479 research outputs found

    Adaptive sliding mode observation in a network of dynamical systems

    Get PDF
    This paper considers the problem of reconstructing state information in all the nodes of a complex network of dynamical systems. The individual nodes comprise a known linear part and unknown but bounded uncertainties in certain channels of the system. A supervisory adaptive sliding mode observer configuration is proposed for estimating the states. A linear matrix inequality (LMI) approach is suggested to synthesise the gains of the sliding mode observer. Although deployed centrally to estimate all the states of the complex network, the design process depends only on the dynamics of an individual node of the network. The methodology is demonstrated by considering a network of Chua oscillators

    A Hierarchical Architecture for Cooperative Actuator Fault Estimation and Accommodation of Formation Flying Satellites in Deep Space

    Get PDF
    A new cooperative fault accommodation algorithm based on a multi-level hierarchical architecture is proposed for satellite formation flying missions. This framework introduces a high-level (HL) supervisor and two recovery modules, namely a low-level fault recovery (LLFR) module and a formation-level fault recovery (FLFR) module. At the LLFR module, a new hybrid and switching framework is proposed for cooperative actuator fault estimation of formation flying satellites in deep space. The formation states are distributed among local detection and estimation filters. Each system mode represents a certain cooperative estimation scheme and communication topology among local estimation filters. The mode transitions represent the reconfiguration of the estimation schemes, where the transitions are governed by information that is provided by the detection filters. It is shown that our proposed hybrid and switching framework confines the effects of unmodeled dynamics, disturbances, and uncertainties to local parameter estimators, thereby preventing the propagation of inaccurate information to other estimation filters. Moreover, at the LLFR module a conventional recovery controller is implemented by using estimates of the fault severities. Due to an imprecise fault estimate and an ineffective recovery controller, the HL supervisor detects violation of the mission error specifications. The FLFR module is then activated to compensate for the performance degradations of the faulty satellite by requiring that the healthy satellites allocate additional resources to remedy the problem. Consequently, fault is cooperatively recovered by our proposed architecture, and the formation flying mission specifications are satisfied. Simulation results confirm the validity and effectiveness of our developed and proposed analytical work

    Control and Fault Accommodation for Attitude Control Subsystem of Formation Flying Satellites Subject to Constraints

    Get PDF
    Stringent precision requirements, communication limitations and automated fault accommodation are three important considerations that need to be taken into account in design of formation control of satellites. In this work a more accurate relative state modeling for the attitude dynamics is developed and a semi-decentralized control strategy is proposed that is accomplished by the model predictive control (MPC) scheme. The proposed MPC incorporates the effects of the actuator constraints in design of the control laws. Furthermore, a semi-decentralized active system recovery scheme is proposed that uses on-line fault information to compensate for the identified characteristics losses under actuator fault conditions. Simulation results for a team of four satellites in formation are presented and the formation precision is compared with the centralized scheme. The results verify that the proposed semi-decentralized strategy yields a quite satisfactory formation performance in a sense that the team behaves similar to a centralized MPC control scheme, however without imposing significant computational complexity that is associated with solving the problem of high dimension with stringent communication requirement as in the centralized scheme. Moreover, the performance of our proposed semi-decentralized recovery scheme is compared with the centralized recovery scheme subject to the reaction wheel (RW) faults in the attitude control subsystem (ACS) of the formation flying satellites. The proposed semi-decentralized recovery scheme satisfies the formation recovery specifications and also imposes lower fault compensation control effort cost as compared with the centralized recovery scheme. It has been validated through multiple fault severity scenarios

    Distributed Fault Detection in Formation of Multi-Agent Systems with Attack Impact Analysis

    Get PDF
    Autonomous Underwater Vehicles (AUVs) are capable of performing a variety of deepwater marine applications as in multiple mobile robots and cooperative robot reconnaissance. Due to the environment that AUVs operate in, fault detection and isolation as well as the formation control of AUVs are more challenging than other Multi-Agent Systems (MASs). In this thesis, two main challenges are tackled. We first investigate the formation control and fault accommodation algorithms for AUVs in presence of abnormal events such as faults and communication attacks in any of the team members. These undesirable events can prevent the entire team to achieve a safe, reliable, and efficient performance while executing underwater mission tasks. For instance, AUVs may face unexpected actuator/sensor faults and the communication between AUVs can be compromised, and consequently make the entire multi-agent system vulnerable to cyber-attacks. Moreover, a possible deception attack on network system may have a negative impact on the environment and more importantly the national security. Furthermore, there are certain requirements for speed, position or depth of the AUV team. For this reason, we propose a distributed fault detection scheme that is able to detect and isolate faults in AUVs while maintaining their formation under security constraints. The effects of faults and communication attacks with a control theoretical perspective will be studied. Another contribution of this thesis is to study a state estimation problem for a linear dynamical system in presence of a Bias Injection Attack (BIA). For this purpose, a Kalman Filter (KF) is used, where we show that the impact of an attack can be analyzed as the solution of a quadratically constrained problem for which the exact solution can be found efficiently. We also introduce a lower bound for the attack impact in terms of the number of compromised actuators and a combination of sensors and actuators. The theoretical findings are accompanied by simulation results and numerical can study examples

    Technology for the Future: In-Space Technology Experiments Program, part 2

    Get PDF
    The purpose of the Office of Aeronautics and Space Technology (OAST) In-Space Technology Experiments Program In-STEP 1988 Workshop was to identify and prioritize technologies that are critical for future national space programs and require validation in the space environment, and review current NASA (In-Reach) and industry/ university (Out-Reach) experiments. A prioritized list of the critical technology needs was developed for the following eight disciplines: structures; environmental effects; power systems and thermal management; fluid management and propulsion systems; automation and robotics; sensors and information systems; in-space systems; and humans in space. This is part two of two parts and contains the critical technology presentations for the eight theme elements and a summary listing of critical space technology needs for each theme

    Integrated approaches to handle UAV actuator fault

    Get PDF
    Unmanned AerialVehicles (UAV) has historically shown to be unreliable when compared to their manned counterparts. Part of the reason is they may not be able to a ord the redundancies required to handle faults from system or cost constraints. This research explores instances when actuator fault handling may be improved with integrated approaches for small UAVs which have limited actuator redundancy. The research started with examining the possibility of handling the case where no actuator redundancy remains post fault. Two fault recovery schemes, combing control allocation and hardware means, for a Quad Rotor UAV with no redundancy upon fault event are developed to enable safe emergency landing. Inspired by the integrated approach, a proposed integrated actuator control scheme is developed, and shown to reduce the magnitude of the error dynamics when input saturation faults occur. Geometrical insights to the proposed actuator scheme are obtained. Simulations using an Aerosonde UAV model with the proposed scheme showed significant improvements to the fault tolerant stuck fault range and improved guidance tracking performance. While much research literature has previously been focused on the controller to handle actuator faults, fault tolerant guidance schemes may also be utilized to accommodate the fault. One possible advantage of using fault tolerant guidance is that it may consider the fault degradation e ects on the overall mission. A fault tolerant guidance reconfiguration method is developed for a path following mission. The method provides an additional degree of freedom in design, which allows more flexibility to the designer to meet mission requirements. This research has provided fresh insights into the handling UAV extremal actuator faults through integrated approaches. The impact of this work is to expand on the possibilities a practitioner may have for improving the fault handling capabilities of a UAV

    Fault Detection and Isolation in Attitude Control Subsystem of Spacecraft Formation Flying using Extended Kalman Filters

    Get PDF
    In this thesis, the problem of fault detection and isolation in the attitude control subsystem of spacecraft formation flying is considered. For this purpose, first the attitude dynamics of a single spacecraft is analyzed and a nonlinear model is defined for our problem. This is followed up by generating the model of the spacecraft formation flight using the attitude model and controlling the formation based on virtual structure control scheme. In order to design the fault detection method, an extended Kalman filter is utilized which is a nonlinear stochastic state estimation method. Three fault detection architectures, namely, centralized, decentralized, and semi-decentralized are designed based on extended Kalman filters. Moreover, the `residual generation and threshold selection techniques are proposed for these architectures. The capabilities of the architectures for fault detection are studied through extensive numerical simulations. Using a confusion matrix evaluation system, it is shown that the centralized architecture can achieve the most reliable results relative to the semi-decentralized and decentralized architectures. Furthermore, the results confirm that the fault detection in formations with angular velocity measurements achieve higher level of accuracy, true faulty, and precision, along with lower level of false healthy misclassification as compared to the formations with only attitude measurements. In order to isolate the faults, structured residuals are designed for the decentralized, semi-decentralized, and centralized architectures. By using the confusion matrix tables, the results from each isolation technique are presented for different fault scenarios. Finally, based on the comparisons made among the architectures, it is shown that the centralized architecture has the highest accuracy in isolating the faults in the formations. Furthermore, the results confirm that fault isolation in formations with angular velocity measurements achieve higher level of accuracy when compared to formations with only attitude measurements

    NASA Automated Rendezvous and Capture Review. Executive summary

    Get PDF
    In support of the Cargo Transfer Vehicle (CTV) Definition Studies in FY-92, the Advanced Program Development division of the Office of Space Flight at NASA Headquarters conducted an evaluation and review of the United States capabilities and state-of-the-art in Automated Rendezvous and Capture (AR&C). This review was held in Williamsburg, Virginia on 19-21 Nov. 1991 and included over 120 attendees from U.S. government organizations, industries, and universities. One hundred abstracts were submitted to the organizing committee for consideration. Forty-two were selected for presentation. The review was structured to include five technical sessions. Forty-two papers addressed topics in the five categories below: (1) hardware systems and components; (2) software systems; (3) integrated systems; (4) operations; and (5) supporting infrastructure
    corecore