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ABSTRACT

This research investigated the human-machine interaction (HMI) technologies for human-

robot teams operating as unmanned surface systems (USS). An pilot role was found to be

the most prevalent in the USS-related literature but additional human roles were determined

to likely be necessary (e.g., Mission Specialist) though were not documented; interface needs

have not yet been determined for any role. The human interfaces used by 67 Micro and

Small X, Intermediate, Harbor, Fleet, and E,F,G-Class platforms were examined and it was

determined that: i) the research literature does not well characterize the human roles present

in unmanned surface systems, ii) domain complexity may necessitate increased automation

of the robot platform for the human team, and iii) that unmanned surface vehicles likely

lay on the human-machine interaction spectrum between unmanned ground vehicles and

unmanned aerial vehicles. This work is expected to serve as a reference for future design

and refinement of human interfaces for USSs and as a foundation for better understanding

HMI in USSs.
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CHAPTER 1

INTRODUCTION

This research surveys the current state of understanding and technological accessibility

of human-machine interaction (HMI) of the human roles for Unmanned Surface Systems

(USSs).

1.1 Research Question

Unmanned Surface Vehicles (USVs) have become a part of a core branch of Unmanned

Systems in the globe due to their stability, robust communication, and potential for future

development. But in order for USVs to be successful, the lack of detailed information of the

Unmanned Surface Systems (USVs) and its solutions are needed to be identified.

The primary research question of this thesis work is

What is a current state of Human-Machine Interaction (HMI) for small unmanned surface

systems?

HMI in general but specifically for small USVs has not been discussed or mentioned

in many studies. The identification of HMI can potentially improve the control mode and

especially the level of automation so that the variety of mission applications can be expanded.

The USVs seems to have a potential to be a leading devices in many different field of

applications due to advantages discussed below.

The majority of the platforms are in the smaller size group that are not developed by

military. Reasons behind the void of information is caused by the simplicity of the platforms

and single operator system. Smaller systems have restricted limitations in payloads, range,

and endurance and these limitations influence each other. Especially primary missions for

smaller USVs are single missions in environmental monitoring so that risk of human oper-

ators are low, and in disaster recovery & rescue that require urgent human decisions. The
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main interest of the operation tends to be simplicity and efficiency instead of depending on

automation with less human in loop operation. The level of HMI are not considered in terms

of automation or the level of dependence in computer, but the level of ease for the human

operators.

1.2 Why focus on USV

Unmanned systems are dramatically becoming popular due to following points: the cost of

manned systems are the significantly more expensive than unmanned system even with hu-

man operators; the coverage and awareness of environment situation for Unmanned systems

are improved due to advanced technology of sensors and, localization systems; productivity

of missions as a whole will be more efficient due to operator specific mission (human operator

can concentrate on manned missions); Unmanned systems keep human presence away from

dangerous environment [1]. Addition to USVs, Unmanned systems consist of Unmanned

Ground Vehicles (UGVs), Unmanned Ariel Vehicles (UAVs), Unmanned Underwater Vehi-

cles (UUVs), and Unmanned Space Vehicles. Especially USVs are given a recent popularity

due to effective utilization for not only wartime missions, but also peacetime missions [1].

The reasons behind this popularity are tied to accessibility and communication. For

environmental monitoring mission, air regulation and land ownership can cause limitation

in accessibility. Surface water such as watercourses, lake and wetland are public water. For

deep water mission, UUVs have difficulty communicating with the ground control station

due to a limitation of signal transmission under water. USVs belongs to the border of air and

under water, so that for heterogeneous mission, USVs can act as the link between ground

station or other unmanned and manned systems.

1.3 Understanding Unmanned Surface Vehicles

USVs have been developed and utilized for many of decades, Unmanned implies removing

human presence from the targeted area [2]. They are either remotely operated or pre-

programmed to be auto-piloted through radio, WiFi, cellular network, satellite, etc. Due

to drastic improvement of global positioning systems in terms of compactness, effectiveness

and affordability, USVs started to show their strength in Unmanned System field [2]. USVs

especially take advantage of their air-sea interface to serve as a bridge in the networks of
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heterogeneous manned/unmanned air, ground, and marine platforms to introduce new and

advanced understandings in environmental monitoring, disaster rescue, surveillance, warfare,

and defence applications [3].

1.4 Importance to Civil Engineering

UAVs, UGVs and UUVs have been popularly used for a variety of civil applications. For

example: UAVs have been utilized for land surveying and monitoring, construction manage-

ment, and disaster response; UUVs have been used for underwater monitoring, underwater

inspection and maintenance and repair for marine infrastructure or vehicles; UGVs are pop-

ularly used for military, and explosives & bomb disabling missions.

Despite high popularity and prestigious technology of these systems, the existing prob-

lems and application difficulties prohibit researchers from finding complete solutions. In

particular, UAVs and UUVs share the same restriction of signal communication range. Es-

pecially for the team (multi-vehicle) missions, their environment becomes obstacle between

these platforms. USVs are considered to fill this void and with additional factors such as long

endurance, high payload capacity, user friendly interfaces and mostly reliable signal com-

munication. USVs have a potential to be powerful additional tool or team-player tool for

civil applications such as disaster rescue, offshore & onshore infrastructure inspection, and

environmental monitoring. For instance, bridge inspection after Hurricane WILMA and IKE

were conducted by the Center for Robot-Assisted Search and Rescue (CRASAR) with USVs

and Underwater ROV. This case study led post disaster recovery inspection economically

feasible by reduction of time, cost, and risk of human presence [4].

1.5 Contributions

There are two distinct contributions that are presented in this thesis regarding to HMI

for USVs. In the existing literature, specific identifications of human roles for USVs are not

always stated for both research and commercial systems. Especially for smaller platforms,

number of team members, human roles, or interfaces are barely found in contrast of growing

numbers of smaller platforms.
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1.5.1 Contribution 1

Filling the void of HMI information provides better accessibility to match high demand

and supply of multi-mission smaller USVs by large range of users. Especially this void can

provide solution to key components when level of autonomy increases.

1.5.2 Contribution 2

Identifying specific human roles provides efficacy in number of crew member needed and

on the other hand, shared crew can be analyzed and reevaluated depending on risk and

safety of the mission.

1.6 Organization of this Thesis

This thesis is organized as follows:

• Chapter 2 begins with a review of the research and industrial literature associated with

categories and characteristics of USVs, Human Robot Team roles and HMI for existing

USVs platforms. Actively operating USVs are identified and surveyed in Table 1.

• Chapter 3 analyzes identified HMI and its trend according to the NAVY classification

scale of USV of Micro and Small X-Class, Intermediate-Class, Harbor-Class, Fleet-

Class and E,F,G-Class. Hardware and Software based Human-Machine interfaces are

analyzed by the surveyed data in Table 2 and Table 3.

• Chapter 4 introduces 3 findings of Human-Machine Interaction for Operator role and

its limitation.

• Chapter 5 finally presents conclusions regarding to each findings and limitations, and

then future work and recommendation.
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CHAPTER 2

RELATED WORK

This section provides a comprehensive review of the research and industrial literature,

identifying 67 existing Unmanned Surface Vehicles (USVs). The USVs are categorized into

four different groups based on size, weight, range, endurance, and types of the mission. The

present human roles and human machine interaction (HMI) relationships are also presented

including hardware and software interfaces for each USV.

2.1 Categories of Unmanned Surface Vehicles

Currently, there is not an official classification system for USVs [5]; however, the most

common descriptions for USVs follow the 2007 U.S. Navy Master Plan standards that include

four classes of vehicles organized by length (the distance between the forward-most and after-

most parts of the vehicle): X-Class, Harbor, Snorkeler, and Fleet [1]. The National Defense

Research Institute (NDRI) provides an additional class, EFG, for USVs that are greater

in length than the Fleet-Class [6]. This survey combines the U.S. Navy, NDRI category

structures and, additional adjustment classes which are created for this survey.

Additional category modifications are included in the survey: (1) The Snorkeler-Class

(submersible) is not described in this survey due to the similarity with Harbor-Class as well

as this class of SUV is outside the scope of the thesis. (2) The Intermediate-Class has been

added to cover USVs with lengths between 3 m and 7 m. Currently, USVs with lengths

between 3 m 0 7 m not classified in the literature. The vehicles that fall into this size range

have been found to be show unique characteristics and a large number of USVs are available

in this class. (3) The X-Class is divided into two sub-groups: Micro X-Class defined as a

length under 1.5 m and Small X-Class defined with a length of 3 m. These sub-classifications

are used to distinguished the X-Class USVs by concept and operational system.

A total of 6 classifications are use to described the state-of-the-art for USVs: Micro

X-Class, Small X-Class, Intermediate-Class, Harbor-Class, Fleet-Class, and E,F,G-Class.
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Three vehicles are described for each classification type in the section below.

2.1.1 X-Class

The X-Class category is defined as vehicles that are under 3 m in length and can operate

on the open water in choppy sea-surface conditions. However, a majority of the USVs in

this class are more fitted for shallow water use.

These vehicles are considered to provide ”low-end” Intelligence, Surveillance and Recon-

naissance (ISR) and also have ability to support manned or other unmanned missions [1].

Several different types of missions are supported with the most common use for observation

and data collection for non-military purposes [6]. The missions range from environmental

studies to search & rescue to surveillance. This class tends to be more cost effective and user

friendly due to the simpler platforms than larger systems. These advantages encourage use

in academic and civilian operations.

The X-Class is divided into 2 sub-categories by sizes to describe the differences in geome-

tries, mission types, and advantages.

2.1.2 Micro X-Class

Micro X-Class is a sub-category of the X-Class with the length of the vehicles under 1.5 m.

While smaller platforms have limited payloads, their small size and simplicity allow ease in

accessibility and deployment. This class tends to be low-cost and operate on very simple

control and sensing systems. The restrictions of the payload limit the variety of sensors that

can be equipped. The small platform also has a higher risks of damage by environmental

conditions. Missions are dominated by environmental monitoring, infrastructure inspection,

flood study and search & rescue. One advantage is the ability to operate in narrow channels

and shallow water depths. Due to the small range of communication, the distance to targets

and operational endurance are very limited.

The Ziphius [7] is the smallest app-controlled platform among existing USVs in the indus-

try. It is made for recreational usages but can potentially be utilized for different applications

such as environmental monitoring or infrastructure inspection due to customizable body and

open source programmable systems. It’s small hull draft allows operation in shallow to deep

water as long as it is in within the limited communication range.

The Lutra [8] is an air-boat type Cooperative Robot Watercraft (CRW) developed by
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Platypus LLC., which was industrialised after many experiments conducted by Carnegie

Mellon University. It is also small and used for environmental monitoring and flood studies.

The Lutra has a very durable control system for its size and the ability to be operated as

a multi-vehicle team by a single operator. An Android smart-phone interface and piloting

interface allows multi-vehicle operations.

Finally, the Pioneer [9] is a twin pontoon type platform that are especially suitable for

shallow water and it is usually controlled remotely with RC-controller by an operator though

his or her line of sight (LOS). The Pioneer can also be semi-autonomous if additional control

systems are equipped. A live stream video feedback is recorded by its gimbal camera as

well as piloted by LOS. It is used for filming, environmental clean up, and infrastructure

inspections.

2.1.3 Small X-Class

The Small X-Class is another sub-category wit the length of the vehicles are between 1.5 m

and 3 m. It is the larger end of the X-Class and it has a diverse range of characteristics.

One of the main differences from Micro X-Class is wider range of the endurance due to com-

munication and payload improvements. While the mission types stays within environmental

monitoring and search & rescue, the increase in their endurance and communication range

allows these platform to obtain larger scale of data such as climate and hurricane monitoring

instead of short term point monitoring such as water sampling or inspection.

The Hurricane Tracker [10, 11, 12] is a buoy system similar to the Emergency Integrated

Lifesaving Lanyard (EMILY) platform implemented for hurricane tracking. The Hurria-

cane Tracker is dropped to the target area by other vessels and controlled remotely. Pre-

programmed operations can be activated via text message from a smart-phone. This system

allows close and detailed study of the eye of hurricane.

The CNR-ISSA Charlie [13] is also controlled with a smart-phone but more directly and

hands-on. A smart-phone is utilized as a controller instead of just an activator. Its cata-

maran platform is especially well-fitted for shallow water environmental monitoring. The

control system was experimented to improve user’s ”easy-to-use” feeling. The operator is

not required to have special training to use this system.

The Wave Glider [14] is the first hybrid water and solar propelled USV. It is used for

long term environmental and climate monitoring, and also for the surveillance patrol. Their

stored solar energy and wave-powered energy allow this platform to conduct a long endurance
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missions without increasing the cost of operation. It is monitored from a base station on-

shore with open source software developed by Liquid Robotics.

2.1.4 Intermediate-Class

The Intermediate-Class was added specifically for this survey and includes the vehicles

that are between 3 m and 7 m in length. Some can be on the shallow water but majority

of others are well-fitted for choppy open water due to the size, weight, and payloads of the

vehicle. Many inflatable type of vehicles are commonly utilized as the platform for this class.

The mission for this class includes environmental monitoring, long term ocean monitoring,

rescue, and port surveillance.

the Intermediate-Class seems to be still have a site specific domain even though com-

plex sensing and control systems can be equipped. The payload is chosen based on the

environmental condition or types of mission the VSU will conduct.

The smaller end of the Intermediate-Class is utilized for surveillance missions and Jet-ski

or inflatable boats with high speed engines are favorable. On the other hand, the larger

end of this class is utilized for long endurance environmental missions. The fast mono-hull

vehicles are used to reached to target position quickly and turn off to float while collecting

data. They also be solar powered depending on the needs of the operating conditions. The

accuracy of the positioning and sensing is improved for this class due to allowance of the

higher payload to equip complex sensing systems.

The VaCAS [15] group used a laser line scanner to real-time map and identify the river

pathway. It also maps the bottom of the river with sonar to determine underwater obstacles.

The data collected allows for accurate navigation and path planning for autonomous control

of the USV.

The WAM-V [16, 17] is the another inflatable vehicle in this class. They are ultra light-

weight and can be operated in choppy water conditions allowing for real time sensing. Its

unique light weight platform also sustains the maximum payload capacity allowing extra

sensing devices to be equipped. Inflatable platforms become very beneficial for maximization

of payload and portability. The ability to be disassembled and inflatable the platform are

one some of the advantages of these USVs.

The Ocean Atmosphere Sensor Integration System (OASIS) [18] is a floating type plat-

form rather than a moving boat used for climate monitoring, water quality monitoring, and

military operations. It is piloted to target location and floats to collect data while saving

8



power. It intended to be low-cost, long duration, and has a reusable battery platform so

that it utilizes the solar power and recharges as it run out the power. For these reasons, this

platform requires open water locations with minimal overhead obstacles.

2.1.5 Harbor-Class

The Harbor-Class is defined for vehicles that are 7 m in length and fitted for open sea-

surface. For this size and larger, the platforms can be both manned or unmanned. This

class can conduct major missions in maritime security with robust ISR and it is expected to

have mature autonomy, launch and recovery, and weapons & payloads technologies [1]. The

X-Class had wide variety of level in autonomy but for vehicles that are the Harbor-Class and

larger, adaptive planning/group behavior, obstacle avoidance, and communication become

necessities to achieve the robust autonomy level that are required [1]. The Harbor-Class

includes both warfare and environmental monitoring missions [19].

2.1.6 Fleet-Class

The Fleet Class categorizes vehicles that are 11 m in length. The fleet-class also includes

both warfare and environmental monitoring missions. This class support ”high-end” surface

mission for military operations [1]. This class can be operated to be very fast or moderate

speed when it is supporting other missions such as towing other manned vehicles or USVs.

Occasionally, they are used as support vehicles for other missions [19].

One of advantages of this class and larger USVs are that their vehicles can also hold

manned missions. From this size class, the numbers of the vehicles drastically decrease

due to the high cost of vessels and operations. To overcome this limit,in 2014, US NAVY

created retro fitting projects for fleet class vehicle for full automation update. The system is

described in detail in the next section. This retrofitting will allow the old manned vehicles

to be retrofitted to unmanned vehicles with low cost.

2.1.7 EFG-Class

The E and F-Class is 26 m in length but they have a variety of widths. The G-Class is 41 m

in length. Since there are no platforms that are larger than 26 m or 41 m [6], in this survey,

E,F and G-Classes are all combined in the same group. Commonly, these size vehicles are
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utilized for the manned mission due to the cost of vehicles and the range of complexity of the

mission. Their missions are dominated by warfare and surveillance. They tend to have large

of cost and are not an economical solution due to their size and required accessibility. Due

to large payloads and the cost of system and operation, this class vehicle completes multiple

missions with manned and unmanned situations.

2.2 Human-Machine Interaction Literature on USV

The government states in USV master plan 2007 [1] that USVs need major improvements

in the level of autonomy to reduce data inflow and outflow to and from the operator[20].

Most of the time, USVs are semi-autonomy and this level of autonomy can be adjusted

during the mission. There are some tele-operated systems(non-autonomy), and there is

no full autonomy system running even though it has a technological potential to be fully

autonomy.

Huang [21] developed a framework to characterize and articulate the autonomy of un-

manned systems. He introduced a visual framework for the relationship between the level of

HMI and the level of autonomy with the factors of mission and environment complexities.

In his framework, the level of autonomy is quantified and shown with correlations with the

level of HMI that are measured by the situation awareness of unmanned systems and human.

This correlation is described as higher the level of HMI is lower the level of autonomy and

vice versa. The level of HMI is controlled to be higher when the complexities are higher.

Adams [22] identified the relationship between unmanned vehicles (UV) and situation

awareness(SA) using her interpretation of the definition of SA by Endsley [23]. She explained

3 levels of unmanned system SA with comparison with Endsleys’ 3 levels of human SA such

as perception, comprehension, and projection. The perception is sensed by visual, sound,

smell, and so on for the human SA. Human also senses the consequence and relationship with

the perception instead of only searching to sense for a programmed perception target like

UV’s SA does. But UV can overcome the physical limitation that human experience such as

diminished focus to cause failure to obtain perceptions and if sensors are available and can be

equipped, it can overcome human skills of perception. The perception with the UV systems

are commonly obtained visually for human. Particularly the USVs obtain it by live streaming

video or data are converted to visual form on the screen. The comprehension is understanding

of the obtained data by processing and integrating with the mission and related information.

This accuracy rate can vary by the level of experience or training the human operator had.
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UV’s SA for the comprehension is controlled by the human comprehension or not being

obtained. The projection is obtained by the perception and comprehension. Human could

be obtaining the projection under severe stress of the mission environment. The UV’s SA

for the projection can be used to support by utilizing its programmed mission planning or

the decision making tools. Those UV’s SA skills can be improved by better understanding

of human cognitive system. More human cognitive data, more options can be provided by

UV.

The vehicles which are larger than Intermediate-Class are often used for military missions

and usually have more than a single operator. This is because larger the vehicle is larger the

payloads are. These systems can be equipped and can operate multiple missions at the same

time and it will be actually cost-efficient to operate multi-missions than a single mission.

This is simply because the operation cost for the larger vehicles are more expensive and it

will not worth to have a single mission. One the other hand, smaller vehicles are limited

to equip several sensors. They also face larger impacts and damages when they are on the

water, so their sensors are better to be cheaper. But it does still require a threshold of the

optimum balance that vehicle can be useful [24]. This characteristics for the difference in

sizes can be improved by the quality, size, and price of sensors. But currently, it is more

beneficial to make low-cost single mission small USVs and high-cost multi-complex mission

large USVs.

Then, the goal of HMI for both vehicle types are observed to be different. The HMI goal for

the smaller vehicles are multi-agent team, ease in communication and operation. The HMI

goal for the larger vehicles are full autonomy. This difference is also supported by the types

of missions that each groups deals with. The larger vehicles conduct more complex mission,

and the smaller vehicles conduct more simple missions. Then simple mission has low level of

HMI, so that autonomy for the smaller vehicles can be less problem. On the other hand, the

complex mission requires high HMI followed by more problems to be autonomous. These

supporting factors are due to payload, and accessibility and tolerance of the environment

conditions.

2.3 Human Roles

Although specific human roles for USVs do not necessary appear in each individual lit-

erature, but there are 2 trends categories of roles that a majority of platforms fall into.

Huang [21] identified the human roles for unmanned systems in general such as Supervisor,
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Teammate, Pilot (Operator), Mechanic/Developer, and Bystander. For UAVs, Peschel et

al suggested the core human role called Misson Specialist addition to Pilot, and it seems

also to apply for some USVs. Hence with literature reviews of USVs and reviews of UASs

by Peschel et al. [25], followings are the 2 categories for human roles for USVs: Pilot and

Mission Specialist.

2.3.1 Pilot

The Pilot for USVs is a role that is a combination of Operator, Teammate, and the Su-

pervisor can be added for some cases such as for smaller and simpler platforms. Huang

[21] described the Operator role as the person performing remote control or tele-operation,

semi-autonomous operations, or other man-in-the-loop types of operations. The Operator

determines the condition of the mission status, and makes decision whether to continue the

mission or need to make some changes. The Teammate assist the Operator the overall mis-

sion. Finally the Supervisor is a person monitors one or more robots with respect to progress

on the mission, can task the robot(s) at the mission level, monitors mission progress, provides

mission level directions, coordinates missions, and can assign an operator to assist a robot

if needed [21]. If this role separately exists for the platform, this role will receive collected

and processed information from the Operator and Teammate and will make a decision and

command the mission.

The Pilots for both sub-groups of X-Class and the Intermediate-Class might have to con-

duct multi-tasks to control, make a decision, and operate without presence of the Supervisor.

Their missions, control system, and mission environment are simple enough for a Pilot to

conduct the multi-task. The Lutra [24] has a human operator interface called the Agent that

acts as a Teammate to process data and provides necessary information for a Pilot to gain

proper SA to conduct and complete their mission. The Hurricane Tracker [26] is auto-piloted

and missions can be programmed such that an Operator might only do a few minutes work

for a day or two of mission time. In case of change in mission that are announced by human

interface, the Operator will make a decision and conduct a change via smartphone text mes-

sage. The Smart-phone Charlie utilizes its human computer interface, so that an Operator

is allowed to perform fine maneuvering operations needed for instance to deploy the vehicle

at sea, docking, taking the control of the robot in case of dangerous situations, etc [13].

Usually smaller classes requires a single person or 2, this number can increase or additional

roles will be added when severity of the environmental condition or complexity of the mission
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increases.

The X-Class follows Shared Roles Model dominantly, it is a mixture of the Taskable Agent

Model and the Remote Tool Model for describing human-robot teaming [27]. Majority of

semi-auto platform in this class requires human supervision or remote control if it is necessary

in the any moments. The Pilot will control the vehicle through live stream video or LOS

while the vehicle by itself is monitoring or collecting data as it was programmed. On the

other hand, the operator can be looking for some targets through the monitor and make

decision while the vehicle is auto piloted for programmed pathway. For example, Valada

[28] calls his interface end-user interface and centralized operator interface that falls into the

shared roles model category. Valada [28] states this interface provides a single Pilot with

an overview of the boat’s condition or situation and provides high and low level commands

for interacting with them. For example, a centralized Pilot provides the highest situation

awareness but in the case of lost connection from human operator, the boat will make decision

and adjustments depending on the programmed tasks or a priority.

On the other hand, for a larger platform with complex and multi-missions, the Pilot

is dedicated to a single complicated task with other human team members. The Pilot is

dedicated to the operation of the vehicles and additional human roles such as Teammate

and Mission Specialist are added to the human team. Especially for the combat mission, the

Pilot controls the vehicle and identify the target, then additional human role such as Mission

Specialist either give an order as a Commander or conduct the order on its own. The balance

of the Pilot ’s task level can apply, influence, and optimize its mission and purpose.

2.3.2 Mission Specialist

The Mission Specialist role is a combination of a Supervisor and Teammate. Peschel [25]

describes this role for UAVs as the team member responsible for visual investigation and

recording and, in more advanced vehicle systems, delivery of an on-board pay-load. For this

survey, the Mission Specialist is a person who is dedicated to process and analyze data or

purely conducting supervision to make decisions without piloting the platform.

This role does not necessary shows up to every platform if this role is conducted by the

Pilot. The X-Class and some of Intermediate-Class seems to have a single human role system,

so that the Mission Specialist role is included as a part of the Pilot role. The Mariner 560

calls its Mission Specialist as an USV Operator and it monitors the Mariner 560 and its

installed payload from the Vehicle Control Station (VCS) which features electronic charts,
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engine and navigation info [29]. For the larger classes, this role presence might be a critical.

This role also does not necessary has to be at the same site as a Pilot as long as a Mission

Specialist has a robust and fast communication system. But usually a Mission Specialist

stands next to a Pilot. For Harbor-Class, ivind [30] calls it as Observer and is responsible

for fusing sensor data to provide a good estimate of the vessel state, as well as creating an

image of the surrounding environment. Then this processed data becomes an input for their

Pilot to make an order and conduct the mission. The Mission Specialist appearance depends

on the type and complexity of mission and numbers of ongoing tasks at the missions.
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Table 2.1: Classifications of Selected Unmanned Surface Vehicles (USVs) Currently in
Operation1

Group
USV

Platform
Name

Size2

[meters]

Weight3

[kilo-
grams]

Range
[kilo-
me-
ters]

Endu
-rance
[hours]

Mission type

Ziphius 0.35 × 0.25 1.5 0.09 1
Recreational use (Shallow/Open

Water)

Micro Lutra 0.81 × 0.47 6.92 2.4 4-8
Environmental/Water Monitoring,

Flood Study (Shallow Water)

Pioneer 1.07 × 0.64 7.0 0.3 0.2-1
Environment Cleanup, Infrastructure
Inspection, Filming (Shallow Water)

Hurricane
Tracker

1.65 × 0.38 57.0 Satellite 120-240
Hurricane/Sea-Level Research

(Open/Choppy Water)

Small
Smartphone
Charlie

2.4 × 1.7 300 WIFI N/A
Environmental Monitoring (Shallow

Water)

Wave Glider
SV3

2.9 × 0.67 122 WIFI 8760
Patrol, Monitoring (Open/Choppy

Water)

Wam-V 3.6 × 1.8 68.0 80 N/A
Surveillance, Research (Open/Choppy

Water)

Inter-
mediate

VaCas 4.79 × 2.0 181 WIFI 72
River Traffic/Navigation (Shallow

Water)

OASIS 5.48 × 2.4 1,360 Satellite
2160-
4320

Weather Faorescasting, Hurricane
Study (Open Water)

Harbor Kan-chan 7.99 × 2.8 3,500 N/A N/A
Environmental/Ocean Study (Shallow

Water)

Viknes 8.52 × 2.97 3,300 N/A
Mine Sweeping, Weapon Attack
Training (Open/Choppy Water)

Protector 9.5 × 3.5 4,000 10-20 8
Armed Combat (Open/Choppy

Water)

Seastar 11.0 × 3.5 6,000 555 10
Home Land Security/Naval

Application (Open/Choppy Water)

Fleet Protector 11.0 × 7,800 N/A 12
Armed Combat (Open/Choppy

Water)

SCOAP 11.0 × 5.0 N/A Satellite 720
Oceanographic Observation & Data
Collection (Shallow/Open Water)

Vigilant 16.0 × 3.6 6,000 2778 720
Surveillance, Search & Rescue

(Open/Choppy Water)

EFG Piranha 16.5 × 3.2 3,630 32 4023 Surveillance (Open/Choppy Water)

Poseidon 20.0 × 5.5 40,000 3704 168 Surveillance (Open/Choppy Water)

1 Maximum operational parameters are reported and referenced from manufacturer specification sheets - normal
operational parameter values will usually be lower and domain dependent. 2 Dimensions given are (length ×
width) 3 The maximum payload weight the vehicle can carry are proportional to the vehicle weight
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CHAPTER 3

HUMAN-MACHINE INTERACTION ANALYSIS

In this section, hardware and software based HMI are identified and analyzed by each

classes. Most classes have real time video streaming for human in loop operation. Many

platforms throughout the classes fall to the category of semi-autonomous which can be

conducted remotely (tele-operated) or have some autonomy. The following terms are de-

fined for SUV control systems: Fully autonomous is when USVs accomplish the entire mis-

sion without human assistance while adapting to operational and environmental conditions;

semi-autonomous is when USVs conduct the mission with various level of human-machine

interaction, but it is also have capability of autonomous operation; manual or remote control

is when USVs are operating under human supervision and human control, when operating

in this state, the HMI is considered to be the maximum level [21, 1].

The relationship between the level of HMI and the level of autonomy has an optimized

balance for each environmental situation or the mission type. This is also supported with

the relationship for the level of SA for human and machine influencing the level automation

[22] as discussed in Chapter 2. Human roles are mainly defined as a Pilot and a Mission

Specialist. For the smaller platforms, single or few operators are identified but their actual

tasks are not clearly stated. Smaller USVs typically conduct environmental monitoring and

surveying missions that are programmable under human operator’s remote vehicle control,

or completely programmed operations without human control. Chapter 2 summarized hu-

man roles as tasks during the mission for the human role have direct influences when the

automation level is discussed. The X-Class pilots might have to conduct multi-tasks during

operations including operating and control the SUV and making mission critical decisions.

As the size of the vehicle increases, the complexity of its missions can also increase. The
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operation requires a larger number of human roles and typically this additional role is con-

sidered to be the mission specialists. Then their control system shifts toward semi-auto and

remote full-autonomy while human roles are dedicated to a single complicated task with

other human team members. The balance of operator’s task level seems to apply, influence,

and optimize its mission and purpose while the size of vehicles and human roles are adjusted

depending on the complexity and types of their missions.

In addition to this factor, larger vehicle classes tend to receive a human control from the

base station or other vessels. This is because the larger vehicles have an ability to be equipped

with a wider range of signal communication systems compare to X-Class. Vehicle controls

are conducted through software rather than handset remote controller that are commonly

used by the operator for X-Class vehicles. Software used for larger system uses more complex

control system due to number of on-going mission at once and this fact shows a correlation

to higher number of human roles that are required for larger systems. Complex human tasks

require full attention by human (high human SA). In order to complete a multi-mission, the

number of human increases. Hence, human roles depends highly on the type of missions,

target locations or environmental conditions, size, and complexity of platforms.

3.1 Human-Machine Interaction for X-Class

Types of the human role for the X-Class are not necessary identified or specified due

to simplicity and user-friendliness of X-Class as its advantages. With the information, the

operator might be the most commonly used term for this class and they tend to be required to

conduct multi-tasks during their mission. X-Class follows Shared Roles Model dominantly,

it is a mixture of the Taskable Agent Model and the Remote Tool Model for describing

human-robot teaming [27]. The Majority of semi-auto platform in this class requires human

supervision or remote control if it is necessary in the any moments. The pilot controls the

vehicle through live stream video or line of sight while the vehicle by itself is monitoring or

collecting data as it was programmed. On the other hand, the operator can be looking for
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some targets through the monitor and make decision while the vehicle is auto piloted for

programmed pathway. For example, Valada [28] calls his interface end-user interface and

centralized operator interface that falls into the shared roles model category. He says this

interface provides a single operator with an overview of the boat’s condition or situation and

provides high and low level commands for interacting with them. For example, a centralized

operator provides the highest situation awareness but in the case of lost connection from

human operator, the boat will make decision and adjustments depending on the programmed

tasks or a priority.

In X-Class, the majority of vessels are controlled with laptop or computer manually, semi-

auto or combination of both. Then rests are either controlled manually with RC remote

control system or special consoles made for the vehicle. The majority of system are mixture

of remote and semi-auto for simplicity of deployment and recovery. Also depends on the

mission, this level of the mixture of control system varies due to the dependence level of

humans’ SA for decision making. Osga [44] claimed as ”Human Factors Issues” for HMI

challenge: attention management and allocation explains about user’s requirement to ad-

just USVs control to their environment condition such as wave speed, surface traffic, and

mission tempo; mental model of robot and state explain that users are required to maintain

their situation awareness of USVs mission status and USVs condition; and lastly, users are

required to perform emergency maneuvers for sudden change in mission or accident during

programmed operation of USVs. For example, a complex mission such as military mission

and rescue mission requires high level of human situation awareness since the mission is not

programmable with their software interface. EMILY [45] is controlled remotely for rescue

mission which is the second part of the Osga’s [44] claim but the same platform of EMILY

that is used for hurricane research NOAA’s Hurricane Tracker [12] is both semi-control and

remotely controlled to collect the data in the eye of the hurricane. Their missions can be

operated through cell phone at the base station to make an adjustment on the hardware

on-board. On the other hand, a simple mission such as environmental monitoring or sensing

does not require high human SA.
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Except the time of manual control, most of the vehicles are monitored and controlled

through a monitor with live stream with LOS or software utilizing way-point location by

GPS or satellite. This class vessels are usually operated by a one person conducting pilot

and mission specialist role. Such multi-tasks are enable since their missions are tend to be

less complex and in smaller range.

As the software point of view, there is a mixture of complex and simple menus for the

operator. Most of platforms use real time video stream for the visual control for human in-

loop operation and these software are API customizable. Another observation of this class

is that vehicle control is usually human in-loop, but actual missions to obtain and store the

data can be conducted fully autonomy such as water sampling, temperature sensor,depth

measurements features.

3.1.1 Micro X-Class

The majority of the Micro X-Class includes both RC-controller and laptop or computer as

the operation system. Depending on the mission or environmental condition, this operation

method can be adjusted that will cause the difference in automation. Others are controlled

through laptop or computer system. Hardware control is utilized more often rather than

software while their missions are usually software based and programmable.

The Ziphius [7] is the smallest, and the first app-controlled aquatic USV in the industry.

Its application on the tablet is utilized as a device by an operator with synthetic overlay

on the live stream video. This application creates a simple synthetic overlay console on the

touch screen tablet display to provide user-friendly operation. Their application is developed

using the YVision of the Unity platform that allows visual based platform based on Natural

User Interface (NUI) [46]. On the other hand, the Pioneer [9] uses RC controller on the LOS

for direct piloting or through the live video stream. The Lutra [24, 8] is controlled visually

with a laptop interfaced with Arduino micro-controller system linked with cell phone and

its video on board. It can be controlled autonomy by path planning but since the Lutra

is used for flood situation, the obstacle avoidance and decision making become the critical
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role. Additionally the Lutra is a team player, the multi-vehicle mission is allowed for this

platform. An operator can link up and monitor several platforms on the one shared laptop

screen.

3.1.2 Small X-Class

The majority of the Small X-Class also has laptop or computer as their operation system.

Addition to the RC-controller, there are unique consoles for each platforms including joy-

sticks, keyboard, and buttons. Real time video or GPS positioning are used for the most of

platforms to control the vehicles. The Wave Glider [14] is controlled by base station though

WIFI. Their operation is web-based open source application and the glider is remotely con-

trolled with position on the screen over aerial image. This platform is solar powered and it

is more like floating (Glider) than a boat.

For some platforms, smart phones are used to command the decision or pilot the vehicles

while the mission. The smart phone allows the wider range of communication due to the

development of 3G, 4G network. Some of the cell phone applications are following. The

Hurricane Tracker uses an autopilot system connected to line of sight digital radio or Short

Burst Iridium Satellite link [26]. It can be controlled through a ground station laptop or

Internet software site operated by NOAA. The Hurricane Tracker also can receive the urgent

change in mission through text message from the cell phone to control the hardware on the

vehicle [12]. The Smart phone charlie [13] can be piloted by using applications on the smart-

phone touch screen for ad hock adjustment while the large console stays at base station.

It uses Google’s Android open source platform, a touch screen and attitude sensor on the

Android’s OS system. Then a smart-phone become a compact controller for the Charlie.

There are 2 applications developed for the control system: the first one uses Google map

to remote or semi-control by using a smart-phone as a joystick to change the direction by

utilizing the attitude sensor though LOS, then touch screen will allows the user to command

a decision such as speed; the second one uses geo-referenced map and the user will decide the

direction by touching a position on the smart-phone screen and the vehicle will follow to the
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route. This human interface improved the operator’s difficulty for the mission control. Their

smart-phone operation was tested not to require special training for the operator. Addition

to these following platforms, long endurance environmental monitoring glider uses cell phone

modem and satellite as the communication tool from base station computers.

3.2 Human-Machine Interaction for Intermediate-Class

The majority of Intermediate-Class has semi-autonomous system and it is remotely con-

trolled by special console or laptop at the base station or other following vessels. The consoles

are consisting of joystick, buttons, keyboard, and display. Then once is located in target

spot, it can conduct the mission following path planning or way-point. For long endurance

mission, the mission is thoroughly conducted by non-human and human will be notify if ur-

gent situation occurs. This long endurance data collection can be robust due to improvement

of communication systems and fast processing time. On the other hand, for short endurance

mission, human is always in loop.

The mission type have direct impacts on human roles and the level of HMI. In this class,

there are more than one human roles can be expected due to possibilities of the complexity

of control and expanded range of missions.

The control system for the WAM-V became the challenge topic for 2014 Martime RobotX

competition. The OASIS is semi-autonomous control and it is remotely controlled with

portable remote control unit or game controller then once it is deployed to the targeted

area, it is controlled by autonomous guidance navigation and control (GNC) for course

tracking and station keeping [18]. Additionally OASIS states ”Additionally at the ground

control station, a graphical control station application provides an interface for an operator to

monitor platform telemetry via strip chart and tabular display as well as view images received

from the on-board camera [18]”. The pilot is allowed to process, sort, and make decision with

the control station that can also be interfaced with Google Earth. Then the control station

”interfaces with a charting application to facilitate planning and situational awareness[18]”.
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The VaCAS [31] group developed the guidance and control system for river-line operation.

Its underwater sonar and laser-scanner collect the data and process then create a real-

time mapping for path-planning for the mission. The VaCAS experiment succeed fully-

autonomous control for their targeted river-line area. From this class, the transition of

hardware based control to software based control became more obvious.

In Intermediate-Class, the vehicles are controlled semi-autonomy. As a experimental stage,

VaCAS group succeed full-autonomy control for limited region. Due to the size of the

vehicles, many platforms are controlled remotely though LOS or though LOS on real time

video until target area and then it conduct the missions for long endurance. If the mission

is short endurance, it is usually remotely controlled with higher speed by an operator.

3.3 Human-Machine Interaction for Harbor-Class

Human roles for Harbor class is mixtures of dependence in software and hardware based

control. Human is still in the center of the circle of for the decision making or remotely

operated through live video stream. Most of the system uses laptop or computer at the base

station as a control devices. This computer or laptop is operated as a part of console that

includes joystick for piloting through live video on the display. Software side of the systems

are very complex and utilize synthetic overlay for positioning assistance and sensing data

visualization.

Harbor-Class, the vehicles are controlled through RC controller with lines of sight, laptop

and computer, or consoles with joysticks, keyboards, and buttons through real time videos.

The software systems are complex and majorities of systems are made for the specific mission.

Due to the complexity of the control and the accuracy requirement, multiple operators are

present at the base station. Each person will have individual task to make decisions. Humans

are heavily in loop during the missions.
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3.4 Human-Machine Interaction for Fleet-Class

Fleet class is very similar to Harbor class. Complex menus are used for software based

control and there are at least two operators to control the vehicle.

In 2014, Office of Naval Research (ONR) announced the retrofitting projects for Fleet-

Class Unmanned Surface Vehicles to perform ”Swarm”, multi-vehicle team mission. This

system allows existing manned or unmanned boat to perform ”Swarm” mission with low-cost

of installation [47]. This projects utilizes the technology developed by ONR called Control

Architecture for Robotic Agent Command and Sensing (CARACaS). This technology is still

under development but in the future, CARACaS is expected to be retrofitted not only to

Fleet-Class USVs, but other sizes. Also it is considered to be adapted for UAVs [48]. The

CARACAs will allow existing manned vehicles to be retrofitted to be utilized as unmanned

surface vehicles. Advantageously, CARACAs requires low cost of device and installation.

Hence, this technology can lead further development and can expand the mission types to

be wider ranges and more variety for Fleet-Class vehicles.

In Fleet-Class, all of the platforms have a joystick for its control either with console or

the laptop. For the military mission platforms, their software were not customizable but

made for the specific complex missions that are interchangeable for each mission. Seastar

[49] uses a software called UMAS multi-application command and control system allows

the the human team to control and operate from base station and also it allows Seastar’s

integration into any C4I network. For the oceanographic monitoring mission of SCOAP [37],

the software is customizable. This class is very similar to the Harbor-Class platforms. The

level of HMI for this class is considered to be low due the remote-operation control and

human team has the full insight on decision making. Two people team is appeared to be a

common in this class, and each of the member are dedicated to their operation or decision

making roles.
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3.5 Human-Machine Interaction for EFG-Class

Human roles for E,F,G-Class are not specifically identified due to the limited mission of

warfare. There seemed to be more than one person as an operator. The mission specialist

stays besides them to analyze the situation, support and make decision.

In EFG-Class, they are either controlled by computer or special console from the base sta-

tion or other vessels. All are controlled remotely through live stream video and have complex

menus are missions that require multiple human roles but they are not specifically stated

since their missions are all military warfare or surveillance. Each vehicle costs over million

US dollars and the amount of damage and risk that could cause to human, environment

and politics show the hesitation or impossibility of full automation. This class requires full

situation awareness from human.
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CHAPTER 4

HUMAN-MACHINE INTERACTION FINDINGS

An analysis of the human-machine interaction for six categories of unmanned surface

vehicles was conducted and resulted in three findings. The first finding determined that the

research literature does not well characterize the human roles present in unmanned surface

systems. The second finding suggested that the domain complexity may necessitate increased

automation of the robot platform for the human team. The third finding showed that

unmanned surface vehicles likely lay on the human-machine interaction spectrum between

unmanned ground vehicles and unmanned aerial vehicles.

4.1 Finding 1

Human roles are not explicitly defined or reported in the research literature; at best an Op-

erator role is assumed.

Human roles are not always identified in the unmanned surface system literature. Espe-

cially for X-Class, human roles are identified in the context of user-friendly control systems

or operations and by the actual names of the roles. Systems presented tend to have simple

software based menus and control systems that would usually imply a single operator or

at most two or three people. An operator typically conducts piloting and decision making.

For smaller platforms, automation and remote controls are usually combined for the ad hoc

control. For example: (1) piloting can be automated by following planned path while the

operator conducts the core mission; (2) piloting can be conducted under supervision of the

human operator while the vehicle is programmed to do missions and collect data; (3) or

both piloting and the mission are conducted under supervision of a human. Usually, simpler
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roles/tasks in each cases are automated or programmed as machines roles. For larger plat-

forms, the cost and risk of the failures tend to be higher than for smaller platforms. Due to

these reasons, the number of the human roles may be expected to be higher when compared

to the smaller platforms as the size of vehicles increase.

4.2 Finding 2

Domain variability (e.g., open water versus debris-filled waterway) and intended tasks neces-

sitate increased automation or other human roles with dedicated interfaces.

Obstacle avoidance can vary based on the level of HMI and also heavily limited by the

environmental conditions. The level of HMI should correlate with the level of human situ-

ation awareness similar to the relationship between the level of autonomy and the level of

human machine situation awareness stated in Adams [22]. In a slow stream or open water,

in order for the vehicles to be floating and moving can be controlled without human in loop.

In this situation, the level of situation awareness is low and it does not require high speed

processing time. On the other hand, high level of situation awareness is required for fast

stream or choppy water with debris and it does require full supervision by human to avoid

the obstacles quickly.

The risks and types of the tasks have also direct impact on the variability of the level

of the autonomy. High intensity tasks require the highest level of situation awareness, this

causes the increase of the number of human roles and human will be in-loop operation.

Low intensity tasks require the lowest level of situation awareness that enable the operator

to multi-task with an assist from software based machine’s situation awareness. For this

situation, human does not necessary have to be in loop most of the time but they cannot

be completely absence. Even though there are nearly or completely full-automation with

artificial intelligence (non-human in loop), there is no USS with this level of HMI due to

policies, ethics, and risks. Especially in the cases of warfare/combat missions, a potential to

take away a human life by artificial intelligence can cause controversy. These human feelings
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could hold back this improvement for certain types of missions but also there is no ethical

answer for the potential risk of the failure.

4.3 Finding 3

The human-machine interaction for unmanned surface systems falls on the spectrum between

unmanned ground systems and unmanned aerial systems.

Given the operational intent of USVs, they typically do not have a appropriate HMI

besides pilot-centric. The pilot controls and makes decisions under full supervision by the

same pilot especially for smaller platforms. Software interfaces for the pilots for the small

platforms are simpler, and prepared for the ad-hock use. For larger platforms, the pilots and

mission specialists can either share the one interface or have duplicated systems. Sometime

the pilots can be the link between the USV and base station. The operators on the chase

vehicle can control and conduct the decision after mission specialist analyze the situation

from the base station onshore.

Types of missions also can affect this level of HMI. Rescue or military missions that

require high level of situation awareness at the decision making during the mission, their

HMI have to me human in loop with current level of automation. But for programmed

data collection mission like environmental monitoring can expect less human in loop due

to absence of decision making. For time of emergency such as obstacle avoidance or lost

in communication, they can either manually operated or pre-programmed to return to the

shore.

While other unmanned systems have proper HMI for each systems, HMI for the USVs

adjusted to the most fitted version and it seems to be among HMI for UGVs, UAVs, and

UUVs.
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CHAPTER 5

CONCLUSIONS

This research investigation determined that detailed information for HMI and human roles

needed to be documented for unmanned surface systems. Without proper documentation,

the problems involving HMI are difficult to be identified for the future improvement or

potential mission applications.

There are technologies that allow vehicles to be fully automated without human in loop.

Vehicles can be programmed with the moving path, mission, and decision making. Although

there exists this level of technology, human situation awareness cannot be avoided due to

ethical view of the mission. If the level of HMI indicates the level of autonomy, then this

level should be adjustable for USVs in order to make ethical decisions along with the most

optimized and safe mission activity.

The pilot role exists for every category of USV, but the actual operation of the entire

tasks can be differ by size and especially mission types and domains. Even though human

tasks are similar throughout USVs such as piloting, data acquisition and process, and decision

making, the level of intensity and number of tasks that can be conducted by each individual

at the mission can be different. From an environmental perspective, if the ocean is high

traffic or severe condition by the waves, high current, or debris, higher human SA is required

and this person should be dedicated to this task rather than multi-tasking to conduct other

part of mission such as data collection. As socioeconomic view, a simple environmental data

collection can be done without maximum usage of human SA. Then human could also do

other task at the same time while programmed software is conducting the mission. But for

warfare mission like a high intensity combat mission, the critical decision should not be made

by the computer since it has high potential to impact human lives and be against human
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ethics. Then this task should be carefully reviewed by human roles and the additional roles

like mission specialist or additional number of human roles for this task can be utilized.

Especially those complex tasks usually have complex software based controls compare to

simple mission vehicles. Additional number of human tasks are expected in order for each

human role to conduct their tasks under full supervision.

Moreover, the cost of the platform can influence the level of autonomy. Trade off between

level of HMI and the risk regarding cost can also be influenced by type and complexity of

mission. Smaller low-cost platforms can be less necessary to be concerned even it is lost or

broken. With Huang’s approach [21] of visualization of autonomy and HMI. Additional cost

and risk aspects into Huang’s diagram can lead to better understanding of the future USV

development.

Currently, site condition and the complexity of the mission controls the level of HMI

in order to avoid or minimize the failure. For the future, the ideal platform should be

able to minimize the level of HMI with independence of the complexity of the mission or

environmental condition.
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APPENDIX A

TABLE FOR ALL EXISTING USV
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