71 research outputs found

    The Role of Unmanned Aircraft Systems (UAS) in Disaster Response and Recovery Efforts: Historical, Current and Future

    Get PDF
    A wide range of legislation has been proposed or put into place that restricts the use of unmanned systems. These actions by legislators and regulators will stifle the growth of this technology and the associated surrounding industry. The largest obstacle to the proliferation of UAS in the U.S. is the FAA. The FAA has designated the location of six test sites that are anticipated to allow for less restrictive and formative research to assess the technologies that the FAA has claimed need to exist in order to integrate UAS into the NAS. Further complicating the adoption of UAS for beneficent causes is the plethora of local and state legislation and regulation. Whilst many state restrictions do have built-in caveats to potentially allow for disaster support utilizing UAS, not all are so explicit. All of these actions make the adoption ofUAS in disaster areas more complex and may sway associated agencies away from purchasing UAS for these uses in the future. This research outlines historical uses of UAS to provide basis for the adoption in disaster relief. Examples of past use of unmanned systems in exigent event response are provided including post-hurricane rescue, wild fire monitoring, and landslide disaster relief. An example of missed opportunities with UAS, the Boston Marathon bombing is also outlined. Current UAS usage in first response is explained including types of platforms and sensors that show promise in such operations. Future considerations for UAS adoption in disaster efforts are outlined

    On Collaborative Aerial and Surface Robots for Environmental Monitoring of Water Bodies

    Get PDF
    Part 8: Robotics and ManufacturingInternational audienceRemote monitoring is an essential task to help maintaining Earth ecosystems. A notorious example is the monitoring of riverine environments. The solution purposed in this paper is to use an electric boat (ASV - Autonomous Surface Vehicle) operating in symbiosis with a quadrotor (UAV – Unmanned Air Vehicle). We present the architecture and solutions adopted and at the same time compare it with other examples of collaborative robotics systems, in what we expected could be used as a survey for other persons doing collaborative robotics systems. The architecture here purposed will exploit the symbiotic partnership between both robots by covering the perception, navigation, coordination, and integration aspects

    A cooperative multi-robot team for the surveillance of shipwreck survivors at sea

    Get PDF
    The sea as a very extensive area, renders difficult a pre-emptive and long-lasting search for shipwreck survivors. The operational cost for deploying manned teams with such proactive strategy is high and, thus, these teams are only reactively deployed when a disaster like a shipwreck has been communicated. To reduce the involved financial costs, unmanned robotic systems could be used instead as background surveillance teams patrolling the seas. In this sense, a robotic team for search and rescue (SAR) operations at sea is presented in this work. Composed of an Unmanned Surface Vehicle (USV) piggybacking a watertight Unmanned Aerial Vehicle (UAV) with vertical take-off and landing capabilities, the proposed cooperative system is capable of search, track and provide basic life support while reporting the position of human survivors to better prepared manned rescue teams. The USV provides long-range transportation of the UAV and basic survival kits for victims. The UAV assures an augmented perception of the environment due to its high vantage point.info:eu-repo/semantics/acceptedVersio

    Vision-Based Autonomous Landing of a Quadrotor on the Perturbed Deck of an Unmanned Surface Vehicle

    Get PDF
    Autonomous landing on the deck of an unmanned surface vehicle (USV) is still a major challenge for unmanned aerial vehicles (UAVs). In this paper, a fiducial marker is located on the platform so as to facilitate the task since it is possible to retrieve its six-degrees of freedom relative-pose in an easy way. To compensate interruption in the marker’s observations, an extended Kalman filter (EKF) estimates the current USV’s position with reference to the last known position. Validation experiments have been performed in a simulated environment under various marine conditions. The results confirmed that the EKF provides estimates accurate enough to direct the UAV in proximity of the autonomous vessel such that the marker becomes visible again. Using only the odometry and the inertial measurements for the estimation, this method is found to be applicable even under adverse weather conditions in the absence of the global positioning system

    Bird\u27s Eye View: Cooperative Exploration by UGV and UAV

    Get PDF
    This paper proposes a solution to the problem of cooperative exploration using an Unmanned Ground Vehicle (UGV) and an Unmanned Aerial Vehicle (UAV). More specifically, the UGV navigates through the free space, and the UAV provides enhanced situational awareness via its higher vantage point. The motivating application is search and rescue in a damaged building. A camera atop the UGV is used to track a fiducial tag on the underside of the UAV, allowing the UAV to maintain a fixed pose relative to the UGV. Furthermore, the UAV uses its front facing camera to provide a birds-eye-view to the remote operator, allowing for observation beyond obstacles that obscure the UGV’s sensors. The proposed approach has been tested using a TurtleBot 2 equipped with a Hokuyo laser ranger finder and a Parrot Bebop 2. Experimental results demonstrate the feasibility of this approach. This work is based on several open source packages and the generated code will be available online

    ART-GCS: an adaptive real-time multi-agent ground control station

    Get PDF
    Ground Control Stations (GCS) are essential tools to monitor and command real-world complex missions involving Unmanned Vehicles (UVs). As the number and types of UVs in the mission grows, implementing a robust and adaptable GCS, capable of simplifying and reducing operator' interactions and mental workloads, becomes an engineering challenge. To address it, this paper presents a new Adaptive-Real-Time (ART)-GCS that 1) allows to monitor and control a runtime changing number of heterogeneous UVs, 2) adapt its GUI to the mission requirements and operators workload to minimize their fatigue and stress, and 3) provide support to experiments with actual and simulated UVs. To show its benefits in real-world missions, this paper presents a field experiment where, for safety reasons, a simulated unmanned aerial vehicle has to find an oil-spill that must be enclosed by a containment boom dragged by two real unmanned surface vehicles

    Design, Implementation and Modeling of Flooding Disaster-Oriented USV

    Get PDF
    Although there exist some unmanned surface platforms, and parts of them have been applied in flooding disaster relief, the autonomy of these platforms is still so weak that most of them can only work under the control of operators. The primary reason is the difficulty of obtaining a dynamical model that is sufficient rich for model-based control and sufficient simple for model parameters identification. This makes them difficult to be used to achieve some high-performance autonomous control, such as robust control with respect to disturbances and unknown dynamics and trajectory tracking control in complicated and dynamical surroundings. In this chapter, a flooding disaster-oriented unmanned surface vehicle (USV) designed and implemented by Shenyang Institute of Automation, Chinese Academy of Sciences (SIA, CAS) is introduced first, including the hardware and software structures. Then, we propose a quasi-linear parameter varying (qLPV) model to approach the dynamics of the USV system. We first apply this to solve a structured modeling problem and then introduce model error to solve an unstructured modeling problem. Subsequently, the qLPV model identification results are analyzed and the superiority compared to two linear models is demonstrated. At last, extensive application experiments, including rescuing rope throwing using an automatic pneumatic and water sampling in a 2.5 m radius circle, are described in detail to show the performance of course keeping control and GPS point tracking control based on the proposed model

    A novel cooperative platform design for coupled USV-UAV systems

    Get PDF
    International audienceThis paper presents a novel cooperative USV-UAV platform to form a powerful combination, which offers foundations for collaborative task executed by the coupled USV-UAV systems. Adjustable buoys and unique carrier deck for the USV are designed to guarantee landing safety and transportation of UAV. The deck of USV is equipped with a series of sensors, and a multi-ultrasonic joint dynamic positioning algorithm is introduced for resolving the positioning problem of the coupled USV-UAV systems. To fulfill effective guidance for the landing operation of UAV, we design a hierarchical landing guide point generation algorithm to obtain a sequence of guide points. By employing the above sequential guide points, high quality paths are planned for the UAV. Cooperative dynamic positioning process of the USV-UAV systems is elucidated, and then UAV can achieve landing on the deck of USV steadily. Our cooperative USV-UAV platform is validated by simulation and water experiments. Index Terms-USV-UAV platform. Multi-ultrasonic joint dynamic positioning algorithm. Hierarchical landing guide point generation algorithm. Cooperative positioning

    Human-machine interaction for unmanned surface systems

    Get PDF
    This research investigated the human-machine interaction (HMI) technologies for human-robot teams operating as unmanned surface systems (USS). An pilot role was found to be the most prevalent in the USS-related literature but additional human roles were determined to likely be necessary (e.g., Mission Specialist} though were not documented; interface needs have not yet been determined for any role. The human interfaces used by 67 Micro and Small X, Intermediate, Harbor, Fleet, and E,F,G-Class platforms were examined and it was determined that: i) the research literature does not well characterize the human roles present in unmanned surface systems, ii) domain complexity may necessitate increased automation of the robot platform for the human team, and iii) that unmanned surface vehicles likely lay on the human-machine interaction spectrum between unmanned ground vehicles and unmanned aerial vehicles. This work is expected to serve as a reference for future design and refinement of human interfaces for USSs and as a foundation for better understanding HMI in USSs
    • …
    corecore