
Article

Vision-based Autonomous Landing of a Quadrotor on
the Perturbed Deck of an Unmanned Surface Vehicle

Riccardo Polvara 1∗ ID 0000-0001-8318-7269, Sanjay Sharma 1, Jian Wan 1, Andrew Manning 1 and
Robert Sutton 1

1 Autonomous Marine Systems Research Group, School of Engineering, University of Plymouth, UK;
name.surname@plymouth.ac.uk

* Correspondence: riccardo.polvara@plymouth.ac.uk; Tel.: +44-07492-050558

Version April 16, 2018 submitted to Drones

Abstract: Autonomous landing on the deck of an unmanned surface vehicle (USV) is still a major1

challenge for unmanned aerial vehicles(UAVs). In this paper, a fiducial marker is located on the2

platform so as to facilitate the task since it is possible to retrieve its six-degrees of freedom relative-pose3

in an easy way. To compensate interruption in the marker’s observations, an extended Kalman filter4

(EKF) estimates the current USV’s position with reference to the last known position. Validation5

experiments have been performed in a simulated environment under various marine conditions. The6

results confirmed the EKF provides estimates accurate enough to direct the UAV in proximity of the7

autonomous vessel such that the marker becomes visible again. Using only the odometry and the8

inertial measurements for the estimation, this method is found to be applicable even under adverse9

weather conditions in the absence of global positioning system.10

Keywords: Unmanned Aerial Vehicle; Position Control; Computer Vision; Image Processing11

0. Introduction12

In the last few years, significant interest has grown towards Unmanned Aerial vehicles (UAVs), as13

described in [1]. The applications involving UAVs range from scientific exploration and data collection14

[2–4], to commercial services, military reconnaissance and law enforcement [5,6], search and rescue15

[7,8], patrolling [9] and even entertainment [10].16

Among different UAVs topologies, helicopter flight capabilities such as hovering or vertical17

take-off and landing (VTOL) represent a valuable advantage over fixed-wing aircraft. The ability18

of autonomously landing is very important for unmanned aerial vehicles, and landing on the deck19

of a un-/manned ship is still an open research area. Landing an UAV on an unmanned surface20

vehicle (USV) is a complex multi-agent problem [11] and solutions to this can be used fro numerous21

applications such as disaster monitoring [12], coastal surveillance [13,14] and wildlife monitoring22

[15,16]. In addition, a flying vehicle can also represents an additional sensor data source when planning23

a safe collision-free path for USVs [17].24

Flying an UAV in the marine environment encounters rough and unpredictable operating25

conditions due to the influence of wind or wave in the manoeuvre compare to land. Apart from above,26

there are various other challenges associated with the operation of UAVs. For example, the inaccuracy27

of low-cost GPS units mounted on most UAV and the influence of the electrical noise generated by the28

motors and on-board computers on magnetometers. In addition to this, the estimation of the USV’s29

movements is a difficult task due to natural disturbances (e.g. winds, sea currents etc.). This poses30

difficulty for an UAV to land on a moving marine vehicle with a low quality pose information. To31

overcome these issues, the camera mounted on the UAV and commonly used during surveillance32

mission [18], can also be used to increase the accuracy of the relative-pose estimates between the33
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aerial vehicle and the landing platform [19]. The adoption of fiducial markers on the vessel’s deck34

is proposed as solution to further improve the estimate results. To increase the robustness of the35

approach, a state estimation filter is adopted for predicting the 6 degrees-of-freedom (DOF) pose of the36

landing deck which is not perceived by the UAV’s cameras. This work can be considered as the natural37

consequence of [20], in which the developed algorithm has been tested against a mobile ground robot,38

without any pitch and roll movements of the landing platform.39

In terms of the paper organisation, Section 1 presents the method existing in literature about40

autonomous landing for UAVs, while Section 2 introduces the quad-copter model, the image processing41

library used for the deck identification, the UAV controller and the pose estimation filter. In Section42

3 three experiments, each with a different kind of perturbation acting on the landing platform, are43

presented and discussed. Finally, conclusions and future works are shown in Section 4.44

1. State of the Art45

Autonomous landing is until now one of the most dangerous challenges for UAV. Inertial46

Navigation Systems (INS) and Global Navigation Satellite System (GNSS) are the traditional sensors47

of the navigation system. On the other hand, INS accumulates error while integrating position and48

velocity of the vehicle and the GNSS sometimes fails when satellites are occluded by buildings. At this49

stage, vision-based landing became attractive because it is passive and does not require any special50

equipment other than a camera (generally already mounted on the vehicle) and a processing unit.51

The problem of accurately landing using vision-based control has been well studied. For a detailed52

survey about autonomously landing, please refer to [21–23]. Here, only a small amount of works are53

presented.54

In [24] and [25] an IR-LED helipad is adopted for robust tracking and landing, while a more55

traditional T-shaped and H-shaped helipad are used respectively in [26–29]. The landing site is56

searched for an area whose pixels have a contrast value below a given threshold in [30]. In [31] a Light57

Imaging, Detection, And Ranging (LIDAR) sensor is combined with a camera and the approach has58

been tested with a full-scale helicopter. Bio-inspired by the honeybees that use optic flow to guide59

landing, [32] follow the approach for fixed-wing UAV. The same has been done in [33,34] showing60

that by maintaining constant optic flow during the manoeuvre, the vehicle can be easily controlled.61

Hovering and landing control of a UAV on a large textured moving platform enabled by measuring62

optical flow is achieved in [35]. In [36], a vision algorithm based on multiple view geometry detects a63

known target and computes the relative position and orientation. The controller is able to control only64

the x and y positions to hover on the platform. In a similar work [37], the authors were also able to65

regulate the UAV’s orientation to a set point hover. In [38] an omnidirectional camera has been used to66

extend the field of view of the observations.67

Four light sources have been located on a ground robot and homography is used to perform68

autonomous take-off, tracking, and landing on a UGV [39]. In order to land on a ground robot,69

[40] introduces a switching control approach based on optical flow to react when the landing pad is70

out of the UAV’s camera field of view. In [41], the authors propose the use of an IR camera to track a71

ship from long distances using its shape, when the ship-deck and rotocraft are close in. Similarly, [42]72

address the problem of landing on a ship moving only on a 2D plane without its motion known in73

advance.74

The work presented in this paper must be collocated among vision-based methods. Differently75

from most of them, given the platform used it relies on a pair of low resolution fixed RGB cameras,76

without requiring the vehicle to be provided with other sensors. Furthermore, instead of estimating77

the current pose of the UAV, in order to land on a moving platform we employ an extended Kalman78

filter for predicting the current position of the vessel on whose deck the landing pad is located. The79

estimate is forwarded in input to our control algorithm that update the last observed USV’s pose and80

send a new command to the UAV. In this way, even if the landing pad is not within the camera’s81

field of view any more, the UAV can start a recovery manoeuvre that, differently from other works, is82
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Figure 1. Different components are integrated for achieving autonomous landing on the deck of an
unmanned surface vehicle.

taking the drone in proximity of its final destination. In this way it can compensate interruptions in83

the tracking due to changes in attitude of the USV’s deck on which the pad is located.84

2. Methods85

In this section all the components used for accomplishing the autonomous landing on an USV86

are introduced. Initially, the aerial vehicle, together with its mathematical formulation, is described.87

Successively, the ar_pose computer vision library is presented. In the end, the controller and the pose88

estimation filter are discussed. A graphical representation of these components is depicted in Fig. 189

and a video showing the overall working principle is available online 1.90

2.1. Quad-copter model91

The quad-copter in this study is an affordable ($250 USD in 2017) AR Drone 2.0 built by the92

French company Parrot and it comprises multiple sensors such as two cameras, a processing unit,93

gyroscope, accelerometers, magnetometer, altimeter and pressure sensor. It is equipped with an94

external hull for indoor navigation and it is mainly piloted using smart-phones and tablets through the95

application released by the producer over a WiFi network. Despite the availability of an official software96

development kit (SDK), the Robot Operating System (ROS) [43] framework is used to communicate97

with it, using in particular the ardrone-autonomy package developed by the Autonomy Laboratory98

of Simon Fraser University, and the the tum-ardrone package [44–46] developed within the TUM99

Computer Vision Group in Munich. These package run within ROS Indigo on a GNU/Linux Ubuntu100

14.04 LTS machine. The specification of the UAV are as follow:101

1 Video showing the working principle of the algorithm: https://youtu.be/J1ib9PIsr-8
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• Dimensions: 53 cm x 52 cm (hull included);102

• Weight: 420 g;103

• Inertial Measurements Units (IMU) including gyroscope, accelerometer, magnetometer, altimeter104

and pressure sensor;105

• Front-camera with a High-definition (HD) resolution (1280x720), a field of view (FOV) of 73.5◦ ×106

58.5◦ and video streamed at 30 frame per second (fps);107

• Bottom-camera with a Quarted Video graphics Array (QVGA) resolution (320x240), a FOV of108

47.5◦ × 36.5◦ and video streamed at 60 fps;109

• Central processing unit running an embedded version of Linux operating system;110

The downward-looking camera is mainly used to estimate the horizontal velocity and the accuracy111

of the estimation highly depends on the ground texture and the quad-copter’s altitude. Only one of112

the two video streams can be streamed at the same time. Sensors data are generated at 200Hz. The113

on-board controller (closed-source) is used to act on the roll Φ and pitch Θ, the yaw Ψ and the altitude114

of the platform z. Control commands u = (Φ, Θ,Ψ, z) ∈ [-1,1] are sent to the quad-copter at a frequency115

of 100Hz.116

While defining the UAV dynamics model, the vehicle must be considered as a rigid body with
6-DOF able to generate the necessary forces and moments for moving [47]. The equations of motion
are expressed in the body-fixed reference frame B [48]:{

mV̇ + Ω×mV = F

JΩ̇ + Ω× JΩ = Γb
(1)

where V = [u, v, w]T and Ω = [p, q, r]T represent, respectively, the linear and angular velocities of the117

UAV in B. F is the translational force combining gravity, thrust and other components, while J ∈ R3×3
118

is the inertial matrix subject to F and torque vector Γb.119

The orientation of the UAV in air is given by a rotation matrix R from B to the inertial reference
frame I :

R = RψRθ Rφ

=

cθcψ sφsθcψ− cφsψ cφsθcψ + sφsψ

cθsψ sφsθsψ + cφcψ cφsθsψ− sφcψ

−sθ sφcθ cφcθ

 (2)

where η = [φ, θ, ψ]T is the Euler angles vector and s. and c. are abbreviations for sin(.) and cos(.).120

Given the transformation from the body frame B to the inertial frame I , the gravitational force
and the translational dynamics in I are obtained in the following way:{

ξ̇ = v

mv̇ = RFb −mgei
3

(3)

where g is the gravitational acceleration and Fb is the resulting force in B, ξ = [x, y, z]T and v = [ẋ, ẏ, ż]T121

are the UAV’s position and velocity in I .122

2.2. Augmented Reality123

The UAV’s body frame follows right-handed z-up convention such that the positive x-axis is124

oriented along the UAV’s forward direction of travel. Both camera frames are fixed with respect to125

the UAV’s body one, but translated and rotated in such a way that the positive z-axis points out of126

the camera lens, the x-axis points to the right from the image centre and the y-axis points down. The127

USV’s frame also follows the same convention and is positioned at the centre of the landing platform.128
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Figure 2. Coordinate frames for the landing systems. Xlv represents the UAV’s pose with reference to
the local frame and, in the same way, Xls for the USV. Xc1v and Xc2v are the transformation between the
down-looking camera and frontal cameras, respectively, and the vehicle’s body frame. Xmv and Xms

are the pose from the visual marker to the UAV and to the USV, respectively. Finally, Xsv is the pose
from the USV to the UAV.

Finally, it has been defined a local frame fixed with respect to the world and initialized by the system129

at an arbitrary location. In Fig. 2 the coordinate systems previously described are depicted.130

The pose of frame j with respect to frame i is now defined as the 6-DOF vector:

xi,j = [itT
i,j, ΘT

i,j]
T = [xi,j, yi,j, zi,j, φi,j, θi,j, ψi,j]

T (4)

composed of the translation vector from frame i to frame j and the the Euler angles φ, θ, ψ.131

Then, the homogeneous coordinate transformation from frame j to frame i can be written as:

i
jH =

[
i
jR

itT
i j

0 1

]
(5)

where i
jR is the orthonormal rotation matrix that rotates frame j into frame i and is defined as:

i
jR = rotxyz(Θi j) = rotz(ψi j)Troty(θi j)Trotx(φi j)T (6)

Fig. 3 offers a graphical representation of the problem studied: retrieving the homogeneous132

matrix H offers the possibility to calculate the UAV’s pose with reference to the USV expressed as133

translation and rotation along and around three axis respectively.134

In this work, augmented reality (AR) visual markers are adopted for identifying the landing135

platform. As described in [49], “in a AR virtual objects super-imposed upon or composited with the136

real world. Therefore, AR supplements reality”.137

The ar_pose ROS package [50], a wrapper for the ARToolkit library widely used in human computer138

interaction (HCI) [51,52], is used for achieving this task. The ar_pose markers are high-contrast 2D139

tags designed to be robust to low image resolution, occlusions, rotations and lighting variation. For140

this reason it is considered suitable for a possible application in a marine scenario, where the landing141

platform can be subject to adverse conditions that can affect its direct observation.142
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Figure 3. The image processing algorithm estimates the distances between the UAV and the visual
marker.

In order to use this library, the camera calibration file, the marker’s dimension and the proper
topic’s name must be defined inside a configuration file. The package subscribes to one of the two
cameras. Pixels in the current frame are clustered based on similar gradient and candidate markers
are identified. The Direct Linear Transform (DLT) algorithm [53] maps the tag’s coordinate frame to
the camera’s one, and the candidate marker is searched for within a database containing pre-trained
markers. The points in the marker’s frame and camera’s frame are respectively denoted as MP and CP.
So, the transformation from one frame to the other is defined as follow:

MP = M
CHCP = M

CH−1CP = C
MHCP (7)

where M
CH and C

MH represent the transforms from the marker to the camera frame and vice versa,143

respectively.144

Using the camera’s calibration file and the actual size of the marker of interest, the 6-DOF145

relative-pose of the marker’s frame with respect to the UAV camera is estimated at a frequency of 1 Hz.146

For the current and the last marker’s observation, the time stamp and the transformation are recorded.147

These informations are then used to detect if the marker has been lost and to actuate a compensatory148

behaviour.149

2.3. Controller150

In order to control the drone in a less complex way, the PID controller offered by the tum_ardrone151

package has been replaced with a (critically) damped spring one.152

In the original work of [46], for each of the four degrees of freedom (roll Φ̄, pitch Θ̄, the yaw Ψ̄ and153

the altitude z̄ ), a separate PID controller is employed. Each of them is used to steer the quad-copter154

toward a desired goal position p = (x̂, ŷ, ẑ, ψ̂) ∈ R4 in a global coordinate system. The generated155

controls are then transformed into a robotic-centric coordinate frame and sent to the UAV at 100Hz.156

In this paper, in order to simplify the process of tuning the controller’s parameters, a damped157

spring controller has been adopted. In the implementation, only two parameters, K_direct and K_rp,158

were used to modify the spring strength of the directly controlled dimensions (yaw and z) and the159

leaning ones (x and y). An additional one, xy_damping_ f actor, is responsible to approximate a damped160

spring and to account external disturbances such as air resistance and wind.161
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Table 1. The controller parameters used in the simulation performed.

Parameter Value Parameter Value
K_direct 5.0 K_rp 0.3
droneMass [kg] 0.525 max_yaw [rad/s] 1.0
xy_damping_factor st19 0.65 max_gaz_rise [m/s] 1.0
max_gaz_drop [m/s] -0.1 max_rp 1.0

The controller inputs are variations in the angles of roll, pitch, yaw, and altitude, respectively
denoted as uΦ,uΘ, uΨ and uz, defined as follows:

uΦ = −K_rp(x̂− x) + c_rp( ˆ̇x− ẋ) (8)

uΘ = −K_rp(ŷ− y) + c_rp( ˆ̇y− ẏ) (9)

uΨ = −K_direct(ψ̂− ψ) + c_direct( ˆ̇ψ− ψ̇) (10)

uz = −K_direct(ẑ− z) + c_direct( ˆ̇z− ż) (11)

where c_rp and c_direct are the damping coefficients calcuolated in the following way:

c_rp = xy_damping_ f actor · 2
√

K_rp · droneMass (12)

c_direct = 2
√

K_direct · droneMass (13)

Therefore, instead of controlling nine independent parameters (three for the yaw, three for the162

vertical speed and three for roll and pitch paired together) the control problem is reduced to the three163

described above (namely K_direct, K_rp and xy_damping_ f actor).164

The remaining controller parameters are platform dependent variables and they are kept always165

constant during all the trials. Ignoring droneMass which does not require an additional description166

more than its name, max_yaw, max_gaz_rise and max_gaz_drop limit the rotation and linear speed on167

the yaw and z-axis, respectively. In the end, max_rp limits the maximum leaning command sent.168

The controller’s parameters are the same across all the experiments performed and they are shown169

in Table 1. The K_rp parameter, responsible to control the roll and pitch behaviour, is kept small in170

order to guarantee smooth movements along the leaning dimensions. In the same way, max_gaz_drop171

has been reduced to a value of 0.1 for decreasing the descending velocity. On the other hand, the172

max_yaw parameter, used to control the yaw speed, has been set to its maximum value because the173

drone must align with the base in the minimum amount of time possible. The others have been left to174

their default values.175

2.4. Pose estimation176

To increase the robustness and efficiency of the approach, an extended Kalman filter (EKF) has
been adopted here for estimating the pose of the landing platform [54]. In fact, it may happen the UAV
lose the track of the fiducial marker while approaching and descending on it. In order to redirect the
flying vehicle in the right direction, the EKF estimates the USV current pose that is then processed and
forwarded to the controller. For estimation purposes, the odometry and inertial data are fused together
to increase the accuracy [55,56]. The state vector is defined as x = [x, y, z, φ, θ, ψ, ẋ, ẏ, ż, φ̇, θ̇, ψ̇], with
x, y, z and ẋ, ẏ, ż representing respectively the global positions and velocity, and φ, θ, ψ and φ̇, θ̇, ψ̇ the
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attitude of the vessel. Considering the sensor readings, the estimation process satisfies the following
equations:

x̂k|k−1 = Fk x̂k−1|k−1 (14)

Pk|k−1 = FkPk−1|k−1Fk
T + Qk (15)

Kk = Pk|k−1Hk
T(HkPk|k−1Hk

T + Rk)
−1 (16)

x̂k|k = x̂k|k−1 + Kk(zk −Hk x̂k|k−1) (17)

Pk|k = (I−KkHk)Pk|k−1 (18)

where k represents a discrete time instant, Fk is a kinematic constant velocity model, Hk is the177

observation model, zk is the measurements vector, I is an identity matrix, Qk is the process covariance178

matrix and Rk is the measurement covariance matrix.179

The working principle of the EKF in this case is detailed below:180

• the filter estimates the USV’s pose at 50Hz and its encoding is saved in an hash table using the181

time stamp as key;182

• when the UAV loses the track, the hash table is accessed and the last record inserted (the most183

recent estimate produced by the filter) together with the one having as key the time stamp of the184

last recorded observation are retrieved;185

• the deck’s current position with reference to the old one is calculated using geometric relationship;186

• the controller command are updated including the new relative position;187

The procedure described above is iterated until the UAV is redirected above the visual marker and can188

perceive it through its bottom camera.189

2.5. Methodology190

Algorithm 1 Landing Algorithm

1: while not landed do
2: last_known_pose =NULL
3: if marker_visible then
4: last_known_pose← detect_landing_marker()
5: if last_known_pose < user_de f ined_threshold then
6: controller.send_commands(land)
7: landed← true
8: end if
9: else

10: usv_pose← ek f .estimates_pose()
11: last_known_pose← last_known_pose + usv_pose
12: end if
13: trajectory← calculate_trj(last_known_pose)
14: attitude_cmd← controller.calculate_cmd(trajectory)
15: controller.send_commands(attutude_cmd)
16: end while

The following section explains how the algorithm 1 works. The code is publicly available on our191

repository 2.192

The quad-copter flies using its fixed non-tilting frontal camera, approaching the landing site on193

the USV’s deck identified only by a fiducial marker. This, which scope is to outline the landing area,194

has to be perceived during all the landing manoeuvre. This is a requirement for precise landing despite195

the state estimator can compensate interruption in observation. When a visual marker is detected, the196

image processing library computes the 6-DOF relative-pose between the marker itself and the UAV.197

The result is used to make the quad-copter approaching the marker with the right orientation. To198

obtain this result, a damped spring controller reduces the error on the x−, y− and z−axis and on the199

quad-copter’s yaw. On attaining close proximity to the marker, the marker leaves the field of view of200

2 Github repository: https://github.com/pulver22/ardrone_tf_controller

https://github.com/pulver22/ardrone_tf_controller
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the frontal camera. This is due to hardware limitation of fixed non-tilting cameras. To overcome this201

problem, the video stream from the frontal camera is interrupted and acquired from the one located202

under the UAV and downward-looking. The quad-copter continues the landing manoeuvre keeping203

the marker at the centre of the second camera’s FOV. Otherwise, a compensatory behaviour is adopted:204

the EKF estimates the actual position of the USV and the drone is redirected close to it while increasing205

its altitude. Increasing the altitude allows to enlarge the field of view of the bottom camera, that is quite206

limited. In this way, it is guaranteed that the marker will be soon perceived and centred by the aerial207

vehicle. When an experimentally defined distance from the marker is reached, the drone lands safely.208

This distance depends on the side length of the marker used. In fact, with a smaller marker it would209

be possible to decrease this value but it would become impossible to perceive the marker at longer210

distance. We found that a marker side length of approximately 0.30 meters represents a good trade-off211

for making the marker visible at long and close distance at the same time. As a consequence, we decide212

to use 0.75 meters as distance for starting the touchdown phase of the descending manoeuvre, during213

which the power of the motors is progressively reduced until complete shut-down. The use of visual214

markers allows the estimation of the full 6-DOF pose information of the aerial and surface vehicles. In215

this way, landing operations in rough sea condition with a significant pitching and rolling deck can216

still be addressed.217

3. Results and Discussion218

All the experiments has been conducted inside a simulated environment built on Gazebo 2.2.X219

and offering a 3D model of the AR Drone 2.0. To the scope of this work, the existing simulator has been220

partially rewritten and extended to support multiple different robots at the same time. The Kingfisher221

USV, produced by Clearpath Robotics, has been used as floating base. It is a small catamaran with222

a dimension of are 135 x 98 cm, that can be deployed in a autonomous or tele-operated way. It is223

equipped with a flat plane representing a versatile deck for UAVs of small dimension. On this surface224

a square visual marker is placed. Previous research demonstrated a linear relationship is existing225

between the side length of the marker and its observability. Therefore, we opted for a side length of 0.3226

meters that represents a good compromise, making the marker visible in the range [0.5, 6.5] meters.227

The algorithm has been tested under multiple conditions, namely three. In the first scenario, the228

USV is subjected only to a rolling movement while floating in the same position for all the length of229

the experiment; in the second scenario, the USV is subjected only to a pitching movement; while in230

the last scenario the USV is subject to both rolling and pitching disturbances at the same time. Fig. 4231

illustrates the rotation angles around their corresponding axis. In all the simulations, the disturbances232

are modelled as a signal having a maximum amplitude of 5 degrees and a frequency of 0.2 Hz. Rolling233

and pitching of a vessel generate upward and downward acceleration forces directed tangentially234

to the direction of rotation, which cause linear motion knowns as swaying and surging along the235

transverse or longitudinal axis respectively [57].236

3.1. Rolling Platform237

In this subsection, the results of a landing manoeuvre on a rolling floating base are reported. In238

particular, Fig. 5 illustrates the UAV and the USV’s trajectory, respectively in blue and red, in the239

UAV’s reference frame; while Fig. 6 and Fig. 7 show the controller commands and the salient moments240

of the manoeuvre respectively.241

The marker has been successfully recognised at a distance of 3.74 meters in front of the UAV, and242

at 0.09 meter on its left. The displacement on the z−axis, used as reference for the altitude, was of243

0.84 meter instead. The UAV, with the parameters reported in the previous table 1, has been able to244

complete the landing in 25 seconds.245

The quad-copter approaches the landing base trying to keep it at the centre (in a range of ± 10246

degrees) of its camera’s FOV. In the case the marker leaves this interval of tolerance, the UAV would247

rotate around its z−axis in order to centre it again. The approach continues until the UAV’s low248
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Figure 4. The movements around the vertical, longitudinal and lateral axis of the USV are called yaw,
roll and pitch respectively.
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Figure 5. Above: The UAV and USV 3D trajectories, in blue and red respectively, in the UAV’s reference
frame. Bottom: The roll disturbances the USV is subject to.
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Figure 6. Controller commands and visual offsets in the experiment with a rolling landing platform.

(a) (b) (c)

(d) (e) (f)

Figure 7. Landing manoeuvre of a VTOL UAV on a USV subject only to rolling disturbances.
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Figure 8. Above: The UAV and USV 3D trajectories, in blue and red respectively, in the UAV’s reference
frame. Bottom: The pitch disturbances the USV is subject to.

altitude prevents the marker to be seen from the frontal camera, as shown in Fig. 7-a (t = 10s). At this249

point, the video stream is switched from the frontal camera to the one located at the bottom of the250

quad-copter and looking down, and new commands are generated and sent. The UAV is instructed251

to move towards the last known position of the landing platform but increasing its altitude in order252

to enlarge the area covered by its bottom camera. At t = 15s, as represented in Fig. 7-b, the UAV is253

located exactly above the marker and it can now complete the landing phase: it descends while trying254

to keep the marker at the centre of its FOV, as shown in Fig. 7-c. Small velocity commands are sent on255

the leaning direction (x and y, respectively) in order to approach the final position with high accuracy.256

Finally, at t = 25s the UAV reaches the minimum altitude required to shut-down its motors and land257

on the platform (Fig. 7-f).258

The commands generated from the relative-pose between the UAV and the landing platform’s259

frame are illustrated in Fig. 6. Here, the controller’s commands are plotted against the perception260

from the camera. As it is possible to see in the figure, for most of the travel the two curves of the261

commands and of the observations overlap perfectly. When they do not, the marker is lost and the262

UAV actuates the compensatory behaviour: the estimation filter’s output, namely the USV’s predicted263

pose, is combined with the latest vision observation in order to generate new commands for the UAV.264

In this way it is possible to explain changing in roll, pitch and altitude in the graph. Since the UAV has265

the same yaw of the floating base, namely they have the same orientation along the z-axis, no rotation266

commands are issued for this degree of freedom.267

Few words are reserved for the pitch’s data between t = 18s and t = 22s, and the gaz’s ones268

between t = 5s and t = 8s. In this case, the offsets are below a user-defined threshold and a null269

command is sent instead. The use of a threshold has been introduced for speeding up the landing270

phase: while testing the controller, it was noticed the UAV spent a lot of time while trying to align271

perfectly on the three axis with the centre of the landing plane, sometimes without any success. This272

has been identified as a limitation of controllers with fixed values parameters and a new more versatile273

solution is already planned as future work.274

3.2. Pitching Platform275

In this subsection an experiment with a pitching floating platform is reported. As before, the time276

for completing the landing manoeuvre is not considered as key-factor but the attention is on the ability277

of the UAV to approach and land on the USV with high precision.278
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Figure 9. Controller commands and visual offsets in the experiment with a pitching landing platform.

(a) (b) (c)

(d) (e) (f)

Figure 10. Landing manoeuvre of a VTOL UAV on a USV subject only to pitching disturbances.
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Figure 11. Above: The UAV and USV 3D trajectories, in blue and red respectively, in the UAV’s
reference frame. Bottom: Both the roll and pitch disturbances the USV is subject to.

As in the previous experiments, the two vehicles 3D trajectory are reported in Fig. 8 in the UAV’s279

reference frame, the controller commands in Fig. 9 and example frames in Fig. 10. The quad-copter,280

with the same controller parameters of before, was able to follow and land on the visual marker in281

almost 34 seconds after identifying it 4.46 meters ahead and 0.12 meter on its left.282

As in the case of a rolling base, Fig. 10-a shows the UAV starts moving in order to keep the283

visual marker at the centre of its frontal camera’s field of view. This is what happens at time t = 26s284

and shown in Fig. 10-b. At t = 6s the UAV reaches its minimum altitude and it is now impossible285

for it to see the visual marker, as illustrated in Fig. 10-c. At this point, the video stream starts to286

be acquired from the bottom camera and the USV’s estimated position is sent to the controller. At287

the same time, instructing the UAV to increase its altitude to augment the total area covered with its288

downward-looking camera. Doing this, at t = 13s the UAV is located exactly above the USV. The289

landing base is at centre of the camera’s FOV, therefore a null velocity command is sent to stop the290

USV. Fig. 10-e and 10-f show the UAV can then descend slowly to centre the marker properly and, in291

the end, land on it.292

Further analysis can be done with the results reported in Fig. 9. In the same way of the experiment293

with a rolling deck, the curve of the controller’s commands and the one related to the offsets overlap294

for most of the time. All the considerations made before still hold: while the marker is lost, the EKF is295

able to estimate the landing platform’s current pose with reference to the instant of time when the296

marker has been lost. This relative-pose is added to the last observation in order to produce a new297

command.298

This is what is possible to see in the plot between t = 21s and t = 25s. Here, the two curves differ:299

while all the offsets remain constant because no new marker observations have been done by the UAV,300

the commands (gaz and roll) slightly change. The plot is now discussed in more details. While the yaw301

and the pitch commands remain identical to 0 because the UAV is already aligned with the landing302

base (within the predefined bounds), the UAV’s roll command is changed including at every instant303

the new relative-pose (changing on the longitudinal direction) of the USV.304

305
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Figure 12. Controller commands and visual offsets in the experiment with a pitching and rolling
landing platform, in order to simulate complex marine scenarios.
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(a) (b) (c)

(d) (e) (f)

Figure 13. Landing manoeuvre of a VTOL UAV on a USV subject to both rolling and pitching
disturbances, in order to simulate complex marine scenarios.

3.3. Rolling and Pitching Platform306

A last simulation has been done with a floating platform that is subject to both rolling and pitching307

stresses. The goal of this experiment is to test the developed landing algorithm against simulated308

harsh marine conditions.309

The results are reported in Fig. 11, showing the both vehicles trajectories along a 23 seconds operation.310

The UAV successfully accomplish the landing maneovre starting from an initial marker’s identification311

3.71 meters in front of it and 0.30 meters on its left. Fig. 12 shows the comparison between the offsets312

obtained through the vision algorithm and the commands sent to the controller. It is possible to see313

that, as in the previous experiments, the curve of the offsets and the one related to the commands314

mainly overlap. All the analysis made before are still valid, but it is interesting to notice how the315

framework proposed is able to react properly also when the landing platform is subject to complex316

disturbances. The salient moments of the flight are illustrated in Fig. 13317

4. Conclusion and Future Directions318

In this paper, a solution to make an unmanned aerial vehicle to autonomously land on the deck319

of a USV is presented. It resides only on the UAV’s on-board sensors and on the adoption of visual320

marker on the landing platform. In this way, the UAV can estimate the 6-DOF landing area position321

through an image processing algorithm. The adoption of a pose estimation filter - in this case an322

extended Kalman filter - allows to overcome issues with fixed non-tilting cameras and the image323

processing algorithm. Not involving GPS signals in the pose estimation and in the generation of flight324

commands, allows the UAV to land also in situations where this signal is not available (indoor scenario325

or adverse weather conditions).326
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The validation of the approach has been done in simulation with a quad-rotor and an unmanned327

surface vehicle as platform on which to land. Three different experiments were performed, each of328

them with a different type of disturbance acting on the landing base. In all scenarios successful results329

were obtained.330

The future research is twofold. From a practical point of view, the proposed approach needs331

to be tested in a real environment with an unmanned surface vehicle in order to test its robustness332

against real wind and sea currents. The second aspect is more related to the identified limitation of333

the algorithm itself. Therefore it is suggested to develop an adaptive controller, possibly based on334

intelligent solution such as artificial neural networks or fuzzy logic, where the gain of the controller335

change depending on the distance to the landing base.336
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Pomerleau, F.; Siegwart, R.; Neerincx, M.; Looije, R.; Smets, N.; Mioch, T.; van Diggelen, J.; Pirri,361

F.; Gianni, M.; Ferri, F.; Menna, M.; Worst, R.; Linder, T.; Tretyakov, V.; Surmann, H.; Svoboda,362
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