinate system attached to joint i.

{1. . .n}, coordinates system attached to joint from 1 to n.

[x̂0, ŷ0, ẑ0], axis of the coordinate system {0}.

[x̂e, ŷe, ẑe], axis of the coordinate system {e}.

[x̂i, ŷi, ẑi], axis of the coordinate system {i}.

Cylindrical Coordinates

r′, the magnitude of a vector projected onto the plane x̂0ŷ0.

θ, the angle between the axis x̂0 and r′.

z, the magnitude of the projection of a vector onto the axis ẑ0.

Spherical Coordinates

r, the magnitude -or distance- of a vector.

θ, the angle between the axis x̂0 and r′ (see Cylindrical coordinates).

φ, the angle between the axis ẑ0 and a vector.

xxv



xxvi LIST OF TABLES

Rotation Matrices

0pe, the vector pe is referenced to the system {0}. If leading superscript is missing, this is
the reference system by default.

epe, the vector pe is referenced to the system {e}.
ipe, the vector pe is referenced to the system {i}.
0Re, the rotation matrix of the system {e} with respect to the system {0}.

This rule is always applied when a vector is rotated:
0p = 0Re

ep

Basic Rotations

Rot (x̂, ψ1) Rotation around x̂, ψ1 degrees:

Rot (x̂, ψ1) =

1 0 0
0 cosψ1 − sinψ1

0 sinψ1 cosψ1


Rot (ŷ, ψ2) Rotation around ŷ, ψ2 degrees:

Rot (ŷ, ψ2) =

 cosψ2 0 sinψ2

0 1 0
− sinψ2 0 cosψ2


Rot (ẑ, ψ3) Rotation around ẑ, ψ3 degrees:

Rot (ẑ, ψ3) =

cosψ3 −sinψ3 0
sinψ3 cosψ3 0

0 0 1


0ωe, the angular speed of the system {e} with respect to the system {0}:

0ωe = ωe =

ωxeωye
ωze



ω∧, ω̃ skew-symmetric matrix associated to cross product by the angular speed vector:

ω̃e = 0Ṙe
0RTe =

 0 −ωze ωye
ωze 0 −ωxe
−ωye ωxe 0





LIST OF TABLES xxvii

Euler Angles

ψe, orientation of the end point of the robot using Euler Angles.

ψe =

ψ1e

ψ2e

ψ3e



If roll, pitch and yaw angles are used, then. . .

ψe =

ψ1e

ψ2e

ψ3e

 =

ψxeψye
ψze

 =

ψyawψpitch
ψroll


Bφ, the matriz that relates angular velocity with respect to the time-derivative of Euler
angles. If we use the roll-pitch-yaw set, we will have:

ω = Bψψ̇ =

1 0 − sinψy
0 cosψz sinψz cosψy
0 − sinψz cosψz cosψy

ψ̇xψ̇y
ψ̇z



Rotated Angle/ Rotation Axis Notation

ϕ, rotated angle.

u, rotation axis:
u =

[
ux uy uz

]T
The rotation matrix can be obtained as below:

0Re =

− (u2
z + u2

y

)
A+ 1 uxuyA− uzB uxuzA+ uyB

uxuyA+ uzB −
(
u2
x + u2

z

)
A+ 1 uyuzA− uxB

uxuzA− uyB uyuzA+ uxB −
(
u2
x + u2

y

)
A+ 1


A = 1− cosϕ B = sinϕ

The angular speed is:

ωe =

ux B −Auz Auy
uy Auz B −Aux
uz −Auy Auz B



ϕ̇e
u̇xe
u̇ye
u̇ze





xxviii LIST OF TABLES

Quaternion (Euler Parameters)

[e0, e1,e2, e3], Euler Parameters.

e0 = cos(ϕ2 )
e1 = ux sin(ϕ2 )
e2 = uy sin(ϕ2 )
e3 = uz sin(ϕ2 )

e, the vector composed of e0, e1,e2, e3:

e =

e1

e2

e3



Bq, the matrix that relates angular velocity with respect to the time-derivative of Euler
parameters.

ω = Bq

[
ė0

ė

]
=

−e1 e0 −e3 e2

−e2 e3 e0 −e1

−e3 −e2 e1 e0



ė0

ė1

ė2

ė3



Homogeneous Coordinates

p4D =
[
p

1

]
=


wpx
wpy
wpz
w

 vector P represented in 4D space as homogeneous vector.

0Te, the homogeneous transform matrix of the system e with respect to the system 0. Its
normal definition:

0Te =
[(

0Re
)

3x3

(
0pe
)

3x1
f1x3 w1x1

]
=
[

rotation translation
perspective scaling

]

P0e = Pe =
[
px0e py0e pz0e

]T , translation vector between two reference systems.(
0Re

)
3x3

, rotation matrix in 3D space.

f1x3, perspective transformation.

w1x1, global scaling factor.

But in robotics, the common definition is:



LIST OF TABLES xxix

0Te =
[ (

0Re
)

3x3

(
0pe
)

3x1[
0 0 0

]
1

]
This rule is always applied when a vector is rotated and translated using homogeneous
vectors:

0p4D
e = 0Te

ep4D
e

Basic transformations:

Trans (p0e), Translation around p0e. The homogeneus transformation that involves it is:

Trans (p0e) =


1 0 0
0 1 0
0 0 1

p0e

0 0 0 1



Rot (x̂, ψ1), Rotation around x̂, ψ1 degrees . The homogeneus transformation that involves
it is:

Rot (x̂, ψ1) =


1 0 0 0
0 cosψ1 − sinψ1 0
0 sinψ1 cosψ1 0
0 0 0 1



Rot (ŷ, ψ2), Rotation around ŷ, ψ2 degrees.The homogeneus transformation that involves
it is:

Rot (ŷ, ψ2) =


cosψ2 0 sinψ2 0

0 1 0 0
− sinψ2 0 cosψ2 0

0 0 0 1



Rot (ẑ, ψ3), Rotation around ẑ, ψ3 degrees. The homogeneus transformation that involves
it is:

= Rot (ẑ, ψ3) =


cosψ3 − sinψ3 0 0
sinψ3 cosψ3 0 0

0 0 1 0
0 0 0 1



Position/Orientation

n, robot degrees of freedom (DoF). q, joint space coordinate (rotating or linear).



xxx LIST OF TABLES

q =
[
q1 q2 . . . qn

]T
θi, joint space coordinate (rotating DoF).

di, joint space coordinate (translating DoF).

pe, (lowercase) position of the end point of the robot:

pe =
[
pxe pye pze

]T
Pe, (uppercase) position and orientation of the end point of the robot and in the case of
using Euler Angles we have:

Pe =
[
pe
ψe

]

Pe = [Pxe Pye Pze ψ1e ψ2e ψ3e]
T

q̇, rate of change of location of q

q̇ =
[
q̇1 q̇2 . . . q̇n

]T
Ṗe, rate of change of location (position+orientation) of Pe. If we use the Roll-Pitch-Yaw
notation, we have:

Ṗe =

(Ṗe)3x1(
ψ̇e

)
3x1


Ṗe =

[
ṗxe ṗye ṗze ψ̇xe ψ̇ye ψ̇ze

]T
ve, translational speed of robot’s end-point.

ve =
[
vxe vye vze

]T =
[
ṗxe ṗye ṗze

]T
ωe, angular speed of robot’s end-point.

ωe =
[
ωxe ωye ωze

]T 6= [ψ̇xe ψ̇ye ψ̇ze
]T

Ve, translational+rotatonal speed of robot’s end-point.

Ve =
[
ve
ωe

]



LIST OF TABLES xxxi

Ve =
[
ṗxe ṗye ṗze ωxe ωye ωze

]T
v̇e, translational acceleration of robot’s end-point.

ω̇e, angular acceleration of robot’s end-point.

Forward and Inverse Kinematics (Position)

fkin, Forward Kinematics.

ikin, Inverse Kinematics.

Denavit-Hartenberg parameters

ai−1, the length of link i−1. αi−1, the twist of link i−1. di, the offset of link i. θi, the angle
of joint i. Then, the homogeneus transform between the coordinate frames {i − 1} and
{i} is:

i−1Ti = Trans (x̂i−1, ai−1)Rot (x̂i−1, αi−1)Trans (ẑi, di)Rot (ẑi, θi)

Static Forces/Torques

fe, force exerted on the origin of frame {e}.

fe =
[
fxe fye fze

]T
ne, torque exerted on the origin of frame {e}.

ne =
[
nxe nye nze

]T
Fe, force and torque exerted on the origin of frame {e}.

Fe =
[
fe
ne

]

τ , force/torque exerted on every joint, that is to say, the force/torque exerted in the
joint-space.

τ =
[
τ1 τ2 · · · τn

]T



xxxii LIST OF TABLES

Jacobian and Singularities

Jq, jacobian of a serial manipulator or direct jacobian matrix (Jq = Identity in case of
parellel robots).

Jx, jacobian of a parallel manipulator or inverse jacobian matrix (Jx = Identity in case of
serial robots).

The jacobian relationships are:
JxVe = Jq q̇

τ = JTq J
−T
x Fe ⇔ in the case of ∃J−1

x

In case of ∃J−1
x ⇒ we can write:

J = J−1
x Jq

In this case, the jacobian relationships are simplified into:

Ve = Jq̇

τ = JTFe

σi, the i− th singular value of the jacobian matrix.

σmax, the maximum singular value of the jacobian matrix.

σmin, the minimum singular value of the jacobian matrix.

cond, condition number.
cond =

σmax
σmin

det(J), the determinant of the jacobian matrix is the jacobian.

κ =
√

(det(JTJ)), Yoshikawa’s manipulability index.

κ = det(J), Yoshikawa’s manipulability index for square jacobian matrices.

Dynamics of Manipulators

I, moments of inertia.

Ixx, Iyy, Izz; mass moments of inertia.

Ixy, Ixz, Iyx, Iyz, Izx, Izy; mass products of inertia.

I =

Ixx Ixy Ixz
Iyx Iyy Iyz
Izx Izy Izz





LIST OF TABLES xxxiii

m, mass.

b, damper.

k, stiffness.

K, potential energy.

U , kinetic energy.

L = K − U , Lagrange function.

Dynamics in joint-space

Mq(q), the actual robot mass matrix (nxn).

Vcorq(q, q̇), the actual robot coriolis force(nx1).

Vcenq(q, q̇), the actual robot centrifugal force (nx1).

Vinerq(q, q̇) = Vcenq(q, q̇) + Vcenq(q, q̇), the actual robot coriolis and centrifugal forces (nx1).

FfricVq(q̇), the actual robot dynamic friction (damping) (nx1).

FfricCq(q, sgn(q̇)), the actual coulomb friction (nx1).

Ffricq = FfricCq(q, sgn(q̇)) + FfricVq(q̇), the actual friction (nx1).

G(q), the actual gravity force (nx1).

The actual dynamic equation in joint space is:

τ = Mq(q)q̈ + Vinerq(q, q̇) + FfricVq(q̇) + FfricCq(q, sgn(q̇)) +Gq(q)

The estimated dynamic equation in joint-space is:

τ̂ = M̂q(q)q̈ + V̂inerq(q, q̇) + F̂fricVq(q̇) + F̂fricCq(q, sgn(q̇)) + Ĝq(q)

Dynamics in cartesian-space

Fe = Mx(q)V̇e + Vinerx(q, q̇) + FfricVx(Ve) + FfricCx(q, sgn(q̇)) +Gx(q)

Control of Manipulators

Control of 1 DoF

kpi , kIi , kdi, the proportional, integral and derivative gains of a PID controller of the i− th
joint.



xxxiv LIST OF TABLES

tIi , tdi, the integral and derivate time constants of a PID controller of the i− th joint.

qrefi, the reference signal for the magnitude qi.

qreali, the actual signal for the magnitude qi.

qmeasi, the measured signal for the magnitude qi.

qerri = qrefi − qmeasi, the error signal for the magnitude qi.

Control of n DoFs

Kp,KI ,Kd, the proportional, integral and derivative matricial gains of a PID controller.

TI , Td, the integral and derivate time constants of a PID controller.

qref , the reference signal for the magnitude q.

qreal, the actual signal for the magnitude q.

qmeas, the measured signal for the magnitude q.

qerr = qref − qmeas, the error signal for the magnitude q.

Electrical Analogy

Electrical system

e, electrical voltage.

e1, input voltage in a two-port network.

e2, output voltage in a two-port network.

i, electrical current.

i1, input current in a two-port network.

i2, output current in a two-port network.

Mechanical system

f , mechanical force.

f1, input force in a two-port network.

f2, output force in a two-port network.

v, mechanical speed.



LIST OF TABLES xxxv

v1 input speed in a two-port network.

v2, output speed in a two-port network.

Analogy

Electrical system Mechanical system
Voltage e1, e2 Force f1, f2

Current i1, i2 Velocity v1, v2

Inductance L Mass m

Resistance R Damping b

Reciprocal
capacitance

1
C Stiffness k

Two-port Network Matrices

Z, impedance matrix:

[
e1

e2

]
= Z

[
i1
i2

]
=
[
z11 z12

z21 z22

] [
i1
i2

] [
f1

f2

]
= Z

[
v1

v2

]
=
[
z11 z12

z21 z22

] [
v1

v2

]

Y , admittance matrix:[
i1
i2

]
= Y

[
e1

e2

]
=
[
y11 y12

y21 y22

] [
e1

e2

] [
v1

v2

]
= Y

[
f1

f2

]
=
[
y11 y12

y21 y22

] [
f1

f2

]

H, hybrid matrix:

[
e1

i2

]
= H

[
i1
e2

]
=
[
h11 h12

h21 h22

] [
i1
e2

] [
f1

v2

]
= H

[
v1

f2

]
=
[
h11 h12

h21 h22

] [
v1

f2

]

G, 2nd hybrid matrix:

[
i1
e2

]
= G

[
e1

i2

]
=
[
g11 g12

g21 g22

] [
e1

i2

] [
v1

f2

]
= G

[
f1

v2

]
=
[
g11 g12

g21 g22

] [
f1

v2

]

Transmission matrix:[
e1

i1

]
=
[
A B
C D

] [
e2

i2

] [
f1

v1

]
=
[
A B
C D

] [
f2

v2

]



xxxvi LIST OF TABLES



Part I

Introduction to Robotics

1





Chapter 1

Introduction

1.1 Introduction

The word robot represents a very general concept that is hard to define precisely, since
this word can be used to name a great amount of machines.

The aim of this chapter is to give an approximation to the concept of robot. Thus
a brief history of robotics, the two technological roots of robotics, and finally an
explanation to basic robotic jergon are presented.

Let’s start with a little riddle: which the following examples are robots?

• An automatic camera?

• An automatic washing machine?

• An automatic dishwasher?

• An automatic car (a car with an automatic gearbox)?

• A crane1?

For some people, some or all of these examples are kinds of robots, for others none of
them are. It all depends on what our own idea of what a robot is, and this can vary a lot
from person to person. The word robot is often related with some kind of machine that
has similarities to some part of human (or animal), body. But this is not always true . . .

1.2 A Little about the History

Although in appendix A a review is made of remarkable milestones in Robot history
from the Ancient Greek culture to the present, let’s see only the beginning of modern
robotics.

1grúa

3



4 Chapter 1. Introduction

The word robot was used for the first time in 1920 in a play entitled R.U.R. (Rosum’s
Universal Robots). This play was written by Karel Capek, a Czech playwright. In the
original Czeck, Robota means forced servitude. The name Rossum is an allusion to the
Czech word rozum, which means reason, intellect. After the production of R.U.R. opened,
the word robot displaced older words such as automaton or android in most languages.
R.U.R stands for ”Rosumovi Umělı́ Roboti” (Mr. Reasson’s Artificial Robots) and when the
play was first put on in English-speaking countries, this title was translated from the
Czech as ”Rossum’s Universal Robots” in order to fit the initials R.U.R (Figure 1.1).

Figure 1.1: A representation of a Rossum’s Universal Robot.

In Capek’s play, robots were human-like (humanoid) machines that were created by
Rossum and his son to become servants of real human beings. But robots end up not
accepting this role and rebel against humans. This resulted in a violent conflict between
the people and the robots. However, it is the writer Isaac Asimov to whom we owe the
survival of the word robot. He is regarded as the father of Science Fiction Robots, since
he was the first to refer to the science of robotics in a series of short stories that were
collected in the book I, Robot (1950).

One of these stories is about a robot named Robbie 2:

Robbie was a non-vocal robot. He couldn’t speak. He was made and sold in
1996. Those were the days before extreme specialization, so he was sold as a
nursemaid.

Dr Susan Calvin, U.S. Robotics, 2058

In the story, Dr Calvin was an expert on robot-psychologists, and who was talking
about the history of the company of the occasion of her retirement.

The Asimov’s vision is different from that of Capek. The latter envisages a pessimistic
scenario for the relationship among humans and robots. The former defines in I, Robot

2Text from the story Robbie that was first published as Strange Playfellow in Super Science Stories; 1940,
Fictioners, Inc; 1968, Isaac Asimov



Section 1.3. The Technological Roots of Robotics 5

robots as intelligent machines that have positronic brains. These positronic brains are
programmed by humans, who stamp into them the three laws of robotics, namely:

First Law A robot must not harm a human being or, through inaction, allow one to
come to harm;

Second Law A robot must always obey human beings unless that is in conflict with the
First Law;

Thrid Law A robot must protect itself from harm unless that is in conflict with the First
or Second Law.

Latter, the Zeroth Law, was added: A robot may not injure humanity, or, through
inaction, allow humanity to come to harm.

Asimov’s robot stories are a kind of exploration of the implications of implementing
these laws in robots. However, the works of most other authors ignore or even contradict
them. So, these laws have not prevailed as Asimov intended.

Thus these three Laws are sometimes seen as a future design directives that should
be considered by the people that would work in artificial intelligence, once an artificial
intelligence has reached the stage where it can comprehend these laws.

1.3 The Technological Roots of Robotics

The origins of robotics are linked to industrial robotics and can be traced in two separate,
but related, technological developments. The first source came from the development of
the Computer Numerically Controlled Machine Tool or CNC Machine. The first CNC
machine was developed at the MIT Servomechanisms Lab, USA, in 1952. It was the first
programmable industrial machine tool.

Secondly, working at the Aragonne National Labs, USA, R. C. Goertz demonstrated
the first mechanical telemanipulator (teleoperated device) in 1948 (Figure 1.2). Seven
years later, in 1954, he produced the first electric powered telemanipulator, which also
had bilateral control.

The term bilateral control is used to define a kind of control in which two robots
are considered: the master and the slave robot. The operator grasps and moves the
master robot, and the slave robots tracks. But the interaction forces/torques between
the slave robot and its environment are also fed back to the master unit. This was a kind
of haptic interface, of the sort that was later to be developed for more ’realistic’ virtual
reality systems.

These two different technologies were subsequently combined in 1954, by
George C. Devol in his Programmable Object Transfer Device, a kind of programmable
robot manipulator as the result of a combination of the electric telemanipulator and CNC
control technologies.



6 Chapter 1. Introduction

Figure 1.2: First teleoperated device. It was designed for radioactive material handling.

Then, in 1956, George C. Devol and Joseph F. Engelberger founded Consolidated
Controls Corporation, which produced the first industrial robot to be installed in a
General Motors factory in New Jersey. It was called the Unimate robot (universal
automation robot). The name of the firm was later changed to Unimation Inc.. The
Unimate was thus the first Industrial Robot, and Joseph Engelberger became know as
the father of the Industrial Robot.

1.4 First Approach

A robot is a group of several subsystems each with its own function:

Mechanical system By which the robot interacts with the surrounding environment. It
usually performs one particular task. It consists of actuators, joints, wrists, tools,
etc. . .

Electrical system Consisting of sensors, electrical/pneumatic/hydraulic actuators,
computers, etc. . .

Control system This system receives high level orders and translates them into
commands for actuators.

Sensor system It measures different physical magnitudes so that control system is able
to perform the correct action.

The main feature for a robot is the availability of being reprogrammable. So it can be
said that a robot is. . .

. . . robot is a machine which can be programmed to do a variety of tasks,
in the same way that a computer is an electronic circuit which can be
programmed to do a variety of tasks.

–Introduction to Robotics, Mac Kerrow

Another way of defining it is. . .



Section 1.4. First Approach 7

. . . a computer-controlled mechanical device that can be programmed to do
a variety of tasks without human supervision.

In this first approach, we will divide robots into three different categories: Science
Fiction Robots, Toy Robots, and Real Robots.

1.4.1 Science Fiction Robots

Since Robbie, in Asimov’s story, there have been a lot more Science Fiction robots:
R2D2, C3P0 (Star Wars); HAL 9000 (2001: A Space Odissey); T1000 (Terminator), but to
name a few (Figure 1.3). The vast majority of these characters are baddies who typically
act violently against people. In a sense, it is a little surprising that robots have been so
often described as bad characters in Science Fiction stories.

Figure 1.3: Samples of Science Fiction Robots: HAL, R2D2, C3PO, T1000 (Terminator).

Given that Since Science Fiction stories, films, and television programmes, are the
source of most people’s images and ideas about robots, it is hardly surprising that for
many people robots are not bad or even frightening things. However, one of the possible
answers to our question about what is a robot is precisely that a robot is a science fiction
character. This is not the kind of robot we will consider in this course.

1.4.2 Toy Robots

As the second category, a robot could also be defined as a toy (Figure 1.4). There are
many examples of toy robots. Several of them are essentially models of science fiction
robots, others are mere toys that we consider them as robots, or imitate life, for example
Sony’s Aibo pet robot dog.

Figure 1.4: Samples of Toy Robots: Bender, R2D2.



8 Chapter 1. Introduction

Then, a question is arisen: when can a toy be thought as a robot? Not all toys that
move around and make noises are robots. For most people, to be a robot, even a toy one,
it is necessary to have arms, maybe legs, a head and eyes. In other words it is necessary
to have a more or less humanoid form. This idea, the humanoid form, is important,
and comes from the images of science fiction robots, most of which are also humanoid.
Therefore, robots can be also toys, and they normally have a humanoid form.

1.4.3 Real Robots

The last category groups the robots that operate in the real world. They can be further
subdivided into four different types:

Industrial robot these are the vast majority of existing robots;

Service robots there are hardly any yet;

Biomedical robot a quite new and promising application field to robotics;

Experimental or Scientific robots the second most popular type of real robot.

INDUSTRIAL ROBOTS The industrial robots can also be further divided into robot
manipulator arms and mobile robots.

Industrial mobile robots are often called automatic guided vehicles (AGVs), and
they are used to transport components and materials in factories (Figure 1.5). The vast
majority of industrial robots are, however, manipulator arms fixed in position, and used
to spray paint, make solder joints, assemble components, and manipulate and transport
objects. They can adopt several forms depending upon the particular application for
which they are used.

Figure 1.5: Samples of Industrial Robots: an old Puma 7000; HAZBOT II, a robot for
handling explosives.

Most industrial robots simply do what they are programmed to do, and cannot
change, modify, or adapt what they do to deal with changes, variations, or unexpected
events in their surrounding environments. Thus they only work in very “carefully
controlled environments” (work cells, structured environments) in which there is very
little uncertainty, variation, and no unexpected events. This is also a reason why the
work cells are well isolated from workers while the robots are in action. Moreover, the



Section 1.4. First Approach 9

industrial robots are typically large powerful machines that can easily seriously injure
or kill people if something goes wrong (safety).

We now need to go back to our search for the definition of robot. Once again, it all
depends on what you are happy to call a robot. For most people, a robot is a machine that
can make its own decisions about what it ought to do, and that can react to internal and
external events and respond to changes in the surrounding environments. This could be
quite a good way of defining what a robot is. The problem is that most industrial robot
manipulator arms, the most widely spread robot, do not fit in this definition.

SERVICE ROBOTS The Service robots are robots that mainly work outside the factory,
and are normally supposed to provide direct services to people (Figure 1.6). There are still
very few real service robots in the world, but the most popular applications or proposed
applications are floor cleaning, security patrol, (paper) mail delivery, and other kinds of
delivery tasks.

Figure 1.6: Samples of Service Robots: a tank filling robot (Reis Robotics, Germany); a
cleanning robot,(HACOmatic, Hakoberke, Germany), pet robot QRIO (Sony), pet robot
Aibo (Sony).

These and other service robot applications need mobile robots. There are, however,
machines that exist today that we might also call service robots, though they are not
mobile robots. The automatic car washing machines, the kind you drive into, might also
be thought of as a kind of robot that provides a service to people.

BIOMEDICAL ROBOTS Strictly speaking, biomedical robots3 are a type of service robot
since they work mainly outside the factory. However, the number of medical robotic
applications has been increasing so much in recent last years that they deserve a specific
category and a different treatment. But notice that, despite this different treatment, they
share many characteristics with service robots because biomedical robots also provide
direct services to people. We can distinguish two main types of biomedical robots:

• Robots that assist doctors in planning, training and performing surgery (surgery
robots, figure 1.7);

• Robots that assist patients in reducing the effects of impairments caused by a
trauma. This effect reduction could be replacing a lost limb (mechatronic prothesis),

3This type of robot is sometimes referred to as biorobots. But rigorously speaking, biorobots are robots
that try to mimic the behaviour of living beings and bear no reletion to robots that are used in medicine.



10 Chapter 1. Introduction

helping the patient move the impaired limb (mechatronic orthosis) or as a part of a
rehabilitation program for the impaired limb.

Figure 1.7: Samples of biomedical robots for planning (left) and performing (right)
surgery.

Finally, we can also include autonomous wheelchairs in this category.

Regarding the search for a precise definition of robots, once again, it all depends
on what you are happy to call a robot. For most people, a robot is a machine that can
make its own decisions about what it ought to do, and that can react to internal and
external events and respond to changes in the surrounding environments. But as the
robotic reasoning capacity is very low, and the failure probability is high, with biomedical
robots it is not possible to let the robot be autonomous. Compared to industrial robots,
where they are supposed to replace human work, biomedical robots are supervised by
humans and are only intended as assistive technology. Thus, for us, a biomedical robot
will be a mechatronic, programmable device for surgery assistance (planning/training
and performing) and/or rehabilitation purposes.

EXPERIMENTAL ROBOTS Experimental or scientific robots, as their name suggests,
are robots used for robotic research purposes or other scientific applications. One of the
most famous scientific robot in aeroespacial develoments in XX century was Sojourner
that was used to explore a small part of the surface of Mars in July 1997 (Figure 1.8).
For some people, however this was not a robot, because it was teleoperated: it received
instructions for what it had to do from Earth. These instructions were issued by a human
operator who could watch images form the various on board cameras and other sensors
and system parameters.

Teleoperation By Teleoperation we mean ”work at a distance”, thus the operator
controls the robot from a (large) distance. The operator is in the local environment, while
the robot is in the remote environment (Figure 1.9). Teleoperation provides the capacity
of changing the working scale, as for example a surgeon may use micromanipulator
technology to conduct surgery on a microscopic level. By teleoperation, we aim the
Telepresence which means “feeling as if you were operating directly in the remote
environment”.



Section 1.4. First Approach 11

Figure 1.8: A picture of: Mars PATHFINDER and SOJOUNER on Mars; ROBICEN, a
climbing robot (CEIT), KISMET (MIT).

Figure 1.9: Sample of Teleoperation device: SIMANTEL, CEIT.

A teleoperated system usually consists of two robots: the Master robot and the
Slave robot. The former is controlled directly by the human operator; the latter tracks
the master’s trajectory. Some systems are capable of force feedback 4; that is, the
operator can feel the forces and torques exerted by the remote environment on the slave
(Figure 1.10).

These systems are used to undertake tasks in hostile environments for humans such
as in mines, outer space, areas of high radioactivity, bomb disposal sites, underwater,
etc. In these situations, the master robot is kept in a safe zone while the slave performs
the desired task in the remote hazardous environment.

Haptic Haptic devices were developed in the early 90s. The word haptic comes from
the Greek “haptesthai” and means “‘related to touch” or “tactile”. It refers to the manual
interaction with environments, either for exploration or manipulation. A haptic device
is a mechanism designed to interact with humans, allowing a tactile connection with a
remote or virtual environment. These devices allow providing the user with additional
information of the working environment through the sense of touch. This information,
for example, could consist of the physical attributes of the objects being manipulated,
their hardness, texture, or inertia. That is to say, haptic devices do for the sense of touch
what TV screens do for vision.

4this force rendering capacity is also known as haptic feedback and the devices capable of haptic feedback
are haptic devices.



12 Chapter 1. Introduction

Ac
tu

at
or

s

E
nc

od
er

s

M
A

ST
ER

A
ct

ua
to

rs

E
nc

od
er

s

S
en

so
rs

S
en

so
rs

A
ct

ua
tio

n

M
ot

or
 

co
m

m
an

d

M
ea

su
re

m
en

t: 
en

co
de

rs
 a

nd
 

se
ns

or
s

A
ct

io
n 

+ 
fo

rc
e 

fe
ed

ba
ck

vi
de

o 
si

gn
al

C
on

tro
lle

r

au
di

o 
si

gn
al

R
em

ot
e

ta
sk

M
en

ta
l 

re
co

ns
tru

ci
on

 o
f 

re
m

ot
e 

ta
sk

SL
A

VE

M
ea

su
re

m
en

t: 
en

co
de

rs
 a

nd
 

se
ns

or
s

M
ot

or
 

co
m

m
an

d

Figure 1.10: Teleoperation architecture.



Section 1.4. First Approach 13

The vast majority of human-machine interfaces have a unidirectional information
flow. The user receives information through the senses of sight and hearing, and may
interact with the environment through the use of a peripheral device (e.g. a mouse).
This interaction is unidirectional: from the user to the environment. In contrast, in case
of haptic devices, it is bidirectional (Figure 1.11). The inclusion of the sense of touch
allows the interaction with the environment to be more intuitive and real, giving the user
additional information and improving the sense of immersion.

Simulation

User Mouse

Vision 
and audio

Movement

Touch

Interaction

Simulation

User
Haptic 

interface

Vision 
and audio

Movement

Interaction

Figure 1.11: The bidirectionality of the haptic channel.

Figure 1.12 shows the most common components that comprise a haptic system. On
one side is the application or scenario on which the user wishes to interact or complete a
task. Typically, the scenario is virtual and it is visually represented by specific hardware
(monitors, stereoscopic projections, etc.). Additionally, the system can also transmit
information through the hearing channel. On the other hand, the haptic device is the
mechanism that allows the user to physically interact with the scenario. With this device
the user can manipulate a virtual object of the scenario, called avatar, controlling its
movements and receiving tactile information due to the interaction of the avatar with the
other objects.

Haptic Device

Virtual 
World

Avatar

Figure 1.12: Example of a haptic system.

Haptic devices are classified into kinesthetic devices and vibratory devices. The
former can be desktop devices or they can be fixed to the floor, and they exert



14 Chapter 1. Introduction

forces/torques on user’s limbs causing the modification of the body position or simply
varying the stregh of user’s muscles, tendons and joints 5. Thus, kinesthetic haptic
devices enable the user the perception of virtual objects’ stiffeness and weight mainly,
causing an input for the proprioceptive system 6. Vibratory tactile devices are placed in
the area of the body with which we want to interact. They usually have vibratory parts
that excite cutaneous nerve endings, thus, by means of these devices we can mimic
textures and bas relief shapes.

Among the different simplest mechanical force-reflection devices we can highlight
some such as the “Logitech WingMan” or the “CyberGlove” system from Immersion
Corporation (Figure 1.13). The first one works like a simple mouse, but it is able to
provide the user with tactile stimuli in the form of vibrations. Its main application is
in the field of video gaming. The second system is capable of providing tactile stimuli
feedback on the fingers and palms, also through vibrations, and is useful for interacting
with the hand in virtual scenarios.

Figure 1.13: Two commercial haptic devices with tactile feedback through vibrations.

Possibly the best known variaty of commercial haptic devices is PHANToM, from the
SensAble Technologies Company (Figure 1.14). From the first prototype developed by
Massie and Salisbury in 1994, various devices have been developed which vary in the
number of active degrees of freedom, their workspace and their ability to provide forces
and torque feedback. They are desktop devices where the user picks up a pen-shaped
tool, with which the position and orientation of a virtual tool can be controlled. Figure 1.1
shows the characteristics of two PHANToM haptic devices.

Feature Omni Premium 1.5
Sensed Degree of Freedom (DoF) 6 6

Actuated Degree of Freedom (DoF) 3 6
Workspace 16x12x7 cm 38x26x19cm

Accuracy (translation) 0.055mm 0.03mm
Maximum Force (peak) 3.3 N 8.5 N

Maximum Force (continuous) 0.88 N 1.4 N
Apparent inertia 45 g 136 g

Table 1.1: Mechanical features of two PHANToM haptic devices.

An special example of kinesthetic haptic device is the so called exoskeleton (Fig-
5That is what the term kinesthetic refers to.
6The sense that detects bodily position, weight, or movement of the muscles, tendons, and joints.



Section 1.5. Basic Terminology in Robotics 15

Figure 1.14: PHANToM haptic devices.

ure 1.15). These devices—unlike the previous ones, that only interact with user’s hand—
act directly on the concerned complete body limb. These devices are designed primarily
for rehabilitation tasks in medicine or for military use as body extenders to amplify
soldier’s force, and can be anchored to the ground or carried by the user.

Figure 1.15: Exoskeletons designed by PERCRO (left) and the University of Washington
(right) for medical rehabilitation.

1.5 Basic Terminology in Robotics

Before starting with the next chapter, we need to establish some terminology.

1.5.1 Kinematic Chain

A Kinematic Chain is a collection of elements, bodies, bonds, and links interconnected
by joints (or articulations). There are two types:

Open Chain when the last link is not connected to the first link.



16 Chapter 1. Introduction

Closed Chain when the last link is connected to the first link.

Figure 1.16: Open kinematic chain (left) vs. closed kinematic chain (right).

1.5.2 Mechanism/Manipulator

A mechanism is a kinematic chain in which one of the links is fixed. This link is the
reference for the remaining links.

A manipulator/arm is a mechanism. Then we distinguish two categories of manipu-
lator:

Serial manipulator a mechanism based on an open kinematic chain.

Parallel manipulator a mechanism based on a closed kinematic chain.

Figure 1.17: Serial mechanism/manipulator (left) vs. parallel mechanism/manipulator
(right).

We can find hybrid manipulators that are combination of parallel/serial manipula-
tors:



Section 1.5. Basic Terminology in Robotics 17

Figure 1.18: Hybrid mechanism/manipulator.

1.5.3 Degree of Freedom (DoF)

It is the minimum number of independent coordinates with which we can determine
the arrangement of a mechanism. If serial manipulators are considered, it will corre-
spond with the number of joints. Then, it will be expressed as:

q =
[
q1 q2 . . . qn

]T (1.1)

where n is the number of degrees of freedom.

Usually industrial robot arms have between 4 and 6 degrees of freedom, one at each
joint.

1.5.4 End Point

It is the point of the mechanism/manipulator that we want to place in a specific location.
Mathematically, we will define the end-point as pe. It is also where the robot’s end-effector
(the gripper or the tool) is attached.

pe =
[
pxe pye pze

]T (1.2)

If, for example, the robot has a two-finger gripper, to pick things up with, we usually
define pe to be a point between the two fingers (when they are open), so that when this
point is geometrically inside some object to be picked up, all the robot has to do is to
close the fingers of its gripper to grasp the object. It can then move away with the object
between its fingers.

It is not sufficient for Pe just to be defined as a point. We also need to attach or
(conceptually) fix a coordinate system to it, so that we can define both the position of
pe in space, and its orientation (ψe). In this way we are able to define the position and
orientation of the robot’s gripper in terms of the position and orientation of Pe.



18 Chapter 1. Introduction

Pe =
[
pe
ψe

]
=
[

position
orientation

]
(1.3)

1.5.5 Cartesian Space vs. Joint Space

The robot’s end-point can be determined by the values of the joint positions of the arm
(q1, q2, q3, etc.) and the geometry of the elements of the robot arm that connect each pair
of joints. Then we say that the robot’s end point is defined in the joint space.

The position and orientation of the end point can also be defined with respect to some
global Cartesian frame of reference, some global coordinate system. For this, we usually
use a frame of reference fixed to the base of the robot, which should not move. Thus, we
determine the position and orientation of the end-point in the Cartesian space.

Any particular position and orientation of Pe in space, and so any particular set of
joint values, is called a configuration of the robot arm.

1.5.6 Workspace

It is the locus that contains the reachable space by the robot’s end-point. But this is
different from workspace envelope. The workspace limitations:

• Actuators endstroke.

• Working range of joints.

• Collisions among manipulator’s link.

We can define the robot workspace in two ways:

1. The Dextrous Workspace, WSD, is the volume of the theoretical workspace in
which Pe can be oriented in any way.

2. The Reachable Workspace, WSR, is the volume of the theoretical workspace to
which Pe can be moved in at least one orientation.

Clearly WSD is a subset (sub-volume) of WSR.

It is also desirable that both WSD and WSR have no ‘holes’ in them, internal sub-
volumes that are not reachable by Pe.



Section 1.5. Basic Terminology in Robotics 19

SHOULDER

ELBOW

WRIST

UP
DOWN

UP
DOWN

END POINT

RIGHT
LEFT

WAIST
Xe

LINK

JOINT

END-POINT

END-EFFECTOR

MANIPULATOR/
ARM

q1

q2

q3
q4

q5

q6

0x̂

0ẑ

Figure 1.19: A manipulator and the human body analogy (left); squematic diagram of
an arm (right).

1.5.7 Accuracy, Precision, Repeatability, Resolution

Accuracy Accuracy is the degree of closeness of a measured (position) compared to
its true value. It is related with the absolute error that is given by the difference
between the desired position and the actual position (see figure 1.20). In other
words, it is when the robot does not locate Pe exactly where it is programmed to do
so. This kind of error is often not constant over the workspace of the robot arm. It
depends upon the geometry of the robot arm and other aspects of its control. Often
absolute error is smaller if Pe is closer to the body of the robot, than if it is defined to
be near to the limits of the reach of the arm. Defining movements to be made near
to the robot can thus minimise the absolute error, but they can often also be more
restricted, again depending upon the geometry of the robot arm. Arranging for most
of the robot movements to be at or near the mid-range of the robots workspace, is a
good way to keep the absolute error small without suffering (too many) restrictions
on the kinds of movements that can be made.

Repeatability/Precision Precision or Repeatability or Reproducibility is the degree
to which a repeated motion commanded to the robot produces the same of similar
results in each trial (see figure 1.20). This is related to the Repeatability error
that occurs when the robot is commanded to do the same movement repeatedly,
move Pe to the same position and orientation, in other words, the same location.
Usually the robot will not move Pe to exactly the Pe defined (absolute error) nor
will it go to exactly the same location each time. There will be some sphere, of which
centre is the specified (commanded) Pe, and it includes all the actual locations the
robot moves Pe to each time the robot repeats the same operation. The repeatibility
is measured by means of the radius of that sphere.



20 Chapter 1. Introduction

Resolution When a continuous signal is digitalizated, it can only reach a set of
pre-established values that depends on the number of bytes of the digital system.
The resolution is the minimum value between two valid positions due to the
digitalization process. It depends on the number of bytes of the digital system and
the robot’s position as well.

Figure 1.20: Accuracy versus precision.

Position

valid position commands

resolution

repeability
+/-r

actual 
positionabsolute 

error

resolution

repeability
+/-r

repeability
+/-r

Figure 1.21: Accuracy, repeability and resolution.

Both absolute error and repeatability error can usually be made smaller by using
slower robot movements. Sometimes it is also possible to specify the level of accuracy
required for each movement command. The higher accuracy movements usually mean
that they are made with lower accelerations. Those slower movements mean that the
robot program takes longer to execute. A balance between the accuracy needed and the
execution time of the program thus needs to be established for each movement in each
program.



Section 1.6. Some Things to Think About 21

1.6 Some Things to Think About

1. Identify one or two good examples of science fiction robots, toy robots, and real
robots. Explain for each case why you think it is a good example. And, in the case
of the real robot examples, think about how they are controlled and programmed.



22 Chapter 1. Introduction



Chapter 2

Introduction to Industrial Robotics

2.1 Some Definitions of Industrial Robots

he aim of this chapter is to provide the charateristic concepts and particularities of
robotics applied to industry.

To specify in a bit more detail what kind of robot we will be considering in this course,
it is useful to look at several official definitions of Industrial Robots.

2.1.1 Robotics Industry Association (RIA)’s Industrial Robot definition

The first definition comes from the Robotics Industry Association (RIA) of the USA, 1979.
This states that:

”An Industrial Robot is a multifunctional, reprogrammable manipulator
that can move materials, pieces, tools and special devices, following variable
programmed trajectories, to carry out different tasks.”

Multifunctional here means that it can be used to do more than one kind of task, but
not at the same time, not normally at least.

The problem with this definition is that it depends on knowing what a manipulator
is. We also need to distinguish between manipulators, such as building site cranes and
industrial robots.

2.1.2 French Standards Association’s Industrial Robot definition

Another definition, from the French Standards Association, does make the distinction
between robot and manipulator. First it defines what a manipulator is:

”A manipulator is formed, in general, from a series of connected elements
which can pick up and move objects or tools. It is multifunctional and can be
controlled directly or via a program.”

23



24 Chapter 2. Introduction to Industrial Robotics

It then defines an Industrial Robot as follows:

”A robot is a manipulator which is reprogrammable, servocontrolled, and
versatile that can position and orient pieces and tools and other devices,
following variable trajectories.”

Comparing these two definitions, it can be seen that there is not clear distinction
between what is a manipulator and what is a robot. As example, the difference between
them cannot lie in the fact that they both are programmable. However, it can be noticed
that one difference lie in the fact that a robot is a kind of manipulator which are
servocontrolled, whereas manipulators may or may not be servocontrolled. The term
servocontrol means negative feedback control, normally of joint positions, but it could
also be of joint speed. It is an old fashioned term for feedback control that is usually only
used in the context of the control of mechanical systems.

Thus, according to this French definition, industrial robots are (re)programmable
servocontrolled manipulators.

It further describes them as normally formed by one multi-jointed arm with a wrist
at the end (to orient pieces); as having controllers endowed with program memory, and
which may be able to receive signals form external sensors. It also says that they are
used for highly repetitive tasks.

2.1.3 International Federation of Robotics (IFR)’s Industrial Robot defini-
tion

The International Federation of Robotics gives the most detailed explanation about what
an Industrial Robot is. . .

“. . . an automatically controlled, reprogrammable, multipurpose, manipu-
lative machine with three or more reprogrammable axes (that can position and
orient materials, pieces, tools and special devices to realise different tasks),
which users may either fix in place or make mobile for industrial automation
applications”.

From now, and to keep the text simple, the word robot will implicitly refers to
industrial robot.

2.2 Robot generations

Robots can be classified in many ways based on their evolution -or generation-. Here the
most known.

First Generation It executes the programmed task in a never-ending loop. It does not
sense the disturbances in its environment.



Section 2.3. Industrial Applications 25

Second Generation It acquires limited data from its environment and then makes
simple decisions.

Third Generation It can be programmed using natural language.

But there are more classifications. Lets see the robot generations considered by the
French Association for Industrial Robotics (AFRI)

Type A Manipulator with manual control.

Type B Automatic manipulator with preset working cycles; with end-strokes; controlled
by PLC; electrical, pneumatic o hydraulic actuators.

Type C Programmable robot; continuous trajectory or point-to-point; without knowl-
edge about its environment.

Type D The robot is able to acquire data from its environment, and thus adapts to its
task.

2.3 Industrial Applications

The industrial robots are used in many applications, mainly for repetitive, boring and
heavy tasks. The advantages of using a robot are: the safety is increased (no operators
can be injured) and a robot never misses any operation and performs equally well
throughout the day.

The industrial applications are divided into two groups: processing and handling.

Processing In these applications the robot performs some task on a piece. The robot is
a working part inside the process:

• Welding: Spot welding, Arc welding, Laser Welding,. . .

• Surface treatment: painting, spraying, metal coating, sealing,. . .

• Machining: drilling, grinding, deburring,. . .

• Cutting: plasma cutting, acetylene cutting, oxycutting, water jet cutting,. . .

Handling The robot only handles the parts.

• Assembly.

• Machine tending.

• Transportation.

• Palletizing.

• Packing.

• Testing.



26 Chapter 2. Introduction to Industrial Robotics

38%

48%

4%
2% 4% 4%

Robots in Spain in 2008

Distribution by application

Handling and machine 

loading/unloading

Welding

Material applying

Cutting and machining

Assembling and dis-

assembling

Other

Figure 2.1: Robot applications.

However, the main applications are welding and handling. Chart 2.1 summarizes the
approximated percentage.

In Spain, welding was the predominant application at the end of 2008 (48%). The
second largest application area was handling and machine tending (38%). The motor
vehicle industry is by far the largest user, accounting for as much as 64’7% (see figure
2.2). The second largest user was rubber and plastic manufacturing (8’96%), see figure
2.3. The metal product industry only accounted for 4’45% 1.

1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008

0

5000

10000

15000

20000

25000

30000

35000

Robots in Spain

Car sector vs. other sectors

No Auto

Auto

year

N
u

m
b

e
r

Figure 2.2: Number of robots used in car manufacturing vs other sectors.

1Sources: Estudio Estadı́sticas de Robótica 2009, Asociación Española de Robótica y automatización
tecnologı́as de la producción.



Section 2.3. Industrial Applications 27

Agric
ultu

re, h
untin

g and fo
restry

Mining and quarry

Food and drin
king proccessing

Tobacco proccessing

Textile
 products m

anufacturin
g

Suitc
ases, w

allets, b
elts

 and shoes

Wood and cork proccessing

Paper m
anufacturin

g

Publicatio
ns, p

rin
tin

g and re
productio

ns of re
corded m

ateria
l

Coil, 
oil a

nd nuclear fu
el p

roccessing

Chemistry
 (d

rugs and cosmetic
s) p

roccessing

Rubber a
nd plastic

 m
anufacturin

g

Non m
etalic m

ineral p
roduct m

anufacturin
g

Basic m
etal a

nd alloy m
anufacturin

g (ir
on, s

teel, a
luminum, c

opper) m
anufacturin

g

Metal p
roducts except fr

om m
achine and equipment m

anufacturin
g

Industria
l m

achine m
anufacturin

g

Electric
al a

ppliance m
anufacturin

g

Offic
e, a

ccountin
g and in

form
atic

s product m
anufacturin

g

Electro
nic components (e

xcept L
CD semiconductor) m

anufacturin
g

LCD semiconductor m
anufacturin

g

Radio, T
V and other c

ommunicatio
n device m

anufacturin
g

Other e
lectro

nic device m
anufacturin

g

Medical d
evice, a

ccurate system, o
ptic

s and clock m
anufacturin

g

Motor v
ehicle m

anufacturin
g

Motor v
ehicle, tr

ailer a
nd convoy bodywork m

anufacturin
g

Motor v
ehicle part  

manufacturin
g

Other tr
ansporta

tio
n equipment m

anufacturin
g

Suministro
 de electric

idad, g
as y agua

Building

Reseach and te
aching Other s
ectors Not c

lassifie
d

0,
00

%

5,
00

%

10
,0

0%

15
,0

0%

20
,0

0%

25
,0

0%

30
,0

0%

0,
02

%
0,

02
%

6,
06

%

0,
11

%
0,

10
%

0,
28

%
1,

18
%

0,
17

%
0,

00
%

0,
04

%
0,

04
%

8,
96

%

1,
18

%
0,

40
%

4,
45

%

1,
70

%
1,

64
%

0,
18

%
0,

27
%

0,
13

%
0,

53
%

0,
23

%
0,

30
%

22
,7

9%

16
,1

8%

24
,9

2%

0,
84

%
0,

24
%

0,
50

%
1,

42
%

0,
81

%

4,
31

%

R
ob

ot
s 

in
 S

pa
in

 in
 2

00
8

C
la

ss
ifi

ca
tio

n 
by

 s
ec

to
rs

Percentage

Figure 2.3: Distribution of the Spanish robots depending on economial sectors.



28 Chapter 2. Introduction to Industrial Robotics

2.3.1 Welding

One of the most common uses for industrial robots is welding. Welding robots have five
or even six axes, since two or three wrist axes are necessary for proper orientation of
the welding tool. Welding robots are mostly used in welding car bodies, and electrical
household appliances. There are two types of welding: spot welding and arc welding.

In spot welding process, the robot will follow a programmed path (trajectory)
repeatedly. This process can work in two ways, depending whether the robot handles
the welding tool or not:

• Fixed workpiece: The piece being welded is fixed and the robot carries the welding
tool. So the robot has to have a high payload in order that it can support the weight
of the tool. Moreover, a large workspace can be needed for complete the task.

• Fixed welding tool: If the workpiece is not too big. Then the robot grips and places
it in the adequate position.

The welding tool is like a pincer of a crab. When it (or the workpiece) is placed in the
proper location, the welding tool sparks and produces a welding spot. The precision of
the robot is not too critical.

There are several types of arc welding: MIG, TIG, CO2. But all of them require that
the robot handles a torch and tracks a specific path. High precision and repeatability is
required in order to create a good weld.

Figure 2.4: Different examples of welding processes.

2.3.2 Surface Treatment and Painting/Spraying

This application is very common in robotics because a robot is highly efficiency and can
save up to 30% of the paint/material. It usually needs complex trajectories but it can
be tracked with low precision. Robots are even more necessary in this area, because the
paint (or other material concerned) to be applied could be toxic to humans. Samples of
surface treatments are: sealing, coating, water cleaning, . . .



Section 2.3. Industrial Applications 29

Figure 2.5: Painting

2.3.3 Cutting/Machining

Cutting can be done by using several technologies such as plasma cutting, water jet
cutting, laser cutting, oxycutting. Among the machining processes, we can mention
drilling, grinding, deburring,. . .

Figure 2.6: Cutting.

All of them (cutting and machining) need very high precision in tracking trajectories.

2.3.4 Assembly

Assembly accounts for approximately 33% of the applications of the world’s robot stock.
Many of these robots can be found in the automotive and electronics industries.

Figure 2.7: Assembly



30 Chapter 2. Introduction to Industrial Robotics

It could be said that assembly is an easy task for humans, but quite complex for
robots. One sample is the peg-in-hole operation. In this case, it is very important to have
a good sensor system. The SCARA robots are the most commonly used robots for this
application.

2.3.5 Disassembly

This application is quite new. It is focused on dismantling goods in order to recycle.

2.3.6 Machine Tending/Handling

This is another interesting application for industrial robots: it is very repetitive and, in
some cases, hazardous for humans. One example is furnace tending.

Figure 2.8: Handling.

2.3.7 Packaging/Palletizing

Packaging/palletizing is still a minor application area for industrial robots, accounting
for only 4’24%. This application area is expected to grow as robots become easier to
handle. The requirements are big workspace and heavy payload.

Figure 2.9: Palletizing.



Part II

Industrial Robotics

31





Chapter 3

Industrial Robot Programming

3.1 Introduction

When we program, we identify and specify a series of basic actions which, when
executed in the specified order, achieve some specific task or realise some specific
process. So, before we begin to program anything we need to clearly identify the task or
process to be programmed. Another term for basic actions is operations or commands.

We need to understand how programming and control are related in the context of
industrial robots. We can begin to do this by considering a kind of programming we
are all familiar with: computer programming. When we program a computer, the basic
actions depend the level at which we are programming the computer. If we are using C or
C++, the basic operations will include things like addition, subtraction, division and the
multiplication of numbers, reading and writing operations, etc. If we are programming
using the Assembler language or even the Machine Code of the computer, then the basic
operations are much more primitive, they are binary or bit string operations, operations
in 8, 16, or 32 bits.

The different kinds or levels of computer programming can all be translated
(compiled or interpreted) into the Machine Code of the computer that executes the
program. We will call the Machine Code instructions the most basic actions of the
computer.

One thing we have to notice is that the way a program is executed definitely needs
some kind of control, to make sure that the right operations (basic actions) are performed
in the right order, and at the right time, perhaps, as specified by our program. But this is
control of the program. It is not control of the basic actions in computer programmming.

In other words, in the case of the computer, no feedback control is used to make
sure that the effects or results of the basic actions are always the same, and as they
should be. This means that none of the basic actions need or have specified reference
values that are used as input to a controller.

What about robots? Do the basic actions of a robot need control? As before, to answer
this question we first need to ask what are the basic actions of a robot? In the context of

33



34 Chapter 3. Industrial Robot Programming

this course, we will consider two types of basic robot actions: on the one hand, some
calculus as the computers; 1) typical calculations as with any computer program, and
2) robot specific operations, i.e. individual joint movements. The end-point motion of
the robot is composed (in some way) of all the movements of the individual joints of the
entire robot arm.

Our question then becomes, do the joint movements (the robot specific actions)
need explicit feedback control? The answer is ’yes’; in general, the joint motions of
an Industrial robot arm do need control. There are, however, exceptions to this, as we
will see. We will also see that the kind of control needed, when it is needed. In other
words, the control of robot joint movements and positions usually need the action from
some controller. We will see the reasons for this when we deal with different control
algorithms in Chapter 10.

programming a. . .


computer


calculations
data input/output
. . .

robot


same as computer
digital/analog input/output
end-effector motion 7−→ needs control

Table 3.1: Computer programming vs. robot programming.

In a robot program, just as in a computer program, it is usually more convenient to
specify actions at a higher level than that of the most basic actions. In particular, it is
better if we can specify positions, orientations, and movements of the robot end-point,
rather than have to specify the positions and movements of all the individual joints.

Position sensor/
Force sensor PC program

Controller

actual 
value

reference 
value

+_

Power driver

actuators

Figure 3.1: Control loop of a robot.

The execution of robot programs that specify whole-robot movements thus requires
some means of composing these specified movements from the most basic actions
available, individual joint positions and motions. Again, just as in computer programs,
which are compiled or interpreted into the machine code instructions of the computer,



Section 3.2. Levels of Robot Programming 35

the generation of the individual joint movements needed to realize some specified whole-
arm motion or some specified end-point motion or action, also needs some kind of
control.

3.2 Levels of Robot Programming

We can distinguish four different types, or levels (as they are sometimes called) of robot
programming, based on the different types of basic actions that are specified in the
programs that are developed at each of these four levels. The four different levels are:

• Low-level programming, which can be further subdivided into:

Joint-level programming in which the basic actions are defined in terms of
positions of the individual joints of the robot arm: joint angles in the case of
rotational joints and linear positions in the case of linear or prismatic joints. At
this level, basic actions can also be defined in terms of velocities of movement
of individual joints, but this is unusual. Example:

moveTO q_ini
moveTO q_approx
openGRIPPER
moveTO q_get
closeGRIPPER
moveTO qf

Robot-level programming in which the basic actions are defined in terms of
positions and orientations of Pe, in other words, in terms of the position and
orientation in space of the frame of reference fixed to Pe. At this level basic
actions can also be defined in terms of particular kinds of movement of Pe in
space, straight lines, or circular arc movements, etc., and these definitions may
also include a specification of the speed of the movement, such as a constant
speed straight line movement of Pe. Example:

move to P1
circle to P2 by P3
line to P4
open gripper
line to P5
close gripper
line to P4

• High-level programming, which can be further subdivided into:

Object-level programming in which the basic actions are operations to be per-
formed on the parts or objects to be manipulated or assembled, or relationships
that must be established between parts. To illustrate this idea, here is a short,
very simple example, which involves putting one block on top of another.
Example:



36 Chapter 3. Industrial Robot Programming

pickup BLOCK-A by SIDE-A1 and SIDE-A3
move BLOCK-A to LOCATION-2
pickup BLOCK-B by SIDE-B1 and SIDE-B3
putdown BLOCK-B on-top-off BLOCK-A
with SIDE-A5 coplanar-with SIDE-B6 and
with SIDE-A1 coplanar-with SIDE-B1 and
with SIDE-A2 coplanar-with SIDE-B2

Here BLOCK-A and BLOCK-B are both the same size, with the
sides numbered as 1 to 4, the top face as number 5, and the bottom
face as number 6. The coplanar-with relationships specified in the
last command of this short Object-level program are the three spatial
relationships needed to completely locate BLOCK-B with respect to
BLOCK-A in space. For this program to be a complete program that
could be compiled or interpreted into actual robot commands, we would
need to add geometric descriptions of the two objects involved, BLOCK-
A and BLOCK-B, which include definitions of the features such as
SIDE-A1, SIDE-A3, etc., together with definitions for LOCATION-2 and
any other locations used.

Task-level programming in which the basic actions specified by the program are
complete tasks or subtasks, such as:

put BLOCK-B on top of BLOCK-A
paint-the car-body red
assemble the gear-box

For these kinds of programs to work, at the Task-level, the robot system would somehow
need to know about blocks, car bodies and paint colours, and gearboxes and the parts
that make them up. Providing the system with this kind of information is not easy. Joint-
level programming and Robot-level programming are still the most widely used kinds of
programming in industrial robots. There have so far been no successful Object-level
programming languages, and these remain the subject of research, mostly in University
research labs. There are also no industrially used Task-level programming languages,
and these too remain the subject of research.

Both Object-level and Task-level programming requires that the robot system have
some kind of intelligent control.

3.3 Robot Programming Methods

We usually divide robot programming methods into two different kinds:

• On-line programming methods, and

• Off-line programming methods.

On-line programming uses the robot to be programmed to generate the program.
Off-line programming does not need access to the robot to develop the program, at



Section 3.3. Robot Programming Methods 37

least, not until the final testing of the program. It involves writing a program using a
text-based robot programming language.

3.3.1 On-line Programming Methods

Programming by guiding or programming by teaching. This involves physically
guiding (moving) the robot arm through the movements and actions that the robot
has to perform latter, while the robot system is recording the positions (and perhaps
trajectories).

3.3.1.1 Point Recording vs. Trajectory Recording

If the controller only records (in its memory) static configurations of the robot arm, and
not movement trajectories, it is called point-to-point programming (PTP), and each
configuration is identified by a number or symbolic name. (Note that the term ”point-to-
point” is not a very good one here, since what is really recorded are the configurations of
the robot arm, in other words, the positions of all the joints). Execution of the program,
therefore, only involves the robot control system moving the robot arm to each of the
recorded configurations in the sequence specified by the program, at some rate which
may not be specified by the programmer (trajectory programming).

If the controller can record the trajectories that the end-point of the robot arm is made
to move through, it is called trajectory programming. This is in fact similar to point-to-
point programming except that many more ”points” (robot configurations) are recorded.
The number needed, and how far apart they are, is also determined automatically by
the robot control system. It essentially samples the motion of the robot arm while the
person programming it moves it in the desired way. Execution of the program is then just
a matter of repeating the programmed trajectories in the order they were programmed
in, again, at some speed that may or may not be specified by the programmer.

Other kinds of actions are not usually possible to program with these methods of
programming, although there is usually some way of programming the opening and
closing of a gripper, or the starting and stopping of a paint spray gun, or a spot welding
gun, etc.

3.3.1.2 Guiding Techniques

During the on-line programming, the motors of the robot can either be off or on. If the
motors are off, this kind of programming is called passive on-line programming.

The main advantage of passive on-line programming is that it is quite easy to do, and
it does not need any special programming skills or training.

The main disadvantages are:

• It is not practical for large or heavy robots;



38 Chapter 3. Industrial Robot Programming

• It cannot be used in hazardous situations;

• High accuracy and straight-line movements are difficult to achieve, as are any other
kind of geometrically defined trajectory, such as circular arcs, etc.

• It is difficult to incorporate external sensor data;

• Synchronisation or coordination with other robots or other machines in the work
cell is difficult.

For robots that are not too large and which are only used to do relatively simple
tasks that do not involve coordination with other machines or robots, this method of
programming remains the most convenient and low-cost.

In master-slave guiding or guiding by dummy/mannequin, the operator manually
moves a dummy robot arm through the motion sequence of the work cycle. The dummy
arm has the same configuration as the robot arm. The joints of the dummy arm are
equipped with position sensors that are used to sample robot’s motion. After recording
the program the real robot arm is positioned in place of the dummy arm. The advantage
of the dummy is that it is lighter than the actual robot, so the operator’s fatigue is
reduced. The disadvantage is the cost of the dummy and the space required for storing
it.

Another guiding technique is Teach-box Programming. This uses what is called
either a teach-box, or programming pendant, or a teach pendant, and active on-
line programming.

Figure 3.2: Kawasaki’s teach pedant (left); motoman’s teach pedant (right).

A Teach-box (or programming pendant, or teach pendant) is a control panel
connected to the robot control system which can be used to instruct the robot arm
to move to particular configurations, or perform other operations, such as opening and
closing the gripper fingers, or move a particular joint by a specified amount. Samples of
teach pendants are shown in Figure 3.2: The left one is from a Kawasaki Robot 1 and
the right one is from a Motoman Robot 2.

1http://www.kawasakirobot.com/
2http://www.jcdrobotics.com/



Section 3.3. Robot Programming Methods 39

Some teach pendants may also have a Joystick that allows the programmers to move
the robot arm, either in terms of individual joint movements, or in terms of the end-point,
Pe.

The Teach-box typically has a set of buttons and allows particular configurations
or operations to be recorded as steps in the program. It may also be possible to store
particular movements that use defined trajectories.

Using this method of programming requires that the motors of the robot are on! It
is thus sometimes called active on-line programming. It also means that it is potentially
dangerous, since there is a great temptation for the programmer to get close to the robot
while it is being programmed to better see what is happening or to better adjust or align
its gripper position and orientation, for example. This should NEVER be done! The robot
must always be put into safe mode before moving into its workspace.

This method of programming is sometimes called Extended Teach-box program-
ming, if it is possible, via the Teach-box interface, to include movement speed
specifications, and/or to specify other conditions of the robot movements and actions,
such as the type of trajectory to use between two configurations.

3.3.1.3 Programming by Pasive Guiding vs. Programming by Teach Pendant

The Figure 3.33 shows clearly the difference between these two programming methods:
whe using the first method, the programmer moves directly the robot arm that is not
powered, and the second one, the programmer controls robot movements by the teach
pendant.

All of these methods, programming by guiding and programming using a teach-box,
are methods for On-line programming. Programming by guiding is essentially a method
for Joint-level programming.

Figure 3.3: Programming by pasive guiding vs. programming by teach-pendant.

Teach-box programming is a method that usually allows both Joint-level and Robot-
level programming to be mixed in the same program. It is sometimes more convenient
to move just one joint, to establish some desired robot configuration, than to try to

3http://www.reisrobotics.de/



40 Chapter 3. Industrial Robot Programming

command the necessary movement of the end-point. At other times, it is much easier to
move the end-point, Pe, of the robot arm.

Although both these methods are still much in use, they both suffer from two
important disadvantages:

• On-line programming needs access to the robot while it is being programmed. This
means that the robot cannot be doing anything else while it is being programmed,
and this may also mean that no other robot or related machine can be doing
anything, since they depend upon each other. If there is more than one robot, each
one has to be individually programmed. This means that a multi-robot production
line or multi-robot system has to be taken out of productive work for a long period
of time. This is expensive!

• The programs generated by on-line programming methods only exist in the memory
of the robot control system, and it may not be possible to transfer these to any
other system, a PC, for example, or to even print out the programs. This makes
the programs difficult to document, maintain, and modify. This too introduces
extra costs into the programming and re-programming of robots using On-line
programming methods.

On-line programming methods can only be used for Joint-level or Robot level
programming. They cannot be used for High-level programming.

3.3.2 Off-line Programming Methods

Off-line robot programming methods involve preparing a text file containing the robot
instructions and other declarations that form the program the robot is to execute.

In this sense, it is much like programming a computer, in C, C++, Java, or some
other programming language. When programming, it is recommended to use good
programming and software engineering practices. However, some robot programming
interfaces are so simple that they allow to write code in a way that the programs
will be hart to maintain. For example, many robot programming languages still have
goto statements, a well-known source of bugs and errors in any kind of program.
The programming environments, that support the program development process, are
also typically somewhat primitive in comparison to modern computer programming
environments.

As in computer programs, the program text file specifies the sequence of the basic
actions to be performed, together with other information needed to control the maximum
speed of movement (of the end-point), or types of trajectories to follow between two end-
point configurations.

The main advantages of Off-line programming are:

• Programs can be developed without needing to use the robot,



Section 3.4. Examples of Robot Programming Languages 41

• The sequence of operations and robot movements can be optimised or easily
improved, once the basic program has been developed,

• Previously developed and tested procedures and subroutines can be re-used,

• External sensor data can be incorporated, though this typically makes the
programs more complicated, and so more difficult to modify and maintain, but
more powerful,

• Programs can be tested and evaluated using simulation techniques, though this
can never obviate the need to do final testing of the program using the real robot;

• Programs can more easily be maintained and modified; and

• Programs can be properly documented and commented, at least more easily.

Off-line programming can be used to develop Robot-level programs and High-level
programs. It is possible to use Off-line methods for Joint-level programming, but it is
very seldomly done in practice.

3.3.3 Robot Programming Architecture

The relationship between On-line and Off-line programming and the robot control loop
in an Industrial Robot system is illustrated below.

Controller

Task 
specification

off-line programming 
Computer

Robot

RS232

on-line programming 

Figure 3.4: Relationship between On-line and Off-line programming.

3.4 Examples of Robot Programming Languages

Some examples of Robot Programming languages are:

• Robot-Level programming languages:



42 Chapter 3. Industrial Robot Programming

– AL, University of Stanford, USA (1974);

– AML, IBM (1982);

– LM; University of Grenoble (1989);

– VAL-II, Univation (1983);

– V+, Adept (1989);

– RAPID, ABB (1994);

– ARLA, ASEA (1979).

• Object-Level programming languages:

– LAMA, MIT AI Lab (1976);

– AUTOPASS, IBM (1977);

– RAPT, University of Edinburgh (1978-86).

3.5 Robot programming Language Architecture

This section is focused on depicting the structure of robot programming languages. Many
similarities with respect to computer programming languages can be found:

• Variables: integers, floats, booleans, characters, arrays, etc. . .

• Flow control: for loop, while loop, do. . . while loop, if. . . else if. . . else statements,
etc. . .

• Input/output: keyboard/ screen

• Execution policies & synchronization: processes, threads, interrupts/triggers, wait
statements, events, etc. . .

• Operating system utilities: directory, copy/delete/move, help, etc. . .

However, we can find another commands that are specific for robot programming
languages:

• Points: stored in cartesian/joint space

• Movement control/ speed control/trajectory profile

• Gripper: open/close

• Input/Output: sensors/actuators (both of them can be analog or digital)

Now, it is time for the design phase of a program. During this phase, the programmer
can help himself by means of pseudocode and flowcharts. The pseudocode is a kind
of robot program language but invented by the programmer. Samples of this type of
code can be seen at thissection . However, the programmer would like to ’plot’ his



Section 3.6. Robot Program Development Process: the six steps 43

program in order to have a graphical representation of how it works. This can be done
by flowcharts. So a flowchart is a collection of symbols, connected by arrows, which
show the relationshionship among the different commands in the program: when and in
which order they are executed. A sample of these symbols is given below.

start of a
program

end of a 
program

process

?

no

yes

decision

i=1...n

i=1...n

for loopgoto

Figure 3.5: Common symbols used in flowcharts.

3.6 Robot Program Development Process: the six steps

In this section we are looking at the six steps in the process of developing good and
reliable robot programs. The Basic Steps are:

• Step 1: Analyse and decompose the task into a series of operations on the objects
involved, and specify the order in which the operations must be executed.

• Step 2: Identify and specify all the situations needed to program all the movements
and actions of the robot.

• Step 3: Identify any type of repeated actions and specify them as subroutines with
parameters.

• Step 4: Design and develop the complete robot program and its documentation.

• Step 5: Test and debug the program using a simulator of the robot and its
workspace.

• Step 6: Test the program on the real robot.

To illustrate the program development process with a concrete (though simple)
example, we will use the assembly task defined in the figure below.

Task: Move Block A and Block B to form a tower on top of Block C, in the order C, A,
B, from the bottom. They are all the same sizes. All the Blocks must be well aligned in
the final tower assembly.



44 Chapter 3. Industrial Robot Programming

D
C

B

A

Figure 3.6: A simple assembly task.

3.6.1 Step 1: Analyze and decompose the task into a series of operations
on the objects involved

The goal of this first step is to analyse and decompose the task into a series of operations
on the objects involved, and specify the order in which the operations must be executed.

For example, to perform the task defined above we might decompose the task into
the following sequence of operations on the three Blocks (pseudocode):

Remove Block-B from on top of Block-A,
Put block-B down by the side of Block-A;
Put Block-A on top of Block-C;
Put Block-B on top of Block-A;
Align Block-A with Block-C;
Align Block-B with Block-A

The three operations for block placement are obviously necessary. The two alignment
operations are needed to make sure that each block is correctly aligned with the one
below after it has been put down. Just putting one block down on top of another typically
is not enough to achieve accurate alignment, so these extra operations are needed.

Knowing that these two alignment operations will be needed is a matter of experience,
and this illustrates the fact that each step of this programming process needs good
experience of the whole process before it can be done well. The sequence of five
operations defined above is not the only possibility here, nor is it the best one! For
example, it is probably better to align Block-A with Block-C immediately after Block-A
has been put on top of Block-C, since the robot is already at Block-C after doing this.



Section 3.6. Robot Program Development Process: the six steps 45

This, of course, depends upon there being no change to this alignment when Block-B is
put on top of Block-A. If this is done slowly, this will probably be the case. But we can
define the sequence of operations by a flowchart:

program:
do_tower_CAB

Remove Block-B 

Put Block-A on top 
of Block-C

Put Block-B on top 
of Block-A

Align Block-A with 
Block-C

Align Block-B with 
Block-A

end program:
do_tower_CAB

Figure 3.7: Flowchart sample.

If the fingers of the gripper are wide enough, and if the robot has sufficient degrees of
freedom, another possibility is to pick up Block-A and Block-B both together -from the
side, rather than form the top- and to put them on top of Block-C directly. This would
significantly reduce the total number of operations needed, and so reduce the execution
time of the program, but it is also a more risky kind of operation to do, it may be more
likely to fail.

If moving Block-A and Block-B together is considered not safe enough, or not possible
with the gripper the robot has, or the robot does not have sufficient degrees of freedom,
another possibility is to move Block-C. There is nothing in the task definition that says
that this is not possible!

Moving Block-C to be near Block-A means that all the operations on Block-A and
Block-B involve shorter trajectories, they will therefore be quicker. Nor will they need to
pass over the big Block-D, which also means there is less risk of hitting it or other things
on the way.

This illustrates that robot tasks are not usually completely specified. It is then the
responsibility of the programmer to identify and consider all the possibilities for how the
task may be completed, what operations will be needed in each case, and how reliable
and efficient (in time) each one may be. It is very important that all these aspects are



46 Chapter 3. Industrial Robot Programming

properly considered at this stage of the program development process. Changing the way
the task is to be done later on is always more expensive and more prone to errors.

3.6.2 Step 2: Identify and specify all the situations needed to program all
the movements and actions of the robot.

A Situation is a particular configuration of the robot arm and the distribution of elements
in the robot workspace, where the parts currently are and how they are oriented. A
configuration of the robot is defined by the position and orientation of the frame of
reference attached to the end-point, Pe, of the robot, or by a set of all the joint positions
of the robot arm. So, we might specify the following situations in the case of our example
assembly task:

Location
name

Description

P0 The initial configuration of the robot and location of the parts.

PA0 A situation in which Pe coincides with the centre of Block-A, used to define the
grasp location of Pe needed for taking Block-A in the gripper, in its initial location.

PB0 A situation in which Pe coincides with the centre of Block-B, used to define the
grasp location of Pe needed for taking Block-B in the gripper, in its initial location.

PC0 A situation in which Pe coincides with the centre of Block-C, used to define the
grasp location of Pe needed for taking Block-C in the gripper, in its initial location).

P1 A situation in which Pe is vertically above the centre of the top face of Block-B
(in its initial location, PB0), from which the robot can perform a reliable get-part
action on Block-B

P2 A situation in which Pe is vertically above the centre of the top face of Block-A
(in its initial location, PA0), from which the robot can perform a reliable get-part
action on Block-A

PB1 A situation in which Pe is to one side of Block-A, at a height equal to half the
height of Block-A, and at a suficient distance from Block-A for the robot to have
room to put down Block-B, used to define the put-down action of Block-B after it
has been taken off the top of Block-A.

P3 A situation in which Pe is vertically above PB1, the centre of the top face of Block-B
(in its intermediate location), from which the robot can perform a reliable get-part
action on Block-B.

PA1 A situation in which Pe coincides with the final location of Block-A, used to define
the put-down action of Block-A, on the top of Block-C.

P4 A situation in which Pe is vertically above PA1, the final location for Block-A, in
which the robot can perform a reliable put-down action on Block-A.

PB2 A situation in which Pe coincides with the final location of Block-B, used to define
the put-down action of Block-A, on the top of Block-B.

P5 A situation in which Pe is vertically above PB2, the final location for Block-B, in
which the robot can perform a reliable put-down action on Block-B.

P6 A situation in which Pe is above Block-D, and the parts are in any location, used
as an intermediate situation in the definition of collision free trajectories from
one side of the table to the other.

Table 3.2: Specification of the positions needed in the program.



Section 3.6. Robot Program Development Process: the six steps 47

D

PC0

PA1

PB2

PB1PA0

PB0

P3P2

P1 P4

P5

P7
P6P0

Figure 3.8: Definition of a simple assembly task.

It is a good idea to try to identify and specify situations that can be used to program
different robot actions. P6 is an example of this: it is used to define a via-point for all the
robot motions that have to pass over Block-D, a location through which the trajectory
of the motion of Pe must pass. The end-point of the robot has to pass through a via-
point (ex. P2) to approach, or move away from, a target-point (ex. PA0) when we want to
grasp, or leave, a workpiece at this target point. The situations of a via-point is always
vertically above the related target-point. When the robot has to move parts/workpieces
large distances, it can go fast. But when some put-down or get-part action must be
taken, the displacements from, or to, the approximation-point and to, or from, the
target point are done very slowly in order to get more accurate positioning.

Considerable care must also be taken in defining situations such as PB1, used to
define the put-down action for Block-B. It is best to add a very small amount of height
to the location of end-point defined by this situation so that the robot actually lets go of
Block-B when it is a very small distance above the table, but not actually touching it.
When the robot opens its gripper, Block-B will then fall a very small distance onto the
table.

We do this because there is always some error in the real position and orientation of
Pe, and if we define PB1 to locate Pe exactly half the height of Block-B above the table,
there is a chance that when the robot actually performs this action, it will try to move
Block-B further down than the table will allow, due to a small error in the real location
of Pe. This will result in a reaction force from the table on the robot, and if this is too
large, the robot will detect this as a surge in motor current demanded by its position
controllers, and typically stop. The definitions of the situations thus need to take into
account the possible consequences or effects of the small errors that always occur in the
robot actions.



48 Chapter 3. Industrial Robot Programming

3.6.3 Step 3: Identify any types of repeated actions and specify them as
subroutines with parameters.

Just as in any kind of computer program, if the robot needs to perform the same
sequence of movements and actions at different points in a program, it should use the
same program code to do this. This is best done by defining subroutines. This both
significantly improves the maintainability of the program and reduces the probability of
programming errors.

In our example task, we can identify block grasping, a get operation, and block
placement, a put operation, as both requiring similar sequences of movements, and that
are needed several times. So, for example, we might define a subroutine, called Get-
Put, for both picking up a block and for putting a block down from or in some specified
location. This subroutine takes three arguments Qinit, which defines the location of Pe
at the start of the pick-up or put-down operation, Qgetput, which defines the location of
Pe when the robot either closes the gripper fingers to get a part or opens them to put
down a part, and Action, which defines whether it is a pick-up or put-down action that
is to be performed.

DefProc GET-PUT(Q_init, Q_getput, Action)
{

If Current_Situation = Q_init Do
{

If Action="GET" Do Open Gripper
Else Do
{

If Action="PUT" Do
{

If Gripper=NOT CLOSED Do
FAIL with Write(Nothing in gripper!);

}
Else Do FAIL with Write(Action specified not known!);

}
Move_to Q_getput with Speed=LOW and Accuracy=HIGH;
If Action="GET" Do Close Gripper
Else Do

If Action="PUT" Do Open Gripper;
Move_to Q_init with Speed=LOW and Accuracy=HIGH;

}
Else Do FAIL with Write(Robot NOT currently at Q_init!);

}
EndDef;

Figure 3.9: Get-Put subroutine, written using pseudocode.

As we can see from the code for this subroutine, most of it is to test the validity
of the values of the parameters; to make sure that the get or put action can really be



Section 3.6. Robot Program Development Process: the six steps 49

subroutine:
GET-PUT

Robot not in Q_init

OPEN gripper

Yes

No

No

Yes

Curr. Sit.=
Q_init?

GET?

PUT?

Gripper 
CLOSED?

Yes

NoNothing in the 
gripper

Unknown action No

Error

Speed low
Accuracy high

Yes

Move to Q_getput

GET?No

Yes

OPEN gripper CLOSE gripper

Move to Q_getput

Speed high
Accuraty low

end subroutine:
GET-PUT

Figure 3.10: Flowchart of the Get-Put subroutine.



50 Chapter 3. Industrial Robot Programming

performed.

The Move to action is also defined to be a low speed high accuracy movement. Other
large motions, to bring Pe to Qinit, for example, can be made with faster lower accuracy
movements.

This subroutine is not completely defined here, since it also needs proper comment-
ing and documentation, and testing!

3.6.4 Step 4: Design and develop the complete robot program and its
documentation.

Even after the operations, situations, and any subroutines have been specified, devel-
oped, and tested, there is usually still a lot more work to be done, and decisions to be
made, to develop and document a complete robot program. This development, and the
decisions made, needs to be consistent with the decisions and results of the previous
three steps.

3.6.5 Step 5: Test and debug the program using a simulator of the robot
and its workspace.

Most modern off-line robot programming environments provide simulators that can
be used to model and to simulate the robot to be programmed, as well as any other
equipment and objects in the workspace of the robot.

Using a simulator can make testing and debugging a program much easier, but this
benefit is only gained if the simulator is based upon a good model of the actual robot and
its workspace and contents. Developing a good simulation model can often be a difficult
and time consuming process in itself.

If you are not, or were not, the person who developed the robot simulator model you
use, it is very important that you know or find out how good a model it is of the real robot
or robots you are programming. This step obviously only applies to Off-line programming
methods.

3.6.6 Step 6: Test the program on the real robot.

After a program has been developed, debugged, and tested using a simulator, it must be
tested on the real robot! A simulator can never be a sufficient test of a robot program.

If, as is often the case, you are developing a program to be executed by more than
one robot, for example, there may be ten robots in the production line which all have to
do the same task at the same time, then you will need to decide on how many of these
robots you will need to test the program on.

Testing the program on only one of them probably is not enough. Testing it on all of
them may be more than is really needed. In order to be able to decide, you will need to



Section 3.7. Some Things to Think About 51

know a lot about the history and performance of each of the robots you are programming.
The less you know about the robots being programmed, the more robots you will need
to test the program on.

Usually you can divide a group of robots (ten, in this example) into subgroups, and
test the program on one robot from each subgroup. Subgroups may be defined in terms
of the age or number of operating hours of the robots, and/or the frequency and type
of maintenance they have received, and/or the number and type of failures they have
suffered.

As we have seen, the complete robot programming process, involves many decisions
and choices, and each one has consequences and implications for the subsequent
steps. It is therefore very important to properly and adequately record and document
all these decisions and choices, together with the reasons for them, during the program
development process. The design and rational of the program needs to be recorded for
others to be able to use them. Doing this, just like documenting the program, and doing
it well, is a matter of good professional practice. Failure to do it, or do to it well enough
could result in expensive failures or accidents, or unnecessary production costs.

3.7 Some Things to Think About

1. In what important ways is programming a robot different from programming a
computer?

2. Why are robot programming languages and robot programming environments not
as sophisticated as programming languages and programming environment for
computers, C++ and Java on PCs, for example?

3. How can you know when a robot program is working properly?



52 Chapter 3. Industrial Robot Programming



Chapter 4

Robot Geometry

4.1 Dimensions and Degrees of Freedom (DoF)

In this part of the course we will consider the different robot geometries that can be
obtained by connecting different numbers of rigid elements with different numbers and
types of joints. The relationship between the geometry of a robot and its workspace will
then be introduced.

We will begin by considering Dimensions and Degrees of Freedom (DoF).

There are six spatial dimensions and we can associate a Degree of Freedom with
each one. There are three dimensions of position in space, plus three dimensions of
orientation in space, giving six in total. Thus any object has, in principle, up to six
Degrees of Freedom or Degrees of Movement.

Industrial robot manipulators, like other machines, must have some number of DoFs
in order to be able to move and orient objects or other tools, to be able to position and
orient the end point Pe.

An important geometric property of the real world is that...

• . . . to completely position anything in 3D space we only need linear DoFs, and . . .

• . . . to completely orient anything in 3D space we only need rotational DoFs

So, the definition of the position of an object in space does not depend on its
orientation, and the definition of the orientation of an object in space, does not depend
upon its position.

Thus, the position and orientation of an object in the real world are independent
properties. This is an important and remarkable property that we will make much use
of here.

An important consequence of this independence of position and orientation is that
the orientation of an object can be completely defined with respect to a local frame of
reference, whereas, the position of the same object needs a global frame of reference.

53



54 Chapter 4. Robot Geometry

In 3D space, we thus need:

• 3 coordinates to completely define position, and

• 3 coordinates to completely define orientation, giving a total of 6 coordinates in
total.

In 2D space, we need two coordinates of position and one of orientation, giving a
total of three in total, and in 1D space, we need one coordinate of position and one of
orientation, giving a total of two.

Thus, to position and orient (and move) objects or tools etc., in 3D space, without
(theoretical) restrictions, a robot manipulator needs at least 6 DoFs (3 DoFs of position
and 3 DoFs of orientation).

In reality, many industrial robot manipulators have 4, 5 or 6 DoFs. Less than 6 DoFs
is usually enough to perform most of the industrial tasks.

The first three DoFs guarantee a correct positioning and the followings are used to
orient.

Robot arms that have fewer DoFs are common, are easier to control, and are generally
cheaper and more accurate, but they may not be easier to program.

Sometimes robots have more than 6 DoFs. They are called redundant robots. Three
reasons for having an extra/redundant DoF can be:

Obstacle avoidance : when the robot manipulator has to work in space occupied by
other objects or equipment, or in a constrained space, having an extra DoF allows
the robot to position and orient its end-point, Pe, while also avoiding contact or
collisions with other things in its space, which it would not be able to do with only
6 DoFs.

Increasing workspace : an extra DoF can also be used to significantly increase the
volume of the accessible workspace of the robot.

Avoiding Singularities : a singular position is a robot configuration in which its
kinematics/dynamics performance become poor. A more detail description of
singularities is detailed latter. An extra DoF can also be used to avoid singularities.

4.2 Types of Joints

A joint is needed for each DoF that a robot manipulator has. We will consider as a joint,
a mechanism that provides the type and amount of movement needed to realise the
particular DoF.

There are two types of DoFs in the 3D space of the real world:



Section 4.2. Types of Joints 55

Obstacle

. . . to avoid an obstacle in a 2D space

. . . to increase workspace

Two links 
alingned: a 

singular 
configuration

. . . to increase workspace

Figure 4.1: Reasons to use extra DoFs or redundant robots.



56 Chapter 4. Robot Geometry

• Linear or displacement DoF, also known as translational or prismatic DoF (P).

• Rotational or orientation DoF (R).

Linear DoF Rotating DoF

Figure 4.2: Basic types of DoFs.

There are seven different basic types of joint that could be used, at least in principle,
to form a robot manipulator’s arm. These are:

Spherical joint , which has 3 DoFs, all rotational (RRR).

Universal joint , which has 2 DoFs, all rotational (RR).

Cylindrical joint , which has 2 DoFs, one translational and one rotational (PR).

Planar joint , which has 2 DoFs, one translational and one rotational (PR).

Prismatic joint ,which has one translational DoF (P).

Rotational joint , which has one rotational DoF (R).

Screw joint , which has one translational DoF (or, it is better to say, it is a transmition
mechanism that converts one rotational DoF into a translational DoF).

To produce actual movement in the directions of the DoFs in a specific joint, each
DoF needs to be motorized and usually somehow controlled. In practice, it is difficult
to motorize more than one DoF in a single joint: it is possible, but expensive. As a
consequence, robot manipulators mostly use types of joints that have only one DoF. Or,
if they use joints with more than one DoF, only one DoF is motorized and controlled, the
other DoFs are left free, and are usually called the passive DoFs of a joint.

Almost all of the robots we will consider in this course will use single DoF joints that
are motorized and controlled.1

A prismatic joint is robust, controlled easily, but a rotational joint has a bigger
workspace and, from a technological point of view, is easier to build.

1Note that this is not like the joints in animals, which typically have multiple DoF all of which are
motorized by muscles and controlled the nervous system.



Section 4.2. Types of Joints 57

Spherical joint

Screw joint Cardan

Cylindrical joint Planar joint

Rotational joint Prismatic joint

Figure 4.3: Types of joints



58 Chapter 4. Robot Geometry

4.3 The Geometry of Robot Manipulators

Robot manipulators are formed from combinations of rigid elements, called links,
connected by joints that allow two connected links to move relative to each other in
one direction, or possibly more than one direction.

By using different types of joints to connect pairs of links, it is possible to construct
robot manipulators that have different basic geometries with different numbers of DoFs.

There are two different ways to combine links and joints to form robot manipulators
(and other mechanisms): in series, or in parallel.

In the case of manipulator, geometries formed of chains of links and joints, i.e., serial
geometries, and given the independence of the degrees of freedom needed for translation
(position) and orientation, it is conventional to dedicate the first three (or perhaps two)
DoFs to the positioning of Pe in space, the positioner, and to dedicate the last three (or
perhaps two or one, in the case of robots with 5 and 4 DoFs), to the orientation of Pe in
space, the wrist.

Strictly speaking, we say a robot is a serial robot when its positioner is composed
of an open kinematic chain, and a parallel robot when its positioner is composed
by a closed kinematic chain.

4.3.1 Serial Geometries

Serial combinations are the most common, but we will consider parallel combinations at
the end of this chapter.

The most common serial geometries for robot manipulators with 3 DoFs for
positioning Pe have the following forms:

• The Cartesian robot,

• The Cylindrical robot,

• The Spherical or Polar robot,

• The Angular or Anthropomorphic robot, and

• The SCARA robot

4.3.1.1 The Cartesian robot

It has three prismatic joints, PPP. They are aligned with the Cartesian axis (figure 4.4).

Advantages:

• It can be programmed and controlled easily.



Section 4.3. The Geometry of Robot Manipulators 59

L 1

L 3

L 3
L2

L 1

Figure 4.4: Cartesian robot

• High accuracy in linear movements can be obtained.

• It has a simple kinematics model.

• There are no singular configurations.

• Its parameters (stiffness, accuracy, repeatability, etc) are constant within its
workspace.

• It can be built using inexpensive pneumatic actuators for pick and place operations.

Disadvantages:

• Its accuracy is low in tracking curved trajectories.

• The ratio between workspace and volume occupied is low.

• The robot’s accessibility is low (unable to reach areas under objects).

• The maintenance of linear actuators is expensive.

4.3.1.2 The Cylindrical robot

It has a rotational joint and two prismatic joints, RPP. To obtain this robot, we can start
from a cartesian robot in which the first prismatic joint is replaced by a rotational joint.
That is to say, the robot’s DoFs are aligned with a cylindrical coordinate system (figure
4.5).

Advantages:



60 Chapter 4. Robot Geometry

L 1

L 1

L2a

L2b

Figure 4.5: Cylindrical robot

• It can be programmed and controlled easily if cylindrical coordinates are used.

• High accuracy in linear movements can be obtained.

• It has a simple kinematics model.

• It is suitable when there are no obstacles facing it and where other machines are
in a radial arrangement.

• The workspace is bigger than the workspace of cartesian robots.

Disadvantages:

• Its accuracy is low in tracking curved trajectories, but better than the cartesian
robot.

• The robot’s accessibility is not quite large.

• The maintenance of linear actuator is expensive.

4.3.1.3 The Spherical or Polar robot

It has two rotational joints and a prismatic joint, RRP. They are aligned with the Spherical
coordinate system axis (figure 4.6).



Section 4.3. The Geometry of Robot Manipulators 61

180

L 2a

L 2b

Figure 4.6: Spherical robot.

Advantages:

• It can be programmed and controlled easily if spherical coordinates are used.

• The workspace is big compared to the workspace of cylindrical and cartesian robots.

• It can pick up parts from the floor.

• It is suitable when there are no obstacles facing it and where other machines are
in a radial arrangement.

Disadvantages:

• The kinematics is complex.

• The maintenance of the linear actuator is expensive.

4.3.1.4 The Angular or Anthropomorphic robot

It has three rotational joints, RRR. Its appearance is similar to a human arm. The
theoretical workspace is given by figure 4.7

L 1
L 0

L 2 L
3 L2+L3

L2-L3

Figure 4.7: Anthropomorphic robot.

Advantages:



62 Chapter 4. Robot Geometry

• It has high dexterity and great manoeuvrability. It can access zones behind
obstacles.

• It can follow complex trajectories.

• It covers a large workspace compared to the small volume of this type of robots.

• The rotational joints are maintained easily.

• It can pick up parts from the floor.

• This is the most commonly used robot in industrial applications.

Disadvantages:

• The kinematics is very complex.

• The control of linear movements is difficult.

• The robot can reach many singular configurations.

4.3.1.5 The SCARA robot.

It has two rotational joints and a prismatic joint, RRP. That is to say, the same DoFs
as those of Cylindrical robots, but with a different arrangement. SCARA stands for
Selective Compliance Assembly Robot Arm. This geometry was invented by Professor
Makino in Japan, in 1982, and is specifically designed for performing vertical action (or
top-down) assembly operations, such as ”chip stuffing”. The theoretical workspace is
given by figure 4.8.

L1

L 3

L2

L 3

L
2

Figure 4.8: Scara robot

Advantages:

• The kinematics is simple.

• The repeatability is high.

• It is well adapted for tasks that must be undertaken on a flat horizontal surface.



Section 4.3. The Geometry of Robot Manipulators 63

Disadvantages:

• It is only suitable for tasks on horizontal surfaces.

4.3.2 Parallel Geometries

Serial manipulators usually have big workspaces with great dexterity. However, their
load capacity is quite small.

To overcome this problem, it is also possible to define geometries formed by
connecting links in parallel. For example, in 2D we can define a parallel geometry as
shown below.

Figure 4.9: 2D parallel robot with only 1-DoF

This robot has one motorized degrees of freedom, Joint 1, which are rotating joint,
and three passive degrees of freedom, Joint 2, Joint 3 and Joint 4. This gives 1-DoF.
Other samples of 2-DoF parallel robots are shown below:

Figure 4.10: Samples of 2-DoF parallel robots: two prismatic.



64 Chapter 4. Robot Geometry

For a 3-DoF parallel robot, we could use the geometry shown below.

Figure 4.11: Samples of 3-DoF parallel robots: Star Robot (left); Mianouwski’s

These robots have three motorized joints, which are again built as three prismatic
joints. The remaining joints are passive, which are each implemented as passive
rotational joints.

These geometries give us 3-DoF parallel robots, but how could we extend this to have
a 6-DoF parallel robot? You should think about this and decide for yourself.

At this point, the question is: how can we distinguish a serial robot from a parallel
robot? The answer is not completely clear. Notice that in all robots we can identify two
main bodies: the first one is fixed (the base of the robot, or 0th link and the second one
is mobile and is considered as the robot’s end-effector/end-point. We classify a robot as
a real parallel robot when these two bodies are connected by several kinematic chains of
only one link. The most common sample of parallel robots is the Stewart platform:

Figure 4.12: The Stewart Platform.

This structure owes its name to D.Stewart2 who designed in 1965 a similar 6-DoF
mechanism for flight simulators. The robot we know as Stewart platform is the design
made by V. E. Gough3 around the same period of time.

The chart below summarizes the differences between serial and parallel robots.

The main advantages of parallel geometry robots are that all the motors can be

2 D. Stewart, A Platform with Six Degrees of Freedom, UK Institution of Mechanical Engineers
Proceedings 1965-66, Vol 180, Pt 1, No 15.

3 Gough, V. E., Contribution to discussion of papers on research in Automobile Stability, Control and
Tyre performance, Proc. Auto Div. Inst. Mech. Eng., pages 392-394, 1956-1957.



Section 4.3. The Geometry of Robot Manipulators 65

Feature Parallel robot Serial robot
Workspace ↓ ↑
Payload and weight of
the robot

↑ ↓

Price of components ↓ ↑
State of art Research Very developed, many industrial

applications
Accuracy and repeata-
bility

↑ ↓

Control complex simple
Applications Increasing Mainly, many industrial appli-

cations
Stiffness ↑ ↓
Dexterity ↓ ↑
Direct kinematics
(qi → Pe)

Complex, multiple solutions. Easy, one solution.

Inverse kinematics
(Pe → qi)

Easy, one solution. Complex, multiple solutions.

Direct statics
(τi → Fe)

Easy, one solution. Complex, many solutions.
Inverse statics
(Fe → τi)

Complex, many solutions. (It is
like a hiperstatic structure).

Easy, one solution.

In singular configura-
tion

It gains DoFs It loses DoFs.

Table 4.1: Comparison between serial and parellel robots.

mounted on the base of the robot, and not at each joint of the sequential chain, as
in serial geometry robots. The links can thus be smaller and lighter, but they also form
a stiff structure.

The main disadvantage of parallel geometries is that the effective workspace of the
robot is quite small in comparison with the overall size of the robot.

These features are quite suitable for machining-tools. So we can find parallel robots
as a machine-tool, but they are called hexapods.

It is also possible to mix serial and parallel geometries in one robot. Then we get
a robot with a balance between the features of a parallel robot and a serial robot. The
following figure shows two samples of hybrid robots:

Figure 4.13: Hybrid robots:Hybrid parallel robot (left), Hybrid serial robot (right)



66 Chapter 4. Robot Geometry

This second one is the most common geometry of hybrid robots. The parallelogram
combination is used to replace the second link in an anthropomorphic robot arm. This
combination increases the robustness and the stiffness of the robot without increasing
its weight. Thus the payload of the robot is bigger. It also offers the possibility to mount
the motor to drive the 2nd DoF at the base of the robot. One negative side effect, however,
is that the workspace is decreased.

4.3.2.1 How to determine the number of DoFs in a parallel geometry (Grübler
criteria)

The number of DoFs of a serial robot is very easy to count because there is a one-to-
one mapping between the DoFs and the joints. But this statement is false when we are
dealing with parallel or hybrid robots.

Thus, if we want to count the number of DoFs in a parallel robot we have to use
another method, such as the one described below (known as Grübler criteria).

A free link, under no constraints, has 6 DoFs (three position + three orientation). If
the movement is constrained in one direction, i.e., the link must touch a surface, the
link will have 5 DoFs because one DoF has been blocked. In this case, the link can be
moved along the tangents to the surface and can be rotated in three directions.

We can conclude that the constraints restrict the DoFs of the links in such a way that
the number of DoFs allowed (f ) plus the number of DoFs restricted (u) by the constraint
must be equal to six:

f + u = 6 (4.1)

The number of DoFs of a robot can be obtained by applying the 4.1 to every link of the
robot. The number of DoFs is also known as mobility (M ), and it can be calculated by
the 4.2 (Grübler criteria).

M = 6 (n− 1)−
g∑
i=1

ui = u+ f (4.2)

Where n is the number of links, g is the number of constraints and ui is the number
of DoFs restricted by the ithconstraint.

4.3.3 Wrists

We can place the robot using 3-DoF geometries. Now the attention is focused on the
orientations we need when a task must be performed. Let us see as an example the
drilling task in figure 4.14.



Section 4.3. The Geometry of Robot Manipulators 67

0x̂

0ŷ A

B

C

Figure 4.14: The drilling task needs the placement of robot’s end-effector and orientation
as well.

The robot will be at the right location only when it manages to place and orient the
end-effector (the drill). In previous sections, we see we can place the end-point of the
robot correctly if it has 3-DoF. Now, if we also want to orient it, we will need 3 extra
DoFs.

To convert any one of those 3-DoF geometries into a 6-DoF robot manipulator, with
3-DoF of position and 3-DoF of orientation, we need to add a 3-DoF wrist.

In most robots, the wrist mechanisms have three axes that are joined in series by
very short links.

DoF1

DoF2    

D
oF

3 
   

wx̂

wẑ
wŷ

End-
point, Pe

ex̂

eẑ

eŷ

Figure 4.15: Wrist sample: gripper with two fingers.

There are many types of wrists. They are classified depending on the direction of the
wrist-axis. As can be seen in figure 4.15, the first DoF is aligned with the x̂w; the second
one, with the ŷw; and the third one, with the ẑw.

These rotating directions are often referenced using the conventional aeronautics
terminology; that is to say, roll is a rotation aligned with the x̂w, pitch is with respect
to the ŷw; and yaw is a rotation around the ẑw.



68 Chapter 4. Robot Geometry

(roll)

(yaw)
wẑ

wx̂

(pitch) wŷ

Figure 4.16: Conventional Aeronautics Terminology

Thus we have a Roll-Pitch-Yaw-wrist or RPY-wrist. A simplified representation of
that wrist is given in figure 4.17:

wx̂

wẑ

ex̂

eẑ

R - P - Y

Figure 4.17: RPY-wrist.

In figure 4.18 samples of 3-DoF wrists can be found. Nevertheless, samples of 1-DoF
or 2-DoF wrists can be found in real applications. In this case the robot will have more
restricted movements, but will be cheaper. The figure 4.18 shows a sample of 2DoF wrist.

wx̂

wẑ

e
x̂

e
ẑ

P - R

Figure 4.18: RP-wrist.

We can find samples of wrists based on parallel mechanisms as well. In this case,
the wrist will have properties similar to parallel robots (high load capacity, but small
workspace).

Ideally, the axes of the wrist should coincide, so that rotation around any axis does



Section 4.3. The Geometry of Robot Manipulators 69

not produce a change of position of Pe. That is to say, the rotation and the translation
will not be coupled. In practice, however, this is hard to realize (and expensive). However,
other samples of cheaper wrists, of which three axes intersect, can be found. This is the
case of Roll-Pitch-Roll-wrists (figure 4.19)

However, an RPR-wrist has other disadvantages, such as lower dexterity and singular
configurations.

wx̂

wẑ

e
x̂

e
ẑ

R - P - R

Figure 4.19: RPR-wrist.

4.3.4 Some Things to Think About

1. Are all seven types of joints, presented in section above, all the different types of
possible joints? If not, what other types are possible, at least in theory?

2. Are all five different geometries, presented in section above, all the different serial
geometries that are possible to form? If not, what others are possible?

3. How many DoFs do you have in one of your arms?

4. What is the geometry of your arm, and how does it compare to the five basic robot
manipulator geometries presented in this chapter?



70 Chapter 4. Robot Geometry



Chapter 5

Basic Components of Robots

5.1 Introduction

In this part of the course we will briefly look at the technology and the basic components
used in robotic arms, but without going into much detail. As we have seen from our
consideration of the geometry of robot manipulators, they are formed from combinations
of links and motorized joints that each typically has one DoF. These joints are an
assembly of different components, such as a motor or actuator, a reduction mechanism,
a transmission mechanism, and an internal sensor that measures the actual DoF
position (see the parts of a PA-10 robot in figure 5.1. We can also find external sensors
that let the robot sense the world around it. And last, but not least, the end-effector, or
tool, attached to the end-point of the robot.

5.2 Links

The links of a robot arm should:

• have low mass, and

• be very stiff.

These two requirements are not easily satisfied together. If an element is heavy and not
stiff enough, it will deflect under its own weight. If the robot is also holding something
in its gripper, for example, this deflection will be even larger.

To increase the stiffness of the links they are usually made bigger and stronger, but
this also makes them heavier. Heavier links need more powerful motors to drive them.
More powerful motors are also heavier than less powerful versions. If the motors are
placed at the joints, this extra weight of the motors also tends to deflect the link.

A deflection of the links of a robot arm results in position errors at Pe, an error that
accumulates along a serial geometry arm. It is therefore very important that deflections
are kept minimal, though it is impossible to avoid them completely.

71



72 Chapter 5. Basic Components of Robots

Resolver (Stator/Rotor)
Motor stator
Brake

Harmonic gear

Harmonic gear

Harmonic gear

Harmonic gear

Harmonic gear

Harmonic gear

Harmonic gear

Brake

Brake

Brake

Brake

Brake

Resolver (Stator)

Resolver (Stator)

Resolver 

Resolver (Stator/Rotor)

Resolver (Stator)

Resolver (Rotor)
Resolver (Rotor)

Resolver (Rotor)

Motor stator

Motor stator

Motor stator
Resolver 

Brake

Motor stator

Motor stator

Motor stator

Transmission

Transmission

Figure 5.1: Mechanical structure of the PA10



Section 5.3. Actuators and Motors 73

The links of robots are normally made of steel.

5.3 Actuators and Motors

There are basically three different kinds of actuators or motors used in robots:
Pneumatic, hydraulic, and electric.

5.3.1 Pneumatic Actuators

The pneumatic actuators use compressed air between 5 and 10 bar. They need a special
installation composed of a compressor, pressure regulators, dust filters, lubricators,
drains, etc, up to the compressed-air socket (figure 5.2).

M

Figure 5.2: Compressed-air preparation.

There are two types of pneumatic actuators (figure 5.3) that can be connected to
the air compressed socket: linear actuators (pneumatic cylinders) and rotary actuators
(pneumatic motors).

The precision of pneumatic actuators is low. Moreover, they are not stiff, since the
air is compressible. However, they do not break if they are overloaded.

The pneumatic actuators are noisy but cheap, robust and clean. They do not need
an air-return line. That is to say, when the compressed-air is used in the actuators, it is
released by an air-vent valve.



74 Chapter 5. Basic Components of Robots

Figure 5.3: Types of pneumatic actuators.

Due to their characteristics, pneumatic actuators are often used as drivers for robots’
end-effectors.

5.3.2 Hydraulic Actuators

The hydraulic actuators are quite similar to their pneumatic counterparts. However, we
can find many differences, since the hydraulic actuators work with mineral oil, under
a pressure of between 50 and 100 Bar. Hydraulic installations have pumps instead of
compressors (oil is uncompressible). A return-line is needed for the oil flow through a
closed loop.

Since oil is less compressible than air, hydraulic actuators have move precision and
they are stiffer. However, they have other problems due to the fact that certain properties
of oil, such as viscosity, depend on temperature.

Because of the high working pressures, the hydraulic actuators can exert higher
forces, but they are more expensive.

The maintenance of hydraulic installations is more complex because there is often
leakage.

The use of oil leads to auto-lubricated but dirty systems.

Similar to pneumatic actuators, the hydraulic ones are very robust and they do not
break in stall conditions originated by an excessive load.

5.3.3 Electric Actuators

Electric actuators are most commonly used due to their simplicity. They can have high
precision and they are very reliable. They are also noiseless.

As a disadvantage, we can find the maximum power that they can exert is quite



Section 5.3. Actuators and Motors 75

low. Generally speaking, their output speed is too high compared to the output force (or
torque), which is too low. For that reason, reduction mechanisms are required and, in
many cases, an integral geared speed reducer is incorporated.

They can burn up under overload conditions.

There are many types of electric actuators, among them, the most important ones
are listed below:

• Conventional DC motors.

• Conventional AC motors:

– Asynchronous motors.

– Synchronous motors.

• Stepper motors.

• RC Servomotors.

• Brushless motors.

• Direct Drive motors:

– DC Direct Drive Motors.

– AC Direct Drive Motors.

5.3.3.1 Conventional DC Motors

They are used many times because they are the easiest to use. Their speed can be
controlled smoothly from zero to the steady state value. They also respond quickly to
control-signal changes. A model of the motor is shown in figure 5.4.

sLR ii +
1

sLR
k

ii

Tor

+ s
1

spk

θ&

Figure 5.4: A model of a DC motor.

The motor speed can be controlled by the voltage of the armature:

earm = kspθ̇ (5.1)

Where earm is the voltage of the armature, ksp is the speed-constant of the motor, and θ̇
is the output speed.



76 Chapter 5. Basic Components of Robots

But the motor torque can be controlled as well. In this case, we have to control the
current of the armature:

T = ktorii (5.2)

Where T is the output torque, ktor is the torque-constant of the motor, and ii is the
current of the armature.

We can also control torque through the current of the field. By weakening the field
current, the motor speed will increase, but the torque will be reduced. In fact, varying
the current field, we are changing the values of motor constants. However, this method
of control is less common.

For a given motor ktor and ksp are equal, since the energy conservation law must be
fulfilled, that is to say, the input power must be equal to output power.

Pin = Pout (5.3)

If we consider the electrical power as input power, and the mechanical power as
output power, we have:

earmii = T θ̇ (5.4)

Rearranging the equations, we see that the two motor constants must be equals:

earm

θ̇
= ksp =

T

ii
= ktor (5.5)

The disadvantages of DC motors are:

• The output speed is too high, and the output torques are too low, so a reduction
mechanism is always required.

• The speed control is an open loop, so a position sensor is required.

• The brushes are mechanical sliding parts under friction, so they need maintenance.
Moreover, there is usually brush sparking, so the brush-motors are forbidden in
flammable environments.

PWM AND PFM CONTROL SIGNALS Traditional analog speed controllers regulate the
speed by lowering the voltage to the motor through a resistor or a transistor working
at its linear region. This is an inefficient technique because the transistor/resistor
consumes power that is lost as heat.

In Table 5.1, we can see the transistor will not consume power if it is short or open.
Thus we can avoid the power loss if the transistors of the power unit do not work in their
linear region.

There is a technique called PWM , which tries to apply this idea. PWM stands for
Pulse Width Modulation and it refers to the method of applying a square control signal



Section 5.3. Actuators and Motors 77

Condition itran etran Ptran = itranetran
Linear region itran etran itran 6= 0
Open 0 etran 0.etran = 0
Short itran 0 itran0 = 0

Table 5.1: The transistor only dissipates power in the linear region.

to the actuator. This signal has a constant frequency. Thus, the actuator receives the
current/voltage in an ON-OFF manner.

Changing the ratio of the ON time to the OFF time changes the speed of the motor.
For example, at 80% speed, the current pulse is on 80% of the time and off 20% of the
time. In this case, we say the signal has a duty cycle of 80%.

T T T T T T

PWM signal
Mean commanded

Figure 5.5: A PWM signal.

If the frequency of the PWM signal is high enough, the inductor of the motor will
integrate the signal and the movement will be smooth.

Since the motor is a mechanical device, a frequency above 1 kHz would be enough if
a man could not hear frequencies up to 20 kHz. Thus, a frequency of 25 kHz or higher
could be a good choice for a PWM signal.

There is another technique, but less common, called PFM . In this case, PFM stands
for Pulse Frequency Modulation. In this case, the pulse-width is constant and the speed
is controlled by the frequency of the voltage signal.

These techniques are used in combination with an H-bridge (figure 5.7). An H-bridge



78 Chapter 5. Basic Components of Robots

Figure 5.6: A PFM signal.

is a very popular circuit for driving DC motors. Its name is due to the fact that it looks
like the capital letter ’H’ in classic schematics. The great advantage of an H-bridge circuit
is that the motor can be driven forward or backward at any speed, optionally using a
completely independent power source.

Figure 5.7: An H-bridge.

An H-bridge can be implemented with various kinds of transistors (common bipolar
transistors, FET transistors, MOSFET transistors, power MOSFETs, or even chips). The
diodes in figure 5.7 are included to protect the transistors against high voltages induced
by the motor’s coils, during switching.

5.3.3.2 Synchronous AC Motors

Synchronous AC motors have windings in the stator and in the rotor. The stator windings
are powered by a three-phase power supply and, as a consequence of this, a rotating
magnetic field is generated. The rotor windings are powered by a DC source, so it creates
a constant magnetic field.

Synchronous motors are constant speed motors; they operate in absolute synchro-



Section 5.3. Actuators and Motors 79

nism with power line frequency. So, the speed can be controlled by varying the frequency.
Varying the speed by the frequency is not as easy as varying the speed by voltage.

The advantages of this type of motor are:

• There are no brushes (no-sparks, no-wearing).

• It has a better power to weight ratio than the DC motors.

5.3.3.3 Asynchronous AC Motors

Induction motors are the most common form of asynchronous motors. They are basically
AC transformers. The primary coil of the transformer is called the stator and is connected
to a power supply (normally, a three-phase power supply). The secondary winding of the
transformer is shorted in the rotor of the motor. The torque is produced by the interaction
of two magnetic fields: the first one is generated by the stator current, the second one is
created by the induced rotor currents.

Thanks to a special configuration of the stator windings, the stator magnetic field
rotates and drags the rotor magnetic field, which is fixed to the rotor.

The main feature of this type of motor is that the synchronous speed is the absolute
limit of motor speed. At synchronous speed, there is no difference between rotor’s speed
and rotating stator field speed, so the voltage induced in the rotor is equal to zero. Thus
there is no output torque. Therefore, the rotor must rotate slower then the magnetic
field. The motor speed is just slow enough to balance the output torque and the resisting
torque.

From the previous paragraph, we can conclude that the speed control of asyn-
chronous motors is more complex. For that reason, the asynchronous motor has been
less used in robotics. However, nowadays this problem is being overcome thanks to the
new voltage/frequency regulators.

5.3.3.4 Stepper Motor

The actuators described above require a position sensor in order to control the position.
Stepper motors motors are devices that do not require position sensor since they convert
electrical pulses into a mechanical rotation in fixed angular increments (steps).

Thanks to this, stepper motors are often used in open loop control systems. A position
sensor can be used to confirm positioning accuracy.

Step size is determined by the construction of the motor. We can find models that
have steps of 1.8 degrees or less.

The working principle of stepper motor is very simple. Their windings are grouped
into two phases. They move in steps when their phases are sequentially energized (full-
stepper motor, figure 5.8): when the current flows through phase 1, the rotor will align



80 Chapter 5. Basic Components of Robots

Figure 5.8: Full-stepper motor.

Figure 5.9: Half-stepper motor.

with it. Then, the current is switched from phase 1 to phase 2 and the rotor will move to
be aligned with phase 2, turning one step.

But, in some cases, both phases can be energized simultaneously. Then the rotor will
establish its equilibrium midway between two steps. In this case, the motor is said to be
half-step (figure 5.9).

There are several types of stepper motor depending on the rotor characteristics (figure
5.10). The most popular are:

Permanent Magnet (PM) stepper motor This type of stepper motor is also referred to
as a synchronous inductor motor. This motor has a magnet in the rotor. This
magnet will align with the energized phase.

Variable Reluctance (VR) stepper motor While this motor has a non magnet rotor, it
is notched1 instead of having a magnet.

Hybrid (HB) stepper motor This motor combines both of the above types, i.e. magnet
and notches.

We can also use windings as a criteria of classification:

A bipolar stepper motor with two phases has one winding/phase.

1Notched=con muesca



Section 5.3. Actuators and Motors 81

PM stepper motor VR stepper motor

HB stepper motor

Figure 5.10: Stepper motor: rotor types.

A unipolar stepper motor has one winding, with a centre tap per phase. Sometimes
the unipolar stepper motor is referred to as a ”four-phase motor”, even though it
only has two phases.

This difference comes from the fact that we have to have a bipolar supply to power
the bipolar windings if we want to complete one turn (figure 5.11).

Figure 5.11: Bipolar windings vs. Unipolar windings.

The main disadvantages of stepper motors are:

• The maximum output power is low.

• At low speeds, a ripple torque can appear. The movement will not be smooth.

• Since the control is in an open loop, the motor can lose one stepper as a
consequence of a disturbance. Without a position sensor, there is no way to detect
this type of event.

5.3.3.5 RC Servomotor

Let us consider the motors used in radio controlled models as RC servomotors. The
term servo comes from the fact that this kind of motor has implemented a rudimentary,
but powerful, position loop. The servomotor itself has a built-in motor, a gearbox, and a
position feedback controller.



82 Chapter 5. Basic Components of Robots

DC motor

Top cover

Bottom 
cover

Shaft

Potentiometer

Position 
controller

Figure 5.12: A RC servomotor: internal parts (left), external appearance (right)

They are very useful in many kinds of small robotics experiments because they are
small, compact and inexpensive. Servomotors usually have a three-wired connector. The
standard color code is black for the ground, white for the control pin and red for the
power supply (5 Volts).

The control signal that must be sent to the servo is a periodical pulse of 1.5-2.5 ms
around every 20 ms approximately (figure 5.13). The period of the signal is not critical,
but if the period is too high, the motor will lose/forget the command and if it is too low,
the controller can become unstable.

20ms≈T

Figure 5.13: Commanding a RC servomotor.

If the pulse lasts 1.5 ms that will set the motor to the position of 0 degrees, and if it
lasts 2.5 ms, that will set it to the other end-stroke limit. The other values in the interval
(from 1.5 ms to 2.5 ms) set the motor position to one that is interpolated linearly.

5.3.3.6 Brushless Motor

A brushless motor resembles a common DC motor, but upside down. That is to say, the
permanent magnets are located on the rotor while the powered coils are on the stator.
So there are no brushes or mechanical sliding parts to power the rotor.



Section 5.4. Reduction mechanisms 83

The rotating field is obtained by placing three stator windings that are connected to
a special driver. This driver can sense the rotor position and powers the proper winding
in order to get a rotating stator magnetic field that must be perpendicular to the rotor
magnetic field.

Its use is similar to DC motor but, in this case it can be used in flammable
environments (no brushes, no sparks).

5.3.3.7 Direct Drive Motor

The biggest disadvantage of every electrical motor is their output speed is too high and
the torque is very low. The interesting combination is to get high torques at low speeds.
So, the use of a gear is always required.

We will see later that the introduction of a gear has several disadvantages, such as
increased inertia, friction, backlash or greater loss of backdrivability.

The direct drive motors can overcome this problem. We can find AC Direct Drive
Motors Motors and DC Direct Drive Motors as well. The advantage of those motors is
that they have a special magnetic circuit that allows them to work at low speeds while
exerting high torques without any gearing.

In this case, we can connect the load directly to the shaft of the motor.

The main advantages of these motors are summarized below:

• Fast and accurate positioning.

• Simple mechanical system (noiseless and frictionless).

• High acceleration ranges (1g for lead screws, 5g for DD motors with conventional
bearings, 10g for DD motors with air bearings).

• High speed ranges.

But we can also find disadvantages:

• They are very expensive.

• Ultra-high resolution position sensors are required.

• The system has a high backdrivability. Thus, if the motor is unpowered, the
mechanism can not support its own weight and, it will fall to a stable position.

• The motors are big and heavy.

5.4 Reduction mechanisms

When the actuators’ output speed is too high and/or the output torque/force is too low,
it is necessary to convert them in order to achieve lower speeds and higher torques (or



84 Chapter 5. Basic Components of Robots

forces). This typically means that some kind of reduction mechanism is placed between
the motor or actuator and the joint it drives.

For robot arms, reduction mechanisms should have special characteristics, since the
speeds are quite high with many peaks of acceleration. Their features are listed below:

• low in weight,

• small in size,

• low friction, and

• have very little backlash or play,

Sometimes, backdrivable actuators are desiderable, but most often, high reduction
actuators are used.

In robotics, the most used reduction mechanisms are the harmonic-drive and the
cyclo-drive. Both of them work under the same basic principle. In other to simplify the
explanation, let us carry out a little experiment (figure 5.14): Grab a coin as is seen in
the figure below and follow the steps. For example, if you describe clockwise circles, you
should notice how the smaller coin rotates counterclockwise and vice-versa.

Figure 5.14: Robotic redutor mechanism simulation.

5.4.1 Harmonic-Drive

Now, we can start to analyze the working principle of a harmonic drive2.

The harmonic drive is composed of three elements (figure 5.15):

• The first element is the wave generator, it is connected to the actuator’s shaft. It
has an elliptical shape.

• The second element is the flexispline. It’s made of some kind of elastic matter. It
can adapt its shape to the shape of the wave generator.

• The last one is the circular spline.

2 http:\\www.harmonicdrive.de



Section 5.4. Reduction mechanisms 85

wave 
generator

flexispline
circular
spline

Figure 5.15: Components of a Harmonic-Drive.

The number of teeth of the flexispline is two or three less than the teeth of the
circular spline.

When the harmonic drive is assembled, the wave generator deforms the flexispline
in the way that only a few teeth are engaged with the circular spline (only where it
corresponds at the major axis of the wave generator).

The figure 5.16 shows the working sequence of a harmonic drive when we rotate the
wave generator clockwise. The flexispline will rotate counterclockwise an angle that
corresponds to the teeth difference.

This ‘rotation delay’ of the flexispline is due to the small difference between the
number of teeth of the flexispline and the number of teeth of the circular spline.

The reduction ratio of this reduction mechanism is commonly about 400:1.

Figure 5.16: Harmonic-drive working sequence.

5.4.2 Cyclo-Drive

The second reduction mechanism commonly used in robotics is the cyclo drive (figure
5.17).

Although the shape looks very different, the working principle of the cyclo drive
(figure 5.18) is similar to the working principle of the harmonic drive. But the
performance of the cyclo drive is not as smooth as the performance of the harmonic
drive. Another problem of cyclo drives is the eccentricity between the input and the
output shafts, so it is necessary to assembly it always in pairs.



86 Chapter 5. Basic Components of Robots

Figure 5.17: Schematic of a Cyclo-drive.

Figure 5.18: Cyclo-drive animation.

5.4.3 Other reduction and Transmission mechanisms

The next table summarizes the most typical transmission mechanisms we can find. Most
of them can also be used as reduction mechanisms.

5.5 Sensors

Robots need sensors in order to complete their task with sufficient accuracy and speed,
and to be able to interact with their environment. Thus we can distinguish two types of
sensors:

Internal sensors Since every active DoF is motorised and controlled, they need, at least,
a position or speed sensor.

External sensors The robot uses them to interact with its environment.

The sensors are also divided into digital sensors and analog sensors. The first ones are
sensitive to noise, and the second ones have problems related to the resolution and
transmission speeds.

Given the characteristic curve, which relates an output voltage with the measured
variable, there are many important aspects of sensors which need to be considered: if,
how, and when to use them in any robot application. The most important aspects are
summarized in below:



Section 5.5. Sensors 87

Picture Input Output Name Advantages Disadvantages

circular circular gears -High torque;
-Non-slip;
-Low-cost.

-Backlash;
-Heavy, not
suitable for high
speeds;
-Noisy;
-Increased
friction.

circular circular cogged belt -Allows great
distances
between axes;
-Non-slip;
-Low-cost.

-Backlash;
-Heavy, not
suitable for high
speeds;
-Noisy;
-Increased
friction.

circular
circular
linear

belt -Allows great
distances
between axes;
-Non-slip;
-Low-cost.

-Backlash;
-Heavy, not
suitable for high
speeds;
-Noisy;
-Increased
friction.

circular
circular
linear

wire
(transmission)

-Backdrivable;
-Low friction;
-Low cost;
-Low weight.

-Low torques;
-May slip.

circular circular
(continuous
or to-
and-fro
motion)

four bar
mechanism

-High torques;
-Non-slip.

-Small stroke.

circular linear lead screw -Light-weight;
-Translate circu-
lar motion to lin-
ear.

-Low speeds;
-Backlash;
-High friction;
-Not
backdrivable.

circular
linear

linear
circular rack and

pinion
-High torques;
-Non slip.

-Low speeds;
-Backlash;
-Increased fric-
tion.

Table 5.2: Transmition Mechanisms



88 Chapter 5. Basic Components of Robots

Sensitivity Slope of the characteristic curve. If the sensitivity is constant, it is also
known as the gain of the sensor (figure 5.19).

Sensitivity error The variation of the real slope from the ideal (theoretical) slope.

Range The maximum and the minimum values that can be measured.

Dynamic range The total range of the sensor (from the minimum to the maximum).

x (Output voltage)

   
   

   
   

   
   

 y
 (M

ea
su

re
d 

va
ri

ab
le

)

x
yx

ysens.
Δ
Δ

=

x'
y'

x
y

x
yerror sens.

′Δ
′Δ

−
Δ
Δ

=

ideal 

curve

actual 

curveymax

ymin range: (ymin, ymax)
dynamic range: ( ymax-ymin)

Figure 5.19: Sensivity and range for a given sensor

Resolution Smallest detectable incremental change of the measured variable (figure
5.20). This concept is more related to digital sensors.

Accuracy The maximum difference between the actual value and the measured value
by the sensor (figure 5.21).

Offset The output that appears when it should be zero.

Linearity The maximum deviation between the theoretical linearized curve and the
actual curve. The most common types of non linearities are: hysteresis, dead zone,
saturation.

Hysteresis Ideally, the sensor response should not depend on the direction in which the
measured variable is changing, that is to say if the measure variable is increasing
or if it is decreasing. The hysteresis is the measure of this dependency (figure 5.22).



Section 5.5. Sensors 89

   
 y

 (M
ea

su
re

d 
va

ri
ab

le
)

ideal 

curve
re

so
lu

tio
n

Figure 5.20: Sensor resolution

                           x (Output voltage)

 y
 (M

ea
su

re
d 

va
ri

ab
le

)

ideal curve
 

(zer
o offse

t)

actual 

curve

offset

yrealymeasured

linearized

curve

Figure 5.21: Accuracy, offset and linearity for a given sensor



90 Chapter 5. Basic Components of Robots

Dead zone A band close to zero in which there is no output change even if there is
change in the output value (figure 5.23).

Saturation If the measured value travels beyond the sensor ranges, the output will not
follow the changes of the measured values. In this case, the sensor get saturated.

Response time Time required for a sensor output to change from its previous state to a
final settled value within a tolerance band. If we are considering that the final state
is lower than the previous, we use the term decay time (figure 5.24).

Bandwidth The maximum frequency for the measured variable that can be followed by
the sensor. It is given by the frequency in which the sensitivity of the sensor is
degraded by a factor of 1.41. A proper choice of this parameter is important for
noise rejection (figure 5.25).

It is desirable that all of the properties described above be constant over time and with
use. But the sensor should not be ”better” than is needed for the particular application
with we are dealing.

Another important topic, related to the use of the sensor but not to the measure
itself, is the sensor calibration: the calibration of the sensors should not take very long
to do, nor need special expertise, nor special equipment to perform, nor should it need
to be done very often.

5.5.1 Internal Sensors

Each joint (DoF) that is motorized and controlled usually needs some kind of internal
sensor of position or speed. Only in the case of joints that use stepper motors, the
internal sensors are not required.

The table 5.3 summarises the internal sensors described in following sections:

5.5.1.1 Potentiometer

A potentiometer is a variable resistor that acts as a voltage divider. We can find linear
and rotating versions.

The advantages are:

• Low-cheap.

• Easy to use.

• Absolute measurement.



Section 5.5. Sensors 91

 y
 (M

ea
su

re
d 

va
ri

ab
le

)

ideal 

curve
 

cu
rve

 with
 

hy
ste

res
is

Figure 5.22: Sensor hysteresis

 x (Output voltage)

   
   

y 
(M

ea
su

re
d 

va
ri

ab
le

)

saturation

saturation

de
ad

 zo
ne

Figure 5.23: Dead zone and saturation for a given sensor

Time

 x
 (O

ut
pu

t V
ol

ta
ge

)

tolerance band

response time

decay time

Figure 5.24: Sensor response time



92 Chapter 5. Basic Components of Robots

                                        Frequency

   
   

   
   

   
   

   
   

   
   

   
 S

en
si

tiv
ity

bandwidth

y/ x

x
y

2
1

Δ
Δ

Figure 5.25: Sensor bandwidth

Position

analog

• Potentiometer

• Resolver

• Synchro

• Inductosyn

• LVDT

digital

• Optical Encoder
(incremental and
absolute)

• Optical Ruler

Speed analog

• tachometer

End-stroke digital

• Mechanical switch

Table 5.3: Internal sensors.



Section 5.5. Sensors 93

• Robust.

The disadvantages are:

• Low precision.

• The measurement depends on the temperature (i.e., it is unstable from the thermal
point of view).

5.5.1.2 Resolver and Synchro

Diagrams of a typical resolver and a typical synchro are shown in the figure below.
Both of them are based on single-winding rotors inside fixed stators. In the case of the
resolvers, the stator has two windings at 90o. In the case of the synchros, the stator
has three windings oriented at 120o, connected in a Y-connection, as we can see in the
primary of a tri-phase transformer (figure 5.26). The performance of the resolvers and

Figure 5.26: Resolver and Synchro.

the synchros is similar to that of rotating transformers: the rotor winding is driven by
AC voltage (Vin), which induces voltages in the stator windings. These induced voltages
depend on the amplitude and frequency of the voltage of the rotor’s windings and the
relative angle, θ, between the stator and the rotor (shaft angle).

As can be seen in figure 5.26, in the case of the resolver, the format of the output
signal differs from the output signal in the case of the syncrho. However, the synchro
output can be easily converted into the resolver-equivalent format using a Scott-T
transformer 5.27. Now, the remaining problem is to connect the sensor to our digital
controller. The conversion is not easy but it can be resolved using a R/D (Resolver-to-
Digital) converter depicted in figure 5.28. The resolvers and the synchors are rugged
sensors as well, suitable for difficult conditions and accurate. As there are windings in
the rotor that must be energized, there are samples of this type of sensor with brushes,
but modern resolvers and synchors are available in a brushless format. They have



94 Chapter 5. Basic Components of Robots

2
3N

Figure 5.27: Scott-T transformer.

∫

Figure 5.28: Resolver-to-Digital converter.



Section 5.5. Sensors 95

low inertia and good dynamic response. Finally, notice they provide us with an absolute
measurement.

5.5.1.3 Inductosyn

The inductosyn resembles a resolver. In fact, the operation is the same: one winding
energized with a sine wave; there are two windings where two 90o-phase voltages are
inducted. But in this case, the inductosyn3 senses linear displacements, not rotary
position. The energized winding is in the stator, and the inducted windings are in the
slider.

The remaining description about its working principle is similar to the description of
the resolver, given above, so it is not necessary.

5.5.1.4 LVDT

LVDT is an acronym and stands for Linear Variable Differential Transformer. The wiring
diagram is shown in figure 5.29. An LVTD resembles a simple transformer with one

Vin

VB

VA VA-VB

Secondary winding in series and in 
phase opposition!

Figure 5.29: LVDT

primary winding, two secondary windings and a magnetic core. However, the LVDT
differs from common transformers in that its core is a slider. The primary winding is
driven by an AC reference voltage. The voltages induced in the secondary windings (VA,
VB) depend on the position of the slider because the magnetic coupling, between the
primary and secondary windings, varies:

• When the core is centred, the voltages in the secondary windings (VA,VB) are equal
in amplitude and phase but with opposite sign. Then the output voltage (VA − VB)
is equal to zero.

• When the core is moved off centre, the induced voltages (VA,VB) are different and
the output voltage (VA − VB) will be different from zero.

3Trademark of Farrand Controls, Inc.



96 Chapter 5. Basic Components of Robots

• The induced voltage increases in the secondary winding that is nearest to the slider
and decreases in the secondary winding that is furthest.

• The result is a differential output voltage which varies linearly with the position of
the core.

The LVDT offers good accuracy, linearity, sensitivity, good dynamic response, frictionless
operation and ruggedness. However, it is quite expensive, not easy to use and the output
signal must be processed as it is described in figure 5.30. Another disadvantage is that
LVDT is only available for small strokes.

Vin

-

+

absolute 
value

absolute 
value

Vout

                                                Shaft position

   
   

   
   

   
   

   
   

   
   

   
 V

ou
t

Figure 5.30: LVDT output signal conditioner (left) and signal characteristic response.

5.5.1.5 Optical encoder

Incremental Encoder

The incremental encoder is one of the most popular position sensor used in
robotics. It is composed of a LED (Light Emitter Diode), a phototransistor and a slotted
disk (5.31). The disk’s slots are arranged in a circular fashion. The disk is fixed to the
rotating part of which the displacement is being measured. The phototransistor detects
when a light beam, from the LED, crosses the slotted disk. The encoder output is a
stream of square pulses of which frequency depends on the rotational speed of the
slotted disk. As is described in the previous paragraph, this type of encoder does not
provide an absolute position, that is to say, we can only start to count pulses during
specific time intervals. Knowing the number of slots in the disk, the actual displacement
can be computed:

encoderresolution =
#slots

2π
(5.6)

Now, we must address one problem with this type of encoder: with this design we can
only detect that the shaft (encoder) is rotating but we have no information about the
direction of rotation. This problem can be solved with a second set of slots at a 90o



Section 5.5. Sensors 97

Figure 5.31: Encoder’s working principle

angle of phase displacement (figure 5.32). Each set of slots is called ’channel’. So we
distinguish the outer set (channel A) from the inner set (channel B). This type of encoder
is called quadrature encoder. The direction of rotation can be obtained by analyzing

Figure 5.32: Incremental Encoder: one channel (left), two channel (quadrature encoder,
right).

which signal is delayed, thus if the channel A is delayed, then one direction is assumed
and if the channel B is delayed, then the opposite direction is assumed (figure 5.33).
Thanks to the inner (or second) channel, the resolution of the quadrature encoder is
multiplied by four compared to the resolution of a single-channel encoder with the
same number of slots per revolution and per channel.

At this point, it is obvious the encoder is a digital sensor. The standard encoder
resolutions are about 500x4 slots per spin.

There are also models with a third channel called index . This channel only give one
pulse every 2π radians.

In systems with an actuator-gear train, we can easily enhance virtually the encoder
resolution if we assemble the encoder between the actuator and the gear train (and not
after the set of gears). The actual encoder resolution is virtually multiplied by N (where N
is the reduction ratio). In this case, the index-channel becomes useless because it send
N pulses every spin.

To summarize, the encoder offers good resolution, without sliding parts, and good
thermal stability. But they are unsuitable for dusty environments. Other disadvantages
are the price, the performance at low speeds, the breakability and the needed of a signal



98 Chapter 5. Basic Components of Robots

Clockwise sequence

Counterclockwise sequence

...
......

00

CHB

10 11 01 00

...CHA

Clockwise sequence

CHA

CHB

Time

Counterclockwise sequence

CHA

CHB

Time

Figure 5.33: Time diagram of a quadrature encoder.

conditioner for the output signal.

Absolute Encoder

One of the disadvantages of incremental encoders is the impossibility to know
the absolute position. Due to this, a type of initialization is needed. Another way to
overcome this problem is the use of absolute encodersencoders. The working principle
of absolute encoders is quite the same than incremental encoders, but here, the
number of channels is higher. The channels of an absolute encoder must be interpreted
as a set of bits in which the shaft position is coded (so they should be read in a fixed
order).

The figure 5.34 shows the disk of a four-bit absolute encoder (left) and how the output
channels must be interpreted as a nibble (right). Notice that the code used is the gray
code4.

The last remarkable feature of absolute encoders is that they are more expensive
than their incremental counterparts.

5.5.1.6 Optical Ruler

The optical ruler is based on the same working principle as the incremental encoder,
but it is designed to measure linear displacements.

4 gray code: a means of counting in digital systems. The main feature is the next count only differs from
the previous one by one bit.



Section 5.5. Sensors 99

00
00

10
00

10
01

10
11

10
10

11
10

11
11

11
01

11
00

01
00

01
01

01
11

01
10

00
10

00
11

00
01

0º  - 22.5º  - 45º   - 67.5º  - 90º  - 112.5º - 135º  - 157.5º - 180º  - 202.5º - 225º  - 247.5º - 270º  - 292.5º  - 315º  - 337.5º

Figure 5.34: Gray code used in absolute encoders.

5.5.1.7 Tachometer

The tachometer is a DC motor but used as DC voltage generator. The tachometer is
coupled to the shaft of which speed is measured. The tachometer outputs is a voltage
proportional to shaft speed.

The tachometer offers durability, and is easy to use. But it is noisy, heavy and may
have brushes.

5.5.2 External Sensors

External sensors are widely used in robot applications. A common classification is based
on the measured variable:

• Proximity

– Inductive

– Capacitive

– Hall effect

– Optical

– Ultrasonic

• Force/torque

– Strain gauges

– Piezoelectric

• Vision

– CCD camera

• Temperature

– PTC/NTC



100 Chapter 5. Basic Components of Robots

– Thermocouple...

However, in robotics, the most common classification is based on the architecture:

• Complex or multi-value sensors:

– multi-axis force sensors,

– touch or pressure sensitive arrays,

– cameras and vision systems,

– laser range finders,

– arrays of ultrasonic sensors,

– etc.

• Simple or single value sensors

– touch or contact sensors,

– single axis force sensors,

– make-and-break light beams,

– etc.

Simple sensors (and every axis of multi-value sensors) can be further divided into:

• single-bit or binary sensors, and

• multi-bit or analogue sensors, which need A/D converters and produce 8bit or
16bit values, for example.

Complex sensors may be really complete subsystems in themselves that typically need
special purpose hardware and software and interfaces to robot control systems. They
are also expensive, in general.

Simple sensors can often be connected directly to the robot control system, which
today typically have a number of binary and analogue input channels. Simple sensors
are also typically low-cost.

The best sensors to use, with respect to these aspects of reliability, calibration, and
precision, and with respect to cost, are binary sensors. They are typically very reliable
because they are mechanically and electrically simple and easy to make. They do not
need calibration or, at times, only a simple threshold setting. They also have absolute
precision, assuming they are working properly.

Complex sensors are often used as a complete subsystem to provide data about
objects involved in the task or the end-point of the robot, or the tool it is using: global
position and orientation, for example. This data can then be used in a robot-level
program directly, through sometimes a special subroutine or function is provided so
that the sensor can be called when new data is required from it.



Section 5.6. End-Effectors and Terminal Devices 101

Simple sensors are more usually used to provide values in conditional statements
in a program. These are either movement commands or other action commands, which
might take the following forms:

move to CONFIG-1 while SENSOR-1 = 1;}

or

move in direction DIRECTION-1 until SENSOR-1 = 0;}

These kind of commands are sometimes called guarded motions because they depend
upon real-time sensor data.

Simple sensor data can also be used in the conditions parts of if-statements:

if SENSOR-f = 0 do write(’’Failed to acquire part’’)and FAIL;

These sensors are commonly used to detect end-strokes, count parts and/or synchronize
the program with the arrival and/or departure of parts.

In general, the more sensors that are used, the more complex the programming
becomes, the more difficult it becomes to properly test and debug the program, and
the more difficult becomes the prediction of its execution time.

All or any of these consequences of using even simple binary sensors, may be reason
enough for not using sensors at all, or for using fewer of them, and/or using more robust
robot movements and actions, even if this makes the program take longer to complete.
A constant but slower execution time is often better than a faster program, but one of
which execution time can vary depending upon run-time sensor data. This is especially
true when the robot has to work in coordination with other robots or other machine in
the same work cell.

5.6 End-Effectors and Terminal Devices

The last basic type of basic component of robots that we will consider here are called
end-effectors or terminal devices. These are the tools, grippers, spot welding guns,
paint sprayers, glue guns, etc. that are attached to the end of the robot manipulator
arm.

What type of end-effector a particular robot has will depend upon the type of task it
is programmed to carry out. There are no completely general robot end-effectors5, and
often they are specially designed for the particular task.

End-effectors can sometimes have their own degrees of freedom. Mostly these
are rotational, but they can also be translational, or combinations of rotational and
translational degrees of freedom.

5 The most general gripper is the human hand.



102 Chapter 5. Basic Components of Robots

These extra end-effector DoFs have the effect of increasing the total number of DoFs
of the robot manipulator arm, but they are not usually counted in the total. So, a robot
manipulator with 6 DoFs that is fitted with an end-effector which itself has 2 DoFs is still
referred to as a 6-DoF robot manipulator, though it effectively forms a 8-DoF system.

End-effectors or terminal devices should be:

• very reliable,

• low weight,

• as small and compact as possible, and

• easy to change and maintain.

The most popular grippers have pneumatic actuators, because this type of actuator has
a good behaviour under a stall condition and the force/torque they exerted can be limited
easily.

5.7 Some Things to Think About

1. Why are electric motors most often used as the actuators in the joint systems of
robots?

2. What is the effect of any bending that occurs in the elements of a serial geometry
robot manipulator arm?

3. What is the effect of any play or backlash in the transmission systems of the joints
in a serial geometry robot manipulator arm?

4. What are the advantages of adding degrees of freedom in a robot end-effector?

5. What are the disadvantages of adding degrees of freedom in a robot end-effector?

6. What is the most universal end-effector?

7. Try to find in internet samples of end-effectors.



Part III

Robot Mathematical Modelling and
Control

103





Chapter 6

Coordinate frames and
homogeneous transformation

6.1 Introduction

Before going on to consider robot control, we need to be able to formally describe and
model the geometry and kinematics (movement) of robot manipulator arms. For this we
first need some kind of coordinate system.

In particular, we need a formal and precise way of relating the position and
orientation of the end-point, Pe, of the robot to the base of the robot, which is fixed to
the ground. We also need a way of relating both of these to the position and orientation
of objects in the robot’s workspace.

In this part of the course we will review several different kinds of coordinate systems
for describing position and rotation in three dimensional space. How these are combined
to form homogeneous coordinates will then be explained, together with their use in the
context of robot arms.

Here it is useful to introduce some terminology which we will use throughout this part
of the course. We will use the term location to mean both the position and orientation
of something in space, for example: the robot base, the point Pe, or an object in the
workspace.

The figure 6.1 shows some coordinate systems that can be defined around a robot:

• {0}, the univarsal frame,

• {B}, the robot’s base coordinate frame,

• {w}, the wrist’s coordinate frame,

• {e}, the end-effector’s coordinate frame,

• {O}, the target object’s coordinate frame,

• {T}, the task’s coordinate frame.

105



106 Chapter 6. Coordinate frames and homogeneous transformation

xT

yT

zT
x

Ob

y
Ob

z
Ob

xe

ye

ze

xB

yB

z B

x0

y0

z0
xw

yw

zw

Figure 6.1: Relationship among different coordinate systems related to robot.

6.2 The Representation of Position in 3D Space

To completely and uniquely define the position of a point in 3D space, we need to specify
particular values that fix the three degrees of freedom of position.

If we want to define the position of an object in space, we must first define some point
associated with this object (for example, its centre of mass, or some other convenient
point on its surface) and then define the position in space of this object reference
point.

There are three common coordinate systems used to define position in 3D space.

Cartesian Coordinates (figure 6.2), in which the position of a point, Pe, with respect
to the coordinate system {A}, is defined by the three values APex,

APey and APez , or by
the vector APe3x1 = [APex APey

APez ]T

Cylindrical Coordinates (figure 6.3), in which the position of a point, Pe, with
respect to the coordinate system {A}, is defined by the three values: APer′ , the magnitude
of the projection of the vector Pe onto the plane x̂AŷA; APeθ , the angle between the axis
x̂A and the projection of the vector Pe onto the plane x̂AŷA; and APez , the magnitude of
the projection of the vector Pe onto the axis ẑA.

Spherical Coordinates (figure 6.4), in which the position of a point, Pe, with respect
to the coordinate system {A}, is defined by the three values: APeR, the magnitude -or
distance- of Pe from the origin {A}; APeθ , the angle between the axis x̂A and the projection
of the vector Pe onto the plane x̂AŷA; and APeφ, the angle between the axis ẑA and the
vector Pe.



Section 6.2. The Representation of Position in 3D Space 107

x A

z A

y A

Pe

AP ey

AP ez

APex

Figure 6.2: Cartesian coordinates of a point.

x A

z A

y A

Pe

AP er

AP ez

APe

Figure 6.3: Cylindrical coordinates of a point.

x A

z A

y A

Pe

AP eR=∥P e∥

AP e

AP e

Figure 6.4: Spherical coordinates of a point.



108 Chapter 6. Coordinate frames and homogeneous transformation

6.3 The Representation of Orientation in Space

To be able to define, in a simple way, the orientation of an object, or the end-point of
a robot arm, Pe with respect to some reference system of coordinate axes, we attach a
new coordinate reference system to the object or point, and then define the orientation
relationship between the two reference systems.

In order to keep things simple, we will assume that the origins of the two frames of
reference, the two coordinate systems, are coincident at the same point in 3D space.
We will therefore have no translation component in the relationship between the two
coordinate systems, only orientation.

6.3.1 Rotation Matrices

Suppose we have two coordinate reference systems, {A} and {B}, which have coincident
origins, and that the system {A} is fixed with respect to the world, and that the system
{B} is rigidly attached (fixed to) the object whose orientation we want to define with
respect to {A}, see figure below.

x
A

z
A

y
A

z
B

x
B

y
B

Figure 6.5: Two different frames with different orientation, but the same origin.

Then, we can define unit vectors in the directions of the three axes of the reference
system {A}: x̂A, ŷA, and ẑA; and we can define unit vectors in the directions of the three
axes of the reference system {B}: x̂B, ŷB, and ẑB.

A vector Pe in space can then be defined with respect to either the system {A}

APe =

APexAPey
APez

 = Pe (x̂A + ŷA + ẑA) (6.1)



Section 6.3. The Representation of Orientation in Space 109

or the system {B}.

BPe =

BPexBPey
BPez

 = Pe (x̂B + ŷB + ẑB) (6.2)

We can relate the two vectors APe and BPe by:

APe = ARB
BPe (6.3)

where

ARB =

x̂Ax̂B x̂AŷB x̂AẑB
ŷAx̂B ŷAŷB ŷAẑB
ẑAx̂B ẑAŷB ẑAẑB

 =
[
Ax̂B

AŷB
AẑB

]
(6.4)

is the rotation matrix that defines the orientation of the coordinate system {B} with
respect to the coordinate system {A}.

6.3.1.1 Example of rotation in 2D space

Let’s suppose two 2D-coordinate systems: {A} and {B}. System {B} is rotated an angle
θ equal to π/2 radians (figure 6.6). If the coordinates of a point P with respect to frame
{B} are BP = [2 − 3]T , we can calculate the coordinates of that point referred to system
{A}, that is, AP .

x
A

y
Ax

B

y
B

P

Figure 6.6: Sample of rotation in 2-D.

The solution can be obtained by simple inspection of the axis of the system {B}, x̂B,
ŷB and how they can be represented in system {A}:

Ax̂B =
[
0
1

]



110 Chapter 6. Coordinate frames and homogeneous transformation

AŷB =
[
−1
0

]

Then, according to equation 6.4, the rotation matrix is:

ARB =
[
Ax̂B

AŷB
]

=
[
0 −1
1 0

]

Applying equation 6.3, we finally get:

AP = ARB
BP =

[
0 −1
1 0

] [
2
−3

]
=
[
3
2

]

Having a rotation angle of θ, proves that the general expression for the 2D-rotation
matrix is:

ARB =
[
cos θ − sin θ
sin θ cos θ

]
(6.5)

6.3.2 Properties of the Rotation Matrix

The matrix R is also sometimes called the direct cosine matrix, and it is an orthogonal
matrix, which means that its inverse is equal to its transpose, i.e.:

AR−1
B = ARTB = BRA (6.6)

But as the rotation matrix is built with unitary vectors, all its rows/columns have a
unitary modulus. Thus, the rotation matrix is also a normal matrix.

The matrices that are normal and orthogonal are orthonormal matrices.

The rotation matrices are applied to solve three kind of transformation/mapping
problems:

• quantifying the orientation of a frame with respect to another,

• rotating a vector by a given angle, and

• coordinate transformation (this implies a rotation of the coordinate system itself).



Section 6.3. The Representation of Orientation in Space 111

6.3.3 Basic 3D rotation matrices

The principle use of this rotation matrix is in the definition how to represent the
orientation of an object (or coordinate system) that is rotated around just one of the
axes of the fixed reference frame, {A}.

Applying this condition, we can define three diferent cases, one each for rotation with
respect to one of the axes of {A}, and thus get three diferent rotation matrices.

x
A

z
A

y
B

z
B

xe

y
B


1


1

Figure 6.7: Rotation around x̂A axis.

Rotation around x̂A

Rot (x̂, ψ1) =

1 0 0
0 cosψ1 − sinψ1

0 sinψ1 cosψ1

 (6.7)

Rotation around ŷA

Rot (ŷ, ψ2) =

 cosψ2 0 sinψ2

0 1 0
− sinψ2 0 cosψ2

 (6.8)

Rotation around ẑA

Rot (ẑ, ψ3) =

cosψ3 − sinψ3 0
sinψ3 cosψ3 0

0 0 1

 (6.9)



112 Chapter 6. Coordinate frames and homogeneous transformation

x
A

z
A

y
A

z
B

x
B

y
B


2


2

Figure 6.8: Rotation around ŷA axis.

x
A

z
A

y
A

z
B

x
B

y
B


3


3

Figure 6.9: Rotation around ẑA axis.



Section 6.3. The Representation of Orientation in Space 113

6.3.4 The Composition of Basic Rotation Matrices

We can combine the three basic rotation matrices defined above [Rot (x̂, ψ1), Rot (ŷ, ψ2)
and Rot (ẑ, ψ3)], to represent any orientation of the coordinate system {B} with respect
to the coordinate system {A}.

For example, let’s suppose coordinate system {B} coincides with system {A} in the
begining and if we apply to {B} a rotation ψ1 around x̂A, followed by a rotation ψ2 around
ŷA, and then a rotation ψ3 around ẑA, we can represent the final orientation of {B} with
respect to {A} by:

ARB = Rot (ẑ, ψ3) Rot (ŷ, ψ2) Rot (x̂, ψ1) (6.10)

and thus,

ARB =

cosψ3 − sinψ3 0
sinψ3 cosψ3 0

0 0 1

 cosψ2 0 sinψ2

0 1 0
− sinψ2 0 cosψ2

1 0 0
0 cosψ1 − sinψ1

0 sinψ1 cosψ1

 (6.11)

which gives:

ARB =

c3c2 c3s2s1 − s3c1 c3s2c1 + s3s1

s3c2 s3s2s1 + c3c1 s3s2c1 − c3s1

−s2 c2s1 c2c1

 (6.12)

where si = sinψi, ci = cosψi with i = 1, 2, 3

Therefore we can say that any measured orientation between two coorditante systems
can be decomposed in a series of three basic rotations. These basic rotation are named
Euler Angles. When these basic rotations are a rotation ψ1 around x̂A, followed by a
rotation ψ2 around ŷA, and then a rotation ψ3 around ẑA, then they are called YAW-
PITCH-ROLL angles.

This decomposition can be done provided that the nine elements of a rotating matrix
are not independent due to the fact that the rotating matrices are ortonormal. This
means that given:

ARB =
[
Ax̂B

AŷB
AẑB

]
(6.13)



114 Chapter 6. Coordinate frames and homogeneous transformation

the following equations are true:

‖Ax̂B‖ = 1
‖AŷB‖ = 1
‖AẑB‖ = 1

→ normal matrix

Ax̂B
AŷB = 0

Ax̂B
AẑB = 0

AẑB
AŷB = 0

→ orthogonal matrix


→ orthonormal matrix (6.14)

6.3.4.1 Rotation around the Fixed Frame vs. Rotation around the Mobile Frame

Notice that, up to now, the basic rotations are always in reference to frame {A}, also
named “the fixed frame”. But there is no restriction to refer them to frame {B}, “the
mobile frame”. Then, if we repite the last exercise, but change the reference, we have a
coordinate system {B} that coincides with the system {A} at the begining and then we
apply to {B} a rotation ψ1 around x̂e, followed by a rotation ψ2 around ŷe, and then a
rotation ψ3 around ẑe. In this case, instead of pre-multiplying the basic rotation matrices,
we have to post-multiply, giving the following expression:

ARB = Rot (x̂, ψ1) Rot (ŷ, ψ2) Rot (ẑ, ψ3) (6.15)

This result will be different from equation 6.12. It is important to note the order
in which this combination is formed. The product of matrices is not commutative, in
general, so changing the order would result in a different representation of the final
orientation of {B} with respect to {A}.

If the first rotation we apply to {B} defined with respect to {A} is a rotation ψ3 around
ẑA , followed by a rotation ψ2 around ŷA, and then a rotation ψ1 around x̂A, then we obtain
a rotation matrix equal to the equation 6.15.

To sum up, the composition of rotation matrices depends on the frame we use as
reference. If we set as reference the fixed frame, we have to pre-multiply and if the
reference is the the mobile frame, then we have to post-multiply.

Due to the number of combinations, 24 different sets of Euler Angles can be defined
about the fixed reference and another 24 sets when the rotations are in reference to the
mobile frame.

In robotics, the most comon sets are Roll-Pitch-Yaw mobile Euler Angles and Roll-
Pitch-Roll mobile Euler Angles. Do you think it is a coincidence? The answer is no.
Think why. Bear in mind that: Yaw= Rot (x̂, ψ1) , Pitch= Rot (ŷ, ψ2) and Roll=Rot (ẑ, ψ3).

6.3.5 Formulation Singularity in Euler Angles

From equation 6.12 it can be easily proven that the rotation matrix can always be
obtained from a given set of Euler Angles, without any restriction.



Section 6.3. The Representation of Orientation in Space 115

The inverse problem, that is to say, to obtain the Euler Angles from a given rotation
matrix, requires a little work. Given the rotation matrix of system {B}, in reference to a
system {A}:

ARB =

r11 r12 r13

r21 r22 r23

r31 r32 r33

 (6.16)

The values for the Roll-Pitch-Yaw mobile Euler Angles can be obtained equating the
previous expression with equation 6.12:

ARB =

r11 r12 r13

r21 r22 r23

r31 r32 r33

 =

c3c2 c3s2s1 − s3c1 c3s2c1 + s3s1

s3c2 s3s2s1 + c3c1 s3s2c1 − c3s1

−s2 c2s1 c2c1

 (6.17)

then, we have

sinφ2 = −r31 cosφ2 = ±
√

1− sinφ2

sinφ3 = r21/ cosφ2 cosφ3 = r11/ cosφ2

sinφ1 = r32/ cosφ2 cosφ2 = r33/ cosφ2

(6.18)

If cosφ2 = 0 (φ2 = 2πn + π/2 with n ∈ N ) the problem has no solution. There is a
formulation singularity.

Every set of Euler Angles has a formulation singularity for a given value of φ2. The
value presented above for which this singularity occurs is specific for this set of Euler
Angles (that is, the Roll-Pitch-Yaw Euler Angles) since we have used the rotation matrix
for this set.

The major consequence of the singularity is that there is no an unique solution for
the Euler Angles that produces the given matrix. It can only be said that φ1 + φ3 = π/2.

The ways to avoid the formulation singularity are:

• Constrain robot movements to prevent crossing the region of the formulation
singularity.

• Use another set of Euler Angles. In this case, the formulation singularity will be
moved to another region in the robot workspace.

• Don’t use the Euler Angles to quantify the orientation and try other techniques that
do not present the formulation singularity.

The formulation singularity has no relationship with mechanical singularity (see
chapter 8).



116 Chapter 6. Coordinate frames and homogeneous transformation

6.3.6 Rotation Axis- Rotation Angle Representation

Due to the formulation singularity of the Euler Angles, other representation models are
defined that are based on 4 parameters. The fourth parameter is normally redundant.
But when the Euler Angle representation fails due to the formulation singularity, this
fourth (redundant) parameter becomes no-reduntant and solves the ambiguity.

This is the case of the Rotation Axis- Rotation Angle Representation (figure 6.10).
This representation consists of defining a unitary vector (−→u , with ‖−→u ‖ = 1) that points
the rotation axis and the fourth parameter is the radians that must be rotated (ϕ).

x
A

z
A

y
A

z
B

x
B

y
B

u



Figure 6.10: Rotation Axis- Rotation Angle Representation of orientation.

The expression for the rotation matrix is:

ARB = Rot(−→u , ϕ) =

−(u2
y + u2

z)α+ 1 uxuyα− uzβ uxuzα+ uyβ

uxuyα+ uzβ −(u2
x + u2

z)α+ 1 uyuzα− uxβ
uxuzα− uyβ uyuzα+ uxβ −(u2

x + u2
y)α+ 1

 (6.19)

where: α = 1− cosϕ, β = sinϕ.

6.3.7 Quaternions or Euler Parameters

The Rotation Axis-Rotation Angle Representation has the problem that not all the
parameters have the same dimension. This inconvenience has the side effect that the
order of the parameter values are not the same. This problem is overcome by the Euler
Parameters (also called as Quaternions).

The definition of the Quaternions is based on the Rotation Axis-Rotation Angle



Section 6.4. Homogeneous Coordinates 117

Representation:

e0 = cos(ϕ/2)
e1 = ux sin(ϕ/2)
e2 = uy sin(ϕ/2)
e3 = uz sin(ϕ/2)

(6.20)

Quaternions behave as a vector in the 4D space and have the interesting property
that:

‖e| =
√
e2

0 + e2
1 + e2

2 + e2
3 = 1 (6.21)

Quaternions can also be envisioned as an extension of complex numbers:

−→e = e0 + e1
−→
i + e2

−→
j + e3

−→
k (6.22)

that verify:
−→
i
−→
i =

−→
j
−→
j =

−→
k
−→
k =

−→
i
−→
j
−→
k = −1

6.4 Homogeneous Coordinates

6.4.1 Position and Orientation in Space

Now it is time to combine the translation and rotation transformations into one. So, let
us consider two coordinate systems ({A} and {B}) in which the origins do not coincide
and the coordinated axes of frame {B} are rotated with respect to the frame {A} (figure
6.11

The vector APe locates the point Pe with respect to the origin of the coordinate system
{A}, that is OA, and the vector BPe locates the point Pe with respect to the origin of the
coordinate system {B}, that is OB. Finally, the vector AOAB connects the two origins.

It can easily be seen that the vector APe is the summation of BPe and AOAB. Thus,

APe = ARB
BPe︸ ︷︷ ︸

rotation

+ AOAB︸ ︷︷ ︸
translation

(6.23)

Notice that to formally write the equation, we have to premultiply the rotation matrix
because we cannot sum two different sets of coordinates that do not relate to the aligned
axes.

From equation 6.23, we can conclude that the algebra used to rotate is different than
the algebra needed to translate. This makes the operations, when several transformation



118 Chapter 6. Coordinate frames and homogeneous transformation

x
A

z
A

y
A

z
B

x
B

y
B

O
B

O
A

A O
AB

A P
e

B P
e

P
e

Figure 6.11: The relation between frames {A} and {B} involves both a translation plus a
rotation.

series should be combined, extremely difficult. This problem can be overcome thanks
to the homogeneous transformation, but first we have to understand the concept of
homogeneous coordinates.

6.4.2 Homogeneous Coordinates

So far we have seen different ways of representing the position and the orientation in
space of objects or systems of reference. But none of these methods allow us to represent
both position and orientation at the same time. None of them can be used to represent
the location1 of an object or reference system in space.

To present the location of something in space we need to use homogeneous
coordinates. These are defined using a 4x4 matrix, and are a representation of
coordinates in a four dimensional space.

In other words, the 3D space is embedded in a 4D space in such a way that a position
vector in 3D space, Pe, is represented as:

Pe =


w · Pex
w · Pey
w · Pez
w

 (6.24)

1The term location will be used throughout these notes to mean the position and orientation of something
(an object, the endpoint, a frame, etc) in space.



Section 6.4. Homogeneous Coordinates 119

where w has any arbitrary nonzero value and, in effect, represents a scaling factor of the
embedding of the 3D space in the 4D space.

For example, a vector

P 3D
e =

ab
c

 (6.25)

can be represented in homogeneous coordinates as a column vector:

P 4D
e =


w · a
w · b
w · c
w

 (6.26)

given that w can be any arbitrary nonzero value.

For example, the vector

P 3D
e =

2
3
4

 (6.27)

can be represented in homogeneous coordinates as:

P 4D
e =


2
3
4
1

 (6.28)

where w = 1 or as:

P 4D
e =


4
6
8
2

 (6.29)

where w = 2 or as:



120 Chapter 6. Coordinate frames and homogeneous transformation

P 4D
e =


6
6
12
3

 (6.30)

where w = 3, etc.

In homogeneous coordinates, null vectors are represented as P 4D
e =

[
0 0 0 w

]
with

w 6= 0.

The vectors of type
[
a b c 0

]T with a, b, c 6= 0 can be used to represent directions,
since they represent vectors with infinite magnitude.

6.4.3 Homogeneous Transformation

As well as defining homogeneous coordinates, we can also define the homogeneous
transformation matrix, T , which is a 4x4 matrix which represents the transformation
of a vector in homogeneous coordinates with respect to some reference system, or the
relationship between two coordinate reference systems.

The homogeneous transformation matrix T is composed of four submatrices:

• a submatrix R3x3 which corresponds to a typical rotation matrix in 3D space,

• a submatrix O3x1 which corresponds to a translation vector in 3D space,

• a submatrix f1x3 which represents a perspective transformation, and

• a submatrix w1x1 which represents a global scaling factor.

The general form of the homogeneous transformation matrix is thus given by:

T =
[
R3x3 O3x1

f1x3 w1x1

]
=
[

rotation translation
perspective scaling

]
(6.31)

In the field of robotics we only need to represent rotation, R3x3, and position or
translation, O3x1. We can thus define the perspective transformation to be a null
(sub)matrix and the scaling factor to be one.

The form of the homogeneous transformation matrix that we will use here is thus
given by:

T =
[

R3x3 O3x1

0 0 0 1

]
(6.32)



Section 6.4. Homogeneous Coordinates 121

and this can be used to represent the position and orientation of an object in 3D
space, with respect to some reference system, or the relationship between two reference
systems, {B} and {A}, for example, in 3D space.

If the matrix ATB represents the relationship between two coordinate reference
systems, {A} and {B}, it can be used to calculate the coordinates APe = [APex APey

APez ]T

of a vector Pe with respect to the reference system {A}, given the coordinates of the same
vector, Pe, specified with respect to a reference system {B}, BPe = [BPex BPey

BPez ]T , as
follows:

APe =


APex
APey
APez

1

 = ATB
BPe = ATB


BPex
BPey
BPez

1

 (6.33)

In this example, ATB represents the relation between two coordinate reference systems
in 3D space. But now we have to use the homogeneous coordinates.

We can also use the homogeneous transformation matrix ATB to represent the
translation and rotation of a vector with respect to some fixed coordinate reference
system, {A}.

In which case we have a vector Pe, which is rotated by R3x3 and translated by O3x1,
will be converted to the vector P ′e, which is given by:

AP ′e = ATB
APe (6.34)

In this example ATB represents the transformation operation of translation and
rotation applied to the vector Pe, defined with respect to the reference system {A}, to
move it to the new vector P ′e.

6.4.3.1 Example

Given O3x1 = [5 − 4 2]T , BPe = [−1 2 − 3]T , and ψx = 0, ψy = 0, ψz = −π/2 (2), BPe can be
obtained as following:

• Calculate the rotation matrix → ARB = rot(ẑ,−π/2) =

 0 1 0
−1 0 0
0 0 1


2That is to say ψ1 = 0, ψ2 = 0, ψ3 = −π/2 when the Y-P-R fixed Euler Angles convention is used.



122 Chapter 6. Coordinate frames and homogeneous transformation

• Construct the homogeneous transformation matrix → ATB =


0 1 0 5
−1 0 0 −4
0 0 1 2
0 0 0 1



• Calculate APe = ATB
BPe → APe =


7
−3
−1
1



6.4.4 Inverse Homogeneous Transformation Matrix

In this case, the homogeneous matrix does not fulfill the properties of an orthonormal
matrix, so the inverse matrix is not the transpose matrix as the case of rotation matrix.
However, it can easily inverted as is shown in the following:

ATB =
[
ARB OAB
0 0 0 1

]
→ AT−1

B = BTA =
[
ARTB −ARTBOAB
0 0 0 1

]
(6.35)

Try to demonstrate this equality. It is quite easy! .

6.4.5 Basic Translation Homogeneous Transformation Matrix

Suppose a reference system {B} is translated by a vector OAB = [OABx OABy OABz ]T

with respect to a reference system {A}. The matrix ATB will then correspond to a
homogeneous translation matrix defined as follows:

ATB = Trans(OAB) =


1 0 0
0 1 0
0 0 1

OAB

0 0 0 1

 =


1 0 0
0 1 0
0 0 1

OABx
OABy
OABz

0 0 0 1

 (6.36)

and is known as a basic translation matrix.

Thus, for example, a vector BPe represented in a reference system {B} will have vector
components with respect to a reference system {A} given by:

APe =


Pex
Pey
Pez
1

 = ATB
BPe =


1 0 0
0 1 0
0 0 1

OABx
OABy
OABz

0 0 0 1



ePex
ePey
ePez

1

 =


OABx + ePex
OABy + ePey
OABz + ePez

1

 (6.37)



Section 6.4. Homogeneous Coordinates 123

which we can write as:

APe = ATB
BPe (6.38)

where ATB represents a relation between the reference system {B} and the reference
system {A}.

Similarly, a vector Pe transformed by a basic translation matrix ATtransf with respect
to reference system {A} will have vector components given by:

AP Ie =


P Iex
P Iey
P Iez
1

 = ATtransf
APe =


1 0 0
0 1 0
0 0 1

OABx
OABy
OABz

0 0 0 1



Pex
Pey
Pez
1

 =


OABx + Pex
OABy + Pey
OABz + Pez

1

 (6.39)

which we can write as

AP ′e = ATtransf
APe (6.40)

where ATtransf represents an operation on the vector Pe in the reference system {A}.

6.4.5.1 Example 1

If the reference system {B} is translated by a vector OAB = [6 − 3 8] with respect to
reference system {A}, calculate the components APe = [Pex Pey Pez ]T of the vector Pe of
which the components with respect to {B} are BPe = [BPex BPey

BPez ]T = [−2 7 3]T .

APe =


Pex
Pey
Pez
1

 = ATB
BPe =


1 0 0
0 1 0
0 0 1

6
−3
8

0 0 0 1



−2
7
3
1

 =


4
4
11
1

 (6.41)

and thus APex = 4, APey = 4, and APez = 11.

6.4.5.2 Example 2

Calculate the vector AP Ie which is the result of translating the vector APe = [4 4 11]T by
using the transformation matrix ATtransf with Otranf = [6 − 3 8]T .



124 Chapter 6. Coordinate frames and homogeneous transformation

x
A

z
A

y
A

z
B

x
B

y
B

O
B

O
A

A O
AB
=[

6
−3
8 ]

P
eP

e
B =[

−2
7
3 ]

P
e

A
=[

4
4

11 ]

Figure 6.12: Translation of a frame.

x
A

z
A

y
A

O
A

A O
AB
=[

6
−3
8 ]

P
e

P
e
IA
=[

10
1
19]

P
e

A
=[

4
4

11 ]

P
e
I

Figure 6.13: Translation of a position with a fixed frame.



Section 6.4. Homogeneous Coordinates 125

AP Ie =


AP Iex
AP Iey
AP Iez

1

 = ATtransf
APe =


1 0 0
0 1 0
0 0 1

6
−3
8

0 0 0 1




4
4
11
1

 =


10
1
19
1

 (6.42)

and thus AP Iex = 10, AP Iey = 1, and AP Iez = 19.

6.4.6 Basic Rotation Homogeneous Transformation Matrix

Assumed that the coordinate reference system {B} is rotated with respect to the
reference system {A}. If the submatrix of rotation R3x3 takes the form of any one of
the three basic rotation matrices introduced above, then we will have what we call a
basic rotation homogeneous transformation matrix. This can take three different
forms corresponding to the three basic rotation matrices.

ATB = Rot (x̂, ψx) =


1 0 0 0
0 cosψx − sinψx 0
0 sinψx cosψx 0
0 0 0 1

 (6.43)

ATB = Rot (ŷ, ψy) =


cosψy 0 sinψy 0

0 1 0 0
− sinψy 0 cosψy 0

0 0 0 1

 (6.44)

ATB = Rot (ẑ, ψz) =


cosψz − sinψz 0 0
sinψz cosψz 0 0

0 0 1 0
0 0 0 1

 (6.45)

A vector BPe represented in a reference system {B} which is rotated by ATB will have
components defined with respect to reference system {A}, APe, given by

APe =


Pex
Pey
Pez
1

 = ATB
BPe = ATB


ePex
ePey
ePez

1

 (6.46)



126 Chapter 6. Coordinate frames and homogeneous transformation

Here ATB represents the relation between the reference system {B} and the reference
system {A}.

Similarly, a vector APe which is transformed by ATtransf to a new vector AP ′e will be
defined by:

AP ′e =


P ′ex
P ′ey
P ′ez
1

 = ATtransf
APe = ATtransf


Pex
Pey
Pez
1

 (6.47)

Here ATtranf represents a rotation operation on the vector APe in the reference system
{A}.

6.4.6.1 Example 1

If the reference system {B} is rotated π/2 around the axis ẑ of reference system {A},
calculate the components of the vector APe, given that BPe = [4 8 12]T .

x
A

z
A

y
A

O
A

z
B

x
B

y
B

O
B

P
e

A
=[

4
8

12 ]≡ P
e

B
=[

8
−4
12 ]

P
e


z
=/2

Figure 6.14: Rotation pi/2 around axis ẑ.

APe =


Pex
Pey
Pez
1

 = ATB
BPe =


0 1 0
−1 1 0
0 0 1

0
0
0

0 0 0 1




4
8
12
1

 =


8
−4
12
1

 (6.48)



Section 6.4. Homogeneous Coordinates 127

and thus Pex = 8, Pey = −4, and Pez = 12.

6.4.6.2 Composition of Basic Rotation Homogeneous Transformation Matrix

For example, a transformation matrix that represents a rotation of ψ1 around x̂, followed
by a rotation of ψ2 around ŷ, and finally a rotation of ψ3 around ẑ, can be obtained from
combining three basic homogeneous transformation matrices in the following way:

ATB = Rot (ẑ, ψ3) Rot (ŷ, ψ2) Rot (x̂, ψ1) (6.49)

which gives:

ARB =


c3c2 c3s2s1 − s3c1 c3s2c1 + s3s1 0
s3c2 s3s2s1 + c3c1 s3s2c1 − c3s1 0
−s2 c2s1 c2c1 0

0 0 0 1

 (6.50)

where si = sinψi, ci = cosψi with i = 1, 2, 3

which, due to the non-commutativity of matrix products (in general) is not the same
as the homogeneous transformation matrix which results from applying the same three
rotation operations in the reverse order. In other words,

ATB = Rot (x̂, ψ1) Rot (ŷ, ψ2) Rot (ẑ, ψ3) (6.51)

gives an

ATB =


1 0 0 0
0 cosψ1 − sinψ1 0
0 sinψ1 cosψ1 0
0 0 0 1




cosψ2 0 sinψ2 0
0 1 0 0

− sinψ2 0 cosψ2 0
0 0 0 1




cosψ3 − sinψ3 0 0
sinψ3 cosψ3 0 0

0 0 1 0
0 0 0 1

 (6.52)

and thus

ATB =


c3c2 −s3c2 s2 0

c3s2s1 + s3c1 −s3s2s1 + c3c1 −c2s1 0
−c3s2c1 + s3s1 s3s2c1 + c3s1 c2c1 0

0 0 0 1

 (6.53)

where si = sinψi, ci = cosψi with i = 1, 2, 3



128 Chapter 6. Coordinate frames and homogeneous transformation

In conclusion, we can see that the basic rotation homogeneous transformation
matrices behave as the basic rotation matrices and no further explanation should be
needed. Despite that, in the following subsections we are going to analyse this behaviour
thoroughly.

6.4.7 Composition of Basic Translation and Rotation Homogeneous Trans-
formation Matrices

The main advantages of using homogeneous coordinates and homogeneous transforma-
tion matrices is that they can be used to represent both translation (or position) and
rotation (or orientation) of an object or reference system in 3D space.

If we want to represent the position and orientation of some coordinate reference
system {B}, which is initially completely coincident with reference system {A}, but which
has been subsequently rotated and translated with respect to {A}, we first need to know
in what order the rotation and translation operations have been applied. This follows
from the fact that basic homogeneous transformation matrices are not commutative in
combination.

For example, if initially the reference system {B} is completely coincident with
reference system {A}, and we then apply a translation of OAB (we get {B1}) and then
a rotation of π radians around the axis ẑ of reference system {A}, Rot (ẑA, π), we will
have a new reference system {B2} (figure 6.15).

x
A

z
A

y
A

z
B1

x
B1

y
B1

O
B1

O
A

A O
AB

z
B2

x
B2y

B2

O
B2


z
=

Figure 6.15: Translation plus rotation of a frame.

If, on the other hand, we first apply the rotation Rot (ẑ, π) (we get {B3}) and then
we apply the translation OAB with respect to the {A} coordinate system, we will get a
different transformed reference system {B4} (figure 6.16). Notice that {B2} � {B4}.



Section 6.4. Homogeneous Coordinates 129

x
A

z
A

y
A

O
A

A O
AB z

B3

x
B3y

B3

O
B3


z
=

z
B4

x
B4y

B4

O
B4

Figure 6.16: Translation plus rotation of a frame: Rotation and translation are not
commutative.

6.4.7.1 Rotation and then Translation

In the case where we first apply a rotation around one of the principle axes of the
fixed reference system {A} followed by a translation, also defined with respect to the
fixed reference system {A}, the homogeneous transformation matrix will have one of the
following forms.

For a rotation ψ1 around the x̂ axis of {A}, followed by a translation defined by OAB

ATB = Trans (OAB) Rot (x̂, ψ1) =


1 0 0 OABx
0 1 0 OABy
0 0 1 OABz
0 0 0 1




1 0 0 0
0 cosψ1 − sinψ1 0
0 sinψ1 cosψ1 0
0 0 0 1

 =

=


1 0 0 OABx
0 cosψ1 − sinψ1 OABy
0 sinψ1 cosψ1 OABz
0 0 0 1


(6.54)

which we can write, in terms of basic homogeneous transformation matrices, as

ATB = Trans (P3x1) Rot (x̂, ψ1) (6.55)

The two other forms will thus be given by



130 Chapter 6. Coordinate frames and homogeneous transformation

ATB = Trans (P3x1) Rot (ŷ, ψ2) (6.56)

and

ATB = Trans (P3x1) Rot (ẑ, ψ3) (6.57)

6.4.7.2 Translation and then Rotation

In the case where we first apply a translation followed by a rotation around one of the
principle axes of the fixed reference system {A}, the homogeneous transformation matrix
will take one of the following forms:

ATB = Rot (x̂, ψ1) Trans (P3x1) =


1 0 0 0
0 cosψ1 − sinψ1 0
0 sinψ1 cosψ1 0
0 0 0 1




1 0 0 Px
0 1 0 Py
0 0 1 Pz
0 0 0 1

 (6.58)

multiplying both matrices gives:

ATB =


1 0 0 Px
0 cosψ1 − sinψ1 (Py cosψ1 − Pz sinψ1)
0 sinψ1 cosψ1 (py sinψ1 + Pz cosψ1)
0 0 0 1

 (6.59)

The two other forms will thus be given by:

ATB = Rot (ŷ, ψ2) Trans (P3x1) (6.60)

and

ATB = Rot (ẑ, ψ3) Trans (P3x1) (6.61)

6.4.7.3 Example 1

A reference system {B}, which is initially completely coincident with a fixed reference
system {A}, is first rotated by π/2 around the axis x̂, and then translated by a vector
OAB = [8 − 4 12]T , defined with respect to {A}. Calculate the components of APe =
[Pex Pey Pez ]T of the vector Pe, given that BPe = [−3 4 − 11]T .



Section 6.4. Homogeneous Coordinates 131

APe = Trans (P3x1) Rot (x̂, ψ1)BPe =


1 0 0 8
0 1 0 −4
0 0 1 12
0 0 0 1




1 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 1



−3
4
−11

1

 (6.62)

which gives,

APe =


1 0 0 8
0 0 −1 −4
0 1 0 12
0 0 0 1



−3
4
−11

1

 =


5
7
16
1

 (6.63)

and thus Pex = 8, Pey = −4, and Pez = 12.

Now, we consider applying the transformations in the reverser order: a reference
system {B} which is initially completely coincident with a fixed reference system {A}, is
first translated by a vector OAB = [8 − 4 12]T , defined with respect to the fixed reference
system {A}, and then rotated by π/2 around the axis x̂. Calculate the components
0r = [Pex Pey Pez ]T of the vector APe, given that BPe = [−3 4 − 11]T .

APe = Rot (x̂, ψ1) Trans (P3x1)BPe =


1 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 1




1 0 0 8
0 1 0 −4
0 0 1 12
0 0 0 1



−3
4
−11

1

 (6.64)

which gives,

APe =


1 0 0 8
0 0 −1 −12
0 1 0 4
0 0 0 1



−3
4
−11

1

 =


5
−1
0
1

 (6.65)

and thus Pex = 5, Pey = −1, and Pez = 0.

6.4.8 Composition of Homogeneous Transformation Matrices

We have seen that the homogeneous transformation matrix can be used to represent
combinations of translations and rotations applied to one movable reference system and
defined with respect to another fixed reference system.



132 Chapter 6. Coordinate frames and homogeneous transformation

We have also seen that when the complete or final transformation is composed of
a series of applied basic transformations, the composition of the total transformation
matrix depends upon the order in which the basic operations are applied.

Using a more concrete example, if a reference system {B} is rotated π/2 around x̂,
then translated OAB = [5 5 10]T with respect to the fixed reference system {A}, and finally
rotated π/2 around ẑ, what is the resulting homogeneous transformation matrix?

Composing the complete transformation matrix from basic transformation matrices,
we have

ATB = Rot (ẑ, π/2) Trans

 5
5
10

Rot (x̂,−π/2) (6.66)

thus

ATB =


0 −1 0 0
1 0 0 0
0 0 1 0
0 0 0 1




1 0 0 5
0 1 0 5
0 0 1 10
0 0 0 1




1 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 1

 (6.67)

which gives

ATB =


0 0 −1 −5
1 0 0 5
0 −1 0 10
0 0 0 1

 (6.68)

In the examples we have seen so far, all the basic operations and transformations
have been defined with respect to the fixed reference system {A}. However, we can also
define basic operations and transformations with respect to the reference system that
moves {B}, and combine these to form complete or total homogeneous transformation
matrices. In this case, the order of composition is reversed!

For example, if the reference system {B} is first rotated an angle ψ1 around the axis
x̂B, then rotated an angle ψ2 around axis ŷB of the reference system {B}, and finally
rotated an angle ψ3 around the axis ẑB of the reference system {B}, then the complete
homogeneous transformation matrix will be given by:

ATB = Rot (x̂B, ψ1) Rot (ŷB, ψ2) Rot (ẑB, ψ3) (6.69)

This gives:



Section 6.4. Homogeneous Coordinates 133

ATB =


1 0 0 0
0 cosψ1 − sinψ1 0
0 sinψ1 cosψ1 0
0 0 0 1




cosψ2 0 sinψ2 0
0 1 0 0

− sinψ2 0 cosψ2 0
0 0 0 1




cosψ3 − sinψ3 0 0
sinψ3 cosψ3 0 0

0 0 1 0
0 0 0 1

 (6.70)

and thus

ATB =


c3c2 −s3c2 s2 0

c3s2s1 + s3c1 −s3s2s1 + c3c1 −c2s1 0
−c3s2c1 + s3s1 s3s2c1 + c3s1 c2c1 0

0 0 0 1

 (6.71)

where si = sinψi, ci = cosψi with i = 1, 2, 3

Notice that

Rot (x̂B, ψ1)→ Rot (ŷB, ψ2)→ Rot (ẑB, ψ3) 6=
6= Rot (ẑB, ψ3)→ Rot (ŷB, ψ2)→ Rot (x̂B, ψ1) (6.72)

but that

Rot (x̂B, ψ1)→ Rot (ŷB, ψ2)→ Rot (ẑB, ψ3) ≡
≡ Rot (ẑ, ψ3)→ Rot (ŷ, ψ2)→ Rot (x̂, ψ1) (6.73)

Thus, in general, when we form complete or total homogeneous transformation
matrices from combinations of basic transformation matrices, we must carefully note
the following points:

• If the fixed reference system {A} and the transformed (movable) reference system
{B} are completely coincident, then the homogeneous transformation matrix will
be the 4x4 identity matrix I4x4.

• If the transformed reference system {B} is obtained following a series of basic
rotation and translation operations, all defined with respect to the fixed reference
system {A}, then the complete (or total) homogeneous transformation matrix is
obtained by premultiplying the result of the previous operations by the basic
homogeneous transformation matrix of the next operation. In other words, the basic
transformation matrices must be written down from right to left in the order in
which they are applied.



134 Chapter 6. Coordinate frames and homogeneous transformation

• If the transformed reference system {B} is obtained following a series of basic
rotation and translation operations, all defined with respect to the movable
reference system {B}, then the complete (or total) homogeneous transformation
matrix is obtained by postmultiplying the result of the previous operations by the
basic homogeneous transformation matrix of the next operation. In other words,
the basic transformation matrices must be written down from left to right in the
order in which they are applied.

Thus any homogeneous transformation matrix can be composed of combinations of
basic transformation matrices defined with respect to a fixed reference system or the
transformed reference system, and we can even mix these in the composition, though
this is not advisable, since it can more easily lead to construction errors.

In the next part of the course, on kinematic control, we will often use certain basic
homogeneous transformation matrices which are defined with respect to a movable
reference system, in order to compose the relationship between coordinate reference
systems rigidly attached to the link or element that make up a robot manipulator.

6.4.8.1 Example 1: postmultiplication

The transformation matrix that represents the following transformations:

1. Translation [−3 10 10] with respect to {B},

2. Rotation around x̂B at an angle of −π/2 radians, and

3. Rotation around ŷB at an angle of π/2 radians, is

ATB = Trans({B}, [−3 10 10]T ) rot(x̂B,−π/2) rot(ŷB, π/2) =

=


1 0 0 −3
0 1 0 10
0 0 1 10
0 0 0 1




1 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 1




0 0 1 0
0 1 0 0
−1 0 0 0
0 0 0 1

 =


0 0 1 −3
−1 0 0 10
0 −1 0 10
0 0 0 1



6.4.8.2 Example 2: premultiplication

The transformation matrix that represents the following transformations:

1. Rotation around x̂A at an angle of −π/2 radians

2. Translation [5 5 10] with respect to {A}, and

3. Rotation around ẑA at an angle of π/2 radians, is



Section 6.4. Homogeneous Coordinates 135

ATB = rot(ẑA, π/2) Trans({A}, [5 5 10]T ) rot(x̂A,−π/2) =

=


0 −1 0 0
1 0 0 0
0 0 1 0
0 0 0 1




1 0 0 5
0 1 0 5
0 0 1 10
0 0 0 1




1 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 1

 =


0 0 −1 −5
1 0 0 5
0 −1 0 10
0 0 0 1





136 Chapter 6. Coordinate frames and homogeneous transformation



Chapter 7

Kinematics of Manipulators

7.1 Introduction

In this part, we will study the kinematics of robot manipulator arms. In particular it will
introduce the problems of the forward and inverse kinematics of robot arms. It will also
introduce and illustrate a systematic method for describing robot arms.

First, we should be clear what kinematics is: it is the study of movement or
motion without regard to the force or forces that produce the movement. Kinematics
therefore includes the study of position, velocity, acceleration, and all higher derivatives
of position. Dynamics is the study of movement or motion with regard to the forces that
produce it.

We can study the kinematics of robot manipulator arms, without needing to study
their dynamics, because all the forces involved can be generated by the controller.

We will begin by introducing the two basic problems of the kinematics of manipulator
arms: the forward kinematics problem, and the inverse kinematics problem. We will
then introduce a method for describing the geometry of robot manipulator arms, which
we will need in order to study the above two problems.

7.2 Forward and Inverse Kinematics

The forward kinematics problem consists in determining what the position and
orientation of the reference system, {e}, at the end-point, Pe, of the robot is, with respect
to some fixed global system of reference, given the values of the positions of each joints,
plus information about the types of joints and the geometry of the elements that connect
the joints.

The inverse kinematics problem consists in determining what values are needed
for each of the joint positions, given a particular position and orientation of {e}, plus
information about the types of joints and the geometry of the elements that connect
them.

137



138 Chapter 7. Kinematics of Manipulators

From these definitions we can see that the forward kinematics problem, for any
particular serial robot manipulator arm, has a unique solution, whereas, the inverse
kinematic problem for that same robot arm may have more than one solution. In the
case of parallel manipulators, the forward kinematics has more than one solution and
the inverse kinematics has only one solution.

We can illustrate these two problems and the relationship between them in the
following diagram.

Px Py Pz 1 2 3

Cartesian Space

q1 q2 q3  qn

Articular Space
Forward kinematics

Inverse kinematics

Robot Manipulator Robot Workspace

Figure 7.1: Forward Kinematics vs. Inverse Kinematics.

7.3 Geometric Parametres of Joint-Link Robotic Mechanisms

As we have seen, we can consider a serial manipulator as consisting of a set of links
connected by single degree of freedom joints, where a link may be thought of as a
rigid body which connects the axes of the two adjacent joints. Joint axes are simply
represented as lines in space, the line about which we have rotation, in the case of a
rotational joint, or the line along which we have linear movement, in the case of a linear
joint.

The links that make up a robot arm are numbered starting with the fixed base of
the robot, which we will call link 0. The first movable link will then be numbered as link
1, and so on, out to the end-point of the robot arm, which is attached to the last link in
the chain, numbered link n.

The first and last links, link 0 and link n, are special links, in the sense that they do
not connect two joint axes. Link 0 connects the first joint axis to the fixed world, and
link n joins the last joint axis to the end-point, Pe, of the robot.

We use four parameters to describe the geometry of robotic mechanisms. Two are
called the Link Parameters, and define the geometry of a link, and the other two are
called the Joint Parameters or Connection Parameters, and describe the geometry of
a joint.

7.3.1 Link Parameters

A joint axis i will be defined by a direction vector, where the positive direction is used
to define the positive (counterclockwise) rotation direction of a rotational joint, or the
positive direction of movement in the case of a linear joint.



Section 7.3. Geometric Parametres of Robotic Mechanisms 139

Thus, joint axis i is defined by a direction vector, around which link i rotates relative
to link i − 1, and we can specify the relative location of the two axes involved, axis i and
axis i− 1, in terms of two parameters.

In the same way joint axis i+1 is defined by a direction vector, around which link i+1
rotates relative to link i, and we can specify the relative location of the two axes involved,
axis i+ 1 and axis i, in terms of two parameters.

Taking into account the relationships described in the last two paragraph, we can
define the two link parameters.

The first link parameter is the distance between the two axes, called the link length.
For any two (joint) axes in 3D space, there exists a well defined measure of the distance
between them given by the length of the line which connects them and is mutually
perpendicular to both axes (axis i and axis i+1). This mutually perpendicular line always
exists and is unique, except when the two axes are parallel, in which case there is an
infinite number of them, but all of the same length. If the two axes meet at some point
in 3D space, then this line has zero length. The length of this line between the two joint
axes that intersects them, is the link length, and is denoted by ai (figure 7.2).

x i

zi

y i

i

i1

a
i

i

Figure 7.2: Link parameters: Link Length (ai) and Link Twist (αi).

The second link parameter is the relative rotation, or twist between the two axes
(axis i and axis i+ 1), called the link twist. Imagine a plane whose normal vector is the
mutually perpendicular line just constructed for the link distance. We then project the
axis i onto this plane, and then we project axis i+1 onto the same plane. The link twist is
then defined as the angle between these two projected axes, measured in the right-hand
sense around the line of the link length. If the two joint axes intersect at some point,
then the plane is the one that contains the two axes. However, in this case we have no
definition of the positive rotation direction, so in this case we can choose it arbitrarily 1.
The link twist for link i is denoted by αi (figure 7.2).

The two link parameters, ai and αi, for a particular link have fixed values which are
1The advice in this case is to choose the direction that coincides with the direction of the cross product

between the axis i and the axis i+ 1.



140 Chapter 7. Kinematics of Manipulators

determined by the physical form of the link.

7.3.2 Joint Parameters

Two links are connected by a joint. They therefore have a common joint axis (joint axis i).
The link offset parameter is then defined as the distance along the common joint axis
from the end of the first link (link i−1) to the beginning of the next link (link i). The offset
of link i with respect to link i− 1, at joint axis i, is denoted by di (figure 7.3).

i

x i

zi y i

d
i

i

i−1

Figure 7.3: Joint parameters: Link Offset and Joint Angle.

The second joint parameter describes the relative rotation of link i with respect to
link i− 1, around the common joint axis i. It is called the Joint Angle, and is denoted by
θi (figure 7.3).

The two joint parameters have either a fixed value or are variable, depending upon
the type of joint.

In the case of a prismatic or linear joint connecting link i− 1 to link i, the joint angle,
θi, will have a fixed value, and the link offset, di, will vary according to the position of the
prismatic joint.

In the case of a rotational joint connecting link i − 1 to link i, the joint angle, θi will
vary according to the position of the rotational joint and the link offset, di will have a
fixed value.



Section 7.4. Denavit and Hartenberg method 141

Joint Type Link Offset (di) Joint Angle (θi)
prismatic variable constant
rotational constant variable

Table 7.1: List of variable parameters according to the type of DoF.

7.4 Defining the Link Reference Systems (Denavit and
Hartenberg method)

To be able to represent the relationship between any two connected links in a robot
manipulator arm, we will fix (rigidly attach) a coordinate reference system to each
link, and then construct the homogeneous transformation matrix that represents the
geometric relationship between them, using the four geometric parameters introduced
above.

Normally, we are interested in the relationship between a link i and the link
immediately preceding it, i.e., link i− 1.

Then, by combining the relationships between pairs of connected links we can
construct the relationship between the last link n, which has the robot gripper/end-
effector attached to it, and the first link, link 0, which is the robot base. Once we have
this whole arm relationship defined, we can use it to calculate where the end-point Pe
of the robot is with respect to the robot base, knowing what the n joint values are. Or
we can use it to solve the inverse kinematics problem: calculate what joint values are
needed for a particular position and orientation of Pe.

To do this in a convenient and accurate manner, we will always define these link
reference systems in the same way, using the following convention (also called the
Denavit-Hartenberg convention):

1. Link reference systems are numbered according to the number of the link to which
they are fixed. Thus, reference system {i} is fixed to link i.

2. For intermediate links: link with joints at both ends →

(a) The origin of {i} is defined as the intersection of the joint axis i and the line of
the link length, ai.

(b) The axis ẑi of {i} is defined to be along the joint axis i. In this case we can
choose which direction to draw as the positive ẑi, but the best is always to
choose the same criteria for each of the link reference systems.

(c) The axis x̂i of {i} is defined to be along the line of the link length, ai, with the
positive direction being from the joint axis i to the joint axis i+ 1.

(d) Once we have the axes x̂i and ẑi of {i} defined, we define the axis ŷi so that the
reference system {i} is a right-handed reference system.

3. For the first link: number zero, the fixed base of the robot arm →

(a) The direction of the axis ẑ0 of {0} is defined to be along the axis of joint 1.



142 Chapter 7. Kinematics of Manipulators

(b) The reference system {0} is then defined to be completely coincident with the
reference system {1}, when the variable joint parameter, d1 or θ1, is zero.

(c) Following this convention for link 0, we will always have a0 = 0 and α0 = 0, and,

• in the case of joint 1 being prismatic, θ1 = 0 or,
• in the case of joint 1 being rotational, d1 = 0.

4. For the last link: link n, to which the gripper/end-effector is attached →

(a) In the case that joint n is prismatic (which is rather rare), the x̂n axis of {n} is
defined so that θn = 0, and the origin of {n} is defined to be at the intersection
of the axis x̂n−1 and the axis of joint n (ẑn), when dn = 0.

(b) In the case that joint n is rotational (most common) the axis x̂n of {n} is defined
to have the same direction as x̂n−1 when θn = 0, and the origin of {n} is defined
so that dn = 0.

The four geometric parameters that we need to construct the relationship between
the reference system {i}, fixed to link i, and the reference system {i−1}, fixed to link i−1,
are:

• ai−1, the length of link i − 1 and the distance between the origin of {i − 1} and the
origin of {i} in the direction of x̂i−1

• αi−1, the twist of link i− 1 and the angle between ẑi−1 and ẑi around x̂i−1 of {i− 1}.

• di, the offset of link i with respect to link i − 1 and the distance between the origin
of {i− 1} and {i} in the direction of ẑi of {i}.

• θi, the angle of joint joint i, the angle between x̂i−1 and x̂i around ẑi of {i}.

This convention or method for defining link reference systems is called the Denavit
and Hartenberg method or D-H method, after the two people who first proposed it in
1955.

Today there are numerous versions of this method. The one presented here is
sometimes called the modified Denavit and Hartenberg method or the Denavit and
Hartenberg method using Craig’s convention. It is distinguished by the reference
system number scheme used. In the methods presented here, and which we will always
use, reference system {i} is fixed to link i and has its origin lying on the axis of joint i,
while in the original Denavit and Hartenberg method, the reference system {i} is
fixed to link i and has its origin lying on the axis of joint i+ 1(2).

It should, however, always be remembered that the reference system {i} is fixed to
the link i, and not to the axis of joint i. It therefore moves in space as link i is moved in
space as a result of changes in the position of joint i.

2Trying to study both conventions at the same time is a good source of confusion. So the advice is to
study only one.



Section 7.5. Forward Kinematics Examples 143

Applying the Denavit and Hartenberg method to two connected links, link i − 1 and
link i, connected by joint i, gives us the following definition of the reference systems
{i− 1} and {i} fixed to the link i− 1 and link i, respectively.

The homogeneous transformation matrix that represents the relationship between
{i− 1} and {i} is then given by:

i−1Ti = Trans (x̂i−1, ai−1) Rot (x̂i−1, αi−1) Trans (ẑi, di) Rot (ẑi, θi) (7.1)

where all operations are defined with respect to the movable system of reference. Thus,
we have that:

i−1Ti =


1 0 0 ai−1

0 1 0 0
0 0 1 0
0 0 0 1




1 0 0 0
0 cosαi−1 − sinαi−1 0
0 sinαi−1 cosαi−1 0
0 0 0 1




1 0 0 0
0 1 0 0
0 0 1 di
0 0 0 1




cos θi − sin θi 0 0
sin θi cos θi 0 0

0 0 1 0
0 0 0 1


(7.2)

i−1Ti =


1 0 0 ai−1

0 cosαi−1 − sinαi−1 0
0 sinαi−1 cosαi−1 0
0 0 0 1




cos θi − sin θi 0 0
sin θi cos θi 0 0

0 0 1 di
0 0 0 1

 (7.3)

i−1Ti =


cos θi − sin θi 0 ai−1

sin θi cosαi−1 cos θi cosαi−1 − sinαi−1 − sinαi−1di
sin θi sinαi−1 cos θi sinαi−1 cosαi−1 cosαi−1di

0 0 0 1

 (7.4)

7.5 Forward Kinematics Examples

7.5.0.1 Example 1

A two dimensional robot with three Degrees of Freedom and three planar elements (figure
7.4).

The first step is to number the joint axes of the robot geometry in strict sequence,
starting with the joint nearest to the robot base and numbering it as joint 1.

The second step is to number the links, again in strict sequence, starting with the
robot base, which is given the number zero.

Following these two steps, we will have the situation in figure 7.5.



144 Chapter 7. Kinematics of Manipulators

L 0

L 1

L
2

L 3

Pe

Figure 7.4: Example 1: 3 DoF planar robot.

link 0

link 2 link 3
link 1

Joint 2

Joint 1

Joint 3

Figure 7.5: Forward Kinematics. First two steps: numbering the joints and numering the
links.



Section 7.5. Forward Kinematics Examples 145

DH par.
link i

ai−1 αi−1 di θi

1 L0 0 0 θ1

2 L1 0 0 θ2

3 L2 0 0 θ3

Table 7.2: DH parameters for example 1.

Having numbered the joint axes and the elements, the third step is to define the
reference systems fixed to each element, following the method of Denavit and Hartenberg
presented in the previous section. We will then have the following set of reference systems
fixed to the three elements of this planar robot arm (figure 7.6).

xe

ye
ze

x3

y3z3

x1

y1

z1

x2

y2

z2

x0

y0 z0

Figure 7.6: Forward Kinematics. Third step: defining reference systems.

The ẑi axes are all defined to be positive out of the page, and the reference system
fixed to the base, {0} is defined to be completely coincident with the reference system
fixed to element 1, {1}, when θ1 is zero (figure 7.6).

The fourth step is then to construct the table of D-H parameters needed to define
the relationships between subsequent reference systems (table 7.2).

All the link twist and link offset values must be zero because this is a 2D planar
arm. Also, all the variable parameters are the θi values since this robot arm only has
rotational joints.

Using the values set out in the D-H parameter table 7.2, the fifth step is to define the
homogeneous transformation matrices that represent the relationships between pairs
of subsequent link reference systems, in terms of basic homogenous transformation
matrices.

We thus have:

0T1 = Trans (x̂0, 0) Rot (x̂0, 0) Trans (ẑ1, 0) Rot (ẑ1, θ1) = Trans (x̂0, L0) Rot (ẑ1, θ1) (7.5)



146 Chapter 7. Kinematics of Manipulators

1T2 = Trans (x̂1, L1) Rot (x̂1, 0) Trans (ẑ2, 0) Rot (ẑ2, θ2) = Trans (x̂1, L1) Rot (ẑ2, θ2) (7.6)
2T3 = Trans (x̂2, L2) Rot (x̂2, 0) Trans (ẑ3, 0) Rot (ẑ3, θ3) = Trans (x̂2, L2) Rot (ẑ3, θ3) (7.7)

The total relationship between the reference system fixed to element 3 and the
reference system fixed to the base of the robot, is thus given by:

0T3 = 0T1
1T2

2T3 =
3∏
i=1

i−1Ti (7.8)

Which, in turn, is given by:

0T3 =


cos θ1 − sin θ1 0 L0

sin θ1 cos θ1 0 0
0 0 1 0
0 0 0 1




cos θ2 − sin θ2 0 L1

sin θ2 cos θ2 0 0
0 0 1 0
0 0 0 1




cos θ3 − sin θ3 0 L2

sin θ3 cos θ3 0 0
0 0 1 0
0 0 0 1

 (7.9)

0T3 =


c123 −s123 0 Px3

s123 c123 0 Py3

0 0 1 0
0 0 0 1

 (7.10)

where:

c123 = cos (θ1 + θ2 + θ3)
s123 = sin (θ1 + θ2 + θ3)
Px3 = L2c12 + L1c1 + L0

Py3 = L2s12 + L1s1

(7.11)

So, for example, if we want to define the position of the end-point of this robot, Pe,
with respect to the fixed base system of reference we should use the following relation:

0Pe = 0T3
3Pe = 0T3


L3

0
0
1

 (7.12)

Notice that strictly speaking we have not arrived to the end effector yet. This fact
is quite common after the use of the D-H method. If we really need to calculate the
transform from the robot base to the end-effector, we have to modify the table 7.2



Section 7.5. Forward Kinematics Examples 147

DH par.
link i

ai−1 αi−1 di θi

1 L0 0 0 θ1

2 L1 0 0 θ2

3 L2 0 0 θ3

e L3 0 0 0

Table 7.3: DH parameters for example 1, including the end-effector frame.

slightly, including a new row (see table 7.3). This row is out of the scope of D-H method,
but required to properly obtain the end-effector coordenates. As this last row is not a
part of the D-H method, there is no variable parameter and the row has segregated from
the other rows by a double line.

Then, the complete solution would be:

0Te = 0T3
3Te =


c123 −s123 0 Px3

s123 c123 0 Py3

0 0 1 0
0 0 0 1




1 0 0 L3

0 1 0 0
0 0 1 0
0 0 0 1

 (7.13)

0Te =


c123 −s123 0 Pxe
s123 c123 0 Pye

0 0 1 0
0 0 0 1

 (7.14)

where:

c123 = cos (θ1 + θ2 + θ3)
s123 = sin (θ1 + θ2 + θ3)

Pxe = L3c123 + L2c12 + L1c1 + L0

Pye = L3s123 + L2s12 + L1s1

(7.15)

7.5.0.2 Example 2

The second example is a three DoF robot with one prismatic joint. After first numbering
the joints, numbering the elements, and then defining the reference systems fixed to
each element, we have the set of reference frames shown in the figure below (figure 7.7).

The D-H table for this geometry is in table 7.4:

The three homogeneous transformation matrices that represent the relations be-
tween the three pairs of reference systems are thus given by:



148 Chapter 7. Kinematics of Manipulators

x0
y0

z0

X

xe

yeze

x3

y3z3

x1

y1

z1

X

x2

y2
z2X

L
1

L
3

Figure 7.7: Example 2: a three DoF robot with one prismatic joint.

DH par.
link i

ai−1 αi−1 di θi

1 0 0 L1 θ1

2 0 π/2 d2 −π/2
3 π/2 0 0 θ3

e L3 0 0 0

Table 7.4: DH parameters for example 2.



Section 7.5. Forward Kinematics Examples 149

DH par.
link i

ai−1 αi−1 di θi

1 0 0 0 θ1

2 0 -π/2 L1 θ2 − π/2
3 L2 0 0 θ3

Table 7.5: First set DH parameters for example 3.

0T1 = Trans (ẑ1, L1) Rot (ẑ1, θ1) (7.16)

1T2 = Rot (x̂1, π/2) Trans (ẑ2, d2) Rot (ẑ2,−π/2) (7.17)

2T3 = Rot (x̂2, π/2) Rot (ẑ3, θ3) (7.18)

3Te = Trans (ẑ3, L3) (7.19)

The total relationship between the reference system fixed to element 3 and the
reference system fixed to the base of the robot is thus given by:

0T3 = 0T1
1T2

2T3
3Te = (7.20)

0T3 =


cos θ1 − sin θ1 0 0
sin θ1 cos θ1 0 0

0 0 1 L1

0 0 0 1




0 1 0 0
0 0 −1 −d2

−1 0 0 0
0 0 0 1




cos θ3 − sin θ3 0 0
0 0 −1 0

sin θ3 cos θ3 0 0
0 0 0 1




1 0 0 L3

0 1 0 0
0 0 1 0
0 0 0 1


(7.21)

7.5.0.3 Example 3

Another 3 DoF manipulator with three rotational joints. The two first axes intersect each
other and the two last ones are parallel (figure 7.8).

After numbering the joints and then the elements, we have four different possibilities
for defining the reference systems fixed to each of the elements, all of which are
compatible with the D-H method presented above.

The first two solutions are shown in figure 7.9. For the first solution, shown on the
left figure 7.9, the D-H parameters are in table 7.5.

And for the second system, shown on the right figure 7.9, the D-H parameters are in
table 7.6.

The second two systems are shown in figure 7.10, and their D-H parameters are in
table 7.7 and in table 7.8 respectively.



150 Chapter 7. Kinematics of Manipulators

L
1

L 0
L

2

L 3

Figure 7.8: Example 3: a 3DoF manipulator: three rotational joints, 2 axes intersecting
axes and 2 parallel axes.

x
0

y
0

z
0

x
1 y

1

z
1

x
2

y
2

z
2

x
3

y
3

z
3

x
0 y

0

z
0

x
1

y
1

z
1

X

x
2

y
2

z
2

x
3

y
3

z
3X

Figure 7.9: First two solutions for example 3.

DH par.
link i

ai−1 αi−1 di θi

1 0 0 0 θ1

2 0 π/2 −L1 θ2 + π/2
3 L2 0 0 θ3

Table 7.6: Second set DH parameters for example 3.



Section 7.5. Forward Kinematics Examples 151

x
0

y
0

z
0

x
1 y

1

z
1

X

x
2

y
2

z
2

x
3

y
3

z
3

x
0 y

0

z
0

x
1

y
1

z
1

X X

x
2

y
2

z
2

x
3

y
3

z
3X

Figure 7.10: Second two solutions for example 3.

DH par.
link i

ai−1 αi−1 di θi

1 0 0 0 θ1

2 0 π/2 L1 θ2 + π/2
3 L2 0 0 θ3

Table 7.7: Third set DH parameters for example 3.

DH par.
link i

ai−1 αi−1 di θi

1 0 0 0 θ1

2 0 −π/2 −L1 θ2 − π/2
3 L2 0 0 θ3

Table 7.8: Fourth set DH parameters for example 3.



152 Chapter 7. Kinematics of Manipulators

7.5.0.4 Example 4

The next example is a cylindrical robot with 4 DoF (figure 7.11).

L 1
L

2
d 2

d
3

1

4

Figure 7.11: Example 4: a cylindrical robot.

Notice that we have put the reference system {1} at the bottom of element 1, so that it
is coincident with system {0} when θ1 is zero. We could have equally well put it at the top
of element 1, so that its origin is coincident with the origin of system {2} (figure 7.12).

The table of D-H parameters for the set of reference systems shown above is in
table 7.9.

The four homogeneous transformation matrices that represent the relations between
the four pairs of reference systems are thus given by:

0T1 = Rot (ẑ1, θ1) (7.22)

1T2 = Trans (ẑ2, d2 + L1) (7.23)

2T3 = Rot (x̂2, π/2) Trans (ẑ3, d3) (7.24)

3T4 = Trans (ẑ4, L2) Rot (ẑ4, θ4) (7.25)

The total relationship between the reference system fixed to element 4 and the
reference system fixed to the base of the robot is thus given by:



Section 7.5. Forward Kinematics Examples 153

x0

y0

z0

x3y3

z3

x1y1

z1

L
1=

0
d 2

x2y2

z2

X

x
4

y
4 z

4

d
3

L
2

Figure 7.12: Reference systems for example 4.

DH par.
link i

ai−1 αi−1 di θi

1 0 0 0 θ1

2 0 0 d2 + L1 0
3 0 π/2 d3 0
4 0 0 L2 θ4

e 0 0 0 0

Table 7.9: DH parameters for example 4.



154 Chapter 7. Kinematics of Manipulators

0T4 =


cos θ1 − sin θ1 0 0
sin θ1 cos θ1 0 0

0 0 1 0
0 0 0 1




1 0 0 0
0 1 0 0
0 0 1 d2 + L1

0 0 0 1

 ·

·


1 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 1




1 0 0 0
0 1 0 0
0 0 1 d3

0 0 0 1




cos θ4 − sin θ4 0 0
sin θ4 cos θ4 0 0

0 0 1 L2

0 0 0 1


(7.26)

7.5.0.5 Example 5

The last example is a 4 DoF SCARA robot (figure 7.13).

L
1

L
0

L
2

L
3=
0

d 3

4

2

1

L
4=
0

Figure 7.13: Example 5: a 4 DoF SCARA robot.

After numbering the joints, then the elements and assigning a suitable set of
reference systems fixed to the elements of this robot, we will have the situation in figure
7.14.

The table of D-H parameters for the set of reference systems shown above is the
following table 7.10.



Section 7.5. Forward Kinematics Examples 155

x0
y0

z0

X

x1

y1

z1

X

x
4

y
4

z
4

X

x
2y

2

z
2

X

x3

y3

z3

X

Figure 7.14: Reference systems for example 5.

DH par.
link i

ai−1 αi−1 di θi

1 0 0 L0 θ1

2 L1 0 −L3 θ2

3 L2 0 −d3 0
4 0 0 −L4 θ4

Table 7.10: DH parameters for example 5.



156 Chapter 7. Kinematics of Manipulators

The four homogeneous transformation matrices that represent the relations between
the four pairs of reference systems are thus given by:

0T1 = Trans (ẑ1, L0) Rot (ẑ1, θ1) (7.27)

1T2 = Trans
([
L1 0 −L3

]T)Rot (ẑ2, θ2) (7.28)

2T3 = Trans
([
L2 0 −d3

]T) (7.29)

3T4 = Trans (ẑ4,−L4) Rot (ẑ4, θ4) (7.30)

The total relationship between the reference system fixed to element 4 and the
reference system fixed to the base of the robot is thus given by:

0T4 =


cos θ1 − sin θ1 0 0
sin θ1 cos θ1 0 0

0 0 1 L0

0 0 0 1




cos θ2 − sin θ2 0 L1

sin θ2 cos θ2 0 0
0 0 1 −L3

0 0 0 1

 · (7.31)

·


1 0 0 L2

0 1 0 0
0 0 1 −d3

0 0 0 1




cos θ4 − sin θ4 0 0
sin θ4 cos θ4 0 0

0 0 1 L4

0 0 0 1



7.6 Inverse Kinematics

We need the inverse kinematics of a robot manipulator arm in order to find the joint
positions that are needed to put the reference system, {e}, fixed to Pe, in a specified
position and orientation, with respect to the base reference system, {0}.

For the case of a 6 DoF robot arm, we have 12 equations and 6 unknown parameters:
the 6 joint positions. However, we get 9 equations from the rotation submatrix of 0T6, and
only 3 are independent equations. These, together with the 3 equations we get from the
position submatrix (vector) of 0T6, give us a total of 6 equations with 6 unknowns. These
six independent equations are, in general, nonlinear transcendental equations which are
often hard to solve.

Unlike for systems of linear equations, there are no general methods for solving
systems of nonlinear equations. One of the possible methods is based on iterably
computing the forward kinematics, but the convergence is not guaranteed.

The set of all solutions to the inverse kinematics of any particular robot manipulator
arm defines the theoretical workspace of the arm, the volume of space that the robot
can reach with Pe.



Section 7.6. Inverse Kinematics 157

link length ai Number of solu-
tions

a1 = a3 = a5 = 0 up to 4
a3 = a5 = 0 up to 8
a3 = 0 up to 16
all6= 0 up to 16

Table 7.11: Number of solutions for inverse kinematics.

7.6.1 Multiple Solutions

Unlike systems of linear equations, systems of nonlinear equations can have multiple
solutions, and, in general, this is the case for the inverse kinematics equations for a
serial robot manipulator arm.

The problem is then to choose between the two (or more) solutions.

A criterion commonly used for making this choice is to use the solution closest to the
current configuration, since this minimises the distance the joints have to move to get
to this next configuration.

However, in practice, the physical limitations on the ranges of movement of each of
the joints must also be taken into account.

In moving from one configuration to another, no joint value can go out of range. If
this is the case, then one of the multiple solutions must be chosen, though this might
result in a substantial change from the configuration, and thus a large and perphaps
fast and unexpected movement of the entire robot arm.

In general, the more nonzero link parameters there are in the robot geometry, the
more ways there will be to reach a particular location with Pe, i.e., the more multiple
solutions there will be in the inverse kinematics.

For example, in the case of a 6 DoF angular robot arm, the number of multiple
solutions is related to the number of nonzero link length parameters, ai, there are, see
table 7.11.

There are basically two kinds of methods for obtaining solutions for the inverse
kinematics:

• Analytical methods that give closed form solutions, and

• Numerical methods that give iterative solutions.

Only in special cases robot manipulator arms with 6 DoFs have analytical solutions
for their inverse kinematics.

A sufficient condition for the existence of a closed form solution, for a 6 DoFs angular
robot arm, is to have three consecutive joint axes that intersect at a point. An example
of this case is all robots with RPR wrists.



158 Chapter 7. Kinematics of Manipulators

Since computing closed form solutions is much cheaper, and also much faster, than
computing iterative numerical solutions, many robot manipulator geometries satisfy
this condition, though this typically make them mechanically and structurally more
complicated and costly to build.

Keeping link twists to zero or plus or minus ninety degrees may can also allow
analytical solutions to exist.

7.6.2 Inverse Kinematics of a Serial Robot

The proposed method to compute the inverse kinematics consists of three steps:

1. The kinematic decoupling of the robot. By means of this method we divide the
kinematic chain into two kinematic sub-chains: the positioner and the wrist.

2. Geometrically solving the inverse kinematics of the positioner.

3. Analitically solving the inverse kinematics of the wrist.

As mentioned above, there is no general method to solve inverse kinematics of serial
manipulators. To keep a clear and simple explanation, the inverse kinematic method
is presented with a sample of a 5 DoF robot (See figure 7.15). Figure 7.16 shows the
Denavit-Hartenberg frames associated with this robot.

L 0

L
4

L 1

L 2

1

5
4

3

2 L
3

Figure 7.15: Example 1: an 5 DoF anthropomorphical robot.



Section 7.6. Inverse Kinematics 159

x0
y0

z0

X

x1
y1

z1

X

x
2

y
2

z
2

x3

y3

z3

x
4

y
4

z4

x
5

y
5

z
5

x
e

y
e

z
e

Figure 7.16: Example 1: Denavit frames associated with a 5 DoF anthropomorphical
robot.

7.6.2.1 Kinematic Decoupling

When we have to solve the inverse kinematics of a 6 DoF robot, we ALWAYS have to
test if its wrist axes intesects at a point. If this occurs, then by means of the kinematic
decoupling method we can divide the kinematic chain of the wrist from the rest of the
robot. Thus, we do not have one 6-DoF kinematic chain to solve, but 2 decoupled 3-DoF
kinematic chains.

The method of decoupling involves two steps:

• Finding the point at which the wrist axes intersect (two in the case of robots with
2 DoF wrists). In figure 7.17, the figure on the left shows that the axes ẑ4 and ẑ5

intersect at P4. Thus P4 is the point at which we will do the decoupling. After the
decoupling we have two kinematic chains to solve isolately: the wrist (2 DoF), and
the positioner (3 DoF).

• Calculating the cartesian coordinates of the point at which we have to decouple the
robot. In the case of figure 7.17, we have to calculate the cartesian coordinates of
P4. To cope with that problem, first we have to notice that we know the numerical
values of the homogeneous transformation between {0} and {e} since we are solving
the inverse kinematic problem, that is, we know the numerical values of the 0Te
matrix:



160 Chapter 7. Kinematics of Manipulators

0Te =
[

0Re
0Pe

0 0 0 1

]
(7.32)

Thus, we can easily obtain the coordinates of 0P4 from the robot’s end point (0Pe)
by translating the end-point coordinates a given distance along a given axis. In
the example, the translation is L4 (figure 7.15), along the ẑe (figure 7.16)3. From
the definition of the rotation matrices we also know that 0ẑe is the last column of
0Re (4). Therefore:

0P4 = 0Pe − L4
0ẑe (7.33)

Wrist

x
1

y
1

z
1

X

x
2

y
2

z
2

x
3

y
3

z
3 x

4

y
4

z
4

x
5

y
5

z
5

x
e

y
e

z
e

x0
y0

z0

X

x1y1

z1

X

x
2

y
2

z
2

x3

y3
z3 x

4

y
4

z
4

x0
y0

z0

X

x3

y3
z
3 x

4

y4
z
4

x
5

y
5

z
5

x
e

y
e

z
e

P
4

Positioner Wrist

D
ec

ou
pl

in
g

Positioner

P
4

P
4

Figure 7.17: Example 1: Kinematic decoupling of a 5 DoF anthropomorphical robot.

Now we can solve the inverse kinematic problems of the positioner and the wrist
independently.

3Notice that this is a particular solution for this robot. In other examples, the axis could be x̂e or ŷe,
depending on the orientation of frame {e}.



Section 7.6. Inverse Kinematics 161

7.6.2.2 Positioner’s Inverse Kinematics, Geometric Method

This method is suitable for robots with few DoFs (3 or less) and is normally used to
solve the positioner mechanism after decoupling the robot’s wrist. It consists of finding
geometric relationships in which there is a dependence on the cartesian coordinates of
the robot’s end point. If we are solving a 3-DoF robot, or with the cartesian coordinates
of the point at which we are decoupling the robot (P4 in the case of the example in figure
7.17)5.

One of the most complex problems that can be solved using this method is shown
below as example 1 (figure 7.18)6. That example is one of the posible solutions of
the inverse kinematics of a 3-DoF antropomorphic robot (or just the positioner of an
antropomorphic robot). In this kind of robot, the first DoF, also known as waist DoF, is
solved and then the two DoFs grouped into the ’arm’, that is, the shoulder and the elbow
DoFs.

In order to present a more generic example and a simpler formulation, once the wrist
has been splitted and calculated the coordinates of the origin of the 4th frame, frame e′

is defined. The cartesian coordenates relationship between both frames is:

0Pe′ =

0Pe′x
0Pe′y
0Pe′z

 =

−0Py4

−0Pz4
0Px4

 (7.34)

Waist DoF :

The front view of figure 7.18 depicts the waist DoF. Notice its value can be calculated
by:

θ1 = arctan2

(
Pe′y
Pe′x

)
(7.35)

Remember that Pe′x, Pe′y and Pe′z are the cartesian coordinates of the positioner
mechanism’s end-point Pe′ 7 and the function [arctan2] is the fourth-quadrant version
of the arctan funtion.

Shoulder and Elbow DoFs :

To solve the Shoulder (θ2) and Elbow (θ3) DoFs, we have to analyze the front view of
figure 7.18.

5The example in this section will be solved as if we were solving the inverse kinematics of a 3-DoF robot.
In the case of solving the positioner of a decoupled robot, all references given to the robot’s end-point should
be changed to reference the point at which we have decoupled the robot.

6There are two views, the top and the front, to depict the three angles for each DoF in real magnitude.
The top is for the first one and the front is for the last two.

7That coincides with the place where we have splitted the wrist.



162 Chapter 7. Kinematics of Manipulators

L 0+
L 1

L 2

P
e'x

x
0

y
0

z
0

X

x1
y
1

z
1

X

x
2

y
2

z
2

x
3

y
3

z
3

ze '≡x4

y e'≡−z 4

xe '≡−y 4
X

x
0

y
0

z
0
≡z

1

x
1

y
1


1


2


3

P
eR

P
er

P e'
z

P e'
y

L
3






P
er

Figure 7.18: Example 1: one solution for the inverse kinematics of an anthropomorphic
positioner.



Section 7.6. Inverse Kinematics 163

Notice that the angles θ2 and θ3 can be expressed as below:

θ2 = β − α (7.36)

θ3 = γ − π (7.37)

Where α, β and γ are auxiliary angles. Now let’s see how to calculate them. But first
we need to define a couple of auxiliary distances:

Pe′r =
√
P 2
e′x + P 2

e′y (7.38)

Pe′R =
√
P 2
e′x + P 2

e′y + (Pe′z − (L0 + L1))2 (7.39)

Thanks to those distances we can easily define the three angles:

• α is an angle defined by a right triangle in which the hypotheneuse is Pe′R, the
opposite leg8 is ‖Pe′z − (L0 + L1) ‖ and the adjacent leg is Pe′r. α can be obtained by
the common trigonometric formula:

α = arccos
(
Pe′r
Pe′R

)
= arctan2

(
‖Pe′z − (L0 + L1) ‖

Pe′R

)
(7.40)

• β and γ are two of the angles of a triangle defined by L2, L3 and Pe′R distances. To
calulate them we have to apply the cosine theorem9:

β = arccos
(
P 2
e′R + L2

2 − L2
3

2Pe′RL2

)
(7.41)

γ = arccos
(
L2

2 + L2
3 − P 2

e′R

2L2
2L

2
3

)
(7.42)

8cathetus
9Cosine theorem → c2 = a2 + b2 − 2ab cosφ with:

b

c



a



164 Chapter 7. Kinematics of Manipulators

Notice that there is not an ambiguity of the quadrant to which α, β, and γ angles
belong. Since they are geometrical angles so they always belong to the first quadrant.

The next step is to combine these two latter expressions with the equations 7.40,
7.36 and 7.37, which yields the last two DoF values:

θ2 = arccos
(
P 2
e′R + L2

2 − L2
3

2Pe′RL2

)
− arctan2

(
‖Pe′z − (L0 + L1) ‖

Pe′R

)
(7.43)

θ3 = arccos
(
L2

2 + L2
3 − P 2

e′R

2L2
2L

2
3

)
− π (7.44)

The solution we have just obtained is not the only valid solution of the inverse
kinematics. It corresponds to the hypothesis the robot in the configuration depicted
in figure 7.18. This solution is called RIGHT−ARM & ELBOW−UP configuration.

Then we have to guess which are the remaining configurations, as well as the
remaining solutions. In this particular case, we can distinguish up to four configurations
(figure 7.19).

Taking into account these possible extra configurations, the positioner inverse
kinematics is not completed until we do not generalize the equations 7.35, 7.36 and
7.37 to cover all possible cases. After analyzing figure 7.19, it is easily proven that the
general solution is:

θ1 =

 arctan2
(
Pe′y
Pe′x

)
→ RIGHT−ARM

arctan2
(
Pe′y
Pe′x

)
+ π → LEFT−ARM

(7.45)

θ2 =


β − α → RIGHT−ARM & ELBOW−UP
−β − α → RIGHT−ARM & ELBOW−DOWN
π + β − α → LEFT−ARM & ELBOW−UP
π − β − α → LEFT−ARM & ELBOW−DOWN

(7.46)

θ3 =


γ − π → RIGHT−ARM & ELBOW−UP
−γ + π → RIGHT−ARM & ELBOW−DOWN
−γ + π → LEFT−ARM & ELBOW−UP
γ − π → LEFT−ARM & ELBOW−DOWN

(7.47)

I invite you to test the above results!!

7.6.2.3 Wrist’s Inverse Kinematics

In the case of the wrist mechanism, an analytical method is preferred to a geometrical
one. This method is based on the fact that the dot-product vectors depend on the cosinus
of the angle between the above mentioned vectors. Since if we only calculate the cosinus



Section 7.6. Inverse Kinematics 165

x
1

y
1

z
1

X

x
2

y
2

z
2

X

x
3

y
3

z
3

X

x
0

y
0

z
0
≡z

1

x
1

y
1

x
0y

0

z
0

X

ARM-RIGHT
ELBOW-UP

x
1

y
1

z
1

X

x
2

y
2

z
2

x
3

y
3

z
3

ARM-RIGHT
ELBOW-DOWN

x
0y

0

z
0

X

x
0

y
0

z
0
≡z

1

x
1

y
1

x
1 y

1

z
1

x
2

y
2

z
2

x
0

y
0

z
0
≡z

1

x
1

y
1

x
0y

0

z
0

X

ARM-LEFT
ELBOW-UP

ARM-LEFT
ELBOW-DOWN

x
3

y
3

z
3

x
1
y

1

z
1

x
0

y
0

z
0
≡z

1

x
1

y
1

x
0y

0

z
0

X

x
2

y
2

z
2

X

x
3

y
3

z
3

X

Figure 7.19: All inverse kinematic solutions of an antropomorphic positioner.



166 Chapter 7. Kinematics of Manipulators

we have an uncertainty about the quadrant angle, then we have to first calculate the
cosinus and then the sinus for each DoF in the wrist.

The cosinus angle is calculated thanks to the dot product between x̂i−1 and x̂i:

x̂i · x̂i−1 = ‖x̂i‖ ‖x̂i−1‖ cos θi = (7.48)

= x̂ix x̂i−1x + x̂iy x̂i−1y + x̂iz x̂i−1z

The sinus angle should be calculated by the cross product. Since cross product
formulae is more complex than dot product, the recommeded method is the calculation
of the cosinus (that is, dot product) by means of the vectors define the complementary
angle of θi.

Let us see the case of figure 7.20 in which we have a 5DoF anthorpomorfic robot and
provided the inverse kinematics of the positioner (first 3 DoF) we want to obtain the wrist
inverse kinematics.

x
1

y
1

z
1

X

x
2

y
2

z
2

x
3

y
3

z
3

x
4

y
4

z
4

x
5

y
5

z
5

x
e

y
e

z
e

x0
y0

z0

X

P
4

Positioner Wrist

x3

y3
z
3

x
4

y
4

z
4

x
5

y
5

z
5

x
e

y
e

z
e

P
4

Wrist inverse kinematics: 
unknowns⇒last DoFs (two in this case)

Figure 7.20: Wrist inverse kinematics of an 5DoF anthropomorphic manipulator.

Then we have to consider as input (known data) the transformation matrix from the
robot base to the end-point (general input data for the inverse kinematics problem):

0Te =
[

0Re
0Pe

[0 0 0] 1

]
=
[

[0x̂e 0ŷe
0ẑe] 0Pe

[0 0 0] 1

]
(7.49)

and the transformation matrix from the robot base to the 3rd DoF as it is suposed we
have already solved the positioner inverse kinematics problem:



Section 7.6. Inverse Kinematics 167

0T3 =
[

0R3
0P3

[0 0 0] 1

]
=
[

[0x̂3
0ŷ3

0ẑ3] 0P3

[0 0 0] 1

]
(7.50)

Then, from D-H method, we know that θ4 is the angle between x̂3 and x̂4 about ẑ4 (see
figure 7.21) with x̂3 known (the first column of 0R3):

cos θ4 = x̂3 · x̂4 (7.51)

x3

y3

z3≡z4

x4

y4
4

locate4

x3

y3

z3≡z4

x
4

y
4

4
'

locate/2−4=4
'

Figure 7.21: Wrist inverse kinematics of an 5DoF anthropomorphic manipulator.

We can calculate x̂4 knowing that D-H method constraints x̂4 to be perpendicular to
ẑ4 and ẑ5, thus:

x̂4 = (ẑ4 ∧ ẑ5) (7.52)

From figure 7.21 we can also check that ẑ4 is parallel to ẑ3 and ẑ3 is known (as it is
the third column of 0R3). In the case of ẑ5, it is also easily proven that ẑ5 is equal to ẑe
that is the last column of 0Re.

Then, last equation become:

x̂4 = (ẑ3 ∧ ẑe) =
(
ẑy3 ẑze − ẑye ẑz3 ẑxe ẑz3 − ẑx3 ẑze ẑx3 ẑye − ẑxe ẑy3

)
(7.53)

If we substitute this result in equation 7.51, we have that:

cos θ4 = x̂3 · x̂4 = x̂x3 (ẑy3ẑze − ẑyeẑz3) + x̂y3 (ẑxeẑz3 − ẑx3ẑze) + x̂z3 (ẑx3ẑye − ẑxeẑy3) (7.54)

We obtain the sin as the cos of the complementary angle:

cos θ′4 = sin θ3 = ŷ3 · x̂4 = ŷx3 (ẑy3ẑze − ẑyeẑz3)+ ŷy3 (ẑxeẑz3 − ẑx3ẑze)+ ŷz3 (ẑx3ẑye − ẑxeẑy3) (7.55)



168 Chapter 7. Kinematics of Manipulators

Finally, we obtain the angle by means of arctan2
10:

θ4 = arctan (sin θ4, cos θ4) = (7.56)

(ŷx3 (ẑy3ẑze − ẑyeẑz3) + ŷy3 (ẑxeẑz3 − ẑx3ẑze) + ŷz3 (ẑx3ẑye − ẑxeẑy3) ,
x̂x3 (ẑy3ẑze − ẑyeẑz3) + x̂y3 (ẑxeẑz3 − ẑx3ẑze) + x̂z3 (ẑx3ẑye − ẑxeẑy3))

The last angle, θ5 can be obtained following a similar procedure as the used for θ4.
But in this case, we have:

cos θ5 = x̂4 ·x̂5 = x̂4 ·x̂e = x̂xe (ẑy3ẑze − ẑyeẑz3)+x̂ye (ẑxeẑz3 − ẑx3ẑze)+x̂ze (ẑx3ẑye − ẑxeẑy3) (7.57)

sin θ5 = x̂4 ·x̂5 = x̂4 ·x̂e = x̂xe (ẑy3ẑze − ẑyeẑz3)+x̂ye (ẑxeẑz3 − ẑx3ẑze)+x̂ze (ẑx3ẑye − ẑxeẑy3) (7.58)

10This function is the standard [arctan] but it takes into account the sign of the numerator (sin) and the
denominator (cos) when guessing the right quadrant.



Chapter 8

The Jacobian Matrix

So far we have considered only the location (position and orientation) of the end-point,
Pe, of the robot with respect to the fixed base reference system and the joint position
needed to achieve it.

Sometimes we also need to consider and to control the rate of change of the location
of Pe, not just its static location, to produce a constant speed straight line motion at Pe,
for example.

We therefore need to know and to represent the relationship between the rates of
change of the individual joint values (q̇1 q̇2 · · · q̇n), and the rate of change of location of Pe,
(Ṗxe Ṗye Ṗze ψ̇xe ψ̇ye ψ̇ze).

We call the matrix which represents this relationship the Jacobian Matrix, J , and
this relationship is between the joint value rates of change and the rate of change of the
location of Pe, is shown below.

Ṗ x Ṗ y Ṗ z x y z 

Cartesian Space

q̇ 1 q̇ 2 q̇ 3  q̇ n

Articular Space

Robot Manipulator Robot Workspace
J

J −1

Figure 8.1: Jacobian relatioship.

This relationship can be expressed more formally as follows:

Ṗe = Jq̇ (8.1)

for the Forward Jacobian, and

q̇ = J−1Ṗe (8.2)

for the Inverse Jacobian, where,

169



170 Chapter 8. The Jacobian Matrix

q̇ =
[
q̇1 q̇2 q̇3 · · · q̇n

]T (8.3)

and

Ṗe =
[
Ṗxe Ṗye Ṗze ψ̇1e ψ̇2e ψ̇3e

]T
(8.4)

As J depends upon the instantaneous values of (q̇1 q̇2 · · · q̇n), so J will be different for
each different set of values of (q1 q2 · · · qn) in other words, for each different configuration
of the robot arm.

To obtain the inverse Jacobian relation we need to invert J , which is, in general, hard.
There are three different types of methods used to do this in the case of robot kinematic
control:

• Invert J symbolically, which is only practical for very simple robot geometries.

• Numerically invert J for each configuration of the robot. This is computationally
expensive, not always possible (when ‖J‖ = 0, @J−1) and difficult.

• Derive J−1 directly from the Inverse Kinematics equations.

Note that, in general, J is not necessarily a square matrix. It depends upon the
number of joints and thus on the number of degrees of freedom of the robot geometry.
In this case it is not possible to compute the inverse Jacobian if it is required. However
there are many techniques available to tackle with this problem. One of the most popular
solution is the computation of the pseudoinverse.

J+ =


(JTJ)−1JT

when the Jacobian matrix has more rows than columns,
as do most industrial robots

JT (JJT )−1
when the Jacobian matrix has more columns than rows,
which is the case of redundant robots that have more DoF
than strictly needed

(8.5)

8.1 Calculating the Jacobian Matrix

Formally speaking, a Jacobian Matrix is the matrix of which elements are the partial
derivatives of a given function. Thus we can obtain the Jacobian Matrix of a robot, J by
differentiating the equations we get for [q̇1 q̇2 · · · q̇n], from the Forward Kinematics.

Thus, for a n-DoF robot, the Forward Kinematics equations are:



Section 8.1. Calculating the Jacobian Matrix 171



Pxe
Pye
Pze
ψ1e

ψ2e

ψ3e

 =



fkinx (q1, q2, q3 · · · qn)
fkiny (q1, q2, q3 · · · qn)
fkinz (q1, q2, q3 · · · qn)
fkinψ1 (q1, q2, q3 · · · qn)
fkinψ2 (q1, q2, q3 · · · qn)
fkinψ3 (q1, q2, q3 · · · qn)

 (8.6)

Differentiating these equations results in:



Ṗxe
Ṗye
Ṗze
ψ̇1e

ψ̇2e

ψ̇3e


=



n∑
i=1

∂fkinx
∂qi

q̇i

n∑
i=1

∂fkiny
∂qi

q̇i

n∑
i=1

∂fkinz
∂qi

q̇i

n∑
i=1

∂fkinψ1

∂qi
q̇i

n∑
i=1

∂fkinψ2

∂qi
q̇i

n∑
i=1

∂fkinψ3

∂qi
q̇i



(8.7)

Which can be written in matrix form as:



Ṗxe
Ṗye
Ṗze
ψ̇1e

ψ̇2e

ψ̇3e


=



∂fkinx
∂q1

∂fkinx
∂q2

· · · ∂fkinx
∂qn

∂fkiny
∂q1

∂fkiny
∂q2

· · · ∂fkiny
∂qn

∂fkinz
∂q1

∂fkinz
∂q2

· · · ∂fkinz
∂qn

∂fkinψ1
∂q1

∂fkinψ1
∂q2

· · · ∂fkinψ1
∂qn

∂fkinψ2
∂q1

∂fkinψ2
∂q2

· · · ∂fkinψ2
∂qn

∂fkinψ3
∂q1

∂fkinψ3
∂q2

· · · ∂fkinψ3
∂qn




q̇1

q̇2

· · ·
q̇n

 (8.8)

Which can be rewritten as:

Ṗe = J∗q̇ (8.9)

where J∗ is the Jacobian Matrix. Notice that this Jacobian Matrix relates the temporal
derivatives of joint positions, that is, joint speeds with the temporal derivatives of end-



172 Chapter 8. The Jacobian Matrix

point position. However, the temporal derivatives of end-point position do not always
represent the end-point speed:



Ṗxe
Ṗye
Ṗze
ψ̇1e

ψ̇2e

ψ̇3e


=



vxe
vye
vze
ψ̇1e

ψ̇2e

ψ̇3e

 6=


vxe
vye
vze
ωxe
ωye
ωze

 (8.10)

Equation 8.10 illustrates the fact that the temporal derivative of position corresponds
to a traslation speed, but neither the temporal derivative of Euler Angles nor of
Quaternions corresponds to an angular speed. However, it is possible to find a
relationship between the temporal derivatives of the representation of orientations and
the angular speed. That relationship is verified by pre-multiplying the temporal derivative
vector by a matrix B. This matrix B is unique and its expresssion depends on the used
representation:

• In the case of Euler Angles →

ωxeωye
ωze

 = Bψ3x3

ψ̇1e

ψ̇2e

ψ̇3e

 (8.11)

For the Roll-Pitch-Yaw convention, the expression for Bψ is:

Bψ3x3 =

0 − sinψ3e cosψ3e cosψ2e

0 cosψ3e sinψ3e cosψ2e

1 0 − sinψ2e

 (8.12)

• In the case of Rotation Axis- Rotation Angle representation →

ωxeωye
ωze

 = Bu3x4


ϕ̇e
u̇xe
u̇ye
u̇ez

 (8.13)

where:

Bu3x4 =

uxe βe −αeuze αeuye
uye αeuze βe −αeuxe
uze −αeuye αeuze βe

 (8.14)



Section 8.2. Speed Propagation Method to Compute the Jacobian Matrix 173

where αe = 1− cosϕe and βe = sinϕe.

Therefore, the Jacobian Matrix that relates Cartesian velocity with articular speed is:

[
ve
ωe

]
= Jq̇ = B−1J∗q̇ (8.15)

8.2 Speed Propagation Method to Compute the Jacobian
Matrix

This method only presents real advantages for serial manipulators. It involves a iterative
process that starts with the hypothesis that the linear and angular speed at the base of
the robot is known (which is normally equal to zero because the robot is attached to a
static surface). All joint speed is computed from the base of the robot to the end-effector
by the velocity propagation equations:

• angular speed propagation→ i+1ωi+1 = i+1Ri
iωi + θ̇i+1

i+1zi+1

• linear speed propagation→ i+1vi+1 = i+1Ri
(
ivi + iωi ∧ iPi+1

)
+ ḋi+1

i+1zi+1

where iPi+1 is the vector that connects the origins of frames {i} and {i+ 1}.

After finishing the iterative process, the jacobian matrix is obtained as the matrix
form of the last given result (eve and eωe). The summary of the whole process is shown in
figure 8.2.

8.3 Static of Robotic Manipulators

If we consider a static robotic manipulator and we exert a force/torque on the end-
point, every robot actuators should exert forces/torques to keep the robot stopped. The
analysis of this problem corresponds to the static analysis of the robot, or, rather the
analysis of the forces/torque applied to the robot that keeps the manipulator static.

From a mathematical point of view, the relationship between the applied force/torque
on the end-point of the robot and the forces/torque involved in the robot actuators to
keep the manipulator stopped are also given by the Jacobian Matrix of the manipulator:

τ = JT
[
fe
ne

]
(8.16)



174 Chapter 8. The Jacobian Matrix

Start

end

v0
0 =[0 0 0]T

0
0 =[0 0 0 ]T

No Yes

i=0⋯n

i=0⋯n

Prismatic
joint?

i1
i1 = Ri

i1 ⋅i
i ̇i1⋅ z i1

i1

v i1
i1 = Ri

i1  vii i
i ∧ P i1

i 

[ vee

e
e ]= Je [ q̇]

i1
i1 = Ri

i1 ⋅i
i

v i1
i1 = Ri

i1  vii  i
i ∧ P i1

i ḋ i1 zi1
i1

[ ve0

e
0 ]= J0 [ q̇ ]

[ ve0

e
0 ]=[ Re0 ⋅ J v

e

Re
0 ⋅ J 

e ][ q̇ ]

Figure 8.2: Calculation of the Jacobian Matrix via velocity propagation method.



Section 8.4. Force/Torque Propagation Method to Compute the Jacobian Matrix 175

where τ is the vector of force/torque applied by every actuator, and fe and ne are the
force and torque exerted on the end-point.

Notice that the Jacobian Matrix given in equation 8.16 is the same as the Jacobian
Matrix in equation 8.15. This equality is easily proven by the Virtual Work Theorem:

Potcartesian = Potjoint (8.17)

[
fTe nTe

] [ve
ωe

]
= τT [q̇]

[
fTe nTe

]T
J [q̇] = τT [q̇]

JT
[
fe
ne

]
= τ

Thanks to this property, the Jacobian Matrix can also be calculated by performing a
static equilibrium of the manipulator. In the case of the serial manipulators, an iterative
method called Force/Torque propagation can be applied.

8.4 Force/Torque Propagation Method to Compute the Jaco-
bian Matrix

As with the velocity propagation, this method only presents real advantages for serial
manipulators. It involves a iterative process that starts with the hypothesis that the
force and torque applied on the end-point is known (which is normally equal to a
generic constant [fx fy fz nx ny nz]), and then every torque/force exerted on each
joint is computed from the end-point of the robot to the 1st DoF(1) by the force/torque
propagation equations:

• force → ifi = iRi+1
i+1fi+1 = ifi+1

• torque → ini = iRi+1
i+1ni+1 + iPi+1 ∧ ifi+1

After finishing the iterative process, the force/torque exerted on every joint is
obtained using the following equations:

• τi = ifi
izi → in the case of prismatic DoF

• τi = ini
izi → in the case of rotational DoF

1Notice that neither 0f0 nor 0n0 need to be calculated



176 Chapter 8. The Jacobian Matrix

In other words, the above equations imply the extraction of the fz value (if the DoF is
prismatic) or nz (if the DoF is rotational).

After obtaining τ1 · · · τn, the Jacobian matrix is obtained as the matrix form of the
equations for τ1 · · · τn. The summary of the whole process is shown in figure 8.3.

8.5 Singularities and Singular Configurations

If, for any particular configuration of the robot arm that is in movement, the motion
performance of a robot can be degraded abruptly, that configuration is a singular
configuration. In those configurations, the Jacobian Matrix looses range and in the
case of square Jacobian Matrices they become singular.

We can measure how far the manipulator is from a singular configuration thanks to
the following manipulability index

κ =
√
det (JTJ) (8.18)

In the case of square matrices, that index becomes the determinant:

κ = det(J) (8.19)

In a singular configuration, the manipulability index becomes zero:

κ = 0→ singular configuration (8.20)

For a singular configuration, J−1 does not exist, it is not mathematically defined
when ‖J‖ = 0, so, as a result, the relation between articular speed (q̇) and the cartesian
speed (Ve) is not defined. Consequently, neither is the relationship between articular
force/torque (τ ) and cartesian force/torque (f&n).

Singular configuration occurs when two or more joint axes become aligned in space.
When this happens, the serial robot geometry effectively loses one (or more) independent
degrees of freedom: two ore more of the degrees of freedom become mutually dependent.2

When that configurations near to a singular configuration, the elements of J−1 can
have very large values. This means that, for even small values of Ve there will be large
values in q̇, which will most likely be too large for the joint motors to actually generate.

The loss of one or more effective degrees of freedom thus occurs not just at a singular
configuration, but also in a region (a volume in joint space) around it.

According to Craig, singular configurations are classified into two different kinds:

2In the case of parallel robotics, the geometry gains one (or more) degrees of freedom and losses stiffness.



Section 8.5. Singularities and Singular Configurations 177

Start

end

f e
e =[ f x f y f z]

T

ne
e =[nx n y nz]

T

No Yes

i=0⋯n

i=0⋯n

Prismatic
joint?

i= ni
i ⋅ z i

i

[ ]= J Te [ f ee

ne
e ]

f i
i = Ri1

i ⋅ f i1
i1 = f i1

i

n i
i = Ri1

i ⋅ ni1
i1  Pi1

i ∧ f i1
i

i= f i
i ⋅ zi

i

[ ]= J T0 [ f e0

ne
0 ]

[ ]=[ J fTe ⋅R0
e J n

Te ⋅ R0
e ][ f e0

ne
0 ]

Figure 8.3: Calculation of the Jacobian Matrix via force/torque propagation method.



178 Chapter 8. The Jacobian Matrix

• Workspace Boundary Singularities, which occur when the robot manipulator is
fully extended or folded onto itself so that Pe is at or near the boundary of the robot
workspace. In such configurations, one or more joints will be at their limits of range
of movement, so that they will not be able to maintain any movement at any given
speed. This effectively makes J a singular matrix.

• Workspace Interior Singularities, which occur inside the robot workspace away
from any of the boundaries and are generally caused by two or more joint axes
become aligned.

Three different courses of action can be taken to avoid singular configurations:

• Increase robot manipulator’s degrees of freedom, perhaps by attaching a tool or
gripper to Pe, which has one or two degrees of freedom itself.

• Restrict the movements that the robot can be programmed to make so as to avoid
any singular configurations.

• Dynamically modify J to remove the offending terms, and thus return ‖J‖ 6= 0. This
means identifying the column and row of J that need to be removed.



Chapter 9

Path planning

9.1 Introduction

From the inverse kinematics of a robot manipulator arm we can know what joint
values we need for any particular location of Pe. Thus, to make Pe follow some specified
trajectory in Cartesian space (a straight line or circular arc, for example), we must first
calculate how each joint must move, specify this joint motion in terms of a series of
joint position reference values, and then input these to the controller of each joint at an
appropriate rate in time. The process of turning a specified Cartesian space trajectory of
Pe into sequences of appropriate joint position reference values, one sequence for each
joint, is called Trajectory Generation (figure 9.1).

The relationship between the robot program, trajectory generation, and control level
(joint control) of the robot is illustrated in figure 9.1.

The trajectory generation process of a robot manipulator arm consists of the following
six steps:

1. Convert the movement specification from the program into an analytical and
continuous Cartesian Space trajectory with respect to {0}, that is, defining a
mathematical model, in Cartesian Space, that describes the desired trajectory:

Pe =
[
pex pey pez ψex ψey ψez

]T (9.1)

And do the same for the location change rate (speed), if necessary, to obtain:

Ṗe =
[
ṗex ṗey ṗez ψ̇ex ψ̇ey ψ̇ez

]T
(9.2)

2. Sample the Cartesian trajectory Pe to obtain a finite number, m, of sample points
on the continuous trajectory so we have:

P (i)
e =

[
p

(i)
ex p

(i)
ey p

(i)
ez ψ

(i)
ex ψ

(i)
ey ψ

(i)
ez

]T
, i = 1. . .m (9.3)

179



180 Chapter 9. Path planning

Robot programmeTask specification

Trajectory 
generation

Reference value
generation

Low level 
control

Initial and end locations of Pe
Type of trajectory
Time for completion or speed requirements

Joint trajectories and speed joint profiles

Sequences of reference values of each joint

Figure 9.1: Trajectory Generation vs. Joint Control.

And do the same for the location change rate of the trajectory, if necessary, to
produce:

Ṗ (i)
e =

[
ṗ

(i)
ex ṗ

(i)
ey ṗ

(i)
ez ψ̇

(i)
ex ψ̇

(i)
ey ψ̇

(i)
ez

]T
, i = 1. . .m (9.4)

3. Using the inverse kinematics relation of the robot manipulator arm, convert each

Cartesian trajectory sample, P (i)
e , into a corresponding joint space vector q(i)

e .

q(i) =
[
q

(i)
1 q

(i)
2 q

(i)
3 . . . q

(i)
n

]T
, i = 1. . .m (9.5)

In this step, the possibility of multiple solutions to the inverse kinematics relation
must be dealt with.

4. Using the inverse Jacobian relation, convert each instantaneous velocity vector,

Ṗ
(i)
e , into a corresponding joint speed vector, q̇(i). In this step, the possibility of

singular configurations must be dealt with.

5. Using the sequence of vectors q(i) and q̇(i), i = 1. . .m, generate continuous
expressions qj(t) and q̇j(t), j = 1. . .n (for every joint), which pass through or
sufficiently near to each joint space sample point, q(i), and velocity sample point,
q̇(i), i = 1. . .m, to produce continuous joint space trajectories for each joint.



Section 9.1. Introduction 181

6. Sample each continuous joint trajectory qj(t) (and q̇j(t), j = 1. . .n), to generate a
sequence of discrete reference values for each joint, qj(kT ) (and q̇j(kT ), j = 1. . .n),
where T is the sampling period used, and k is the sampling number.

To illustrate these six steps of the trajectory generation process, we will consider
a simple 2D 2-DoF planar manipulator arm and a specified straight line motion of Pe
(figure 9.2).

Continuous trajectory of 
P

e
 from start to finish

y0

x0

Pe
s

Pe
 f 

Start position

Finish position

q2
s 

q1
s  q2

 f 

2D Cartesian space

Figure 9.2: Definition of a straight line trajectory (cartesian space).

The continuous Cartesian space trajectory is therefore the straight line between P
(s)
e

and P
(f)
e .

Step 2 is to sample the former continuous Cartesian space trajectory (figure 9.3).

y0

x0

Pe
s
=Pe

0

Pe
 f 
=Pe

6

2D Cartesian space

Pe
1 

Pe
5 

Pe
4

Pe
3 

Pe
2

Sampled points on 
the continuous trajectory 

Figure 9.3: Sampling (in space) of the straight line trajectory (cartesian space).

Using the inverse kinematics relation, step 3 then converts each Cartesian space
sample point into an n−dimensional joint space point (figure 9.4), where n is the number
of DoF of the robot manipulator.



182 Chapter 9. Path planning

q1

q2

qs =q0

q f 
=q6 

2D Joint space

q1 q5
q4

q3

q2

Sampled trajectory 
points in joint space

Figure 9.4: Sampled trajectory (joint space).

Step 4 involves fitting a smooth continuous curve to these joint space sample points
(figure 9.5).

q1

q2

qs =q0

q f 
=q6 

2D Joint space

q1 q5
q4

q3

q2

Interpolated continuous 
Trajectory in joint space

Figure 9.5: Interpolated trajectory (joint space).

And step 5 involves sampling, over time, this joint space trajectory (figure 9.6)...

...to generate a sequence of position reference values for the two robot arm joints
(figure 9.7).

The Cartesian space sampling, inverse kinematic calculations, joint space fitting, and
subsequent reference value generation, all introduce some error into the process. The
resulting motion of Pe is therefore, in general, not exactly the same as the specified
trajectory: there will always be some variation from this (figure 9.8).

By increasing T we can slow donw the movement of Pe, and, similarly, by decreasing
T we can accelerate (speed up) the movement of Pe. However, making T too small or too
large may produce less precision in the movement of Pe, and it is important that T is
never made too small compared to the slowest joint rate in the robot arm control loop.



Section 9.1. Introduction 183

q1

q2

qs =q0

q  f 

2D Joint space

Sampled joint 
space trajectory

Figure 9.6: Sampling, in time, the trajectory (joint space).

q
1

q
2

q
1 
joint reference 

values in time 

t

t

q
1
 joint reference 

values in time

Figure 9.7: Joint reference values for the every joint.

Actual generated 
trajectory of P

e
 

y0

x0

Pe
s

Pe
 f 

2D Cartesian space

Specified 
trajectory of P

e
 

Figure 9.8: Specified trajectory vs. actual robot’s trajectory.



184 Chapter 9. Path planning

9.2 Types of Trajectories in Kinematic Control

The trajectory of Pe, the motion of the Robot End-point location in Cartesian space, from

P
(s)
e to P (f)

e , can be generated by three different types of joint space trajectories. Only the
last of which can be used to produce fully specified Cartesian space trajectories, such as
straight lines or circular trajectories.

• Type 1: Point-to-point trajectories, in which each joint trajectory is generated
completely independently of the other joint trajectories.

Each joint is moved from its starting position to its final position at some default
rate.

In this type of trajectory generation we can distinguish two subtypes:

– Joint-by-joint motion, in which each joint is moved in turn in strict sequence
(figure 9.9). Thus, for our simple 2D planar arm, we would have joint space
trajectories as follows, together with the resulting Cartesian space trajectory of
Pe. The total motion time is therefore the sum of each joint motion time, and
the resulting motion of Pe is often rather jerky 1.


y0


x 0

P
e
s 

P
e
 f 

2D Cartesian space

1
2

q

t

q
1
s

q
1
 f 

2D Joint space

Actual generated 
trajectory of P

e
 

q
2
s

q
2
 f 

Figure 9.9: Point to point trajectories and joint by joint motion.

– Simultaneous joint motion, in which all joint motions are initiated together,
thereby reducing the total motion time to the time taken by the slowest joint,
or the joint which has the longest to move (figure 9.10). The motion of Pe is
smoother, but as each joint finishes, the motion of Pe becomes jerky.

As can be seen, in this kind of trajectory generation, it is not easy to know exactly
what the motion of Pe will be between its specified initial and final locations.

• Type 2: Coordinated or Synchronous Trajectories, in which all the individual
joint motions are arranged to both start and finish together (figure 9.11). This
produces much smoother Pe motion, and is also energy efficient, since the amount
of acceleration and deacceleration is kept to a minimum, thus keeping to a
minimum the amount of work needed to complete the arm motion.

1non-smooth.



Section 9.2. Types of Trajectories in Kinematic Control 185


y0


x 0

P
e
s 

P
e
 f 

2D Cartesian space q

t

q
1
s

q
1
 f 

2D Joint space

Actual generated 
trajectory of P

e
 

q
2
s

q
2
 f 

Figure 9.10: Point to point trajectories and simultaneous joint motion.


y0


x 0

P
e
s 

P
e
 f 

2D Cartesian space q

t

q
1
s

q
1
 f 

2D Joint space

Actual generated 
trajectory of P

e
 

q
2
s

q
2
 f 

Figure 9.11: Coordinated or synchronous trajectories.



186 Chapter 9. Path planning

To achieve this type of coordinated synchronous trajectory, the kinematic controller
has to first analyse the motion of all the joints needed to produce the motion of Pe to
find which joint which needs the most time. All other joints are then programmed
to take the same amount of time to complete their particular motions.

The total motion time is therefore, again, the time taken for the slowest joint or the
joint which has the longest trajectory.

As for type one trajectories, although the resulting motion of Pe is smoother, it
is once again difficult to know exactly what trajectory it will follow between the
specified start and finish locations.

• Type 3: Continuous Trajectories, in which Pe must follow some specified trajectory
in Cartesian space, rather than just move form the specified start location to the
specified finish location (figure 9.12).

In this case the joint space trajectories, the motions of each joint, are typically
quite complicated and will, in general, involve changes in the rate of movement and
changes in the direction of movement.


y0


x 0

P
e
s 

P
e
 f 

2D Cartesian space q

t

q
1
s

q
1
 f 

2D Joint space

Actual generated 
trajectory of P

e
 

q
2
s

q
2
 f 

Figure 9.12: Continuous trajectories.

This is the type of trajectory generation we have seen described and illustrated in
the previous section which introduced the six steps of the trajectory generation
process.

9.3 Trajectory interpolation in joint-space

Given a set of sampled position vectors in the Joint Space (figure 9.4), that is, a series
of points in Joint Space which a given joint has to pass through at a specific moment in
time.

The aim is to obtain, by means of an interpolator, the intermediate reference values
of which the reference signal is composed (figure 9.13).

The best interpolator would be the one that contains all sampled points using only
one continuous function. That is, the ideal solution would be an interpolator with as



Section 9.3. Trajectory interpolation in joint-space 187

t

q
j q

j
1 
=q

j
s  q

j
 i−1 q

j
 i q

j
 f 

q
j
2

Figure 9.13: Time sampling in the Joint Space.

many parameters as samples. This option would lead to a very complicated (and complex)
interpolator that would demand a lot of resources during its calculation.

In robotics, a low degree polynomial (with few coeficients, from now on referred to as
parameters) is preferred. This will require the definition of intervals and the use of one
interpolator for each interval.

Commonly used interpolators are:

• Linear Interpolators.

• Cubic Interpolators (Spline interpolation).

• Trapezoidal Interpolators (a linear interpolator between two intervals with parabolic
interpolators)

9.3.1 Linear interpolation

Linear interpolation 2 consists of connecting the starting point and the ending point with
a straight line. Thus, this interpolator only requires two parameters. Figure 9.14 depicts
this (position) interpolator and its two derivatives (speed and acceleration). It is quick
and easy, but it is not very precise.

This interpolator uses a linear function for each interval that is defined by two
adjacent data points (sampled position vectors). Thus, the trajectory is defined as a series
of straight lines that connects two consecutive samples. Notice that this interpolator
leads to constant speeds for each section/interval.

Its equation is the following:

qj(t) =

(
q

(i)
j − q

(i−1)
j

)
T

(
t− t(i−1)

)
+ q

(i−1)
j (9.6)

2sometimes known as lerp



188 Chapter 9. Path planning

t

q
j

t

q̇
j

t

q̈
j

Figure 9.14: Linear interpolator.

where t(i−1) < t < t(i) and T = t(i) − t(i−1).

The choice of t(i), that is, the travelling time for each q(i), can be made according to
one of the following criteria:

• The concerned joint must arrive at its goal as fast as possible → q̇ = cte = q̇max,

• Tuning all joint speeds in order to synchronise the motion of all DoF.

• Customer specifications.

The main characteristic of this interpolator is its continuity even at the via-points
(data points or samples), but this is not the case for its derivatives:

• velocity, first derivative → there are step discontinuities (sudden speed changes),

• acceleration, second derivative → there are impulses (step derivaty), that is to say,
acceleration peaks with infinite amplitude and this is not reasonable.

9.3.2 Cubic interpolation (spline interpolation)

Instead of using a one degree polynomial (straigh line, linear interpolator), the spline
interpolation consists in using a low-degree polynomial. The commonly used degree is



Section 9.3. Trajectory interpolation in joint-space 189

three, so it is a cubic polynomial (interpolator) with 4 parameters (figure 9.15).

As happend with linear interpolators, a cubic interpolator is defined for each interval
that is defined by two adjacent sampled points. The resulting curve is called spline.

q
j

t

Figure 9.15: Cubic interpolator.

Due to the fact that the chosen interpolator is a cubic polynomial, the resulting spline
is twice continuously differentiable, that is, its first and second derivatives (velocity and
acceleration) are continuous functions.

The mathematical expression for a cubic interpolator is:

qj(t) = a+ b
(
t− t(i−1)

)
+ c

(
t− t(i−1)

)2
+ d

(
t− t(i−1)

)3
(9.7)

In order to guarantee a twice continuously differentiable spline, the following bound-
ary conditions should be set to obtain the 4 parameters for each cubic interpolator:

• 2 position boundaries → the spline has to reach every sampled position vector
(via-point), this means each interpolator has to pass through the corresponding
via-points.

• 2 velocity boundaries→ the time derivative of the spline curve must be continuous.
This means that both one-side limits 3 (from the negative direction and from
the positive direction) of interpolated velocity at each point must be equal. More
specifically, this is also true for sampled points (via points) that are the boundaries
at which two adjacent intervals (interpolators) are linked. That is, the interpolated
values must be equal when one is obtained using the “interpolator on the left” (one-
side limit from the negative direction) and when the other is obtained using the
“interpolator on the right” (one-side limit from the positive direction) at each via
point 4.

Taking into account the former criteria, it is easily proven that the mathematical
expression for the cubic interpolator polynomial is:

3lı́mites laterales lim
x→x−1

y lim
x→x+

1
4Notice that, in the case of the first and last samples, the joint-speed must be equal to zero to guarantee

that the robot is at rest before and after the motion covering all intervals



190 Chapter 9. Path planning

a = q
(i−1)
j

b = q̇
(i−1)
j

c = 3
T 2

(
q

(i)
j − q

(i−1)
j

)
− 2

T q̇
(i−1)
j − 3

T q̇
(i)
j (9.8)

d = − 2
T 3

(
q

(i)
j − q

(i−1)
j

)
+ 1

T 2

(
q̇

(i)
j + q̇

(i−1)
j

)
T = t(i) − t(i−1)

An additional criterion for via-point velocities is given by Craig in “Introduction to
Robotics”:

q̇
(i)
j =


0→ if sgn

(
q

(i)
j − q

(i−1)
j

)
6=
(
q

(i+1)
j − q(i)

j

)
1
2

[(
q
(i)
j −q

(i−1)
j

)
T +

(
q
(i+1)
j −q(i)

j

)
T

]
→ in other case

(9.9)

But this criterion allows acceleration discontinuities.

In any case, do not forget to set to zero the velocities at the beginning and in the end
of the motion to guarantee the robot stops.

We also have the option of defining velocities in Cartesian Space and then obtaining
the corresponding joint speeds, using the Jacobian matrix. In this case, we have to make
sure that the robot is not crossing any singular configuration during motion.

9.3.3 Trapezoidal interpolator

The trapezoidal interpolator consists of a linear interpolator with parabolic conections
between two consecutive interpolators to overcome discontinuities. Thus, the strategy is
similar to splines but now we use linear interpolator instead of cubic polynomials.

As a consequence of this, in each interval, this interpolator has three sections (see
figure 9.16:

• One parabolic link with constant acceleration from t(i−1) to t(i−1) + τ , where τ is the
time length of this first section.

• A linear interpolator with constant speed from t(i−1) + τ to t(i) − τ .

• One parabolic link with constant decceleration from t(i) − τ to t(i).

Where t(i−1) and t(i) are the time instants at which the ith interval starts and ends.



Section 9.3. Trajectory interpolation in joint-space 191

t

q
j

t

q̇
j

q̈
j



t



a
j

−a
j

v
j



q
j
 i−1

q
j
 i

Figure 9.16: Trapezoidal interpolator.

It is called “trapezoidal” due to the shape of its speed profile (time derivative of the
interpolator presented in the previous paragraph).

The mathematical expression for this type of interpolator is:

qj(t) =


q

(i−1)
j + s

(i)
j

aj
τ t

2 → t(i−1) 6 t(i−1) + τ

q
(i−1)
j − s(i)

j

v2
j

2aj
+ s

(i)
j vjt→ t(i−1) + τ 6 t(i) − τ

q
(i)
j + s

(i)
j

(
−ajT

2

2 + ajTt− aj
2 t

2
)
→ t(i) − τ 6 t(i)

(9.10)

Where:



192 Chapter 9. Path planning

τ =
vj
aj

T = s
(i)
j

(
q

(i)
j − q

(i−1)
j

)
Vj

+ τ

vj = maximum speed (9.11)

aj = maximum acceleration

s = sgn
(
q

(i)
j − q

(i−1)
j

)

Notice that the velocity at via points are zero (null) for the proposed interpolator. This
feature is only useful when the complete trajectory is defined by only two samples (the
starting and end positions). When the trajectory is composed of a series of more than
two points, every two adjacent interpolators must be connected using the corresponding
parabolic sections. These links have to be done following similar critera as used with
spline curves, that is, the robot acceleration must be continuous and the robot must not
stop at an intermediate motion stage (figure 9.17).

q
j



q
j
 i−1

q
j
 i

q
j
 i1

t

Figure 9.17: Trapezoidal interpolator: parabolic link between to adjacent interpolators.

Notice that the closer the parabola is from a via point, the greater the accuracy is.
However, due to this interpolator behaviour, as the robot approaches to a via point, it
has to deaccelerate and when it is getting far awway, it has to accelerate. On the other
hand, if robot maintain its trajectory far away from any via point, its velocity will be fairly
constant.

Thus, the more accurate the trajectory is, the more jerky is due to the deacceleration-
acceleration cycles the robot has to perform to slow down at via point vicinities.



Chapter 10

Control of robot manipulators

10.1 Introduction

Control when the consequence or result of an action is always be the same, despite any
perturbations or disturbances that affect the action. Therefore, one of the concepts of
control we will use in this course can be characterised as follows: Control is a process
that causes a system variable to remain at or near to a specified value, which is called
its reference value or set point value.

When more than one system variable needs to be kept at or near to a reference value,
there are as many reference values as there are system variables to be controlled. We
can thus define a controller or control system as:

an information-processing device which manipulates the flow of energy,
material, or other resources in an associated physical system in such as a
way as to make the overall system function in some specified manner in the
face of arbitrary changes imposed on the system by its environment, and in
the face of arbitrary changes in the physical system itself.

Prof. Alistair MacFarlane, 1976.

We will call this kind of control Basic Control in this course. It will be the first of
different kinds of control we will see and use.

In this part of the course we will consider the basic level of control of a robot
manipulator arm. For matters of clarity, we will consider a particular kind of robot,
but all that we will see in this applies to all other kinds of industrial robots.

Suppose we have a 6 DoF robot manipulator arm with an Angular Robot geometry
(i.e., six one-DoF rotational joints), which has an electric DC motors plus reduction and
transmission mechanisms at each joint, together with an angular position sensor.

Then, to position and orient the coordinate frame fixed to the end-point, Pe, of the
robot, we need to appropriately position each of the 6 rotational joints of the robot arm.
To do this, we will need to explicitly control the position of each joint individually.

193



194 Chapter 10. Control of robot manipulators

In robotics, there are two types of traditional controllers: one for position control and
the second one to control the force that is applied by the end-effector. This will yield to
controllers that have two feedback loops (figure 10.1).

Controller Robot

Force Sensor

Position Sensor

Robot Force

Robot PositionPosition and 
force references

Figure 10.1: Position and Force control loops.

The first part of this chapter will be devoted to position control loops and the last will
briefly describe the most important force control strategies.

10.1.1 Analogy between Mechanical and Electrical Physis

It is widely-known that the differential equations that predicts the dynamic behaviour
of systems and the current flow in electrical circuits are formally equal. For example,
the differencial equation of the motion of a mass connected to a spring and a damper
are the same as the equation of a simple electrical circuit composed of a voltage source
connected to a resistor, inductance and capacitor in series (see figure 10.2).

f , v I

V

R

L

C

b ,k

m

Figure 10.2: Mechanical-electrical analogy.

In the case of a mechanical system composed of a spring, damper and mass, the



Section 10.1. Introduction 195

differential equation is:

f = mv̇ + bv + k

∫
vdt (10.1)

While for the resistor, inductance and capacitor circuit, the differential equation is:

V = Lİ +RI +
1
C

∫
Idt (10.2)

When comparing these last equations, we have a formal correspondence between
voltage and force, current and speed, etc. The complete reference to that correspondence
is summarised in table 10.1.

Electricity Mechanics
Voltage Force/torque
Current Speed
Resistor Damper
Inductance Mass
Capacitor inverse Spring

Table 10.1: Summary of the analogy between mechanics and electricity.

Once the analogy is defined, we can exchange the nomenclature between these two
worlds. For example, as the quocient between voltage and current is an (electrical)
impedance, the quocient between force/torque and speed is known as mechanical
impedance. In the same manner, the inverse of a mechanical/electrical impedance is
a mechanical/electrical admittance.

This analogy will be very useful in the classification of the different kind of
force/torque control strategies, as will be seen in the following section.

10.1.2 Types of robotic control loops

10.1.2.1 Motion Control

This type of control forces the robot to follow a predefined position trajectory while the
internal interaction forces within the robot’s parts (mainly friction) and the externals
(interaction with the environment) are compensated. Trajectory error compensation is
achieved by high gains in the feedback paths. High forces are a direct consequence of
these high gains, which lead to the saturation of actuators.

This kind of control is quite easy to implement and only needs position sensors
(cheaper than force sensors). However, this controller is only suitable when the task
to be performed does not require physical contact between the robot and its enviroment
(ex. sprying).



196 Chapter 10. Control of robot manipulators

10.1.2.2 Force Control

Force control is a new paradigm that is being introduced into industrial robot control
loops when robots have to perform tasks that require physical interaction with their
environment. Notice that this is the case of the majority of automated processes in
industry.

On the other hand, this control requires the use of expensive force sensors, which
are more complex than position controllers. Moreover some old robots are incompatibles
and this kind of control cannot be implemented.

• Explicit force/torque control

– Open loop: There is no force/torque feedback, so it is sensitive to disturbances.

Force 
controller Robot

F ref F real

– Closed loop: measured force/torque is compared to the reference. A
force/torque sensor, which is normally expensive, is needed.

Force 
controller

Robot

Sensor

F ref

F real
F meas

+



• Explicit force control: It is based on position measurement (admittance control).
The computed error is the same as that of explicit control. Now, however, the error
is transformed to a position reference by an admittance. This reference is the input
for a position controller.

Position 
controller

Robot

Position 
Sensor

Pref

PrealPmeas

+


Admittance

Force
Sensor

F ref

F meas

+



F real

• Implicit force control (Impedance control)

Impedance Control is a strategy that controls the dynamic relation between the
manipulator and the environment. The force exerted on the environment by the
manipulator is dependent on its position and impedance. Thus, there is no force
feedback and it may also be considered as a position control with low stiffness.



Section 10.1. Introduction 197

Impedance consists of two components, that which is physically intrinsic to the
manipulator and that which is given to the manipulator by active control. It is the
goal of Impedance Control to mask the intrinsic properties of the arm and replace
them with the target impedance.

The following schematic illustrates the Impedance Control with Force Feedback.1

Force
controller

Robot

Force 
Sensor

Pref

Preal
Pmeas

+


Impedance

Position
Sensor

F ref

F meas

+


F realInner  

force loop

• Hybrid Control. This controller detects the directions in which the robot is having
physical interaction with the environment. In these directions the hybrid controller
switches to force/torque control and in the remaining direction, the controller acts
as a normal position controller.

Impedance Control vs. Admittance Control Impedance Control is used when a
force/torque direct control is desired without a compulsory need for a force sensor.
Admittance control is implemented when the robot has an inner position controller
which cannot be modified.

Impedance controllers with force feedback can compensate the robot dynamic.
Impedance control without force feedback is mainly used in haptic devices with high
backdrivability.

Admittance control is advised for devices with high non-linearities, high inertia or
non-backdrivability.

10.1.3 Sources of Instability in Robot Control Loops

It is widely known that controller accuracy improves when gain is increased. However,
gains cannot be as large as we want because, beyond a certain threshold instabilites can
appear due to:

• sampling time in digital implementations,

• Coulomb frictiton,

• actuator wind-up and limited band-width,

1In this case, the topology of the impedance controller is equal to the topology of a position controller,
but now the gain is tuned to have a compliant motion despite the fact that the trajectory tracking will have
a high error rate.



198 Chapter 10. Control of robot manipulators

• noise in sensors,

• flexible joints and links,

• sensor dynamics,

• environment dynamics,

• etc.

10.2 Linear Position Control of a Single Joint

The robot control algorithms usually have cope with multiple inputs-outputs of non-
linear systems. This fact is because robots have more than one DoF which are usually
coupled. This means that the classical control theories based on Laplace-transform
cease to be valid, resulting in a complex controller design. That is why numerous efforts
focused on symplifing the analysis. Let’s see some of them.

10.2.1 Linear Dynamic Model of 1-DoF joint

Let’s say a motor m that is connected to a reduction mechanism with a ratio η = rL
rm
� 1,

as it is in figure 10.3.

Motor

Output shaft

J m , Bm
J L , BL

r m ,m

r L ,L

Figure 10.3: Position and Force control loops.

Where:

• Jm is the motor inertia.

• Bm is the motor damping.

• JL is the payload inertia that is attached to the output of the reductor.

• BL is the payload damping that is attached to the output of the reductor.

• ωm is the angular motor speed.



Section 10.2. Linear Position Control of a Single Joint 199

• ωL is the angular speed at the reductor output.

• rm is the radio of the input gear.

• rL is the radio of the output gear.

10.2.1.1 Resisting torques

According to figure 10.3, it is cleared depicted that there are only two resisting torques:
τm, the resisting torque due to the rotatory movement of the motor; and τL, which is the
resisting torque due to the link inertia and other payloads attached to that link.

The payload resisting torque can be computed by means of torque equilibrium at the
output of the reduction mechanism:

(τL)L = JLω̇L +BLωL (10.3)

where: (τL)L is the payload resisting torque at the output shaft, measured at the
output of the reductor.

The motor resisting torque can be found in a similar way. The equation is as follows:

(τm)m = Jmω̇m +Bmωm (10.4)

Now, we need the expressions that relate the input speed/torque with the out-
put speed/torque in the reduction mechanism. A reductor can be envisioned as a
speed/torque transformer where ideally, without any mechanical losses, the input power
is equaled to the output power:

PL = Pm (10.5)

Where PL is the transmitted power to the load and Pm is the power exerted by the motor
on the reductor input.

By substituting the last equation the expressions for power yields:

(τL)L ωL = (τL)m ωm (10.6)

Where (τL)m is the load-resisting torque transmited to the motor side.

Rearranging terms of 10.6 to have torque on one side and angular speed on the other
side yields:

(τL)L
(τL)m

=
ωm
ωL

= η (10.7)

and



200 Chapter 10. Control of robot manipulators

(τL)L = η(τL)m (10.8)

ωm = ηωL (10.9)

Subtituting (τL)L and ωL in equation 10.3, using the equations 10.8 and 10.9 yields:

(τL)m =
1
η

(
JL
ω̇m
η

+BL
ωm
η

)
(10.10)

Now we have to notice that the total commanded motor torque (τcom) required is
divided between moving the rotor shaft and moving the payload:

τcom = τm + (τL)m (10.11)

Finally, in equation 10.11 the expresions for (τm)m and (τL)m (equations 10.4 and
10.10) should be substituted:

τcom = Jmω̇m +Bmωm +
1
η

(
JL
ω̇m
η

+BL
ωm
η

)
(10.12)

To simplify the final expression, it is convenient to combine the common factors ω̇m
and ωm:

τcom =
(
Jm +

JL
η2

)
ω̇m +

(
Bm +

BL
η

)
ωm (10.13)

Taking into account the hypothesis of high reduction (η = rL
rm
� 1), a very common

fact in industrial robotics, yields:

τcom =
(
Jm +

JL
η2

)
ω̇m +

(
Bm +

BL
η2

)
' Jmω̇m +Bmωm (10.14)

In other words, the influence of the payload attached to the output shaft is negligible
compared to the motor inertia. This is due to the scale factor of η2.

10.2.2 Proportional error control of a single joint

After confirming that the high reduction hypothesis holds true, in a n − DoF robot, we
can implement n decouple linear SISO (2) position controllers instead of one non-linear
MIMO (3) position controller of n−DOF .



Section 10.2. Linear Position Control of a Single Joint 201

Sensor


ref i


mi


meas i

+



1

J
mi

s2
B

mi
s


iI

i k
 ik

p i


err i

Figure 10.4: 1-DoF Proportional Error position control.

If we use Proportional Error (PE) control to control the position of each joint, we will
have a negative feedback control loop of the kind shown in figure 10.4: one for each joint
system.

The equation of i− th (rotational) joint motion is given by:

τi = Jmiω̇mi +Bmiωmi (10.15)

which cn also be expressed as follows:

τi = Jmi θ̈mi +Bmi θ̇mi (10.16)

where: τi is the torque applied to the i − th joint by the DC motor via reduction and
transmission mechanisms; θmi is the (angular) position of the i − th actuator at time t;
Jmi is the (rotational) inertia of the joint, due to the masses of the motor and reduction
and transmition mechanisms for the joint, plus the masses4 of the link connected by
the joint, and all other subsequent links in the chain; Bmi is the total friction constant
coefficient of the joint, due to the motor and reduction and transmission mechanisms.

For a reasonable approximation (and to keep the model linear), the torque generated
by a DC motor, together with its reduction and transmission mechanisms, τi, can be
taken to be directly proportional to the current, Ii, to the motor. This leave us with:

τi = kφiIi (10.17)

where: kφi is the constant of proportionality; and Ii is the current to the motor. Therefore,
equations 10.16 and 10.17 spawn the following result:

kφiIi = Jmi θ̈mi +Bmi θ̇mi (10.18)

For proportional error control, the torque applied by the motor (via its reduction and
transmission mechanisms) must be proportional to the position error of the joint,

θerri = θrefi − θmeasi (10.19)

From 10.18 we can see that we can make τi proportional to the position error, θerri,
by making the motor current, Ii, proportional to the θerri. Therefore, the following has
resulted from equations 10.18 and 10.19:

4negligible if the hypothesis of high reduction



202 Chapter 10. Control of robot manipulators

kφiKpi (θrefi − θmeasi) = Jmi θ̈mi +Bmi θ̇mi (10.20)

where: kpi is the constant of proportionality between Ii and θerri.

We can combine the constants kφi and kpi to obtain kpei, and without loss of
generality, we can substitute the expression (θrefi − θmeasi) with ∆θi to clarify the
equations. Then this results the following:

kpi∆θi = Jmi θ̈mi +Bmi θ̇mi (10.21)

Or, more conventionally, as:

Jmi θ̈mi +Bmi θ̇mi − kpi∆θi = 0 (10.22)

Equation 10.22 is a second-order lineal differential equation, of which the general form
solution is given by:

∆θi = e

(
− Bmi

2Jmi
t

) [
Ci1e

(
Ωi
2
t
)

+ Ci2e
(
−Ωi

2
t
)]

(10.23)

where C1 and C2 are constants of integration that depend upon the initial conditions,
and where

Ωi =

√(
Bmi
Jmi

)2

−
(

4kpi
Jmi

)
(10.24)

This kind of controller is often called a servomechanism, servo-controller, servo-
system or servo-motor. It is a negative feedback control system which controls one of
five kind of mechanical variables: position, speed, acceleration, force, or torque.

The term servo-system is also sometimes applied to a control system, of which the
output is supposed to follow some varying input reference value.

The damping or dynamic response term in equation 10.23 guarantees that, with
time, t, the value of θmeasi goes to the value of θrefi, the reference position, as long as the
friction term, Bmi, is not zero, which is never the case for real systems.

From the expression for Ω, in equation 10.24, we can see that (figure 10.5):

• If (
B2
mi

4kpi

)
> Jmi (10.25)

Ωi is positive, and therefore, the system has more damping. This is sometimes
called an overdamped system.



Section 10.2. Linear Position Control of a Single Joint 203

0 0 . 5 1 1 . 5 2 2 . 5 3 3 . 5 4
0

0 . 2

0 . 4

0 . 6

0 . 8

1

1 . 2

1 . 4

1 . 6

1 . 8

2

Time 

R
es

po
ns

e


i
2
0

B
mi
=0, 

i
2
0

i
2
=0


i
2
0

Figure 10.5: Step response types of systems: ω2
i > 0 → overdamped system, ω2

i = 0 →
critically damped system, and ω2

i < 0→ underdamped/oscillatory system.



204 Chapter 10. Control of robot manipulators

• If (
B2
mi

4kpi

)
= Jmi (10.26)

Ωi is equal to zero, equation 10.23 becomes more symplified in,

∆θi = Ci12e

(
− Bmi

2Jmi
t

)
(10.27)

In this case, the joint system is said to be critically damped, and it means that its
response time, tr, has reached its minimum value. (This may not, however, be the
optimal response time for the system). The form of this response curve is shown
below.

• If

(
B2
mi

4kpi

)
< Jmi (10.28)

Ω2
i is negative, therefore, Ωi is defined as a complex number, Ωij, and in this case

equation 10.23 takes the following form:

∆θi = e

(
− Bmi

2Jmi
t

) [
(Ci1 + Ci2) cos

(
Ωi

2
t

)
− j (Ci1 − Ci2) sin

(
Ωi

2
t

)]
(10.29)

The joint system is said to be under-damped, and it will have oscillatory motion
with Ωi

2πHz frequency of oscillation. In other words, the system will have complex
poles off the real axis in the s− plane of its root locus diagram. This means that the
values of Bmi and kpi can influence the stability of the joint system. If Bmi is small
and kpi is large, the joint system may be unstable.

10.2.3 The Steady State Error Problem

If we include a static force, such as gravity or a payload, gi, in the equation of the single
joint motion (equation 10.22), in our mathematical model of the controlled system, we
will have a new version which will now have the form:

τmi = −kpi∆θi = Jmi θ̈mi +Bmi θ̇mi + gi (10.30)

where gi is the payload/gravity that the ith DoF is supporting. As we can see, it is a
nonlinear second order differential equation! 5 It is not a homogeneous equation, since

5the gravity terms normally depend on trigonometric functions of qi.



Section 10.2. Linear Position Control of a Single Joint 205

the total torque, τmi−gi does not depend only on time,t, but the angular position of joint.
(How do we convert this model into a linear model, which is what we need?)

We can also see from equation 10.30 that when the control torque τmi = kpi∆θi is zero,
which it will be if there is no position error, there will still be torque acting on the joint,
produced by gi. This means that joint cannot sustain a zero position error. Instead, it will
move away from its reference position enough to produce an error sufficient to induce a
control torque high enough to counteract gi.

In other words, the joint ith will only be able to sustain a position at which τmi = gi.
This means that there will be some amount of position error, which results in a non-zero
τmi.

This error is called the steady state error or static error. How big it is depends on
the value of gi, which, as we have seen, depends on the actual configuration of the robot,
whether the robot is carrying an object or not, and, if so, what mass the object has.

We can solve this problem by adding some lag compensation to the basic PE
controller.

This we do by adding an integral term to the basic proportional error law, which
integrates the position error of the joint over time. We therefore have that:

τmi = kpi (θrefi − θmeasi) + kIi

∫ t

0
(θrefi − θmeasi) dt (10.31)

where kIi is the gain of the integral term.

This results in a new controller which we call a PI controller, for proportional-
integral controller. By varying the value of the integration constant, kIi, we can arrange
for the joint system to converge on its reference value more or less quickly.

However, if we make kIi too large, oscillations in the behaviour of the joint will occur,
also known as overshoot. This is another problem that a PE controller can suffer from,
and, as we can see, PI controllers can too.

Before looking at how we can solve this overshoot problem, it is worth stopping
and asking ourselves if there is any other way in which me might solve the steady
state problem associated with using PE controllers. In other words, is adding lag
compensation, using an error integration term, the only way to solve this problem?

As is most often the case in engineered systems, the answer is no. We can also avoid
this problem, or at least reduce it to just one joint, by adopting a different geometry for
the robot arm.

In particular, we could use a SCARA type geometry, in which the first two joints have
vertical rotational axes. This means that these joints do not suffer the effects of gravity
on either the masses of the links they connect, the configuration of the rest of the arm,
or whether the robot is carrying an object (or a tool) or not.



206 Chapter 10. Control of robot manipulators

In a SCARA-type geometry, the third (vertical prismatic) joint would need a PI
controller to deal with the effects of the mass of the third element, wrist, and any object.
But in this case the direction of movement is always vertical, which means the same
value of kIi is always good. This is not the case in other geometries, and in particular
Angular Robot geometries, in which the ideal value (or optimal value) of kIi varies with
different configurations.

We can also try to reduce the static error by adding Feedforward Compensation
and Feedback Compensation control strategies. These strategies will be explained in
following sections.

10.2.4 The Overshoot Problem

As we have seen, if the friction in the joint system is low and the inertia of the joint
system is high, which are often both the case, especially for the first one or two degrees of
freedom of a robot arm, then the torque needed to move the joint rapidly to its reference
position may be too large to move it. When that happens, the robot cannot move directly
to the reference position a without presenting overshoot.

To accelerate a high inertia joint, we need large control torques, but if there is little
friction, there will be little to stop the movement of such a joint system once it has been
accelerated.

The joint will thus tend to oscillate about the reference value until it finally settles on
this value.

We can also see that the integral term of a PI controller, is no help here, since it
effectively introduces extra inertia into the joint system.

Solving the steady-state problem using a PI controller can thus make the overshoot
problem worse.

To solve the overshoot problem we need to introduce some lead compensation into
the joint system and its control. This we can do by adding a differential term to the
control law, which depends on the position error.

This results in:

τmi = kpi (θrefi − θmeasi) + kIi

∫ t

0
(θrefi − θmeasi) dt− kdi θ̇measi (10.32)

where kdi is the gain of the differential term.

This gives us a new controller, which is called a PID controller, which stands for
proportional, integral, differential controller.

The effect of the differential term in the controller is to add (artificial) friction to the
joint system, which, like the natural friction term, Bθ̇i, varies linearly with joint’s speed.



Section 10.2. Linear Position Control of a Single Joint 207

The block diagram of a PID-controlled joint system thus takes the form shown in
figure 10.6.

Sensor


ref i


mi


meas i

+



1

J
mi

s2
B

mi
s


mi

I
m i

k
 ik

p i
⋅

err i


err i

k
I i∫ 

err i
dt

k
d i

d 
err i

dt

Figure 10.6: 1-DoF PID position control.

10.2.5 Speed Sensing and Control of a Joint System

A serious problem that can arise in the implementation of a PD or PID controller, in other
words, any controller with a derivative component, is that it requires the differentiation
of the signal from the joint position sensor.

If there is any noise in the sensor signal, which there will normally be, the
differentiation will amplify this noise.

This can result in not just inaccurate speed measurements, but incorrect speed
values as well, which sometimes may have even the opposite sign to the correct value.

In this case, the derivative component of the controller acts to accelerate joint
movement, rather than reducing it.

The practical solution to this problem is to measure the speed of the joint using a
speed sensor, rather than the joint position. We can then obtain a position value by
integrating the speed measurement.

Integration of a signal with noise has the effect of reducing the relative proportion of
the noise in the integrated signal. Integration thus effectively suppresses any noise in
the signal.

This makes it a much more accurate and reliable way of measuring the position
of a joint, and now that cheap rotation speed sensors are available, this is the most
commonly used sensor in robot arm controllers.

If the basic sensor in the joint system is a speed sensor, we can take advantage of
this to introduce a further improvement in the control of the joint system, by introducing
a speed control loop inside the basic position control loop (figure 10.7).

In this control system, the speed reference value input to the controller is now taken



208 Chapter 10. Control of robot manipulators

Speed sensor


ref i

̇
m i


meas i

+



1

J
mi

sB
mi


mi

PID


err i

̇
meas i

∫ dt

k
v i
⋅̇

meas i

k
p i
⋅

meas i

̇
ref i

Figure 10.7: 1-DoF PID position control.

to be defined by the actual position error value.

In other words, when position error is large, the reference value for the controller
has a high speed value. Conversely, when the position error is low, the reference value
input to the controller has a low speed value. When there is no position error, the speed
reference value is, of course, also zero.

By adjusting the constants kvi and kpi on the speed and position control loops
respectively, we can change the behaviour of the joint system:

• kvi > kpi results in a joint system with effectively more damping.

• kvi < kpi results in a joint system with effectively less damping.

It is common to make the kdi gain of the PID controller low, or even zero, in this
kind of controller, so as not to have the same problem as before, caused by the noise
amplifying effect of the derivation of the speed signal. If kdi is kept low or at zero, we can
use the a larger kvi value to improve the dynamic behaviour.

As this kind of speed control is relatively easy to implement, and can be an effective
and cheap way of improving the overall dynamic behaviour of the joint system being
controlled. That is why this kind of strategy is often found in the control of the larger
joints of industrial robot arms.

10.2.6 Feedforward and Feedback Compensations

Previous sections focused on how to eliminate the steady state error and overshoot
problems. At this moment, the only proposed solution is the use of a PID controller
(figure 10.8). From a theoretical point of view, high PID gains (kpi, kIi and kdi ) should
solve all these problems and yield highly accurate positioning. In practice, this is a
utopian goal that cannot be reached due to the common presence of a gain boundaries
that, when trespassed, cause the robot’s behaviour to become unstable.



Section 10.2. Linear Position Control of a Single Joint 209

Sensor


ref i


mi


meas i

+



1

J
mi

s2
B

mi
s


mi

k
p i


k
I i

s
k

d i
⋅s


err i


d i

+



Figure 10.8: Basic PID control algortimh.

Thus, the proposed approach in this section is to keep the robot’s behaviour stable
despite having low PID gains. Motion accuracy will be then improved by modifying the
basic PID control strategy.

However, we should first analyse the error signal in the Laplace domain of the basic
PID controller. This will give us some design cues for our controller.

θerri =
θrefi

(
Jmis

2 +Bmis
)

+ τdi
PIDi + (Jmis2 +Bmis)

(10.33)

where τdi is the disturbance force/torque exerted on the ith DoF. That perturba-
tion/disturbance can include noise, non-linearities and controller tuning inaccuracies.

The previous equation denotes that the tracking error of the PID controller depends
on:

• the set-point→ the bigger the set-point, the higher error rate is. However, we cannot
control the set-point because the set-value is the position reference and it depends
upon where we want the robot to go.

• controller stiffness → the higher the stiffness is, the lower the error. This issue was
previously discussed at the beginning of this section. Now, we assume that we have
already tuned the controller to have the maximum PID stiffness that guarantees
the robot’s stability.

• robot impedance → there is an interplay between the impendance values and the
error, but clearly, the lower the impedance is, the lower the effects on the error the
set-point has. If we have a good dynamical model, we might be able to use it to
improve our controller.

• perturbations→ the more perturbations there are, the bigger the error rate is. If we
analyse better the source of the perturbations better, we can try to compensate for
them.

Now, the goal is to reduce as many terms as we can in equation 10.33. The first
try can be the compensation of the robot’s dynamics. This can be done by adding



210 Chapter 10. Control of robot manipulators

a compensation block to the basic PID control scheme (figure 10.9). This kind of
compensation is know as feedforward compensation6.

Sensor


ref i


mi


meas i

+



1

J
mi

s2
B

mi
s


mi

k
p i


k
I i

s
k

d i
⋅s


err i

+


d i

+

+


J

mi
s2 B

mi
s

feedforward

Figure 10.9: Feedforward compensation.

If we consider that the estimated parametres (parametres with hat) are equal to the
real robot parametres (without hat), the equation for the error signal is:

θerri =
τdi

PIDi + (Jmis2 +Bmis)
(10.34)

If we compare the latter equation with the equation 10.33, we see that now there is
no dependency on the set-point and the influence of the robot dynamics is much lower.
This means that we have improved the transitory behaviour.

According to equation 10.34, in the case of zero-perturbations, the tracking should
be error free. Remember that this is true only if we have a good model in the feedforward
block that perfectly cancels the robot dynamic.

As we saw in the section about steady state error, one of the most typical
perturbations is gravity. In that section, we saw that that perturbation can be eliminated
by introducing an integral term in the controller. However, this increases the overshoot.
Moreover, the gravity is not a linear disturbance and if we want to guarantee the
performance of the system we need to introduce non-linear strategies.

One way to reduce the effects of gravity is to compensate for them as shown in figure
10.10. This compensation is know as feedback compensation and the expression for
G(θi) can be as general7 as we need to estimate the force/torque we have to introduce to
cancel the effects of gravity. This approach is so general that we can compensate other
non-linearities as static friction.

6The hat over some parametres denotes that these parametres are estimations introduced in the
controller.

7even as a non-linear expression



Section 10.3. Computed Torque Algorithm 211

Sensor


ref i


mi


meas i

+



1

J
mi

s2
B

mi
s


mi

k
p i


k
I i

s
k

d i
⋅s


err i

+


d i

+

+



G 
mi


feedback

Figure 10.10: Feedback compensation.

10.3 Nonlinear Position Controller: Computed Torque Algo-
rithm

10.3.1 Linear Dynamic Model of n-DoF Joint Manipulator

Without trying to demonstrate any terms, the general expression for the actual dynamic
equation in joint space is:

τ = M(q)q̈ + Viner(q, q̇) + FfricV (q̇) + FfricC(q, sgn(q̇)) +G(q) (10.35)

The estimated dynamic equation in joint-space is:

τ̂ = M̂(q)q̈ + V̂iner(q, q̇) + F̂fricV (q̇) + F̂fricC(q, sgn(q̇)) + Ĝ(q) (10.36)

where:

M(q), the actual robot mass matrix (nxn).
Vcor(q, q̇), the actual robot coriolis force(nx1).
Vcen(q, q̇), the actual robot centrifugal force (nx1).
Viner(q, q̇) = Vcen(q, q̇) + Vcen(q, q̇), the actual robot coriolis and centrifugal forces (nx1).
FfricV (q̇), the actual robot dynamic friction (damping) (nx1).
FfricC(q, sgn(q̇)), the actual coulomb friction (nx1).
Ffric = FfricC(q, sgn(q̇)) + FfricV (q̇), the actual friction (nx1).
G(q), the actual gravity force (nx1).

10.3.2 Computed Torque Algorithm

As we have seen, the basic control level of a robot manipulator arm combines as many
PID controllers as there are joints in the robot arm. These all function independently of



212 Chapter 10. Control of robot manipulators

each other. In other words, the basic control of a 6 DoF robot arm is not treated as a 6-
input/6-output control problem, and we do not use multi-input/multi-output controller
design principles to design and implement this basic level of control.

In this type of control, the idea is to use a model of the dynamics of the controlled
joint system to calculate, in real time, what additional torque should be applied to the
joint system to remove or to minimise the effects of the changes in configuration and
object mass.

This kind of control can be understood as a kind of feedforward and feedback
compesated PID-control, since it attempts to correct for the effects of changing inertia at
the joints by generating an additional control torque.

The computed torque algorithm is illustrated in figure 10.11.

Notice that as this controller is not linear, we cannot use Laplace. Moreover, the
robotic system is treated as a coupled multi-DoF.

The equation for the error signal is given by8:

q̈err +Kdq̇err +Kpqerr = (10.37)

= M̂−1
[
τd +

(
Viner − V̂iner

)
+
(
FfricV − F̂fricV

)
+
(
FfricC − F̂fricC

)
+
(
G− Ĝ

)]

When properly estimated parametres (with hat) are equal to the real parametres,
yielding:

q̈err +Kdq̇err +Kpqerr = M̂−1τd (10.38)

When the perturbations are equal to zero:

q̈err +Kdq̇err +Kpqerr = 0 (10.39)

As the last equation is a set of n linear differential equations decoupled, we can use
classic control tools to tune the PD controller and to analyse the stability. Remember,
however, that this is only possible if two conditions are fulfilled: acurate estimation of
the robot’s dynamics and zero-perturbations.

When it comes to constant perturbations, we can add an integral part in the
algorithm, resulting the following equation:

q̈err +Kdq̇err +Kpqerr +KI

∫
qerrdt = M̂−1τd (10.40)

8Note that now the parametres are not escalar, but matricial and the signals are vectorial



Section 10.3. Computed Torque Algorithm 213

q̈
re

f
i

q

q̇

+


m
=

M

q
⋅

q


V
co

r
q

,q̇
i⋅

q̇
j


V
c
e
n

q

,q̇
i2


F
fr

ic
V

q

,q̇


F
fr

ic
C
q

,s
g

n
q̇


G

q



m

 M

q



d

+

K
d

K
p

q̇


co

m
p
=

 V
co

r

q

,q̇
i⋅

q̇
j

 V

c
e
n
q

,q̇
i2


 F
fr

ic
V

q

,q̇


 F
fr

ic
C

q

,s
g

n
q̇


 G
q



co

m
p

+
+

+

q

+

+





q
re

f

q̇
re

f

q̇
er

r
q

er
r

Figure 10.11: Computed-Torque control algorithm.



214 Chapter 10. Control of robot manipulators

Deriving both sides of the equation we have:
...
q err +Kdq̈err +Kp ˙qerr +KIqerr = 0 (10.41)

This equation is again a set of n linear differenctial equations decoupled.

10.4 Adaptive Position Control of Joint Systems

In this section, we will briefly look at three different strategies for implementing adaptive
control of joint systems in robot manipulator arms. The basic idea of adaptive control
is the real-time modification of the controller parametres that in classic control are
supposed to be constant. This parametre modification is applied to the instant system
behaviour.

In robotics, three types of adaptive control are traditionally used:

• Gain Scheduling,

• Model Reference Adaptive Control, and

• Dynamic Model-based Adaptive Control

10.4.1 Gain Scheduling

The main causes of variation of the values of robot inertia at the joint of a robot arm are
the changes in configuration of the manipulator arm and the mass of any object the arm
is carrying in its gripper.

As the positions of each of the joints is known from the joint position sensors, we can
always know the current configuration of the robot arm.

It may also be possible to know, perhaps by measurement, what the mass the robot
is carrying, especially if there is only a predefined set of objects or tools that the robot
has to carry.

By knowing the configuration and mass of any object being carried, it is theoretically
possible to define good values of the PID gain constants kpi, kIi andkdi.

Of course, if we defined values for these three gain constants for all posible
configurations and object masses, we would have an infinite number of sets of three
values.

In practice, it is often possible to divide the workspace of the robot into regions, or
sub-volumes, for which we can usefully define particular sets of good values for the PID
gains of each joint of the robot arm as a whole.

We can therefore generate a table, which defines the three gain values, kpi, kIi and
kdi, for each joint, for each work space region and for each object.



Section 10.4. Adaptive Position Control of Joint Systems 215

If it is important to have different PID gains for different kinds of movements (one set
for slow, accurate movements, and a different set for fast, less accurate movements), we
can extend the table to include this extra dimension.

Using such a table of sets of PID gains to adjust the controllers of each of the joints of
a robot arm is called Gain Scheduling. It is one of the oldest kinds of adaptive control
and was first developed and used in the aerodynamic control of airplanes, for which
flying slowly and close to the ground requires different control parametres than those
needed for flying fast and well above the ground.

The basic strategy for Gain Scheduling of joint ith is illustrated in figure 10.12. This
is repeated for each of the gain scheduled joint systems.

Sensor


ref i


mi


meas i

+



1

J
mi

s2
B

mi
s


mi

I
m i

k
 ik

p i
⋅

err i


err i

k
I i∫ 

err i
dt

k
d i

d 
err i

dt

gain decission table

load

q k
pe i

, k
I i

, k
d i

Figure 10.12: Gain Scheduling control algorithm.

If the table needed to achieve good overall performance of the robot arm is not too
big, then Gain Scheduling can be a very effective way of implementing adaptive control.

It is also relatively easy and cheap to implement. It is not dificult to maintain, modify,
or to change the table, as long as it is well-documented.

It does not need explicit knowledge of the kinematics or dynamics of the robot
arm being controlled: the PID gains values can be found experimentally, rather than
analytically.

Nonetheless, this control strategy has two particular disadvantages. Firstly, the
number of table entries increases exponentially according to the number of degrees
of freedom and how fine the discretization of the robot’s workspace is. Secondly, the
stability of the controller is not guaranteed if we use a interpolator for the gains.



216 Chapter 10. Control of robot manipulators

10.4.2 Model Reference Adaptive Control (MRAC)

In Model Reference Adaptive Control (MRAC), we use a mathematical model of the
joint system to define the ideal behaviour of the joint. The output of this model is then
compared, in real time, with the actual behaviour of the PID controlled joint. Then, the
difference between the (model-based) ideal behaviour and the actual behaviour is used
to adjust the three gain values of the PID controller.

The basic strategy for this kind of adaptive control, for a single-joint system controller,
is shown in figure 10.13.

Sensor


ref i 

mi


meas i

+



1

J
mi

s2
B

mi
s


mi

I
m i

k
 ik

p i
⋅

err i


err i

k
I i∫ 

err i
dt

k
d i

d 
err i

dt

Model Reference
+ 

Adaptation Law

Figure 10.13: Model Reference Adaptive Control.

This kind of adaptive control can be used to adjust the three gain values of the PID
controller continuously, rather than discontinuously over discrete work space regions,
as we saw in the Gain Scheduling strategy.

The frequency of the adaptive loop, the rate at which the three PID gains values are
changed, must, however, be at least an order of magnitude slower than the sampling
frequency of the basic negative feedback loop.

The effectiveness of this technique depends upon the quality of the model used to
define the ideal behaviour of the joint system. Developing and maintaining such a model
is not an easy task, and if it is not a reliable model, or it becomes inacurate, due to
changes in the real joint system, this kind of control can become worse than ordinary
(fixed gain) PID control.

Another difficulty with implementing this kind of adaptive control is in the implemen-



Section 10.5. Some Things to Think About 217

tation of the algorithm that decides how each of the three PID gains should be modified.
This clearly has to calculate appropriate changes to make, but it has to do this in real
time.

Until a few years ago, this typically required more computational power (faster
microprocessors) than was economically feasible. This is currently much easier to do,
thanks to faster microprocessors and digital signal processors (DSPs) and this kind of
MRAC has become more widely used.

10.4.3 Dynamic Model-based Adaptive Control (Computed Torque Adap-
tive Control)

The biggest challenge faced when implementing computed torque control is finding an
accurate model estimation of the robot’s dynamic. The adaptive version of computed
torque control is designed to improve, in real time, the offline model estimation.

This method of adaptive control is thus different from the two previous methods,
since it does not attempt to adjust the three PID gain values. Rather, it calculates an
additional control torque to compensate for the fact that the actual PID gains may not
be the best at any moment: it adapts the control torque, rather than the PID gains.

The basic algorithm for this type of adaptive control applied to the control of one joint
system is shown in figure 10.14.

10.5 Some Things to Think About

1. Why is it acceptable to achieve effective multi-input/multi-output control using
completely independent controllers and what are the restrictions that must be
accepted as a result of doing so?

2. Why is it dificult, if not impossible, to use any of the two conventional empirical
methods for adjusting the gain values of the PID controllers used in the basic level
control of a robot manipulator arm? What are these methods?

3. When would we need to consider using adaptive control techniques in the design
and implementation of the basic level of control of a robot manipulator arm and
why?



218 Chapter 10. Control of robot manipulators

q̈
re

f
i

q

q̇

+


m
=

M

q
⋅

q


V
co

r
q

,q̇
i⋅

q̇
j


V
c
e
n

q

,q̇
i2


F
fr

ic
V

q

,q̇


F
fr

ic
C
q

,s
g

n
q̇


G

q



m

 M

q



d

+

K
d

K
p

q̇


co

m
p
=

 V
co

r

q

,q̇
i⋅

q̇
j

 V

c
e
n
q

,q̇
i2


 F
fr

ic
V

q

,q̇


 F
fr

ic
C

q

,s
g

n
q̇


 G
q



co

m
p

+
+

+

q

+

+





q
re

f

q̇
re

f

q̇
er

r
q

er
r

A
da

pt
at

io
n 

L
aw

Figure 10.14: Computed-Torque Adaptive Control.



Part IV

Exercises

219





Exercises i

Kinematic structures and
programming

Exercise i.1

Figure i.1 shows a table with fur pieces on top, and nearby there are boxes to classify
and store them.

How many degrees of freedom are required to do this work? Which robot geometry
would be appropriate to do this? (There maybe be more than one solution).

Figure i.1: Fur classification.

221



222 Exercises i. Kinematic structures and programming

Exercise i.2

Scorbot ER VII robot (Figure i.2) is a versatile system for educational use. Due to its speed
and repeatability, it is highly suited for both stand-alone operations and integrated use in
automated work cell applications such as robotic welding, machine vision, CNC machine
tending and other FMS operations. (See figure i.3 to see robot dimension drawing).

Identify the kinematic chain on this SCORBOT ER VII robot.

Figure i.2: Photo of Scorbot Robot.

Figure i.3: Dimension plot of Scorbot Robot.



223

Exercise i.3

RT3300 (Seiko, inc) cylindrical robots have been geometrically designed to reach into and
out of constrained workspaces. Notice that this robot is a common example of the SCARA
geometry. The fast rotary motion of cylindrical robots is combined with the precision
linear motion of cartesian robots.

Identify the kinematic chain on this Seiko RT3300 robot.

Figure i.4: RT3300 Robot.



224 Exercises i. Kinematic structures and programming

Exercise i.4

Which geometry do these robots have?

Figure i.5: Which geometries?.

Exercise i.5

Develop and specify a program for the last 3 programming levels (robot level, object level,
and task level) of a robot manipulator with 6 DoF. This robot has to do the work specified
in figure i.6. Use your own programming pseudo languages for each program, and specify
all the information used. If the robot needs additional tools or external sensors, specify
them and briefly explain its necessity and use.

Task to do by the robot: Move blocks A and B and build a tower at the top of block
C. The blocks order should be C, A, B from the bottom. The program should check that
all blocks are properly aligned.

Figure i.6: Moving blocks.



225

Solutions

Solution to exercise i.1

To analyze how many degrees of freedom the robot should have to develop this task, a
good strategy is to imagine that the initial position of the robot’s end-effector is set one
meter above the table and then try to perform a generic task:

1. Go down to the table surface and pick up a piece of fur.

2. Go up and make horizonatal movements to go to the appropiate storing box.

3. Over the boxes, make vertical movements to reach the destination box.

4. Go down and put the piece of fur in the destination box.

As we can see, we have made movements around the 3 positioning axis of the
coordinate system, so we need 3 degrees of freedom to make this work. But do not
forget that we may need one additigonal DoF (a Roll) for the wrist to align the gripper’s
fingers properly to get and drop the fur pieces correctly.

Now, we have to choose which robot geometry best fits this type of work. Since
the pick-and-place movements are done in a flat surface, it’s convenient to have a
DoF aligned with the Z-axis. This requirement is fulfilled by Cartesian, Cylindrical
and SCARA robots. If the parts are very heavy, a Cartesian-Gantry robot is the best
choice. Otherwise, it’s more convenient to reduce the number of linear DoF (since the
maintenance of linear DoF is more expensive and there are more ferquent problems of
misalignment and flexion). So, the best robot could be a SCARA robot, with 3 DoF or 4
DoF, depending on how critical/crucial the orientation is with respect to grabbing nad
dropping parts.

If the choice is a Cartesian robot, it has 3 prismatic joints (PPP), which only allows
translational movements.

If the selection is a SCARA robot, then we find two rotational joints and a prismatic
joint (RRP), so we will use the translational movement to pick the pieces up and the
rotational movements to put the pieces in the corresponding boxes.

Solution to exercise i.2

First of all, we have to identify how many DoFs the robot has. We can see 5 rotational
joints marked on the picture. Rotational joints contained on a vertical plane are
represented by continuous lines and the other ones are represented by discontinuous
lines.

Now, after identifying which are the robot movements in the picture, we will have to
translate them into our nomenclature in order to simplify the system, and the result is
shown in figure i.8.



226 Exercises i. Kinematic structures and programming

Figure i.7: Scorbot’s DoFs.

Figure i.8: Scobot’s kinematic chain.



227

Solution to exercise i.3

We will have to proceed the same way we did in the previous exercise. First we need to
identify which movements the robot has by looking at the picture of the robot and the
dimension diagram. Upon a simple inspection of the photo of the robot, we may find the
search for the DoFs quite difficult. But notice that the drawings with dimensions show
several dimension lines that are not constant, but rather a range of dimensions. For
example, in the side view, the dimension that is on the top of the figure depicts the range
’842-1147’. This is a clue that there is a linear DoF whose strike varies from 842mm to
1147mm. We can find the last clues in the names of the axes: Z-Axis, T-Axis, R-Axis,
A-Axis. These names should recall the axes of a cylindrical robot (ẑ, R̂, θ̂).

As a conclusion, we can place the arrangement of the DoF as it is depicted in the
next figure.

Figure i.9: RT3300’s DoFs.

Now, after identifying which are the robot movements in the picture, we will have to
translate them into our nomenclature in order to simplify the system, and the result is:

Solution to exercise i.4

a) If we look at this picture we will notice that this robot is an anthropomorphic
robot: it has 3 rotational joints (RRR), and its appearance is similar to a human
arm. Moreover, this robot has a wrist with a PPR1 movement. So, this is an
anthropomorphic robot with 6 DoFs.

b) On this robot we can distinguish a translational and two rotational movements, so
we have a SCARA robot (PRR)2. It could also be a Spherical robot (because it also
has a RRP joint arragement), but the diagram does not concord with that kinematic

1Notice that PPR means Pitch-Pitch-Roll in wrist nomenclature (and not Prismatic-Prismatic-Rotational
as when we speak about the positioner kinematic chain).

2As we are speaking about the positioner chain, once again P means prismactic DoF and R means
rotational DoF



228 Exercises i. Kinematic structures and programming

Figure i.10: RT3300’s kinematic chain.

Figure i.11: Anthropomorphic Robot, sample 1.



229

structure. We also have another degree of freedom on the wrist: a roll movement.
Therefore, this is a SCARA robot with 4 DoFs.

Figure i.12: SCARA Robot.

c) This image, once again, represents an anthropomorphic robot, with 6 rotational
movements. The first 3 are the positioner and the last 3 constitute the wrist
(the typical roll-pitch-roll wrist), so this is an anthropomorphic robot with 6
DoFs. Furthermore, we can also say that this robot fits the structure of the
well-known PUMA robot (Programmable Universal Machine for Assembly), which
was pboxdeveloped in 1975. This robot geometry is, by far, the most popular in
industrial robotics.

Figure i.13: Anthropomorphic Robot, sample 2.



230 Exercises i. Kinematic structures and programming

Solution to exercise i.5

First of all, we have to define the points we want the robot to reach. These points are
depicted in the following figure.

Figure i.14: Programming example points.

Then, we have to remember that there are four robot programming levels. However,
we will only use three (we omit the lowest level, the joint-level): robot level, object level,
and task level. Let’s see an example of how it could be solved, because there may be
more than one solution due to the steps and language chosen by each person.



231

ROBOT LEVEL:

Go to point X0 with high velocity
Go to point X1 with high velocity
Open the gripper
Go to point XB0 with low velocity
Close the gripper
If the block has not been picked up by the gripper, error and end
If the block has been picked up by the gripper, continue
Go to point X1 with low velocity
Go to point X3 with high velocity
Go to point XB1 with low velocity
Open the gripper
Go to point X3 with low velocity
Go to point X2 with high velocity
Go to point XA0 with low velocity
Close the gripper
If the block has not been picked up by the gripper, error and end
If the block has been picked up by the gripper, continue
Go to point X2 with low velocity
Go to point X6 with high velocity
Go to point X7 with high velocity
Go to point X4 with high velocity
Go to point XA1 with low velocity
Open the gripper
Go to point X4 with low velocity
Go to point X7 with high velocity
Go to point X6 with high velocity
Go to point X3 with high velocity
Go to point XB1 with low velocity
Close the gripper
If the block has not been picked up by the gripper, error and end
If the block has been picked up by the gripper, continue
Go to point X3 with low velocity
Go to point X6 with high velocity
Go to point X7 with high velocity
Go to point X5 with high velocity
Go to point XB2 with low velocity
Open the gripper
Go to point X5 with low velocity
End



232 Exercises i. Kinematic structures and programming

OBJECT LEVEL:

Pick up block-B
Put block-B at XB1
Pick up block-A
Put block-A at XA1
Pick up block-B
Put block-B at XB2
Align block-A with block-C
Align block-B with block-A
End

TASK LEVEL:

Stack a tower in order block-C, block-A, block-B without moving block-C
and checking that the blocks are correctly aligned.



Exercises ii

Transformations in space
(homogeneous transformation)

Exercise ii.1

Obtain the rotation matrix after doing the following operations to go from the reference
system {0} (fixed) to the system {e} (mobile):

1. Rotate an angle of 90o around ẑ0

2. Rotate an angle of 45o around x̂e

3. Rotate an angle of 30o around ẑe

Exercise ii.2

Obtain the rotation matrix after doing the following operations to go from the reference
system {0} (fixed) to the system {e} (mobile):

1. Rotate an angle of 90o around ẑ0

2. Rotate an angle of 30o around ẑ0

3. Rotate an angle of 45o around x̂e

Exercise ii.3

Obtain the rotation matrix after doing the following operations to go from the reference
system {0} (fixed) to the system {e} (mobile):

1. Rotate an angle of 90o around ẑ0

2. Rotate an angle of 45o around ŷ0

3. Rotate an angle of 30o around ẑe

233



234 Exercises ii. Transformations in space (homogeneous transformation)

Exercise ii.4

Obtain the rotation matrix after doing the following operations to go from the reference
system {0} (fixed) to the system {e} (mobile):

1. Rotate an angle of 90o around x̂0

2. Move 5 units along x̂0

3. Rotate an angle of 45o around ŷ0

We know that the homogeneous coordinates of a vector P are P = (1, 1, 1, 1)T

expressed on the {e} coordinate system.

Obtain the coordinates of the P vector expressed on the {0} system.

Exercise ii.5

Obtain the rotation matrix after doing the following operations to go from the reference
system {0} (fixed) to the system {e} (mobile):

1. Rotate an angle of 90o around ẑ0

2. Move 3 units along x̂0

3. Rotate an angle of 90o around ŷe

4. Rotate an angle of 90o around x̂0

5. Move 2 units along ẑe

Obtain the homogeneous transformation matrix that relates both reference systems.
Is there any other sequence of movements simpler than this one?

Exercise ii.6

We have a robot equipped with a video camera for artificial vision applications. For the
camera we define a coordinate system {0} whose origin is set at the focus of the camera
(centre of the shutter) and its ŷ axis is set along the vision axis (direction from the
camera to the target). We also add another coordinate system {e} whose origin is set at
the end effector. Initially both systems coincide, except that the end effector is 2 units
away from the focus of the camera, measured along ŷ axis (figure ii.1). From this initial
situation, the coordinate system attached to the end effector undergoes the following
transformations:

1. It moves 1 unit along ẑ0



235

2. It rotates an angle of 45o around x̂0

3. It movers 1 unit along ŷe

xe

ye

z
e

y
0

z
0

2 units

video camera

Figure ii.1: Robot with camera: initial configuration.

If we know that the range of vision of the camera is 60 degrees, is the end effector
within or without this range after doing the sequence of movements?

Exercise ii.7

The following relative descriptions between the {U}, {A}, {B} and {C} systems are
known:

UTA =


0.866 −0.5 0 11
0.5 0.866 0 −1
0 0 1 8
0 0 0 1



BTA =


1 0 0 0
0 0.866 −0.5 10
0 0.5 0.866 −20
0 0 0 1



CTU =


0.866 −0.5 0 −3
0.433 0.75 −0.5 −3
0.25 0.433 0.866 3

0 0 0 1


Draw a diagram that shows qualitatively the relative arrangement of the four systems

of reference. Obtain BTC and interpret the result over the diagrams.



236 Exercises ii. Transformations in space (homogeneous transformation)

Exercise ii.8

Obtain the matrix that represents the rotation of an angle of 45o around an axis set by
the vector u = [1 1 2]T . Obtain equivalent roll, pitch and yaw angles around the main axis
of the reference system (fixed) that orient the mobile system in the same maner as the
rotation around û axis.

Exercise ii.9

For small rotations, the approximations sin θ ≈ θ, cos θ ≈ 1 and θ2 ≈ 0 are valid. Obtain
the matrix that describes a small rotation over a general axis û. Demonstrate that from
here on, that two infinitesimal rotations are commutative.



237

Solutions

Solution to exercise ii.1

The first thing we have to do to solve this exercise is to calculate the transformation
matrices following the instructions according to the theory:

1. Rotate an angle of 90o around ẑ0

T1 = Rot (ẑ0, 90o) =


cos 90o − sin 90o 0 0
sin 90o cos 90o 0 0

0 0 1 0
0 0 0 1


2. Rotate an angle of 45o around x̂e

T2 = Rot (x̂e, 45o) =


1 0 0 0
0 cos 45o − sin 45o 0
0 sin 45o cos 45o 0
0 0 0 1


3. Rotate an angle of 30o around ẑe

T3 = Rot (ẑe, 30o) =


cos 30o − sin 30o 0 0
sin 30o cos 30o 0 0

0 0 1 0
0 0 0 1


After doing this, we will have to multiply the three matrices to obtain the
transformation matrix. We put the matrix of the first movement in the middle of
the equation, and then let’s see what we have. The next instruction is related to
the {e} system so, as we saw in the lesson, we will have to put this matrix after the
matrix related to first movement.

The third movement is related to the {e} system again, so we will have to post-
multiplicy the term again. The result then is:

0Te = T1 · T2 · T3 =


−0.3536 −0.6124 0.7071 0

0.866 −0.5 0 0
0.3536 0.6124 0.7071 0

0 0 0 1



Solution to exercise ii.2

The first thing we have to do to solve this exercise is to calculate the transformation
matrices following the instructions according to the theory:



238 Exercises ii. Transformations in space (homogeneous transformation)

(a) Rotate an angle of 90o around ẑ0

T1 = Rot (ẑ0, 90o) =


cos 90o − sin 90o 0 0
sin 90o cos 90o 0 0

0 0 1 0
0 0 0 1


(b) Rotate an angle of 30o around ẑ0

T2 = Rot (ẑ0, 30o) =


cos 30o − sin 30o 0 0
sin 30o cos 30o 0 0

0 0 1 0
0 0 0 1


(c) Rotate an angle of 45o around x̂e

T3 = Rot (x̂e, 45o) =


1 0 0 0
0 cos 45o − sin 45o 0
0 sin 45o cos 45o 0
0 0 0 1


After doing this, we will have to multiply the three matrices to obtain the
transformation matrix. We put the matrix of the first movement in the middle of
the equation, and then let’s see what we have. The next instruction is related to the
{0} system so, as we saw in the lesson, we will have to put this matrix before the
matrix related to first movement.

The third movement is related to the {e} system again, so we will have to post-
multiplicate the term. The result then is:

0Te = T2 · T1 · T3 =


−0.5

√
6

4

√
6

4 0√
3

2 −
√

2
4

√
2

4 0
0

√
2

2

√
2

2 0
0 0 0 1



Solution to exercise ii.3

The first thing we have to do to solve this exercise is to calculate the transformation
matrices following the instructions according to the theory:

(a) Rotate an angle of 90o around ẑ0

T1 = Rot (ẑ0, 90o) =


cos 90o − sin 90o 0 0
sin 90o cos 90o 0 0

0 0 1 0
0 0 0 1


(b) Rotate an angle of 45o around ŷ0



239

T2 = Rot (ŷ0, 45o) =


cos 45o 0 sin 45o 0

0 1 0 0
− sin 45o 0 cos 45o 0

0 0 0 1


(c) Rotate an angle of 30o around ẑe

T3 = Rot (ẑe, 30o) =


cos 30o − sin 30o 0 0
sin 30o cos 30o 0 0

0 0 1 0
0 0 0 1


After doing this, we will have to multiply the three matrices to obtain the
transformation matrix. We put the matrix of the first movement in the middle
of the equation, and then let’s see what we have. The next instruction is related
to the {0} system so, as we saw in the lesson, we will have to put this matrix
before the matrix related to first movement.
The third movement is related to the {e} system again, so we will have to post-
multiply the term. The result then is:

0Te = T2 · T1 · T3 =


0.8836 −0.51 0 0
0.5102 0.8836 0 0

0 0 1.0204 0
0 0 0 1



Solution to exercise ii.4

The first thing we have to do to solve this exercise is to calculate the transformation
matrices following the instructions according to the theory:

(a) Rotate an angle of 90o around x̂0

T1 = Rot (x̂0, 90o) =


1 0 0 0
0 cos 90o − sin 90o 0
0 sin 90o cos 90o 0
0 0 0 1


(b) Move 5 units along x̂0

T2 = Trasl (x̂0, 5) =


1 0 0 5
0 1 0 0
0 0 1 0
0 0 0 1


(c) Rotate an angle of 45o around ŷ0

T3 = Rot (ŷ0, 45o) =


cos 45o 0 sin 45o 0

0 1 0 0
− sin 45o 0 cos 45o 0

0 0 0 1





240 Exercises ii. Transformations in space (homogeneous transformation)

After doing this, we will have to multiply the three matrices to obtain the
transformation matrix. We put the matrix of the first movement in the middle of
the equation, and then let’s see what we have. The next instruction is related to the
{0} system so, as we saw in the lesson, we will have to put this matrix before the
matrix related to first movement.

The third movement is related to the {0} system again, so we will have to pre-
multiply the term again. The result then is:

0Te = T3 · T2 · T1 =


0.7071 0.7071 0 3.5355

0 0 −1 0
−0.7071 0.7071 0 −3.5355

0 0 0 1



0p = 0Te
ep = 0Te ·


1
1
1
1

 =


6.414

0
1
1



Solution to exercise ii.5

The first thing we have to do to solve this exercise is to calculate the transformation
matrices following the instructions according to the theory:

(a) Rotate an angle of 90o around ẑ0

T1 = Rot (ẑ0, 90o) =


cos 90o − sin 90o 0 0
sin 90o cos 90o 0 0

0 0 1 0
0 0 0 1


4. Move 3 units along x̂0

T2 = Trasl (x̂0, 3) =


1 0 0 3
0 1 0 0
0 0 1 0
0 0 0 1


5. Rotate an angle of 90o around ŷe

T3 = Rot (ŷe, 90o) =


cos 90o 0 sin 90o 0

0 1 0 0
− sin 90o 0 cos 90o 0

0 0 0 1


6. Rotate an angle of 90o around x̂0



241

T4 = Rot (x̂0, 90o) =


1 0 0 0
0 cos 90o − sin 90o 0
0 sin 90o cos 90o 0
0 0 0 1


7. Move 2 units along ẑe

T5 = Trasl (ẑe, 2) =


1 0 0 0
0 1 0 0
0 0 1 2
0 0 0 1



The transformation matrix is:

0Te = T4 · T2 · T1 · T3 · T5 =


0 −1 0 3
1 0 0 0
0 0 1 2
0 0 0 1



Solution to exercise ii.6

In this exercise, we have to note that we have a first transformation matrix before doing
any other movement because the text says that the end effector is 2 units away from the
focus of the camera, measured along the ŷ axis, so the first matrix in this case will be:

T1 = Transl (ŷ0, 2) =


1 0 0 0
0 1 0 2
0 0 1 0
0 0 0 1



1. Move 1 unit along ẑ0

T2 = Transl (ẑ0, 1) =


1 0 0 0
0 1 0 0
0 0 1 1
0 0 0 1


2. Rotate an angle of 45o around x̂0

T3 = Rot (x̂0, 45o) =


1 0 0 0
0 cos 45o − sin 45o 0
0 sin 45o cos 45o 0
0 0 0 1





242 Exercises ii. Transformations in space (homogeneous transformation)

3. Move 1 unit along ŷe

T4 = Trasl (ŷe, 1) =


1 0 0 0
0 1 0 1
0 0 1 0
0 0 0 1



The transformation matrix is:

0Te = T3 · T2 · T1 · T4 =


1 0 0 0
0 0.7071 −0.7071 1.4142
0 0.7071 0.7071 2.8284
0 0 0 1


To calculate the angle we will use the dot product:

‖0Pe‖ · ‖ŷ0‖ · cosα = 0Pex · ŷ0x + 0Pey · ŷ0y + 0Pez · ŷ0z

by substituting the numerical values obtained above, it yields:
√

1.41422 + 2.82842 ·
√

1 + 0 + 0 · cosα = 0 · 0 + 1.4142 · 1 + 2.8284 · 0

and solving for α we have: cosα = 63.435o > 60o

The camera cannot see the robot’s end-point.

However, only in this case does the method fail. As we have only done two translations
before rotating around the x̂ axis, the x̂0 axis is parallel to the x̂e axis. So, the rotations
we have after this transformation in the equation are done around the mobile axis. What
we have to do is to consider directly the equation of the homogeneous transformation
matrix that involves the first three basic transformations:

0T3 =
[

0R1
0P1

0 1

]
=


1 0 0 0
0 cos 45o − sin 45o 2
0 sin 45o cos 45o 1
0 0 0 1


And now we can obtain the total transformation matrix by adding just the last basic

transformation:

0Te = 0T3 · T4 =


1 0 0 0
0 0.7071 −0.7071 2.7071
0 0.7071 0.7071 1.7071
0 0 0 1


and redo the dot product.



243

Solution to exercise ii.7

To obtain BTC we will proceed applying the properties of homogeneous transformation
matrices:

BTC = BTA · ATU · UTC

Notice that homogeneous transformation matrices are not orthonormal, they cannot
be inverted by transposing it. Then we invert this matrix by using the homogeneous
transformation matrix inversion rule.

ATU =
(
T
A

)−1 =


0.866 0.5 0 −9.026
−0.5 0.866 0 6.3662

0 0 1 −8
0 0 0 1



UTC =
(
CTU

)−1 =


0.866 0.433 0.25 3.1471
−0.5 0.75 0.433 −0.55

0 −0.5 0.866 −4.098
0 0 0 1


The solution is:

BTC = BTA · ATU · UTC =


0.5 0.75 0.433 −6.5752
−0.75 0.625 −0.2165 19.7876
−0.433 −0.2165 0.8749 −28.3183

0 0 0 1



Solution to exercise ii.8

To solve this exercise we will have to use the formulation of the rotation matrix according
to the convention “rotation around a single axis”. Let’s remember its expression:

aRb =

− (u2
z + u2

y

)
A+ 1 uxuyA− uzB uxuzA+ uyB

uxuyA+ uzB −
(
u2
x + u2

z

)
A+ 1 uyuzA− uxB

uxuzA− uyB uyuzA+ uxB −
(
u2
x + u2

y

)
A+ 1


where: A = 1− cosψ and B = sinψ

Now we have to identify the terms given in the text of the exercise with these
parameters. The angle is of 45o → ψ = 45o and the vector is u = [1 1 2]T . However, if
we take a look we realize that this is not a normal vector. So, the first thing to do is to
normalize it:



244 Exercises ii. Transformations in space (homogeneous transformation)

û =
[

1√
6

1√
6

2√
6

]T
Now, we can apply the equations:

A = 1− cosψ = 1− cos 45o = 0.2929 and B = sinψ = sin 45o = 0.7071

aRb =


0.7559 −0.5285 0.3863 0
0.6262 0.7559 −0.191 0
−0.191 −0.3863 0.9024 0

0 0 0 1


To obtain the roll, pitch and yaw angles we will equalize terms between this

matrix and the terms of the version of the rotation matrix based on the “Euler angles
convention”:

− sinφ2 = −0.191→ φ2 = 11.014o → Pitch,

cosφy · sinφx = 0.3863→ φx = 23.176o → Roll and

cosφz · cosφy = 0.7559→ φz = 39.6365o → Yaw

Solution to exercise ii.9

To solve this exercise we will proceed the same way as in the previous exercise:

aRb =

− (u2
z + u2

y

)
A+ 1 uxuyA− uzB uxuzA+ uyB

uxuyA+ uzB −
(
u2
x + u2

z

)
A+ 1 uyuzA− uxB

uxuzA− uyB uyuzA+ uxB −
(
u2
x + u2

y

)
A+ 1


But now, we have to consider small rotation angles. In that case we can substitute

sin θ ≈ θ, cos θ ≈ 1 and θ2 ≈ 0 (small motion hypothesis):

A = 1− cosψ = 1− 1 = 0 and B = sinψ = ψ

substituting in the rotation matrix, we have:

aRb =

 1 −uzψ uyψ
uzψ 1 −uxψ
−uyψ uxψ 1


The commutative property of this matrix can be easily checked by multiplying two

matrices for different angles.



Exercises iii

Forward Kinematics

Exercise iii.1

In the robotized environment shown in figure iii.1, the location of the gripper WTT is not
known precisely. By usiing pressure sensors and using force control, the robot tries to
insert the piece 1 into the hole 2. Finally the robot introduces the tool into the hole, so
{T} and {G} are coincident, and at that moment the robot position BTW is determined
by reading the sensors of the joint angles and calculating the forward kinematics.

Figure iii.1: Peg-in-hole task.

If we suppose that BTS and STG are known, obtain the expression to calculate the
location of the tool WTT .

1located by the reference system {T}
2which is located by the reference system {G} that is to say STG

245



246 Exercises iii. Forward Kinematics

Exercise iii.2

For the 2-element manipulator shown in figure iii.2 the transformation matrices 0T1 and
1T2 have been calculated.

Figure iii.2: 2-DoF manipulator.

Assuming the reference systems shown in figure iii.2 3, the product of these
transformations is:

cos θ1 · cos θ2 − cos θ1 · sin θ2 sin θ1 L1 · cos θ1

sin θ1 · cos θ2 − sin θ1 · sin θ2 − cos θ1 L1 · sin θ1

sin θ2 cos θ2 0 0
0 0 0 1


Find an expression for the vector 0Te that locates the end effector with respect to the

reference system {0}. (The end effector will be situated at the end of the second element
of the manipulator).

Exercise iii.3

The robot shown in figure iii.3 is a 3 DoF manipulator with three rotational joints and
two axes that intersect and two axes which are parallel.

Obtain four different and equivalent representations of the Denavit and Hartenberg
parameters.

Exercise iii.4

If we know the Denavit and Hartenberg table of a certain robot (iii.1). Draw the robot.

3Note that reference system {0} is coincident with reference system {1} when the first variable θ1 is 0



247

Figure iii.3: 3-DoF manipulator with multiple D-H solutions.

DH par.
link i−1→
link i

ai−1 αi−1 di θi

0→ 1 0 0 L1 θ1

1→ 2 0 π
2 d2 0

2→ 3 0 0 L2 θ3

Table iii.1: D-H table of an unknown robot.

Exercise iii.5

Figure iii.4 represents a PUMA robot. If this robot has all its joint angles equal to zero
(θi = 0, ∀i = 1, 2...6), obtain an expression related to the characteristic parameters for the
distance between the reference systems {0} and {6}.

Exercise iii.6

Solve the forward kinematics problem for the 3R non-planar robot shown in figure iii.5.
Obtain the characteristic parameters and the transformation matrix BTW .

Exercise iii.7

Draw the reference systems for the joints of the planar robot RPR (the second joint is
prismatic) shown in figure iii.6. Obtain the geometric characteristic parameters for this
robot. Calculate the transformation matrices 0T1, 1T2, and 2T3 by using θ1, d2 and θ3 and
other necessary parameters.

Exercise iii.8

Draw the reference systems for the 3 joints of the RRP manipulator shown in figure iii.7.
Obtain the D-H characteristic parameters for this robot and the three transformation



248 Exercises iii. Forward Kinematics

Figure iii.4: PUMA manipulator.

Figure iii.5: 3R non-planar robot.

Figure iii.6: Planar robot RPR.



249

matrices 0T1, 1T2, and 2T3 that define the forward kinematics of the manipulator.

Figure iii.7: RRP manipulator.

Exercise iii.9

Draw the reference systems for the 3 joints of the RRR manipulator shown in figure
iii.8. Obtain the geometric characteristic parameters for this robot and the three
transformation matrices 0T1, 1T2, and 2T3 that define the forward kinematics of the
manipulator.

Figure iii.8: RRR manipulator.



250 Exercises iii. Forward Kinematics

Exercise iii.10

Solve the forward kinematic problem of the SCARA manipulator shown in figure iii.9:

Figure iii.9: SCARA manipulator.

Exercise iii.11

Solve the forward kinematic problem of a cilindrical robot with 4DoF in figure iii.10.

Figure iii.10: Cylindrical robot.

Exercise iii.12

Draw the reference systems for the 6 joints of the 6R industrial robot shown (MALIBA
manipulator) in figure iii.11. Obtain the D-H characteristic parameters for this robot
and the six transformation matrices i−1Ti that define the forward kinematics of the
manipulator.



251

Figure iii.11: MALIBA manipulator.

Exercise iii.13

Solve the forward kinematics of the SCORBOT robot with 5 DoF shown in figure iii.12
using the Denavit and Hartenberg method. Obtain its characteristic parameters and the
transformation matrices i−1Ti, including the one related to the end effector of the robot.

Exercise iii.14

Solve the forward kinematics of the RT3300 robot of 4 DoF shown in figure iii.13
using the Denavit and Hartenberg method. Obtain its characteristic parameters and
the transformation matrices (0T1, 1T2, 2T3 and 3T4).



252 Exercises iii. Forward Kinematics

Figure iii.12: SCORBOT robot.



253

Figure iii.13: RT3300 robot.



254 Exercises iii. Forward Kinematics

Solutions

Solution to exercise iii.1

There are two ways to go from {B} to {G}:

• 1st way: BTW · WTT

• 2nd way: BTS · STG · GTT

equating between both expressions, it yields:

BTW · WTT = BTS · STG · GTT

When {G} and {T} are coincident, we can say that GTT is the identity matrix. This
situation happens when the tool is in the hole. Thus, we have:

WTT = BT−1
W · BTS · STG

where: BTW has been measured by the sensors, and BTS and STG are known, so we can
calculate WTT .

Solution to exercise iii.2

The first issue we have to deal with is to set the reference system for the end effector
(figure iii.14) and make the Denavit and Hartenberg table for this joint:

eŶ
eX̂

L 2

Figure iii.14: D-H coordenate systems for a 2-DoF manipulator.



255

DH par.
link i−1→
link i

ai−1 αi−1 di θi

2→ e 0 0 L2 0

You can get the complete solution with Matlabr using the following coding:

syms c1 s1 c2 s2 l1 l2

T02=[c1*c2 -c1*s2 s1 l1*c1;...
s1*c2 -s1*s2 -c1 l1*s1;...
s2 c2 0 0;...
0 0 0 1]

T2e= [l2; 0; 0; 1]

T=T02*T2e

Solution to exercise iii.3

After setting the different configurations of the reference systems we obtain from each
figure (figures iii.15 and iii.16) the corresponding four Denavit-Hartenberg tables.

Figure iii.15: 3-DoF manipulator 1st and 2nd solutions.

First configuration:

DH par.
link i−1→
link i

ai−1 αi−1 di θi

1→ 2 0 −90o L1 −90o

2→ 3 L2 0 0 0

Second configuration:



256 Exercises iii. Forward Kinematics

DH par.
link i−1→
link i

ai−1 αi−1 di θi

1→ 2 0 90o −L1 90o

2→ 3 L2 0 0 0

Figure iii.16: 3-DoF manipulator 3rd and 4th solutions.

Third configuration:

DH par.
link i−1→
link i

ai−1 αi−1 di θi

1→ 2 0 90o L1 90o

2→ 3 L2 0 0 0

Fourth configuration:

DH par.
link i−1→
link i

ai−1 αi−1 di θi

1→ 2 0 −90o −L1 −90o

2→ 3 L2 0 0 0

Solution to exercise iii.4

The robot that gives that Denavit and Hartenberg table should be like it is shown in
figure iii.17.



257

L 1

L2

3ẑ3x̂
d2

Pe

0ẑ

0x̂

1̂x

1̂z

2ẑ2x̂

θ1

θ3

Figure iii.17: Solution to an unknown robot.

Solution to exercise iii.5

If we develop the PUMA robot of the figure and do the Denavit and Hartenberg table we
obtain figure iii.18.

Figure iii.18: PUMA DoFs and D-H coordinate systems.

Denavit-Hartenberg table:



258 Exercises iii. Forward Kinematics

DH par.
link i−1→
link i

ai−1 αi−1 di θi

0→ 1 0 −90o 0 90o

1→ 2 a2 0 d2 0
2→ 3 a3 90o 0 90o

3→ 4 0 −90o d4 0
4→ 5 0 90o 0 0
5→ e 0 0 d6 0

So, the distance between the reference systems {0} and {6} is:

px = a2 + a3

py = d3

pz = a1 − d4

Solution to exercise iii.6

To solve this exercise we first have to draw the robot, after that we will have to set the
reference systems (figure iii.19), do the Denavit and Hartenberg table and then obtain
the transformation matrices.

L1

3ẑ

3x̂

0ẑ

0x̂

1̂x

1̂z

2ẑ
2x̂

L2

L
3eẑ

ex̂

Figure iii.19: D-H coordenate systems for a 3R non-planar robot.

Denavit-Hartenberg table:



259

DH par.
link i−1→
link i

ai−1 αi−1 di θi

0→ 1 0 0 0 θ1

1→ 2 L1 90o 0 θ2

2→ 3 L2 0 0 θ3

3→ e L3 0 0 0

You can get the complete solution with Matlabr using the following coding:

syms theta_1 theta_2 theta_3 L_1 L_2
syms thetadot_1 thetadot_2 thetadot_3

T01=[cos(theta_1) -sin(theta_1) 0 0;...
sin(theta_1) cos(theta_1) 0 0;...
0 0 1 0;...
0 0 0 1]

T12=[1 0 0 L_1;...
0 0 -1 0;...
0 1 0 0;...
0 0 0 1]*...
[cos(theta_2) -sin(theta_2) 0 0;...
sin(theta_2) cos(theta_2) 0 0;...
0 0 1 0;...
0 0 0 1]

T23=[cos(theta_3) -sin(theta_3) 0 L_2;...
sin(theta_3) cos(theta_3) 0 0;...
0 0 1 0;...
0 0 0 1]

T03=simple(T01*T12*T23)

Solution to exercise iii.7

To solve this exercise we first have to draw the robot, after that we will have to set the
reference systems (figure iii.20), do the Denavit and Hartenberg table and then obtain
the transformation matrices.

Denavit-Hartenberg table:



260 Exercises iii. Forward Kinematics

L 1

1̂x

1̂z 0ẑ

0x̂

2ẑ
2x̂

3ẑ

3x̂

θ3

Figure iii.20: D-H coordinate systems for a planar robot RPR.

DH par.
link i−1→
link i

ai−1 αi−1 di θi

0→ 1 0 0 0 θ1

1→ 2 L1 90o d2 0
2→ 3 0 −90o 0 θ3

You can get the complete solution with Matlabr using the following coding:

syms theta_1 d_2 theta_3 L_1 L_3
syms thetadot_1 ddot_2 thetadot_3

T01=[cos(theta_1) -sin(theta_1) 0 0;...
sin(theta_1) cos(theta_1) 0 0;...
0 0 1 0;...
0 0 0 1]

T12=[1 0 0 L_1;...
0 0 -1 0;...
0 1 0 0;...
0 0 0 1]*...
[-1 0 0 0;...
0 -1 0 0;...
0 0 1 d_2;...
0 0 0 1]

T23=[1 0 0 0;...
0 0 -1 0;...
0 1 0 0;...
0 0 0 1]...

*[cos(theta_3) -sin(theta_3) 0 0;...
sin(theta_3) cos(theta_3) 0 0;...
0 0 1 0;...
0 0 0 1]



261

T3e=[1 0 0 L_3;...
0 1 0 0;...
0 0 1 0;...
0 0 0 1]

T0e=simple(T01*T12*T23*T3e)

Solution to exercise iii.8

To solve this exercise we first have to draw the robot, after that we will have to set the
reference systems (figure iii.21), do the Denavit and Hartenberg table and then obtain
the transformation matrices.

L 1

3ẑ
3x̂

d3

0ẑ

0x̂

1̂x

1̂z

2ẑ
2x̂

L2

Figure iii.21: D-H coordinate systems for a RRP manipulator.

Denavit-Hartenberg table:

DH par.
link i−1→
link i

ai−1 αi−1 di θi

0→ 1 0 0 L1 θ1

1→ 2 0 90o 0 θ2

2→ 3 L2 90o d3 0

You can get the complete solution with Matlabr using the following coding:



262 Exercises iii. Forward Kinematics

syms theta_1 theta_2 d_3 L_1 L_2
syms thetadot_1 thetadot_2 ddot_3

T01=[cos(theta_1) -sin(theta_1) 0 0;...
sin(theta_1) cos(theta_1) 0 0;...
0 0 1 L_1;...
0 0 0 1]

T12=[cos(theta_2) -sin(theta_2) 0 0;...
0 0 -1 0;...
sin(theta_2) cos(theta_2) 0 0;...
0 0 0 1]

T23=[1 0 0 L_2;...
0 0 -1 -d3;...
0 1 0 0;...
0 0 0 1]

T03=simple(T01*T12*T23)

Solution to exercise iii.9

To solve this exercise we first have to draw the robot, after that we will have to set the
reference systems (figure iii.22), do the Denavit and Hartenberg table and then obtain
the transformation matrices.

L 1

3ẑ
3x̂

0ẑ

0x̂

1̂x

1̂z

2ẑ
2x̂

L2

Figure iii.22: D-H coordinate systems for a RRR manipulator.

Denavit-Hartenberg table:



263

DH par.
link i−1→
link i

ai−1 αi−1 di θi

0→ 1 0 0 L1 θ1

1→ 2 0 90o 0 θ2

2→ 3 L2 0 0 θ3

You can get the complete solution with Matlabr using the following coding:

syms theta_1 theta_2 theta_3 L_1 L_2
syms thetadot_1 thetadot_2 thetadot_3

T01=[cos(theta_1) -sin(theta_1) 0 0;...
sin(theta_1) cos(theta_1) 0 0;...
0 0 1 L_1;...
0 0 0 1]

T12=[cos(theta_2) -sin(theta_2) 0 0;...
0 0 -1 0;...
sin(theta_2) cos(theta_2) 0 0;...
0 0 0 1]

T23=[cos(theta_3) -sin(theta_3) 0 L_2;...
sin(theta_3) cos(theta_3) 0 0;...
0 0 1 0;...
0 0 0 1]

T03=simple(T01*T12*T23)

Solution to exercise iii.10

To solve this exercise we first have to draw the robot, after that we will have to set the
reference systems (figure iii.23), do the Denavit and Hartenberg table and then obtain
the transformation matrices.

Denavit-Hartenberg table:

DH par.
link i−1→
link i

ai−1 αi−1 di θi

0→ 1 0 0 L0 θ1

1→ 2 L1 0 0 θ2

2→ 3 L2 0 −d3 0
3→ 4 0 0 0 θ4

4→ e 0 0 L4 0



264 Exercises iii. Forward Kinematics

L 0

0ẑ

0x̂

1̂z

1x̂

2ẑ

2x̂
3ẑ

3x̂

4ẑ

4x̂
eẑ

ex̂

L 4

L1 L2 d 3
Figure iii.23: D-H coordinate systems for a SCARA manipulator.

You can get the complete solution with Matlabr using the following coding:

syms theta_1 theta_2 d_3 theta_4
syms L_0 L_1 L_2 L_3 L_4
syms thetadot_1 thetadot_2
syms ddot_3 thetadot_4

T01=[cos(theta_1) -sin(theta_1) 0 0;...
sin(theta_1) cos(theta_1) 0 0;...
0 1 L_0;0 0 0 1]

T12=[cos(theta_2) -sin(theta_2) 0 L_1;...
sin(theta_2) cos(theta_2) 0 0;...
0 0 1 0;...
0 0 0 1]

T23=[1 0 0 L_2;...
0 1 0 0;...
0 0 1 -d_3;...
0 0 0 1]

T34=[cos(theta_4) -sin(theta_4) 0 0;...
sin(theta_4) cos(theta_4) 0 0;...
0 0 1 0;...



265

0 0 0 1]

T4e=[1 0 0 0;...
0 1 0 0;...
0 0 1 L_4;...
0 0 0 1]

T04=simple(T01*T12*T23*T34*T4e)

Solution to exercise iii.11

To solve this exercise we first have to draw the robot, after that we will have to set the
reference systems (figure iii.24), do the Denavit and Hartenberg table and then obtain
the transformation matrices.

L 1

3ẑ
3x̂

d2

0ẑ

0x̂

1̂x

1̂z

2ẑ

2x̂

d3
L3=0

4ẑ4x̂

Figure iii.24: D-H coordinate systems for a cylindrical manipulator.

Denavit-Hartenberg table:

DH par.
link i−1→
link i

ai−1 αi−1 di θi

0→ 1 0 0 0 θ1

1→ 2 0 0 d2 90o

2→ 3 0 90o d3 0
3→ 4 0 0 0 θ4

You can get the complete solution with Matlabr using the following coding:

syms theta_1 theta_4 d_2 d_3



266 Exercises iii. Forward Kinematics

syms thetadot_1 thetadot_4
syms ddot_2 ddot_3

T01=[cos(theta_1) -sin(theta_1) 0 0;...
sin(theta_1) cos(theta_1) 0 0;...
0 0 1 0;...
0 0 0 1]

T12=[1 0 0 0;...
0 0 -1 0;...
0 1 0 d_2;...
0 0 0 1]

T23=[1 0 0 0;...
0 0 -1 -d_3;...
0 1 0 0;...
0 0 0 1]

T34=[cos(theta_4) -sin(theta_4) 0 0;...
sin(theta_4) cos(theta_4) 0 0;...
0 0 1 0;...
0 0 0 1]

T04=simple(T01*T12*T23*T34)

Solution to exercise iii.12

To solve this exercise we first have to draw the robot, after that we will have to set the
reference systems (figure iii.25), do the Denavit and Hartenberg table and then obtain
the transformation matrices.

Denavit-Hartenberg table:

DH par.
link i−1→
link i

ai−1 αi−1 di θi

0→ 1 0 0 L0 + L1 θ1

1→ 2 0 90o 0 θ2

2→ 3 L2 0 0 θ3

3→ 4 0 90o L3 + L4 θ4

4→ 5 0 90o 0 θ5

5→ 6 0 90o L5 θ6

You can get the complete solution with Matlabr using the following coding:



267

1̂z

0ẑ

0x̂

1x̂

2ẑ
2x̂

3x̂
3ẑ

4ẑ

5ẑ

6ẑ

7ẑ

4x̂

5x̂

6x̂

7x̂

0L

1L

2L

3L 4L
5L

6L

Figure iii.25: D-H coordinate systems for MALIBA manipulator.

syms theta_1 theta_2 theta_3 theta_4 theta_5 theta_6
syms L_0 L_1 L_2 L_3 L_4 L_5
syms thetadot_1 thetadot_2 thetadot_3
syms thetadot_4 thetadot_5 thetadot_6

T01=[cos(theta_1) -sin(theta_1) 0 0;...
sin(theta_1) cos(theta_1) 0 0;...
0 0 1 L_0+L_1;...
0 0 0 1]

T12=[cos(theta_2) -sin(theta_2) 0 0;...
0 0 -1 0;...
sin(theta_2) cos(theta_2) 0 0;...
0 0 0 1]

T23=[cos(theta_3) -sin(theta_3) 0 L_2;...
sin(theta_3) cos(theta_3) 0 0;...
0 0 1 0;...
0 0 0 1]

T34=[cos(theta_4) -sin(theta_4) 0 0;...
0 0 -1 -L_3;...
sin(theta_4) cos(theta_4) 0 0;...
0 0 0 1]

T45=[cos(theta_5) -sin(theta_5) 0 0;...
0 0 -1 0;...
sin(theta_5) cos(theta_5) 0 0;...



268 Exercises iii. Forward Kinematics

0 0 0 1]

T56=[cos(theta_6) -sin(theta_6) 0 0;...
0 0 -1 -L_5;...
sin(theta_6) cos(theta_6) 0 0;...
0 0 0 1]

Solution to exercise iii.13

To solve this exercise we first have to draw the robot, after that we will have to set
the reference systems (figure iii.26), do the Denavit and Hartenberg table (looking the
dimension lines included in the dimension plots of the robot) and then obtain the
transformation matrices.

1̂z

0ẑ

0x̂

1x̂

2ẑ
2x̂

3x̂
3ẑ

4ẑ

5ẑ

eẑ

4x̂

5x̂

ex̂

0L

1L

2L

3L
4L

6L

Figure iii.26: D-H coordinate systems for SCORBOT robot.

Denavit-Hartenberg table:

DH par.
link i−1→
link i

ai−1 αi−1 di θi

0→ 1 70 0 L0 + L1 θ1

1→ 2 0 90o 0 θ2

2→ 3 L2 0 0 θ3

3→ 4 L3 0 43 θ4

4→ 5 0 90o L4 θ5

5→ e 0 0 L5 0



269

Where:

L0 + L1 = 388mm.

L2 = 280mm.

L3 = 43mm.

L4 = 230mm.

L5 = 111mm.

Solution to exercise iii.14

To solve this exercise we first have to draw the robot, after that we will have to set
the reference systems (figure iii.27), do the Denavit and Hartenberg table (taking into
account the dimension lines included in robot’s dimension plot) and then obtain the
transformation matrices.

2x̂

2ẑ

1̂x

1̂z

0x̂

0ẑ

3x̂
3ẑ

4x̂

4ẑ

5x̂

5ẑ

0L

2d

3d

3L

4L

Figure iii.27: D-H coordinate systems for RT3300 robot.



270 Exercises iii. Forward Kinematics

Denavit-Hartenberg table:

DH par.
link i−1→
link i

ai−1 αi−1 di θi

0→ 1 0 0 L0 θ1

1→ 2 0 0 d2 0
2→ 3 0 90o d3 0
3→ 4 0 90o L0 θ4

4→ e 0 0 L5 0



Exercises iv

Inverse Kinematics

Exercise iv.1

In a 3R planar robot, given the desired position and orientation for the hand, we know
that there are two possible groups of values that the joint angles can take. Deduce how
many solutions there will be if we add another joint to the manipulator, in such way that
the arm continues to be planar.

Exercise iv.2

Calculate the reachable workspace by the RP manipulator shown in figure iv.1. Do not
think only of the points that can be reached, but also of the orientation from which those
points are reachable. In other words, give the general expression for the transformation
matrix that defines the position and the orientation desired for system {2} with respect
to the base in function of the Cartesian coordinates that the origing points of system {2}
can cover. What is the workspace of the manipulator? (Note: the reference system {0} of
the base is coincident with {1} when the robot is at its initial position, i.e. θ = 0)

Figure iv.1: RP manipulator.

271



272 Exercises iv. Inverse Kinematics

Exercise iv.3

Given the description of the reference system {i} of the ith joint of a manipulator in
relation to the {i − 1} system (matrix i−1Ti), obtain the expressions for the four Denavit
and Hartenberg parameters: ai−1, αi−1, di and θi as a function of the elements of i−1Ti.

Exercise iv.4

Solve the inverse kinematics problem for the RPR manipulator in figure iv.2.

Figure iv.2: RPR manipulator.

Exercise iv.5

Figure iv.3 shows a planar arm with two joints. The joint angles can vary between the
limits 0 ≤ θ1 ≤ 180o and −90o ≤ θ2 ≤ 180o. Draw approximately the workspace reachable
by this manipulator.

Exercise iv.6

Given the SCARA robot in figure, we want to move the end-effector to the position given
by [0.7 0.5 − 0.5])T , with respect to the coordinate system of the base. Which values will
the variables θ1, θ2 and d3 need to achieve this? (L0 = −1m, L0 = 0.5m and L0 = 0.4m).

Exercise iv.7

Given the location of the end-effector of an anthropomorphic robot Pe = [Pex Pey Pez ]T and
its orientation, calculate the inverse kinematics for its three first degrees of freedom.



273

Figure iv.3: Planar arm with two joints.

Figure iv.4: SCARA robot.



274 Exercises iv. Inverse Kinematics

0Re =

x̂ex ŷex ẑex
x̂ey ŷey ẑey
x̂ez ŷez ẑez



Exercise iv.8

Solve the inverse kinematics for a spherical robot of three degrees of freedom.



275

Solutions

Solution to exercise iv.1

If we add another joint, we will get a planar robot with redundant degrees of freedom.
That is way there will be infinite solutions to this exercise.

Solution to exercise iv.2

In this exercise we are asked to do the inverse kinematics. The first step is to solve the
forward kinematics problem to obtain the 0T3 = 0Te matrix and, after that, obtain the
parameters needed to do the inverse kinematics.

L 1

1̂x

1̂z

0ẑ

0x̂

2ẑ

2x̂

L 0

d2

eẑex̂

Figure iv.5: D-H coordinate systems of a RP manipulator.

Denavit-Hartenberg table:

DH par.
link i−1→
link i

ai−1 αi−1 di θi

0→ 1 0 0 L0 θ1

1→ 2 0 0 L1 0
2→ e 0 −90o d2 0

You can get the complete solution with Matlabr using the following coding:

syms theta_1 L_0 L_1 d_2
syms thetadot_1 ddot_2

T01=[cos(theta_1) -sin(theta_1) 0 0;...
sin(theta_1) cos(theta_1) 0 0;...
0 0 1 L_0;...



276 Exercises iv. Inverse Kinematics

0 0 0 1]

T12=[1 0 0 0;...
0 1 0 0;...
0 0 1 L_1;...
0 0 0 1]

T2e=[1 0 0 0;...
0 0 1 d_2;...
0 -1 0 0;...
0 0 0 1]

T04=simple(T01*T12*T2e)

And now we can obtain the inverse kinematics parameters:

L0 + L1 = Pez

d2 =
√
P 2
ex + P 2

ey

θ1 = arctan −PexPey
→ cos θ1 = Pey√

P 2
ex

+P 2
ey

→ sin θ1 = −Pex√
P 2
ex

+P 2
ey

0Te =


Pey√

P 2
ex

+P 2
ey

0 −Pex√
P 2
ex

+P 2
ey

Pex

Pex√
P 2
ex

+P 2
ey

0 −Pey√
P 2
ex

+P 2
ey

Pey

0 1 0 Pez
0 0 0 1

 =


cos θ1 0 − sin θ1 −d2 sin θ1

sin θ1 0 cos θ1 d2 cos θ1

0 1 0 L1 + L0

0 0 0 1



Solution to exercise iv.3

Let’s make a general Denavit-Hartenberg table and obtain the transformation matrix. We
will rename the terms of this matrix in order to make the expressions simpler:

DH par.
link i−1→
link i

ai−1 αi−1 di θi

{i− 1} → {i} ai−1 αi−1 di θi

i−1Ti = trans(ai−1, x̂i−1) · rot(αi−1, x̂i−1) · trans(di, ẑi) · rot(θi, ẑi) =



277

=


cos θi − sin θi 0 ai−1

cosαi−1 · sin θi cosαi−1 · cos θi − sinαi−1 sinαi−1 · di
sinαi−1 · sin θi sinαi−1 · cos θi cosαi−1 cosαi−1 · di

0 0 0 1

 =

=


r11 r12 r13 r14

r21 r22 r23 r24

r31 r32 r33 r34

0 0 0 1


θi = arctan

(
sin θi
cos θi

)
= arctan

(
−r12
r11

)
αi−1 = arctan

(
sinαi−1

cosαi−1

)
= arctan

(
−r23
r33

)
ai−1 = r14

di =
√
r2

24 + r2
34

Solution to exercise iv.4

As we did in previous exercises, to calculate the inverse kinematics of this robot, we
must first calculate the forward kinematics problem to obtain the 0Te matrix and, after
that, obtain the parameters needed to do the inverse kinematics.

You can get the complete forward kinematics solution from the forward kinematics
exercise 7.

Figure iv.6: D-H coordenate systems of a RPR manipulator.

Denavit-Hartenberg table:



278 Exercises iv. Inverse Kinematics

DH par.
link i−1→
link i

ai−1 αi−1 di θi

0→ 1 0 0 0 θ1

1→ 2 L1 90o d2 0
2→ 3 0 −90o 0 θ3

And now we can obtain the inverse kinematics parameters (figure iv.7):

θ1 = α+ β

θ1 = arctan
Pey
Pex
± arccos

 L1√
P 2
ex + P 2

ey



d2 =

√(√
P 2
ex + P 2

ey

)2

− L2
1

θ3 = Φ− θ1

Pey

x0

1


y0

0

Pex2 Pey2

d 2

L1

L1

d 2

Pex2 Pey2

Figure iv.7: Inverse kinematic equations of a RPR manipulator.

On the other hand, we know the expression for the homogeneous transformation
between {0} and {e}:

0T3 =


cosΦ − sinΦ 0 pex
sinΦ cosΦ 0 pey

0 0 1 0
0 0 0 1


Finally, this last matrix should be equated with the forward kinematics expression.



279

Solution to exercise iv.5

The workspace reachable by the robot will look like this:

Figure iv.8: Workspace of a planar arm with two joints.

Solution to exercise iv.6

To calculate the inverse kinematics of this robot, we must first calculate the forward
kinematics problem to obtain the 0Te matrix and, after that, obtain the parameters
needed to do the inverse kinematics.

x0

z0

x1
z1

x2
z2

z3
x3

xe

ze

L
2

L
1

L 0

d 3

Figure iv.9: D-H coordenate systems of a SCARA robot.

Denavit-Hartenberg table:



280 Exercises iv. Inverse Kinematics

DH par.
link i−1→
link i

ai−1 αi−1 di θi

0→ 1 0 0 L0 θ1

1→ 2 L1 0 0 θ2

2→ 3 L2 0 −d3 0

You can get the complete forward kinematics solution with Matlabr using the
following coding:

syms theta_1 theta_2 d_3 L_0 L_1 L_2
syms thetadot_1 thetadot_2 ddot_3

T01=[cos(theta_1) -sin(theta_1) 0 0;...
sin(theta_1) cos(theta_1) 0 0;...
0 0 1 L_0;...
0 0 0 1]

T12=[cos(theta_2) -sin(theta_2) 0 L_1;...
sin(theta_2) cos(theta_2) 0 0;...
0 0 1 0;...
0 0 0 1]

T23=[1 0 0 L_2;...
0 1 0 0;...
0 0 1 -D_3;...
0 0 0 1]

T03= simple(T01*T12*T23)

0Pe =
[
cos12 L2 + cos θ1L1 sin12 L2 + sin θ1L1 −d3 + L0

]T
And now we can obtain the inverse kinematics parameters. Only left-elbow solution

has been obtained (figure iv.10):

θ1 = α+ β

θ1 = arctan
P4y

P4x
± arccos

(
L2

1 +R2 − L2
2

2L1R

)

α = arctan
P4y

P4x

To calculate the values for β and γ we use the cosine theorem:



281

L2
2 = L2

1 +R2 − 2L1R cosβ → cosβ =
(
L2

1 +R2 − L2
2

2L1R

)
→ β = arccos

(
L2

1 +R2 − L2
2

2L1R

)

R2 = L2
1 + L2

2 − 2L1L2 cos γ → cos γ =
L2

1 + L2
2 −R2

2L1L2

θ2 = 2π − γ′
γ′ = π − γ

}
θ2 = 2π − π + γ = π ± arccos

(
L2

1 + L2
2 −R2

2L1L2

)

And now we can obtain the values of the unknown parametres:

0Pe =

L2 cos θ12 + L1 cos θ1

L2 sin θ12 + L1 sin θ1

−d3 + L0

 =

 0.7
0.5
−0.5



then:
R = 0.86

d1 = −0.5

θ1 = 50.82o‖20.26o

θ2 = 325.49o‖34.51o

z0
d 3

d 3=L0−P4z

z0≡z1

x0≡x1y0

1

2

z2
x1

x2

 '







P4x
0 P4

0
P4y

0

x3

z3

L1

L2
L1 L2

Left-arm solution

R

Figure iv.10: Inverse kinematic equations of a SCARA robot.



282 Exercises iv. Inverse Kinematics

Solution to exercise iv.7

To calculate the inverse kinematics of this robot, we must first calculate the forward
kinematics problem to obtain the 0Te matrix and, after that, obtain the parameters
needed to do the inverse kinematics.

1̂z

0ẑ

0x̂

1x̂

2ẑ
2x̂

3x̂

3ẑ

0L

1L

2L
3L

Figure iv.11: D-H coordenate systems of a anthropomorphic robot.

Denavit-Hartenberg table:

DH par.
link i−1→
link i

ai−1 αi−1 di θi

0→ 1 70 0 L0 + L1 θ1

1→ 2 0 90o 0 θ2

2→ 3 L2 0 0 θ3

3→ e L3 0 0 0

You can get the complete forward kinematics solution with Matlabr using the
following coding:

syms theta_1 theta_2 theta_3
syms L_0 L_1 L_2 L_3
syms thetadot_1 thetadot_2 thetadot_3

T01=[cos(theta_1) -sin(theta_1) 0 0;...
sin(theta_1) cos(theta_1) 0 0;...
0 0 1 L_0+L_1;...



283

0 0 0 1]

T12=[cos(theta_2) -sin(theta_2) 0 0;...
0 0 -1 0;...
sin(theta_2) cos(theta_2) 0 0;...
0 0 0 1]

T23=[cos(theta_3) -sin(theta_3) 0 L_2;...
sin(theta_3) cos(theta_3) 0 0;...
0 0 1 0;...
0 0 0 1]

T3e=[1 0 0 L_3;...
0 1 0 0;...
0 0 0 1]

T0e=simple(T01*T12*T23*T3e)

And now we can obtain the inverse kinematics parameters:

z2≡z1

y0

1

3

0

xe x2

 '







P4x
0

P4
0

P4y
0

x3

z3

L1 L2
y2

x2

Pey
0

Pex
0

Rigth-arm, down-elbow solution

Figure iv.12: Inverse kinematic equations of a anthropomorphic robot.

Solution to exercise iv.8

To solve this exercise we are going to suppose that we know 0Pe and 0Re. Thus, we can
calculate the inverse kinematics of the robot:



284 Exercises iv. Inverse Kinematics

3ẑ
2̂z

2x̂

2ŷ

1ẑ

1x̂

3x̂

L 1

3L 3d

Figure iv.13: D-H coordenate systems of a spherical robot.

1LPz −

22
yx PPr +=

2L
2x̂

2̂z
1x̂

2ŷ

1ŷ
3d

2
1

3
32

1

22
1

2

22
1

sin
sin

arctan
22

arctan

LLPd
dL
LP

PP
LP

PP
LP

zz

yx

z

yx

z

−−=→
+
−=

+
−+=+=

+
−=

α
α

παπθ

α

2x̂

2̂z 1x̂

2ŷ

2L

3d

22
yx PPr +=

1LPz −

2
1

3
23

1

22
1

2

22
1

sin
sin

arctan
2
3

2
3

arctan

LLPd
Ld
LP

PP
LP

PP
LP

zz

yx

z

yx

z

+−=→
−
−=

+
−+=+=

+
−=

α
α

παπθ

α

1ŷ
eyP1x̂

1̂z 0x̂
exP

3ẑ′0ŷ

ex

ey

P
P

arctan1 =θ 1ŷ

Figure iv.14: Inverse kinematic equations of a spherical robot: right-arm solution.



285

0ŷ
2

1
3

32

1

22
1

2

22
1

sin
sin

arctan
2

3
2

3

arctan

LLPd
dL
LP

PP
LP

PP
LP

zz

yx

z

yx

z

−−=→
+
−=

+
−+=+=

+
−=

α
α

παπθ

α

2
1

3
23

1

22
1

2

22
1

sin
sin

arctan
22

arctan

LLPd
Ld
LP

PP
LP

PP
LP

zz

yx

z

yx

z

+−=→
−
−=

+
−−=−=

+
−=

α
α

παπθ

α1ŷ

1x̂

1̂z

0x̂

3ẑ′

eyP

exP

2L

2x̂

2̂z

1x̂

2ŷ

1ŷ

1LPz −

22
yx PPr +=

2L
2x̂

2̂z

1x̂
2ŷ

1ŷ

1LPz −

22
yx PPr +=

3d
ex

ey

P
P

arctan1 +=πθ

Figure iv.15: Inverse kinematic equations of a spherical robot: left-arm solution.



286 Exercises iv. Inverse Kinematics



Exercises v

Jacobian

Exercise v.1

Knowing the following expressions that solve the forward kinematics of a robot, calculate
the corresponding jacobian matrix.

px = −l3 cos θ1 sin θ3 + (l2 + d2) sin θ1

py = −l3 sin θ1 sin θ3 − (l2 + d2) cos θ1

pz = l3 cos θ3 + l1

NOTE: Only positions will be taken into account.

Exercise v.2

Calculate the maximum force that the robot can exert from the previous exercise if the
maximum forces/torques that the joints can develop are:

τ1 = 10N −m, τ2 = 5N , τ3 = 3N −m

and the robot is set in the direction given by:

θ1 = 0, d2 = d2, θ3 = π/2.

Exercise v.3

Using the generalized velocity propagation analysis from joint to joint, obtain the
jacobian matrix (related to the reference system {0}) of the 2R planar manipulator
shown in figure v.1. Obtain the singularities of the mechanism. Do we obtain the same
singularities if we use the jacobian matrix expressed in system {3} (the one attached to
the end-effector)?

287



288 Exercises v. Jacobian

Figure v.1: RR planar manipulator.

Exercise v.4

Let’s consider again the 2R planar robot used in the previous exercise (figure v.2). We
want to move the end of the second arm over the x̂ axis at a constant velocity v, as is
shown in the figure. Obtain the velocities of joint angles, θ1 and θ2, that are required
to keep that constant velocity. Would it be impossible to maintain the velocity for over
time?

Exercise v.5

In the design process of a RR manipulator, one of the requirements is that manipulator
would be able to exert, by its end-effector, a constant static force 0F = [f 0 0]T . Obtain the
force/torque that must be applied to the joints. The jacobian matrix of the manipulator
is:

0J =
[
− sin θ1L1 − sin12 L2 − sin12 L2

cos θ1L1 + cos 12L2 cos 12L2

]

Exercise v.6

Calculate the jacobian matrix for the 3R planar manipulator shown in the figure. Obtain
the singularities of the mechanism.

Exercise v.7

Calculate the jacobian matrix of a 3 DoF anthropomorphic robot using the velocity
propagation method. If the maximum torques that the robot can develop are τ1 = 1N−m,



289

Figure v.2: RR planar manipulator with an end-point frame.

τ2 = 0.5N −m and τ3 = 0.1N −m, what are the maximum forces and torques that the end
effector can exert?

Exercise v.8

Calculate the jacobian matrix of a cylindrical robot of 3 DoF using the force propagation
method. Calculate the velocity on the end-effector of the robot, related to the velocities
of each degree of freedom when q1 = π/2, q2 = 0, q3 = 0.

Exercise v.9

Given the following jacobian matrix:

 l3 sin θ1 sin θ3 + (d2 + l2) cos θ1 l2 sin θ1 −l3 cos θ3 cos θ1

−l3 cos θ1 sin θ3 + (d2 + l2) sin θ1 −l2 cos θ1 −l3 cos θ3 sin θ1

0 0 −l3 sin θ3


calculate the singular configurations.



290 Exercises v. Jacobian

Figure v.3: RRR planar manipulator.



291

Solutions

Solution to exercise v.1

The Jacobian matrix is composed of velocity expressions. To obtain a velocity expression
we have to derive the position equation,

ṗx = [L3 sin θ1 sin θ3 + (L2 + d2) cos θ1] · θ̇1 + sin θ1 · ḋ2 + [−L3 · cos θ1 cos θ3] · θ̇3

ṗy = [−l3 sin θ3 cos θ1 + (L2 + d2) sin θ1] · θ̇1 − cos θ1 · ḋ2 + [−L3 · sin θ1 cos θ3] · θ̇3

ṗz = [−L3 sin θ3] · θ̇3

J =

 L3 sin θ1 sin θ3 + (L2 + d2) cos θ1 sin θ1 −L3 cos θ1 cos θ3

−L3 cos θ1 sin θ3 + (L2 + d2) sin θ1 − cos θ1 −L3 sin θ1 cos θ3

0 0 −L3 sin θ3



Solution to exercise v.2

J =

L2 + d2 0 0
−L3 −1 0

0 0 −L3

→ JT =

L2 + d2 −L3 0
0 −1 0
0 0 −L3



τ = JT · f →

10
5
3

 =

L2 + d2 −L3 0
0 −1 0
0 0 −L3

 ·
fxfy
fz


10 = L2 · fx + d2 · fx − L3 · fy

5 = −fy
3 = −L3 · fz

 fmax

10−5L3
L2+d2

−5
−3
L3



Solution to exercise v.3

You can get the complete solution with Matlabr using the following coding:

syms theta_1 theta_2 L_1 L_2
syms thetadot_1 thetadot_2

T01=[cos(theta_1) -sin(theta_1) 0 0;...
sin(theta_1) cos(theta_1) 0 0;...
0 0 1 0;...
0 0 0 1]



292 Exercises v. Jacobian

T12=[cos(theta_2) -sin(theta_2) 0 L_1;...
sin(theta_2) cos(theta_2) 0 0;...
0 0 1 0;...
0 0 0 1]

T23=[1 0 0 L_2; 0 1 0 0; 0 0 1 0;0 0 0 1]

T0e=simple(T01*T12*T23)

v_0=[0; 0; 0]
omega_0=[0; 0; 0]

R10=transpose(T01(1:3,1:3))
P_1=T01(1:3,4)

omega11=R10*omega_0+[0; 0; thetadot_1]
v11=R10*(v_0+cross(omega_0,P_1))

R21=transpose(T12(1:3,1:3))
P_2=T12(1:3,4)

omega22=R21*omega11+[0; 0; thetadot_2]
v22=R21*(v11+cross(omega11,P_2))

R32=transpose(T23(1:3,1:3))
P_3=T23(1:3,4)

omega33=simple(R32*omega22+[0; 0; thetadot_3])
v33=R32*(v22+cross(omega22,P_3))

omegaee=omega33
vee=v33

Solution to exercise v.4

To do this exercise, we first have to calculate the 0J matrix of the preceeding exercise.

0V3 = 0J ·
[
θ̇1

θ̇2

]
→

vx0
0

 =

sin θ1L1 cos θ12 − (cos θ2L1 + L2) sin θ12 − sin θ12L2

sin θ1L1 sin θ12 + (cos θ2L1 + L2) cos θ12 cos θ12L2

0 0

[θ̇1

θ̇2

]
→



293

[
θ̇1

θ̇2

]
=

[
vx cos θ12

sin θ1L1+sin θ12L2+cos θ12L2(
sin θ1L1 sin θ12+cos θ12 cos θ2L1+cos θ12L2

sin θ1L1+sin θ12L2+cos θ12L2

)
· vx

]

Solution to exercise v.5

[
τ1

τ2

]
=
[
− sin θ1L1 − sin θ12L2 cos θ1L1 + cos θ12L2 0

− sin θ12L2 cos θ12L2 0

]
·

fx0
0


τ1 = fx · (− sin θ1L1 − sin θ12L2)

τ2 = fx · (− sin θ12L2)

Solution to exercise v.6

You can get the complete solution with Matlabr using the following coding:

syms theta_1 theta_2 theta_3 L_1 L_2 L_3
syms thetadot_1 thetadot_2 thetadot_3

T01=[cos(theta_1) -sin(theta_1) 0 0;...
sin(theta_1) cos(theta_1) 0 0;...
0 0 1 0;...
0 0 0 1]

T12=[cos(theta_2) -sin(theta_2) 0 L_1;...
sin(theta_2) cos(theta_2) 0 0;...
0 0 1 0;...
0 0 0 1]

T23=[cos(theta_3) -sin(theta_3) 0 L_2;...
sin(theta_3) cos(theta_3) 0 0;...
0 0 1 0;...
0 0 0 1]

T3e=[1 0 0 L_3; 0 1 0 0; 0 0 1 0;0 0 0 1]

T0e=simple(T01*T12*T23*T3e)

v_0=[0; 0; 0]
omega_0=[0; 0; 0]

R10=transpose(T01(1:3,1:3))



294 Exercises v. Jacobian

P_1=T01(1:3,4)

omega11=R10*omega_0+[0; 0; thetadot_1]
v11=R10*(v_0+cross(omega_0,P_1))

R21=transpose(T12(1:3,1:3))
P_2=T12(1:3,4)

omega22=R21*omega11+[0; 0; thetadot_2]
v22=R21*(v11+cross(omega11,P_2))

R32=transpose(T23(1:3,1:3))
P_3=T23(1:3,4)

omega33=simple(R32*omega22+[0; 0; thetadot_3])
v33=R32*(v22+cross(omega22,P_3))

Re3=transpose(T3e(1:3,1:3))
P_e=T3e(1:3,4)

omegaee=simple(Re3*omega33)
vee=simple(Re3*(v33+cross(omega33,P_e)))

Solution to exercise v.7

You can get the complete solution with Matlabr using the following coding:

syms theta_1 theta_2 theta_3 L_0 L_1 L_2 L_3 L_4
syms thetadot_1 thetadot_2 thetadot_3

T01=[cos(theta_1) -sin(theta_1) 0 0;...
sin(theta_1) cos(theta_1) 0 0;...
0 0 1 L_0+L_1;...
0 0 0 1]

T12=[1 0 0 0;0 0 -1 0;0 1 0 0;0 0 0 1]...

*[cos(theta_2) -sin(theta_2) 0 0;...
sin(theta_2) cos(theta_2) 0 0;...
0 0 1 0;0 0 0 1]

T23=[cos(theta_3) -sin(theta_3) 0 L_2;...
sin(theta_3) cos(theta_3) 0 0;...
0 0 1 0;...
0 0 0 1]

T3e=[1 0 0 L_3+L_4;0 1 0 0;0 0 1 0; 0 0 0 1]



295

v_0=[0; 0; 0]
omega_0=[0; 0; 0]

R10=transpose(T01(1:3,1:3))
P_1=T01(1:3,4)

omega11=R10*omega_0+[0; 0; thetadot_1]
v11=R10*(v_0+cross(omega_0,P_1))

R21=transpose(T12(1:3,1:3))
P_2=T12(1:3,4)

omega22=R21*omega11+[0; 0; thetadot_2]
v22=R21*(v11+cross(omega11,P_2))

R32=transpose(T23(1:3,1:3))
P_3=T23(1:3,4)

omega33=simple(R32*omega22+[0; 0; thetadot_3])
v33=R32*(v22+cross(omega22,P_3))

Re3=transpose(T3e(1:3,1:3))
P_e=T3e(1:3,4)

omegaee=simple(Re3*omega33)
vee=simple(Re3*(v33+cross(omega33,P_e)))

Solution to exercise v.8

You can get the complete solution with Matlabr using the following coding:

syms theta_1 d_2 d_3
syms thetadot_1 ddot_2 ddot_3

T01=[cos(theta_1) -sin(theta_1) 0 0;...
sin(theta_1) cos(theta_1) 0 0;...
0 0 1 0;...
0 0 0 1]

T12=[1 0 0 0; 0 1 0 0; 0 0 1 d_2;0 0 0 1]

T23=[1 0 0 0; 0 0 -1 -d_3; 0 0 1 d_2;0 0 0 1]

f_3=[f_x;f_y;f_z]
n_3=[n_x;n_y;n_z]



296 Exercises v. Jacobian

R23=(T23(1:3,1:3))
P_3=T23(1:3,4)

f_2=R23*f_3
n_2=simple(R23*(n_3)+cross(P_3,f_2))

R12=(T12(1:3,1:3))
P_2=T12(1:3,4)

f_1=R12*f_2
n_1=simple(R12*(n_2)+cross(P_2,f_1))

tau1=n_1(3)
tau2=n_2(3)
tau3=n_3(3)

Once we have the Jacobian Matrix, we can finish the exercise:

vx = d3 cos θ1 · π2 ωx = 0
vy = d3 sin θ1 · π2 ωy = 0

vz = 0 ωz = π
2

Solution to exercise v.9

To calculate the singularities we have to equate the determinant of the jacobian matrix
to zero.∣∣∣∣∣∣

L3 sin θ1 sin θ3 + (d2 + L2) cos θ1 L2 sin θ1 −L3 cos θ3 cos θ1

−L3 cos θ1 sin θ3 + (d2 + L2) sin θ1 −L2 cos θ1 −L3 cos θ3 sin θ1

0 0 −L3 sin θ3

∣∣∣∣∣∣ = 0

Simplifying this equation it yields:


sinθ3 = 0
(d2 + L2) ·

(
cos2 θ1 + sin2 θ1

)︸ ︷︷ ︸
1

= 0→ (d2 + L2) = 0



Part V

Appendix

297





Appendix A

Robot History

A.1 Introduction

The Robot concept is very ancient. It may surprise us. But mankind has always been
fascinated by machines and devices capable of moving themselves, constructed to
imitate the motions of human beings and animals. The ancient Greek culture named
them as automatos. Those automatos -automaton- can be considered as the prehistory
of present robots.

A.2 Greek Mythology

The oldest reference about a robot -or a similar device- may be in the ”Iliada” of Homer
where we can read that Hephaestus (Greek: Hephaistos; Spanish: Hefestos, figure A.1
1), god of fire, (Vulcan for Romans) had two golden servants:

*Achilles, when he receives the news about the death of his friend
Patroclus, wishes to take revenge. His mother, Tethys, asks Hephaestus if
he would provide her son with a shield, which replaces the one that has been
taken by Hector.

. . . Then he (Hephaestus) took a sponge and washed his face and hands,
his shaggy chest and brawny neck; he donned his shirt, grasped his strong
staff, and limped towards the door. There were golden handmaids also who
worked for him, and were like real young women, with sense and reason,
voice also and strength, and all the learning of the immortals; these busied
themselves as the king bade them, while he drew near to Thetis, seated her
upon a goodly seat, and took her hand in his own, saying, ”Why have you
come to our house, Thetis honoured and ever welcome -for you do not visit us
often? Say what you want, and I will do it for you at once if I can, and if it can
be done at all. . . ”

The Iliad, Homer

1Collection: Toledo Museum of Art; Ware: Attic Red Figure; Shape: Skyphos; Painter: Attributed to the
Kleophon Painter; Date: 430- 420 BC; Period: High Classical.

299



300 Appendix A. Robot History

Figure A.1: The return of Hephaestus to Olympus.

Book XVIII, Fabrication of weapons

Another reference, in Greek mythology, is the Giant of Talus (figure A.2 2). This giant
automaton was given to Europa, Queen of Crete, by Zeus. In this case, we can read its
description in The Argonautica: His (Talos) task was patrolling the island of Crete in
order to defend the island from pirates and enemies. Talus was killed by the magic of the
witch Medea when the giant tried to prevent the Argonauts from arriving to the island.

(ll. 1638-1653) And Talus, the man of bronze, as he broke off rocks from
the hard cliff, stayed them from fastening hawsers to the shore, when they
came to the roadstead of Dicte’s haven. He was of the stock of bronze, of the
men sprung from ash-trees, the last left among the sons of the gods; and the
son of Cronos gave him to Europa to be the warder of Crete and to stride
round the island thrice a day with his feet of bronze. Now in all the rest of
his body and limbs was he fashioned of bronze and invulnerable; but beneath
the sinew by his ankle was a blood-red vein; and this, with its issues of life
and death, was covered by a thin skin. So the heroes, though outworn with
toil, quickly backed their ship from the land in sore dismay. And now far from
Crete would they have been borne in wretched plight, distressed both by thirst
and pain, had not Medea addressed them as they turned away...

The Argonautica, Book IV, Apollonius Rhodius
(3rd Century B.C.)

It is obvious these machines are fictitious, and they have never existed. But we can
notice that, in Greek culture, the fabrication and use of these machines were restricted
to the gods.

2Collection: Ruvo, Museo Jatta; Summary: death of Talos
Ware: Attic Red Figure
Shape: Volute krater
Painter: Name vase of the Talos Painter
Date: 400-390 BC
Period: Late Classical



Appendix Section A.3. Middle ages 301

Figure A.2: Death of Talus.

Figure A.3: Fryer Bacon’s speaking head.

A.3 Middle ages

There are few documented references in the XIII century, such as the iron man of St.
Albert the Great (1204-1282) or the fryer Roger Bacon’s (1214-1294) brozen head that
was able to speak. The popular legend was written in The Famous History of Fryer Bacon
(figure A.3). The oldest automaton that is conserved nowadays is in the original clock
in Strasbourg cathedral (figure A.4). This automaton is a cock (1352) that crows three
times and flaps its wings at noon. At the beginning of the 16th century, Juanelo Turriano
(Gianello Torriano) designed and constructed one of the finest astronomical clocks of the
Renaissance. He also constructed astonishing waterworks system which provided water
from the River Tagus3 to Toledo. There is also a legend about this engineer that says he
constructed an automaton monk. This monk was called the wooden man4. According
to tradition, this automaton used to walk daily to the archbisop’s palace, and return
with bread and meat.

In 1515, Leonardo da Vinci created a mechanical lion that moved around like a real
3River Tagus=Rı́o Tajo
4The wooden man: el hombre de palo



302 Appendix A. Robot History

Figure A.4: Cock of the Strasbourg Cathedral.

Figure A.5: Vauncanson’s duck: a diagram of its interior and a replica of it at Le Museé
de Automates de Grenoble.

one and presented it to Francois I of France during a banquet: it crossed the hall, halted
before the king, roared, and opened its chest to reveal a bunch of lilies.

A.4 XVIII-XIX centuries

Later versions of automatons were based on self-contained clock mechanisms. In 1738,
Vaucanson presented his first complete automaton, The Flute Player. A year later, he
produced The Tambourine Player and The Duck (figure A.5). This duck was able to
quack, flap its wings, drink water, eat food, and discard waste. In 1759, Von Kempelen
developed an amazing automaton. It was a very good chess player called The Turk
(A.6). But, finally, the trick was discovered: ”the wisdom of the automaton” came from
a man hidden inside of a secret compartment. Between 1768 and 1770, Jacques Droz
invented one of the most complicated automatons in history: The Writer that could
write any message up to 40 characters long. During the same period of time, he also
built The Musician and The Draughtsman. The figure A.7 shows these three dolls. In
1805, Maillardet built a spring-activated automaton that could draw pictures and write
in both French and English (figure A.8).



Appendix Section A.4. XVIII-XIX centuries 303

Figure A.6: Von Kempelen’s chess player.

Figure A.7: Droz’s dolls at the Art and History Museum in Neuchâtel, Switzerland.

Figure A.8: Maillert’s automaton and two of its drawings



304 Appendix A. Robot History

A.5 XX Century: Robot Timeline

This section reviews the most important events in XXth century related to robotics 5.

1921 The term “robot” is first used in R.U.R. (Rossum’s Universal Robots), a play by
Czech writer Karel Capek.

1926 Fritz Lang’s movie Metropolis features Maria, a robot seductress.

1930s Hollywood’s serial films, such as Flash Gordon and Buck Rogers, often portray
robots as malevolent machines.

1938 Willard Pollard and Harold Roselund invent a mechanical arm with joints for
an automated spray-painting machine from DeVilbiss Co.

1939 For the New York World’s Fair, Westinghouse Electric Corp. builds a mechanical
man and dog: Electro danced, counted to 10, smoked, and described Westingouse’s
products and his dog walked, stood on its hind legs, and barked.

1942 Isaac Asimov writes Runaround, in which he promulgates the Three Laws of
Robotics: A robot may not injure a human being or, through inaction, allow a human
being to come to harm. A robot must obey the orders given it by human beings, except
where such orders would conflict with the First Law. A robot must protect its own
existence as long as such protection does not conflict with the First or Second Law.

1946 George C. Devol patents a general-purpose device for controlling factory
machines, using magnetically stored instructions.

1947 Alan M. Turing’s article on intelligent machinery launches the modern field of
artificial intelligence (AI).

1950 I, Robot, a landmark collection of Asimov’s stories, is published.

1950s At Carnegie Mellon University (CMU), Herbert A. Simon, Allen Newell, and J.
Clifford Shaw lay many cornerstones of AI.

1951 Raymond Goertz designs a tele-operated arm to handle radioactive materials
for the Atomic Energy Commission.

1951 In the movie ”The Day the Earth Stood Still,” the robot Gort possesses superior
intelligence.

1951 Japanese artist Osamu Tezuka creates Tetsuwan Atomu, or Mighty Atom, a
cartoon series that influences several generations of Japan’s roboticists.

1954 Devol designs a programmable factory robot (patent granted in 1961) aimed at
”Universal Automation,” later trimmed to Unimation.

1956 Devol’s design prompts Joseph F. Engelberger to championindustrial robots

5Source: BusinessWeek, electronic edition. March 19, 2001 http :
//www.businessweek.com/magazine/content/0112/b3724008.htm



Appendix Section A.5. XX Century: Robot Timeline 305

and make UnimationInc . the world’s robot pioneer.

1956 Robby the robot is featured in Forbidden Planet—and later appears in more
than a dozen movies and TV shows.

1959 A prototype Unimate arm from Unimation is installed in a General Motors Corp.
die-casting factory in New Jersey—where the first commercial industry robot goes online
in 1961.

1959 Marvin L. Minsky and John McCarthy establish the AI Laboratory at Mas-
sachusetts Institute of Technology.

1960 AMF Corp. introduces its Versatran industrial robot, developed by Harry
Johnson and Veljko Milenkovic.

1963 Stanford University forms an AI Lab headed by McCarthy.

1965 CMU creates the Robotics Institute.

1966 B-9 is the robotic hero in the TV series Lost in Space.

1967 At General Electric Co., Ralph Moser designs the Walking Truck, a big four-leg
robot, which the Pentagon wanted for hauling loads.

1967 Japan imports its first industrial robot, a Versatran from AMF.

1968 Unimation licenses its technology to Kawasaki Heavy Industries Ltd. The deal
helps precipitate an explosion of robot development in Japan, and by 1990, Japan’s
40-odd robotmakers dominate world markets.

1968 Shakey, the first mobile robot with vision and AI, emerges from Stanford
Research Institute (SRI). The aptly named robot is an unstable box on wheels that figures
out how to get around obstacles.

1968 Arthur C. Clarke’s best-selling 2001: A Space Odyssey inspires many students
to take up robotics and AI, including several of today’s robotics gurus.

1970 Doraemon, a cartoon series featuring a robotic cat from the 22nd century, takes
Japan by storm. It becomes a so-called Manga series in 1974 and later a TV series.

1970 SRI unveils the Stanford arm, an improvement on the Unimate.

1971 Cincinnati Milacron Inc. markets T3 (The Tomorrow Tool), a computer-
controlled robot designed by Richard Hohn.

1972 Shigeo Hirose, a graduate student at Tokyo Institute of Technology, builds a
snakelike robot.

1973 Wabot-1, a life-size humanoid robot, is born at Tokyo’s Waseda University
under Ichiro Kato.

1974 Victor Scheinman leaves Stanford and founds Vicarm Inc. to commercialize the
Stanford arm.



306 Appendix A. Robot History

1976 NASA provides Mars landers with robot arms for its Viking I and II missions.

1977 Asea Brown Boveri Ltd. introduces microcomputer-controlled robots.

1977 Unimation purchases Vicarm. Scheinman later starts Automatix Inc.

1977 Star Wars stars an android, C3PO, and a mobile robot, R2D2. By the early
1980s, R2D2 lookalikes are vacuuming floors and singing songs in Japan.

1978 Unimation and GM develop Puma (programmable universal machine for
assembly), based on Vicarm’s technology.

1979 Yamanashi University designs the Scara arm for assembly jobs in factories.
IBM teams with Sankyo Robotics to market the robots.

1980 Marc Raipert establishes the Leg Lab at MIT to develop robots that mimic
human walking.

1982 Fanuc Ltd. and GM form a joint venture, and Fanuc Robotics North America
Inc. quickly becomes a leading supplier in the U.S.

1983 A six-leg walking robot is unwrapped by Odetics Inc.

1984 Waseda University’s Wabot-2 reads music and plays an electronic organ at
Tsukuba Science Expo.

1984 Engelberger starts Transition Research Corp. (later renamed HelpMate
Robotics Inc.) to develop service robots for hospitals.

1986 Atsuo Takanishi of Waseda University develops advanced controls for a walking
robot.

1986 Honda Motor Co. launches a secret project to build a humanoid robot.

1988 The first HelpMate robot goes to work at Danbury (Conn.) Hospital.

1990 Robodoc, developed by Dr. William Bargar and Howard Paul of Integrated
Surgical Systems Inc. and the University of California at Davis, performs a hip-
replacement operation on a dog and in 1992, on a human patient.

1993 MIT’s Rodney A. Brooks starts building Cog, a robot that is being raised and
educated like a human.

1994 Dante II, a walking robot built by CMU’s Robotics Institute, explores an active
volcano in Alaska, collecting samples of volcanic gases.

1996 Honda unveils P-2 (prototype 2), a humanoid robot that walks.

1997 The first annual RoboCup soccer tournament is held in Nagoya, Japan, as a
test bed for the latest technology in robotics and AI. Subsequent events have been staged
in Paris, Stockholm, and Melbourne.

1997 NASA’s Pathfinder lands on Mars, and the Sojourner rover robot explores the
Martian terrain.



Appendix Section A.5. XX Century: Robot Timeline 307

2000 At RoboCup 2000, three humanoid robots meet for the first time: Johnny
Walker from the University of Western Australia, the Mk-II from Japan’s Aoyama Gakuin
University, and Pino from Kitano Symbiotic Systems Project.



308 Appendix A. Robot History



Appendix B

Mobile Robot Samples

B.1 Microbots

Figure B.1: Samples of Micro-robots: Sumo Fighter (MAZO),line-tracking (PIONERO),
Microrobotics Club of TECNUN.

B.2 Legged Robots

B.2.1 AIBO

Figure B.2: AIBO (SONY): http://www.sony.com.au/aibo

B.2.2 SDR

The AIBO’s specifications are summarized in the next table:

309



310 Appendix B. Mobile Robot Samples

Figure B.3: SDR 3x (SONY): http://au.playstation.com/technology/sonyrobot.jhtml

Figure B.4: SDR 4x (SONY): http://au.playstation.com/technology/sonyrobot.jhtml

CPU 64 bit RISC processor (x2)

Main Recording Device 64MB DRAM (x2)

Operating System Aperios (Sony's original real time OS)

Robot Control Architecture OPENR

Control Program Supplying 
media

16MB Memory Stick

Joint Degrees of Freedom Neck: 4 degrees of freedom, Body: 2 degrees of 
freedom, Arms: 5 degrees of freedom (x2), Legs: 6 
degrees of freedom (x2); total 28 degrees of freedom + 
5 fingers on each hand

Walking Speed Approximately 6m/minute max (irregular surface)Pace: 
10cm, Walking Cycle: 1.0 second/step

Approximately 20m/minute max (flat, smooth 
surface)Pace: 6.5cm, Walking Cycle: 0.20 second/step

Irregular Surface Walking 
Ability

Irregularity degree: 10mm irregular surface on nonslip 
condition
Tilt degree: Up to approx. 10 degrees tilted surface on 
nonslip condition

Weight Approximately 6.5Kg with battery and memory

Dimensions (height x width 
x depth)

Approximately 580 x 260 x 190mm

CPUCPU 64 bit RISC processor (x2)64 bit RISC processor (x2)

Main Recording DeviceMain Recording Device 64MB DRAM (x2)64MB DRAM (x2)

Operating SystemOperating System Aperios (Sony's original real time OS)Aperios (Sony's original real time OS)

Robot Control ArchitectureRobot Control Architecture OPENROPENR

Control Program Supplying 
media
Control Program Supplying 
media

16MB Memory Stick16MB Memory Stick

Joint Degrees of FreedomJoint Degrees of Freedom Neck: 4 degrees of freedom, Body: 2 degrees of 
freedom, Arms: 5 degrees of freedom (x2), Legs: 6 
degrees of freedom (x2); total 28 degrees of freedom + 
5 fingers on each hand

Neck: 4 degrees of freedom, Body: 2 degrees of 
freedom, Arms: 5 degrees of freedom (x2), Legs: 6 
degrees of freedom (x2); total 28 degrees of freedom + 
5 fingers on each hand

Walking SpeedWalking Speed Approximately 6m/minute max (irregular surface)Pace: 
10cm, Walking Cycle: 1.0 second/step
Approximately 6m/minute max (irregular surface)Pace: 
10cm, Walking Cycle: 1.0 second/step

Approximately 20m/minute max (flat, smooth 
surface)Pace: 6.5cm, Walking Cycle: 0.20 second/step
Approximately 20m/minute max (flat, smooth 
surface)Pace: 6.5cm, Walking Cycle: 0.20 second/step

Irregular Surface Walking 
Ability
Irregular Surface Walking 
Ability

Irregularity degree: 10mm irregular surface on nonslip 
condition
Irregularity degree: 10mm irregular surface on nonslip 
condition
Tilt degree: Up to approx. 10 degrees tilted surface on 
nonslip condition
Tilt degree: Up to approx. 10 degrees tilted surface on 
nonslip condition

WeightWeight Approximately 6.5Kg with battery and memoryApproximately 6.5Kg with battery and memory

Dimensions (height x width 
x depth)
Dimensions (height x width 
x depth)

Approximately 580 x 260 x 190mmApproximately 580 x 260 x 190mm

B.2.3 ASIMO



Appendix Section B.2. Legged Robots 311

Figure B.5: ASIMO (HONDA): http://world.honda.com/ASIMO

Figure B.6: Specifications of ASIMO.



312 Appendix B. Mobile Robot Samples

Figure B.7: Evolution of ASIMO



Appendix C

Robotic Wrists

Extracted from a work of Javier Martı́n 1.

1J. Martin, J. Savall, ”Mechanisms for Haptic Torque Feedback”, World Haptics Conference. March 21,
2005, Pisa, Italy.

313



314 Appendix C. Robotic Wrists

D
o
F
s

W
o
rk

sp
ac

e
d
ex

te
ri

ty
S
in

gu
la

r
co

n
fi

gu
ra

ti
o
n
s

C
o
m

p
le

xi
ty

an
d

ac
tu

at
o
r

ar
-

ra
n
ge

m
en

t
S
am

p
le

s
P
ic

tu
re

3
W

id
e

an
d

h
om

og
en

.
W

h
en

th
e

ro
ll
s

D
oF

s
ar

e
al

ig
n

ed
S

m
al

l
co

m
p
le

xi
ty

.
T
h

e
fi
rs

t
ac

-
tu

at
or

h
as

to
m

ov
e

th
e

ot
h

er
s.

It
’s

th
e

m
os

t
co

m
m

on
.

R
ol

l-
P
it

ch
-R

ol
l.

P
H

A
N

T
oM

,
P
u

m
a

Ro
ll

Ro
ll

Pi
tc

h

3
W

id
e

an
d

h
om

og
en

.,
b
u

t
th

e
ro

ta
ti

on
s

an
d

tr
an

sl
a-

ti
on

s
ar

e
co

u
p
le

d

N
on

e
V
er

y
sm

al
l

co
m

p
le

xi
ty

.
T
h

e
fi
rs

t
ac

tu
at

or
h

as
to

m
ov

e
th

e
ot

h
er

s.
P
it

ch
-Y

aw
-R

ol
l

h
as

th
e

sa
m

e
st

ru
ct

u
re

th
an

a
Ya

w
-P

it
ch

-R
ol

l,
b
u

t
ro

ta
te

d
9
0

o

P
itc

h
Ya

w

R
ol

l

3
W

id
e

an
d

h
om

og
en

.
T
w

o.
W

h
en

th
e

P
it

ch
an

d
th

e
R

ol
l
ar

e
al

ig
n

ed
.

T
h

er
e

ar
e

1
8
0

o

b
et

w
ee

n
th

e
tw

o
si

n
gu

la
ri

ti
es

.
T
h

ey
ar

e
p
er

p
en

d
ic

u
la

r
to

th
e

R
P
R

on
e.

V
er

y
sm

al
l

co
m

p
le

xi
ty

.
T
h

e
fi
rs

t
ac

tu
at

or
h

as
to

m
ov

e
th

e
ot

h
er

s.
P
it

ch
-Y

aw
-R

ol
l

(o
r

Ya
w

-
P
it

ch
-R

ol
l)

P
itc

h

Ya
w

R
ol

l

3
W

id
e

an
d

h
om

og
en

.
T
w

o.
W

h
en

th
e

P
it

ch
an

d
th

e
R

ol
l
ar

e
al

ig
n

ed
.

T
h

er
e

ar
e

1
8
0

o

b
et

w
ee

n
th

e
tw

o
si

n
gu

la
ri

ti
es

.
T
h

ey
ar

e
p
er

p
en

d
ic

u
la

r
to

th
e

R
P
R

on
e.

V
er

y
sm

al
l

co
m

p
le

xi
ty

.
T
h

e
fi
rs

t
ac

tu
at

or
h

as
to

m
ov

e
th

e
ot

h
er

s.
R

ol
l-

P
it

ch
-Y

aw
.

(I
t

ca
n

b
e

an
u

n
iv

er
sa

l
jo

in
t

+
R

ol
l)

 
Pi

tc
h  

Ya
w
 

R
ol

l  

3
P
oo

r
d
ex

te
ri

ty
.

H
em

is
p
h

er
ic

W
S

.
R

ol
l

st
ri

k
e

sh
or

t.

N
on

e
D

if
fi
cu

lt
to

m
ak

e.
T
h

re
e

li
n

ea
r

ac
tu

at
or

s,
n

on
e

h
as

to
m

ov
e

ot
h

er
s.

S
te

w
ar

t-
li
k
e

m
ec

h
an

is
m

s

3
P
oo

r
d
ex

te
ri

ty
.

H
em

is
p
h

er
ic

W
S

.
R

ol
l

st
ri

k
e

sh
or

t.
B

u
t

lo
n

ge
r

ro
ll
.

N
on

e
V
er

y
d
if

fi
cu

lt
to

m
ak

e.
T
h

re
e

fi
xe

d
ac

tu
at

or
s.

T
w

o
of

th
em

ar
e

li
n

ea
r

3
P
oo

r
d
ex

te
ri

ty
.

L
es

s
th

an
h

em
is

p
h

er
ic

W
S

.
N

on
e

D
if

fi
cu

lt
to

m
ak

e.
T
h

re
e

fi
xe

d
an

d
ro

ta
ti

n
g

ac
tu

at
or

s.
A

gi
le

E
ye

3
D



Appendix D

Glossary

Based on information extracted from University of North Texas 1.

-A-

Accuracy (precisión)-The precision with which a computed point can be attained, or
measured. The more precise the measurements of joint angles will enable a finer degree
of accuracy with a robot.

Active Compliant Robot (robot con acomodación activa)- A compliant robot
in which motion modification during the performance of a task is initiated by the
control system The induced motion modification is slight, but sufficient to facilitate the
completion of a desired task. This assumes the robot is mechanically designed to allow
the successful intervention of the control system

Actuator (actuador)- A mechanical, pneumatic, hydraulic or electric device in a
control system that is able to change and/or maintain the position of an element (such
as an end-effector) the performs a task. The actuator responds to a signal received from
the control system.

Adaptive Control System (sistema de control activo)- A control system that senses
one or more parameters and utilizes the sensor data to adjust control signals to meet
the performance criteria.

Android (android)- A robot resembling a human in physical appearance. This robot
also possesses many human-like movements.

Anthropomorphic (antropomórfico) - Human like. An articulated manipulator is
anthropomorphic due to its shoulder, elbow, and writs joint movements. See articulation.

Arm (brazo)- An interconnected set of links and powered joints comprising a robot
manipulator that supports and/or moves a wrist and hand or end-effector through
space. The arm itself does not include the end-effector. See Manipulator, End-effector
and Wrist.

1http://www.unt.edu/

315



316 Appendix D. Glossary

Articulated Manipulator (manipulador articulado)- A manipulator with an arm
that is broken into sections (links) by one or more joints. Each of the joints represents a
degree of freedom in the manipulator system and allows translation and rotary motion.

Articulation (articulación)- Describes a jointed device, such as a jointed manipula-
tor. The joints provide rotation about a vertical axis, and elevation out of the horizontal
plane. This allows a robot to be capable of reaching into confined spaces.

Artificial Intelligence (inteligencia artificial)- The programming and ability of
a robot to perform functions that are normally associated with human intelligence,
such as reasoning, planning problem solving pattern recognition, perception, cognition,
understanding, and learning.

Assembly Robot (robot de ensamblado)- A robot designed specifically for mating,
fitting, or otherwise assembling various parts or components into completed products.
Primarily used for grasping parts and mating or fitting them together, such as in
assembly line production.

Auto-adaptive (auto-adaptativo)- The capability of adjusting to and performing
tasks in unanticipated environmental conditions.

Automated Guided-Vehicle System (AGVs) – (vehı́culos con guiado automático) -
Vehicles that posse automatic guidance equipment and follow a prescribed guide path.

Autonomous Robot (robot autónomo) - A self-sufficient robot. This robot is
programmed to learn from its environment and provide self-neural technology to operate
without further human intervention.Azimuth - Direction of a straight line to a point in
a horizontal plane, expressed as the angular distance from a reference line, such as the
observer’ s, or robot’s lines of views.

-B-

Base (Base) - The stable platform to which a robot arm is attached.

Bilateral manipulator (manipulador bilateral)- A master-slave manipulator with
symmetric force reflection in which both the master and slave arms have sensors and
actuators such that for any degree of freedom a positional error between the master
and slave results in the application of equal and opposite forces to the master and slave
arms.

-C-

Cable Drive (transmisión por cable)- Transmission of power from an actuator to an
object by means of a cable and pulleys, i.e.; a crane type robot may use such a device.



317

Cartesian Manipulator (manipulador cartesiano)- An arm with prismatic joints
that allows movement along one or more of the three- axes in the x, y, z coordinate
system.

Cartesian-Coordinate Robot (robot cartesiano) - A robot whose manipulator-arm
degrees of freedom are defined by Cartesian coordinates. This describes motions that are
east-west, north-south and up-down, as well as rotary motions to change orientation.

Centrifugal Force (fuerza centrı́fuga)- When a body rotates about an axis other
than one at it’s center of mass, it exerts an outward radial force called centrifugal force
upon the axis which restrains it from moving in a straight tangential line. To offset this
force, the robot must exert an opposing torque at the joint of rotation.

Chain Drive (transmisión de cadena)- Transmission of power from an actuator to a
remote mechanism by means of a flexible chain and a toothed sprocket wheel. i.e.: such
as used in a bicycle, but can be used in robots to transfer power as well.

Clamp (pinza)- An end-effector that serves as a hand that controls the grasping and
releasing of an object. Tactile, and feedback force sensors are used to mange the applied
force to the object by the clamp. See End-Effector.

Closed-Loop Control (control en lazo cerrado)- control achieved by a robot
manipulator by means of feedback information. As a manipulator is in action, its sensors
continually feed back information to the robot’s controller. This information is used to
further guide themanipulator within the given task. Many sensors are used to feedback
information about the manipulator’s placement, speed, torque, applied forces, as well as
the placement of a targeted moving object, etc. See feedback.

Compliance (acomodado)- Displacement of a manipulator in response to a force or
torque. A high compliance means the manipulator moves a good bit when it is stressed.
This is called spongy or springy. Low compliance would be a stiff system when stressed.

Compliant Robot (robot con movimiento acomodable)- A robot that performs
tasks, with respect to external forces, by modifying its motions in a manner that
minimizes those forces. The indicated or allowed motion is accomplished through lateral
(horizontal), axial (vertical) or rotational compliance.

Contact Sensor (sensor de contacto)- A device that detects the presence of an
object or measures the amount of applied force or torque applied on the object through
physical contact with it. Contact sensing can be used to determine location, identity,
and orientation of workpieces

Continuous Path (trayectoria/camino continuo)- Describes the process where by
a robot is controlled over the entire path traversed, as opposed to a point-to-point method
of traversal. This is used when the trajectory of the end-effector is most important to
provide a smooth movement, such as in spray painting etc. See Point-to-Point.

Control Algorithm (algoritmo de control)- A controller used to detect trajectory
deviations, in which sensors detect such deviations, and torque/force applications are
computed for the actuators.



318 Appendix D. Glossary

Controllability (controlabilidad)- The property of a system by which an input signal
can take the system from an initial state to a desired state along a predictable path within
a predetermined period of time.

Controller System (controlador)- The robot control mechanism. Usually a computer
of some type that is used to store data (both robot and work environment), and store and
execute programs which operate the robot. The controller system contains the programs,
data, algorithms; logic analysis, and various other processing circuits that enable it to
perform. See Robot.

Cylindrical Coordinate System (sistema de coordenadas cilı́ndricas)- A coordi-
nate system that defines the position of any point in terms of an angular dimension, a
radial dimension, and a height from a reference plane. These three dimensions specify a
point on a cylinder.

-D-

Degrees of Freedom (DoF ) (grados de libertad) - The number of independent position
variables a manipulator posses, which would allow the robot to move its end effector
through the required sequence of motions. For example, a robot with six degrees of
freedom (Do) consists of three arm and body motions and three wrist motions. The
six DOFs are vertical traverse (up and down along the horizontal axis or moving the
arm along a vertical slide) of the arm, radial traverse (extension and retraction, in-out
movement) of the arm, rotational traverse (rotation about the vertical axis), wrist swivel
(roll), wrist bend (pitch), and wrist yaw.

Downtime (tiempo de apagado)- A period of time in which a robot, or production
line is shut down due to malfunction or failure. See Uptime.

Drop Delivery (depositar por gravedad)- A method of introducing an object to the
workplace by gravity. Usually, a chute or container is so placed that, when work on
the part is finished, it will fail or drop into a chute or onto a conveyor with little or no
transport by the robot.

Dynamics (dinámica)- The study of motion and of the forces that cause the motion.

-E-

Elastic Limit (lı́mite elástico)- The maximum stress to which a material may be
subjected without any permanent strain remaining upon complete release of stress. This
knowledge is used to determine the amount of force a robot may apply to a material
without harming it. See Stress.

End Effector (herramienta/pinza colocada en el extremo final del robot)- A
tool or gripping mechanism attached to the wrist of a robot to accomplish some task.
It usually encompasses a motor, or driven mechanical device. It is used as a sensor,



319

gripping device, paint gun, drill, arc welding device, etc. See Wrist, and Sensor.

Error - The difference between the actual response of a robot to a command issued.

Exoskeleton (exoesqueleto)- An articulated mechanism whose joints correspond
to those of a human arm. When attached to the arm of a human operator, it will
move in correspondence to his or her arm. Sometimes used as prosthesis devices for
handicapped humans. See Prosthetic Robot.

-F-

Feedback (retroalimentación, realimentación)- The return of information from a
manipulator, or sensor to the processor of the robot to provide self-correcting control
of the manipulator. See Feedback Control, and Feedback Sensor.

Feedback Control (control retroalimentado)- A type of system control obtained
when information from a manipulator, or sensor is returned to the robot controller in
order to obtain a desired robot effect. See Feedback, Closed-Loop Control and Feedback
Sensor.

Feedback Sensor (sensor de realimentación)- A mechanism through which
information from sensing devises is fed back to the robot’s control unit. The information
is utilized in the subsequent direction of the robot’s motion. See Closed-Loop Control and
Feedback Control.

Feedforward (prealimentación)- The portion of a control algorithm that does not
receives any feedback. See Feedback Control, and Feedback Sensor.

Flexibility (flexibilidad)- The ability of a robot to perform a variety of different tasks.

Force Control (control en fuerza)- the regulation of the amount of force applied to a
surface by an actuator.

Force Feedback (realimantación de fuerza)- a sensing technique using electrical
or hydraulic signals to control a robot end-effector during the task of the end-effector.
Information is fed from the force sensors of the end-effector to the robot control
unit during the particular task to enable enhanced operation of the end-effector. See
Feedback, Feedback Sensor and Force Sensor.

Force Sensor (sensor de fuerza)- A sensor capable of measuring the forces and
torque exerted by a robot and it’s wrist. Such sensors usually contain strain gauges.
The sensor provides information needed for force feedback. See Force feedback, Strain,
Stress, and Strain Gauge.

Forearm (antebrazo)– The portion of the robot’s jointed arm that is connected at the
wrist. See Wrist, and Arm.

Forward Kinematics (cinemática directa)- Procedures that determine where the
end-effector of a robot is located in space. The procedures use mathematical algorithms
along with joint sensors to determine its location. See Inverse Kinematics.



320 Appendix D. Glossary

Frame (sistema coordenado)- A coordinate system used to determine a position and
orientation of an object in space, as well as the robot’s position within its model.

-G-

Gantry (pórtico/puente grúa)- An adjustable hoisting machine that slides along a fixed
platform or track, either raised or at ground level along the x, y, z axes.

Gantry Robot (robot cartesiano tipo pórtico/puente grúa)- A robot that has three
degrees of freedom along the X, Y, and Z coordinate system. Usually consists of a
spooling system (used as a crane) which when reeled or unreeled provides the up and
down motion along the Z axis. The spool can slide from left to right along a shaft that
provides movement along the Z axis. The spool and shaft can move forward and back
along tracks that provide movement along the Y axis. Usually used to position it’s end-
effector over a desired object and pick it up. See Cartesian robot.

Gravity Loading (carga gravitatoria)- The force exerted downward, due to the
weight of the robot arm and/or the load at the end of the arm. The force creates an
error with respect to position accuracy of the end-effector. A compensating force can be
computed and applied bringing the arm back to the desired position.

Gripper (pinza)- The device used by the end-effector that “grips” the object. It is
attached to the last link of the arm. It may hold an object using several different methods,
such as: applying pressure between its “fingers”, or may even use magnetization to hold
the object, etc. See End-Effector.

-H-

Haft-bridge Robot (robot cartesiano de 2gdl)- A Cartesian robot in which there is a
north-south axis and an up-down axis but no east-west axis. See Cartesian Robot.

Hand (pinza, mano, garra)- A clamp or gripper used as an end-effector to grasp
objects. See End-Effector.

Hazardous Motion (movimiento peligroso/no esperado)- Unintended/unexpected
robot motion that may cause injury. This can be eliminated with the use of computer
simulation. See Simulator.

Hold (positionamiento)- A stopping of all movements of a robot during its sequence,
in which some power is maintained on the robot. For example, on hydraulically driven
robots, power is shut off to the servovalves but is present -on the main electrical and
hydraulic systems.

Home Position (posición casa)- A known and fixed location on the basic coordinate
axis of the manipulator where it comes to rest, or to zero-out its position. Usually, this
is the point where the manipulator is fully retracted.



321

Hydraulically Driven Robot (robot hidráulico)- Robots that use hydraulic servo
valves that operate on petroleum-based hydraulic fluid. The hydraulic system includes
a hydraulic power supply as well. These robots can provide very high repeatability and
accuracy. This type of robot is mechanically simpler and has more physical strength
than electrically driven robots. See Hydraulic motor.

Hydraulic Motor (motor hidráulico)- An actuator consisting of interconnected
valves, pistons, or vanes that converts high-pressure hydraulic fluid into mechanical
shaft translation or rotation. See Hydraulic Driven Robot.

-I-

Inductive Sensors (sensores inductivos)- the class of proximity sensors that has half
of a ferrite core, whose coil is part of an oscillator circuit. When a metallic object enters
this field, at some point the object will absorb enough energy from the field to cause the
oscillator to stop oscillating. This signifies that an object is present in a given proximity.
See Proximity Sensor.

Industrial Robot (robot industrial)- a reprogrammable, multifunctional manip-
ulator designed to move material, parts, tools, or other devices through variable
programmed motions for the performance of a variety of tasks. The principle components
are: one or more arms that can move in several directions; a manipulator; a computer
controller that gives detailed movement instructions.

Input Devices (dispositivos de entrada)- a variety of devices which allow a human
to machine interface. This allows the human to program, control, and simulate the robot.
Such devices include computer keyboards, a mouse, joy-sticks, push buttons, etc.

Instruction (instrucción)- An basic command/order fed to the robot by means of
the human-to-machine input device. This command is received by the robot’s controller
system and is interpreted. Then, the proper instruction is fed to the robot’s actuators
that enable it to react to the initial command. Many times the command must be
interpreted with the use of logic units and specific algorithms. See Input Device and
Instruction Cycle.

Instruction Cycle (ciclo de instrucción)- the time it takes for a robot controller
system’s cycle to decode a command or instruction before it is executed. This has to be
analyzed very closely by robotics programmers to enable speedy and proper reaction to
varying commands.

Intelligent Robot (robot inteligente)- a robot that can be programmed to make
performance choices contingent on sensory inputs with little or no help from human
intervention. See Robot, and Autonomous.

Internal Sensor (sensor interno)- a feedback device in the robot manipulator arm
that provides data to the controller on position and orientation of the arm. See Feedback,
and Feedback Sensor.



322 Appendix D. Glossary

Inverse Kinematics (cinemática inversa)- procedures that determine where the
end-effector needs to be placed to reach a particular point in space. The procedures
use mathematical algorithms along with sensors to determine the desired location of the
point in space, and the necessary manipulator joint movements to reach this point. See
Forward Kinematics.

-J-

Joint (articulación)- A part of the manipulator system that allows a rotation and/or
translational degree of freedom of a link of end-effector.

Joint Angles (ángulos articulares /de las articulaciones)- A measure of the
displacement incurred by revolute joints.

Jointed-Arm Robot (robot antropomórfico)- A robot that looks like a human arm. It
consists of several links connected by joints. Every joint receives metaphoric names: the
waist, elbow and shoulder joints, the first three (rotational) joints, provide the translation
movement. See Arm.

Joint-Interpolated Motion (movimiento interpolado en el espacio articular)- A
method of coordinating the movement of the joints, such that all joints arrive at the
desired location simultaneously. This method of servo control produces a predictable
path regardless of speed and results in the fastest pick and place cycle time for a
particular move. See Pick-and-Place Cycle, Servo-system.

Joint Torque (pares en articulares/en el espacio articular)- The set of joint
operations needed to enable the end-effector to apply the prescribed amount of force
to the workspace.

-K-

Kinematics (cinemática)- The study of motion without regard to the forces that cause
it. See Forward kinematics and Inverse kinematics.

-L-

Ladle Gripper (cuchara de colada)- An end-effector that acts as a spoon. It is commonly
used to scoop up liquids, transfer it to a mold and pour the liquid into the mold.
Commonly used for handling molten metal under hazardous conditions. See End-
Effector.



323

Laser - Acronym for light amplification by stimulated emission of radiation. It is a
device that produces a coherent monochromatic beam of light which is extremely narrow
and focused but still within the visible light spectrum. This is commonly used as a
non-contact sensor for robots. Robotic applications include: distance finding, identifying
accurate locations, surface mapping, bar-code scanning, etc.

Limited-Degree-of-Freedom Robot (robot limitado en número de grados de
libertad)- A robot able to position and orient its end-effector in fewer than six degrees of
freedom.

Link (eslabón)- A rigid part of a manipulator that connects adjacent joints.

Load Cycle Time (ciclo de trabajo)- A manufacturing or assembly line process term
that describes the complete time to unload the last workpiece and load the next one.

Location (localización=posición+orientación)- Describes the linear and angular
position of an object. The linear position includes the azimuth, elevation, and range
of the object. The angular position includes the roll, pitch, and yaw of the object. See
Roll, Pitch, and Yaw. See position.

-M-

Machine Learning (máquina con capacidad de aprendizaje)- The ability of a robot to
take a new situation and apply knowledge from a previous situation to help solve a new
problem. That is to say. it is the ability to acquire new data in memory and world model
that will influence actions subsequent to addition or modification.

Magnetic Detectors (detectores magnéticos)- Robot sensors that can sense the
presence of ferromagnetic material. Solid-state detectors with appropriate amplification
and processing can locate a metal object to a high degree of precision. See Sensor.

Manipulator (manipulador)- A robotic mechanism consisting of an arm and an end-
effector. It contains a series of segments, jointed or sliding relative to one another, for the
purpose and moving objects. The manipulator usually has several degrees of freedom. It
includes the arm, wrist, and end-effector. See Arm, Wrist, and End-Effector, Master-Slave
manipulator.

Master-Slave Manipulator (manipulador maestro-esclavo)- A class of manipula-
tors that operates is such a method: the master is hold in a position by a human, and
the slave duplicates the motion demonstrated by the master. Sometimes the duplicated
motion is done with a change of scale in displacement or force. See Teleoperation.

Material Processing Robot (robot de procesado (de materiales))- A robot designed
and programmed so that it can machine, cut, form, or change the shape, function or
properties of materials it handles between the time the materials are first grasped and
the time they are released in a manufacturing process



324 Appendix D. Glossary

Mobile Robot (robot móvil)- A robot mounted on a movable platform. The robot is
then able to move about its work environment by several different means such as wheels,
legs, flying, etc. The motions of the robot are controlled by the robot’s control system.
See Industrial Robot, and Robot.

Mobility (móvilidad)- The ability to move from one physical location to another with
reference to a fixed frame.

Model Based Path Planning (planificación de trayectorias basada en un modelo)-
A method of path planning for a robot that uses a known world model. A computer
simulation is executed to test and plan the robots actions. Several simulations may be
needed to successfully plan the robots actions before the robot is allowed to execute its
procedure. See Path, Path Planning, and Sensor Based Path Planning.

Modularity (modularidad)- The property of flexibility built into a computer system
by assembling discrete units that can be easily joined to or arranged with other-parts or
units.

Module (módulo)– Self contained component of a package. This component may
contain sub-components known as sub-modules.

Monitoring Controller (control de monitorización)- A controller within the robot’s
control system that continually checks the processing of the robot and alerts the operator
to possible malfunctions. This controller may also be used as a feedback device to enable
a more autonomous robot to react to certain conditions it encounters during its tasks.
See Autonomous, and Feedback.

Motion Axis (eje/dirección de movimiento)- The line defining the axis of motion
either linear or rotary, of a segment of a manipulator.

Motion Sensor (sensor de movimiento)- A robotic sensing device which has the
ability to detect an object that is in motion and determine the direction and speed of
that motion.

-N-

Navigator/Executor (navegador)- Informs the path planner where to go.

Negative Image (negativo fotográfico)- A picture signal having the polarity that is
opposite to normal polarity and that results in an image in which white and black areas
are reversed. This is sometimes used by image-sensors to determine edge detection or
shape detection.

Neural Network (red neural)- An information-processing device that consists of
a large number of simple non-linear processing modules, connected by elements that
have information storage and programming functions. In general, the modules involve
four functions: input/output, processing memory, and connections between different
modules providing for information flow and control.



325

-0-

Off-Line Programming System (sistema de programación off-line)- A programming
environment without the needed to use the robot.

On-Line Programming (programación on-line)- A means of programming a robot
using the robot in order to record the trajectories that must be performed latter by the
robot.

Open-Loop Control (control en lazo abierto)- A robotic control system in which data
flows only from the controller to the mechanism and does not flow from the mechanism
back to the controller. There is no feedback. This does not allow self-correcting action
that can be provided with feedback. See Feedback, and Closed-Loop Control.

Optical Encoder (encoder/codificador óptico)- A detection sensor that which
measures linear or rotary motion by detecting the movement of markings past a fixed
beam of light. This can be used to count revolutions, identify parts, etc.

Optical Proximity Sensors (sensores de proximidad ópticos)- Robot sensors that
measures visible or invisible light reflected from an object to determine distance. Lasers
are used for greater accuracy.

Orientation (orientación)- The angle formed by the major axis of an object relative
to a reference axis. It must be defined relative to a three-dimensional coordinate system.
It’s the angular position of an object with respect to the robot’s reference system. See
Roll, Pitch, and Yaw.

-P-

Passive Compliant Robot (robot con acomodación pasiva)- A compliant robot is
allowed to modify its motion during the performance of a task due to the mechanical
design of the robot. The compliance is given by a mechanical spring/damper attached to
the robot’s end effector, nothing matter with the controller.

Path (camino/trayectoria)- The locations (or points in three dimensional space,
trajectory) through which a manipulator must pass in order to complete its tasks. See
Via Points, and Path Planning.

Path Planner (planificador de trayectorias)- A module or set of modules that plans
how to get from a starting point to an ending point that is by the navigator.

Path Planning (planificación de trayectorias)- the act of a robot, using pro-
grammed intelligence, to determine its path with regard to its current position and
current world model. See Path, Via Points, and World Model.

Payload (carga (sujetada por el robot))- The total amount of weight that a robot
can handle without suffering any harm, or malfunction to the robot. Factors include:



326 Appendix D. Glossary

the sizing of the structural members, power transmission system, and actuators. The
load placed on the actuators depends on the configuration of the robot, amount of time
supporting the load, and inertial and velocity related forces. This is also called the load
capacity. See Actuator.

Pendant Control (consola de programación/teach pendant)- A control panel,
mounted on a pendant cable, that enables the human operator to stand in the most
favorable position to observe, control, and record the desired movements in the robot’s
memory. See Teach, and Teach pendant.

Pendant Teaching (almacenaje de posiciones por consola de programación)- The
mapping and recording of the position and orientation of a robot and/or manipulator
system as the robot is manually moved in increments from an initial state along a path
to a final goal state. The position and orientation of each critical point (joints, robot base)
is recorded and stored in a database for each way point the robot passes through on its
track toward its final goal. The robot may now repeat the recorded track on its own by
following the path stored in the database.

Perception (precepción)- A robot’s ability to sense its environment by sight, touch,
or some other means and to understand it in terms of a task. For example, it is the
ability to recognize an obstruction, or find a designated object in an arbitrary location.

Pick and Place Cycle (ciclo de recogida y posicionamiento)- The amount of time
it takes for a manipulator to pick up an object and place it in a desired location, then
return to it’s rest position. This includes time during the acceleration and deceleration
phases of a particular task. The robots movement is controlled from one point location
in space to another in a point-to-point (PTP) motion system. Each point is programmed
into the robot’s control memory and then played back during the work cycle.

Pitch (cabeceo/cabezada/pitch)- Rotation of the end-effector in a vertical plane
around the end of the robot manipulator arm. See Roll, and Yaw.

Pneumatically Driven Robot (robot neumático)- Robot in which compressed air
drives the mechanical arm. Usually used for pick-and-place activities where speed and
precision are not critical.

Point Set (conjunto de puntos)- A set of way points established during the pendant
teaching process that describe a unique path from an initial state to a final goal state.

Point-to-Point (punto-a-punto)- Manipulator motion in which a limited number of
points along a projected path of motion is specified. The manipulator moves from point
to point rather than a continuos smooth path

Position (posición)- the definition of an object’s location in 3-D space, it’s orienta-
tion, and its velocity. Usually stipulated by a 3-D coordinate system using its X, Y,and Z
coordinates.

Position Control System (sistema de control de posición)- A system that sup-
presses disturbances that perturb the system from the desired trajectory by calculating
the velocity; and positioning necessary to counteract such disturbances.



327

Potentiometer (potenciómetro)- An encoding position sensing device for ma-
nipulators that produces a voltage proportional to the shaft position to measure
joint displacement. Its uses are limited due to poor resolution, linearity, and noise
susceptibility.

Power Cylinder (cilindro (hidráulico) de potencia)- A linear mechanical actuator
consisting of a piston in a cylindrical volume and driven by high-pressure hydraulic
fluid. See Actuator.

Presence-sensing Safeguarding Device (dispositivo sensor de presencia)- A
device designed, constructed, and installed to create a sensing field to detect an intrusion
into such field by people, robots, or objects. See Sensor.

Prismatic joint (articulación/unión prismática)- A joint of two nested links that
slide onto or alongside of each other.Programmable Robot - A feature that allows a
robot to be instructed to perform a sequence of steps and then to perform this sequence
in a repetitive manner. It can then be reprogrammed to perform a different sequence of
steps if desired.

Prosthetic Device/Robot (prótesis (robótica))- A mechanical robot device that
substitutes for lost manipulative or mobility functions of the human limbs, providing
a substitute for human arms or legs when their function is lost. See Exoskeleton.

Proximity Sensor (sensor de proximidad)- A non-contact sensing device used to
sense when objects are a short distance away, and determine the distance of the, object.
Several types include: radio frequency, magnetic bridge, ultrasonic, and photoelectric.
Commonly used for: high speed counting, sensing metal objects, level control, reading
coding marks, and limit switches. See Acoustic Proximity Sensor, and Inductive Sensor.

-R-

Reachable volume (volumen alcanzable)- The volume of space that a robot can reach
in at least one orientation.

Reactive (reactivo)- Tending to react.

Real-Time System (sistema en tiempo real)- A computer system than can perform
operations in deterministic way. That is to say, it can be determined how a operation
will last a priori. No jitter, no lags.

Reconfigurable (reconfigurable)- Ability to modify the program to do something at
least slightly different. Ability of a robot to modify itself to accommodate new or added
(or subtracted) parts: joints, links, manipulators, etc.

Rectangular-Coordinate Robot (robot rectangular/cartesiano)- A robot whose
manipulator’s arm moves in linear motions along a set of Cartesian or rectangular axis.
The work envelope forms the outline of a three dimensional rectangular figure. See Work
Envelope.



328 Appendix D. Glossary

Reliability (fiabilidad)- The percentage of time during which a robot can be expected
to be in normal operation (not out of service for repair or maintenance). Also called the
robot’s uptime.

Repeatability (repetibilidad)- The specification of how accurately a manipulator can
return to a “taught point” repeatedly. See Teach and accuracy.

Resolution (resolución)- It is the minimum ‘distance’ between two valid values due
to the digital component.

Reusable (reciclable/reutilizable)- The quality to use software over again instead of
being forced to rewrite it.

Revolute Joint (articulación rotativa)- The joints of a robot that are capable of
rotary motion.

Robot - A re-programmable, multifunctional manipulator designed to move material,
parts, tools, or specified devices through variable programmed motions for the perfor-
mance of a variety of tasks. Common elements that make up a robot are: controller,
manipulator, and end-effector. See Manipulator, Controller, and End-Effector.

Robot Programming Language (lenguaje de programación de robot/robótico)-
An interface between a human user and a robot that relates humans commands to the
robot.

Roll (alabeo/roll)- Rotation of the robot end-effector in a plane perpendicular to the
end of the manipulator arm. See Pitch, and Yaw.

-S-

SCARA (Selective Compliance Assembly Robot Arm) Manipulator (manipulador
SCARA (Brazo Robot de Ensamblaje de acomodación selectiva))- An arm with parallel
revolute joints that allow movement and orientation with respect to a family of planes
parallel to the horizontal plane (as limited vertical motion is allowed).

Sensor - Instruments used as input devices for robots thath enable it to determine
aspects regarding the robot’s environment, as well as the robot’s own positioning.
Sensors are used for robot information, and robot control.

Sensor Based Path Planning (planificación de trayectoria basada en sensores)-
A method of path planning for a robot that uses a dynamic world model. The robot uses
sensors to evaluate its environment. See Model Based Path Planning.

Sensory Feedback (realimentación sensorial)- Variable data measured by sensors
and relayed to the controller in a closed-loop system. If the controller receives feedback
that lies outside an acceptable range, then an error has occurred. The controller sends
an error signal to the robot. The robot makes the necessary adjustments in accordance
with the error signal.



329

Servo-controlled Robot (robot servo-controlado)- The control of a robot through
the use of a closed-loop Servo-system, in which the position of the robot axis is measured
by feedback devices and is stored in the controller’s memory. See Closed-Loop System,
and Servo-system.

Servo-system (servo-sistema)- A system in which the controller issues commands,
the pressure motor drives the arm, and a sensor measures the motions and signals the
amount of motions back to the controller. This process is continued until the arm is
repositioned to the point requested. See Servo-controlled Robot.

Simulation (simulación)- A graphical computer program that represents the robot
and its environment, which emulates the robot’s behavior during a simulated run of the
robot. This is used to determine a robot’s behavior in certain situations, before actually
commanding the robot to perform such tasks. Simulation items to consider are: the 3-
D modeling of the environment, kinematics emulation, path-planning emulation, and
simulation of sensors. See Sensor, Forward Kinematics, and Robot.

Spatial Resolution (resolución espacial)- The minimum or smallest dimension
to which the robot system can define the workspace. This resolution determines the
smallest error that can be sensed by the robot, as limited by the minimum resolution of
the controller or the minimum resolving increment of the servo-system. See Resolution,
and Resolvers.

Spherical-Coordinate Robot (robot esférico)- A robot whose construction consists
of a horizontally rotating base, a vertically rotating shoulder, and a linear traversing arm
connected in such a way that the work envelope traced by the end of the robot arm at
full extension defines a sphere in space.

Spline (Spline)- A smooth, continuous function used to approximate a set of
functions that are uniquely defined on a set of sub-intervals. The approximating function
and the set of functions being approximated intersect at a sufficient number of points
to insure a high degree of accuracy in the approximation. The purpose for the smooth
function is to allow a robot manipulator to complete a task without jerky motion.

State Space (espacio de estado)- The set of all possible states available for use in
solving a given problem.

Strain (tensión/esfuerzo)- A measure of the change in the size or shape of an object
when subjected to different physical forces. This change is in reference to the objects
original size and shape. See Strain Gauges and Force Sensor.

Strain Gauges (galgas extensiométricas)- Force sensors that usually consists of
fine wires which can measure very small amounts of motion caused by the flexing of an
object, or manipulator. They are used to measure strains and stresses in many types of
components. See Strain and Force Sensor.



330 Appendix D. Glossary

-T-

Tachometer (tacómetro)- A sensing device capable of sensing the speed at which a
shaft is rotating. Generally used to determine revolutions per minute. May be used in
conjunction with contouring systems as a supplemental control for governing feed-rates.
See Sensor.

Tactile Sensor (sensor táctil)- A sensing device, normally used with the robot’s
hand or gripper, which senses physical contact with an object, thus giving the robot
an artificial sense of touch. The sensors respond to contact forces that arise between
themselves and solid objects. The object must actually be touched, unlike proximity
sensors. See Touch sensor, End-Effector, and Gripper.

Task Planner (planificador de tareas)- A module or set of modules that plans how
to perform a certain job.

Teach - To program a manipulator arm by manually guiding it through a series of
motions.

Teach Pendant (consola de programación/teach pendant)- A handheld control
box that is used by an operator to remotely guide a robot through the motions of its
tasks. The motions are recorded by the robot control system for future playback. See
Accuracy, Pendant Control, Playback Accuracy, Repeatability, and Teach.

Teleoperational (teleoperacional)- A method of controlling a robot through some
means of remote control. This usually consists of a master-slave device that produces
movements identical to or in direct proportion to actions or motions of the remotely
operated human operator. The robot is entirely controlled by a human with this means
of remote control. See Master-Slave Manipulator.

Telerobot - A robot that can be controlled remotely.

Telerobotic (telerobótica)– A kind of teleoperation in which the human operator acts
as supervisor. The human sends information, to the robot’s controller, about targets ,
constraints, requirements,... And he receives, from the robot’s controller, data about the
robot’s status, impairments, errors, measurements (from sensors),...

Thermistors (termistores)- Used as temperature sensors within a robot’s sensing
system. Thermally sensitive resistors change in electrical resistance with variations in
temperature.

Thermocouple (termopares)- Used as temperature sensors within a robot’s sensing
system. Consists of two dissimilar metals that produce an electromotive force roughly
proportional to the temperature difference between their hot and cold junction ends.

Time-of-Flight (tiempo de vuelo)- The calculation of time it takes for a signal to
reach and return from an object. The time it takes to reach an object is equal to the time
to return from the object so the range is one-half the product of the velocity of the signal
and the round-trip time.



331

Tool (herramienta)- A term used loosely to define a working apparatus mounted to
the end of the robot arm, such’ as a hand, gripper, welding torch, screw driver, etc. See
Arm, Gripper, and End-Effector.

Tool Frame (sistema coordinado solidario a la herramienta)- A coordinate system
attached to the end-effector of a robot (relative to the base frame).

Touch Sensor (sensor de contacto)- Sensing device, sometimes used with the
robot’s hand or gripper, which senses physical contact with an object, thus giving the
robot an artificial sense of touch. The sensors respond to contact forces that arise
between themselves and solid objects. See Tactile Sensor

Trajectory Generation (generación de trayectoria)- The computation of motion
functions that allow the movement of joints- in a smooth controlled manner.

Transducer (transductor)– A device that converts energy from one form to another.
Generally, it is a device that converts an input signal into an output signal of different
form. It can also be thought of as a device thath converts static signals detected in the
environment (such as pressure) into an electrical signal that is sent to a robot’s control
system.

-U-

Ultrasound (ultrasonido)- Acoustical radiation, with a frequency higher than the
frequency range for audible sound.

Uptime (tiempo de puesta en marcha)- A period of time in which a robot, or
production line is operating or available to operate, as opposed to downtime. See
Downtime.

-V-

Vacuum Cup Hand (ventosa de vacı́o)- An end-effector for a robot arm that is used
to grasp light to moderate weight objects using suction, for manipulation. Such objects
may include glass, plastic; etc. See End-Effector.

Via Point (punto de paso)- Intermediate locations (or points in space) through
which a manipulator must pass en route to a particular destination. See Path, and Path
Planning.

Vision Sensor (sensor de visión)- A sensor that identifies the shape, location,
orientation, or dimensions of an object through visual feedback, such as a television
camera. See Feedback.

Voice Recognition (reconocimiento de voz)- A system of sound sensors that
translate the tones of the human voice into computer commands. This is sometimes
used as a human-to-machine interface to the robot. The human operator simply speaks



332 Appendix D. Glossary

commands to the robot’s controller, the human voice is broken down into speech
patterns and interpreted by the robot as commands.

-W-

Work Envelope (envolvente del espacio de trabajo)– The edge of workspace. See
Workspace.

Work-piece (pieza de trabajo)- Any part which is being worked, refined, or
manufactured prior to its becoming a finished product.

Workspace (espacio de trabajo)- The volume of space within which the robot can
perform given tasks.

World Model (modelo de trabajo)- A three dimensional representation of the
robot’s work environment, including objects and their position and orientation in this
environment, which is stored in robot memory. As objects are sensed within the
environment the robot’s controller system continually updates the world model. Robots
use this world model to aid in determining its actions in order to complete given tasks.

Wrist (muñeca)- A set of rotary joints between the arm and the robot end-effector
that allow the end-effector to be oriented to the work-piece. In most cases the wrist
can have degrees of freedom that enable it to grasp an object with roll, pitch, and yaw
orientation. See Arm, End-effecfor, Roll, Pitch, Yaw, and work piece.

-Y-

Yaw (guiñada/yaw)- Rotation of the end-effector in a horizontal plane around the end of
the manipulator arm. See Roll, and Pitch.



Index

(MRAC), 216
Jacobian Matrix, 169

Absolute encoder, 98
absolute error, 19
Accuracy, 19, 88
active on-line programming, 38
actuator, 315–317, 319, 321, 327
admittance control, 196
AGVs, 8
android, 306
Approximation-point, 47
arc welding, 319
Arm, 16
automatic guided vehicles, 8
Automaton, 299
automaton, 301, 303
Automatos, 299
avatar, 13

Bandwidth, 90
Basic Control, 193
Basic robot actions, 34
basic rotation homogeneous transforma-

tion matrix, 125
basic translation matrix, 122
bilateral control, 5
bipolar steppervmotor, 80

Cartesian Coordinates, 106
Cartesian robot, 320
Cartesian space, 18
Closed (Kinematic Chain, 16
CNC Machine, 5
Computer Numerically Controlled Machine

Tool, 5
Configuration of the robot arm, 18
Connection Parameters, 138
Continuous Trajectories, 186

Coordinated or Synchronous Trajectories,
184

Cylindrical Coordinates, 106
Cylindrical joint, 56

D-H method, 142
Dead zone, 90
Decay time, 90
Degree of Freedom, 17, 53
Denavit and Hartenberg method, 142
Denavit and Hartenberg method using

Craig’s convention, 142
Dextrous Workspace, 18
direct cosine matrix, 110
Direct jacobian matrix, xxxii
DoF, 17
duty cycle, 77
Dynamic range, 88
Dynamics, 137

Euler Angles, 113
Euler Parameters, 116
Extended Teach-box programming, 39
External sensors, 86

feedback compensation, 210
feedforward compensation, 210
Flowchar, 43
force feedback, 319
formulation singularity, 115
forward kinematics problem, 137

Gain Scheduling, 215
Guarded Motions, 101
guiding by dummy/mannequin, 38

Handling, Robot Applications, 25
hexapods, 65
homogeneous coordinates, 105, 118
homogeneous transformation, 118

333



334 INDEX

homogeneous transformation matrix, 120
homogeneous translation matrix, 122
Hybrid Manipulators, 16
Hybrid Stepper Motor, 80
Hysteresis, 88

I, Robot, 4, 304
Impedance control, 196
Incremental Encoder, 96
Index channel, 97
Industrial mobile robots, 8
Industrial Robot, 23, 24
Industrial robot, 53
industrial robots, 304
integral term, 205
Internal sensors, 86
Inverse jacobian matrix, xxxii
inverse kinematics problem, 137
Isaac Asimov, 4

Join space, 18
Joint, 15
joint, 54, 315, 317, 319, 322, 327
Joint Angle, 140
Joint Parameters, 138
Joint-by-joint motion, 184
Joint-level programming, 35

Karel Capek, 4
kinematics, 105, 137

lag compensation, 205
laws of robotics, 5
laws of robotics, first, 5
laws of robotics, third, 5
laws of robotics, Zeroth, 5
laws of robotics,second, 5
lead compensation, 206
Linearity, 88
Link, 15
link length, 139
link offset, 140
Link Parameters, 138
link twist, 139
links, 138
location, 105, 118
Low-level programming, 35

manipulability index, 176

Manipulator, 16
manipulator, 23, 315–332
Manipulator Analogy, 19
Master robot, 5, 11
master-slave guiding, 38
mecanical singularity, 115
Mechanism, 16
Model Reference Adaptive Control, 216
modified Denavit and Hartenberg method,

142

normal matrix, 110

object reference point, 106
Object-level programming, 35
Off-line robot programming, 40
Offset, 88
On-line programming, 37
Open (Kinematic) Chain, 15
original Denavit and Hartenberg method,

142
orthogonal matrix, 110
orthonormal matrices, 110
overshoot, 205, 206

Parallel Manipulator, 16
Passive on-line programming, 37
Permanent Magnet Stepper Motor, 80
PI controller, 205
PID controller, 206
pitch, 67
Planar joint, 56
Point-to-point programming, 37
Point-to-point trajectories, 184
position and orientation, 105
Precision, 19
Prismatic joint, 56
Processing, Robot Applications, 25
Programmable Object Transfer Device, 5
Programming by guiding, 37
Programming by teaching, 37
programming pendant, 38
proportional-integral controller, 205
Pseudocode, 42
PTP, 37
PWM, 76

Quadrature encoder, 97
Quaternions, 116



INDEX 335

R.U.R, 4
R.U.R., 304
Range, 88
Reachable Workspace, 18
redundant robots, 54
Repeatability, 19
Repeatability error, 19
Reproducibility, 19
Resolution, 19, 88
Resolution error, 19
Response time, 90
Robot, 3, 6
robot, 304, 315–332
Robot subsystems, 6
Robota, 4
robotic, 323–325
roll, 67
Roll-Pitch-Roll mobile Euler Angles, 114
Roll-Pitch-Yaw mobile Euler Angles, 114
Rosum’s Universal Robots, 4
rotation matrix, 109
Rotational joint, 56

Saturation, 90
Screw joint, 56
Sensitivity, 88
Sensitivity error, 88
sensors, 316, 317, 319, 321–325, 328–331
Serial Manipulator, 16
Simultaneous joint motion, 184
singular configuration, 176
Situations, 47
Slave robot, 5, 11
speed control loop, 207
Spherical Coordinates, 106
Spherical joint, 56
static error, 205
steady state error, 205
Subroutines, 43
subroutines, 41, 48

table of D-H parameters, 145
Target-point, 47
Task-level programming, 36
teach pendant, 38
teach-box, 38
Teach-box Programming, 38
telemanipulator, 5

Teleoperation, 323
Telepresence, 10
Terminal devices, 101
theoretical workspace, 156
tool, 100, 318
Trajectory Generation, 179
trajectory programming, 37

Unimation Inc, 305
unipolar stepper motor, 81
unit vectors, 108
Universal joint, 56

Variable Reluctance Stepper Motor, 80
Via-point, 47

welding, 331
Work cell, 101
Workspace, 18
Workspace envelope, 18
Workspace limitation, 18
wrist, 315, 318, 319, 323, 332

yaw, 67
YAW-PITCH-ROLL, 113



336 INDEX



Bibliography

[1] B. Appelhof. Design of haptic interface technology. Master’s thesis, Dept of
Mechanical Engineering, University of Twente, 2001.

[2] A. Barrientos, L. F. Peñı́n, C. Balaguer, and R. Aracil. FUNDAMENTOS DE
ROBÓTICA. Mc Graw Hil, 1997.

[3] J.J. Craig. INTRODUCTION TO ROBOTICS, MECHANICS AND CONTROL. Addison
Wesley, 1986.

[4] A. J. Critchlow. INTRODUCTION TO ROBOTICS. Macmillan Publishing Co, 1985.

[5] V. Etxebarria. SISTEMAS DE CONTROL NO LINEAL Y ROBÓTICA. Universidad del
Paı́s Vasco, 1999.

[6] K. S. Fu, R.C. González, and C. S G. Lee. ROBÓTICA, CONTROL, DETECCIÓN,
VISIÓN E INTELIGENCIA. Mc Graw Hill, 1993.

[7] Ashitava Ghosal. ROBOTICS Fundamental Concepts and Analysis. Oxford Univer-
sity Press, 2006.

[8] P. Mckerrow. INTRODUCTION TO ROBOTICS. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 1991.

[9] A. Ollero. ROBÓTICA, MANIPULADORES ROBÓTICOS Y ROBOTS MÓVILES. Mar-
combo, 2001.

[10] R. P. Paul. ROBOT MANIPULATORS: MATHEMATICS, PROGRAMMING AND CON-
TROL. Addison Wesley, 1981.

[11] L. Sciavicco and B. Siciliano. MODELLING AND CONTROL OF ROBOT MANIPULA-
TORS. Springer, 2000.

[12] L. Sciavicco and B. Siciliano. ROBOTICA INDUSTRIALE: MODELLISTICA E CON-
TROLLO DI MANIPOLATORI. Mc Graw-Hill, 2000.

[13] F. Torres, F. Pomares, P. Gil, S.T. Puente, and R. Aracil. ROBOTS Y SISTEMAS
SENSORIALES. Prentice-Hall Inc, 2002.

337


