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ABSTRACT

Cooperative Fault Estimation and Accommodation in Formation Flight of
Unmanned Vehicles

Seyyedmohsen Azizi, Ph.D.

Concordia University, 2010

Formation flying is a new concept that is envisaged for a cluster of networked un-

manned vehicles, such as unmanned aerial vehicles, unmanned ground vehicles, unmanned

underwater vehicles, and satellites and that has generated a number of challenging prob-

lems that calls for development of novel technologies. Specifically, due to the stringent

precision control requirements that are imposed on the position and the attitude of ve-

hicles (e.g., satellites in autonomous space missions), an important area of research is

that of fault diagnosis, identification, and recovery (FDIR). Considerable research has

been devoted to FDIR in mostly conventional single entity unmanned or manned systems

with far less practical considerations given to the non-trivial problem of fault recovery

in a network of unmanned systems. The main objective of this thesis is to investigate

the problem of cooperative fault estimation and accommodation in formation flight of

networked unmanned vehicles by developing a multi-level hierarchical methodology to

generalize the FDIR capabilities of existing technologies to networked formation systems.

In this framework, to perform fault estimation and recovery tasks three levels are pro-

posed and identified, namely a low-level (LL), a formation-level (FL), and a high-level

(HL). The specific contributions of this thesis in each of these levels are as follows.

The LL is at the subsystem or component (vehicle) level, and generally conventional

quantitative model-based or computationally intelligent-based methods can be applied to

design the low-level fault estimation (LLFE) and low-level fault recovery (LLFR) modules.

In this thesis for the LLFE a systematic approach based on theories from directed graphs

(digraphs) and structural observability is proposed to design the structure of distributed

estimation filters that are termed as sub-observers (SOs). Results from robust H∞ linear

filtering and Kalman filtering (KF) domains are subsequently employed to design dis-

tributed sub-observers. An approach based on decentralized fixed mode, acyclic digraphs,

and Lyapunov functions is developed to investigate and study the stability properties of

the overall estimation problem. Based on the fault severity estimates, robust H∞ recovery

controllers are designed at the LLFR module.
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At the FL, the formation-level fault estimation (FLFE) module estimates fault sever-

ities by maintaining cooperation (that consists of communication and data fusion) among

the distributed SOs. This cooperation is achieved by implementing a (HL-driven) com-

munication topology and a local solution to the distributed optimization problem, which

aims at fusing the data from the SOs locally and feeding the updated data back to SOs

for adjustments to the estimation approach. The formation-level fault recovery (FLFR)

module then accounts for the performance degradations of the faulty vehicle by using

a (HL-driven) formation structure reconfiguration that imposes certain criteria and con-

straints on the input signals of other healthy vehicles. These criteria include enforcing the

healthy vehicles to expend more control effort/energy to compensate for the performance

degradation of the faulty vehicle, or imposing a constraint on the desired input vectors to

satisfy error specifications of the overall formation mission.

The HL module is a supervisor that observes the behavior of the formation and

makes decisions regarding the distributed SOs reconfiguration and formation structure

reconfiguration for the FLFE and FLFR modules, respectively. For the FLFE module

the role of the HL supervisor is specified by developing a graph theoretic framework. The

supervisor limits the effects of local uncertainties/unreliabilities on the estimation perfor-

mance of the FLFE module by determining the desired (optimal) path of the correspond-

ing digraphs that yields the appropriate communication topology among the distributed

sub-observers. For the FLFR module the HL supervisor evaluates the performance of the

entire formation by collecting information from the performance monitoring module and

comparing them with the error specifications of the formation mission. In case that the

supervisor detects any performance degradations, it activates the FLFR module.

In this thesis, by integrating the above three levels (that are, LL, FL, and HL), a

cooperative fault estimation and accommodation framework is proposed to compensate

for the performance degradations of a formation flight of unmanned vehicles subjected

to local failures. This integrative and cooperative approach improves and enhances the

capabilities of the existing techniques by configuring the estimation and the formation

system and by determining the necessary and essential information exchanges among the

vehicles.
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3.2 The directed graphs of the nine sub-observers for the system (A,B,C). . . 50

3.3 A portion of the combined estimation (E) and weighted estimation (WE)

digraphs of the system (A,B,C). The edges are labeled with (SO(i), COND(i))

and (SO(i), COST (i)) for the E and WE digraphs, respectively. . . . . . . . 52

3.4 The estimation (E) digraph in which the solid and dashed edges repre-

sent the valid (COND(i) = 0) and invalid (COND(i) = 1) sub-observers,

respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.5 The weighted estimation (WE) digraph. . . . . . . . . . . . . . . . . . . . 54

4.1 The directed graph of the bilinear system with the matrices A0, A1, A2, B,

and C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.2 The directed graphs of the seven sub-observers for the system (A,B,C). . 78

4.3 A portion of the combined sub-observer dependency estimation (SODE)

and weighted sub-observer dependency estimation (WSODE) digraphs of

the bilinear system with the matrices A0, A1, A2, B, and C. The edges

are labeled with (SO(i), COND(i)) and (SO(i), COST (i)) for the SODE and

WSODE digraphs, respectively. . . . . . . . . . . . . . . . . . . . . . . . . 80

4.4 The SODE digraph in which the solid and dashed edges represent the valid

(COND(i) = 0) and invalid (COND(i) = 1) sub-observers, respectively. . . 81

4.5 The WSODE digraph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

xi



4.6 The sub-observer dependency (SOD) digraphs of (a) the supervisor-selected

initial set of sub-observers {SO(2), SO(3)} in the normal operation mode

and (b) the supervisor-reconfigured set of sub-observers {SO(1), SO(6)} in

the process dynamics unreliability mode. . . . . . . . . . . . . . . . . . . . 82

4.7 CSSOFF procedure that includes “prediction”, “observation”, “fusion”,

and “feedback” steps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.8 Graphical interpretation of the constrained optimization problem (4.29). . 92

4.9 Boundary hyper-ellipsoid and the two boundary tangent points. . . . . . . 92

7.1 The RMF digraph of the five-satellite formation in deep space. . . . . . . . 143

7.2 The state dependency (SD) digraph of the five-satellite formation in deep

space due to a lock-in-place actuator fault. . . . . . . . . . . . . . . . . . . 145

7.3 The directed graphs of the sub-observers corresponding to the linear model

(7.2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

7.4 The E/WE digraph for the reconfigured set of sub-observers. . . . . . . . . 148

7.5 Actual, estimated, and the estimation error of the fault in satellite #2 by

using the initial set of sub-observers. . . . . . . . . . . . . . . . . . . . . . 149

7.6 Actual, estimated, and the estimation error of the fault in satellite #2 by

using the reconfigured set of sub-observers. . . . . . . . . . . . . . . . . . . 150

7.7 The state dependency (SD) digraph of the five-satellite formation in deep

space due to loss-of-effectiveness actuator faults. . . . . . . . . . . . . . . . 151

7.8 The directed graphs of the sub-observers corresponding to the bilinear

model (7.3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

7.9 The x-axis cumulative centralizedcontrol effort for (a) all satellites are fault

free, (b) faulty satellite #3 with the LLFR applied and α3 = 1, and (c)

faulty satellite #3 with the HLFR applied and α3 = 6.7. . . . . . . . . . . 154

7.10 The x-axis cumulative decentralizedcontrol effort for (a) all satellites are

fault free, (b) faulty satellite #3 with the LLFR applied and ||AT3 || =

0.6325, and (c) faulty satellite #3 with the HLFR applied and ||AT3 || = 0.2530.156

7.11 The WSODE digraph for the scenario (B) in which the sub-observer SO(k),

k ∈ {kijij , kiij, k
j
ij} is denoted by “(k)” for simplicity. The costs (cumulative

weights) are summarized in Table 7.1. . . . . . . . . . . . . . . . . . . . . . 159

7.12 The acyclic SOD digraph for the initial set of sub-observers for the sce-

nario (B). The sub-observer SO(k), k ∈ {kijij , kiij, k
j
ij} is denoted by “(k)”

for simplicity. The digraph has no edges that means the SOs can work

independently. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

7.13 Actual, estimated, and the estimation error of the LOE fault in satellite

#1 by using the initial set of sub-observers. . . . . . . . . . . . . . . . . . 160

xii



7.14 Actual, estimated, and the estimation error of the LOE fault in satellite

#2 by using the initial set of sub-observers. . . . . . . . . . . . . . . . . . 161

7.15 Actual, estimated, and the estimation error of the LOE fault in satellite

#3 by using the initial set of sub-observers. . . . . . . . . . . . . . . . . . 162

7.16 Actual, estimated, and the estimation error of the LOE fault in satellite

#4 by using the initial set of sub-observers. . . . . . . . . . . . . . . . . . 163

7.17 Actual, estimated, and the estimation error of the LOE fault in satellite

#5 by using the initial set of sub-observers. . . . . . . . . . . . . . . . . . 164

7.18 The constraint error of the common state πx2 , that is π̂
(k12

12)
x2 − π̂

(k23
23)

x2 , (a)

with fusion feedback (` = 10) and (b) without fusion feedback (` = 1). . . . 164

7.19 Trace of the error covariance matrices for the two sub-observers SO(k12
12)

and SO(k23
23) with (a) normal and (b) zoomed scale. . . . . . . . . . . . . . 165

7.20 (a) The maximum norm of the constraint error of the common state πx2

in the time interval [50 200](sec), that is maxt∈[50 200]|π̂
(k12

12)
x2 (t) − π̂(k23

23)
x2 (t)|,

and (b) the maximum trace of the error covariance matrices for the two

sub-observers SO(k12
12) and SO(k23

23) in the time interval [50 200](sec). . . . . 165

7.21 The acyclic SOD digraph for the reconfigured set of sub-observers. The

sub-observer SO(k), k ∈ {kijij , kiij, k
j
ij} is denoted by “(k)” for simplicity.

The sub-observers SO(k12
12) and SO(k45

45) can work independently, but SO(k3
23)

depends on SO(k12
12). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

7.22 Actual, estimated, and the estimation error of the LOE fault in satellite

#1 by using the reconfigured set of sub-observers. . . . . . . . . . . . . . . 166

7.23 Actual, estimated, and the estimation error of the LOE fault in satellite

#2 by using the reconfigured set of sub-observers. . . . . . . . . . . . . . . 167

7.24 Actual, estimated, and the estimation error of the LOE fault in satellite

#3 by using the reconfigured set of sub-observers. . . . . . . . . . . . . . . 168

7.25 Actual, estimated, and the estimation error of the LOE fault in satellite

#4 by using the reconfigured set of sub-observers. . . . . . . . . . . . . . . 170

7.26 Actual, estimated, and the estimation error of the LOE fault in satellite

#5 by using the reconfigured set of sub-observers. . . . . . . . . . . . . . . 171

7.27 The total error norm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

7.28 The WAMF digraphs used by (a) the LLFR and (b) the FLFR modules,

in which the dashed lines represent the distances from the rotation centers

CL and CF , respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

7.29 The x-axis cumulative control effort for (a) all satellites are fault free, (b)

faulty satellite #3 with the LLFR applied, and (c) faulty satellite #3 with

the HLFR applied. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

xiii



7.30 The WAMF digraph that is used by the FLFR module in which the dashed

lines represent the distances from the rotation center CF . . . . . . . . . . . 180

7.31 The x-axis cumulative control effort for (a) all satellites are fault free, (b)

faulty satellites #2 and #3 with the LLFR applied, and (c) faulty satellites

#2 and #3 with the HLFR applied. . . . . . . . . . . . . . . . . . . . . . . 181

xiv



LIST OF ABBREVIATIONS AND SYMBOLS

List of Abbreviations

AMF Absolute Measurement Formation

AOCS Attitude and Orbital Control Systems

CSSO Constrained State Sub-Observer

CSSOFF Constrained State Sub-Observer with Fusion Feedback

DES Discrete-Event System

DFM Decentralized Fixed Mode

DOF Degrees Of Freedom

DS Deep Space

E Estimation (Digraph)

EKF Extended Kalman Filtering

FDI Fault Detection and Isolation

FDIR Fault Detection, Isolation, and Recovery

FF Fusion Feedback

FFC Formation Flying Control

FFI Formation Flying Interferometer

FL Formation Level

FLFE Formation Level Fault Estimation

FLFR Formation Level Fault Recovery

HL High Level

HOF Hard Over Failure

ILO Iterative Learning Observer

KF Kalman Filter

LL Low Level

LIP Lock In Place

LISA Laser Interferometer Space Antenna

LLFE Low Level Fault Estimation

LLFR Low Level Fault Recovery

LMI Linear Matrix Inequality

LOE Loss Of Effectiveness

LQR Linear Quadratic Regulator

LTI Linear Time-Invariant

L/F Leader/Follower

MIMO Multiple-Input Multiple Output

xv



MMST Multiple-Model Switching and Tuning

NN Neural Network

PCA Principal Component Analysis

PHA Probabilistic Hybrid Automata

PLA Partial Least Squares

PM Performance Monitoring

POE Planetary Orbital Environment

QTA Qualitative Trend Analysis

RMF Relative Measurement Formation

SD State Dependency

SN Supporting Neighbor

SO Sub-Observer

SOD Sub-observer Dependency

SODE Sub-observer Dependency Estimation

TPF Terrestrial Planet Finder

UAV Unmanned Aerial Vehicle

UGV Unmanned Ground Vehicle

UKF Unscented Kalman Filtering

UUV Unmanned Underwater Vehicle

UV Unmanned Vehicle

VS Virtual Structure

WAMF Weighted Absolute Measurement Formation

WE Weighted Estimation

WSODE Weighted Sub-observer Dependency Estimation

List of Symbols

A State transition matrix

AS Satellite cross-section area exposed to solar radiation force

Ax,y xy-axes state transition matrix

Bi Actuator matrix of vehicle #i

Bxi x-axis actuation matrix of vehicle #i

bxi x-axis actuator gain of vehicle #i

Bxi,yi xy-axes actuation matrix of vehicle #i

B̄ Nominal actuator matrix of a vehicle

B̂i Estimate of actuator matrix of vehicle #i

b̂xi Estimate of x-axis actuator gain of vehicle #i

xvi



b̄xi Nominal x-axis actuator gain of vehicle #i

COND(i) Condition of sub-observer SO(i)

COST (i) Cost of sub-observer SO(i)

COST
(i)
C Communication cost of sub-observer SO(i)

COST
(i)
E Estimation cost of sub-observer SO(i)

COST
(i)
R Recovery cost of sub-observer SO(i)

CC Communication cost coefficient

CE Estimation cost coefficient

CF Rotation center in the formation-level fault recovery

CL Rotation center in the low-level fault recovery

CR Recovery cost coefficient

CS Solar radiation coefficient

D(i) Domain of sub-observer SO(i)

EAMF Edge set of absolute measurement formation digraph

EE Edge set of estimation digraph

eij Edge of a digraph

EP Edge set of a path P in a digraph

ERMF Edge set of relative measurement formation digraph

es Error specification

ESD Edge set of state dependency digraph

ESOD Edge set of sub-observer dependency digraph

EN
t Total error norm

Exi x-axis cumulative control effort of vehicle #i

Exij x-axis tracking error between vehicles #i and #j

E {.} Expected value of a random variable

fi Actuator fault matrix of vehicle #i

FS Solar radiation force

f̂i Estimate of actuator fault matrix of vehicle #i

GAMF Absolute measurement formation digraph

GE Estimation digraph

GRMF Relative measurement formation digraph

GSD State dependency digraph

GSOD Sub-observer dependency digraph

I(i) Input set of sub-observer #i

IS Solar radiation intensity

Ki Feedback matrix of vehicle #i

K(i) Gain of sub-observer SO(i)

Li Distance of vehicle #i from rotation center

xvii



` Fusion feedback parameter

mi Total mass of vehicle #i

N Total number of vehicles

n Total number of states

N ({i}) Neighbor set of vehicle #i or sub-observer SO(i)

N s({i}) s-order neighbor set of vehicle #i

N [1,∞]({i}) Full-order neighbor set of vehicle #i

N +({i}) Inclusive neighbor set of vehicle #i

N +[1,∞]({i}) Inclusive full-order neighbor set of vehicle #i

Nk({i}) xk-corresponding nearest neighbor set of sub-observer SO(i)

O(i) Output set of sub-observer SO(i)

P A path in a digraph

R(i) Range of sub-observer SO(i)

R(i) Recovery status operator

SetsoI Initial set of sub-observers

SetsoR Reconfigured set of sub-observers

SO(i) Sub-observer #i

Ud Overall desired input vector

Ui Input vector of vehicle #i

Ud
i Desired input vector of vehicle #i

U r
i Reference input vector of vehicle #i

Us Overall stabilizing control vector

Uxi x-axis input vector of vehicle #i

uxi x-axis input parameter of vehicle #i

udxi Desired x-axis input parameter of vehicle #i

Uxi,yi xy-axes input vector of vehicle #i

VAMF Absolute measurement formation digraph

VE Vertex set of estimation digraph

vi Vertex #i of a digraph

VL Speed of light

VP Vertex set of a path P in a digraph

VRMF Vertex set of relative measurement formation digraph

VSD Vertex set of state dependency digraph

vsink Sink vertex of a digraph

VSOD Vertex set of sub-observer dependency digraph

vsource Source vertex of a digraph

Vxij Sensor noise of the measurement xij

vxij x-axis relative velocity between vehicles #i and #j

xviii



v̂
(k)
xij Estimate of state vxij by sub-observer SO(k)

Wxi x-axis disturbance of vehicle #i

W̄xi x-axis dynamics unreliability/uncertainty of vehicle #i

X Overall state vector of the system

Xi State vector of vehicle #i

Xd
i Desired state vector of vehicle #i

Xr
i Reference state vector of vehicle #i

xij x-axis relative position between vehicles #i and #j

Xxi x-axes state vector of vehicle #i

Xxij x-axis relative state vector between vehicles #i and #j

Xxi,yi xy-axes state vector of vehicle #i

x̂
(k)
ij Estimate of state xij by sub-observer SO(k)

Yi Output vector of vehicle #i

yvi Measurement of vi

Yxi Measurement vector of x-axis state of vehicle #i

yxi Measurement of xi

Yxij Measurement vector of x-axis relative state between vehicles #i and #j

Yxi,yi Measurement vector of xy-axes states of vehicle #i

αi Parameter of centralized feedback

αij Parameter of decentralized feedback

βkij Decentralized feedback gain

Ω Adjacency matrix of a digraph

ω Rotation maneuver frequency

ωij Element ji of adjacency matrix

φi Desired trajectory phase of vehicle #i

πi Actuator fault matrix of vehicle #i

πxi x-axis actuator fault parameter of vehicle #i

τ Time delay (constant)

π̂
(k)
i Estimte of fault parameter πi by sub-observer SO(k)

π̂
(k)
xi Estimte of fault parameter πxi by sub-observer SO(k)

xix



Chapter 1

Introduction

Formation flying is a new concept that is proposed for a cluster of vehicles that has posed

a number of challenging problems all calling for development of novel technologies. Due

to the strict high-precision control requirements necessary in formation flying missions,

the problem of fault diagnosis, identification, and recovery (FDIR) has become critically

significant in this field of study. The autonomy requirement of these missions makes the

FDIR problem even more critical and significant.

1.1 Motivation and Applications

Since the concept of precision formation flying control (FFC) was introduced in the liter-

ature [6], [7], the importance of FDIR for these systems has been recognized [8], [9], [10].

Considerable research has already been devoted to fault diagnosis in vehicle systems [11],

[12], [13], [14], [15]. However, majority of these works have been developed on a single-

vehicle mission, with far less practical considerations given to the nontrivial problem of

fault recovery [16], [17], [18], [19]. Considering the complexities that are involved with

these costly formation flying missions, there is an important area of research regarding

the FDIR in FFC of multiple vehicle missions.

Distribution of a dynamical system among a large fleet of formation vehicles, which

are possibly positioned at distant relative positions, imposes many complexities and com-

putational/communicational constraints on the control and FDIR of the formation sys-

tem at different levels including component, subsystem, system, vehicle, formation, and

high-level supervisor. Therefore, formation flying requires a multi-level hierarchical fault

diagnosis system, where all levels are in communication with one another. The coopera-

tion and information exchanges among different levels of the multi-level diagnosis system

would then necessitate and introduce new issues and research problems. There is no stan-

dard or conventional methodology that completely describes cooperation and information
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exchanges among different system levels for achieving the most reliable and efficient fault

diagnosis under various possible scenarios. This is an open area of research where defin-

ing different possible fault scenarios in the formation and the corresponding cooperative

algorithms among the multiple levels of the diagnosis system need to be investigated.

In a satellite formation flying framework, multiple small satellites cooperate to ac-

complish the objective of one larger and more expensive one. Developing multiple smaller

satellites has many benefits over a single satellite including simpler design, faster build

time, higher reliability and redundancy, higher resolution, and the ability to view scien-

tific payload targets from multiple angles or at multiple times. These characteristics make

them ideal for many applications including astronomy, communications, meteorology, and

environmental studies.

Depending on the application, there are two types of satellite formations, namely

trailing and cluster. Trailing formations are formed by multiple satellites orbiting on the

same path. They are displaced from each other at a specific distance to produce either

varied viewing angles of one target or to view a target at different times. Trailing satellites

are especially suited for meteorological and environmental applications such as viewing

the progress of a fire, cloud formations, and making 3D views of hurricanes. Notable

trailing pairs are Landsat 7 with EO-1 [20], and CALIPSO with CloudSat [21].

Cluster formations are formed by satellites in a dense (relatively tightly spaced)

arrangement. These arrangements are best suited for distributed sensing and sparse

antenna arrays for gravitational mapping, high resolution interferometry, and making

maps of the Earth. In all these applications, separate instruments on a large number

of low cost spacecraft are fused to replace for an expensive huge single platform. The

examples of cluster formation flying missions are Terrestrial Planet Finder (TPF) [1]

(Figure 1.1), Infra-Red Space Interferometer “Darwin” (IRSI/Darwin) [2] (Figure 1.2),

and Laser Interferometer Space Antenna (LISA) [2] (Figure 1.3). The TPF mission tries

to find and characterize Earth-like planets orbiting other stars. The objective of this

mission is to resolve a planet that is a million to a billion times weaker in contrast

compared to its parent star at attitude separations on the order of milliarcseconds. The

Darwin mission is aimed at detection of other Earth-like planets as well as interferometric

imaging of astrophysical objects. LISA is a NASA/ESA common collaborative project.

The objective of this formation mission is to detect and observe gravitational waves, in

the frequency range of 10−4 to 10−1 Hz, from massive black holes.

Formation flying is also applicable to a cluster of networked unmanned vehicles,

such as unmanned aerial vehicles (UAVs), unmanned ground vehicles (UGVs), and un-

manned underwater vehicles (UUVs). In these domains, formation flying promises several

practical applications, such as reconnaissance [22], surveillance [23], communication relay-

ing [24], and search and rescue [25]. Some of these tasks may be dangerous and will not
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Figure 1.1: A formation flying interferometer (FFI) schematic [1].

Figure 1.2: Schematic of the six-telescope formation in Darwin [2].

Figure 1.3: Artist’s concept of gravitational waves emitted by a binary system, with the
three-spacecraft LISA configuration and the Earth-Moon system [2].
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be recommended for human pilots, thus making them ideal for autonomous unmanned

vehicles.

In the subsequent sections, the most relevant existing results in the literature in

the areas of formation flying and FDIR are reviewed. First, some reported results of

unmanned vehicle formation and formation flying satellites are provided. An overview of

the FDIR is then presented, and finally, the most relevant FDIR algorithms are reviewed.

1.2 Literature Review

In this section, relevant literature review regarding multi-vehicle formation systems is

presented. The focus is concentrated on the formation flying satellites, since this type

of formation is investigated and studied in the simulation section of this thesis as an

application area. Moreover, fault detection, isolation, and recovery (FDIR) approaches

in the literature are reviewed that include quantitative model-based, qualitative model-

based, history-based, and fault recovery and estimation methods.

1.2.1 Unmanned Vehicle Formation

Formation flying is defined as a set of more than one vehicle whose dynamic states are

coupled through a common control law [6]. In formation flying, at least one vehicle

must track a desired state relative to another one, and the tracking control law must

depend on the state of this other vehicle. However, in constellation missions there exists

no such coupling among the vehicles. In this sense, GPS satellites are categorized as a

constellation, and not as a formation.

The problem of cooperative control in unmanned vehicle systems is studied in [26]

and [27]. Different control techniques have been applied to the unmanned aerial vehi-

cles including neural networks [28], adaptive LQ control [29], nonlinear model predictive

control [30], and backstepping design including input saturations [31].

In [32], a novel framework for the leader-follower formation control is developed for

the control of multiple quadrotor unmanned aerial vehicles (UAVs) based on spherical co-

ordinates. A neural network (NN) control law for the dynamical system is introduced to

learn the complete dynamics of the UAV, and stability of the entire formation is demon-

strated by using Lyapunov theory. In [33], a control system is designed for the formation

flight of multiple UAV helicopters based on the leader-follower structure. Moreover, a

collision avoidance scheme based on some predefined alert zones and protected zones is

employed to avoid possible collisions of UAV helicopters in the actual formation flight test.

In [34], a behavior-based decentralized approach is proposed for unmanned aerial vehicle

(UAV) formation flight. The behavior-based approach is considered to promptly react
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to various situations because its control input is decided based on the relative weight of

each agent’s desired behavior. In [35], synchronized position tracking controller is incorpo-

rated in formation flight control of multiple flying wings. It is shown that the performance

and effectiveness of the formation controller are improved by using the virtual structure

approach to maintain formation geometry.

In [36], a fuel efficient control scheme is proposed for aircraft formation flight based

on energy equations, which aims at minimizing the fuel difference of the aircraft. In [37],

vision-based UAV formation flight methods are discussed, and critical section-formation

guidance, moving object extraction, and object tracking are studied in detail. An un-

scented Kalman filtering (UKF) technique is applied to the problem of object tracking

in order to improve the often-used extended Kalman filtering (EKF) technique. In [38],

longitudinal and lateral fuzzy controllers are designed to solve the multi-UAV formation

control problem. Q-Learning method, which is a type of reinforcement learning, is used

to tune the corresponding parameters in the output membership functions of a fuzzy

controller. Also, different conditions including coordinative turning, tense-loose shape

changing, shape sequence changing and collision avoiding scenarios are simulated with

the formation control methodology, which is comprised of centralized decision and decen-

tralized control solutions.

In [23], motion and formation control of a team of three unmanned aerial vehicles

(UAVs) are considered for a particular surveillance task, in which a decentralized control

scheme is designed and analyzed based on a non-hierarchical sensing/control structure.

In [39], uninhabited aerial vehicles (UAVs) are tasked with locating a group of active

emitters based on two different approaches. The first approach is a simple heuristic that

assigns the closest three UAVs to the highest priority emitter. The performance of the

algorithm is improved by using the second approach, in which a cost is assigned for each

UAV team and emitter combination based on the current angular separation of the UAVs

around an emitter, and by how much each UAV team can perfect its geometry in a given

time period. In [40], a two-stage optimal coalition formation algorithm is proposed that

assigns appropriate numbers of UAVs satisfying the desired requirements for carrying out

munitions in support of battlefield operations.

In [41], navigation problems of unmanned air vehicles (UAVs) flying in a formation in

a free and an obstacle-laden environment are investigated, and a model predictive control-

based tracking controller is used to track the references that are generated in order to

handle practical vehicle constraints. In [22], the problem of close target reconnaissance

by a formation of three unmanned aerial vehicles (UAVs) is considered. The overall close

target reconnaissance involves subtasks of avoiding obstacles or no-fly-zones, avoiding

inter-agent collisions, reaching a close vicinity of a specified target position, and forming

an equilateral triangular formation around the target. A decentralized control scheme
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is developed for this overall task considering unidirectional sensing/control architecture.

In [42], the problem of formation flight is considered for a set of unmanned air vehicles

(UAV) in a possible obstacle laden environment. A novel decentralized control design

procedure is developed which guarantees collision and obstacle avoidance. The control

design is based on a modified virtual leader-follower structure and a simple consensus

protocol.

1.2.2 Formation Flying Satellites

Based on the considered modeling complexities, satellite formation flying missions are

categorized into two main classes: Deep Space (DS) and Planetary Orbital Environment

(POE) [6]. In POE, the spacecraft are affected by orbital dynamics as well as environ-

mental disturbances, while in DS the absolute and relative spacecraft dynamics can be

represented by double integrators. Due to limited availability of resources in DS missions,

the problems of optimal formation rotation and path planning are of high significance.

The optimality in DS is mainly in the sense of fuel consumption, which has been investi-

gated in [43], [44], [45], [46]. In these methods, fuel-balancing in formation rotation and

path planning is achieved through formation reconfiguration. A reconfiguration is defined

as a reassignment of spacecraft positions in a formation.

A satellite orbiting the Earth is influenced by many perturbing forces, torques and

disturbances. Gravitational perturbation (J2) [47], [48] and gravitational torque [49]

highly affect satellites in lower altitudes due to the non-symmetric and non-homogenous

characteristic of the Earth. The atmospheric drag [47], [49] is a dominating force at low

altitudes whereas for high altitude orbits it may be ignored. Other major perturbing

factors could be listed as solar radiation [50] and solar wind [47], the magnetic field of the

Earth, and the gravitational force of the Moon and the Sun [51], [52]. These perturbing

factors are compared and illustrated in Figure 1.4 [3]. In [53], dimensional analysis is used

to estimate the magnitudes of various disturbances. In [54] and [55], the effects of gravity

perturbation are analyzed and considered to control the satellite formation. In [56] the

effects of sensor noise on the formation flying control are investigated. The entire forma-

tion path planning problem could be modeled by a multi-objective optimization problem,

where feasible solutions should satisfy the trade-offs between multiple goals such as fuel

consumption and maneuver time [57], [58].

In [7] five basic formation architectures are defined: Multiple-Input Multiple-Output

(MIMO), Leader/Follower (L/F), Virtual Structure (VS), Cyclic, and Behavioral. In the

MIMO architecture, the formation is modeled by a multiple-input multiple-output plant.

Using this dynamic model of the entire formation, all the methods and theories of modern

control can be applied to formation control, detection and estimation problems. The most
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Figure 1.4: The influence of the disturbing forces at different altitudes [3].

studied FFC architecture in the literature is L/F structure. In this architecture, a hier-

archical structure is used for designing the spacecraft controllers. In the VS architecture,

the overall formation is modeled by a virtual rigid body that the spacecraft are the rigid

parts of it. The Cyclic architecture is similar to L/F in the sense that it is considered as

the interconnection of individual spacecraft controllers. However, Cyclic differs from L/F

in the sense that the controller connections are not hierarchical. In a Behavioral archi-

tecture, there exists a combination of several behaviors, for which individual controllers

are designed. Therefore, in such architectures the individual controllers achieve different

and possibly competing behaviors.

The MIMO architecture requires access to the entire formation state for the con-

troller to be optimal. Therefore, it requires the highest amount of information exchange.

The stringent communication requirements negatively affects robustness of MIMO algo-

rithms to local failures such as communication delay and faults. In the L/F architecture,

both of these concerns, namely information requirements and robustness, are addressed

at the expense of global optimality. In L/F architecture, each spacecraft requires the local

information about the states of its leader, and so the formation control and coordination

are simplified and reduced to individual tracking problems. However, the drawback of

L/F architecture is that it does not guarantee a globally optimal formation controller due

to the framework of locally optimal individual controllers. The Cyclic architecture im-

proves the L/F architecture by making non-hierarchical connections between individual

spacecraft controllers, which require more communication effort. In the sense of optimal-

ity and communication requirements, the Cyclic architecture lies between the MIMO and

L/F architectures.
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Formation Coordination/Feedback Architecture: Generally, there are four types

of formation control problems, namely (a) unconstrained initialization, (b) initialization

with collision avoidance, (c) unconstrained translation and rotation, and (d) constrained

translation and rotation [4], [5], [59]. The problem of coordinating multiple spacecraft in

formation flying is addressed in [4], [59]. This architecture is shown in Figure 1.5-(a). In

this figure, the system Si represents the ith spacecraft. The vectors ui and yi are the input

and output measurement vectors of the ith spacecraft, respectively. The local controller

for the ith spacecraft is denoted by the block Ki. The input and output of Ki are the

coordination variables ξ and the performance variable zi, respectively. The block F is the

formation control and represents the primary coordination mechanism in the system. The

inputs of F are the performance variables zi of each spacecraft and the output yG of the

supervisor. The outputs of F are the coordination variable ξ to the local controllers and

the performance vector zF to the supervisor. The supervisor G is a discrete-event system

(DES) that derives the input yG to the formation control F by using the performance

vector zF from F . This coordination/feedback architecture provides a convenient and

rigorous framework to apply and compare various centralized and decentralized control

approaches for different formation flying architectures.

In Figure 1.5-(b), a decentralized scheme for spacecraft formation control via the

virtual structure approach is proposed [5]. In this figure, the disturbance input vector

wi represents external forces and torques to the ith spacecraft Si. The blocks F (k) and

K
(j)
i represent the kth formation control and the jth local controller for the ith spacecraft,

respectively. It is assumed that different control strategies are required for different op-

erational modes. Therefore, the supervisor determines which formation control F (k) and

local spacecraft control K
(j)
i is required for a certain formation maneuver.

(a) (b)

Figure 1.5: Coordination/feedback architecture with (a) centralized [4] and (b) decentral-
ized scheme [5].
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1.2.3 Fault Detection, Isolation, and Recovery (FDIR)

In a process, the term “fault” is defined as a deviation of a variable or parameter from

its normal range. There are three general types of faults that may occur in a process,

namely parameter changes, structural (system/controller) changes, and sensor and actu-

ator faults. Fault detection, isolation and estimation is an important area of research

that can enable fault prognostic systems to prevent total failure through early detection

and diagnosis. The desirable characteristics of a fault diagnostics system are [8]: quick

detection and diagnosis, isolability, robustness, novelty identifiability, classification error

estimate, adaptability, explanation facility, modeling requirements, storage and compu-

tational requirements, and multiple fault identifiability. The fault diagnosis methods are

classified into two general classes of model-based and history-based approaches, each of

which can be categorized into qualitative and quantitative methods. In the following,

these methods will be explained and discussed in detail.

Quantitative Model-Based Methods: The quantitative model-based approaches are

mostly based on general state-space models and input-output representations of a process.

Most of these approaches require system linearity. Therefore, in case of a nonlinear system,

the system is linearized around an operating point. Moreover, the faults could be modeled

as either additive or multiplicative terms. The most frequently used FDI approaches

include diagnostic observers, parity relations, Kalman filters and parameter estimation

[8], [60]. All model-based FDI methods require two steps. In the first step, residuals are

generated to illustrate any inconsistencies between the actual and the nominal (healthy)

system, and in the second step, a decision rule is implemented to interpret and diagnose

the source of the inconsistent residuals.

In [13] general diagnostic observer methods are discussed for linear systems. Also,

some earlier works based on diagnostic observers can be found in [61]. In [62], [11], [14] the

fundamental problem of robust fault detection is investigated and the effects of faults are

decoupled from each other and from the effects of modeling errors to achieve the desired

robustness properties. In [12], the problem of fault diagnosis by using nonlinear observer-

based approaches is investigated. The experimental results indicate that the robustness

issue becomes more important as the system model complexity increases. In this regard,

robustness is always an important problem that requires analytical and experimental

verifications. In [63] and [64], a geometric approach is used to design observers for actuator

fault detection and isolation in satellite translational and attitude dynamics, respectively.

In [18], a hybrid fault diagnosis and recovery is proposed for a team of unmanned vehicles,

and the proposed hybrid method offers a better fault detection as compared to the previous

model-based detection methods.
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Another approach that can be used to design nonlinear observers for state estimation

is based on Kalman filters [14], [65]. In this approach, the observer gain matrix, which

is the linearized gain matrix around an operating point, is time-variant. These filters

work well in estimating faults that are slowly varying. But in case of jump failures, the

performance of Kalman filters degrade considerably. For nonlinear systems, the standard

Kalman filter is modified to the form of extended Kalman filter (EKF). In [66], suboptimal

EKFs are developed to enhance the trade-offs between computational load and diagnosis

accuracy. In [67] EKF is used in the application of fault detection in aircraft control

systems, and in [68] a bank of Kalman filters is used for fault diagnosis of reaction wheels

in satellites.

Parity equation approach is another quantitative model-based approach for fault

diagnosis. This method is based on checking the parity (consistency) of the system models

with the known inputs and measured sensor outputs. One can obtain parity equations by

rearranging or transforming the input-output models, such that the resulting algebraic

equations indicate an explicit relation between the input and output time-sequence data

vectors. In most applications these equations are rather easy to generate from on-line

process data [69], [70]. One important aspect of fault diagnosis is fault isolation, which

requires feasible generation of residual vectors that are orthogonal for different faults.

Therefore, in parity equations the model structure is rearranged such that desired fault

isolability is achieved.

Qualitative Model-Based Methods: In some applications, the accurate mathemat-

ical model of a system may not be available, and therefore it is not effective to apply

quantitative model-based methods. In such cases although a mathematical model cannot

be accurately derived, qualitative behavior models can be developed quite efficiently for

the purpose of qualitative model-based fault diagnosis. These methods include diagraph

based causal models, fault trees, qualitative physics, and abstraction hierarchy [9]. In [71]

a fault-tree approach is proposed to strengthen existing efficient fault-detection mecha-

nisms in satellite reaction wheel, with an additional ability to classify different types of

faults to effectively determine potential failure causes in a subsystem. In [72] multiple

fault detection with a signed digraph based fault diagnosis is proposed. In [73] a fault de-

tection method based on fault trees is used in a risk assessment and reliability analysis. In

all these methods, a qualitative model of the system is developed using the incomplete and

uncertain knowledge of the behavior of the system. The qualitative model is consequently

analyzed using the qualitative model-based methods to make partial conclusions.

Besides the advantages of qualitative model-based methods, these methods have a

major drawback that involves the generation of spurious solutions. Considerable research

has been conducted on the qualitative model-based methods to reduce the number of
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spurious solutions [9]. This drawback is due to the fact that there exists no qualitative

behavior model that can completely and explicitly represent a system. Therefore, the

performance of these diagnosis methods is considerably affected by any new condition

that is not defined in the knowledge base.

History-Based Methods: In some applications, the model of the system may not be

available; instead the history of the input-output data of the system is stored and is avail-

able for diagnosis purposes. In contrast to the model-based approaches, process history-

based methods are best candidates for applications with history-based data and lack of

model-based information [74], [75], [76]. One method to code the historical data to use in

a history-based diagnosis system is that of “feature extraction” [10]. Feature extraction

can be categorized into two classes of qualitative and quantitative processes. Qualita-

tive feature extraction includes expert systems and qualitative trend analysis (QTA), and

quantitative feature extraction includes statistical methods (principal component analysis

(PCA), partial least squares (PLS), and statistical classifiers) and neural networks. One

major deficiency of history-based methods is that they highly rely on the consistency of

historical data, and therefore the performance of history-based diagnosis systems is fragile

when encountering new process and environmental data.

Generally, none of the diagnosis methods above can completely satisfy all the de-

sirable characteristics of an ideal diagnostic system. For example, causal digraph is a

powerful tool in explaining the faults but weak in isolating multiple faults. Furthermore,

quantitative model-based approaches are very efficient in fault isolation. The conclusion

is that an efficient integration of various diagnosis methods can indeed result in an opti-

mal hybrid diagnosis system that can overcome the deficiencies and drawbacks of a given

single method.

Fault Recovery Methods: There are two general methods to design a fault-tolerant

control system: passive and active. In active control, the control system is redesigned on-

line when a fault is diagnosed and its severity is estimated. Such an active fault tolerant

control system consists of fault detection, fault severity estimation, and control reconfig-

uration. In passive control, the control system is designed such that its performance is

robust to probable faults and failures with certain bounded severities. Typical techniques

are adaptive control and robust control [16], [77], [78].

Considerable research has already been devoted to fault diagnosis and recovery for

the satellite’s attitude and orbital control systems (AOCS). In [19] a model-based fault

recovery is presented for the attitude control subsystems of a satellite using magnetic

torquers. It is shown that the analytical redundancy of magnetic torquers can be utilized

to recover the possible fault in any of them. In [79], [80] statistical local approach is

11



specifically designed for diagnosis and identification of faults with very small magnitudes.

The approaches in [81], [82], [83] are based on the sliding mode observer, and the design

of an observer in [81] boils down to solving LMIs. In [84], [85], the authors have designed

an iterative learning observer (ILO), which uses a learning mechanism instead of using

integrators that are commonly used in classical adaptive observers. The ILO overcomes

the difficulty in identifying time-varying thruster faults by adaptive observers. In [16], [86]

an adaptive Kalman filtering algorithm is developed to estimate the reduction of control

effectiveness in a closed-loop setting. The state estimates are fed back to achieve the

steady-state regulation, while the control effectiveness estimate is used for the on-line

tuning of the control law.

In [77], by solving a Lyapunov equation a robust state-space observer is proposed

to simultaneously estimate descriptor system states, actuator faults, their finite time

derivatives, and attenuate input disturbances in any desired accuracy. Moreover, a fault-

tolerant control scheme is worked out by using the estimates of the descriptor states and

faults, and the linear matrix inequality (LMI) technique. In [87], a fault is assumed to

belong to a finite set of parameters (modes), and a sliding mode controller is designed for

accommodation of each mode in a hierarchical framework. In [88], a fuzzy adaptive sliding

mode control is implemented for fault accommodation. In [89] the authors proposed

robust fault diagnosis methods by using Lyapunov redesign method. In [78] adaptive

control is applied to systems with actuator uncertainty and failure. In [90] an adaptive

observer/estimator bank is used to detect and identify faults, and a controller bank is

designed to constitute the structure of the multiple-model switching and tuning (MMST)

controller.

Estimation Methods: Estimation techniques have been extensively investigated in the

literature for various applications ranging from tracking and navigation [91] to fault diag-

nosis and recovery [17], [92]. Due to the distributed nature of many multi-agent systems,

such as formation flying vehicles, decentralized filtering techniques are of most interest to

the estimation area. In [93] and [94], decentralized estimation algorithms are surveyed and

applied to the state estimation of formation flying satellites. The simulation results show

that decentralized reduced-order filters result in near optimal estimates while balancing

the constraints on communication and computation among the satellites. Moreover, a

hierarchical architecture is presented to embed the decentralized estimators while scaling

the problem to very large fleets. In [95], [96], the state estimation is performed based on

parallel operation of full-order observers with local measurements. A necessary condition

on communication topology is developed to guarantee stability of simultaneous parallel

estimators and controllers.

Most efforts on distribution of Kalman filters are based on full-order observers [97],
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[98], which are not ideally communication-wise efficient. In [99], [100] and recently in

[101], [102], [103] the efforts have been made to distribute the Kalman filtering technique

among the vehicles in a fleet. In [101], [102], [103] the overall system model is divided into

several subsystems according to the physical considerations of the system. A local Kalman

filter is designed for state estimation in each subsystem. Among the local Kalman filters,

the common observations are fused using bipartite fusion graphs and consensus averaging

algorithms. The performance is shown to be acceptable, as compared to a centralized

Kalman filter, while the method offers less communicational complexity. In [104] cascaded

Kalman filters are proposed for estimation of multiple biases for applications to ground

vehicles.

Another distributed estimation method among local filters is based on consensus

filters. The consensus problems in coordination of multi-agent systems are surveyed

in [105]. The results cover both the cases of time-varying and time-invariant informa-

tion exchange topologies. In [106], [107], distribution of Kalman filter is performed in

a consensus framework for the special case of static systems. Besides, it is pointed out

that the case of dynamic systems is an open topic of research. In [108], [109], [110], the

case of distributed Kalman filtering for dynamic systems is tackled using micro-Kalman

filters, and the resulting estimates are fused using a consensus scheme. It is shown that

the consensus error would be within a finite error bound whose radius depends on the

variation rate of the measured states.

In [111] and [112], the authors proposed a centralized scheme for the fault tolerant

estimation in the general case of nonlinear systems. However, the problem of distributed

fault tolerant estimation cannot be solved by employing their approach. In the distributed

fault tolerant estimation, the overall model is distributed among multiple local agents and

the system information is cooperatively provided by the local agents and is partially avail-

able to the local agents due to the communication constraints among them. Furthermore,

in [111] and [112], the proposed method is based on the “differential algebra” theory [113],

in which multiple derivatives of the output sensor and input signals are required. How-

ever, the sensor noise has a negative impact on the performance of multiple differential

operators that is a drawback of the differential algebra theory [114].

It should be noted that none of the methods in the literature properly address the

process fault in the form of parameter drift. A drift is a comparatively long-term change

in a parameter of a system or equipment. Hence, parameter drifts make the estimation,

recovery and accommodation procedures rather challenging. The time-dependent param-

eter drifts can be handled through on-line and on-board parameter estimation techniques.

Hence, accurate quantitative models of the system are required for the purpose of param-

eter drift estimation. Different parameter estimation methods are surveyed in [15]. These

methods require accurate dynamic models of the process and are computationally very

13



intensive for large processes. One way of reducing the computational load is to imple-

ment parameter estimation techniques for reduced order models, which require robustness

consideration and analysis. In [115], a robust H∞ estimator is used for fault diagnosis in

a satellite, and hence the estimation performance is robust to uncertainties and distur-

bances. In [17], fault detection, isolation and recovery (FDIR) is performed for nonlinear

satellite models by using a parameter estimation approach.

1.3 Our Proposed Methodology

Various methods have been proposed in the literature for the problem of fault diagnosis,

identification, and recovery (FDIR) for a single unmanned vehicle. However, none of these

methods have properly introduced and investigated the concept of cooperative fault es-

timation and accommodation in formation flight of unmanned vehicles. Formation flight

of unmanned vehicle missions require an autonomous cooperative fault diagnosis, identi-

fication and recovery (FDIR) scheme among the various levels ranging from the low-level

(LL) to the formation-level (FL) and high-level (HL). In this thesis, the problem of fault

estimation and accommodation in formation flight of unmanned vehicles is investigated

based on a multi-level hierarchical and cooperative scheme, which improves and enhances

the capabilities of existing fault estimation and accommodation technologies in the do-

main of formation flight of unmanned vehicles. Three levels are proposed and identified

in this framework, namely a low-level (LL), a formation-level (FL), and a high-level (HL)

fault estimation and accommodation.

Our proposed framework for a cooperative FDIR system is shown in Figure 1.6.

In this figure, the bus lines represent the general possible information exchanges among

different modules of the formation. The solid and dashed lines represent internal and

inter-level information exchanges, respectively, that are of main concern in this research.

The scenario investigated for this framework deals with cooperative fault estimation and

recovery, in which two levels, namely the LL and FL are considered.

The LL module corresponds to the vehicle level including all the components (actu-

ators, sensors, power supply, etc.), and generally conventional quantitative model-based

methods can be applied to design the estimation and recovery modules in the LL module.

Conventional filtering methods are used to estimate the severity of a fault, and conven-

tional linear controllers are designed based on the new set of parameter estimates. If the

fault is not properly estimated in the LL module, the faulty vehicle is partially recovered.

The high-level (HL) module includes a supervisor that receives information from the per-

formance monitoring (PM) module, which observes the behaviors of all the vehicles in the

formation. If the HL module detects any degradation in the performance of the partially

LL-recovered vehicles, then the HL module forwards the recovery task to the FL module.
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Figure 1.6: The multi-layer hierarchical cooperative FDIR system for a network of un-
manned vehicles.

At the FL module, all the vehicles are considered as one integrated unit, so that

their interactions are taken into account. The above overall and formation-level inter-

acting units can be employed to estimate and accommodate probable faults in the ve-

hicles more effectively. The formation-level fault estimation (FLFE) module estimates

the fault severities cooperatively by utilizing distributed estimation filters, namely sub-

observers (SOs), whose cooperation and data fusion are maintained by a HL supervisor.

The formation-level fault recovery (FLFR) module accounts for the performance degrada-

tions of a partially low-level recovered vehicle at the cost of HL-driven formation structure

reconfiguration that imposes certain criteria on the input signals of other healthy vehicles.

The HL module is a “supervisor” that observes the performance and behavior of the

formation and makes decisions on the tasks of distributed sub-observer reconfiguration

and formation structure reconfiguration, respectively, for the FLFE and FLFR modules.

The autonomous FDIR requires cooperation among different levels of this multi-level

and hierarchical scheme, while maintaining a minimum amount of information exchange

among the vehicles, to handle different scenarios associated with faulty situations.

In the switching estimation/control framework, the dwell time is defined as a posi-

tive time constant that guarantees stability of the system provided that the consecutive

switching times between controllers and estimators are larger than the dwell time [116].

Analysis of the switching limitations of the dwell time is beyond the scope of this thesis,
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and therefore for sake of simplicity we assume that this condition is implicitly satisfied

before any switching among estimators as well as control reconfigurations takes place.

1.4 Thesis Contributions

In this thesis, a multi-level hierarchical scheme is proposed to improve and enhance the

fault detection, isolation and recovery (FDIR) capabilities of existing technologies in for-

mation flight of unmanned vehicles. The contributions of this thesis are in two main

directions, namely cooperative fault estimation and cooperative fault accommodation,

which have been explained briefly as follows:

• Contributions on cooperative fault estimation [117], [118], [119], [120], [121], [122],

[123]:

1. The problem of cooperative fault estimation is investigated by utilizing dis-

tributed estimation filters, namely sub-observers whose cooperation and data

fusion are maintained by a high-level (HL) supervisor.

2. A systematic approach based on the theories from directed graphs (digraphs)

and structural observability is proposed to design the sub-observers (SOs).

3. The notions of estimation (E), weighted estimation (WE), sub-observer depen-

dency estimation (SODE), and weighted sub-observer dependency estimation

(WSODE) digraphs are developed to formulate the role of a high-level (HL)

supervisor. Moreover, the objective of the supervisor is formulated by the

problem of determining (optimal) paths on the corresponding digraphs.

4. In cases of float, lock-in-place, and hard-over actuator failures, the overall fault-

augmented state space model is shown to be in the general form of a linear

time-invariant (LTI) system; hence, the estimation problem falls in the lin-

ear filtering category. Conditions are derived based on the decentralized fixed

mode (DFM) to examine feasibility of cooperative sub-observers that guaran-

tees stability of the overall estimation problem. Once the overall distributed

estimation problem is shown to be feasible, the robust H∞ linear filtering tech-

nique is used to design the distributed sub-observers.

5. In case of the loss-of-effectiveness actuator failures, the overall fault-augmented

state space model is shown to be in the general form of a bilinear system from

the observability perspective. However, from the estimation point of view, the

overall fault-augmented state space model is shown to be in the general form

of a linear time-varying system, and therefore Kalman filtering (KF) technique
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is utilized to design the local sub-observers. The concept of an acyclic digraph

is used to guarantee the ultimate boundedness of the cooperative estimation

system by using a proper Lyapunov function candidate. If the ranges of some

sub-observers are overlapping, then certain states are being estimated by multi-

ple sub-observers. In such cases, the fusion feedback (FF) optimization problem

is introduced to fuse the data from all the range-overlapping sub-observers and

feed the updated data back to the range-overlapping sub-observers for adjust-

ments to the estimation process. Moreover, a closed form solution is developed

for the fusion feedback optimization problem, and the modifications are made

to the Kalman filters to guarantee stability in the presence of fusion feedback

procedure.

• Contributions on cooperative fault accommodation [124], [125], [126], [127], [128]:

1. The performance monitoring (PM) module is introduced at the high level (HL)

module in order to identify the partially low-level (LL) recovered vehicles, whose

tracking performances violate the given error specification of the formation

mission. Based on the information regarding the LL-recovered vehicles from

the PM module, the supervisor decides on activation of the formation-level

fault recovery (FLFR) module.

2. The formation-level fault recovery (FLFR) module is proposed that accounts

for the performance degradation of a partially low-level (LL) recovered vehicle

at the cost of other healthy vehicles being through certain criteria on their

input signals. The proposed FLFR mechanism is used to accommodate the

possible loss-of-effectiveness actuator failures.

3. In case of a formation flight system with relative measurements among the ve-

hicles, both the centralized and decentralized control approaches are considered

and developed. In case of a single actuator failure, a robust H∞ controller is

designed in which the parameters of the controller are adjusted to accommo-

date the partially LL-recovered vehicle by enforcing the other healthy vehicles

expending more control energy to compensate for the performance degradation

of the faulty vehicle. In case of multiple actuator failures, a robust controller is

designed to stabilize the nominal state space model of the formation, and a con-

straint is imposed on the desired input vector to satisfy the error specification

of the formation mission.

4. In case of a formation flight of unmanned vehicles with absolute measurements,

the notion of adjacency matrix is developed to represent both the centralized

and decentralized control approaches. In case of a single actuator failure, a
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method is proposed to accommodate the fault by reconfiguring the formation

structure in terms of the weighted absolute measurement formation (WAMF)

digraph, activating a robust controller for the partially LL-recovered vehicle,

and imposing a constraint on the desired inputs in order to compensate for

the performance degradation of the formation mission. In case of multiple

actuator failures, the notion of a supporting neighbor (SN) is introduced and

explained, whose desired input vector is adjusted (or constrained) in order

to accommodate the performance deficiencies of all the partially LL-recovered

vehicles.

1.5 Organization of the Thesis

This thesis is organized as follows:

1) In Chapter 2, background information is presented that includes formation digraph,

decentralized fixed mode (DFM), and linear matrix inequality (LMI). Moreover, some

useful notations are introduced that will be used throughout this thesis. The problem

formulation is presented in terms of the state space model of the formation with a

certain formation digraph and the actuator failure model. The technical problems

are described for both cases of cooperative fault estimation and accommodation in

a formation flight of unmanned vehicles. Finally, an overview of the approaches is

provided that will be used in the subsequent chapters to tackle the technical problems

in this thesis.

2) In Chapter 3, the problem of simultaneous state and actuator fault estimation is con-

sidered in formation flight of unmanned vehicles with relative state measurements and

subject to float, lock-in-place, and hard-over actuator failures. The fault parameters

are augmented to the system states to form an overall LTI fault-augmented state space

model. A novel framework is proposed for distributed and cooperative estimation of

general LTI systems subject to process dynamics and sensor measurement unreliabili-

ties. Within this framework, estimation digraphs are proposed based on which a high

level supervisor can make decisions regarding the set of sub-observers to utilize under

different unreliable information scenarios.

3) In Chapter 4, the problem of simultaneous state and actuator fault estimation is consid-

ered in formation flight of unmanned vehicles with relative state measurements subject

to actuator failures including the loss-of-effectiveness. The fault parameters are aug-

mented to the system states to form an overall bilinear fault-augmented state space
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model. Our proposed distributed and cooperative estimation framework is extended

to the general class of bilinear systems.

4) In Chapter 5, the problem of cooperative actuator fault accommodation in formation

flight of unmanned vehicles with relative state measurements is studied. It is assumed

that the actuator fault is partially estimated by our proposed estimation framework in

the previous Chapters 3 and 4. In other words, it is assumed that the fault estimates

are biased and not accurate enough to satisfy the error specifications of the formation

mission, and hence the corresponding faulty vehicle is partially recovered. Therefore, a

methodology is proposed to accommodate the partially recovered (estimated) vehicle

at the expense of other healthy vehicles being through certain criteria on their input

signals.

5) In Chapter 6, our proposed cooperative actuator fault accommodation methodology

is extended to the case of formation flight of unmanned vehicles with absolute state

measurements. The proposed method accommodates the partially recovered vehicle

at the costs of some changes in the absolute measurement formation (AMF) digraph

and some constraints on the desired trajectories of other healthy vehicles.

6) In Chapter 7, our theoretical methodologies are applied to a simulated formation flight

of multiple satellites in deep space (DS) and planetary orbital environment (POE).

Simulation results confirm the effectiveness of our analytical work in the previous

chapters.
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Chapter 2

Background Information, Problem

Formulation and Methodology

2.1 Background Information

2.1.1 Formation Directed Graph (Digraph)

In this section, we first present some preliminary definitions from graph theory [129], [130].

A Digraph G(V,E) is represented by a set of vertices V , which are connected together

by a set of directed edges E. For a vertex vi in a digraph G(V,E), the outdegree and

indegree are the numbers of outgoing edges eik ∈ E and incoming edges eki ∈ E (vk ∈ V ),

respectively. A source vertex is a vertex with indegree zero, while a sink vertex is a vertex

with outdegree zero.

Definition 2.1. In a DigraphG(V,E), a directed path P = (vp0 , vp1 , . . . , vp(l−1)
, vpl) from

a vertex vp0 to a vertex vpl is a sequence of edges (vp0 , vpl), (vp1 , vp2), ..., (vp(l−2)
, vp(l−1)

),

(vp(l−1)
, vpl) such that

• vpk ∈ V for k = 0, 1, ..., l, and

• (vp(k−1)
, vpk) ∈ E for k = 0, 1, ..., l.

A source-to-sink path is a path that initiates at a source vertex and terminates at a sink

vertex.

Definition 2.2. In some applications of formation missions, the objective is to main-

tain a proper relative positioning among the vehicles. For example, in the deep space

multiple spacecraft interferometer [2] one may require centimeter level relative spacecraft

positioning, but the inertial position of the entire formation may drift arbitrarily. These

applications are defined as relative-measurement formation missions. In some other appli-

cations of formation missions, such as the planetary orbital environment (POE) satellite
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formation [6] and the unmanned aerial vehicle (UAV) formation missions [131], the ob-

jective is to maintain a proper relative positioning among the vehicles while the vehicles

move about the desired absolute trajectories in their inertial framework. These applica-

tions are defined as absolute-measurement formation missions. In such applications, if

the desired absolute trajectories of the vehicles are not properly taken into the control loop,

then undesirable absolute positioning and catastrophic clashes may take place. This is not

an issue of concern for the relative-measurement formation missions.

For the two cases of relative and absolute measurements among the vehicles of a

formation (as per Definition 2.2), the formation digraph is defined independently.

Definition 2.3. The relative and absolute measurement formation directed graphs (di-

graphs) are defined as follows:

a) The relative measurement formation (RMF) digraph is defined by GRMF (VRMF , ERMF ),

where the vertex vi represents the vehicle #i and the edge eij represents the relative

measurement of the states of the sink vehicle #j with respect to the source vehicle #i.

b) The absolute measurement formation (AMF) digraph is defined by GAMF (VAMF , EAMF ),

where the vertex vi represents the vehicle #i and the edge eij represents the fact that

the sink vehicle #j, in its control loop, requires the feedback from the states of the

source vehicle #i.

Definition 2.4. For a formation flight of N vehicles with relative measurements, the

nearest neighbor set N ({i}) of a vehicle #i is defined as the index set of all the vehicles

#k such that either eki ∈ ERMF or eik ∈ ERMF as per Definition 2.3, that is

N ({i}) = {k ∈ {1, ..., N}| either eik ∈ ERMF or eki ∈ ERMF}

Definition 2.5. For a formation flight of unmanned vehicles with absolute measurements,

we define the parameter ωki (0 ≤ ωki ≤ 1) as the formation weight of the vehicle #i with

respect to the vehicle #k. The weight ωki is nonzero (0 < ωki ≤ 1) if and only if the

vehicle #i, in its control loop, requires the feedback from the ωki-weighted states of the

vehicle #k. In other words, the vehicle #i is maintaining a ωki-weighted desired position

with respect to the vehicle #k.

Definition 2.6. For a formation flight of N vehicles with absolute measurements, the

nearest (first-order) neighbor set of a vehicle #i is defined as the index set of all the ve-

hicles #k such that ωki 6= 0, that is N ({i}) = {k ∈ {1, ..., N}|ωki 6= 0}. For the index

set {i1, ..., ik} ∈ {1, ..., N}, we define N ({i1, ..., ik}) = N ({i1}) ∪ · · · ∪N ({ik}) and the
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inclusive nearest neighbor set N +({i1, ..., ik}) = N ({i1, ..., ik})∪{i1, ..., ik}. The normal-

ized formation weights ωik satisfy ∀i :
∑

k∈N +({i})ωki = 1. The general s-order neighbor set

is defined as

N s({i1, ..., ik}) = N (N (...N︸ ︷︷ ︸
s times

({i1, ..., ik}))),

the full-order neighbor set is defined as

N [1,∞]({i1, ..., ik}) =
∞⋃
s=1

N s({i1, ..., ik}),

and the inclusive full-order neighbor set is defined as

N +[1,∞]({i1, ..., ik}) = N [1,∞]({i1, ..., ik}) ∪ ({i1, ..., ik})

Definition 2.7. For a formation flight of unmanned vehicles with absolute measurements,

the weighted absolute measurement formation (WAMF) directed graph (digraph) is de-

fined by GWAMF (VWAMF , EWAMF ), in which the vertex vi represents the vehicle #i and

the edge eij represents the fact that the source vehicle #i is in the nearest neighbor set of

the sink vehicle #j with the formation weight ωij 6= 0. Moreover, the adjacency matrix Ω

is defined as [132]:

Ω =


0 ω21 · · · ωN1

ω12 0 · · · ωN2

...
...

. . .
...

ω1N ω2N · · · 0


2.1.2 Decentralized Fixed Mode

Consider the general form of a linear system that is represented by the triplet (A,B,C)

as follows

Ẋ = AX +
[
B1 · · · BNs

]
U︷ ︸︸ ︷
U1

...

UNs


Y1

...

YNs


︸ ︷︷ ︸

Y

=


C1

...

CNs

X
(2.1)

where X(t) ∈ Rn, U(t) ∈ Rr, and Y (t) ∈ Rm are the state, input, and output vectors,

respectively. Moreover, we have Bi ∈ Rn×ri , Ci ∈ Rmi×n, Ui(t) ∈ Rri , and Yi(t) ∈ Rmi

22



(with
∑Ns

i=1 ri = r and
∑Ns

i=1 mi = m). Consider the feedback gain matrix K ∈ K with

the following structure

K =

{
K ∈ Rr×m

∣∣K = diag(Ki)Ni=1,Ki ∈ Rri×mi , i = 1, ..., Ns,

Ns∑
i=1

ri = r,

Ns∑
i=1

mi = m

}
(2.2)

The complex number λ ∈ C is a decentralized fixed mode (DFM) [133] of the system

(2.1) with respect to the feedback gain matrix K in (2.2) if

λ ∈
⋂
K∈K

eigs (A−BKC) (2.3)

where eigs (M) denotes the set of all eigenvalues of the matrix M .

Theorem 2.1. ( [133]) There exists a decentralized linear time-invariant controller for

the system (2.1) such that all the poles of the closed-loop system are in the left half plane

if and only if the decentralized fixed modes of the system (2.1) are contained in the left

half plane.

2.1.3 Linear Matrix Inequality

The LMI technique is applicable to a wide range of constrained convex optimization fields

including the control engineering [134]. A linear matrix inequality (LMI) is an inequality

of the following form

A(y) = A0 +
M∑
i=1

Aiyi ≤ 0

where y =
[
y1 · · · yM

]T
is the vector of unknown variables, namely the decision or

optimization variables, and Ai, i = 0, ...,M are the given symmetric matrices. A(y) is

negative semidefinite if and only if the largest eigenvalue of A(y) is smaller than or equal

to zero. According to [135], the largest eigenvalue of A(y) is a convex function of y, and so

the solution of the LMI condition A(y) ≤ 0 is a convex set. Therefore, finding a solution

y to the LMI condition A(y) is a convex optimization problem.

The following lemmas will be used in the following chapters.

Lemma 2.1. (Schur Complement) Consider a matrix H as follows

H =

[
H11 H12

HT
12 H22

]
, (H11 = HT

11 and H22 = HT
22)

The matrix H is positive definite if and only if one of the two equivalent condition sets

{H11 > 0,H22 − HT
12H

−1
11 H12 > 0} or {H22 > 0,H11 − H12H

−1
22 H

T
12 > 0} is verified.
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The matrix H is negative definite if and only if one of the two equivalent condition sets

{H11 < 0,H22 −HT
12H

−1
11 H12 < 0} or {H22 < 0,H11 −H12H

−1
22 H

T
12 < 0} is verified.

Proof: Refer to [136].

Lemma 2.2. (Bounded Real Lemma) Consider a continuous-time transfer function H(s) =

D + C(sI − A)−1B. There exists a positive scalar γ > 0 such that ||H(s)||∞ < γ and

Re(eig(A)) < 0, where Re(.) represents the real part of a real number and eig(.) repre-

sents the eigenvalue of a matrix, if and only if there exists a positive definite matrix X

that satisfies one of the following equivalent LMIs: ATX +XA XB CT

BTX −γI DT

C D −γI

 < 0 or

 AX +XAT B XCT

BT −γI DT

CX D −γI

 < 0

Proof: Refer to [136].

Lemma 2.3. Consider a linear time-invariant system{
ẋ = Ax+Bu

y = Cx

with the initial condition x(0), and the linear quadratic cost function

JLQR(u,Q,R) =

∫ ∞
0

xTQx+ uTRu

where Q > 0 and R > 0. Taking the state feedback u = Kx, there exists a positive scalar

γ > 0 such that J(u) < γ if there exist a positive definite matrix X and a matrix Y that

form the feedback gain K = Y X−1 and satisfy the following LMIs: AX +XAT +BY + Y TBT X Y T

X −Q−1 0

Y 0 −R−1

 ≤ 0

[
γ xT (0)

x(0) X

]
≥ 0

Proof: Refer to [134].

2.1.4 Some Useful Notations

The following definitions introduce some notations that will be used in this thesis for sake

of simplicity and brevity.

Definition 2.8. The submatrices M[i,j]a×b
, M[i,:]a

, M[:,i]a
and M[i1:i2,j1:j2] and the subvectors

M[i]a
and M[i1:i2] are defined as follows:
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a) The submatrix M[i,j]a×b
is defined as the matrix including all those elements of the

matrix M that are limited to the rows #((i− 1)a+ 1), ...,#ia and the columns #((j−
1)b+ 1), ...,#jb (as a special case, M[i,j] represents the element #ij of the matrix M).

b) The submatrix M[i,:]a
is defined as the matrix including all those elements of the matrix

M that are limited to the rows #((i−1)a+1), ...,#ia (as a special case, M[i,:] represents

the row #i of the matrix M).

c) The submatrix M[:,i]a
is defined as the matrix including all those elements of the matrix

M that are limited to the columns #((i − 1)a + 1), ...,#ia (as a special case, M[:,i]

represents the column #i of the matrix M).

d) The submatrix M[i1:i2,j1:j2] is defined as the matrix including all those elements of the

matrix M that are limited to the rows #i1, ...,#i2 and the columns #j1, ...,#j2.

e) The subvector M[i]a
is defined as the vector including all those elements of the vector

M that are limited to the elements #((i − 1)a + 1), ...,#ia (as a special case, M[i]

represents the element #i of the vector M).

f) The subvector M[i1:i2] is defined as the vector including all those elements of the vector

M that are limited to the elements #i1, ...,#i2.

Definition 2.9. For a given matrix M ∈ Rn×m if one eliminates the rows r1, ..., ri (1 ≤
r1 < · · · < ri ≤ n) and the columns c1, ..., cj (1 ≤ c1 < · · · < cj ≤ m), the resulting matrix

is represented and denoted by

M (−{r1,...,ri},−{c1,...,cj}) =
M[1:r1−1,1:c1−1] M[1:r1−1,c1+1:c2−1] · · · M[1:r1−1,cj+1:m]

M[r1+1:r2−1,1:c1−1] M[r1+1:r2−1,c1+1:c2−1] · · · M[r1+1:r2−1,cj+1:m]

...
...

. . .
...

M[ri+1:n,1:c1−1] M[ri+1:n,c1+1:c2−1] · · · M[ri+1:n,cj+1:m]

 ∈ R(n−i)×(m−j)

where M[ri:rj ,ci:cj ] denotes the submatrix of M which includes the elements up to and

including the rows ri and rj, and the columns ci and cj.

2.2 Problem Formulation and Methodology

In this section, the research problem is formulated by presenting the state space model of

a multi-vehicle formation and the classes of actuator failures that are considered in this

thesis. The methodologies to tackle the relevant problems in our proposed cooperative

fault estimation and accommodation framework are explained.
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2.2.1 Problem Formulation

Consider a formation of N vehicles with the relative measurement formation (RMF)

digraph GRMF (VRMF , ERMF ) as per Definition 2.3. The linear state space model of the

formation is as follows:

Ẋi = AXi +BiUi +Wi (i = 1, ..., N)

Yij = C0(Xj −Xi) + Vij (j = 1, ..., N ; eij ∈ ERMF )
(2.4)

where Xi ∈ Rn0 , Yi ∈ Rm0 , and Ui =
[
ui,1 · · · ui,r0

]T
∈ Rr0 are the state, input,

and output vectors, respectively, in the local inertial frame, and the output matrix C0 ∈
Rm0×n0 is the relative measurement matrix. The environmental disturbances and sensor

noise are represented by Wi ∈ Rn0 and Vij ∈ Rm0 , respectively, and the actuators are

modeled as ideal gains Bi ∈ Rn0×r0 . The nominal (fault-free) value of Bi is represented

by B̄.

For the model (2.4), the actuator faults can be classified into four categories [137]:

lock-in-place (LIP), hard-over failure (HOF), float, and loss-of-effectiveness (LOE). These

types of actuator failure can be mathematically represented as follows:

BiUi =



B̄Ui No Failure

(B̄ + fi)Ui = B̄(Ir0×r0 + Πi)Ui Loss-Of-Effectiveness (LOE)

0n0×1 Float

B̄ULock Lock-In-Place (LIP)

B̄UMin or B̄UMax Hard-Over Failure (HOF)

(2.5)

where fi = B̄Πi ∈ Rn0×r0 , the negative semi-definite diagonal matrix Πi = diag(πi) ∈
Rr0×r0 with πi =

[
πi1 · · · πir0

]T
includes the LOE scalar parameters πij, B̄ is the

nominal value of the actuator gain, UMin and UMax are the minimum and maximum

actuation, and ULock (UMin < ULock < UMax) is a constant level of actuation. The

dynamic equation of the actuator fault parameters πij can be represented by

π̇i = 0 +W f
i (2.6)

where W f
i ∈ Rr0 is the corresponding vector of unreliabilities, which include the possible

variations of πi with time (if πi is time invariant then W f
i = 0). We define the fault status

operator F {.} as below

F {i} =

{
1 LOE in vehicle #i

0 Float/LIP/HOF in vehicle #i
(2.7)

Using the fault status operator F {.} in (2.7), the actuator failure model (2.5) can
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be simplified as follows

BiUi =

{
B̄(Ir0×r0 + Πi)Ui F {i} = 1

B̄Πi F {i} = 0
(2.8)

where for the case of F {i} = 0 (Float, LIP, and HOF) we have

BiUi = B̄Πi =


0n0×1 Float

B̄ULock LIP

B̄UMin or B̄UMax HOF

(2.9)

In the following, the simplified general model of actuator failures in (2.8) will be

utilized to form the overall fault-augmented state space model of the relative-measurement

formation (Definition 2.2). Defining the relative state as Xij = Xj −Xi (∀eij ∈ ERMF as

per Definition 2.3, or equivalently, ∀i, j ∈ {1, ..., N} such that either i ∈ N ({j}) or j ∈
N ({i}) as per Definition 2.4) and taking the overall fault-augmented state, environmental

disturbances, process unreliabilities, input, output, and noise vectors, respectively, as

X =

[
[Xij]eij∈ERMF

[πi]
N
i=1

]
∈ Rn1 , W =

[
[Wj −Wi]eij∈ERMF

0Nr0×1

]
∈ Rn1

W̄ =

 0(N−1)n0[
W f
i

]N
i=1

 ∈ Rn1 , U =


U1

...

UN

 ∈ Rr1

Y = [Yij]eij∈ERMF
∈ Rm1 , V = [Vij]eij∈ERMF

∈ Rm1

where n1 = (N−1)n0 +Nr0, r1 = Nr0, and m1 = (N−1)m0, the overall fault-augmented

state space model of the formation becomes

Ẋ = A0X +
N∑
i′=1

r0∑
j′=1

ui′,j′Ai′,j′X +BU +W + W̄

Y = CX + V

(2.10)

where we have

A0 =

[
diag(A)N−1

i=1

[
IAij
]
eij∈ERMF

0Nr0×(N−1)n0 0Nr0×Nr0

]
∈ Rn1×n1

IAij[:,k]r0
=


− (1−F {i}) B̄ k = i

(1−F {j}) B̄ k = j

0n0×r0 otherwise
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Ai′,j′ =

 0(N−1)n0×(N−1)n0

[
I i
′,j′

ij

]
eij∈ERMF

0Nr0×(N−1)n0 0Nr0×Nr0

 ∈ Rn1×n1

I i
′,j′

ij[:,k]r0
=


−F {i′} B̄Ij′ k = i = i′

F {i′} B̄Ij′ k = j = i′

0n0×r0 otherwise

Ij′ = diag
( [

0 · · · 1 · · · 0
])

︸ ︷︷ ︸
j′th element is one
r0−1 zeros totally

∈ Rr0×r0

B =

[ [
IBij
]
eij∈ERMF

0Nr0×Nr0

]
∈ Rn1×r1

IBij[:,k]r0
=


−F {i} B̄ k = i

F {i} B̄ k = j

0n0×r0 otherwise

C =

[
diag(C0)N−1

i=1 0m0×r0n0

0m0×r0n0 0m0×r0n0

]
∈ Rm1×n1

If F {i} = 0 (∀i ∈ {1, ..., N}, corresponding to the float, LIP, and HOF types

of actuator failure), then the system (2.10) is in the form of a linear time invariant

(LTI) system. Therefore, in this case we consider the general equivalent state space

representation of a LTI system S as follows:

S :

{
Ẋ = AX +BU +W + W̄

Y = CX + V
(2.11)

where

B =
[
B1 · · · Br

]
n×r

, C =


C1

...

Cm


m×n

Moreover, X =
[
x1 · · · xn

]T
∈ Rn, Y =

[
y1 · · · ym

]T
∈ Rm, and U =[

u1 · · · ur

]T
∈ Rr are the state, output, and input vectors, respectively. In addi-

tion, W =
[
w1 · · · wn

]T
∈ Rn and V =

[
v1 · · · vm

]T
∈ Rm are the process

disturbances and sensor noises, respectively.
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On the other hand, if ∃i ∈ {1, ..., N} such that F {i} 6= 0 (corresponding to the

LOE type of actuator failure), then the system (2.10) is in the form of a bilinear system.

Therefore, in this case we consider the general equivalent state space representation of a

bilinear system S as follows:

S :

 Ẋ = A0X +
r∑
i=1

uiAiX +BU +W + W̄

Y = CX + V
(2.12)

Consider the overall fault-augmented state space model of the relative-measurement

formation in equations (2.11) and (2.12). The cooperative fault estimation problem is

to design a supervisory cooperative estimation framework as shown in Figure 2.1, in

which the low-level fault estimation (LLFE) modules are called sub-observers. These

LLFE sub-observers can cooperate in the sense of information exchange among them-

selves through communication channels that constitute the formation-level fault estima-

tion (FLFE) scheme. The cooperation (information exchange) among the sub-observers

is supervised by a high-level (HL) supervisor that is provided with information from a

performance monitoring (PM) module. The PM module determines the estimation per-

formance by receiving the status of unmodeled uncertainties and disturbances from a

fault detection and isolation (FDI) module. One major problem is how to design sub-

observers for each case of linear and bilinear models (2.11) and (2.12), respectively. To

this end, a formal procedure is required to split the overall formation model among the

cooperative local sub-observers. Moreover, a supervisor is needed to choose the proper

set of sub-observers such that the convergence of the cooperative estimation scheme is

guaranteed.

Based on the fault estimates (accomplished by the LLFE and FLFE modules as

in Figure 2.1), the low-level fault recovery (LLFR) controllers are to be designed. In

the case of relative-measurement formation missions (as per Definition 2.2), both the

centralized and decentralized approaches are to be implemented in order to design the

LLFR controllers by using the relative measurement formation (RMF) digraph (as per

Definition 2.3). The tradeoffs between the centralized and decentralized approaches are

to be discussed in order to justify the application of each approach in different failure

situations.

In the case of absolute-measurement formation missions (as per Definition 2.2),

LLFR controllers are to be designed based on the weighted absolute measurement for-

mation (WAMF) digraph (as per Definition 2.7). The number of nonzero elements on

a certain row #i of the formation adjacency matrix Ω determines the number of vehi-

cles from which the vehicle #i requires to get feedback in order to generate its LLFR

controller output. The tradeoffs between the number (and position) of nonzero elements
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Figure 2.1: Structure of the proposed cooperative fault estimation system where Nso

represents the total number of sub-observers.

in the adjacency matrix Ω and the performance of the formation under different failure

scenarios are to be discussed.

If a fault in the vehicle #i is not properly estimated by the LLFE and FLFE

modules, then the fault estimate is inaccurate or biased. Once the inaccurate (biased)

fault estimate is incorporated in the LLFR controller, the output tracking error may

exceed the desired error specification (as denoted by es) of the formation mission. The

performance monitoring (PM) module (as shown in Figure 1.6) detects this violation of

the error specification and identifies the partially low-level (LL) recovered vehicle #i.

Definition 2.10. In a formation flight of unmanned vehicles if a vehicle violates the error

specification that is imposed on the formation due to incorporating inaccurate (biased)

fault estimate (provided by the LLFE and FLFE modules) in the LLFR controller, then

the vehicle is defined as a partially low-level (LL) recovered vehicle.

The performance monitoring (PM) module sends the information about the partially

LL-recovered vehicle to the supervisor (as shown in Figure 1.6). The supervisor in turn

activates the formation level fault recovery (FLFR) module to compensate for the resulting

performance degradation of the formation. The FLFR module is required to offer a

systematic procedure to redesign the controllers, impose constraints on the desired input

vectors, and reconfigure the formation digraph if necessary as discussed in subsequent

sections and chapters.
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2.2.2 Cooperative Fault Estimation Approach

Consider the vehicle #i in equation (2.4) and assume that the fault vector πi in equa-

tions (2.5) and (2.6) is constant or slowly time-varying. In order to simultaneously es-

timate the state Xi ∈ Rn and the fault parameter πi ∈ Rn, the fault vector πi can be

augmented to the state of the system to form the fault-augmented state space model

(2.10), to which the joint state and parameter estimation method [138], [139] can be

applied.

In the three cases of float, LIP, and HOF, the fault-augmented state space model is in

the form of a linear time-varying (LTI) system as in equation (2.11). In order to study the

observability of the LTI model, the structural observability theorems [140], [141], [142] are

applied to the system. These theorems are used along with the Grammian theorem [143] to

develop a procedure to study the feasibility of the distributed and cooperative estimation

units, namely the sub-observers, whose cooperation is in terms of information exchange

on their local state estimates. The feasibility of distributed sub-observers is analyzed by

using the notion of decentralized fixed mode (DFM) [133].

In order to design sub-observers in our proposed estimation framework, the differ-

ential operators (as in the differential algebra theory [113]) are avoided by implementing

linear filtering techniques to prevent the negative impact of the sensor noise on the multi-

ple differential operators. This is done based on the robust H∞ Luenberger observer and

linear matrix inequality (LMI) approaches [134], [135], [136] in order to perform the joint

state and parameter estimation [138], [139] (using the fault-augmented state space model

(2.11)). In case that a state is estimated by multiple sub-observers, due to the LTI model

of the system the linear combination method [144], [145], [146], [147], [148] will be used

to fuse the data from all the sub-observers. Moreover, a supervisor is assigned to select a

subset of sub-observers to estimate all the states of the system while the effects of process

dynamics and sensor measurement unreliabilities are confined. The role of the supervisor

is explained by introducing the (E) estimation and weighted estimation (WE) digraphs.

These issues will be discussed in Chapter 3.

In the case of actuator failures of the LOE type, the fault-augmented state space

model is in the form of a bilinear system as shown in equation (2.12). The structural

observability theorems [149], [150], [151] and the Grammian observability theorem [143]

are used to study the structural observability of the distributed and cooperative estimation

units, namely the sub-observers. The bilinear system (2.12) is in fact equivalent to a

linear time-varying system from the estimation perspective. Therefore, Kalman filtering

technique is used to design each sub-observer in order to perform the joint state and

parameter estimation [138], [139] (using the fault-augmented state space model (2.12)).

In case that a state is estimated by multiple sub-observers, due to the probabilistic model
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of the system the probabilistic fusion method [144], [152] will be used to fuse the data

from all the sub-observers. The convergence of the cooperative distributed (Kalman)

sub-observers is analyzed by defining the sub-observer dependency (SOD) digraph and

assuming that the SOD digraph is acyclic [153].

The cooperation among the sub-observers is in terms of information exchanges re-

garding their local state estimates. Similar to the case of a LTI system, a supervisor is

designed based on graph theory to select a subset of the designed sub-observers. The

role of the supervisor is formulated by the proposed sub-observer dependency estimation

(SODE) and weighted sub-observer dependency estimation (WSODE) digraphs. These

issues will be discussed in Chapter 4.

2.2.3 Cooperative Fault Accommodation Approach

Consider the four-vehicle formation whose digraph is depicted in Figure 2.2. Assume that

vehicle #2 is subject to an actuator fault. Furthermore, it is only partially recovered

by the low-level fault recovery (LLFR) controller due to the presence of possible biased

and inaccurate fault estimates (provided by the LLFE and FLFE modules). As a result,

vehicle #2 tracks the desired trajectory within an error bound of radius r, which is greater

than the error specification es that is defined for the mission (that is, r > es). The main

purpose of the formation-level fault recovery (FLFR) module is to reduce the error bound

r so that the overall error specification of the formation mission is guaranteed (that is,

r < es).

Figure 2.2: A four-vehicle formation flight.

In case of formation flight of unmanned vehicles with relative measurements (as

per Definition 2.2), either a centralized or a decentralized recovery controller can be

designed. The centralized approach is preferable to the decentralized one in the sense

that it constrains the effect of a local failure and prevents the propagation of the resulting

error to the entire formation. The decentralized method is preferable to the centralized

one in the sense that it requires less communication efforts among the vehicles but a

local failure can lead to a global manifestation of the resulting error. These issues will be
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explained in detail in Chapters 5 and 6.

In a formation of multiple vehicles with relative measurements, a centralized con-

troller can be designed based on the LMI-based robust H∞ state feedback control tech-

niques [134], [135], [136], in order to minimize the effects of the disturbances on the

tracking errors. It will be shown that due to relative measurements, there exists a de-

gree of freedom in designing the control signals. This degree of freedom can be used to

accommodate a partially low-level (LL) recovered vehicle, which is defined as a faulty

vehicle with inaccurate or biased fault estimates. The accommodation is accomplished by

restricting the control effort of the partially LL-recovered vehicle at the expense of other

healthy vehicles being imposed to some criteria on their input signals to account for the

performance degradation of the partially LL-recovered vehicle. The centralized method

requires all-to-all communication links but its advantage is that it constrains the effect of

a local failure to the local vehicles.

In a formation of multiple vehicles with relative measurements, a decentralized con-

troller can also be designed based on the LMI-based robust H∞ state feedback control

techniques [134], [135], [136], and the notion of the nearest neighbor sets. The nearest

neighbor set (Definition 2.4) of a vehicle #i is defined as the set of all vehicles with respect

to which the vehicle #i makes the relative measurements (Definition 2.2). Therefore, there

exist local communication links that make the decentralized technique communicationally

more efficient as compared with the centralized approach. However, this communication

efficiency is at the cost of the disadvantage of the decentralized controller, which is due

to the error propagation of a local failure to the entire formation.

In a formation of multiple vehicles with absolute measurements (as per Defini-

tion 2.2), the formation adjacency matrix [132] can be defined based on the formation

weights (as per Definition 2.7), which determines the s-order neighbor sets (as in Defi-

nition 2.6). A controller can be designed based on the adjacency matrix of a formation,

and the structure of the adjacency matrix determines whether the controller is central-

ized or decentralized. Therefore, the formation system will be studied merely based on

its adjacency matrix regardless of the “centralized” or “decentralized” contexts. How-

ever, a centralized controller is preferable in the sense that it can accommodate more

fault scenarios than a decentralized controller. This advantage is at the cost of all-to-all

communication links for a centralized controller.

In a formation of multiple vehicles with absolute measurements and a partially LL-

recovered vehicle, the formation weights need to be adjusted such that the impact of

a faulty vehicle on the formation performance will be managed. Once the weights are

selected, a robust H∞ controller [134], [135], [136] can be designed to account for the

uncertainties in the estimated fault parameters. Finally, some constraints are imposed on

the overall desired inputs of some vehicles, which are in the nearest neighbor set of the
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partially LL-recovered vehicle, in order to compensate for the performance degradations

of the entire formation mission.

2.3 Conclusions

In this chapter, background information is presented that includes formation digraph,

decentralized fixed mode (DFM), and linear matrix inequality (LMI). Moreover, some

useful notations are introduced that will be used throughout this thesis. The problem

formulation is presented in terms of the state space model of the formation with a certain

formation digraph and actuator failure model. The technical problems are described for

both cases of cooperative fault estimation and accommodation in a formation flight of

unmanned vehicles. Finally, an overview of the approaches is provided that will be used

in the subsequent chapters to tackle the technical problems in this thesis.

34



Chapter 3

Distributed and Cooperative

Estimation of Formation Flight of

Unmanned Vehicles with Relative

Measurements Subject to Float,

Lock-in-Place, and Hard-Over

Actuator Faults

In this chapter, a novel framework is proposed for cooperative estimation of formation

flight of unmanned vehicles with relative measurements subject to actuator failures of

float, lock-in-place (LIP), and hard-over failure (HOF) types. This framework is developed

based on the notion of sub-observers and is applicable to a large class of multi-agent

linear time invariant (LTI) systems. We introduce a group of sub-observers where each

sub-observer is estimating certain states that are conditioned on a given input, output,

and state information. The state dependency (SD) digraph of the system is used to

simplify and visualize the structure of sub-observers and the interconnection among them.

The feasibility of the cooperative estimation scheme is analyzed using the concept of

decentralized fixed mode from the decentralized control theory. We model the overall

estimation task by an estimation (E) digraph. By selecting an appropriate path in the

estimation digraph, the supervisor can select and configure a set of sub-observers to

successfully estimate all the system states, while the feasibility of the overall integrated

cooperative sub-observers is guaranteed. In presence of large disturbances and noise,

some sub-observers become invalid, and so the supervisor reconfigures the set of selected

sub-observers by selecting a new path in the estimation digraph, such that the impacts of
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large disturbances and noise are managed and confined to the local estimates, and hence

prevent them from propagation to the estimation performance of the entire formation.

In the next section, preliminary definitions and concepts that are required to develop

our cooperative estimation framework are reviewed.

3.1 Preliminaries

In this section, the general case of a multiple vehicle formation flight system subject

to float, lock-in-place, and hard-over actuator failures is formulated as a linear time-

invariant (LTI) state space model as described in detail in Chapter 2, Section 2.2.1. The

(SD) digraph of a LTI system is presented in order to simplify the study of the system

properties by using the graph-based approaches. Based on the SD digraph of the formation

flight system, structural observability is presented that will help the development of our

proposed distributed and cooperative estimation framework in the subsequent sections.

3.1.1 LTI Fault-Augmented State Space Model of Formation

Flight of Unmanned Vehicles

Consider a formation of N vehicles with the relative measurement formation (RMF)

digraph GRMF (VRMF , ERMF ) as per Definition 2.3. The linear state space model of the

formation is given by equation (2.4). In the following, the cases of float, LIP, and HOF

is considered for all the vehicles and the simplified general model of actuator failures in

(2.9) is utilized to form the overall fault-augmented state space model of the formation as

given by equation (2.10). Moreover, it is assumed that π̇i = 0 (W f
i = 0 in equation (2.6)

whose effect will be analyzed later in this chapter).

If F {i} = 0 (∀i ∈ {1, ..., N}, corresponding to the float, LIP, and HOF types of

actuator failure), then Ai′,j′ = 0n1×n1 (i′ = 1, ..., N and j′ = 1, ..., r0) and therefore system

(2.10) is in the form of a linear time invariant (LTI) system. Hence, in this case we

consider the general equivalent state space representation of a LTI system S as follows:

S :

{
Ẋ = AX +BU +W

Y = CX + V
(3.1)

where

B =
[
B1 · · · Br

]
n×r

, C =


C1

...

Cm


m×n
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Moreover, X =
[
x1 · · · xn

]T
∈ Rn, Y =

[
y1 · · · ym

]T
∈ Rm, and U =

[
u1 · · · ur

]T
∈

Rr are the state, output, and input vectors, respectively. In addition, W =
[
w1 · · · wn

]T
∈

Rn and V =
[
v1 · · · vm

]T
∈ Rm are the process disturbances and sensor noises, re-

spectively.

3.1.2 State Dependency (SD) Digraph for Formation Flight of

Unmanned Vehicle Systems

In the following, the associated state dependency (SD) directed graph (digraph) of the

linear formation vehicle system (3.1) is introduced [140], [141].

Definition 3.1. For a LTI system S represented by the triplet matrices (A,B,C), the

associated state dependency (SD) directed graph GSD(VSD, ESD) is defined as follows:

• The vertex set is VSD = Set(U)∪Set(X)∪Set(Y ) where U , X, and Y are the input,

state, and output vectors, respectively, and Set(Ψ) denotes the set of the elements

of the vector Ψ.

• The edge set is defined as the union of input-state, state-state, and state-output

edges as follows

ESD = {(ui, xj)|bji 6= 0} ∪ {(xi, xj)|aji 6= 0} ∪ {(xi, yj)|cji 6= 0} (3.2)

where aji, bji, and cji are the corresponding elements of the matrices A, B, and C,

respectively.

Definition 3.2. Consider a LTI system S and its directed graph G. A directed path P =

(vp0 , vp1 , . . . , vp(l−1)
, vpl) from a vertex vp0 to a vertex vpl is a sequence of edges (vp0 , vpl),

(vp1 , vp2), ..., (vp(l−2)
, vp(l−1)

), (vp(l−1)
, vpl) such that

• vpk ∈ V for k = 0, 1, ..., l, and

• (vp(k−1)
, vpk) ∈ E for k = 0, 1, ..., l.

Definition 3.3. A path with vp0 ∈ U and vpl ∈ Y is called an input-output path. Sim-

ilarly, a path with vp0 ∈ X and vpl ∈ Y is called a state-output path. A path with

vp0 = vpl is called a circuit. Two edges e1 = (v1, v
′
1) ∈ E and e1 = (v1, v

′
1) ∈ E are

said to be vertex disjoint if v1 6= v2 and v′1 6= v′2. Note that e1 and e2 can be vertex

disjoint even if v′1 = v2 and v1 = v′2. Two paths P1 = (vp1,0 , vp1,1 , . . . , vp1,(l1−1)
, vp1,l1 )

and P2 = (vp2,0 , vp2,1 , . . . , vp2,(l2−1)
, vp2,l2 ) are said to be vertex disjoint if all of their edges

(vp1,(k1−1)
, vp1,k1 ), k1 = 0, 1, ..., l1, and (vp2,(k2−1)

, vp2,k2 ), k2 = 0, 1, ..., l2, are mutually vertex
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disjoint. The length of a path is the number of the consecutive edges required to complete

the path.

3.1.3 Observability and Structural Observability of the Forma-

tion Flight of Unmanned Vehicle Systems

For the class of systems with the same associated digraph (Definition 3.1), one can apply

graph theory to study generic (or structural) properties. The graph-based properties

simplify the study of system properties specifically when the dimensions of the system

are large. However, the graph-based structural properties are true for almost all systems

in the class of systems with the same graph, except for some pathological parameter

matching cases that constitute a finite number of nontrivial polynomials in the system

parameters. Therefore, conventional non-graph-based properties of a system are always

required to be studied in order to confirm the results on the graph-based properties of

that system. Among all the graph-based structural properties [140], [141], [142] we are

interested in the structural observability that will be investigated next.

Proposition 3.1. ( [141], [142]) Let S be a LTI system that is represented by the triplet

(A,B,C) with its associated digraph GSD. The system (or equivalently, the pair (C,A))

is structurally observable if and only if the following two conditions hold:

• There exists at least one state-output path originating from any state vertex in X;

and

• There exists a set of vertex disjoint circuits and state-output paths which cover all

state vertices.

It should be noted that if a system S is structurally unobservable, then its associated

digraph represents a class of systems that are all (including the system S itself) unob-

servable. But once a system is guaranteed to be structurally observable, its observability

should be further validated by using the conventional Grammian theorem [143]. The

Grammian theory provides a fundamental necessary/sufficient condition for observability

of dynamical systems. In this thesis, although we introduce and use structural observabil-

ity and graph-based analysis to demonstrate and visualize the feasibility of an observer,

one needs to always verify the observability of the system by using the Grammian theory.

Using the properties of directed graph and structural observability presented here,

the notion of sub-observers is defined in the next section to be utilized in our proposed

distributed and cooperative estimation framework. Moreover, we present results to guar-

antee the feasibility of the overall cooperative sub-observers.
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3.2 Distributed and Cooperative Sub-Observers in

Formation Flight of Unmanned Vehicle Systems

In this section, a cooperative estimation framework is presented. In this framework, a set

of multiple estimation agents, namely the sub-observers, are designed and a supervisor

is developed. The objective of the supervisor is to select a subset of sub-observers that

can estimate all the system states in presence of unreliable process dynamics and sensor

measurements. The cooperation among the sub-observers is defined as the exchange of

information on their local state estimates that aims at restricting the process dynamics

and sensor measurement unreliabilities. In the following, the definition of sub-observers

is presented and the notions of directed graph, observability, and structural observability

that were discussed in the previous section are used to design and verify the feasibility

of integrated sub-observers for the LTI fault-augmented state space model of a formation

flight of vehicles subject to HOF, LIP, and float actuator failures.

Definition 3.4. A sub-observer #i that is represented by SO(i)(R(i)|I(i), O(i), D(i)) is a

linear filter that is defined as

˙̂
X(i) = A(i)X̂(i) +

∑
j∈N ({i})

A(ij)X̂(j) +B(i)U (i) +K(i)(Y (i) − C(i)X̂(i)) (3.3)

The range R(i) is the set of state estimates that are being accomplished by SO(i). The

domain D(i) is the set of state estimates that are not being accomplished by SO(i) but are

received from the ranges R(j) (j 6= i) of other sub-observers SO(j) as they directly affect

the state estimates in R(i) through the dynamic equations of the system, X̂(i) ∈ Rn(i)

and X̂(j) ∈ Rn(j)
are the vectors of all the states in R(i) and D(j), respectively, and

A(i)(t) ∈ Rn(i)×n(i)
and A(ij)(t) ∈ Rn(i)×n(j)

represent the partitions of the matrix A(t) that

correspond to the dependency of the states X̂(i) (of SO(i)) on itself and on the states X̂(j)

(of SO(j)), respectively, as follows

A(i) = A(−S,−S) , S =
{
k ∈ {1, ..., n}| x̂(i)

k /∈ D(i)
}

(3.4)

A(ij) = A(−S,−T ) , T =
{
k ∈ {1, ..., n}|x̂(j)

k /∈ R(j)
}

(3.5)

The input set I(i) ⊂ Set(U) and output set O(i) ⊂ Set(Y ) are those that are required by

SO(i) in order to make the state estimates in R(i). In addition, U (i) ∈ Rr(i) is the vector

of all the entities in I(i) (I(i) = Set(U (i))), and B(i) ∈ Rn(i)×r(i) represents the partition of

the matrix B that corresponds to the dependency of the inputs U (i) on the states X̂(i) as
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follows

B(i) = B(−S,−T )

S =
{
k ∈ {1, ..., n}|x̂(i)

k /∈ D(i)
}

T =
{
k ∈ {1, ..., r}|uk /∈ I(i)

} (3.6)

Moreover, Y (i) ∈ Rm(i)
is the vector of all the entities in O(i) (O(i) = Set(Y (i))), and C(i) ∈

Rm(i)×n(i)
represents the partition of the matrix C that corresponds to the dependency of

the outputs Y (i) on the states X̂(i) as follows:

C(i) = C(−S,−T )

S =
{
k ∈ {1, ...,m}|yk /∈ O(i)

}
T =

{
k ∈ {1, ..., n}|x̂(i)

k /∈ D(i)
} (3.7)

The matrix K(i)(t) ∈ Rn(i)×m(i)
is the sub-observer dynamic gain. Given (conditioned on)

availability of the information on I(i), O(i), and D(i), all the states of the overall system

S whose estimates belong to R(i) are observable by using the sub-observer SO(i). The

nearest neighbor set N ({i}) and the xk-corresponding nearest neighbor set Nk({i}) of a

sub-observer SO(i) are defined, respectively, as follows

N ({i}) =
{
j ∈ {1, ..., Nso} | ∃k ∈ {1, ..., n}; x̂(i)

k ∈ D
(i), x̂

(j)
k ∈ R

(j), x̂
(j)
k ; x̂

(i)
k

}
=

⋃
k∈{1,...,n}

Nk({i})

Nk({i}) =
{
j ∈ {1, ..., Nso} | x̂(i)

k ∈ D
(i), x̂

(j)
k ∈ R

(j), x̂
(j)
k ; x̂

(i)
k

}
where x̂

(j)
k ; x̂

(i)
k represents the fact that x̂

(j)
k ∈ R(j) is sent from SO(j) to SO(i) in

order to calculate x̂
(i)
k ∈ D(i). Similar to Definition 2.6, for the index set {i1, ..., ik} ∈

{1, ..., Nso}, we define N ({i1, ..., ik}) = N ({i1}) ∪ · · · ∪N ({ik}). Moreover, the general

s-order neighbor set is defined (similar to Definition 2.6) as

N s({i1, ..., ik}) = N (N (...N︸ ︷︷ ︸
s times

({i1, ..., ik})))

If a state estimate x̂p, p ∈ {1, ..., n} is in the range of SO(j), then we write x̂
(j)
p ∈ R(j).

Moreover, if x̂p is in the domain of another sub-observer SO(i), then we write x̂
(i)
p ∈ D(i).

In addition, the inputs us ∈ I(i), s ∈ {1, ..., r}, and outputs yq ∈ O(i), q ∈ {1, ...,m} of

sub-observer SO(i) are members of the Set(U) and Set(Y ) in equation (3.1), respectively.

Let us now provide further description to the problem of a given state being esti-

mated by multiple sub-observers. Each state xj, j = 1, ..., n could be estimated by one

(multiple) sub-observer(s) SO(k) (i.e., x̂
(k)
j ∈ R(k)). In case that the estimate of xj is

required by the sub-observer SO(l) (i.e., x̂
(l)
j ∈ D(l)), a data fusion technique is required

to combine all the estimates of xj that are made by the sub-observers in Nj({l}).
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Quite a few data fusion techniques [144] such as those based on linear combination,

probabilistic fusion, Markov chain, and multiple criteria approaches have been proposed

in the literature depending on the way the system is modeled. Due to the linear model

that is considered in this chapter, the linear combination method with its different choices

of the weights [144], [145], [146], [147], [148], and that represents a general class of in-

formation fusion including estimation versions ranking [154], weighted decision method

(voting technique), and Bayesian inference technique [155], will be used in the following.

Therefore, a linear combination of all the sub-observers SO(k) which estimate xj is made,

that is

∀l ∈ Sso
∆
={1, ..., Nso},∀j ∈ {1, ..., n}; x̂(l)

j ∈ D(l), x̂
(l)
j =

∑
k∈Nj({l})

α
(lk)
j x̂

(k)
j (3.8)

where 0 ≤ α
(lk)
j ≤ 1 are the normalized weights that satisfy

∑
k∈Nj({l})

α
(lk)
j = 1

The linear combination in equation (3.8) will be incorporated in the linear analysis

that will be presented in Lemma 3.1 later in this chapter. Moreover, the weights will

be considered as the design parameters by Lemma 3.2 in order to design an H∞ robust

observer.

For the sub-observer SO(i) in Definition 3.4, the expressions for A(i), A(ij), B(i), and

C(i) in equations (3.4), (3.5), (3.6), and (3.7), respectively, can be used to provide the

dynamic state space model of X(i) as follows:

Ẋ(i) = A(i)X(i) +
∑

j∈N ({i})
A(ij)X(j) +B(i)U (i) +W (i)

Y (i) = C(i)X̂(i) + V (i)
(3.9)

where W (i) ∈ Rn(i)
and V (i) ∈ Rm(i)×1 are defined as follows:

W (i) = W (−S,−{}) , S =
{
k ∈ {1, ..., n}|x̂(i)

k /∈ D(i)
}

(3.10)

V (i) = V (−S,−{}) , S =
{
k ∈ {1, ...,m}|yk /∈ O(i)

}
(3.11)

In fact, a sub-observer SO(i) : (I(i), O(i), D(i)) → R(i) is a map that cannot operate

independently if D(i) 6= ∅. In such a case, SO(i) requires the information on state estimates

x̂
(i)
m ∈ D(i) from other sub-observers SO(j) (x̂

(i)
m := x̂

(j)
m ; x̂

(j)
m ∈ R(j)). This implies that one

needs to design and develop a cooperative framework for the sub-observers in the sense

that they share and exchange information regarding their state estimates. The procedure

presented below provides a constructive means for designing the sub-observers.
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Procedure 3.1. Consider the LTI system in equation (3.1) with the associated digraph

as in Definition 3.1. A sub-observer simply constitutes a set of vertex disjoint circuits

and state-output paths, such that there exists at least one state-output path originating

from any state vertex of the sub-observer. Therefore, the sub-observers can be designed by

following the proposed two steps, namely

Step 1. The directed graph of the system is sketched according to the Definition 3.1.

Step 2. The sub-observer SO(i) is designed by choosing I(i) ⊂ Set(U), O(i) ⊂
Set(Y ), and two sets of vertices from Set(X) to form its domain D(i) and range R(i)

such that the following three conditions are satisfied:

Condition 1. The states in R(i) and the output sensor measurements in O(i) should

satisfy the conditions in Proposition 3.1.

Condition 2. The set of input vertices in I(i) and state vertices in D(i) should include

all the vertices in Set(U) and Set(X), respectively, from which there exist incoming edges

to the set of state vertices in R(i) and output vertices in O(i), unless the sub-observer SO(i)

represents a direct measurement (namely yp) of one state (namely xp) where R(i) = {x̂(i)
p },

D(i) = {}, I(i) = {}, and O(i) = {yp}.
Condition 3. Using the Grammian theorem [143], the states in R(i) should be ob-

servable upon the availability of the inputs I(i), outputs O(i), and state estimates D(i).

In its simplest graphic representation, a sub-observer consists of a set of vertex

disjoint circuits and state-output paths, such that the observability of the states in the

corresponding circuits and state-output paths is guaranteed.

Each sub-observer SO(i) can possibly be subject to unreliable information as follows:

˙̂
X(i) = A(i)X̂(i) +

∑
j∈N ({i})

A(ij)X̂(j) +B(i)U (i) (3.12)

+K(i)(Y (i) − C(i)X̂(i) + V̄ (i))− W̄ (i)

where the vectors W̄ (i) and V̄ (i) represent the uncertainties/unreliabilities in the process

dynamics and sensor measurements of the sub-observer SO(i), respectively (in the fault-

augmented state space model (3.1)). These uncertainties/unreliabilites can be due to the

following sources:

• dynamic model of the augmented faults, e.g. W̄ =

[
01×(N−1)n0 −

[
(W f

i )
T
]N
i=1

]
∈

R1×n1 (where W f
i is defined in equation (2.6)) as in the fault-augmented state space

model (2.10),

• communication delays (failures) in the transmission of input and output data, e.g.

W̄ (i) = B(i)(U (i)(t)− U (i)(t−∆t)) ∈ Rn(i)
and V̄ (i) = Y (i)(t)− Y (i)(t−∆t) ∈ Rm(i)

as in the sub-observer model (3.12), or
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• communication delays (failures) in the transmission of the estimates X̂(j) (∀j ∈
{1, ..., Nso};D(i)∩R(j) 6= ∅) from SO(j) to SO(i), e.g. W̄ (i) =

∑
j∈N ({i})A

(ij)(X̂(j)(t)−
X̂(j)(t−∆t)) as in the sub-observer model (3.12).

Taking E(i) = X̂(i)−X(i) and using the model of X(i) from equation (3.9), the error

dynamics for the sub-observer SO(i) is given by

Ė(i) = (A(i) −K(i)C(i))E(i) +K(i)(V (i) + V̄ (i))− (W (i) + W̄ (i)) (3.13)

+
∑

j∈N ({i})

A(ij)E(j)

In the next subsection, the sub-observer dependency (SOD) digraph will be defined

for a group of sub-observers.

3.2.1 Sub-Observer Dependency (SOD) Digraph

In this subsection, the sub-observer dependency (SOD) digraph is introduced. For a set

of sub-observers {SO(1), ..., SO(Nso)}, the associated SOD digraph GSOD(VSOD, ESOD) is

defined according to the following.

Vertex Set: The vertex set VSOD includes the vertices vi (i = 1, 2, ..., Nso), where the

vertex vi represents the sub-observer SO(i).

Edge Set: The edge set ESOD includes the directed edges eij = (vi, vj), where eij rep-

resents the information exchange from the sub-observer SO(i) to the sub-observer SO(j).

In other words,

eij ∈ ESOD ⇐⇒ i ∈ N ({j}) (3.14)

Definition 3.5. A digraph is called acyclic if it has no cycles.

Theorem 3.1. ( [130]) Every acyclic digraph has at least one source vertex with zero

in-degree and at least one sink vertex with zero out-degree.

Theorem 3.2. ( [130]) A digraph is acyclic if and only if its vertices can be ordered such

that its adjacency matrix is upper (or lower) triangular.

The sub-observers should be first validated before being used for the purpose of

estimation. The validity condition of a sub-observer SO(i) depends on the uncertain-

ties/unreliabilities W̄ (i) and V̄ (i) in the process dynamics and sensor measurements, re-

spectively, which represents the accuracy of its state dynamic equations and measurement

sensors. These notions are formally specified in the following subsection.
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3.2.2 Validity Condition and Cost of a Sub-Observer

In this subsection, the validity condition and cost of a sub-observer are defined.

Definition 3.6. The validity condition COND(i) of a sub-observer SO(i) is defined as

follows:

COND(i) =

{
0 (or SO(i) is valid) if W̄ (i) = 0 and V̄ (i) = 0

1 (or SO(i) is invalid) otherwise

Implicit in Definition 3.6 is the fact that one requires availability of a diagnostic

system for detecting the unreliabilities W̄ (i) and V̄ (i) to determine the validity conditions

of the sub-observers as in the next assumption. However, a more detailed investigation

on developing and designing these diagnosers (that are studied in [156]) are beyond the

scope of this thesis and are not discussed any further.

Assumption 3.1. It is assumed that an effective fault detection and isolation (FDI) mod-

ule is available that, independent of the sub-observers, determines the validity conditions

of the sub-observers (as formulated in Definition 3.6) by using change (fault) detection

techniques.

As discussed earlier, we would like to use a set of valid sub-observers to estimate

all the system states. Therefore, the supervisor is required to take the information about

the validity conditions from the FDI module (as per Assumption 3.1) and reconfigure a

set of cooperative sub-observers, which are among the valid ones.

There may be cases in which the supervisor is not able to determine a set of sub-

observers that can cooperatively estimate all the system states due to insufficiency of the

number of valid sub-observers. In such cases, in order to select an appropriate set of

sub-observers one may consider other criteria by assigning a cost to each sub-observer

that is defined next.

Definition 3.7. The cost COST (i) of a sub-observer SO(i) is defined as follows:

COST (i) = CRCOST
(i)
R + CECOST

(i)
E + CCCOST

(i)
C

where the coefficients CR, CE, and CC are to be adjusted according to the significance of

the recovery cost COST
(i)
R , estimation cost COST

(i)
E , and communication cost COST

(i)
C

of the sub-observer SO(i), respectively, which are defined as follows
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COST
(i)
R =

{
cost

(i)
r ∈ (0,∞) R(i) = 1

0 R(i) = 0

COST
(i)
E =


0 (COND(i) = 0 or R(i) = 1)

and

(∀s > 0,∀j ∈ N s({i}): COND(j) = 0 or R(j) = 1)

cost
(i)
e = n(R(i)) otherwise

COST
(i)
C =


cost

(i)
c =

∑
∀k∈{1,...,n};
∃j∈Nk({i})

cost
(i)
c,k ∈ (0,∞) ∃j ∈ N ({i})

0 otherwise

where n(.) represents the cardinality value of a set, and the term R(.) is the recovery

status operator that is defined as

R(i) =

{
1 if SO(i) is invalid (COND(i) = 1) and recovered

0 if SO(i) is not recovered

and the recovery of a sub-observer is defined as repairment or replacement of its faulty

sensors.

These costs are to be interpreted as follows:

• cost(i)r ∈ (0,∞) is the recovery cost (e.g. sensor repairment or replacement cost)

that is to be expensed to ensure SO(i) is valid by making W̄ (i) = 0 and V̄ (i) = 0 as

in Definition 3.6.

• cost(i)e = n(R(i)) is the estimation cost representing the number of states n(R(i))

that are estimated by the sub-observer SO(i), where the sub-observer SO(i) is invalid

(COND(i) = 1) and not recovered (R(i) = 0), or it has an invalid (COND(j) = 1)

and not recovered (R(j) = 0) sub-observer SO(j) in its s-order neighbor set N s({i})
(that is, j ∈ N s({i}) for some s > 0).

• cost(i)c,k ∈ (0,∞) is the communication cost that is to be expensed to send the

information about the estimate x̂
(j)
k from SO(j) to SO(i) (that is, j ∈ Nk({i}) or

eji ∈ ESOD as in equation (3.14)).

We are now in a position to make the following assumption.

Assumption 3.2. It is assumed that the supervisor is provided with information regarding

the predefined costs cost
(i)
r of the sub-observers in case of unreliable process dynamics and

sensor measurements.
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In the next section, the role of a supervisor is explained by using the definitions of

estimation (E) and weighted estimation (WE) digraphs.

3.3 The Role of a Supervisor

In this section, the objective and purpose of a supervisor is presented by defining the es-

timation (E) and weighted estimation (WE) digraphs for the cases of given sub-observer

conditions COND(i) (as in Definition 3.6) and sub-observer costs COST (i) (as in Defini-

tion 3.7), respectively.

3.3.1 Estimation (E) Digraph

For a set of sub-observers {SO(1), ..., SO(Nso)}, the associated estimation digraphGE(VE, EE)

is defined as following.

Vertex Set: The vertex set VE includes all the vertices vi, where i = 1, 2, ..., 2n and n

is the dimension of the state vector in equation (3.1). Each vertex is assigned to a vector

vi ∈ Rn with the “1” and “0” entities that denote the “estimated” and “unestimated”

status of the states, respectively, as follows:

vi,[k] = Logic {xk is estimated at vertex vi or a preceding vertex} (k = 1, ..., n)

where vi,[k] represents the element #k of the vector vi (as defined in Definition 2.8), and

Logic {EXPRESSION} =

{
1 if Expression ≡ TRUE

0 otherwise

In fact vi identifies those states that are already estimated at vertex vi or at any

preceding vertices. Accordingly, the source vertex vsource and the sink vertex vsink are

assigned with the vectors vsource = 0n×1 and vsink = 1n×1, respectively, where 0n×1 and

1n×1 denote n × 1 vectors of zeros and ones, respectively. This implies that none of the

states are estimated at vsource but all of the states are estimated at vsink or a preceding

vertex.

Edge Set: The edge set EE includes all the directed edges e
(i)
a,b = ((va, vb), SO

(i), COND(i)),

where

• (va, vb) indicates that the directed edge e
(i)
a,b is a transition from va to vb
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• SO(i) indicates that the transition (va, vb) along the directed edge e
(i)
a,b is due to

the implementation of the sub-observer SO(i) so that additional states are now

estimated in vb as compared to va according to vb = OR
{

va, R
(i)
x

}
, where R

(i)
x,[k] =

Logic
{
x̂

(i)
k ∈ R(i)

}
(k = 1, ..., n) and (OR {X,Y})[k] = Logic

{
(X)[k] + (Y )[k] 6= 0

}
(the index [k] is defined in Definition 2.8)

• COND(i) ∈ {0, 1} indicates that the transition (va, vb) along the directed edge e
(i)
a,b

is conditioned on COND(i) = 0 (as in Definition 3.6)

In the estimation digraph, the objective of the supervisor is to obtain information

about the conditions COND(i) from the FDI module (as per Assumption 3.1), and to find

a directed path P = (VP , EP ), which includes the vertex set VP = {vsource, vi1 , ..., vip−1 , vsink}
and the directed edge set EP = {e(j1)

source,i1
, e

(j2)
i1,i2

, ..., e
(jp−1)
ip−2,ip−1

, e
(jp)
ip−1,sink

} (p is the length of

the path P ), that starts at vsource and ends at vsink in the estimation digraph, while the

conditions COND(k) = 0 are satisfied for ∀k ∈ {j1, j2, ..., jp}. Thus, the objective of the

supervisor is summarized as follows:

Find P = (VP , EP ) with

VP = {vsource, vi1 , ..., vip−1 , vsink} ⊂ VE and

EP = {e(j1)
source,i1

, e
(j2)
i1,i2

, ..., e
(jp−1)
ip−2,ip−1

, e
(jp)
ip−1,sink

} ⊂ EE

s.t. COND(k) = 0 , ∀k ∈ {j1, j2, ..., jp}

(3.15)

As discussed in the previous sections, besides the information on whether a sub-

observer SO(i) can be implemented (COND(i) = 0) or not (COND(i) = 1, as per Defini-

tion 3.6), in some applications the supervisor is provided with the information about the

implementation cost COST (i) (as per Definition 3.7) of the sub-observer SO(i) (as per

Assumption 3.2). This problem requires a more general and extended digraph model of

the supervisor that will be considered in the next section.

3.3.2 Weighted Estimation (WE) Digraph

In the previous section, the condition COND(i) ∈ {0, 1} (as per Definition 3.6) was

assigned to each sub-observer SO(i) ∈ {SO(1), ..., SO(Nso)}, based on which the supervisor

determines whether SO(i) can be implemented (COND(i) = 0) in the directed path

Psup = (Vsup, Esup) or not (COND(i) = 1). Instead, in this section we assign the cost

COST (i) ∈ [0,∞] (as per Definition 3.7) to the sub-observer SO(i), and introduce the

weighted estimation (WE) directed graph (digraph). The WE digraph GWE(VWE, EWE)

is defined as follows:
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Vertex Set: The vertex set VWE is defined similar to the vertex set VE. Accordingly, the

source vertex vsource and the sink vertex vsink are assigned with the vectors vsource = 0n×1

and vsink = 1n×1.

Edge Set: The edge set EWE includes all the directed edges e
(i)
ab = ((va, vb), SO

(i), COST (i)),

where

• (va, vb) indicates that the directed edge e
(i)
ab is a transition from va to vb,

• SO(i) indicates that the transition (va, vb) along the directed edge e
(i)
a,b is due to the

implementation of the sub-observer SO(i) so that additional states are now estimated

in vb as compared to va according to vb = OR
{

va, R
(i)
x

}
• COST (i) ∈ [0,∞] is the weight of the directed edge e

(i)
a,b that indicates the cost of

the transition (va, vb) along the directed edge e
(i)
a,b by using the sub-observer SO(i).

In the WE digraph, the objective of the supervisor is to receive information on the

costs COST (i) (as per Assumption 3.2), and to obtain a directed path P = (VP , EP ),

which includes the vertex set VP = {vsource, vi1 , ..., vip−1 , vsink} along the directed edge set

EP = {e(j1)
source,i1

, e
(j2)
i1,i2

, ..., e
(jp−1)
ip−2,ip−1

, e
(jp)
ip−1,sink

} (p is the length of the path Psup), that starts

at vsource and ends at vsink in the WE digraph, while the cumulative cost of COST (k)

is minimized for ∀k ∈ {j1, j2, ..., jp}. The objective of the supervisor is summarized as

follows:

Min
jp∑
k=j1

COST (k)

s.t. R(k) ∈ {0, 1} and

∀l ∈ {1, ..., n}; x̂(k)
l ∈ D(k) : ∅ 6= Nl({k}) ∈

{
k′ ∈ Sso|x̂(k′)

l ∈ R(k′)
}

P = (VP , EP ) with

VP = {vsource, vi1 , ..., vip−1 , vsink} ⊂ VWE and

EP = {e(j1)
source,i1

, e
(j2)
i1,i2

, ..., e
(jp−1)
ip−2,ip−1

, e
(jp)
ip−1,sink

} ⊂ EWE

(3.16)

In [119], [120], and [117], the design and analysis of a supervisor in the Discrete

Event System (DES) framework [157] is proposed to solve the problems (3.15) and (3.16)

by finding the correct path in the system automaton, however these results are beyond

the scope of this thesis and are not pursued any further.

Our proposed framework is demonstrated below through a numerical example of an

LTI system. All the concepts that have been presented so far in this chapter are discussed

and illustrated in detail to provide a transparent and clear transition to the feasibility

analysis in the next section.
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Example 3.1. This example shows how the sub-observers are designed and how the su-

pervisor makes decision on the proper set of sub-observers according to the validity con-

ditions of the sub-observers. Consider the following two systems, namely (a) the system

(A,B,C) with two sensor measurements {y1, y2}, and (b) the system (Ã, B̃, C̃) with one

sensor measurement {y1}.

A =

 a11 a12 a13

0 a22 0

0 0 a33

 , B =

 0 0

0 b22

b31 0

 , C =

[
c11 0 0

0 0 c23

]

Ã =

 a11 a12 a13

0 0 0

0 0 0

 , B̃ =

 0 0

0 b22

b31 0

 , C̃ =
[
c11 0 0

]
The directed graphs of the corresponding systems are shown in Figure 3.1-(a) and

(b), respectively. In Figure 3.1-(a), the two vertex disjoint state-output paths (x2, x1, y1)

and (x3, y2) cover all the states, and hence, guarantee the structural observability of the

system (Proposition 3.1). In contrast, in Figure 3.1-(b) no such set of vertex disjoint

circuits and state-output paths exist that cover all the states (vertices), implying that the

system is structurally unobservable. Therefore, for further analysis we only consider the

directed graph of the system (A,B,C).

(a) (b)

Figure 3.1: The directed graphs of the two systems (a) (A,B,C) and (b) (Ã, B̃, C̃)

Let us now investigate the application of Procedure 3.1 for the structurally observable

system (A,B,C). In step 1 of Procedure 3.1, the directed graph of the system (A,B,C) is

constructed as shown in Figure 3.1-(a). According to the directed graph of the system it

turns out that at most nine sub-observers, which are shown in Figure 3.2, can be designed

in step 2 of Procedure 3.1 that simultaneously satisfy the conditions 1, 2, and 3.

In Figure 3.2, the dashed lines represent the information that the sub-observer SO(i)

requires to receive regarding certain inputs us ∈ I(i) (s ∈ {1, ..., r}), outputs yq ∈ O(i)

(q ∈ {1, ...,m}), and state estimates x̂
(i)
p ∈ D(i) (p ∈ {1, ..., n}) from other sub-observers

SO(j) (such that x̂
(j)
p ∈ R(j) and x̂

(i)
p := x̂

(j)
p ). The solid lines represent the dynamic

relations among the states x̂
(i)
p ∈ R(i) of the sub-observer SO(i). Using Proposition 3.1
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SO(1) SO(2) SO(3)

SO(4) SO(5) SO(6)

SO(7) SO(8) SO(9)

Figure 3.2: The directed graphs of the nine sub-observers for the system (A,B,C).
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and the Grammian theorem [143] for each sub-observer SO(i), it is easy to verify that

the graph representing SO(i) satisfies the conditions of the Proposition 3.1. The nine

sub-observers are formally represented as follows:

(i) SO(1)(R(1)|I(1), O(1), D(1))

R(1) = {x̂(1)
1 , x̂

(1)
2 }, I(1) = {u2}, O(1) = {y1}, D(1) = {x̂(1)

3 }
(ii) SO(2)(R(2)|I(2), O(2), D(2))

R(2) = {x̂(2)
3 }, I(2) = {u1}, O(2) = {y2}, D(2) = {}

(iii) SO(3)(R(3)|I(3), O(3), D(3))

R(3) = {x̂(3)
1 , x̂

(3)
3 }, I(3) = {u1}, O(3) = {y1}, D(3) = {x̂(3)

2 }
(iv) SO(4)(R(4)|I(4), O(4), D(4))

R(4) = {x̂(4)
1 , x̂

(4)
3 }, I(4) = {u1}, O(4) = {y1, y2}, D(4) = {x̂(4)

2 }
(v) SO(5)(R(5)|I(5), O(5), D(5))

R(5) = {x̂(5)
1 , x̂

(5)
2 , x̂

(5)
3 }, I(5) = {u1, u2}, O(5) = {y1, y2}, D(5) = {}

(vi) SO(6)(R(6)|I(6), O(6), D(6))

R(6) = {x̂(6)
1 }, I(6) = {}, O(6) = {y1}, D(6) = {x̂(6)

2 , x̂
(6)
3 }

(vii) SO(7)(R(7)|I(7), O(7), D(7))

R(7) = {x̂(7)
1 , x̂

(7)
2 , x̂

(7)
3 }, I(7) = {u1, u2}, O(7) = {y1}, D(7) = {}

(viii) SO(8)(R(8)|I(8), O(8), D(8))

R(8) = {x̂(8)
1 }, I(8) = {}, O(8) = {y1}, D(8) = {}

(ix) SO(9)(R(9)|I(9), O(9), D(9))

R(9) = {x̂(9)
3 }, I(9) = {}, O(9) = {y2}, D(9) = {}

In each of the sub-observers SO(8) and SO(9), there is only one sensor that is in-

volved in the observation resulting in having no specific dynamics associated with them.

Consequently, SO(8) and SO(9) should be interpreted as direct measurements of the states.

A portion of the estimation digraph of the system is depicted in Figure 3.3. In this figure,

without loss of generality, some vertices and edges are eliminated in order to avoid redun-

dant paths and simplify the understanding of the corresponding definitions and concepts.

In Figure 3.3, the vertices are assigned with the following vectors

vsource =

 0

0

0

 , vsink =

 1

1

1

 , v1 =

 1

1

0



v2 =

 0

0

1

 , v3 =

 1

0

1

 , v4 =

 1

0

0


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Figure 3.3: A portion of the combined estimation (E) and weighted estimation (WE)
digraphs of the system (A,B,C). The edges are labeled with (SO(i), COND(i)) and
(SO(i), COST (i)) for the E and WE digraphs, respectively.
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Although for system (A,B,C), there are nine possible sub-observers, however, one only

needs a subset of them to cooperatively estimate all the states of the system. For in-

stance, in the normal operation mode the supervisor suggests an initial set of sub-observers

{SO(1), SO(2)} with N ({1}) = {2} and N ({2}) = {}, which corresponds to the path

vsourcev1vsink in the estimation digraph of Figure 3.3, that can cooperatively estimate all

the system states.

Let us now assume that the process dynamics uncertainty/unreliability W̄ (i) 6= 0

occurs in the sub-observers SO(i), i ∈ {2, 3, 4, 5, 7} (as in equation (3.12) and Defini-

tion 3.6). These uncertainties originate from the dynamic equation of the state x3 subject

to the process dynamics unreliability W̄
(i)
3 6= 0, where W̄

(i)
3 represents the x3-corresponding

element of W̄ (i).

In the first approach, consider the estimation (E) digraph in Figure 3.4. The sub-

observers SO(i), i ∈ {2, 3, 4, 5, 7} become invalid (COND(i) = 1 as per Definition 3.6)

and hence should not be used any further for constructing the state estimates. Conse-

quently, in order to achieve the objective in equation (3.15) the supervisor eliminates all

the sub-observer sets in which the invalid sub-observers are employed. The eliminated

sub-observers are denoted by the dashed edges in the E digraph in Figure 3.4, where the

supervisor proposes the modified set of sub-observers {SO(1), SO(9)}, with N ({1}) = {9}
and N ({2}) = {}, corresponding to the path vsourcev2vsink. Therefore, the information

on the uncertain dynamic state x3 is not incorporated in the modified set of sub-observers

{SO(1), SO(9)}.
In the second approach, consider the weighted estimation (WE) digraph in Figure 3.5.

The sub-observers SO(i), i ∈ {2, 3, 4, 5, 7} are costly (COST (i) 6= 0 as per Definition 3.7).

By taking the coeficients CR = 0 (no recovery available), CC = 0 (no communication cost),

and CE = 1 as explained in Definition 3.7, the cost of invalid sub-observers SO(i) are equal

to n(R(i)) as indicated in Figure 3.5. These costs should be incorporated in the cooperative

estimation scheme. Consequently, in order to achieve the objective in equation (3.16), the

supervisor minimizes the cumulative cost of the sub-observers and proposes the modified

set of sub-observers {SO(1), SO(9)} with N ({1}) = {9} and N ({2}) = {}, which corre-

sponds to the path vsourcev2vsink with the minimum cost of COST (1) + COST (9) = 0 as

shown in Figure 3.5.

For this example, the results of the E and WE digraphs are the same. Note that

one still needs to verify the feasibility of the overall observation task that is achieved by

the supervisor-selected initial set of sub-observers {SO(1), SO(2)} (the path vsourcev1vsink

shown in Figure 3.3) in the normal operation mode, and the supervisor-reconfigured set of

sub-observers {SO(1), SO(9)} (the path vsourcev2vsink shown in Figure 3.4 and Figure 3.5)

in the process dynamics uncertainty/unreliability situation. Subsequently, in the next sec-

tion, we will provide guidelines to transform the overall cooperative sub-observers scheme
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Figure 3.4: The estimation (E) digraph in which the solid and dashed edges represent the
valid (COND(i) = 0) and invalid (COND(i) = 1) sub-observers, respectively.

Figure 3.5: The weighted estimation (WE) digraph.
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into an equivalent centralized estimation scheme having an observer gain matrix K̄ with

a certain block-diagonal structure (Example 3.2). Then, we will also provide a test to ver-

ify the feasibility of the equivalent centralized estimation scheme having a block-diagonal

observer gain matrix K̄ (Example 3.3).

To summarize, we have proposed a supervisory technique that selects a set of valid

sub-observers for cooperatively estimating all the states of the system in presence of

process dynamics and sensor measurement uncertainties/unreliabilities. The cooperation

among the sub-observers is defined as the exchange of information on their local state

estimates that aims at restricting the process dynamics and sensor measurement uncer-

tainties/unreliabilities. It should be noted that it is possible to define the sub-observers

only based on the Grammian observability theorem. However, the advantage of the struc-

tural observability is in the graphic representation that helps improve the intuition behind

the concepts. If a system is structurally unobservable, then it is unobservable for all the

values of the system parameters. However, if the system is structurally observable, then

it is not guaranteed that the system is observable for all the values of the system. In such

cases, the Grammian theory should still be employed to verify the observability of the sys-

tem. On the other hand, the intention of our proposed framework is to use the structural

(graph based) and Grammian approaches in parallel as follows. First, the graph based

approach is used to ease the sub-observer design by visualizing the interactions among

the states. Next, the Grammian approach is used to verify the observability of the overall

cooperative sub-observer scheme.

We are now in the position to formally verify that the overall integration of the

cooperative sub-observers in the selected set will lead to an overall stable (convergent)

system. In the next section, feasibility of our proposed cooperative estimation scheme is

investigated.

3.4 Feasibility Analysis and Design of Distributed

Cooperative Sub-Observers

In this section, our goal is to verify the feasibility of the cooperative estimation scheme

that is constructed from the set of selected valid sub-observers for LTI systems. The

feasibility of a set of cooperative sub-observers is verified by investigating the feasibility

of its equivalent centralized estimation scheme, which is performed through the following

steps.

1) Lemma 3.1 provides guidelines on how to transform the overall cooperative sub-

observers (3.13) into an equivalent centralized estimation scheme for only the sake

55



of analysis. The observer gain matrix K̄ has a certain block-diagonal structure K̄, i.e.

K̄ ∈ K̄.

2) Lemma 3.3 and Lemma 3.4 provide a test for verifying the feasibility of the equivalent

centralized estimation scheme having a block-diagonal observer gain matrix K̄ ∈ K̄

when a sensor measurement and a dynamic equation are uncertain, respectively.

Consequently, a set of cooperative sub-observers is feasible if and only if the equiv-

alent centralized estimation scheme, which is formed by using Lemma 3.1, is verified to

be feasible by using equation (3.29), Lemma 3.3 and Lemma 3.4.

Lemma 3.1. For an observable multi-input multi-output (MIMO) system that is repre-

sented by the triplet (A,B,C), the feasibility of a cooperative estimation scheme that is

designed according to the Procedure 3.1 is equivalent to the feasibility of a centralized esti-

mation problem having an observer gain matrix K̄(s) ∈ K̄ with a certain sparse structure

K̄ = diag
(
K(1)(s), ..., K(Nso)(s)

)
, where K(i)(s) is the gain of SO(i) and Nso is the total

number of sub-observers.

Proof: Consider a linear MIMO system that is given by equation (3.1) and the

sub-observer SO(l), l = 1, ..., Nso with its state vector X̂(l) ∈ Rn(l)
(n(l) is the dimension

of X̂(l)) that includes and concatenates all its states x̂
(l)
i ∈ R(l), i ∈ {1, ..., n}. For all the

states x̂
(l)
i ∈ R(l), we have

˙̂x
(l)
i =

∑
∀j∈{1,...,n};
x̂
(l)
j ∈R

(l)

aijx̂
(l)
j +

∑
∀j∈{1,...,n};
x̂
(l)
j ∈D

(l)

∑
k∈Nj({l})

aijα
(lk)
j x̂

(k)
j︸ ︷︷ ︸

x̂
(l)
j

+BiU (3.17)

+K
(l)
i (Y (l) − C(l)X̂(l))− W̄ (l)

i +K
(l)
i V̄

(l)

where aij is the (ij)th element of A, K
(l)
i is the xi-corresponding element of the sub-

observer matrix gain K(l), X̂(l) is the estimate of X(l) ∈ Rn(l)
, which is the vector of all

states x̂
(l)
i ∈ R(l), and Y (l) ∈ Rm(l)

is the vector of all local measurements, which are in

terms of their corresponding uncertainties V (l) and estimated states in R(l) through the

measurement matrix C(l), that is Y (l) = C(l)X(l) + V (l).

Taking the state estimation error as e
(l)
i = x̂

(l)
i −xi, the corresponding error dynamics

now becomes

ė
(l)
i =

∑
∀j∈{1,...,n};
x̂
(l)
j ∈R

(l)

aije
(l)
j +

∑
∀j∈{1,...,n};
x̂
(l)
j ∈R

(l)

∑
k∈Nj({l})

aijα
(lk)
j e

(k)
j (3.18)

−K(l)
i C

(l)E(l) +K
(l)
i (V (l) + V̄ (l)) + (wi − W̄ (l)

i )
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where E(l) = X̂(l) − X(l) is the vector of all estimation errors e
(l)
i . Now, augmenting all

the error equations in equation (3.18) (for i = 1, ..., n(l) and l = 1, ..., Nso) and neglecting

the effects of uncertainties, disturbances, and unmodeled dynamics results in a compact

form and representation of the estimation error dynamics, namely

Ė =
(
Ā− K̄C̄

)
E (3.19)

where E has the dimension nNso×1, Ā has the dimension nNso×nNso, K̄ has the dimension

nNso×mNso, and C̄ has the dimension mNso×nNso (nNso = ΣNso
l=1n

(l) and mNso = ΣNso
l=1m

(l))

are defined as follows: ∀l ∈ Sso,∀i′l ∈ N ; 0 < i′l < n(l) and ∀k ∈ Sso, ∀j′k ∈ N ; 0 < j′k <

n(k);

E[nl−1+i′l]
= E

(l)

[i′l]
(3.20)

Ā[nl−1+i′l,nk−1+j′k] =


aij l = k,∃{xi, xj} ⊂ Set(X); X̂

(l)

[i′l]
= x̂

(l)
i , X̂

(k)

[j′k] = x̂
(k)
j

aijα
(lk)
j l 6= k,∃{xi, xj} ⊂ Set(X); X̂

(l)

[i′l]
= x̂

(l)
i , X̂

(k)

[j′k] = x̂
(k)
j

0 otherwise

(3.21)

C̄ = diag
(
C(1), ..., C(Nso)

)
(3.22)

K̄ = diag
(
K(1), ..., K(Nso)

)
(3.23)

in which the index [i] denotes the ith element of a vector, the index [i, j] denotes the

(ij)th element of a matrix, and nl = Σl
s=1n

(s) is the dimension of the cumulative state up

to the lth sub-observer. Therefore, the cooperative estimation scheme is equivalent to a

centralized estimation problem for the pair (Ā, C̄) by using a block-diagonal observer gain

matrix K̄ ∈ K̄nNso×mNso where

K̄nNso×mNso =
{
diag(K(1), ..., K(Nso))

∣∣K(1) ∈ Rn(l)×m(l)

, ..., K(Nso) ∈ Rn(Nso)×m(Nso)
}

(3.24)

This completes the proof of the lemma.

The example below demonstrates and illustrates in detail the application of Lemma 3.1

by transforming the overall cooperative sub-observers scheme into an equivalent central-

ized estimation scheme having a block-diagonal observer gain matrix K̄ ∈ K̄nNso×mNso .

Example 3.2. Consider the system that is introduced in Example 3.1 with the triplet ma-

trices (A,B,C), and the initial supervisor-selected set of sub-observers {SO(1), SO(2)} in

the normal operation mode and the supervisor-reconfigured set of sub-observers {SO(1), SO(9)}
in the presence of process dynamics uncertainty/unreliability. For this example, the equiv-

alent centralized observer structure for each of the two sets of sub-observers is obtained.

For the initial set of sub-observers {SO(1), SO(2)}, we have
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SO(1) : d
dt

[
x̂

(1)
1

x̂
(1)
2

]
=

[
a11 a12

0 a22

][
x̂

(1)
1

x̂
(1)
2

]
+

[
0

b22

]
u2 +

[
a13

0

]
x̂

(2)
3

+

[
k11

k21

]
(y1 − c11x̂

(1)
1 )

SO(2) : d
dt
x̂

(2)
3 = a33x̂

(2)
3 + b31u1 + k32(y2 − c23x̂

(2)
3 )

(3.25)

Neglecting the effects of uncertainties, disturbances, and unmodeled dynamics, the

corresponding estimation error dynamics are now governed by

SO(1) : d
dt

[
e

(1)
1

e
(1)
2

]
=

[
a11 a12

0 a22

][
e

(1)
1

e
(1)
2

]
+

[
a13

0

]
e

(2)
3 −

[
k11

k21

]
c11e

(1)
1

SO(2) : d
dt
e

(2)
3 = a33e

(2)
3 − k32c23e

(2)
3

(3.26)

By augmenting the two error equations we obtain

d

dt

 e
(1)
1

e
(1)
2

e
(2)
3

 =

Ā−
 k11 0

k21 0

0 k32

 C̄

 e

(1)
1

e
(1)
2

e
(2)
3

 (3.27)

or equivalently, ė =
(
Ā− K̄C̄

)
e, where Ā = A and C̄ = C. Therefore, according to

Lemma 3.1, the feasibility of the cooperative estimation scheme by using the supervisor-

selected initial set of sub-observers {SO(1), SO(2)} as in equation (3.25) is equivalent to the

feasibility of the centralized estimation problem given by equation (3.27) with an observer

gain K̄ having a sparse block-diagonal structure as follows

K̄ ∈ K̄3×2 =

{
diag

([
k11

k21

]
, k32

) ∣∣∣∣∣
[
k11

k21

]
∈ R2, k32 ∈ R

}
(3.28)

In this example, since each state is estimated by one and only one sub-observer,

the pair (Ā, C̄) of the overall augmented error dynamics (3.27) is identical to the one

obtained from the pair (A,C) of the original system. For the supervisor-reconfigured set

of sub-observers {SO(1), SO(9)}, it is easy to show that the resulting equivalent centralized

observer has the same block-diagonal observer gain structure K̄ as given in equation (3.28).

Up to this point, we have shown that the feasibility of the cooperative set of sub-

observers (that are selected by the supervisor) are equivalent to the centralized estimation
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scheme with a sparse block-diagonal gain K̄. In the following, we investigate the feasibility

of a centralized estimation scheme having the gain K̄ ∈ K̄nNso×mNso in equation (3.24).

According to [133], for a given MIMO linear system that is represented by the

triplet (Ā, B̄, C̄), a centralized estimation solution that is obtained by using an observer

gain matrix K̄ having a certain sparse structure (K̄ ∈ K̄nNso×mNso ) is feasible if the overall

estimation error dynamics (3.19) does not have any decentralized fixed modes with respect

to the structured gain matrix K̄ ∈ K̄nNso×mNso , that is

⋂
K̄∈K̄nNso

×mNso

eigs
(
Ā− K̄C̄

)
= ∅ (3.29)

where eigs (M) denotes the set of all eigenvalues of the matrix M .

Note that in this section the feasibility of cooperative sub-observers is guaranteed by

using Lemma 3.1. Now, an H∞ robust observer matrix K̄ is designed for the distributed

sub-observers that have the overall structure K̄ = diag(K(i))Nsoi=1 (as in equation (3.23))

associated with the closed-loop matrix (Ā− K̄C̄) in equation (3.19). The matrices Ā and

C̄ are defined by equations (3.21) and (3.22), respectively, in the proof of Lemma 3.1. In

this regard, we consider the following lemma.

Lemma 3.2. Consider the distributed sub-observers with the overall structure K̄ = diag(K(i))Nsoi=1

and the overall error dynamics Ė =
(
Ā− K̄C̄

)
E given by equation (3.19). The dis-

tributed state feedback matrix K̄ = Y X−1 (or equivalently K(i) = YiX
−1
i ) stabilizes the

system and minimizes the positive parameter γ, which represents an upper bound on the

H∞ norm of the transfer function from the disturbance to the estimation error, if there

exist a block-diagonal matrix Y = diag(Yi)
Nso
i=1 and a positive definite block-diagonal matrix

X = diag(Xi)
Nso
i=1 > 0 that satisfy the following optimization problem

Minimize γ

subject to

X > 0 ĀTX +XĀ+ C̄TY T + Y C̄ X I

X −γI 0

I 0 −γI

 < 0

∀l ∈ Sso,∀x̂(l)
j ∈ R(l),∀k ∈ Nj({l}) : 0 ≤ α

(lk)
j ≤ 1

∀l ∈ Sso,∀x̂(l)
j ∈ R(l) :

∑
k∈Nj({l}) α

(lk)
j = 1

Proof: Follows from the results in [136] and those in Lemma 2.2. The last two

convex constraints are those that are already explained for the linear combination in equa-

tion (3.8).
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In case of process dynamics and sensor measurement uncertainties/unreliabilities

(as per Definition 3.6), the necessary and sufficient condition in equation (3.29) is com-

plemented by the following two lemmas.

Lemma 3.3. Given that the jth sensor measurement yj = Y[j], j = 1, ...,m is unreliable,

a centralized estimation scheme by using an observer gain matrix K̄ with a certain sparse

block-diagonal structure (K̄ ∈ K̄nNso×mNso ) is feasible if

⋂
K̄sen∈K̄sen

nNso
×m′

Nso

eigs
(
Ā− K̄senC̄sen

)
= ∅

where C̄sen = C̄(−T sen,−{}), and K̄sen
nNso×m′Nso

= {K̄(−{},−T sen)|K̄ ∈ K̄nNso×mNso}, in which

T sen = {k ∈ {1, ...,m}|∃l ∈ Sso;Y (l)
[k] = yj}, and m′Nso = mNso−n(T sen), with n(.) denoting

the cardinality of a set.

Proof: Follows from the results in [133] and those in Lemma 3.1.

Lemma 3.4. Given that the ith dynamic equation

ẋi = Ẋ[i] = A[i,:]X +BiU + wi

is unreliable (where |wi| > BW as per Definition 3.6), where the index [i, :] represents the

ith row of the associated matrix, a centralized estimation scheme that is obtained by using

an observer gain matrix K̄ with a certain sparse block-diagonal structure K̄ ∈ K̄nNso×mNso

is feasible if

• The state xi is directly measured by a sensor, namely yq, that is ∀q ∈ {1, ...,m};
yq = CqX + vq = xi + vq.

• The following eigenvalue condition holds

⋂
K̄eq∈K̄eq

n′
Nso
×m′

Nso

eigs
(
Āeq − K̄eqC̄eq

)
= ∅

where Āeq = Ā(−seq ,−seq), C̄eq = C̄(−T eq ,−seq), and K̄eq
n′Nso×m

′
Nso

= {K̄(−Seq ,−T eq)|K̄ ∈

K̄nNso×mNso}, in which Seq = {k ∈ {1, ..., n}|∃l ∈ Sso;E[k] = e
(l)
i }, T eq = {k ∈ {1, ...,m}|∃l ∈

Sso;Y
(l)

[k] = yq}, n′Nso = nNso − n(Seq), and m′Nso = mNso − n(T eq), with n(.) denoting the

cardinality of a set.

Proof: Follows from the results in [133] and those in Lemma 3.1.

For the jth sensor uncertainty, Lemma 3.3 is motivated by the fact that the uncer-

tain sensor should be disregarded in the estimation process, that is the yj-corresponding

columns should be eliminated from the matrix K̄ to yield the modified matrix K̄sen, and
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the yj-corresponding rows should be eliminated from the matrix C̄ to yield the modified

matrix C̄sen, which should subsequently be used to verify the eigenvalue condition (3.29).

Similarly, for the ith uncertain dynamic equation, Lemma 3.4 is motivated by the fact

that the uncertain state xi should be directly measured by a sensor, namely yq, since the

uncertain dynamic equation should not be incorporated in the estimation of xi. Therefore,

the estimation process proceeds with the remaining system states excluding xi and yq. In

other words, the xi-corresponding columns and rows should be eliminated from the matrix

Ā to yield Āeq, the xi-corresponding columns and yq-corresponding rows should be elimi-

nated from the matrix C̄ to yield C̄eq, and the xi-corresponding rows and yq-corresponding

columns should be eliminated from the matrix K̄ to yield K̄eq. Consequently, the matrices

Āeq, C̄eq, and K̄eq should be used to subsequently verify the eigenvalue condition (3.29).

Remark 3.1. In case of process dynamics and sensor measurement uncertainties/unreliabilities

(as per Definition 3.6), the H∞ optimal observer matrices K̄sen and K̄eq can be designed

for the distributed sub-observers associated with the closed-loop matrices (Ā− K̄senC̄sen)

(in Lemma 3.3) and (Āeq−K̄eqC̄eq) (in Lemma 3.4), respectively. To this end, Lemma 3.2

can be used to design the matrices K̄sen and K̄eq by substituting the pair (Ā, C̄) in this

lemma with (Ā, C̄sen) and (Āeq, C̄eq), respectively.

The following example illustrates how Lemma 3.3 and Lemma 3.4 enable one to

determine whether a system with process dynamics and sensor measurement uncertain-

ties/unreliabilities is observable with respect to an observer gain matrix K̄ having a certain

block-diagonal structure K̄ ∈ K̄nNso×mNso .

Example 3.3. Consider the system that is introduced in Example 3.1, whose state space

representation matrices A and C are given by

A =

 −0.1 0.1 0.1

0 −0.2 0

0 0 −0.2

 , C =

[
1 0 0

0 0 1

]

The supervisor-selected initial set of sub-observers are {SO(1), SO(2)} in the absence of

process dynamics unreliability and the supervisor-reconfigured set of sub-observers are

{SO(1), SO(9)} in the presence of process dynamics unreliability. In Example 3.2, the

equivalent centralized observer structure of these two sets of sub-observers are provided

in equation (3.27) with the sparse block-diagonal gain structure K̄3×2 given by equa-

tion (3.28). In this example, this equivalent centralized observer structure is used to study

the feasibility of the two sets of sub-observers.

For the initial set of sub-observers {SO(1), SO(2)} we have

⋂
K̄∈K̄

eigs
(
Ā− K̄C̄

)
= ∅
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Therefore, the system is observable by using the supervisor-selected initial set of sub-

observers in the absence of any process dynamics and sensor measurement unreliabilities.

For the supervisor-reconfigured set of sub-observers {SO(1), SO(9)}, Seq = {3} corresponds

to the unreliability in the dynamic equation of x3, and T eq = {2} corresponds to the sensor

y2 which directly measures x3. We have

Āeq =

[
−0.1 0.1

0 −0.2

]
, C̄eq =

[
1 0

]
, K̄eq =

{
K̄eq =

[
k11

k21

] ∣∣∣∣∣ k11, k21 ∈ R

}

⋂
K̄eq∈K̄eq

eigs
(
Āeq − K̄eqC̄eq

)
= ∅

Therefore, the system is observable by using the supervisor-reconfigured set of sub-observers

{SO(1), SO(9)} in the presence of process dynamic uncertainty/unreliability.

3.5 Conclusions

In this chapter, we have proposed a framework in which a set of sub-observers can be

selected by a supervisor to cooperatively estimate all the fault parameters and states of

a formation flight of unmanned vehicle system, while confining the effects of the process

dynamics and sensor measurement uncertainties/unreliabilities. We have shown how to

systematically design the distributed sub-observers in our cooperative estimation scheme.

After the feasibility of cooperative sub-observers is guaranteed by using the equivalent

centralized estimation scheme, H∞ optimal sub-observer matrices are designed. Moreover,

our proposed cooperative estimate scheme is shown to be applicable to cases in which the

process dynamics and sensor measurement unreliabilities are present in the formation

flight system.
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Chapter 4

Distributed and Cooperative

Estimation of Formation Flight of

Unmanned Vehicles with Relative

Measurements Subject to

Loss-of-Effectivenss Actuator

Failures

In this chapter, we extend the proposed framework in the previous chapter to the case

of formation flight of unmanned vehicles with relative measurements subject to actuator

failures of the loss-of-effectiveness type. The main difference with the previous chapter is

that in presence of the loss-of-effectiveness (LOE) failures the fault augmented state space

model is in a bilinear form, which makes the design and analysis of the cooperative sub-

observers different from those in the previous chapter. From the estimation point of view,

the bilinear fault-augmented system is in the form of a linear time-varying representa-

tion. Therefore, the linear time-invariant observer approach (as in the previous chapter)

cannot be used here, and instead the Kalman filtering technique is used to design the

sub-observers. In order to guarantee the ultimate boundedness of the estimation errors

in the convergence analysis section of this chapter, the sub-observer dependency (SOD)

digraph (as defined later in this chapter) is assumed to be acyclic, which is a confining

condition to select a sub-set of cooperative sub-observers as opposed to the feasibility

analysis section of the previous chapter, where no such confining conditions are imposed.

Moreover, in case that the ranges of some sub-observers are overlapping, a fusion feed-

back (FF) procedure is developed to satisfy the constrained-state conditions in parallel
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to the time evolution of the Kalman filter equations of the sub-observers. We first start

by presenting some preliminaries.

4.1 Preliminaries

In this section, the general case of a multiple vehicle formation flight system subject to

actuator failures of the loss-of-effectiveness type is formulated as a bilinear state space

model. The state dependency (SD) digraph of the bilinear system is presented in order to

simplify the study of system properties by using the graph-based approaches. Based on

the SD digraph of the formation flight system, structural observability is presented that

will help us in the development of our proposed distributed and cooperative estimation

framework in the subsequent sections.

4.1.1 Bilinear Fault-Augmented State Space Model of Forma-

tion Flight of Unmanned Vehicles

Consider a formation of N vehicles with the relative measurement formation (RMF)

digraph GRMF (VRMF , ERMF ) as per Definition 2.3. The linear state space model of the

formation is given by equation (2.4). In the following, the case of LOE is considered for all

the vehicles, and the general model of LOE actuator failures given in equations (2.5) and

(2.8) is utilized to form the overall fault-augmented state space model of the formation

as shown in equation (2.10). Moreover, it is assumed that π̇i = 0 (W f
i = 0 in equation

(2.6) whose effect will be analyzed later in this chapter).

If F {i} = 1 (∀i ∈ {1, ..., N}, corresponding to the LOE type of actuator failure),

then the system (2.10) is in the form of a bilinear system. Therefore, in this case we

consider the general equivalent state space representation of a bilinear system S as follows:

S :

 Ẋ = A0X +
r∑
i=1

uiAiX +BU +W

Y = CX + V
(4.1)

where

B =
[
B1 · · · Br

]
n×r

, C =


C1

...

Cm


m×n

Moreover, X =
[
x1 · · · xn

]T
∈ Rn, Y =

[
y1 · · · ym

]T
∈ Rm, and U =

[
u1 · · · ur

]T
∈

Rr are the state, output, and input vectors, respectively. In addition, W =
[
w1 · · · wn

]T
∈
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Rn and V =
[
v1 · · · vm

]T
∈ Rm are the process disturbance and sensor noise, respec-

tively.

4.1.2 State Dependency (SD) Digraph of Bilinear Systems

In the following, the associated state dependency (SD) directed graph (digraph) of the

bilinear system (4.1) is introduced [137].

Definition 4.1. For a bilinear system S in equation (4.1), the associated state dependency

(SD) directed graph GSD(VSD, ESD) is defined as follows:

• The vertex set is VSD = Set(U)∪Set(X)∪Set(Y ) where U , X, and Y are the input,

state, and output vectors, respectively, and Set(Ψ) denotes the set of the elements

of the vector Ψ.

• The edge set is defined as the union of input-state, state-state, and state-output

edges as follows

ESD = {(ui, xj)|bji 6= 0} ∪
{

(xi, xj)k|ak,ji 6= 0
}
∪ {(xi, yj)|cji 6= 0} (4.2)

where ak,ji, bji, and cji are the corresponding elements of the matrices Ak (k =

0, ..., r), B, and C, respectively.

Definition 4.2. Two edges e1 = (v1, v
′
1)k1 ∈ E and e2 = (v2, v

′
2)k2 ∈ E are said to be

A-disjoint if the condition v1 6= v2 and at least one of the conditions v′1 6= v′2 and k1 6= k2

are satisfied. In general, n (n ≥ 2) edges are A-disjoint if they are mutually A-disjoint.

4.1.3 Observability and Structural Observability of Bilinear Sys-

tems

For the class of systems with the same associated digraph (Definition 4.1), one can apply

graph theory to study generic (or structural) properties. The graph-based properties

simplify the study of system properties specifically when the dimensions of the system are

large. However, the graph-based structural properties are valid for almost all systems in

the class of systems with the same graph, except for some pathological parameter matching

cases that constitute a finite number of nontrivial polynomials in the system parameters.

Therefore, the conventional non-graph-based properties of a system are always required

to be studied in order to confirm the results of the graph-based properties. The following

theorem relates to the structural (generic) observability of bilinear systems.
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Theorem 4.1. [149] Consider the bilinear system given by equation (4.1). For piece-

wise continuous input signals U , the bilinear system (4.1) is observable if and only if

g rank(O(C,A0, A1, ..., Ar)) = n, where

O(C,A0, A1, ..., Am) =

col(C,CA0, CA1, ..., CAr, CA
2
0, CA0A1, ..., CA0Ar, CA1A0, ..., CA

n−1
r )

is the observability matrix of system (4.1) and g rank(M) denotes the generic rank of a

matrix M .

In the graph theory domain, there is a graph-based technique to check the structural

observability of a bilinear system as will be described next.

Proposition 4.1. [150] Let S be a bilinear system that is given by (4.1) with its associated

digraph GSD. The bilinear system S is structurally (generically) observable if and only if

the following two conditions hold:

• There exists at least one state-output path originating from any state vertex in X;

and

• There exists a set of n A-disjoint state-state and state-output edges in GSD.

It should be noted that if a bilinear system S is structurally unobservable, then

its associated digraph represents a class of systems that are all (including the system S

itself) unobservable. But once a system is guaranteed to be structurally observable, its

observability should be further validated by using the Grammian-based observability the-

orem [151], [158]. This observability theorem provides a fundamental necessary/sufficient

condition for observability of dynamical bilinear systems. In this thesis, although we

introduce and use structural observability and graph-based analysis to demonstrate and

visualize the feasibility of an observer, one needs to always verify the system observability

by using the observability theorem.

4.2 Distributed and Cooperative Sub-Observers in

Bilinear Systems

In this section, our proposed cooperative estimation framework in the previous chap-

ter is extended to the case of bilinear systems. Similar to the previous chapter, this

framework is based on a set of multiple sub-observers (Definition 3.4) and a supervisor

which selects a subsubset of sub-observers that can estimate all the states of the system

in presence of unreliable process dynamics and sensor measurements. The cooperation

among the sub-observers is defined as the exchange of information on their local state
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estimates that aim at restricting the effect of process dynamics and measurement sensor

uncertainties/unreliabilities.

Consider the bilinear system given by equation (4.1). This system can be equiva-

lently represented by the following linear time-varying model
Ẋ =

(
A0 +

r∑
i=1

ui(t)Ai

)
︸ ︷︷ ︸

A(t)

X +BU +W

Y = CX + V

(4.3)

where (A(t), B, C) represent the triplet matrices of the equivalent linear time-varying

model (4.3) of the bilinear model (4.1). The sub-observers are defined according to the

Definition 3.4.

Inherited from the bilinear model of the system, each sub-observer SO(i) is repre-

sented by a bilinear dynamic equation as follows:

˙̂
X(i) =

(
A

(i)
0 +

r∑
i′=1

ui′(t)A
(i)
i′

)
︸ ︷︷ ︸

A(i)(t)

X̂(i) +
∑

j∈N ({i})

(
A

(ij)
0 +

r∑
i′=1

ui′(t)A
(ij)
i′

)
︸ ︷︷ ︸

A(ij)(t)

X̂(j)

+B(i)U (i) +K(i)(Y (i) − C(i)X̂(i))

= A(i)(t)X̂(i) +
∑

j∈N ({i})

A(ij)(t)X̂(j) +B(i)U +K(i)(Y (i) − C(i)X̂(i)) (4.4)

where X̂(i) and X̂(j) are the vectors of all the states in R(i) and D(i), respectively, and

A(i)(t) and A(ij)(t) represent the partitions of the matrix A(t) that correspond to the

dependency of the states X̂(i) (of SO(i)) on itself and on the states X̂(j) (of SO(j)),

respectively, as follows:

A(i) = A(−S,−S) , A
(i)
i′ = A(−S,−S) (i′ = 0, ..., r)

S =
{
k ∈ {1, ..., n}|x̂(i)

k /∈ D(i)
} (4.5)

A(ij) = A(−S,−T ) , A
(ij)
i′ = A(−S,−T ) (i′ = 0, ..., r)

T =
{
k ∈ {1, ..., n}|x̂(j)

k /∈ R(j)
} (4.6)

In addition, U (i) is the vector of all entities in I(i) (I(i) = set(U (i))), and B(i) represents

the partition of the matrix B that corresponds to the dependency of the inputs U (i) on

the states X̂(i) as follows:

B(i) = B(−S,−T )

S =
{
k ∈ {1, ..., n}|x̂(i)

k /∈ D(i)
}

T =
{
k ∈ {1, ..., r}|uk /∈ I(i)

} (4.7)
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Moreover, Y (i) is the vector of all entities in O(i) (O(i) = set(Y (i))), and C(i) repre-

sents the portion of the matrix C that corresponds to the dependency of the states X̂(i)

on the outputs Y (i) as follows:

C(i) = C(−S,−T )

S =
{
k ∈ {1, ...,m}|yk /∈ O(i)

}
T =

{
k ∈ {1, ..., n}|x̂(i)

k /∈ D(i)
} (4.8)

The matrix K(i)(t) ∈ Rn(i)×m(i)
is the sub-observer dynamic gain. Given (condi-

tioned on) availability of the information on I(i), O(i), and D(i), all the states of the

overall system S whose estimates belong to R(i) are observable by using the sub-observer

SO(i).

For the sub-observer SO(i) given in Definition 3.4, the expressions for A(i), A(ij),

B(i), and C(i) in equations (4.5), (4.6), (4.7), and (4.8), respectively, can be used to give

the dynamic state space model of X(i) as follows:

Ẋ(i) = A(i)(t)X(i) +
∑

j∈N ({i})

A(ij)(t)X̂(j) +B(i)U +W (i) Y (i) (4.9)

= C(i)X̂(i) + V (i)

where W (i) ∈ Rn(i)
and V (i) ∈ Rm(i)×1 are defined as follows:

W (i) = W (−S,−{}) , S =
{
k ∈ {1, ..., n}|x̂(i)

k /∈ D(i)
}

(4.10)

V (i) = V (−S,−{}) , S =
{
k ∈ {1, ...,m}|yk /∈ O(i)

}
(4.11)

Similar to the previous chapter, the notions of directed graph and structural ob-

servability in the previous sections are used in the following to design the sub-observers

for a class of bilinear systems. The following procedure provides a constructive means for

designing the sub-observers.

Procedure 4.1. Consider the case of a bilinear system as given by equation (4.1), whose

equivalent linear time-varying model is presented by equation (4.3), with the associated

digraph as given in Definition 4.1. A sub-observer simply constitutes a set of A-disjoint

state-state and state-output edges, such that there exists at least one state-output path

originating from any state vertex of the sub-observer. Therefore, the sub-observers can be

designed by following the proposed two steps, namely

Step 1. The directed graph of the system is sketched according to the Definition 4.1.

Step 2. The sub-observer SO(i) is designed by choosing I(i) ⊂ Set(U), O(i) ⊂ Set(Y ),

and two sets of vertices from Set(X) to form its domain D(i) and range R(i) such that the

following three conditions are satisfied:
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Condition 1. The states in R(i) and the output sensor measurements in O(i) should

satisfy the conditions in Proposition 4.1.

Condition 2. The set of input vertices in I(i) and state vertices in D(i) should include

all the vertices in Set(U) and Set(X), respectively, from which there exist incoming edges

to the set of state vertices in R(i) and output vertices in O(i), unless the sub-observer SO(i)

represents a direct measurement (namely yp) of one state (namely xp) where R(i) = {x̂(i)
p },

D(i) = {}, I(i) = {}, and O(i) = {yp}.
Condition 3. Using Theorem 4.1, the states in R(i) should be observable upon the

availability of inputs I(i), outputs O(i), and state estimates D(i).

Each sub-observer SO(i) can possibly be subject to unreliable information. Inherited

from the bilinear model of the system, each sub-observer SO(i) is represented by a bilinear

dynamic equation as follows:

˙̂
X(i) = A(i)(t)X̂(i) +

∑
j∈N ({i})

A(ij)(t)X̂(j) +B(i)U (4.12)

+K(i)(Y (i) − C(i)X̂(i) + V̄ (i))− W̄ (i)

where the vectors W̄ (i) and V̄ (i), respectively, represent the process dynamics measurement

sensor unreliabilities of the sub-observer SO(i) (in the fault-augmented state space model

(4.1)). These unreliabilites can be due to the following sources:

• dynamic model of the augmented faults, e.g. W̄ =

[
01×(N−1)n0 −

[
(W f

i )
T
]N
i=1

]
∈

R1×n1 (where W f
i is defined as in equation (2.6)) is as in the fault-augmented state

space model (2.10),

• communication delays (failures) in the transmission of input and output data, e.g.

W̄ (i) = B(i)(U (i)(t) − U (i)(t −∆t)) ∈ Rn(i)
and V̄ (i) = Y (i)(t) − Y (i)(t −∆t) ∈ Rm1

are as in the sub-observer model (4.12), or

• communication delays (failures) in the transmission of the estimates X̂(j) (∀j ∈
{1, ..., Nso};D(i)∩R(j) 6= ∅) from SO(j) to SO(i), e.g. W̄ (i) =

∑
j∈N ({i})A

(ij)(X̂(j)(t)−
X̂(j)(t−∆t)) are as in the sub-observer model (4.12).

Taking E(i) = X̂(i) − X(i) and using the dynamic equation of X(i) from equation

(4.9), the error dynamics for the sub-observer SO(i) is

Ė(i) = (A(i)(t)−K(i)C(i))E(i) − (W (i) + W̄ (i)) +K(i)(V (i) + V̄ (i)) (4.13)

+
∑

j∈N ({i})

A(ij)(t)E(j)
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Similar to the Definition 3.6 and Definition 3.7 in the previous chapter, the sub-

observers SO(i) are assigned with the validity conditions COND(i) and costs COST (i),

which are provided to the supervisor (as per Assumption 3.1 and Assumption 3.2) in order

to be considered in our proposed cooperative estimation framework.

In equation (4.13), the Kalman gain K(i) can be chosen to minimize the trace of the

covariance matrix P (i) so that the sub-observer SO(i) is now designed as follows:

˙̂
X(i) = A(i)(t)X̂(i) +B(i)U +K(i)(Y (i) − C(i)X̂(i)) +

∑
j∈N ({i})

A(ij)(t)X̂(j)

K(i) = P (i)(C(i))T (R(i))−1

Ṗ (i) = A(i)(t)P (i) + P (i)(A(i)(t))T +Q(i) − P (i)(C(i))T (R(i))−1C(i)P (i) + ~(i)

~(i) =
∑

j∈N ({i})
~(ij)

~(ij) = A(ij)(t)(P (ij))T + P (ij)(A(ij)(t))T , P (ij) = E {(E(i))(E(j))T}

(4.14)

where E {.} represents the expected value of a random variable. Q(i) > 0, R(i) > 0, and

P (i) > 0 are the covariance matrices of W (i), V (i), and E(i), respectively. The information

about P (ij) is unknown and unavailable to SO(i). Instead, an estimate of the term ~(ij) =

A(ij)(t)P (ij)T +P (ij)(A(ij)(t))T in (4.14) is made by using the information about P (j) which

is sent from SO(j) to SO(i).

For the covariance matrix P (ij) we have

|P (ij)
[a,b]| ≤

√
P

(i)
[a,a]P

(j)
[b,b] (4.15)

where the index [a, b] is defined in Definition 2.8. Consequently, the term ~(ij) = A(ij)(t)(P (ij))T+

P (ij)(A(ij)(t))T in (4.14) is estimated by ~̂(ij) below

~̂(ij) = A(ij)(t)(P̂ (ij))T + P̂ (ij)(A(ij)(t))
T

(4.16)

in which P̂ (ij) corresponds to the worst case scenario for the eigenvalues of ~̂(ij) subject

to the constraint (4.15) as in the following optimization problem:

P̂ (ij) = arg max ~min

s.t. |P̂ (ij)
[a,b]| ≤

√
P

(i)
[a,a]P

(j)
[b,b]

λmin(~̂(ij)) ≥ ~min
λmax(~̂(ij)) ≤ ~max
~̂(ij) ≥ 0

where λmin(.) and λmax(.) represent the minimum and maximum eigenvalues of a matrix,

respectively, ~min is a lower bound on the eigenvalues of ~̂(ij), and the upper bound ~max
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is imposed on λmax(~̂(ij)) (or equivalently ||~̂(ij)||) in order to guarantee stability of the

estimation system as will be shown later in Theorem 4.2.

Taking P̂ (ij) = A(ij)M where M is a transformation matrix, we get:

|P̂ (ij)
[a,b]| ≤

√
P

(i)
[a,a]P

(j)
[b,b] ⇐⇒ A

(ij)
[a,:]M[:,b] ≤

√
P

(i)
[a,a]P

(j)
[b,b]

λmin(~̂(ij)) ≥ ~min ⇐⇒ A(ij)(M +MT )(A(ij))T − ~minI ≥ 0

λmax(~̂(ij)) ≤ ~max ⇐⇒ A(ij)(M +MT )(A(ij))T − ~maxI ≤ 0

∀A(ij) ∈ Rn(i)×n(i)

: ~̂(ij) ≥ 0 ⇐⇒ M +MT ≥ 0

where I represents the identity matrix with appropriate dimensions and the indices [a, :]

and [:, b] are defined in Definition 2.8. Therefore, P̂ (ij) is the solution to the following

constrained optimization problem:

P̂ (ij) = A(ij)M = arg max ~min

s.t. A
(ij)
[a,:]M[:,b] ≤

√
P

(i)
[a,a]P

(j)
[b,b]

A(ij)(M +MT )(A(ij))T − ~minI ≥ 0

A(ij)(M +MT )(A(ij))T − ~maxI ≤ 0

M +MT ≥ 0

Using the estimate ~̂(ij) in (4.16), the equation (4.14) of the sub-observer SO(i)

becomes

˙̂
X(i) = A(i)(t)X̂(i) +B(i)U +K(i)(Y (i) − C(i)X̂(i))

+
∑

j∈N ({i})
A(ij)(t)X̂(j)

K(i) = P (i)(C(i))T (R(i))−1

Ṗ (i) = A(i)(t)P (i) + P (i)(A(i)(t))T +Q(i) − P (i)(C(i))T (R(i))−1C(i)P (i) + ~̂(i)

~̂(i) =
∑

j∈N ({i})
~̂(ij) (~̂(i) ≥ 0)

(4.17)

In the next section, the role of the supervisor is explained by using the definitions

of sub-observer dependency estimation (SODE) and weighted sub-observer dependency

estimation (WSODE) digraphs.

4.3 The Role of a Supervisor

Similar to the previous chapter, in this chapter the role of a supervisor is explained by

introducing the sub-observer dependency estimation (SODE) and weighted sub-observer
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dependency estimation (WSODE) directed graph (digraph), respectively, for the cases

of given sub-observer conditions COND(i) (as in Definition 3.6) and sub-observer costs

COST (i) (as in Definition 3.7).

4.3.1 Sub-Observer Dependency Estimation (SODE) Digraph

In this section, the role of a supervisor is described by introducing the sub-observer

dependency estimation (SODE) directed graph (digraph). For a set of sub-observers

{SO(1), ..., SO(Nso)}, the associated SODE digraph GSODE(VSODE, ESODE) is defined in

the following.

Vertex Set: The vertex set VSODE is defined similar to the vertex set VE in the previous

chapter. Accordingly, the source vertex vsource and the sink vertex vsink are assigned with

the vectors vsource = 0n×1 and vsink = 1n×1.

Edge Set: The edge set ESODE includes all the directed edges e
(i)
a,b = ((va, vb), SO

(i), COND(i)),

where

• (va, vb) indicates that the directed edge e
(i)
a,b is a transition from va to vb

• SO(i) indicates that the transition (va, vb) along the directed edge e
(i)
a,b is due to the

implementation of the sub-observer SO(i) so that additional states are now estimated

in vb as compared to va according to vb = OR
{

va, R
(i)
x

}
, where

R
(i)
x,[k] = Logic

{
x̂

(i)
k ∈ R

(i)
}

(k = 1, ..., n)

(OR {X,Y})[k] = Logic
{

(X)[k] + (Y )[k] 6= 0
}

• SO(i) also indicates that the transition (va, vb) along the directed edge e
(i)
a,b due to

the implementation of the sub-observer SO(i) is conditioned on that in va all the

required state estimates in the domain D(i) of the sub-observer SO(i) are available,

that is ∀k ∈ {1, ..., n} : if x̂
(i)
k ∈ D(i) ⇒ va,[k] = 1

• COND(i) ∈ {0, 1} indicates that the transition (va, vb) along the directed edge e
(i)
a,b

is conditioned on COND(i) = 0.

Similar to the previous chapter, the objective of the supervisor is summarized as

follows:

Find P = (VP , EP ) with

VP = {vsource, vi1 , ..., vip−1 , vsink} ⊂ VSODE and

EP = {e(j1)
source,i1

, e
(j2)
i1,i2

, ..., e
(jp−1)
ip−2,ip−1

, e
(jp)
ip−1,sink

} ⊂ ESODE

s.t. COND(k) = 0 , ∀k ∈ {j1, j2, ..., jp}

(4.18)
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As discussed in the previous chapter, besides the information on whether a sub-observer

SO(i) can be implemented (COND(i) = 0) or not (COND(i) = 1, as per Definition 3.6), in

some applications the supervisor is provided with the information on the implementation

cost COST (i) (as per Definition 3.7) of the sub-observer SO(i) (as per Assumption 3.2).

This problem requires a more general and extended digraph model for the supervisor that

will be considered in the next section.

4.3.2 Weighted Sub-Observer Dependency Estimation (WSODE)

Digraph

In the previous section, the condition COND(i) ∈ {0, 1} (as per Definition 3.6) was

assigned to each sub-observer SO(i) ∈ {SO(1), ..., SO(Nso)}, based on which the supervi-

sor determines whether SO(i) can be implemented (COND(i) = 0) in the directed path

Psup = (Vsup, Esup) or not (COND(i) = 1). Instead, in this section we assign the cost

COST (i) ∈ [0,∞] (as per Definition 3.7) to the sub-observer SO(i) (as per Assump-

tion 3.2), and introduce the weighted sub-observer dependency estimation (WSODE) di-

rected graph (digraph). The WSODE digraph GWSODE(VWSODE, EWSODE) is defined as

follows:

Vertex Set: The vertex set VWSODE is defined similar to the vertex set VSODE. Ac-

cordingly, the source vertex vsource and the sink vertex vsink are assigned to the vectors

vsource = 0n×1 and vsink = 1n×1.

Edge Set: The edge set EWSODE includes all the directed edges e
(i)
a,b = ((va, vb), SO

(i), COND(i)),

where

• (va, vb) indicates that the directed edge e
(i)
a,b is a transition from va to vb

• SO(i) indicates that the transition (va, vb) along the directed edge e
(i)
a,b is due to the

implementation of the sub-observer SO(i) so that additional states are now estimated

in vb as compared to va according to vb = OR
{

va, R
(i)
x

}
• SO(i) also indicates that the transition (va, vb) along the directed edge e

(i)
a,b due to

the implementation of the sub-observer SO(i) is conditioned on that in va all the

required state estimates in the domain D(i) of the sub-observer SO(i) are available,

that is ∀k ∈ {1, ..., n} : if x̂
(i)
k ∈ D(i) ⇒ va,[k] = 1

• COST (i) ∈ [0,∞] is the weight of the directed edge e
(i)
a,b that indicates the cost of

the transition (va, vb) along the directed edge e
(i)
a,b by using the sub-observer SO(i).
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Similar to the previous chapter, the objective of the supervisor is summarized as

follows:

Min
jp∑
k=j1

COST (k)

s.t. R(k) ∈ {0, 1} and

∀l ∈ {1, ..., n}; x̂(k)
l ∈ D(k) : ∅ 6= Nl({k}) ∈

{
k′ ∈ Sso|x̂(k′)

l ∈ R(k′)
}

P = (VP , EP ) with

VP = {vsource, vi1 , ..., vip−1 , vsink} ⊂ VWSODE and

EP = {e(j1)
source,i1

, e
(j2)
i1,i2

, ..., e
(jp−1)
ip−2,ip−1

, e
(jp)
ip−1,sink

} ⊂ EWSODE

(4.19)

In [119], [120], and [117], the design and analysis of a supervisor in the Discrete

Event System (DES) framework [157] is proposed to solve the problems (4 22) and (4 23)

by finding the correct path in the system automaton, however these results are beyond

the scope of this thesis and are therefore not pursued any further.

So far, we have indicated how to design sub-observers for the general case of a

bilinear state space representation. We have also presented the role of a supervisor that

is governed by equations (4.18) and (4.19) based on the SODE and WSODE digraphs,

respectively. We are now in the position to formally verify that the overall integration of

the cooperative sub-observers in the selected set will lead to an overall stable (convergent)

system. In the next section, the convergence of our cooperative estimation scheme will

be analyzed.

4.4 Convergence Analysis of Cooperative Sub-Observers

in Bilinear Systems

In this section, the results on convergence analysis of cooperative sub-observers are based

on the assumption that the sub-observer dependency (SOD) digraph is acyclic (as per Def-

inition 3.5). Our goal now is to investigate the convergence of cooperative sub-observers

given by equation (4.17) for the bilinear system (4.1), whose equivalent linear time-varying

model is given by equation (4.3). The following lemma is provided from the results in [159].

Lemma 4.1. ( [159]) Consider the dynamic system Ẋ = f(X, t), where f(X, t) is piece-

wise continuous in t and locally Lipschitz in X. Let V (X(t), t) be a continuously differ-

entiable Lyapunov function such that

a) ∃α, β > 0 such that ∀X(t) ∈ Rn, α||X(t)||2 < V (X(t), t) < β||X(t)||2

b) ∃γ̄ > 0 such that ∀X(t) ∈ Dγ
X = {X(t) ∈ Rn; ||X(t)|| > γ̄}, V̇ (X(t), t) < 0
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Then ∀X(t0) ∈ Rn: ∃tb = tb(X(t0), γ̄) such that X(t) ∈ Db
X = {X(t) ∈ Rn;||X(t)|| <

BX = γ̄β/α} for ∀t ≥ tb.

Theorem 4.2. Consider the equivalent linear time-varying model (4.3) of the bilinear

system (4.1), whose states are being cooperatively estimated by the sub-observers governed

by equation (4.17). The estimation errors are uniformly ultimately bounded if the sub-

observer dependency (SOD) digraph is acyclic (as per Definition 3.5).

Proof: According to the Condition 3 in Procedure 4.1, the pair (A(i), C(i)) of the

sub-observer SO(i) (given in equation 4.17) is observable. If the sub-observer SO(i) is

initialized with a positive definite covariance matrix P (i)(0), and if the matrices Q(i), R(i)

and ~̂(i) are positive semi-definite and bounded, then the covariance matrix P (i) remains

positive definite and bounded for all time [160], [161]. We define the following Lyapunov

function candidate for the sub-observer SO(i):

V (i)(E(i), t) = E(i)TP (i)−1
E(i) (4.20)

Using the equation

d

dt

(
P (i)−1

)
= P (i)−1

Ṗ (i)P (i)−1

and using the equations (4.17) and (4.13) for K(i) and Ė(i), respectively, we get

V̇ (i)(E(i), t)

= E(i)T
(
P (i)−1

A(i) + A(i)TP (i)−1 − 2C(i)TR(i)−1
C(i) − P (i)−1

Ṗ (i)P (i)−1
)
E(i)

−E(i)TP (i)−1
W (i) −W (i)TP (i)−1

E(i) + E(i)TC(i)TR(i)−1
V (i) + V (i)TR(i)−1

C(i)E(i)

+
∑

j∈N ({i})

(
E(i)TP (i)−1

A(ij)E(j) + E(j)TA(ij)TP (i)−1
E(i)

)
Using equation (4.17) for Ṗ (i), we have

V̇ (i)(E(i), t)

= E(i)T
(
−P (i)−1

Q(i)P (i)−1 − P (i)−1~̂(i)P (i)−1 − C(i)TR(i)−1
C(i)

)
E(i)

−E(i)TP (i)−1
W (i) −W (i)TP (i)−1

E(i) + E(i)TC(i)TR(i)−1
V (i) + V (i)TR(i)−1

C(i)E(i)

+
∑

j∈N ({i})

(
E(i)TP (i)−1

A(ij)E(j) + E(j)TA(ij)TP (i)−1
E(i)

)
Taking ||W (i)|| < BW (i) and ||V (i)|| < BV (i) the following inequality holds:
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V̇ (i)(E(i), t) <

−

(λmin(Q(i)) + λmin(~̂(i)))inft>0λ
−2
max(P (i))︸ ︷︷ ︸

ωi,iL

+λ−1
max(R(i))λmin(C(i)TC(i))

 ||E(i)||2

+
(

supt>02λ−1
min(P (i))BW (i) + 2λ−1

min(R(i))λ1/2
max(C(i)TC(i))BV (i)

)
︸ ︷︷ ︸

ωiL

||E(i)||

+
∑

j∈N ({i})
supt>02λ1/2

max(A(ij)TA(ij))supt>0λ
−1
min(P (i))︸ ︷︷ ︸

ωi,jL

||E(i)||||E(j)||

(4.21)

If the sub-observer dependency (SOD) digraph is acyclic, then the Lyapunov function

candidate in (4.20) can be taken independently for each sub-observer SO(i). Since the

adjacency matrix is upper triangular (as per Theorem 3.2), the estimation error analysis

and evaluations can be done hierarchically starting at the source sub-observer vertices (with

zero in-degrees as per Theorem 3.1) and ending at the sink sub-observer vertices (with

zero out-degrees as per Theorem 3.1) in the SOD digraph, while the estimation errors are

propagated hierarchically in the source-to-sink directions of the paths in the acyclic SOD

digraph. In other words, there are no estimation error cycles throughout the SOD digraph,

and so once the ultimate boundedness of the estimation errors are guaranteed and achieved

for each sub-observer independently, then it will be preserved in the overall scheme. In

order to perform the independent estimation error calculations, we have

V̇ (i)(E(i), t) < −
(
ωi,iL + λmax(R(i))λmin(C(i)TC(i))

)
︸ ︷︷ ︸

AiL

||E(i)||2 +
(
ωiL + Ωi

L

)︸ ︷︷ ︸
BiL

||E(i)|| (4.22)

= −AiL||E(i)||2 +Bi
L||E(i)||

where

Ωi
L =

∑
j∈N ({i})

ωi,jL sup
t>0
||E(j)||

For the Lyapunov function candidate V (i) and its derivative V̇ (i) in equations (4.20)

and (4.22), respectively, we apply Lemma 4.1 by using the parameters α = inft∈R+λmin((P (i))−1),

β = supt∈R+λmax((P (i))−1), and γ̄ = Bi
L/A

i
L, and get

||E(i)|| < BE(i) =

sup
t∈R+

λmax(P (i))Bi
L

inf
t∈R+

λmin(P (i))AiL
(4.23)
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Therefore, all the estimation errors E(i) converge to within the error bounds BE(i), and

the proof of the theorem is complete.

The following example demonstrates the concepts and theories that have been pre-

sented so far in this chapter.

Example 4.1. This example shows how the sub-observers are designed and how the su-

pervisor makes decision on the proper set of sub-observers according to the costs of the

sub-observers. Consider the system that is presented by equation (4.1) (or (4.3)) with

the state vector X = [x1 x2]T , input vector U = [u1 u2]T (r = 2), and output vector

Y = [y1 y2]T , and the system matrices

A0 =

 a0,11 0 0

0 0 0

0 0 a0,33

 , A1 =

 0 a1,12 0

0 0 0

0 0 0

 , A2 =

 0 0 0

0 0 0

0 a2,32 0



B =

 b11 0

0 0

0 b32

 , C =

[
c11 0 0

0 0 c23

]

The directed graphs of the systems is shown in Figure 4.1. In this figure, the two

state-output paths (x2, x1, y1) and (x2, x3, y2) cover all the states, and there exist n = 3

A-disjoint vertices (x1, y1), (x3, y2), and (x2, y1)1. Therefore, the structural observability

of the system (Proposition 4.1) is guaranteed.

Figure 4.1: The directed graph of the bilinear system with the matrices A0, A1, A2, B,
and C.

Let us now investigate the application of Procedure 4.1 for the structurally observable

bilinear system above. In step 1 of Procedure 4.1, the directed graph of the system is

constructed as shown in Figure 4.1. According to the directed graph of the system it turns
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SO(1) SO(2) SO(3)

SO(4) SO(5) SO(6)

SO(7)

Figure 4.2: The directed graphs of the seven sub-observers for the system (A,B,C).
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out that at most seven sub-observers, which are shown in Figure 4.2, can be designed in

step 2 of Procedure 4.1 that simultaneously satisfy the conditions 1, 2, and 3.

In Figure 4.2, the dashed lines represent the information that the sub-observer SO(i)

requires to receive regarding certain inputs us ∈ I(i) (s ∈ {1, ..., r}), outputs yq ∈ O(i)

(q ∈ {1, ...,m}), and state estimates x̂
(i)
p ∈ D(i) (p ∈ {1, ..., n}) from other sub-observers

SO(j) (such that x̂
(j)
p ∈ R(j) and x̂

(i)
p := x̂

(j)
p ). The solid lines represent the dynamic

relations among the states x̂
(i)
p ∈ R(i) of the sub-observer SO(i). Using Proposition 4.1

for each sub-observer SO(i), it is easy to verify that the graph representing SO(i) satisfies

the conditions of the Proposition 4.1. The seven sub-observers are formally represented

as follows:

(i) SO(1)(R(1)|I(1), O(1), D(1))

R(1) = {x̂(1)
1 , x̂

(1)
2 }, I(1) = {u1}, O(1) = {y1}, D(1) = {}

(ii) SO(2)(R(2)|I(2), O(2), D(2))

R(2) = {x̂(2)
2 , x̂

(2)
3 }, I(2) = {u2}, O(2) = {y2}, D(2) = {}

(iii) SO(3)(R(3)|I(3), O(3), D(3))

R(3) = {x̂(3)
1 }, I(3) = {u1}, O(3) = {y1}, D(3) = {x̂(3)

2 }
(iv) SO(4)(R(4)|I(4), O(4), D(4))

R(4) = {x̂(4)
3 }, I(4) = {u2}, O(4) = {y2}, D(4) = {x̂(4)

2 }
(v) SO(5)(R(5)|I(5), O(5), D(5))

R(5) = {x̂(5)
1 }, I(5) = {}, O(5) = {y1}, D(5) = {}

(vi) SO(6)(R(6)|I(6), O(6), D(6))

R(6) = {x̂(6)
3 }, I(6) = {}, O(6) = {y2}, D(6) = {}

(vii) SO(7)(R(7)|I(7), O(7), D(7))

R(7) = {x̂(7)
1 , x̂

(7)
2 , x̂

(7)
3 }, I(7) = {u1, u2}, O(7) = {y1, y2}, D(7) = {}

In each of the sub-observers SO(5) and SO(6), there is only one sensor that is in-

volved in the observation resulting in having no specific dynamics associated with them.

Consequently, SO(5) and SO(6) should be interpreted as direct measurements of the states.

A portion of the estimation digraph of the system is depicted in Figure 4.3. In this figure,

without loss of generality, some vertices and edges are eliminated in order to avoid redun-

dant paths and simplify the understanding of the corresponding definitions and concepts.

In Figure 4.3, the vertices are assigned with the following vectors

vsource =

 0

0

0

 , vsink =

 1

1

1

 , v1 =

 1

1

0

 , v2 =

 0

1

1


Although for this bilinear system, there are seven possible sub-observers, however,

one only needs a subset of them to cooperatively estimate all the states of the system.
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Figure 4.3: A portion of the combined sub-observer dependency estimation (SODE) and
weighted sub-observer dependency estimation (WSODE) digraphs of the bilinear system
with the matrices A0, A1, A2, B, and C. The edges are labeled with (SO(i), COND(i))
and (SO(i), COST (i)) for the SODE and WSODE digraphs, respectively.

For instance, in the normal operation mode the supervisor suggests an initial set of sub-

observers {SO(2), SO(3)} with N ({2}) = {} and N ({3}) = {2}, which corresponds to

the path vsourcev2vsink in the SODE digraph of Figure 4.3, that can cooperatively estimate

all the system states.

Let us now assume that the process dynamics uncertainty/unreliability W̄ (i) 6= 0

occurs in the sub-observers SO(i), i ∈ {2, 4, 7} (as given in equation (4.12) and Defini-

tion 3.6). These uncertainties originate from the dynamic equation of the state x3 subject

to the process dynamics uncertainty/unreliability W̄
(i)
3 6= 0, where W̄

(i)
3 represents the

x3-corresponding element of W̄ (i).

In the first approach, consider the SODE digraph in Figure 4.4. The sub-observers

SO(i), i ∈ {2, 4, 7} become invalid (COND(i) = 1 as per Definition 3.6) and hence should

not be used any further for constructing the state estimates. Consequently, in order to

achieve the objective in equation (4.18) the supervisor eliminates all the sub-observer sets,

in which the invalid sub-observers are employed. The eliminated sub-observers are denoted

by the dashed edges in the SODE digraph in Figure 4.4, where the supervisor proposes the

modified set of sub-observers {SO(1), SO(6)}, with N ({1}) = {} and N ({6}) = {},
corresponding to the path vsourcev1vsink. Therefore, the information about the uncertain

dynamic state x3 is not incorporated in the modified set of sub-observers {SO(1), SO(6)}.
In the second approach, consider the weighted WSODE digraph in Figure 4.5. The

sub-observers SO(i), i ∈ {2, 4, 7} are costly (COST (i) 6= 0 as per Definition 3.7). By tak-

ing the coeficients CR = 0 (no recovery available), CC = 0 (no communication cost), and
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Figure 4.4: The SODE digraph in which the solid and dashed edges represent the valid
(COND(i) = 0) and invalid (COND(i) = 1) sub-observers, respectively.

CE = 1 as explained in Definition 3.7, the cost of invalid sub-observers SO(i) are equal to

n(R(i)) that are indicated in Figure 4.5. These costs should be incorporated in the coopera-

tive estimation scheme. Consequently, in order to achieve the objective in equation (4.19)

the supervisor minimizes the cumulative cost of the sub-observers and proposes the mod-

ified set of sub-observers {SO(1), SO(6)} with N ({1}) = {} and N ({6}) = {}, which

corresponds to the path vsourcev1vsink with the minimum cost of COST (1) +COST (6) = 0

as shown in Figure 4.5.

Figure 4.5: The WSODE digraph.

In this example, the results of the SODE and WSODE digraphs are the same. Note
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that one still needs to verify the uniformly ultimate boundedness of the overall observation

task that is achieved by the supervisor-selected initial set of sub-observers {SO(2), SO(3)}
(the path vsourcev2vsink shown in Figure 4.3) in the normal operation mode, and the

supervisor-reconfigured set of sub-observers {SO(1), SO(6)} (the path vsourcev1vsink shown

in Figure 4.4 and Figure 4.5) in the process dynamics unreliability situation. In Figure 4.6,

the acyclic condition of Theorem 4.2 is verified for the sub-observer dependency (SOD)

digraphs of the two sets of sub-observers {SO(2), SO(3)} and {SO(1), SO(6)}. As can be

seen from Figure 4.6 (and Theorem 4.2), both SOD digraphs are acyclic that guarantee the

uniformly ultimate boundedness of the estimation task by using either of the sub-observer

sets {SO(2), SO(3)} and {SO(1), SO(6)}.

(a) (b)

Figure 4.6: The sub-observer dependency (SOD) digraphs of (a) the supervisor-selected
initial set of sub-observers {SO(2), SO(3)} in the normal operation mode and (b) the
supervisor-reconfigured set of sub-observers {SO(1), SO(6)} in the process dynamics un-
reliability mode.

If the ranges of some sub-observers are overlapping, then certain states are being

estimated by multiple sub-observers. In such cases, one needs a procedure to fuse the data

from all the range-overlapping sub-observers and feed the updated data back to the range-

overlapping sub-observers for adjustments to the estimation approach. In the next section,

this fusion feedback procedure is described for the range-overlapping sub-observers.

4.5 Distributed and Cooperative Range-Overlapping

Sub-Observers with Fusion Feedback (FF)

In this section, the distributed estimation technique is extended to the case of range-

overlapping sub-observers [118]. This method can be applied to a number of large-scale

systems including sensor networks and formation flight of unmanned vehicles missions.

So far, we have shown that a system can be cooperatively estimated by a group of

sub-observers. If the ranges of some of the sub-observers are overlapping, then those

sub-observers are called constrained-state sub-observers (CSSOs) which simultaneously

estimate some common states. In order for the CSSOs to achieve consensus over the es-

timates of the common states, additional information exchange links are required among

the range-overlapping sub-observers rather than the information exchange links that are

82



already included in the sub-observer dependency (SOD) digraph. These additional infor-

mation exchange links will be embedded into a fusion feedback (FF) procedure that aims

at satisfying the constrained-state conditions simultaneously with the time evolution of

the Kalman filter expressions of the CSSOs.

4.5.1 Constrained-State Sub-Observer (CSSO)

We can distinguish two types of states, namely local and common, that will be defined in

the following.

Definition 4.3. Consider a state xp, p ∈ {1, ..., n} and the set ϑ(p) ⊂ {1, ..., Nso} of all

the sub-observers which estimate xp, that is ∀l ∈ ϑ(p) : x̂
(l)
p ∈ R(l) and ∀l ∈ {1, ..., Nso} −

ϑ(p) : x̂
(l)
p /∈ R(l).

• If n(ϑ(p)) = 1, then xp is a local state, ϑ(p) is the sub-observer (SO) set of xp, and

SO(l) (l ∈ ϑ(p)) is a sub-observer (SO) of xp (n(.) denotes the cardinality of a set).

• If n(ϑ(p)) ≥ 2, then xp is a common state, ϑ(p) is the constrained-state sub-

observer (CSSO) set of xp, and SO(l) (l ∈ ϑ(p)) is a constrained-state sub-observer

(CSSO) of xp.

For a given common state xp, p ∈ {1, ..., n} and its associated CSSO set ϑ(p) ⊂
{1, ..., Nso}, a constrained-state condition is imposed on the value of the estimates x̂

(i)
p ,

∀i ∈ ϑ that is

∀xp “common” ,∀{i, j} ⊂ ϑ(p) : x̂(i)
p = x̂(j)

p (4.24)

The CSSOs in the CSSO set ϑ(p) (as in Definition 4.3) cooperatively estimate the

states of the system, while simultaneously satisfying the constrained-state condition of xp

(as in equation (4.24)) through solving local optimization problems. This cooperation is

in the sense of information exchanges on the local state estimates. For the CSSO SO(i),

i ∈ {1, ..., Nso} with the range R(i) = {x̂(i)
i1
, x̂

(i)
i2
, ..., x̂

(i)
i
n(i)
}, the Kalman filter gain

K(i) =
[
K

(i)
i1

K
(i)
i2
· · · K

(i)
i
n(i)

]T
is calculated next by minimizing the variances of the “common” states.

Denoting σ̂
(i)
j = Col

xj
Row
xj

(P̂ (i)) as the variance of the state estimate x
(i)
j made by the

sub-observer SO(i), where Row
xj

and Col
xj

represent the xj-corresponding row and column,

respectively, we now introduce the centralized optimization problem as follows:
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∀xp ∈ {xi1 , xi2 , ..., xin(i)
} “local” :

K
(i)
p = arg min ˙̂σ

(i)
p (t)

= Row
xp

(
P̂ (i)(C(i))

T
(R(i))

−1
)

= Row
xp

(P̂ (i))(C(i))T (R(i))−1

= P̂
(i)
p (C(i))T (R(i))−1

∀xp ∈ {xi1 , xi2 , ..., xin(i)
} “common” ,

ϑ(p) = {i, ϑ2, ..., ϑµ}(n(ϑ(p)) = µ > 2) :(
(K

(i)
p , K

(ϑ2)
p , ..., K

(ϑµ)
p )

)
= arg min ˙̂σ

(i)
p + ˙̂σ

(ϑ2)
p + · · ·+ ˙̂σ

(ϑµ)
p

s.t. ∃x̂p(t) ∈ R, ∀l ∈ ϑ : x̂
(l)
p → x̂p(t)

(4.25)

where Q(i) and R(i) are zero-mean white Gaussian random processes representing the state

dynamic disturbance and sensor noise of the sub-observer SO(i), respectively. The value

n(.) denotes the cardinality of a set, and we have K
(i)
j = Row

xj
(K(i)) and P̂

(i)
j = Row

xj
(P̂ (i)).

Moreover, x̂j is the estimate of the common state xj to which all CSSOs SO(i) with

x̂
(i)
j ∈ R(i) will converge to, so that the constrained-state condition is satisfied.

In equation (4.25), for a local state xp with x̂
(i)
p ∈ R(i), the row vector K

(i)
p is cal-

culated locally and independently for only the sub-observer SO(i). For a common state

xp with x̂
(l)
p ∈ R(l) (∀l ∈ ϑ(p)), the row vectors K

(l)
p (∀l ∈ ϑ(p)) should be calculated

simultaneously in a centralized manner. Therefore, the calculation of the row vectors K
(l)
p

(∀l ∈ ϑ(p)) requires stringent communication among the sub-observers SO(l) (∀l ∈ ϑ(p))

that results in performance that is highly dependent on the computational and communi-

cation delays and failures. In the following section, the robustness of our proposed CSSO

technique as governed by equation (4.25) is improved through the use of a fusion feedback.

4.5.2 Fusion Feedback (FF)

In this section, constrained-state sub-observer with fusion feedback (CSSOFF) is intro-

duced to improve the performance of the CSSO scheme. As shown in Figure 4.7, our

proposed CSSOFF is realized in four steps, namely “prediction”, “observation”, “fusion”,

and “feedback” that are performed synchronously for all the sub-observers. Moreover, it

is assumed that the communication delay is negligible.

The first two steps are similar to the general Kalman filtering technique as given

below:
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Figure 4.7: CSSOFF procedure that includes “prediction”, “observation”, “fusion”, and
“feedback” steps.

Steps 1-2. Prediction and Observation:

X̄(i) = X̂(i) , P̄ (i) = P̂ (i)

˙̄X(i) = A(i)X̄(i) +B(i)U (i) + K̄(i)(Y (i) − C(i)X̄(i)) +
∑

j∈N ({i})

A(ij)(t)X̄(j)

˙̄P (i) = A(i)P̄ (i) + P̄ (i)(A(i))T +Q(i) − P̄ (i)(C(i))T (R(i))−1C(i)P̄ (i) + ~̂(i)

where

K̄(i) = P̄ (i)(C(i))T (R(i))−1 (4.26)

In the last two steps, the estimates of the common states are fused and the fusion

results are fed back to the corresponding sub-observers to modify their observation step

accordingly in order to ensure that the constrained-state conditions (4.24) on the common

states (as per Definition 4.3) are satisfied. In other words, we have:

Step 3. Fusion: Quite a few data fusion techniques [144] such as linear combination,

probabilistic fusion, Markov chain-based, and multiple criteria approaches have been pro-

posed in the literature based on how a system is modeled. Due to the stochastic nature

of the model that is considered in this chapter, the probabilistic fusion method [152] will

be used in the following. Taking

x̄(i)
p = Row

xp
X̄(i) , σ̄(i)

p = Col
xp

Row
xp

(P̄ (i))

the data fusion is achieved according to

∀xp ∈ {x1, ..., xn}“common” :

σ
(f)
p =

( ∑
l∈ϑ(p)

(σ̄
(l)
p )
−1

)−1

x
(f)
p = σ

(f)
p

( ∑
l∈ϑ(p)

(σ̄
(l)
p )
−1
x̄

(l)
p

)
=
∑

l∈ϑ(p)

σ
(f)
p

σ̄
(l)
p︸︷︷︸
α

(l)
p

x̄
(l)
p =

∑
l∈ϑ(p)

α
(l)
p x̄

(l)
p

(4.27)
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where
∑

l∈ϑ(p) α
(l)
p = 1, x

(f)
p and σ

(f)
p are the fused estimate and error covariance of the

state xp, and ϑ(p) is the CSSO set of the common state xp that provides the estimates x̄
(j)
p

(j ∈ ϑ(p)) for fusion. The vector x
(f)
p is now fed back to the sub-observers in the CSSO

set ϑ(p) in order to ensure that the constrained-state conditions (4.24) on the common

states (as per Definition 4.3) are satisfied.

Step 4. Feedback:

˙̂
X(i) = A(i)X̂(i) +B(i)U (i) +K(i)(Y (i) − C(i)X̂(i)) +

∑
j∈N ({i})

A(ij)(t)X̂(j)

˙̂
P (i) = (A(i) −K(i)C(i))P̂ (i) + P̂ (i)((A(i))T − (C(i))T (K(i))T )

+Q(i) + C(i)R(i)(C(i))T + ~̂(i) (4.28)

where R(i) = {x̂(i)
i1
, x̂

(i)
i2
, ..., x̂

(i)
i
n(i)
} and the Kalman filter gain

K(i) =
[
K

(i)
i1

K
(i)
i2
· · · K

(i)
i
n(i)

]T
is calculated by using the fusion feedback (FF) optimization problem as follows:

∀xp ∈ {xi1 , xi2 , ..., xin(i)
} “local” :

K
(i)
p = arg min ˙̂σ

(i)
p (t)

= Row
xp

(
P̂ (i)(C(i))

T
(R(i))

−1
)

= Row
xp

(P̂ (i))(C(i))T (R(i))−1

= P̂
(i)
p (C(i))T (R(i))−1

∀xp ∈ {xi1 , xi2 , ..., xin(i)
} “common” ,

ϑ(p) = {i, ϑ2, ..., ϑµ}(n(ϑ(p)) = µ > 2) :

∀i ∈ ϑ(p) : K
(i)
p = arg min ˙̂σ

(i)
p

s.t. x̂
(i)
p + ˙̂x

(i)
p τ = x

(f)
p + ẋ

(f)
p τ

(4.29)

where τ > 0 is a predefined time constant which delays the convergence of the estimate

x̂
(i)
p (t) to the fusion data x

(f)
p (t) (given in equation (4.27)). This delay results from the

transient response of the differential equation x̂
(i)
p + ˙̂x

(i)
p τ = x

(f)
p + ẋ

(f)
p τ that is obtained

as follows:

x̂(i)
p (t) = x(f)

p (t) +
(
x̂(i)
p (0)− x(f)

p (0)
)

exp(−t/τ)

This delay is required to prevent the propagation of the transient estimation error of a

sub-observer to the entire estimation system.

In equation (4.29), for a common state xp with x̂
(l)
p ∈ R(l) (∀l ∈ ϑ(p)), the row

vectors K
(l)
p (∀l ∈ ϑ(p)) are calculated locally and independently for each sub-observer
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SO(l) (∀l ∈ ϑ(p)) in the “feedback” step. The local and independent calculations are the

main advantages of the fusion feedback (FF) optimization problem (4.29) in our proposed

CSSOFF procedure which alleviate the stringent communication requirements that exist

in the centralized optimization problem goverened by equation (4.25). Moreover, there ex-

ists a closed-form solution to the local FF optimization problem given by equation (4.29).

This closed-form solution will be obtained in the next section.

4.5.3 Closed-Form Solution to the Fusion Feedback (FF) Opti-

mization Problem

The constrained state sub-observer with fusion feedback (CSSOFF) was introduced and

discussed in the previous section, and the fusion feedback (FF) optimization problem was

formally defined in (4.29). Considering a common state xp with x̂
(i)
p ∈ R(i) (∀i ∈ ϑ(p)),

we start constructing the closed-form solution to the local optimization problem (4.29).

Using the equation (4.27), the corresponding optimization constraint is now restated as

x̂(i)
p + ˙̂x(i)

p τ =
∑
l∈ϑ(p)

α(l)
p x̄

(l)
p +

∑
l∈ϑ(p)

α(l)
p

˙̄x(l)
p τ

or equivalently

˙̂x(i)
p =

∑
l∈ϑ(p)

α(l)
p

˙̄x(l)
p +

∑
l∈ϑ(p)

α(l)
p (x̄(l)

p − x̂(i)
p )/τ (4.30)

Defining Row
xp

(M) as the xp-corresponding row of the matrix M , from (4.28) we

have

Row
xp

(
˙̂
X(i)) = Row

xp
(A(i))X̂(i) +Row

xp
(B(i))U (i) +Row

xp
(K(i))(Y (i) − C(i)X̂(i))

+
∑

j∈N ({i})

Row
xp

(A(ij))X̂(j)

or equivalently

˙̂x(i)
p = A(i)

p X̂
(i) +B(i)

p U
(i) +K(i)

p (Y (i) − C(i)X̂(i)) +
∑

j∈N ({i})

A(ij)
p X̂(j) (4.31)

where A
(i)
p = Row

xp
(A(i)), B

(i)
p = Row

xp
(B(i)), K

(i)
p = Row

xp
(K(i)), and A

(ij)
p = Row

xp
(A(ij)).

From the equations (4.30) and (4.31) it can be concluded that
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∑
l∈ϑ(p)

α(l)
p

˙̄x(l)
p +

∑
l∈ϑ(p)

α(l)
p (x̄(l)

p − x̂(i)
p )/τ = A(i)

p X̂
(i) +B(i)

p U
(i) +K(i)

p (Y (i) − C(i)X̂(i))︸ ︷︷ ︸
∆Y (i)

+
∑

j∈N ({i})

A(ij)
p X̂(j)

or equivalently

∑
l∈ϑ(p)

α(l)
p

˙̄x(l)
p +

∑
l∈ϑ(p)

α(l)
p (x̄(l)

p − x̂(i)
p )/τ − A(i)

p X̂
(i) −B(i)

p U
(i) (4.32)

−
∑

j∈N ({i})

A(ij)
p X̂(j) ∆

= ∆x(i)
p︸ ︷︷ ︸

x

= K(i)
p︸︷︷︸
K

∆Y (i)︸ ︷︷ ︸
Y

For sake of notational simplicity, we continue with an alternate formulation of KY =

x in the right hand side of equation (4.32) as given in the derivations below

[
k1 · · · kn

]
︸ ︷︷ ︸

Kso

[
y1 · · · yn

]T
︸ ︷︷ ︸

Y

= x (4.33)

We conclude that

K =
[
k1 k2 · · · kn−1

x−k1y1−k2y2−···−kn−1yn−1

yn

]
(4.34)

=
[

0 0 · · · 0 x/yn

]
︸ ︷︷ ︸

M

+
[
k1 k2 · · · kn−1

]
︸ ︷︷ ︸

Kred

×


1 0 · · · 0 −y1/yn

0 1 · · · 0 −y2/yn
...

...
. . .

...
...

0 0 · · · 1 −yn−1/yn


︸ ︷︷ ︸

N

= M +KredN

where Kred is the reduced Kalman filter row-vector gain. The problem is now reduced to

finding Kred such that the cost function of the fusion feedback (FF) optimization problem

in (4.29) is minimized. Replacing for K
(i)
p = K from (4.34) into (4.31) we have

˙̂x(i)
p = A(i)

p X̂
(i) +B(i)

p U
(i) +K(i)

p (Y (i) − C(i)X̂(i)) +
∑

j∈N ({i})

A(ij)
p X̂(j)

= A(i)
p X̂

(i) +B(i)
p U

(i) + (M +KredN)(Y (i) − C(i)X̂(i)) +
∑

j∈N ({i})

A(ij)
p X̂(j)

= A(i)
p X̂

(i) +B(i)
p U

(i) + (M +KredN)(C(i)X(i) + V (i) − C(i)X̂(i)) +
∑

j∈N ({i})

A(ij)
p X̂(j)
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Therefore, we have

(
˙̂x(i)
p − ẋp

)
︸ ︷︷ ︸

˙̂e
(i)
p

=
(
A(i)
p − (M +KredN)C(i)

) (
X̂(i) −X(i)

)
︸ ︷︷ ︸

Ê(i)

−W (i)
p + (M +KredN)V (i)

+
∑

j∈N ({i})

A(ij)
p (X̂(j) −X(j))︸ ︷︷ ︸

Ê(j)

This is the dynamic equation for the estimation error ê
(i)
p = Row

xp
Ê(i), which represents

the xp-corresponding row of the vector Ê(i). Now, we want to develope the variance dy-

namic equation ˙̂σ
(i)
p = E

{
(ê

(i)
p )

2
}

= Row
xp

Col
xp

Ṗ (i), which represents the xp-corresponding

diagonal element of the derivative of the matrix P (i) = E
{
Ê(i)(Ê(i))

T
}

, as follows

˙̂σ(i)
p = E

{
˙̂e(i)
p ê

(i)
p

}
+ E

{
ê(i)
p

˙̂e(i)
p

}
=
(
A(i)
p − (M +KredN)C(i)

)
E
{
Ê(i)ê(i)

p

}
+ E

{
ê(i)
p (Ê(i))

T
}(

A(i)
p − (M +KredN)C(i)

)T
+ E

{
(W(i)

p )2
}

+ (M +KredN)E
{
V (i)(V (i))

T
}

(M +KredN)T

+
∑

j∈N ({i})

A(ij)
p E

{
Ê(j)ê(i)

p

}
+ E

{
ê(i)
p (Ê(j))

T
}

(A(ij)
p )

T

Taking

P
(i)
p = Row

xp
(P (i)) = E

{
ê

(i)
p (Ê(i))

T
}

Q
(i)
p,p = Row

xp
Col
xp

E
{

W(i)(W (i))
T
}

= E
{

(W(i)
p )2
}

R(i) = E
{
V (i)(V (i))

T
}

~(i)
p,p = Row

xp
Col
xp

(
~(i)
)

(with ~(i) introduced in equation (4.14)) where E{.} denotes the expectation operation

and Col
xp

(M) is the only column of matrix M that corresponds to the state xp, we have

˙̂σ(i)
p = (A(i)

p − (M +KredN)C(i))(P (i)
p )T + P (i)

p (A(i)
p − (M +KredN)C(i))T (4.35)

+Q(i)
p,p + (M +KredN)R(i)(M +KredN)T + ~(i)

p,p

The variance dynamic equation ˙̂σ
(i)
p in equation (4.35) is a convex function of the

gain Kred. Therefore, in order to minimize ˙̂σ
(i)
p we take its derivative with respect to Kred

and set it equal to zero. The solution yields
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Kred =
(
P (i)
p (C(i))

T
NT −MR(i)NT

) (
NR(i)NT

)−1
(4.36)

Comparing the optimal Kalman filter gain given in equation (4.26) with the Kalman filter

gain Kso given in equations (4.34) and (4.36), the later is sub-optimal in the sense that

it does not give the optimal solution to the local Kalman filter, but instead it achieves

consensus over the constrained state among the local Kalman filters at the cost of sub-

optimality. In other words, the Kalman filter gain Kso given in equations (4.34) and (4.36)

is achieved by deviating from the optimal Kalman filter gain given in equation (4.26), and

this deviation may cause instability of the covariance values. In the next section, our pro-

posed Kalman filter gain given in equations (4.34) and (4.36) is modified by imposing an

upper bound on its deviation from the optimal Kalman filter gain given in equation (4.26)

in order to guarantee the stability of the covariance value σ̂
(i)
p .

4.5.4 Modification of the Kalman Filter Gain to Guarantee Sta-

bility

In this section, we modify the Kalman filter gain Kso given by equations (4.34) and (4.36)

by imposing an upper bound on its deviation from the optimal Kalman filter gain given

by equation (4.26) in order to avoid instability (unboundedness) of the covariance value

σ̂
(i)
p in our proposed estimation method. Consider the fusion feedback (FF) optimization

problem given in (4.29). From (4.34) and (4.35) we have

˙̂σ(i)
p = (A(i)

p −K(i)
p C

(i))(P (i)
p )T + P (i)

p (A(i)
p −K(i)

p C
(i))T

+Q(i)
p,p +K(i)

p R
(i)(K(i)

p )T + ~(i)
p,p

or equivalently

˙̂σ(i)
p = A(i)

p (P (i)
p )

T
+ P (i)

p (A(i)
p )

T
+Q(i)

p,p + ~(i)
p,p︸ ︷︷ ︸

Θ

(4.37)

− K(i)
p︸︷︷︸
K

C(i)P (i)
p︸ ︷︷ ︸

0.5Φ

−P (i)
p (C(i))

T︸ ︷︷ ︸
0.5ΦT

(K(i)
p )

T︸ ︷︷ ︸
KT

+K(i)
p︸︷︷︸
K

R(i)︸︷︷︸
0.5Ψ

(K(i)
p )

T︸ ︷︷ ︸
KT

= Θ−KΦ + 0.5KΨKT

The variance dynamic equation ˙̂σ
(i)
p given in equation (4.37) is a convex function of

the gain K. Using the notation above and equation (4.33), the FF optimization problem

(4.29) can be restated as follows:
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∀xp ∈ {xi1 , xi2 , ..., xin(i)
} “common” ,

ϑ(p) = {i, ϑ2, ..., ϑµ}(n(ϑ(p)) = µ > 2) :

∀i ∈ ϑ(p) : K
(i)
p = arg min

(
˙̂σ

(m)
j = Θ−KΦ + 0.5KΨKT

)
s.t. KY = x

The graphical interpretation of the above constrained optimization problem is shown

in Figure 4.8. Since the matrix Ψ is positive definite, the equation ˙̂σ
(m)
j = Θ − KΦ +

0.5KΨKT represents a hyper-ellipsoid in the hyper-space K ∈ Rm(i)
(m(i) is the dimension

of K = K
(i)
p ) as shown in Figure 4.8. In this figure, the center point K̄

(i)
p = ΦTΨ−1 =

P
(i)
p (C(i))T (R(i))−1 (as in equation (4.26)) is the locally optimum solution that yields the

optimum value ˙̄σ
(i)
p and ensures stability of the local filters without fusion feedback.

Once the fusion data is fed back to the local filters, the local values ˙̂σ
(i)
p deviate

from the locally optimum value ˙̄σ
(i)
p according to the closed-form solution for the gain

Kso = M + KredN as given in equations (4.34) and (4.36). This deviation may cause

instability (unboundedness) of the covariance value σ̂
(i)
p . In order to guarantee stability

(boundedness) of the covariance value σ̂
(i)
p in our proposed estimation method, in the

following we impose an upper bound on the deviation of ˙̂σ
(i)
p from the locally optimum

value ˙̄σ
(i)
p . This upper bound is centered at ˙̄σ

(i)
p and surrounded by the boundary hyper-

ellipsoid as follows

Θ−KΦ + 0.5KΨKT = ` ˙̄σ(i)
p |K̄(i)

p =ΦTΨ−1

∆
= σ̇b (` > 1) (4.38)

It should be noted that ` = 1 gives the optimum solution ˙̄σ
(i)
p itself, and so ` should

be chosen greater than one in order to make the the boundary hyper-ellipsoid given in

equation (4.38). This boundary hyper-ellipsoid is shown by the dashed lines in Figure 4.8

and Figure 4.9. Therefore, the solution Kso = M +KredN (equations (4.34) and (4.36)),

which is the tangent point Kso in Figure 4.8, is valid only if the hyper-plane KY = x

intersects with the boundary hyper-ellipsoid (4.38) in at least one point, which implies

that ˙̂σ
(i)
p |Kso < ` ˙̄σ

(i)
p . Otherwise, if no such intersection exists, as shown in Figure 4.9, then

we have to search among all the hyper-planes that are parallel to KY = x, and find the

one which is closest to KY = x and has intersection with the boundary hyper-ellipsoid

(4.38). This closest hyper-plane is denoted by the equation Kbound,1Y = xb1 in Figure 4.9.

The solution Kso = Kbound is calculated in the case shown in Figure 4.9, in which

the hyper-plane KY = x does not have an intersection with the boundary hyper-ellipsoid

(4.38). We calculate the two extreme boundary tangent points Kbound,i (i = 1, 2) in the

following manner (∃χ ∈ R):
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Figure 4.8: Graphical interpretation of the constrained optimization problem (4.29).

Figure 4.9: Boundary hyper-ellipsoid and the two boundary tangent points.
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∂

∂K
(hyper − ellipsoid)

∣∣∣∣
Kbound,i

= χ
∂

∂K
(hyper − plane)

∣∣∣∣
Kbound,i

⇒ ∂

∂K
(Θ−KΦ + 0.5KΨKT )

∣∣∣∣
Kbound,i

= χ
∂

∂K
(KY )

∣∣∣∣
Kbound,i

⇒ ΨKT
bound,i − Φ = χY ⇒ KT

bound,i = Ψ−1(χY + Φ)

Replacing the matrix KT
bound,i from the equation above into the boundary hyper-

ellipsoid (4.38) results in

0.25Y TΨ−1Y χ2 = σb + 0.25ΦTΨ−1Φ

⇒ χ = ±
√

4σb + ΦTΨ−1Φ

Y TΨ−1Y

Therefore, the two boundary tangent points Kbound,i (i = 1, 2) are calculated according to

KT
bound,i = Ψ−1

(
±
√
σb + 0.5ΦTΨ−1Φ

0.25Y TΨ−1Y
Y + Φ

)
Finally, the gain Kso = Kbound is calculated as follows

Kbound = arg min
Kbound∈

{Kbound,1,Kbound,2}

{|Kbound,1Y − x|, |Kbound,2Y − x|} (4.39)

From the scenarios shown in Figure 4.8 and Figure 4.9, the gain Kso is now designed

according to

Kso =

{
M +KredN if xb,min < x < xb,max

Kbound otherwise
(4.40)

where xb,min = min(Kbound,1Y,Kbound,2Y ), xb,max = max(Kbound,1Y,Kbound,2Y ), the term

M + KredN is taken from equations (4.34) and (4.36), and Kbound is taken from equa-

tion (4.39).

Remark 4.1. It should be noted that the results of this chapter are applicable to the

formation flights of unmanned vahicles in which all four types of actuator failures includ-

ing float, LIP, HOF, and LOE [137] exist simultaneously as indicated in equation (2.5).

In this situation, by defining the fault status operator F {.} as in equation (2.7), the

overall fault-augmented state space model of the formation flight system can be formu-

lated as in equation (2.10). This equation is in the form of a general bilinear state

space model as in equation (4.1) of this chapter. Therefore, all the theories that are

developed in this chapter are applicable to the system (2.10), which represents the case
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of all four types of actuator faults present in the formation flight system. However,

the acyclic sub-observer dependency (SOD) digraph remains a necessary condition as ex-

plained in Theorem 4.2.

To summarize, in this section the stability (boundedness) of the covariance matrix

for the case of range-overlapping constrained-state sub-observers (CSSOs) in our cooper-

ative and distributed estimation framework is ensured, and a method is developed that

selects the sub-observer Kalman filter gains as provided by equation (4.40) for the range-

overlapping CSSOs.

In this chapter, we have proposed a framework in which a set of distributed sub-

observers can be selected by a supervisor to cooperatively estimate all the states of a

bilinear system, while confining the effects of process dynamics and sensor measurement

unreliabilities.

4.6 Conclusions

In this chapter, we extended the proposed cooperative and distributed estimation frame-

work from the previous chapter to the formation flight of unmanned vehicles with relative

measurements subject to loss-of-effectiveness (LOE) actuator failures. The fault aug-

mented state space model was shown to be in a bilinear form, which made the design and

analysis of the cooperative sub-observers different from those developed in the previous

chapter. From the estimation point of view, the bilinear fault-augmented system was

expressed in the form of a linear time-varying model, for which a set of sub-observers

were designed based on the Kalman filtering technique. A subset of these sub-observers

was selected by a supervisor to cooperatively estimate all the fault parameters and states

of a formation flight system, while confining the effects of process dynamics and sensor

measurement uncertainties/unreliabilities. The ultimate boundedness of the estimation

errors was guaranteed by using the concept of acyclic sub-observer dependency (SOD)

digraph. Moreover, in case that the ranges of some of the sub-observers were overlap-

ping, namely constrained-state sub-observers (CSSOs), a fusion feedback (FF) procedure

was developed to satisfy the constrained-state conditions simultaneously with the time

evolution of the Kalman filter equations of the CSSOs.
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Chapter 5

Cooperative Actuator Fault

Accommodation in Formation Flight

of Unmanned Vehicles With Relative

Measurements

In some applications of formation flight missions, the objective is to maintain a proper

relative positioning among the vehicles. For example, a deep space multiple spacecraft

interferometer [2] may require centimeter level relative spacecraft positioning, although

the inertial position of the entire formation may drift arbitrarily. Consider the four-vehicle

formation with relative measurements, whose digraph is depicted in Figure 2.2. Assume

that vehicle #2 is subject to an actuator fault. Furthermore, it is only partially recovered

by the low-level fault recovery (LLFR) module due to the presence of possible biased and

inaccurate fault estimates. Therefore, vehicle #2 tracks the desired trajectory within an

error bound of radius r, which is greater than the error specification es that is defined for

the mission (that is, r > es in Figure 2.2). The main purpose of the formation-level fault

recovery (FLFR) module is to demonstrate that by restricting the control effort of vehicle

#2, at the expense of higher control efforts from other vehicles, one can reduce the error

bound r so that the overall error specifications of the formation mission is guaranteed

(that is, r in Figure 2.2).

In this chapter, the main results are presented for the two cases of centralized and

decentralized cooperative fault accommodation in formation flight of unmanned vehicles

with relative measurements and relative measurement formation (RMF) digraph (as in

Definition 2.3).
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5.1 Preliminaries

5.1.1 Centralized State Space Model

In this section, we consider the general N -vehicle formation with the relative measurement

formation (RMF) digraph GRMF (VRMF , ERMF ) (as per Definition 2.3), whose special

four-vehicle case is depicted in Figure 2.2. For the case of centralized cooperative fault

accommodation, the dynamic equations of vehicles #i, i ∈ {1, ..., N} (N is the total

number of vehicles) and the relative state measurements are represented by a linear state

space model as follows:

Ẋi = AXi +BiUi +Dext (i = 1, ..., N)

Yij = CXij + Vij = C(Xj −Xi) + Vij (i = 1, ..., N − 1 , j = i+ 1)
(5.1)

where Xi ∈ Rn and Ui ∈ Rr are the state and input vectors, respectively, in the local

inertial frame, and Yij ∈ Rm is the output measurement of the relative state Xij = Xj−Xi.

The output matrix C = In×n (In×n is the identity matrix) denotes that the relative state

vector is fully measured by the output sensors. The environmental disturbances and

measurement noises are represented by Dext ∈ Rn and Vij ∈ Rn, respectively. The

actuators are modeled as ideal gains Bi ∈ Rn×r which are assumed to have full column

rank (the system is not overactuated). The nominal (fault-free) value of Bi is represented

by B̄. In other words Bi = B̄ + fi, where fi ∈ Rn×r represents a fault in the actuator Bi.

In this regards, the following remark is presented.

Remark 5.1. In the case of float, hard-over failure (HOF), and lock-in-place (LIP) ac-

tuator failures (as per equation (2.5)), the failure is modeled by BiUi = B̄Πi (as per

equation (2.9)), where B̄Πi is a constant scalar or matrix. Consequently, there is a loss

of controllability that prevents any controller from actuating the system, unless the trivial

recovery solution of a redundant actuator is available. Therefore, our fault accommodation

method will be mainly focused on the loss-of-effectiveness (LOE) actuator failure (as per

equation (2.5)).

In equation (5.1), the relative measurements are made between the consecutive ve-

hicles. Even if in practice the measurements are made between the neighboring vehicles,

they can be transformed by using a linear transformation matrix into the relative mea-

surements between the consecutive vehicles due to the centralized availability of the sensor

information.
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5.1.2 Decentralized State Space Model

For the case of decentralized cooperative fault accommodation in an N -vehicle formation

with the relative measurement formation (RMF) digraph GRMF (VRMF , ERMF ) (as per

Definition 2.3), the dynamic equations of vehicles #i, i ∈ {1, ..., N} (N is the total

number of vehicles) and the relative state measurements are represented by a linear state

space model as follows:

Ẋi = AXi +BiUi +Dext (i = 1, ..., N)

Yij = CXij + Vij = C(Xj −Xi) + Vij (j = 1, ..., N ; eij ∈ ERMF )
(5.2)

where eij ∈ ERMF (as per Definition 2.3) is equivalent to i ∈ N ({j}) or j ∈ N ({i})
(as per Definition 2.4). For simplicity, the following analysis ignores the effects of the

environmental disturbances Dext. However, these effects are subsequently analyzed and

taken into account later in this chapter.

5.2 Centralized Cooperative Actuator Fault Accom-

modation

The dashed edges in Figure 2.2 represent the system output measurements, based on

which a linear controller is designed. In the general case of equation (5.1), in order to

avoid output redundancy the output measurements are made between the vehicles #i and

#j, for i = 1, ..., N − 1 and j = i + 1 (e.g. the three outputs corresponding to the three

dashed edges for the special case of the four-vehicle formation in Figure 2.2). This makes

the relative measurement formation (RMF) digraph (as shown in Figure 2.2) a connected

tree. For each dashed edge, the corresponding desired relative state and relative error

dynamics are obtained as

Ẋd
ij = AXd

ij + B̄Ud
ij

Ėd
ij = AEd

ij −BiUi +BjUj − B̄Ud
ij

(5.3)

where Xij = Xj−Xi and Eij = Xij−Xd
ij are the relative state and relative error between

the vehicles #i and #j, respectively, and Xd
ij and Ud

ij are the desired relative state and

desired input vectors, respectively. In the compact matrix form the overall error dynamics

can be expressed as (by neglecting the environmental disturbances Dext)
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
Ė12

Ė23

...

Ė(N−1)N


︸ ︷︷ ︸

Ė

=


A 0n×n · · · 0n×n

0n×n A · · · 0n×n
...

...
. . .

...

0n×n 0n×n · · · A


︸ ︷︷ ︸

AT


E12

E23

...

E(N−1)N


︸ ︷︷ ︸

Ė

+


−B1 B2 0n×r · · · 0n×r 0n×r

0n×r −B2 B3 · · · 0n×r 0n×r
...

...
...

. . .
...

...

0n×r 0n×r 0n×r · · · −BN−1 BN


︸ ︷︷ ︸

J(B1,...,BN )



U1

U2

U3

...

UN−1

UN


︸ ︷︷ ︸

U

(5.4)

−


B̄ 0n×r · · · 0n×r

0n×r B̄ · · · 0n×r
...

...
. . .

...

0n×r 0n×r · · · B̄


︸ ︷︷ ︸

B̄T


Ud

12

Ud
23
...

Ud
(N−1)N


︸ ︷︷ ︸

Ud

Therefore, the control laws that utilize the error vectors Eij are derived based on

[
−Bi Bj

] [ Ui

Uj

]
= B̄Ud

ij + B̄KEij
∆
=Pij(t) (5.5)

that when applied to equation (5.4) result in the closed-loop characteristic polynomials

det(sI − A + B̄K) = 0 for the error dynamics Eij, where det(.) represents the determi-

nant of a matrix. Therefore, controllability of the pair (A,B) is a necessary and suffi-

cient condition for feasibility of a stabilizing controller. Moreover, it is necessary that

Columns(Bi) ⊂ span
(
Columns(B̄)

)
, where Columns(.) represents the set of all column

vectors of a matrix, in order for the equality (5.5) above to be valid. In other words, there

exists an invertible transformation matrix (Ir0×r0 +
∏

i) such that Bi = B̄(Ir0×r0 +
∏

i) as

in equation (5.2).

By choosing the proper feedback gain K, one can ensure that the closed-loop error

dynamics is asymptotically stable. In the matrix form the control laws (5.5) corresponding

to the relative measurements (e.g. the three dashed edges for the special case of the four-

vehicle formation shown in Figure 2.2) are given as follows

JU = P (t) (5.6)
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where P (t) =
[
P T

12(t) P T
23(t) · · · P T

(N−1)N(t)
]T

. The above equation is used in our

following discussions to design control laws for the vehicles in the formation.

In the subsequent sections, the focus is on the loss-of-effectiveness (LOE) actuator

failure (as per equation (5.2)). If the vehicle #i is subject to one of the other three types

of actuator failures, namely float, lock-in-place (LIP), and hard-over failure (HOF) (as

per equation (5.2)), then the following control command can be designed based on the

model BiUi = B̄Πi from equation (2.9) to recover the fault:

U =

[
J

J0

]−1

left︸ ︷︷ ︸
J̃−1
left

×

[
P (t)

B̄Πi

]
(5.7)

where M−1
left = (MTM)−1MT is the left inverse of the matrix M , and

J0 =
[

0n×r · · · 0n×r Bi 0n×r · · · 0n×r

]
︸ ︷︷ ︸

only the ith block is nonzero
out of the N blocks

rank
(
J̃
)

= rank

([
J

J0

]
Nn×Nr

)
= Nr

The matrix J̃ has full column rank since the matrices Bi, i = 1, ..., N , which consti-

tute the columns of the matrix J̃ , are assumed to have full column ranks (this assumption

was made earlier for equation (5.1)). Therefore, the left inverse J̃−1
left exists in equa-

tion (5.7). By applying the control command (5.7) to the error dynamics in equation (5.4),

the relative error dynamics in equation (5.3) maintains the closed-loop characteristic poly-

nomials det(sI−A+ B̄K) = 0 for each of the relative error dynamics Eij. However, since

the faulty vehicle #i has a constant level of actuation BiUi = B̄Πi as in equation (2.9),

there is a loss of control energy as compared to the fault free scenario.

In the following sections, the problem of fault recovery for a loss-of-effectiveness

(LOE) actuator failure (as given in equation (5.2)) will be investigated.

5.2.1 Centralized Low-Level Fault Recovery (LLFR) Controller

In this section, we assume that the system is fault free or one has an accurate fault

estimate. In the later, we assume that the actuators of vehicle #i are subject to loss-of-

effectiveness (LOE) failures as given in equation (5.2), that is Bi = B̄+ fi. The estimates

of the actuator faults fi that are provided by the fault identification filter or module are

represented by f̂i. Therefore, the estimates of the faulty actuator gains are represented
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by B̂i = B̄+ f̂i. We assume that the estimates of faulty actuator gains are unbiased, that

is f̂i = fi or B̂i = Bi. These unbiased estimates are used in the LLFR controller.

Replacing for Pij(t) from equation (5.5) into (5.4), each subsystem becomes in the

following form {
Ėij = (A+ B̄K)Eij +Dext

Yij = Eij
(5.8)

The following lemma is used to design an H∞ optimal state feedback matrix K that is

used in equations (5.5) and (5.6) in order to minimize the effects of the disturbances on

the tracking errors.

Lemma 5.1. Consider the system governed by equation (5.8) with the initial state Eij(0).

The state feedback matrix K = Y X−1 stabilizes the system and minimizes γ1 + γ2, where

γ1 is an upper bound on the H∞ norm of the transfer function from the disturbance to

the output of the system and γ2 is an upper bound on the linear quadratic cost function

JLQR(KEij, Q,R) in Lemma 2.3, if and only if there exist a matrix Y and a positive

definite matrix X > 0 that satisfy the following optimization problem

Minimize γ1 + γ2

subject to

X > 0 AX +XAT + B̄Y + Y T B̄T I X

I −γ1I 0

X 0 −γ1I

 < 0

 AX +XAT + B̄Y + Y T B̄T X Y T

X −Q−1 0

Y 0 −R−1

 ≤ 0

[
γ2 ET

ij(0)

Eij(0) X

]
≥ 0

Proof: Follows from the results in [136] and [134], and those in Lemmas 2.2 and

2.3.

Now that the state feedback matrix K is designed in Lemma 5.1, one has an infinite

number of solutions for determining the control signal U in equation (5.6). Therefore, a

significant degree of freedom is available to the LLFR module to choose the control law.

We take advantage of this flexibility to optimize the fuel consumption across the formation.

The following cost function is considered in the constrained optimization problem

Minimize
Ui∈Rr

N∑
i=1

αi
2
UT
i Ui subject to (5.6) (5.9)
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where the positive scalar coefficients αi > 0, i = 1, ..., N are the respective control effort

weights or gains. The solution to the above minimization problem is obtained by using

the Lagrange multiplier method as follows:

U =



−B̂1

0n×r
...

0n×r
(B̂T

1 )−1
rightα1

B̂2

−B̂2

...
0n×r

(B̂T
2 )−1

rightα2

0n×r
B̂3

...
0n×r

(B̂T
3 )−1

rightα3

· · ·
· · ·
· · ·
. . .

· · ·

0n×r
0n×r

...
−B̂N−1

(B̂T
N−1)

−1
rightαN−1

0n×r
0n×r

...
B̂N

(B̂T
N )−1

rightαN



−1

left

(5.10)

×



P12(t)
P23(t)
P34(t)

...
P(N−1)N (t)

0r×1


= Ĵ(B̂1, ..., B̂N )−1

left



P12(t)
P23(t)
P34(t)

...
P(N−1)N (t)

0r×1


where M−1

left = (MTM)−1MT and M−1
right = MT (MMT )−1 are the left and right inverses

of the matrix M , respectively, and B̂i, i = 1, ..., N represents the estimate of the faulty

actuator gain Bi, which is determined from the fault severity estimator following the

detection process of the actuator fault. Note that B̂i = Bi implies that the actuator

is fault free or that one has an accurate estimate of the fault. Under this situation

by substituting equation (5.10) into equation (5.4), one gets Ėij = (A + B̄K)Eij, for

i = 1, ..., N − 1 and j = i+ 1.

In the absence of any environmental disturbances and modeling uncertainties, the

above error dynamics shows that asymptotic stability of the closed-loop system is achieved

by the LLFR controller if the fault is accurately estimated (that is f̂i = fi or B̂i = Bi).

However, when one makes an inaccurate estimate of the fault (that is f̂i 6= fi or B̂i 6= Bi),

asymptotic stability of the error dynamics is no longer achieved. In this case, instead

an ultimate boundedness of the closed-loop system can be guaranteed. These results are

discussed next, where the FLFR module is qualitatively and quantitatively introduced to

handle and compensate for any possible violation of the overall mission error specifications.

5.2.2 Centralized Formation-Level Fault Recovery (FLFR) Mod-

ule

To illustrate the main idea behind the FLFR module, let us consider the case of a partially

LL-recovered vehicle #k due to the biased estimate of its actuator fault, that is, assume

that f̂k 6= fk (B̂k 6= Bk) or f̂k = fk + εk (or B̂k = Bk + εk), where εk is an unknown

function but bounded ( that is ||εk|| < Bεk with Bεk known). The closed-loop system

becomes
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Ė = (AT + B̄TKT )E +D
[
P T

12(t) P T
23(t) · · · P T

(N−1)N(t) 01×r

]T
(5.11)

where

B̄T = diag(B̄)N−1
i=1 , KT = diag(K)N−1

i=1

D =
(
J(B1, ..., Bk, ..., BN)− J(B1, ..., B̂k, ..., BN)

)
︸ ︷︷ ︸

D0

Ĵ(B1, ..., B̂k, ..., BN)−1
left

(5.12)

The matrix D has the following structure

D0
[i,j]n×r

=


−εk if j = k and i = k − 1 ≥ 1

εk if j = k and i = k ≤ N − 1

0n×r otherwise

(5.13)

It should be noted that for a formation of N vehicles, there are totally N−1 relative state

dynamics. For example, for the special case of the four-vehicle formation in Figure 2.2,

we have

B̄T =

 B̄ 0n×r 0n×r

0n×r B̄ 0n×r

0n×r 0n×r B̄

 , KT =

 K 0r×n 0r×n

0r×n K 0r×n

0r×n 0r×n K



D0 =

 0n×r −ε2 0n×r 0n×r

0n×r +ε2 0n×r 0n×r

0n×r 0n×r 0n×r 0n×r


Therefore, the matrix D in equation (5.12) has the following structure

DBn×r[i,:] =



[
d1 · · · dN

]
if i = k − 1 ≥ 1

−
[
d1 · · · dN

]
if i = k ≤ N − 1

[
0 · · · 0

]
otherwise

(5.14)

where d1, ..., dN ∈ Rn×r are the nonzero blocks of the matrix D. In comparison with

the closed loop of the system (5.4) and the controller (5.6), the presence of the term

D in equation (5.11) (due to an inaccurate fault estimate) does impact and loosen the

asymptotic stability of the closed-loop system. Equation (5.11) consists of two perturbed

subsystems (E(k−1)k and Ek(k+1)), and the remainder subsystems Ei(i+1) (for i 6= k − 1
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and i 6= k) are asymptotically stable. Therefore, we will only concentrate on analysis of

the perturbed subsystems.

The dynamics of the perturbed subsystems E(k−1)k and Ek(k+1) can be expressed as

Ė{k}(t) = AclpE{k}(t) +D{k}(t)

Aclp = A{k} + (I2n×2n + ∆)B̄{k}K{k}
(5.15)

where

E{k} =

[
E(k−1)k

Ek(k+1)

]
, D{k} =

[
d1 · · · dN−1

−d1 · · · −dN−1

]
BTU

d

A{k} =

[
A 0

0 A

]
, B̄{k} =

[
B̄ 0

0 B̄

]

K{k} =

[
K 0

0 K

]
, ∆ =

[
dk−1 dk

−dk−1 −dk

]
We are now in a position to state our first result of this subsection.

Lemma 5.2. Assume that the positive parameters αi, i = 1, ..., N in the cost func-

tion (5.9) are lower bounded by a positive value, namely αi ≥ 1, and that the matrix

Ĵ(B̂1, ..., B̂N) in equation (5.10) is invertible (or Ĵ(B̂1, ..., B̂N)−1
left exists) for all values of

the parameters αi ≥ 1, i = 1, ..., N . Assume that the faulty vehicle #k is partially recov-

ered by the LLFR module by using the biased estimate of the actuator gain B̂k 6= Bk. The

norm of the matrix D in equation (5.12) is upper bounded by a monotonically decreasing

function of the coefficient αk. Therefore, to maximally reduce the norm and effects of D

on the error dynamics (5.11) the coefficient αk in the cost function (5.9) should be selected

sufficiently large.

Proof: Equations (5.12) and (5.13) can be used to calculate the disturbance term

D as follows

D = εkI
0
[

(Ĵ−1
left)[k,1]r×n

(Ĵ−1
left)[k,2]r×n

· · · (Ĵ−1
left)[k,N ]r×n

]
∆
= εkI

0(Ĵ−1
left)[k,:]r

where

I0
[i]r

=


Ir×r if i = k − 1 ≥ 1

−Ir×r if i = k ≤ N − 1

0r×r otherwise

and the indices [i]a, [i, j]a×b, and [i, :]a are defined in Definition 2.8. We have
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[
(Ĵ−1
left)[k,1]r×n

· · · (Ĵ−1
left)[k,k−1]r×n

(Ĵ−1
left)[k,k]r×n

(Ĵ−1
left)[k,k+1]r×n

· · · (Ĵ−1
left)[k,N ]r×n

]

×



J[1,1]n×r
· · · J[1,k−1]n×r

J[1,k]n×r
J[1,k+1]n×r

· · · J[1,N ]n×r

...
. . .

...
...

... . . .
...

J[k−1,1]n×r
· · · J[k−1,k−1]n×r

J[k−1,k]n×r
J[k−1,k+1]n×r

· · · J[k−1,N ]n×r

J[k,1]n×r
· · · J[k,k−1]n×r

J[k,k]n×r
J[k,k+1]n×r

· · · J[k,N ]n×r

J[k+1,1]n×r
· · · J[k+1,k−1]n×r

J[k+1,k]n×r
J[k+1,k+1]n×r

· · · J[k+1,N ]n×r

...
. . .

...
...

... . . .
...

J[N,1]n×r
· · · J[N,k−1]n×r

J[N,k]n×r
J[N,k+1]n×r

· · · J[N,N ]n×r


=
[

0r×r · · · 0r×r Ir×r 0r×r · · · 0r×r
]

︸ ︷︷ ︸
only kth block is identity

out of the N blocks

The above equation can be rewritten as

[
(Ĵ−1
left)[k,−N ]r×n

(Ĵ−1
left)[k,N ]r×n

]
×

[
J11 J1k

Jk1 (B̂T
k )−1

rightαk

]
=
[

0r×(N−1)r Ir×r

]
where

J11 =


J[1,1]n×r

· · · J[1,k−1]n×r
J[1,k+1]n×r

· · · J[1,N ]n×r
...

. . .
...

...
. . .

...

J[N−1,1]n×r
· · · J[N−1,k−1]n×r

J[N−1,k+1]n×r
· · · J[N−1,N ]n×r



J1k =


J[1,k]n×r

...

J[N−1,k]n×r


Jk1 =

[
J[N,1]n×r

· · · J[N,k−1]n×r
J[N,k+1]n×r

· · · J[N,N ]n×r

]
(Ĵ−1
left)[k,−N ]r×n

=
[

(Ĵ−1
left)[k,1]r×n

· · · (Ĵ−1
left)[k,N−1]r×n

]
The solution is

(Ĵ−1
left)[k,N ]r×n

=
(

(B̂T
k )−1

rightαk − Jk1(J11)−1
leftJ1k

)−1

left

(Ĵ−1
left)[k,−N ]r×n

= −
(

(B̂T
k )−1

rightαk − Jk1(J11)−1
leftJ1k

)−1

left
Jk1(J11)−1

left
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or equivalently,

(Ĵ−1
left)[k,:]r

=
[

(Ĵ−1
left)[k,−N ]r×n

(Ĵ−1
left)[k,N ]r×n

]
=
(

(B̂T
k )−1

rightαk − Jk1(J11)−1
leftJ1k

)−1

left

[
−Jk1(J11)−1

left In×n

]
Therefore, by factoring out the parameter αk we have

||D|| =
∥∥∥εkI0(Ĵ−1

left)[k,:]r

∥∥∥
≤ ||εk||

αk
sup
αk≥1

∥∥∥∥I0
(

(B̂T
k )−1

right − Jk1(J11)−1
leftJ1k/αk

)−1

left

[
−Jk1(J11)−1

left In×n

] ∥∥∥∥
This implies that the matrix D is upper bounded by a monotonically decreasing function

of αk, which completes the proof.

We are now in a position to state our main results in the following two theorems.

Theorem 5.1. To stabilize the nominal (disturbance free) error dynamics system Ė{k}(t) =

[A{k} + (I2n×2n + ∆)B̄{k}K{k}]E{k}(t) in equation (5.15), the FLFR module should choose

a sufficiently large coefficient αk in the cost function (5.9) corresponding to the partially

LL-recovered vehicle #k by using the biased actuator gain estimate B̂k 6= Bk.

Proof: We rearrange the nominal error dynamic system Ė{k} = (A{k} + (I2n×2n +

∆)B̄{k}K{k})E{k} (note that A{k} + B̄{k}K{k} is Hurwitz) into an equivalent closed-loop

configuration of the system S and the controller CON as follows:

S :

{
Ė{k} = (A{k} + B̄{k}K{k})E{k} + U

Y = B{k}K{k}E{k}
, CON : U = ∆Y

where the system S is controllable and observable allowing a proper choice of K{k} =

diag(K,K). Let us take

γ1 = sup
ω∈R

σmax[S(jω)]

where σmax denotes the maximum singular value of a complex matrix, and where γ1 is

finite since S(jω) is Hurwitz. Taking ||∆||∞ ≤ γ2, it then follows readily that the controller

CON satisfies ||U ||∞ ≤ γ2||Y ||∞.

According to the small-gain theorem [159], a sufficient condition for stability of

the overall closed-loop system is γ1γ2 < 1. Taking B∆ = 1/γ1, this condition becomes

||∆||∞ < B∆, which is equivalent to appropriately decreasing ||∆||∞, or alternatively,
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appropriately decreasing ||D||∞. The latter can be achieved by using Lemma 5.2 where

the coefficient αk is selected to be sufficiently large.

Theorem 5.2. Let the nominal error dynamics system Ė{k}(t) = [A{k} + (I2n×2n +

∆)B̄{k}K{k}]E{k}(t) in equation (5.15) be stable according to Theorem 5.1. The norm

of E{k}(t) is upper bounded by a monotonically decreasing function of the coefficient αk

in the cost function (5.9). Therefore, in order to make the norm of the tracking error

E{k} smaller than the predefined specification given by es, the FLFR module should select

a sufficiently large coefficient αk in the cost function (5.9) corresponding to the partially

LL-recovered vehicle #k by using the biased actuator gain estimate B̂k 6= Bk.

Proof: The Laplace transform of the error state E{k} governed by the dynamical

system Ė{k}(t) = AclpE{k}(t) +D{k}, is given by

E{k}(s) = (sI2n×2n − Aclp)−1D{k}(s) = G(s)D{k}(s)

where G(s) is the system transfer function matrix. Using the definition of D{k}(t) in

(5.15), and di (i = 1, ..., N − 1) from equation (5.12) and Lemma 5.2, we have

E{k}(s) = G(s)εk

[
−Ir×r
Ir×r

](
(B̂T

k )−1
rightαk − Jk1(J11)−1

leftJ1k

)−1

left

×
[
−Jk1(J11)−1

left In×n

] [ I(N−1)n×(N−1)n

0n×(N−1)n

]
BTL {Ud(t)}

where L {.} denotes the Laplace transform of a given signal. Let us define

H
∆= sup

t∈R+

|εk|<Bεk
αk≥1

∫ t

τ=0

{
‖G(t− τ)‖

∥∥∥∥∥
[
−Ir×r
Ir×r

](
(B̂Tk )−1

right− Jk1(J11)
−1
leftJ1k/αk

)−1

(5.16)

×
[
−Jk1(J11)

−1
left In×n

] [ I(N−1)n×(N−1)n

0n×(N−1)n

]
BTU

d(τ)

∥∥∥∥∥
}
dτ

We now can express the tracking error E{k} in the time domain as follows

||E{k}(t)|| ≤
||εk||H
αk

∆
=BE{k} (5.17)

It follows that ||E{k}(t)|| is bounded by a monotonically decreasing function of the pa-

rameter αk ≥ 1. In order for the norm of the tracking error E{k} be smaller than the

specification es, a solution based on equation (5.17) can be obtained as follows
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max ||εk||H
αk

≤ es

Therefore, in the absence of any disturbances the desired domain for the parameter

αk is given by

αk ≥
BεkH

es
(5.18)

Let us now assume that an external (environmental) disturbance Dext,T =
[
DT
ext DT

ext

]T
,

where Dext is introduced earlier in equation (5.1) and Dext,T is bounded by Bext (i.e.,

||Dext,T || < Bext), is applied to the system (5.15) as given by Ė{k}(t) = AclpE{k}(t) +

D{k} +Dext,T . Following along similar steps as those above, equation (5.17) is now mod-

ified as follows

||E{k}(t)|| ≤ BE{k} + TE{k} = Btot (5.19)

where

TE{k}
∆
= sup

t∈R+

|εk|<Bεk
αk≥1

∥∥∥∥∫ t

τ=0

G(t− τ)Bextdτ

∥∥∥∥
One immediate observation that can be made is that by using the above method one

cannot certainly get a better (smaller) error than TE{k}. Therefore, in the presence of the

disturbances the desired domain for the parameter αk is given by

αk ≥
BεkH

es − TE{k}
(5.20)

This completes the proof of the theorem.

The results presented in this section correspond to the centralized FLFR module

for a single partially LL-recovered vehicle, in which case the other healthy vehicles are

required to expend more control resource to compensate for the performance degradation

of the faulty vehicle. In the next section, our proposed centralized FLFR module is

formulated for the case of multiple partially LL-recovered vehicles by designing a new

robust controller and imposing a constraint on the desired input vector.

5.2.3 Centralized FLFR Module for Multiple Actuator Failures

In this section, we present the FLFR module for the case of multiple partially LL-recovered

vehicles #k, k ∈ {1, ..., N} due to the biased estimates of actuator faults. Assume that

||f̂k − fk|| ≥ 0 (equivalently, ||B̂k −Bk|| ≥ 0) or f̂k = fk + εk (equivalently, B̂k = Bk + εk)
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for k = 1, ..., N , where εk is an unknown function but bounded (||εk|| ≤ Bεk with Bεk

known). This is a general formulation of the problem that represents either cases of 0, 1,

..., or N partially LL-recovered vehicles, such that the number of partially LL-recovered

vehicles is equal to the number of vehicles #k, k = 1, ..., N for which Bεk 6= 0 and the

non-faulty (or fully LL-recovered) vehicles #k, k = 1, ..., N are identified by Bεk = 0.

Using the input vector U in equation (5.10) with αk = 1 for k = 1, ..., N , the closed-loop

system in equation (5.11) becomes

Ė = (AT + B̄TKT )E +D
[
P T

12(t) P T
23(t) · · · P T

(N−1)N(t) 01×r

]T
(5.21)

where

B̄T = diag(B̄)N−1
i=1 , KT = diag(Ki)

N−1
i=1

D =
(
J(B1, ..., BN)− J(B̂1, ..., B̂N)

)
︸ ︷︷ ︸

D0

Ĵ(B̂1, ..., B̂N)−1
left

(5.22)

where

D0
[i,j]n×r

=


−εk if j = k and i = k − 1 ≥ 1

εk if j = k and i = k ≤ N − 1

0n×r otherwise

(5.23)

Using the definition of Pij(t) in equation (5.5), the closed-loop system dynamics

(5.21) can be reformulated as

Ė(t) =

AT + B̄TKT +D∆T B̄T︸ ︷︷ ︸
∆B̄T

KT

E(t) +DT (5.24)

where

E(t) =
[

ET
12 · · · ET

(N−1)N

]T

, DT = D∆TBTU
d

AT = diag (A)N−1
i=1 , B̄T = diag

(
B̄
)N−1

i=1

KT = diag (Ki)
N−1
i=1 , ∆T =

[
I(N−1)n×(N−1)n

0r×(N−1)n

]
Now, we assume that the error specification es of the formation mission is violated

by the partially LL-recovered vehicles #k, k ∈ {1, ..., N}. As explained at the beginning

of this subsection, this is a general formulation of the problem that represents either cases
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of 0, 1, ..., or N partially LL-recovered vehicles, such that the number of partially LL-

recovered vehicles is equal to the number of vehicles #k, k = 1, ..., N for which Bεk 6= 0

and the non-faulty (or fully LL-recovered) vehicles #k, k = 1, ..., N are identified by

Bεk = 0. In order to simultaneously design the controllers for faulty and non-faulty

vehicles, in the following two theorems will be presented in which a robust controller is

designed to stabilize the nominal state space model in equation (5.24), and a constraint is

imposed on the desired input vector to satisfy the error specification es of the formation

mission.

Theorem 5.3. Consider the formation vehicles #k, k = 1, ..., N , with Bεk 6= 0 and Bεk =

0 pertaining to a partially LL-recovered vehicle and a non-faulty vehicle, respectively,

whose nominal (disturbance-free) state space model is represented by Ė = (AT + B̄TKT +

∆B̄TKT )E as in equation (5.24). The nominal model of the system is stable by using the

state feedback gain KT = (B̂T )TP if there exists a block-diagonal matrix P = diag (Pi)
N−1
i=1

that satisfies the following LMI conditions



[
ATP + P (AT )T +Q PB̄T

(B̄T )
T
P −I

]
< 0 if λM ≤ 0

[
ATP + P (AT )T +Q PB̄T

(B̄T )
T
P −I

]
< 0 and

[
−Q

√
λMP√

λMP −I

]
< 0 if λM > 0

(5.25)

where P > 0 and Q > 0 are positive definite matrices, and

λM = sup
||εi||<Bεi

λmax{(B̄T + ∆B̄T )(B̄T + ∆B̄T )T} − inf
||εi||<Bεi

λmin{(∆B̄T )(∆B̄T )T}

with λmax and λmin representing the maximum and minimum eigenvalues of a matrix,

respectively.

Proof: We start with the following Lyapunov function candidate

V = ETPE , P > 0

Using the feedback gain matrix Ki = B̂T
i P we have

V̇ = ET
(
PAT + (AT )TP + PB̄T (B̄T )

T
P

+P (B̄T + ∆B̄T )(B̄T + ∆B̄T )
T
P − P∆B̄T (∆B̄T )

T
P
)
E

Taking the matrix algebraic Riccati inequality ATP +P (AT )T +PB̄T (B̄T )TP +Q < 0 with

P > 0 and Q > 0 that correspond to the LMI condition
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[
ATP + P (AT )T +Q PB̄T

(B̄T )
T
P −I

]
< 0 (5.26)

we get

V̇ ≤ ET
(
−Q+ λMP

2
)
E (5.27)

If λM ≤ 0, then the LMI condition (5.26) is the necessary condition in (5.25) to

guarantee V̇ < 0 in equation (5.27); otherwise if λM > 0, then the necessary condition in

(5.25) is formed by augmenting the LMI condition (5.26) with the following LMI condition[
−Q

√
λMP√

λMP −I

]
< 0 (5.28)

Therefore, the control gain KT = (B̄T )TP will asymptotically stabilize the system for all

the values of the uncertainty ∆B̄T . This completes the proof of the theorem.

Theorem 5.4. Assume that the error specification (es) of the formation mission is vio-

lated by the vehicles #k, k = 1, ..., N , with Bεk 6= 0 and Bεk = 0 pertaining to a partially

LL-recovered vehicle and a non-faulty vehicle, respectively. Assume that the FLFR mod-

ule implements the robust controller as in Theorem 5.3 for the partially LL-recovered and

healthy vehicles #k, k = 1, ..., N . In order for the error specification (es) to be satis-

fied, the FLFR module needs to impose a constraint on the desired input vector Ud(t) in

equation (5.4).

Proof: Using the robust controller as in Theorem 5.3, the tracking error dynamics

of the overall formation system becomes

Ė = (AT + B̄TKT + ∆B̄TKT )E +D∆TBTU
d

whose Laplace transform (by neglecting the initial conditions) is given by

E(s) = (sI − AT − (B̄T + ∆B̄T )Kk)
−1︸ ︷︷ ︸

GT (s)

D∆TBTU
d(s)

where GT (s) is the transfer function matrix. We take

HT
∆
= sup

t∈R+

∀k∈{1,...,N};
||εk||<Bεk

∥∥∥∥∫ t

τ=0

GT (t− τ)D∆TBTdτ

∥∥∥∥
Therefore, in the absence of any disturbances we get

||E(t)|| ≤ HT sup
t∈R+

||Ud(t)|| = BE (5.29)
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Let us now assume that an external (environmental) disturbance

Dext,T =
[
DT
ext · · · DT

ext

]T
︸ ︷︷ ︸

N−1 times

where Dext is introduced earlier in equation (5.1) and Dext,T is bounded by Bext (i.e.,

||Dext,T || < Bext), is applied to the system (5.24) as given by Ė = (AT + B̄TKT +

∆B̄TKT )E + DT + Dext,T . Following along similar steps as those above, equation (5.29)

is now modified as follows

||E(t)|| ≤ BE + TE = Btot (5.30)

where

TE
∆
= sup

t∈R+

∀k∈{1,...,N};
||εk||<Bεk

∥∥∥∥∫ t

τ=0

G(t− τ)Bextdτ

∥∥∥∥
In order that the condition Btot ≤ es in equation (5.30) holds, BE is replaced from

equation (5.29) and Btot is replaced by es as follows

sup
t∈R+

||Ud(t)|| ≤ es − TE
HT

(5.31)

which requires the FLFR module to impose the constraint (5.31) on the desired input

vector Ud(t). This completes the proof of the theorem.

The results presented in this section correspond to the centralized FLFR module,

which is mostly applicable to the formations of only a very few vehicles with a require-

ment of having adequate communication resources. As the number of vehicles in the fleet

increases and the communication resources become more constrained and limited, the mo-

tivation for implementing decentralized LLFR controller and decentralized FLFR module

becomes more pronounced. Towards this end, a decentralized cooperative fault accom-

modation strategy is discussed and developed in the next section given the availability of

relative measurements among the formation flight of unmanned vehicles.

5.3 Decentralized Cooperative Actuator Fault Ac-

commodation

Consider the general N -vehicle formation with relative measurements, RMF digraph as

per Definition 2.3, and the state space model of the vehicle #i as represented by (5.2).

For simplicity, the effects of the environmental disturbances Dext in (5.2) are ignored in
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the following analysis, but these effects will be analyzed later in the subsequent sections.

The relative states Xij are measured and used in the formation feedback loop. In order to

avoid redundant measurements, we assume that the RMF digraph (as per Definition 2.3)

is connected. To each edge Xij = Xj − Xi representing the relative state measurement

of the vehicle #j with respect to the vehicle #i, we assign a scalar parameter αij ∈ R
and two matrices βiij, β

j
ij ∈ Rr×n for designing a decentralized controller and define the

following vectors

Ud ∆
=


...

Ud
ij
...


(N−1)r×1

, E
∆
=


...

Eij
...


(N−1)n×1

α
∆
=


...

αij
...


(N−1)×1

, β
∆
=


...

βiij

βjij
...


2(N−1)r×n

(5.32)

where the vectors Ud
ij ∈ Rr, Eij ∈ Rn, scalar αij ∈ R, and matrix

[
(βiij)

T (βjij)
T
]T ∈

R2r×n are on the same corresponding row blocks of the vectors Ud, E, α, and matrix β,

respectively. The states Ud
ij and Eij are introduced earlier in equation (5.3). Similar to

the compact matrix form of the error dynamics equations in (5.4), in the general case of

N vehicles we have

Ė = ATE + J(B1, ..., BN)U − B̄TU
d (5.33)

where the input vector U and the matrix J are given by

U =


U1

...

UN

 , J[i,j]n×r
=


Bj if ∃k ∈ N ({j});E[i]n

= Ekj

−Bj if ∃k ∈ N ({j});E[i]n
= Ejk

0 otherwise

with the indices [i, j]a×b and [i]a are defined as in Definition 2.8, and the nearest neighbor

set N ({r}) is defined in Definition 2.4.

It should be noted that the dynamics of individual vehicles are coupled through

their relative state measurements. For example, in the special case of the four-vehicle

formation in Figure 2.2, the error dynamics is given by
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 Ė12

Ė23

Ė34


︸ ︷︷ ︸

Ė

=

 A 0n×n 0n×n

0n×n A 0n×n

0n×n 0n×n A


︸ ︷︷ ︸

AT

 E12

E23

E34


︸ ︷︷ ︸

E

+

 −B1 B2 0 0

0 −B2 B3 0

0 0 −B3 B4


︸ ︷︷ ︸

J(B1,B2,B3,B4)


U1

U2

U3

U4


︸ ︷︷ ︸

U

−

 B̄ 0n×r 0n×r

0n×r B̄ 0n×r

0n×r 0n×r B̄


︸ ︷︷ ︸

B̄T

 Ud
12

Ud
23

Ud
34


︸ ︷︷ ︸

Ud

5.3.1 Decentralized Low-Level Fault Recovery (LLFR) Controller

In this section, we assume that the system is fault free or one has an accurate fault

estimate. In the later case of accurate fault estimate, we assume that the actuators of ve-

hicles #i are subject to loss-of-effectiveness (LOE) actuator failures as in equation (5.2),

that is Bi = B̄ + fi, and the estimates of faulty actuator gains are unbiased, that is

B̂i = Bi. These unbiased estimates are used in the LLFR controller. In the following, a

decentralized control strategy is proposed and implemented in order to meet the restrictive

communication constraints that are imposed due to the availability of only local relative

state measurements. Motivated by conventional linear control design techniques, a de-

centralized controller is designed in which the control signal Ui of vehicle #i is specified

in terms of local relative state measurements and the desired trajectories of the vehicles

in its nearest neighbor set.

To design the decentralized controller, the LLFR module incorporates the actuator

fault estimates B̂i into the matrix J that yields J(B̂1, ..., b̂N) and generates the overall

input vector U = [UT
1 ... UT

N ]T as follows

U = Ud + Us (5.34)

The actuator gain Bi is now replaced by its estimate B̂i (that is, B̂i = B̄ + f̂i) by

incorporating the fault estimate f̂i. Moreover, B̂i = Bi when the system is fault free

or when one has an accurate fault estimate. The control terms Ud ∈ R(N−1)r×1 and

Us ∈ R(N−1)n×1 are the desired input control and the stabilizing control, respectively,

which are defined as follows

Ud = (A(α)⊗ Ir×r)Ud

Us = B(β)E
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where ⊗ represents the Kronecker product, the tracking error E and the desired input Ud

are defined as in equation (5.32), and

A(α) =


AT1 (α)

...

ATN(α)


N×(N−1)

, B(β) =


BT

1 (β)
...

BT
N(β)


Nr×(N−1)n

(5.35)

with A(α) and B(β) denoting the design matrices.

In order to construct a decentralized controller one needs to appropriately design

the above matrices such that the control signals satisfy the communication restrictions

of a decentralized control scheme. In other words we need to generate the control Ui of

vehicle #i merely in terms of the information on the local relative state measurements

and the desired trajectories of the vehicles in its nearest neighbor set. The matrices A(α)

and B(β) are computed and specified next.

For calculating the vectors Ai(α), i = 1, ..., N in (5.35), one vehicle, namely vehicle

#r, is arbitrarily chosen as the reference and is assigned with Ar(α) = α. For each αij,

an associated vector Tαij is defined according to αTTαij = αij. For any given vehicle #j in

the nearest neighbor set (j ∈ N ({r})), we evaluate

Aj(α) = Ar(α) + Tαrj

with the consideration that Tαrj = −Tαjr. This neighboring calculation can be accomplished

by induction through the RMF digraph (as per Definition 2.3) of the entire formation, so

that all the vectors Ai(α), i = 1, ..., N are specified to form the matrix A(α) in (5.35).

For calculating BT
i (β) =

[
B[i,1]r×n

· · · B[i,N−1]r×n

]
in (5.35), we take

B[i,k]r×n
=


βiij if ∃j ∈ N ({i});E[k]n = Eij

βiji if ∃j ∈ N ({i});E[k]n = Eji

0 otherwise

For example, in the special case of the four-vehicle formation in Figure 2.2, the

matrices A(α) and B(β) have the following structures

A(α) =


α12 − 1 α23 − 1 α34 − 1

α12 α23 − 1 α34 − 1

α12 α23 α34 − 1

α12 α23 α34

 , B(β) =


β1

12 0 0

β2
12 β2

23 0

0 β3
23 β3

34

0 0 β4
34

 (5.36)

In the following, the decentralized controller (5.34) is designed for the system (5.33)

in either cases of a fault free formation or a formation with unbiased fault estimates.
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Lemma 5.3. Consider a fault free vehicle formation or the formation that is equipped

with unbiased fault estimates f̂i = fi, where in both cases we can take B̂i = Bi. The

state feedback matrix B(β) = Y X−1 stabilizes the closed-loop system (5.33)-(5.34) (with

the initial state E(0)) for all values of the vector α ∈ RN−1 and minimizes γ1 + γ2, where

γ1 is an upper bound on the H∞ norm of the transfer function from the disturbance to

the output of the system and γ2 is an upper bound on the linear quadratic cost function

JLQR(Us, Q,R) in Lemma 2.3, if there exist a matrix Y (with the same dimensions and

structure as B(β)) and a positive definite block-diagonal matrix X = diag(Xi)
N−1
i=1 > 0

that satisfy the following optimization problem

Minimize γ1 + γ2

subject to

X > 0 AX +XAT + J(.)Y + Y TJ(.)T I X

I −γ1I 0

X 0 −γ1I

 < 0

 AX +XAT + J(.)Y + Y TJ(.)T X Y T

X −Q−1 0

Y 0 −R−1

 ≤ 0

[
γ2 ET (0)

E(0) X

]
≥ 0

(5.37)

in which the term J(.) is defined (similar to the one in equation (5.33)) as

J(.) = J(B̂1, ..., B̂N)

Proof: First, it should be pointed out that by substituting the control law U from

equation (5.34) into (5.33), the control Ud cancels out the terms Ud from the closed-loop

system. The control Us forms the nominal (disturbance free) closed-loop dynamical system

that is given by

Ė = (AT + J(.)B(β))E

By applying Lemmas 2.2 and 2.3 to the model above and by defining the new matrix

Y = B(β)X, where Y has the same dimension and structure as B(β), gives the opti-

mization problem with LMI conditions that are stated in equation (5.37). Therefore, the

solution to the H∞ optimal feedback matrix B(β) is calculated according to B(β) = Y X−1.

In the next section, the vector α ∈ RN−1 is used as a degree of freedom for the

purpose of fault accommodation in the formation flight of unmanned vehicles. It is shown
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that imprecise estimates of actuator fault signals (in both cases of a single or multiple

faults) will impact the performance of the overall formation flight system. This perfor-

mance degradation is detected by the HL supervisor and, subsequently, the FLFR module

is activated. We will formulate a decentralized cooperative fault accommodation in the

FLFR module by using a controller that is similar to equation (5.34) and which guaran-

tees that the desired error specifications in the presence of possible estimation inaccuracy

and bias are maintained and satisfied.

5.3.2 Decentralized Formation-Level Fault Recovery (FLFR) Mod-

ule

In this section, assume that the vehicle #i is faulty and partially recovered by the low-

level fault recovery (LLFR), which implies that the corresponding fault estimate is biased

and inaccurate. Therefore, vehicle #i tracks the desired trajectory within an error bound

of radius r, which is greater than the mission error specification es (r > es as in the

special case of the four-vehicle formation in Figure 2.2). Our main objective here is to

propose an FLFR module to compensate for the performance degradations of the partially

LL-recovered vehicle.

Let us now consider a loss-of-effectiveness fault in vehicle #i actuator, and assume

that the LLFR module has estimated the severity of this fault, however this value is biased

and imprecise, that is f̂i = fi + εi or equivalently B̂i = Bi + εi, where εi is unknown but

bounded (that is ||εi|| < Bεi) with Bεi a known bound. This biased estimate will result in

the overall formation performance degradations that are detected by the HL supervisor.

The supervisor then activates the FLFR module in order to satisfy the desired mission

error specifications.

In the following, we develop the FLFR module by investigating the stability and

convergence of an N -vehicle formation flight system by using the decentralized controller

(5.34) that is subject to the fact that the fault estimate in vehicle #i actuator is biased.

Our main result of this section is stated in the following two theorems. Theorem 5.5

proposes a decentralized controller which is robust to the biased estimate of the fault

parameter in vehicle #i, and Theorem 5.6 proposes the selection criterion for the vector

α ∈ RN−1 in order to satisfy the error specification es of the formation flight mission.

Theorem 5.5. Let the actuator of vehicle #i be faulty, and let the corresponding fault

parameter be estimated by a biased estimator such that f̂i = fi + εi (as given by equa-

tion (5.34)), where εi is unknown but bounded (||εi|| < Bεi) and Bεi is a known bound.

In general, the matrix εi ∈ Rn×r includes Nεi (Nεi ≤ nr) uncertain (nonzero) elements

εij (j = 1, ..., Nεi) and nr − Nεi zero elements. Assume that the error specification (es)

is violated implying that the vehicle #i is partially recovered by the LLFR module. The

116



state feedback matrix B(β) = Y X−1 stabilizes the closed-loop system (5.33)-(5.34) (with

the initial state E(0)) for all values of the vector α ∈ RN−1 and minimizes γ1 + γ2, where

γ1 is an upper bound on the H∞ norm of the transfer function from the disturbance to

the output of the system and γ2 is an upper bound on the linear quadratic cost function

JLQR(Us, Q,R) in Lemma 2.3, if there exist a matrix Y (with the same dimension and

structure as B(β)) and a positive definite block-diagonal matrix X = diag(Xi)
N−1
i=1 > 0

that satisfy the following optimization problem

Minimize γ1 + γ2

s.t. X > 0 and for εi ∈ {ε
j+
i , εj−i } , j = 1,...,Nεi : ATX +XATT + (J(.)− Jεi)Y + Y T (J(.)− Jεi)T

I

X

I X

−γ1I 0

0 −γ1I

 < 0

 AX +XAT + (J(.)− Jεi)Y + Y T (J(.)− Jεi)T X Y T

X −Q−1 0

Y 0 −R−1

 ≤ 0

[
γ2 ET (0)

E(0) X

]
≥ 0

(5.38)

in which the terms J(.) and Jεi are defined (similar to the one in equation (5.33)) as

J(.) = J(B̂1, ..., B̂N)

Jεi = J (0, ..., εi, ..., 0)︸ ︷︷ ︸
only the ith block

is nonzero
out of the N blocks

and the terms εj+i and εj−i are defined as

εj+i = εi|εij=+NR
εi
Bεi ,εik=0(k 6=j) , ε

j−
i = εi|εij=−NR

εi
Bεi ,εik=0(k 6=j)

where εij (j = 1,...,Nεi) are the uncertain (nonzero) elements of the matrix εi, and Nεi

and NR
εi

represent the number of nonzero elements and rows of the matrix εi, respectively.

Proof: By substituting the control law U from equation (5.34) into (5.33) the re-

sulting closed-loop system is obtained as

Ė = (AT + (J(.)− Jεi)B(β))E + D̄d,i(t) (5.39)

where

D̄d,i(t) = −Jεi(ATi (α)⊗ Ir×r)Ud(t) (5.40)
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By applying Lemmas 2.2 and 2.3 to the system (5.39), a necessary condition for mini-

mizing γ1 + γ2 is to find a matrix Y (with the same dimension and structure as B(β))

and a positive definite block-diagonal matrix X = diag(Xi)
N−1
i=1 > 0 that satisfy the LMI

conditions in equation (5.38).

The LMI conditions in equation (5.38) cannot be directly verified since the matrix εi

is unknown. However, the unknown matrix εi is bounded, that is ||εi|| < Bεi. Therefore,

the summation of the absolute values of the uncertain (nonzero) elements on each row

of the matrix εi is less than Bεi. This implies that the sum of the absolute values of the

uncertain (nonzero) elements on all NR
εi

rows of the matrix εi is less than NR
εi
Bεi, that is

Nεi∑
j=1

||εij|| < NR
εi
Bεi (5.41)

The condition (5.41) can be represented by a convex polygon region in the Nεi
-dimensional

space corresponding to
[
εi1 εi2 · · · εiNεi

]T
. This convex region is surrounded and

covered by the vertices
+NR

εi
Bεi

0
...

0

 ,


−NR

εi
Bεi

0
...

0

 ,


0

+NR
εi
Bεi

...

0

 ,


0

−NR
εi
Bεi

...

0



, ...,


0

0
...

+NR
εi
Bεi

 ,


0

0
...

−NR
εi
Bεi



(5.42)

Now, if the LMI conditions in equation (5.38) hold for the vertices in (5.42), then

they hold for all values of the unknown matrix εi. Therefore, if there exist a matrix Y

(with the same dimension and structure as B(β)) and a positive definite block-diagonal

matrix X = diag(Xi)
N−1
i=1 > 0 that satisfy the LMI conditions in equation (5.38) for

εi ∈ {εj+i , εj−i }, j = 1, ..., Nεi, then Y and X satisfy the LMI conditions in equation (5.38)

for the unknown matrix εi, and therefore the solution to the H∞ optimal feedback matrix

B(β) is calculated according to B(β) = Y X−1.

Theorem 5.6. Assume that the closed-loop formation flight system (5.33)-(5.34) with

the partially LL-recovered vehicle #i is stabilized for all values of the vector α ∈ RN−1 by

using the FLFR controller gain B(β) = Y X−1 according to Theorem 5.5. There exists

nonzero α ∈ RN−1 given by equation (5.47) below in the control signal Ud such that the
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norm of the tracking error E remains smaller than the predefined specification given by

es.

Proof: Consider the closed-loop system (5.39) that is already shown to be stable

according to the results in Theorem 5.5. Denoting Adclp,i = (AT + (J(.) − Jεi)B(β)) in

(5.39), the tracking error E is governed by the dynamical system Ė(t) = Adclp,iE(t) +

D̄d,i(t) whose Laplace transform is given by

E(s) = (sI − Adclp,i)−1D̄d,i(s) = Gd,i(s)D̄d,i(s)

where Gd,i(s) is the transfer function matrix. By using the definition of D̄d,i(t) from

equation (5.39), we have

E(s) = −Gd,i(s)Jεi(A
T
i (α)⊗ Ir×r)L {Ud(t)}

where L {.} denotes the Laplace transform of a given signal. Let us denote Ai(α) =

||Ai(α)||Âi(α), where Âi(α) is the normalized Ai(α). We now obtain

E(s) = −Gd,i(s)Jεi(||Ai(α)||ÂT
i (α)⊗ Ir×r)L {Ud(t)}

Taking

Hd,i(Âi(α))
∆
= sup

t∈R+

||εi||<Bεi

∫ t

τ=0

{
‖Gd,i(t− τ)‖

∥∥∥(ÂT
i (α)⊗ Ir×r)Ud(τ)

∥∥∥} dτ (5.43)

we get

||E(t)|| ≤ ||εi||Hd,i(Âi(α))||Ai(α)|| ∆
=BE,i (5.44)

In order for the norm of the tracking error E be smaller than the specification es, a

solution based on equation (5.44) can be obtained as follows:

max ||εi||Hd,i(Âi(α))||ATi (α)|| ≤ es

⇒ ||ATi (α)|| ≤ es

BεiHd,i(Âi(α))

Therefore, in absence of any disturbances the desired domain for the parameter α is given

by

D′α =

{
α ∈ RN−1

∣∣ ||ATi (α)|| ≤ es

BεiHd,i(Âi(α))

}
(5.45)

Let us now assume that an external (environmental) disturbance
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Dext,T =
[
DT
ext · · · DT

ext

]T
︸ ︷︷ ︸

N−1 times

where Dext is introduced in equation (5.2) and Dext,T is bounded by Bext (that is ||Dext,T || <
Bext), is applied to the system (5.38) as given by Ė = (AT +B̄TKT +∆d(β, εi))E+D̄d,i(t)+

Dext. Following along similar steps as those followed earlier, equation (5.44) is modified

as follows:

|E(t)| ≤ BE,i + TE,i = Btot (5.46)

where

TE,i
∆
= sup

t∈R+

|εi|<Bεi
β∈D′β

∥∥∥∥∫ t

τ=0

Gd,i(t− τ)Bextdτ

∥∥∥∥
One immediate conclusion is that one cannot certainly get a better (smaller) error

bound than TE,i. Therefore, in presence of the disturbances the desired domain for the

parameter α is given by

D′α =

{
α ∈ RN−1

∣∣ ||ATi (α)|| ≤ es − TE,i
BεiHd,i(Âi(α))

}
(5.47)

This completes the proof of the theorem.

Remark 5.2. The fact that not all the subsystems Ei(i+1) (as in (5.15)) are perturbed in

the centralized FLFR module is the main advantage of the centralized approach achieved

at the expense of more stringent communication requirements. This is in contrast to the

decentralized FLFR approach, which is communicationally more efficient but propagates

the error to the entire subsystems (as shown in (5.39)).

The results presented in this section correspond to the decentralized FLFR module

for a single partially LL-recovered vehicle. In the next section, our proposed decentralized

FLFR module is formulated for the case of multiple partially LL-recovered vehicles by

designing a new robust controller and imposing a constraint on the desired input vector.

5.3.3 Decentralized FLFR Module for Multiple Actuator Fail-

ures

In this section, we present the FLFR module for the case of multiple partially LL-recovered

vehicles #k, k ∈ {1, ..., N} due to the biased estimates of actuator faults. Assume that

the vector α (as in equation (5.32)) is already designed for the case of a single actuator
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failure by using Theorem 5.6. For the case of multiple actuator failures, assume that

||f̂k − fk|| ≥ 0 (equivalently, ||B̂k −Bk|| ≥ 0) or f̂k = fk + εk (equivalently, B̂k = Bk + εk)

for k = 1, ..., N , where εk is an unknown function but bounded (||εk|| ≤ Bεk with Bεk

known). This is a general formulation of the problem that represents either cases of 0, 1,

..., or N partially LL-recovered vehicles, such that the number of partially LL-recovered

vehicles is equal to the number of vehicles #k, k ∈ {1, ..., N} for which Bεk 6= 0 and the

non-faulty (or fully LL-recovered) vehicles #k, k ∈ {1, ..., N} are identified by Bεk = 0.

Now, assume that the error specification es of the formation mission is violated

by the partially LL-recovered vehicles #k, k ∈ {1, ..., N}. In order to simultaneously

design controllers for faulty and non-faulty vehicles, in the following two theorems will

be presented in which a robust controller is designed to stabilize the nominal closed-loop

state space model (5.33)-(5.34), and a constraint is imposed on the desired input vector

to satisfy the error specification es of the formation mission.

Theorem 5.7. Let the actuators of vehicles #i, i ∈ {1, ..., N} be faulty, and let the

corresponding fault parameters be estimated by a biased estimator such that f̂i = fi + εi

(as given by equation (5.34)), where εi is unknown but bounded (||εi|| < Bεi) and Bεi

is a known bound. In general, the matrix εi ∈ Rn×r includes Nεi (Nεi ≤ nr) uncertain

(nonzero) elements εij (j = 1, ..., Nεi) and nr−Nεi zero elements. Assume that the error

specification (es) is violated implying that the vehicles #i, i ∈ {1, ..., N} are partially

recovered by the LLFR module. The state feedback matrix B(β) = Y X−1 stabilizes the

closed-loop system (5.33)-(5.34) (with the initial state E(0) and the value of the vector α

calculated by using Theorem 5.5) and minimizes γ1 + γ2, where γ1 is an upper bound on

the H∞ norm of the transfer function from the disturbance to the output of the system and

γ2 is an upper bound on the linear quadratic cost function JLQR(Us, Q,R) in Lemma 2.3,

if there exist a matrix Y (with the same dimension and structure as B(β)) and a positive

definite block-diagonal matrix X = diag(Xi)
N−1
i=1 > 0 that satisfy the following optimization

problem

Minimize γ1 + γ2

s.t. X > 0 and for ∀i ∈ {1, ..., N}, εi ∈ {ε
j+
i , εj−i } , j = 1,...,Nεi : ATX +XATT + (J(.)− Jεi)Y + Y T (J(.)− Jεi)T

I

X

I X

−γ1I 0

0 −γ1I

 < 0

 AX +XAT + (J(.)− Jεi)Y + Y T (J(.)− Jεi)T X Y T

X −Q−1 0

Y 0 −R−1

 ≤ 0

[
γ2 ET (0)

E(0) X

]
≥ 0

(5.48)
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in which the terms J(.) and Jεi are defined (similar to the one in equation (5.33)) as

J(.) = J(B̂1, ..., B̂N)

Jεi = J (0, ..., εi, ..., 0)︸ ︷︷ ︸
only the ith block

is nonzero
out of the N blocks

and the terms εj+i and εj−i are defined as

εj+i = εi|εij=+NR
εi
Bεi ,εik=0(k 6=j) , ε

j−
i = εi|εij=−NR

εi
Bεi ,εik=0(k 6=j)

where εij (j = 1,...,Nεi) are the uncertain (nonzero) elements of the matrix εi, and Nεi

and NR
εi

represent the number of nonzero elements and rows of the matrix εi, respectively.

Proof: The proof is similar to that of Theorem 5.5.

Theorem 5.8. Assume that the error specification (es) of the formation mission is vio-

lated by the partially LL-recovered vehicles #i, i ∈ {1, ..., N}, with Bεi 6= 0 and Bεi = 0

pertaining to a partially LL-recovered vehicle and a non-faulty vehicle, respectively. As-

sume that the FLFR module implements the robust controller as in Theorem 5.7 for the

partially LL-recovered and healthy vehicles #i, i = 1, ..., N . In order for the error specifi-

cation (es) to be satisfied, the FLFR module needs to impose a constraint on the desired

input vector Ud(t) as given by equation (5.32).

Proof: Using the robust controller as in Theorem 5.7, the tracking error dynamics

of the overall formation system (as denoted in equation (5.39)) becomes

Ė = (AT + (J(.)− Jε)B(β))E − Jε(ATi (α)⊗ Ir×r)Ud(t) (5.49)

in which the terms J(.) and Jε are defined (similar to the one in equation (5.33)) as

J(.) = J(B̂1, ..., B̂N)

Jε = J(ε1, ..., εN)

The Laplace transform of (5.49) (by neglecting the initial conditions) is given by

E(s) = −(sI − AT − (J(.)− Jε)B(β))−1︸ ︷︷ ︸
GT (s)

Jε(A
T
i (α)⊗ Ir×r)Ud(s)

where GT (s) is the transfer function matrix. We take

HT
∆
= sup

t∈R+

∀k∈{1,...,N};
||εk||<Bεk

∥∥∥∥∫ t

τ=0

GT (t− τ)Jε(A
T
i (α)⊗ Ir×r)dτ

∥∥∥∥
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Therefore, in absence of any disturbances we get

||E(t)|| ≤ HT sup
t∈R+

||Ud(t)|| = BE (5.50)

Let us now assume that an external (environmental) disturbance

Dext,T =
[
DT
ext · · · DT

ext

]T
︸ ︷︷ ︸

N−1 times

where Dext is introduced earlier in equation (5.1) and Dext,T is bounded by Bext (i.e.,

||Dext,T || < Bext), is applied to the system (5.39) as given by Ė = (AT + (J(.)− Jε)B(β))E+

D̄d,i(t) + Dext,T . Following along similar steps as those given for equation (5.49) above,

equation (5.50) is now modified as follows

||E(t)|| ≤ BE + TE = Btot (5.51)

where

TE
∆
= sup

t∈R+

∀k∈{1,...,N};
||εk||<Bεk

∥∥∥∥∫ t

τ=0

G(t− τ)Bextdτ

∥∥∥∥
In order that the condition Btot ≤ es in equation (5.51) holds, BE is replaced from

equation (5.50) and Btot is replaced by es as follows

sup
t∈R+

||Ud(t)|| ≤ es − TE
HT

(5.52)

which requires the FLFR module to impose the constraint (5.52) on the desired input

vector Ud(t). This completes the proof of the theorem.

In this chapter, the cases of centralized and decentralized cooperative fault ac-

commodation strategies under relative measurements are proposed and developed. As

mentioned in Remark 5.2, the decentralized approach is communicationally more efficient

but propagates the effects of a local failure in the form of undesired tracking errors to

all the subsystems of the formation. In contrast, the centralized approach confines the

effects of a local failure and prevents its error propagation at the expense of more stringent

communication requirements.

In the next chapter, the case of cooperative fault accommodation in a formation of

multiple vehicles with absolute measurements will be formulated and studied.
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5.4 Conclusions

In this chapter, a cooperative fault accommodation algorithm is proposed for formation

flight of unmanned vehicles. Through this framework two recovery modules, namely low

level fault recovery (LLFR) and formation level fault recovery (FLFR) modules are intro-

duced. In the LLFR module, conventional recovery controllers are designed by incorpo-

rating fault severity estimation techniques. It is assumed that an estimate of an actuator

fault parameter is available; however this estimate is possibly biased. Due to an inac-

curate fault estimate and the resultant ineffective recovery controller, the HL supervisor

detects violations of the formation flying mission performance specifications. The FLFR

module is then activated to compensate for these performance degradations correspond-

ing to the faulty and compromised vehicle by requiring that the healthy vehicles allocate

and expend additional resources. Moreover, in case of multiple failures, the FLFR mod-

ule implements robust controllers and imposes a constraint on the desired input vector.

Therefore, actuator faults are cooperatively recovered through our proposed architecture,

and the formation flight mission specifications are consequently satisfied.
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Chapter 6

Cooperative Actuator Fault

Accommodation in Formation Flight

of Unmanned Vehicles with Absolute

Measurements

In some applications of formation missions, such as the planetary orbital environment

(POE) satellite formation [6] and the unmanned aerial vehicle (UAV) formation missions

[131], the objective is to maintain a proper relative positioning among the vehicles while

the vehicles move about the desired absolute trajectories in their inertial framework. In

such applications, if the desired absolute trajectories of the vehicles are not properly taken

into the control loop, then undesirable absolute positioning and catastrophic clashes may

take place. This was not an issue of concern in the previous chapter for the case of

relative-measurement formation applications such as deep-space satellite formations [6].

Consider the four-vehicle formation with absolute measurements, whose digraph is

depicted in Figure 2.2. Assume that vehicle #2 is subject to an actuator fault. Fur-

thermore, it is only partially recovered by the low-level fault recovery (LLFR) module

due to the presence of possible biased and inaccurate fault estimates. Therefore, vehi-

cle #2 tracks the desired trajectory within an error bound of radius r, which is greater

than the error specification es that is defined for the mission (that is, r > es as shown

in Figure 2.2). The main purpose of the formation-level fault recovery (FLFR) module

is to reconfigure the formation structure in terms of the weighted absolute measurement

formation (WAMF) digraph (as per Definition 2.7), activate a robust controller for the

partially LL-recovered vehicle, and impose a constraint on the desired inputs in order to

compensate for the performance degradation of the formation mission (that is, r < es as

shown in Figure 2.2).
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In the following sections, results are presented for the case of cooperative fault

accommodation embedded with absolute measurements.

6.1 Preliminaries

6.1.1 State Space Model

In this section, we consider the general N -vehicle formation, whose special four-vehicle

case is depicted in Figure 2.2. The vehicle #i, i ∈ {1, ..., N} (N is the total number of

vehicles) is represented by a linear state space model as follows:

Ẋi = AXi +BiUi +Dext

Yi = CXi = Xi

(6.1)

where Xi ∈ Rn, Yi ∈ Rm, and Ui ∈ Rr are the state, input, and output vectors, respec-

tively, in the local inertial frame, and the output matrix C = In×n (In×n is an identity

matrix) denotes that the state vector is fully measured by the output sensors. The en-

vironmental disturbances are represented by Dext ∈ Rn and the actuators are modeled

as ideal gains Bi ∈ Rn×r which are assumed to have full column rank (the system is not

overactuated). The nominal (fault-free) value of Bi is represented by B̄. In other words

Bi = B̄ + fi, where fi ∈ Rn×r represents a loss-of-effectiveness actuator failure in the

actuator Bi. According to Remark 5.1, our fault accommodation method will be mainly

focused on the loss-of-effectiveness (LOE) actuator failure (as per equation (2.5)).

6.1.2 Centralized Scheme Versus Decentralized Scheme

In formation flight of N vehicles #i, i ∈ {1, ..., N} embedded with absolute measurements,

the terminologies of an s-order neighbor set N s (as in Definition 2.6) and adjacency

matrix Ω = [ωij] (as in Definition 2.7) can be applied to both centralized as well as

decentralized controllers. Not withstanding the above, the differences are as follows:

• For the centralized controller we have ∀i ∈ {1, ..., N}: N ({i}) = {1, ..., N}, whereas

for the decentralized controller we have ∃i ∈ {1, ..., N}: N ({i}) 6= {1, ..., N} (or

N ({i}) ⊂ {1, ..., N}).

• For the centralized controller we have ∀i ∈ {1, ..., N}, ∀j ∈ {1, ..., N}: ωij 6= 0,

whereas for the decentralized controller we have ∃i ∈ {1, ..., N}, ∃j ∈ {1, ..., N}:
i 6= j and ωij = 0.

This chapter is presented according to an absolute-measurement formation flight

system having the general terms N s and Ω regardless of being a centralized scheme or a
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decentralized scheme. Therefore, the terms “centralized” and “decentralized” are omitted

in the remainder of this chapter. This chapter results can be applied to both schemes

alghough the outcomes will be normally different. In other words, based on this chapter

results certain failure situations may be accommodated only by using a centralized control

scheme whereas the decentralized control scheme may fail to accommodate the vehicles.

One of the benefits of the centralized scheme over the decentralized scheme is minimized

and nullified by the all-to-all communication requirement of this scheme.

6.2 Desired Formation Tracking Specifications

Consider that the desired trajectory of the vehicle #i is specified according to

Ẋd
i = AXd

i + B̄Ud
i (6.2)

where Xd
i ∈ Rn and Ud

i ∈ Rq are the desired state and input vectors, respectively.

Therefore, the control signal

Ui = −KiEi + Ud
i , Ei = Xi −Xd

i

yields the following error dynamics

Ėi = (A− B̄Ki)Ei

where Ki is the feedback gain that yields the desired closed-loop system by assuming

that the pair (A,B) is controllable. For simplicity, in the following the effects of the

environmental disturbances Dext (as given in equation (6.1)) are ignored. However, these

effects are analyzed and incorporated later in this chapter.

In formation missions, the reference trajectory Xr
i of the vehicle #i is a weighted

summation of its own desired state Xd
i and its desired relative state (Xk + Xd

ki), where

Xd
ki = Xd

i − Xd
k , with respect to the vehicles #k (∀k ∈ N ({i})) in its nearest neighbor

set N ({i}) (as per Definition 2.6). In other words, the reference trajectory Xr
i of the

vehicle #i is calculated as follows:
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Xr
i = ωiiX

d
i +

∑
k∈N ({i})

ωki(Xk +Xd
i −Xd

k ) (6.3)

=

 ∑
k∈N +({i})

ωki

Xd
i +

∑
k∈N ({i})

ωki(Xk −Xd
k )

= Xd
i +

∑
k∈N ({i})

ωki(Xk −Xd
k )

= Xd
i −

∑
k∈N ({i})

ωkiEk

where the nearest neighbor set N ({i}) and inclusive nearest neighbor set N +({i}) of

the vehicle #i are defined in Definition 2.6. One immediate result that follows from the

above equation is that

Er
i = Ei −

∑
k∈N ({i})

ωkiEk

where by taking Er =
[

(Er
1)T · · · (Er

N)T
]T

and E =
[

(E1)T · · · (EN)T
]T

can be

transformed into the following form

Er =


IN×N −


0 ω21 · · · ωN1

ω12 0 · · · ωN2

...
...

. . .
...

ω1N ω2N · · · 0


⊗ In×n

E (6.4)

= ((IN×N − Ω)⊗ In×n)E

where Ω is the adjacency matrix of the weighted absolute measurement formation (WAMF)

digraph (as per Definition 2.7) and ⊗ denotes the Kronecker product. We present the

following conditions to comply with the criteria of a formation mission.

Condition 6.1. In a formation mission the following conditions must be satisfied:

a) The WAMF digraph GWAMF (VWAMF , EWAMF ) (as per Definition 2.7) is connected.

b) det(IN×N − Ω) 6= 0.
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c) In an ideal disturbance free environment if Er = 0 as t→∞ then E = 0 as t→∞.

d) ∀k ∈ {1, ..., N}; ||Ek|| < es, where es represents the error specification of the formation

mission.

e) |eig(Ω)| < 1, where eig(.) represents the eigenvalue of a matrix.

Condition 6.1-(a) follows from the definition of any specific formation mission, Con-

dition 6.1-(b) follows from the equation (6.4) to guarantee that the matrix Ω is full rank,

and Condition 6.1-(c) guarantees that each vehicle state will finally converge to its desired

trajectory although this reference trajectory is generated through getting feedback from

all the vehicles in its nearest neighbor set. Condition 6.1-(e) guarantees that the series

expansion of Σ∞s=0Ωs is valid and this property will be used later in the thesis. Regarding

Condition 6.1-(d), the following remark is now stated.

Remark 6.1. According to Condition 6.1-(d), the error specification es is to be satisfied

in each vehicle #k with respect to the desired trajectory, that is ||Ek|| < es. The equiva-

lent condition for the reference trajectory tracking problem can be determined as follows.

According to equation (6.4), we have E = ((IN×N − Ω)⊗ In×n)−1Er. We conclude that

||Ek|| < Ωmax

Lmax∑
i=1

||Er
i ||

where Ωmax is the maximum element of the matrix ((IN×N − Ω)⊗ In×n)−1 and Lmax is the

supremum over the maximum number of nonzero entities on the rows of ((IN×N − Ω)⊗ In×n)−1.

Therefore, a sufficient criterion to satisfy the Condition 6.1-(d) is

||Er
i || <

es
ΩmaxLmax

∀i ∈ {1, ..., N} (6.5)

where 1 ≤ Ωmax and 1 ≤ Lmax ≤ N .

The reference state Xr
i of the vehicle #i forms the reference state space model as

follows:

Ẋr
i = AXr

i +BiU
r
i (6.6)

The reference input vector U r
i is derived by substituting for Xr

i from equation (6.3) into

(6.6) to obtain
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(
Ẋd
i +

∑
k∈N ({i})

ωki(Ẋk − Ẋd
k )

)
= A

(
Xd
i +

∑
k∈N ({i})

ωki(Xk −Xd
k )

)
+BiU

r
i

⇒ BiU
r
i = (Ẋd

i − AXd
i ) +

∑
k∈N ({i})

ωki(Ẋk − AXk)−
∑

k∈N ({i})
ωki(Ẋ

d
k − AXd

k )

⇒ BiU
r
i = BiU

d
i +

∑
k∈N ({i})

ωkiBk(Uk − Ud
k )

⇒ U r
i = Ud

i +
∑

k∈N ({i})
ωki(Bi)

−1
leftBk(Uk − Ud

k )

(6.7)

where (Bi)
−1
left = (BT

i Bi)
−1BT

i is the left inverse of the matrix Bi. Using the reference

input U r
k , the vehicle #k implements the control law

Uk = −KkE
r
k + U r

k , E
r
k = Xk −Xr

k

in order to yield the following error dynamics

Ėr
k = (A−BkKk)E

r
k

where Kk is the feedback gain that is designed according to the following lemma.

Lemma 6.1. Consider the system governed by the dynamic equation Ėr
k = (A−BkKk)E

r
k

with the initial state Er
k(0). The state feedback matrix Kk = Y X−1 stabilizes the system

and minimizes γ1 + γ2, where γ1 is an upper bound on the H∞ norm of the transfer

function from the disturbance to the output of the system and γ2 is an upper bound on the

linear quadratic cost function JLQR(KkE
r
k, Q,R) in Lemma 2.3, if and only if there exist

a matrix Y and a positive definite matrix X > 0 that satisfy the following optimization

problem

Minimize γ1 + γ2

subject to

X > 0 AX +XAT +BkY + Y TBk
T I X

I −γ1I 0

X 0 −γ1I

 < 0

 AX +XAT +BkY + Y TBk
T X Y T

X −Q−1 0

Y 0 −R−1

 ≤ 0

[
γ2 (Er

k)
T (0)

Er
k(0) X

]
≥ 0

130



Proof: Follows from the results in [136] and [134], and those in Lemmas 2.2 and

2.3.

Therefore, we have

U r
i = Ud

i +
∑

k∈N ({i})

ωki(Bi)
−1
leftBk(−KkE

r
k + U r

k − Ud
k )

Taking U r =
[

(U r
1 )T · · · (U r

N)T
]T

, Ud =
[

(Ud
1 )
T · · · (Ud

N)
T
]T

, and KT = diag(
K1 · · · KN

)
the reference input vector U r is obtained from

(INr×Nr − Ω0)U r = (INr×Nr − Ω0)Ud − Ω0KTE
r

⇒ U r = Ud − (INr×Nr − Ω0)−1Ω0KTE
r

(6.8)

where Ω0 = diag
(
(Bi)

−1
left

)N
i=1

(Ω⊗ Ir×r) diag (Bi)
N
i=1. By invoking the matrix geometric

series (I −M)−1 = Σ∞s=0Ms with M0 ∆
= I, we get

U r = Ud −
∞∑
s=1

Ωs
0KTE

r (6.9)

In practice, equation (6.8) can be used to determine the reference inputs of the

vehicles. However, equation (6.9) is used below to determine the information that is

required to be exchanged among the vehicles in order to generate their reference inputs.

The matrix Ωs
0 in equation (6.9) corresponds to all possible paths of length s in the WAMF

digraph (as per Definition 2.7). The summation term in equation (6.9) adds up an infinite

number of terms Ωs
0 (s = 1, 2, ...). However, in reality only a finite number of terms Ωs

0

(s < N) are used to determine the information requirement for each vehicle. This is due

to the fact that in the WAMF digraph, the maximum length of a path with no redundant

vertex is equal to N − 1.

Remark 6.2. In equation (6.9), the term Ωs
0 indicates that in a fault free and disturbance

free environment (that is, Bi = B̄ and Dext = 0n×1), each vehicle #i (i ∈ {1, , ..., N})
requires the error vectors Er

j of vehicles #j, ∀j ∈ N [1,∞]({i}) = ∪∞s=1N
s({i}) (as per

Definition 2.6) in order to generate the reference input U r
i for its reference model (6.6).

In the next section, the problem of actuator fault recovery is considered at the low

level (LL) by incorporating the fault estimates in the LLFR controllers.

6.3 Low-Level Fault Recovery (LLFR) Controller

In this section, we assume that the system is fault free or that one has the index set

{i1, i2, ..., iNF } of all the NF faulty vehicles #k, k ∈ {i1, i2, ..., iNF } with an accurate fault
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estimate. In the later case of NF faulty vehicles, we assume that the actuators of the

faulty vehicles #k, k ∈ {i1, ..., iNF } are subject to loss-of-effectiveness (LOE) failures as

in equation (6.2), that is Bk = B̄ + fk. Moreover, we assume that the fault estimates are

unbiased, that is f̂k = fk + εk (or B̂k = Bk + εk) with εk = 0. Therefore, these accurate

estimates are incorporated into the controllers that are designed from Lemma 6.1 so that

the LLFR controllers are obtained.

In case when εk = 0n×r, k ∈ {i1, i2, ..., iNF }, the reference input vector U r
k in the

reference model (6.6) should be calculated based on the existing estimate B̂k = Bk. For

simplicity and without loss of generality, Bi (i ∈ {1, , ..., N}) can be replaced by B̂i for

both cases of a fault free vehicle #i (i ∈ {1, , ..., N}−{i1, i2, ..., iNF }) and a faulty vehicle

#i (i ∈ {i1, i2, ..., iNF }) with an accurate fault estimate. This substitution is incorporated

in equation (6.7) as follows

B̂iU
r
i = (Ẋd

i − AXd
i ) +

∑
k∈N ({i})

ωki(Ẋk − AXk)−
∑

k∈N ({i})

ωki(Ẋ
d
k − AXd

k )

or equivalently

B̂iU
r
i = B̄Ud

i +
∑

k∈N ({i})

ωkiB̂kUk −
∑

k∈N ({i})

ωkiB̄U
d
k (6.10)

One now obtains

U r
i = (B̂i)

−1
leftB̄U

d
i +

∑
k∈N ({i})

ωki(B̂i)
−1
leftB̂k (−KkE

r
k + U r

k )︸ ︷︷ ︸
Uk

−
∑

k∈N ({i})

ωki(B̂i)
−1
leftB̄U

d
k

(Kk is designed according to Lemma 6.1) which gives

(INr×Nr − Ω̂0)U r = (INr×Nr − Ω̂1)Ud − Ω̂0KTE
r

This is equivalent to

U r = (INr×Nr − Ω̂0)−1(INr×Nr − Ω̂1)Ud − (INr×Nr − Ω̂0)−1Ω̂0KTE
r (6.11)

where

Ω̂0 = diag
(

(B̂i)
−1
left

)N

i=1
(Ω⊗ Ir×r) diag

(
B̂i

)N

i=1

Ω̂1 = diag
(

(B̂i)
−1
left

)N

i=1
(Ω⊗ Ir×r) diag

(
B̄
)N

i=1
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Using the matrix geometric series (I −M)−1 = Σ∞s=0Ms with M0 ∆
= I , we have

U r = (Σ∞s=0Ω̂s
0)(INr×Nr − Ω̂1)Ud −

(
Σ∞s=1Ω̂s

0

)
KTE

r (6.12)

= Ud + Σ∞s=0Ω̂s
0(Ω̂0 − Ω̂1)Ud −

(
Σ∞s=1Ω̂s

0

)
KTE

r

In practice, equation (6.11) can be used to determine the reference inputs of the

vehicles. However, equation (6.12) is used below to determine the information that is

required to be exchanged among the vehicles in order to generate their reference inputs.

Remark 6.3. In equation (6.12), the term Ωs
0 indicates that in a disturbance free envi-

ronment, each vehicle #i (i ∈ {1, , ..., N}) requires the error vectors Er
j of vehicles #j

(∀j ∈ N [1,∞]({i}) = ∪∞s=1N
s({i}) as per Definition 2.6). Moreover, the term Ω̂s

0(Ω̂0−Ω̂1)

indicates that each vehicle #i (i ∈ {1, , ..., N}) requires the desired input vectors Ud
k of the

faulty vehicles #k (∀k ∈ N [1,∞]({i}) = ∪∞s=1N
s({i}) ; k ∈ {i1, i2, ..., iNF }) in order to

generate the reference input U r
i for its reference model (6.6).

In case that the actuator fault estimate of a faulty vehicle #k, k ∈ {i1, i2, ..., iNF } is

biased, that is εk 6= 0, and the error specification (es) of the formation flight of unmanned

vehicles mission is violated, the vehicle #k is partially recovered by the LLFR module.

Consequently, the formation level fault recovery (FLFR) module will be activated to

account for the performance degradations of the partially LL-recovered vehicle #k. The

results for the cooperative FLFR module will be presented in the next section.

6.4 Formation-Level Fault Recovery (FLFR) Module

Consider the case of a partially LL-recovered vehicle #k, k ∈ {i1, i2, ..., iNF } due to the

biased estimate of its actuator fault, that is f̂k 6= fk (B̂k 6= Bk) or f̂k = fk + εk (or

B̂k = Bk + εk), where εk 6= 0 is an unknown function but bounded (||εk|| < Bεk with Bεk

known). In order to accommodate a partially LL-recovered vehicle #k, the FLFR mod-

ule reconfigures the formation structure in terms of the weighted absolute measurement

formation (WAMF) digraph (as per Definition 2.7) according to Theorem 6.1. It also acti-

vates a robust controller for the partially LL-recovered vehicle according to Theorem 6.2.

Moreover, it imposes a constraint on the overall desired input vector of all the vehicles

in the s-order (s < N) neighbor set of the partially LL-recovered vehicle according to

Theorem 6.3 in order to compensate for the performance degradations of the formation

flight of unmanned vehicles.
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Theorem 6.1. If a vehicle #k, k ∈ {i1, i2, ..., iNF } is partially recovered by the LLFR

module due to a biased estimate B̂k = Bk + εk with εk 6= 0n×r, then the FLFR module

needs to set ωki = 0 (∀i ∈ {1, , ..., N}; i 6= k) in order to satisfy the Condition 6.1-(c).

Proof: For a vehicle #i, i ∈ {1, , ..., N} we start with the equation (6.10). For sim-

plicity and without loss of generality, the term B̂kUk (k ∈ {1, , ..., N}) in equation (6.10)

can be replaced by (Bk + εk)Uk for all the three cases of a fault free vehicle #k (k ∈
{1, , ..., N}− {i1, i2, ..., iNF }), a faulty vehicle #k (k ∈ {i1, i2, ..., iNF }) with accurate fault

estimate, and a partially LL-recovered vehicle #k (k ∈ {i1, i2, ..., iNF }). It should be

noted that only in the later case we have εk 6= 0. This replacement is incorporated in

equation (6.7) as follows:

B̂iU
r
i = B̄Ud

i +
∑

k∈N ({i})
ωki(Bk + εk)Uk −

∑
k∈N ({i})

ωkiB̄U
d
k

⇒ B̂iU
r
i = B̄Ud

i +
∑

k∈N ({i})
ωkiBkUk −

∑
k∈N ({i})

ωkiB̄U
d
k +

∑
k∈N ({i})

ωkiεkUk

⇒ B̂iU
r
i = (Ẋd

i − AXd
i ) +

∑
k∈N ({i})

ωki(Ẋk − AXk)

−
∑

k∈N ({i})
ωki(Ẋ

d
k − AXd

k ) +
∑

k∈N ({i})
ωkiεkUk

⇒ B̂iU
r
i︸ ︷︷ ︸

Ẋr
i −AXr

i

−Ẋd
i −

∑
k∈N ({i})

ωki(Ẋk − Ẋd
k ) + AXd

i + A
∑

k∈N ({i})
ωki(Xk −Xd

k )

=
∑

k∈N ({i})
ωkiεkUk

⇒ d
dt

(
Xr
i −Xd

i −
∑

k∈N ({i})
ωki(Xk −Xd

k )

)
− A

(
Xr
i −Xd

i −
∑

k∈N ({i})
ωki(Xk −Xd

k )

)

=
∑

k∈N ({i})
ωkiεkUk

⇒ Xr
i −Xd

i −
∑

k∈N ({i})
ωki(Xk −Xd

k ) =
∑

k∈N ({i})
ωki

t∫
τ=0

exp(−Aτ)εkUk(t− τ)dτ
∆
=χi(t)

Therefore, similar to equation (6.4) we get

Er = ((IN×N − Ω)⊗ In×n)E + χ(t) , χ(t) =
[
χT1 (t) · · · χTN(t)

]T
134



which indicates that Condition 6.1-(c) is not satisfied. Therefore, if a vehicle #k (k ∈
{i1, i2, ..., iNF }) is partially LL-recovered, that is εk 6= 0, then one needs to choose ωki = 0,

∀i 6= k in order to obtain χi(t) = 0, which guarantees the Condition 6.1-(c).

For a non-faulty or fully LL-recovered vehicle #i (εi = 0n×r), the local state feedback

matrix Ki can be appropriately selected by using Lemma 6.1 such that the control signal

Ui = −U r
i +KiE

r
i results in the desired closed-loop error dynamics Ėr

i = (A+ B̂iKi)E
r
i .

Now, consider the overall formation flight mission dynamics and its reference model

as follows

Ẋ = ATX +BTU

Ẋr = ATX
r + B̂TU

r

where

AT = diag(A)Nk=1

KT = diag(Ki)
N
k=1

BT = diag(Bk)
N
k=1

ε = diag(εk)
N
k=1

B̂T = diag(B̂k)
N
k=1 = BT + ε

Due to the biased estimate of certain faults, that is ε 6= 0Nn×Nr, the overall closed-loop

error dynamics becomes:

Ėr = (AT + B̂TKT − εKT )Er + εU r

Using the reference input given by equation (6.11) we have

Ėr =

AT + B̂TKT −ε(INr×Nr + (INr×Nr − Ω̂0)
−1

Ω̂0)︸ ︷︷ ︸
∆B̂T

KT

Er (6.13)

+ ε(INr×Nr − Ω̂0)−1(INr×Nr − Ω̂1)Ud

For a partially LL-recovered vehicle #i (εi 6= 0n×r), the nominal (disturbance-free)

state space model is represented by Ėr
i = (A + (B̂i + ∆B̂i(εi))Ki)E

r
i with ∆B̂i(εi) =
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(∆B̂T )[i,i]n×r
, where the index [i, j]a×b is defined according to Definition 2.8. In the fol-

lowing, a robust state feedback gain Ki is designed for the uncertain model (6.13) of the

partially LL-recovered vehicle #i.

Theorem 6.2. Consider a partially LL-recovered vehicle #i whose nominal (disturbance-

free) state space model is represented by Ėr
i = (A + (B̂i + ∆B̂i(εi))Ki)E

r
i with the initial

state Er
i (0), as in equation (6.13). In general, the matrix εi ∈ Rn×r includes Nεi (Nεi ≤

nr) uncertain (nonzero) elements εij (j = 1, ..., Nεi) and nr − Nεi zero elements. The

state feedback matrix Ki = YiX
−1
i stabilizes the system and minimizes γ1 + γ2, where

γ1 is an upper bound on the H∞ norm of the transfer function from the disturbance to

the output of the system and γ2 is an upper bound on the linear quadratic cost function

JLQR(KiE
r
i , Q,R) in Lemma 2.3, if there exist a matrix Yi and a positive definite matrix

Xi > 0 that satisfy the following optimization problem

Minimize γ1 + γ2

s.t. Xi > 0 and for εi ∈ {ε
j+
i , εj−i } , j = 1,...,Nεi : AXi +XiA

T + (B̂i + ∆B̂i(εi))Yi + Y T
i (B̂i + ∆B̂i(εi))

T

I

Xi

I Xi

−γ1I 0

0 −γ1I

 < 0

 AXi +XiA
T + (B̂i + ∆B̂i(εi))Yi + Y T

i (B̂i + ∆B̂i(εi))
T Xi Y T

i

Xi −Q−1 0

Yi 0 −R−1

 ≤ 0

[
γ2 (Er

i )
T (0)

Er
i (0) Xi

]
≥ 0

(6.14)

in which the terms εj+i and εj−i are defined as

εj+i = εi|εij=+NR
εi
Bεi ,εik=0(k 6=j) , ε

j−
i = εi|εij=−NR

εi
Bεi ,εik=0(k 6=j) (6.15)

where εij (j = 1,...,Nεi) are the uncertain (nonzero) elements of the matrix εi, and Nεi

and NR
εi

represent the number of nonzero elements and rows of the matrix εi, respectively.

Proof: The proof is similar to that of Lemma 6.1. The objective is to satisfy the

LMI conditions in (6.14). These LMI conditions cannot be directly verified since the

matrix εi is unknown. However, the unknown matrix εi is bounded, that is ||εi|| < Bεi

(k = 1,...,Nεi). Therefore, the summation of the absolute values of the uncertain (nonzero)

elements on each row of the matrix εi is less than Bεi. This implies that the sum of the

absolute values of the uncertain (nonzero) elements on all NR
εi

rows of the matrix εi is

less than NR
εi
Bεi, that is
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Nεi∑
j=1

||εij|| < NR
εi
Bεi (6.16)

The condition (6.16) can be represented by a convex polygon region in the Nεi
-dimensional

space corresponding to
[
εi1 εi2 · · · εiNεi

]T
. This convex region is surrounded and

covered by the vertices
+NR

εi
Bεi

0
...

0

 ,


−NR

εi
Bεi

0
...

0

 ,


0

+NR
εi
Bεi

...

0

 ,


0

−NR
εi
Bεi

...

0



, ...,


0

0
...

+NR
εi
Bεi

 ,


0

0
...

−NR
εi
Bεi



(6.17)

Now, if the LMI conditions in (6.14) hold for the vertices in (6.17), then they hold for

all values of the unknown matrix εi. Therefore, if there exists a matrix Yi and a positive

definite matrix Xi > 0 that satisfy the LMI conditions in (6.14) for εi ∈ {εj+i , εj−i },
j = 1, ..., Nεi, then Yi and Xi satisfy the LMI conditions in (6.14) for the unknown matrix

εi, and therefore the solution to the H∞ optimal feedback matrix Ki is calculated according

to Ki = YiX
−1
i .

Now that the robust controllers are designed, in the following a constraint will be

imposed on certain desired input vectors in order to ensure that the error specification is

satisfied.

Theorem 6.3. Assume that the error specification (es) of the formation mission is vio-

lated by the partially LL-recovered vehicle #k, and that the FLFR module takes ωki = 0,

∀i 6= k according to Theorem 6.1 and implements the robust controller according to Theo-

rem 6.2 for the partially LL-recovered vehicle #k. In order to satisfy the error specification

(es), the FLFR module has to impose a constraint on the desired input vector Ud
N +[1,∞]({k}),

which is defined as

Ud
N +[1,∞]({k})

∆
= (6.18)(

diag
(
Logic

{
1 ∈ N +[1,∞]({k})

}
, · · · ,Logic

{
N ∈ N +[1,∞]({k})

} )
⊗ Ir×r

)
Ud

where
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Logic
{
i ∈ N +[1,∞]({k})

} ∆
=

{
1 i ∈ N +[1,∞]({k})
0 i /∈ N +[1,∞]({k})

Proof: Taking ωki = 0, ∀i 6= k as in Theorem 6.1, the dynamics of all the vehicles

become independent from that of the partially LL-recovered vehicle #k, and hence the

tracking error of vehicle #k does not propagate to the entire formation flight system.

Taking

Tεk =
[

0r×r · · · 0r×r Ir×r 0r×r · · · 0r×r

]
where there are a total of N blocks, out of which the kth block is nonzero and all other

N-1 blocks are zero. Using the robust controller as in Theorem 6.2, the tracking error

dynamics of the partially LL-recovered vehicle #k becomes

Ėr
k = (A+ (B̂k + ∆B̂k)Kk)E

r
k

+ εkTεk(INr×Nr − Ω̂0)−1(INr×Nr − Ω̂1)Ud(t)

whose Laplace transform is given by

Er
k(s) =

(sI − A− (B̂k + ∆B̂k)Kk)
−1︸ ︷︷ ︸

Gk(s)

εkTεk(INr×Nr − Ω̂0)−1(INr×Nr − Ω̂1)Ud
N +[1,∞]({k})(s)

where Gk(s) is the transfer function matrix, and Ud(s) is now replaced by Ud
N +[1,∞]({k})(s).

This is due to the term Tεk(INr×Nr − Ω̂0)−1(INr×Nr − Ω̂1) above, for which a similar

argument as in Remark 6.3 (for equations (6.11) and (6.12)) can be made to show that

the coefficients of Ud
i , ∀i ∈ N +[1,∞]({k}) = ∪∞s=0N

s({k}) are nonzero and the coefficients

of Ud
i , ∀i /∈ N +[1,∞]({k}) = ∪∞s=0N

s({k}) are zero. It is for this reason that the operator

Logic{.} is used in the definition of Ud
N +[1,∞]({k}) in equation (6.18). Taking

Hk
∆
= sup

t∈R+

||εk||<Bεk

∥∥∥∥∫ t

τ=0

Gk(t− τ)εkTεk(INr×Nr − Ω̂0)
−1

(INr×Nr − Ω̂1)dτ

∥∥∥∥
we get

||Er
k(t)|| ≤ Hk sup

t∈R+

||Ud
N +[1,∞]({k})(t)|| = BErk

(6.19)
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Let us now assume that an external (environmental) disturbance Dext, that is bounded

by Bext (i.e., ||Dext|| < Bext), is applied to the formation flight system as indicated in (6.1).

Following along the similar steps above, equation (6.19) is now modified as follows

||Er
k(t)|| ≤ BErk

+ TErk = Btot (6.20)

where

TErk
∆
= sup

t∈R+

||εk||<Bεk

∥∥∥∥∫ t

τ=0

G(t− τ)Bextdτ

∥∥∥∥
Using the equation (6.5) of Remark 6.1, the sufficient condition for the error speci-

fication to be satisfied is that

Btot <
es

ΩmaxLmax

Replacing for BErk
and Btot from equations (6.19) and (6.20), respectively, we obtain

sup
t∈R+

||Ud
N +[1,∞]({k})(t)|| <

1

Hk

(
es

ΩmaxLmax

− TErk

)
(6.21)

which requires the FLFR module imposes a constraint on the desired input vector Ud
N +[1,∞]({k})(t).

This completes the proof of the theorem.

In this section, the FLFR module is developed for a single partially LL-recovered

vehicle. In case that multiple vehicles are partially LL-recovered in the formation, the

concept of a supporting neighbor is introduced and formulated in the next section.

6.5 FLFR Module Using Supporting Neighbor (SN)

for Multiple Actuator Failures

Theorem 6.1 implies that if a vehicle #k is partially recovered (εk 6= 0) by the LLFR

module, then it is disqualified by the FLFR module to be in the nearest neighbor set of

other vehicles. Moreover, Theorem 6.3 implies that the FLFR module imposes constraints

on all the vehicles in the s-order (s < N) neighbor set (as per Definition 2.6) of the

partially LL-recovered vehicle #k. This constraint is in terms of the desired input vectors

as formulated in equation (6.21).

Consider the index set {i1, i2, ..., iNF } of all the NF partially LL-recovered vehicles

#ik (ik ∈ {i1, i2, ..., iNF }). In order to localize the effects of actuator faults and prevent

their corresponding errors from propagation to the entire formation, one can take ωikj = 0,

∀ik ∈ {i1, i2, ..., iNF } and ∀j /∈ {i1, i2, ..., iNF } (as per Theorem 6.1). On the other hand,
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in order to minimize the number of constrained vehicles in the s-order neighbor set (as

per Theorem 6.3), one can choose a unique non-faulty or fully LL-recovered vehicle #iSN

(iSN /∈ {i1, i2, ..., iNF }) as a supporting neighbor (SN), such that:

a) the supporting neighbor does not have any neighbor, that is N ({iSN}) = ∅, and

b) the partially LL-recovered vehicles #ik (ik ∈ {i1, i2, ..., iNF }) do not have any other

neighbor than the supporting neighbor, that is N ({ik}) = {iSN}, ∀ik ∈ {i1, i2, ..., iNF }.

If the two conditions above are satisfied, then instead of NF conditions (6.21) (cor-

responding to the NF partially LL-recovered vehicles {i1, i2, ..., iNF }) one can satisfy the

following single condition:

sup
t∈R+

||Ud
{i1,i2,...,iNF ,iSN}

(t)|| < 1

Hk

(
es

ΩmaxLmax

− TErk

)
(6.22)

where

Ud
{i1,i2,...,iNF ,iSN}

(t) =
[

(Ud
i1

)
T

(Ud
i2

)
T · · · (Ud

iF
)
T

(Ud
iSN

)
T
]T

Compared to the number of vehicles in the s-order (s < N) neighbor sets whose

desired inputs are constrained by the NF conditions (6.21), the number of vehicles in the

s-order neighbor sets here reduces to one (corresponding to the one supporting neighbor

#iSN) whose desired input is constrained by the single condition (6.22). The vehicle #iSN

is called a supporting neighbor since its desired input vector Ud
iSN

needs to be adjusted

(or constrained by equation (6.22)) in order to accommodate the performance deficiencies

of the partially LL-recovered vehicles #ik (ik ∈ {i1, i2, ..., iNF }). However, the drawback

of the above method is that one cannot design an arbitrary absolute measurement forma-

tion (AMF) digraph for the formation mission. In other words, by using the supporting

neighbor technique one in fact constrains the flexibility in choosing the desired formation

digraph.

6.6 Conclusions

In this chapter, a cooperative fault accommodation algorithm is proposed for multiple-

vehicle formation flying missions embedded with absolute measurements. This framework

provides two recovery modules, namely a low-level fault recovery (LLFR) module and a

formation-level fault recovery (FLFR) module. In the LLFR module, a conventional

recovery controller (RC) based on a given fault severity estimate is employed. In case

that the LLFR controller cannot fully recover the faulty vehicle due to an imprecise fault

estimate, the error bounds imposed by the mission specifications can be violated and
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the supervisor identifies this violation and activates the FLFR module. This module

is responsible for reconfiguring the weighted absolute measurement formation (WAMF)

digraph, applying a robust controller, and imposing constraints on the desired input

vectors of the partially LL-recovered vehicle and all the vehicles in its nearest neighbor

set. Consequently, the formation mission specifications can still be guaranteed so that

the fault is cooperatively recovered by our proposed scheme.
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Chapter 7

Simulation Results

In this chapter, simulations are conducted for the satellite formation flight problem to

confirm the validity of the analytical work that was developed in the previous chapters.

The simulation results are presented in two main sections, namely the deep space (DS)

and the planetary orbital environment (POE) formation missions. Our fault estimation

method will cover all four types of actuator failures, namely float, lock-in-place (LIP),

hard-over failure (HOF), and loss-of-effectiveness (LOE). But according to Remark 5.1,

our fault accommodation method will be mainly focused on the loss-of-effectiveness (LOE)

actuator failure (as per equation (2.5)).

7.1 Satellite Formation Mission in Deep Space (DS)

Consider the five-satellite formation in the xy-plane in deep space [6], whose relative

measurement formation (RMF) digraph (as per Definition 2.3) is shown in Figure 7.1.

The satellite dynamics can be approximated by double integrators [6], [7]. Since the

dynamics of a satellite are decoupled along the three x, y and z axes, we only consider the

x-axis dynamics here as all the results can be similarly extended to the other two axes.

The x-axis dynamics of the ith satellite, i = 1, ..., 5, including the external disturbances

Wxi and sensor measurement noise Vxij are governed by

Ẋxi = AXxi +BxiUxi +Wxi (i = 1, ..., N) (7.1)

Yxij = Xxj −Xxi + Vxij (j = 1, ..., N ; eij ∈ ERMF )

where

A =

[
0 1

0 0

]
, Bxi =

[
0
bxi
mi

]
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Figure 7.1: The RMF digraph of the five-satellite formation in deep space.

Xxi = (xi, vxi)
T ∈ R2 and Uxi = uxi ∈ R are the x-axis state vector (including position

xi and velocity vxi) and the control input vector (actuator force) of the satellite #i

(i ∈ {1, ..., 5}), respectively, expressed in the local inertial frame. Moreover, Yxij =

(yxij , yvxij )
T ∈ R2 is the output (measurement) vector of the relative position xij and

velocity vxij between the two satellites #i and #j as follows

xij
∆
=xj − xi

vxij
∆
= vxj − vxi

The subscripts “xi” and “xij” above (as in Xxi and Yxij , respectively) represent

the variables of the x-axis dynamics of the satellite #i. The total mass of the satellite

#i is denoted by mi. The major environmental disturbance Wxi in deep space is solar

pressure [3]. It is calculated according to the formula FS = CSISAS/VL, where CS = 1.0

is the solar radiation coefficient, IS is the solar radiation intensity, AS is the satellite

cross-section area upon which solar radiation is forced, and VL = 3× 108 is the speed of

light. By taking IS = 3000(Watt/m2) and AS = 1(m2) the solar pressure becomes in the

order of 10−5(N). For simulations the sensor noise Vxij is considered to be an additive

zero-mean white Gaussian process with the variance of 10−4.

The objective of the formation mission is a counter-clockwise rotation maneuver in

the xy-plane with the frequency of ω = 0.1(rad/s), such that the satellites always maintain

a polygon shape with the side lengths of 200(m) and with an error specification of es =

0.010(m). The desired formation outputs are the relative distances among the neighboring

satellites. In the following, we consider two scenarios presented in two subsections that

correspond to float, lock-in-place, and hard-over actuator faults and loss-of-effectiveness

actuator faults.
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7.1.1 Float, Lock-in-Place, and Hard-Over Actuator Faults

In the case of float, lock-in-place, or hard-over actuator fault in satellite #i we have

bxiuxi = πxi

It should be pointed out that the faults that are considered here are of permanent type

and correspond to actuators. From the estimation point of view, estimating either of

the three actuator fault types namely float, lock-in-place or hard-over, is equivalent to

estimating the one parameter πxi . Therefore, we consider a lock-in-place actuator fault

in the following, and the results on float and hard-over actuator faults are not presented

due to similarity with the results on lock-in-place actuator fault.

Assume that satellite #2 is subjected to a lock-in-place actuator fault, that is,

bx2ux2 = πx2 = 0.8. Taking Xxij

∆
=Xxj − Xxi = (xij, vxij)

T and excluding the effects of

external disturbances and sensor measurement noise, the relative dynamic equations of

the formation become

Ẋx12 = AXx12 +

[
0

πx2
m2
− bx1ux1

m1

]

Ẋx23 = AXx23 +

[
0

bx3ux3
m3
− πx2

m2

]

Ẋx34 = AXx34 +

[
0

bx4ux4
m4
− bx3ux3

m3

]
(7.2)

Ẋx45 = AXx45 +

[
0

bx5ux5
m5
− bx4ux4

m4

]
Yxij = Xxij (i, j ∈ {1, ..., 5} ; eij ∈ ERMF )

Following the same steps that led to the linear system (2.11), the overall fault-

augmented relative-dynamics state space model of the formation in equation (7.2) can be

expressed in the form of a linear system whose state dependency (SD) digraph is depicted

in Figure 7.2. According to this figure, the above linear system is structurally observable

(using Proposition 3.1), and therefore sub-observers can be designed as shown next. We

now design six sub-observers by using Procedure 3.1 as follows
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Figure 7.2: The state dependency (SD) digraph of the five-satellite formation in deep
space due to a lock-in-place actuator fault.
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(i) SO(1)(R(1)|I(1), O(1), D(1))

R(1) = {x̂(1)
12 , v̂

(1)
x12 , π̂

(1)
x2 } , I(1) = {ux1}

O(1) = {yx12 , yvx12} , D
(1) = {}

(ii) SO(2)(R(2)|I(2), O(2), D(2))

R(2) = {x̂(2)
23 , v̂

(2)
x23 , π̂

(2)
x2 } , I(2) = {ux3}

O(2) = {yx23 , yvx23} , D
(2) = {}

(iii) SO(3)(R(3)|I(3), O(3), D(3))

R(3) = {x̂(3)
34 , v̂

(3)
x34} , I(3) = {ux3 , ux4}

O(3) = {yx34 , yvx34} , D
(3) = {}

(iv) SO(4)(R(4)|I(4), O(4), D(4))

R(4) = {x̂(4)
45 , v̂

(4)
x45} , I(4) = {ux4 , ux5}

O(4) = {yx45 , yvx45} , D
(4) = {}

(v) SO(5)(R(5)|I(5), O(5), D(5))

R(5) = {x̂(5)
12 , v̂

(5)
x12} , I(5) = {}

O(5) = {yx12 , yvx12} , D
(5) = {}

(vi) SO(6)(R(6)|I(6), O(6), D(6))

R(6) = {x̂(6)
23 , v̂

(6)
x23} , I(6) = {}

O(6) = {yx23 , yvx23} , D
(6) = {}

The directed graphs of the sub-observers are depicted in Figure 7.3, where the dashed

edges represent the information that is required by the sub-observer to estimate the states

in its range.

In order to estimate the severity of a fault in satellite #2, the estimation task starts

at T1 = 0(sec) by using the initial set of sub-observers SetsoI = {SO(1), SO(3), SO(4), SO(6)},
where the sub-observer gains are selected by using Lemma 3.2 as follows

K(1) =

 −4.5000 0.5000

−4.5375 −16.0875

3.7125 14.1625

 , K(3) = K(4) =

[
−1.5 −.5
−.5 −1.5

]

and SO(6) represents direct measurements of the states x23 and vx23 . Subsequently, at time

t ≥ T2 = 100(sec) satellite #1 is subjected to a process dynamics uncertainty/unreliability

W̄x1 that affects the estimation performance. This unreliability is due to an unexpected

communication delay that occurs when satellite #1 sends its control signal ux1(t) to the

other satellites in its neighbor set N ({1}) for filtering. In the following simulations this

uncertainty is represented by W̄x1(t) = ux1(t−τ)−ux1(t), where τ = 0.1(sec). In order to

constrain and limit the effects of W̄x2 on the local estimates and avoid its adverse effects

on the estimates of all the states and parameters throughout the formation, by using the

results from equations (3.15) and (3.16) at time T2 the HL supervisor makes a decision
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SO(1) SO(2)

SO(3) SO(4)

SO(5) SO(6)

Figure 7.3: The directed graphs of the sub-observers corresponding to the linear model
(7.2).
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on switching from the initial set of sub-observers SetsoI to the reconfigured set of sub-

observers SetsoR = {SO(2), SO(3), SO(4), SO(5)}, where K(2) = K(1) and SO(5) represents

direct measurements of the states x12 and vx12 .

Figure 7.4: The E/WE digraph for the reconfigured set of sub-observers.

The estimation (E) digraph of the system is depicted in Figure 7.4. In this figure,

the vertices are assigned as follows

vsource =


0

0

0

0

0

 ,v1 =


0

0

0

1

0

 ,v2 =


0

0

1

1

0

 ,v3 =


1

0

1

1

1

 ,v4 =


0

1

1

1

1

 ,vsink =


1

1

1

1

1


that correspond to the overall fault-augmented state X =

[
XT
x12

XT
x23

XT
x34

XT
x45

πx2

]T
. In

case that there are no unreliabilities (W̄xi = 0, i = 1, ..., 5), we have COND(i) = 0, i =

1, ..., 5 and by using equations (3.15) and (3.16) the supervisor proposes the initial set of

sub-observers SetsoI = {SO(1), SO(3), SO(4), SO(6)}. When the unreliability W̄x1 6= 0 is im-

posed on the system, we have COND(1) = 1 (or COST (1) 6= 0), which requires the super-

visor to propose the reconfigured set of sub-observers SetsoR = {SO(2), SO(3), SO(4), SO(5)}
by using equations (3.15) and (3.16).

In order to show the significance and effectiveness of our proposed cooperative es-

timation framework that switches from the initial set of sub-observers to the reconfig-

ured set of sub-observers at time T2, both the time intervals T12 = [0 100](sec) and

T23 = [100 200](sec) are included in Figures 7.5 and 7.6. One can compare the T23-

interval of Figure 7.5 with that of Figure 7.6. The maximum norm of the estimation error

for π
(1)
x2 , that is maxt∈T23|π̂

(1)
x2 (t) − π(1)

x2 (t)|, by using the initial set of sub-observers SetsoI
(Figures 7.5) is calculated to be 0.05, while the maximum norm of the estimation error
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for π
(2)
x2 is shown to be less than 0.01 by using the reconfigured set of sub-observers SetsoR

(Figure 7.6). This clearly demonstrates that our proposed cooperative estimation scheme

successfully makes the decision on switching from the initial set to the reconfigured set of

sub-observers.

Figure 7.5: Actual, estimated, and the estimation error of the fault in satellite #2 by
using the initial set of sub-observers.

7.1.2 Loss-of-Effectiveness (LOE) Actuator Faults

In the case of loss-of-effectiveness (LOE) actuator fault in satellite #i the x-axis actuator

gain becomes

bxi = b̄xi + πxi

where b̄xi and πxi represent the x-axis nominal (healthy) actuator gain and its correspond-

ing loss-of-effectiveness (LOE) actuator fault signal, respectively. It should be pointed out

again that the faults that are considered here are of permanent type. Taking Xxij

∆
=Xxj−

Xxi = (xij, vxij)
T , Bxij

∆
=(−Bxi , Bxj) and Uxij

∆
=[(Uxi)

T , (Uxj)
T ]T = (uxi , uxj)

T , the relative

dynamic equation of the formation becomes
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Figure 7.6: Actual, estimated, and the estimation error of the fault in satellite #2 by
using the reconfigured set of sub-observers.

Ẋxij = AXxij +BxijUxij (7.3)

Yxij = Xxij (eij ∈ ERMF )

Following the same steps that led to the bilinear system (2.10), the fault-augmented

relative-dynamics state space model of the formation given in equation (7.3) can be ex-

pressed in the form of a bilinear system, whose state dependency (SD) digraph is depicted

in Figure 7.7. According to this figure, the bilinear system is structurally observable (using

Proposition 4.1), and therefore the sub-observers can be designed as shown subsequently.

Next, by using Procedure 4.1 we design 12 sub-observers SO(kijij ), SO(kiij), and SO(kjij)

for {ij} ∈ {{12}, {23}, {34}, {45}} as follows
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Figure 7.7: The state dependency (SD) digraph of the five-satellite formation in deep
space due to loss-of-effectiveness actuator faults.
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(i) SO(kijij )(R(kijij )|I(kijij ), O(kijij ), D(kijij ))

R(kijij ) = {π̂(kijij )
xi , π̂

(kijij )
xj } , I(kijij ) = {uxi , uxj}

O(kijij ) = {yxij , yvxij } , D
(kijij ) = {}

(ii) SO(kiij)(R(kiij)|I(kiij), O(kiij), D(kiij))

R(kiij) = {π̂(kiij)
xi } , I(kiij) = {uxi , uxj}

O(kiij) = {yxij , yvxij } , D
(kiij) = {π̂(kiij)

xj }
(iii) SO(kjij)(R(kjij)|I(kjij), O(kjij), D(kjij))

R(kjij) = {π̂(kjij)
xj } , I(kjij) = {uxi , uxj}

O(kjij) = {yxij , yvxij } , D
(kjij) = {π̂(kjij)

xi }

in which x̂
(k)
ij and v̂

(k)
xij , k ∈ {kijij , kiij, k

j
ij} are eliminated from the range R(k) of the sub-

observer SO(k) because these states are directly measured by the sensors yxij and yvxij .

The directed graphs of the sub-observers are depicted in Figure 7.8, where the dashed

edges represent the information that is required by the sub-observer to estimate the states

in its range.

We consider the following three scenarios (A), (B), and (C). In scenario (A), all

the satellites are fault free and the error specification es = 0.010(m) is satisfied with a

properly designed controller. In scenario (B), satellites #2, #3, and #4 are faulty and

the HL supervisor activates the LLFR module. This module estimates the actuator faults

by using cooperative estimators and incorporates the estimates in the LLFR controller to

fully recover all the satellites. However, satellite #3 is partially recovered by the LLFR

module due to a biased estimate of its fault, and consequently the error specification

es = 0.010(m) is violated. In scenario (C), the HL supervisor activates the FLFR module

to cooperatively accommodate the partially LL-recovered satellite #3 so that the error

specification can now be guaranteed. For sake of relative evaluation, the x-axis cumulative

control effort is defined according to

Exi(t) =

∫ t

τ=0

u2
xi

(τ)dτ (i = 1, ..., 5)

and is compared among the following three scenarios.

A. All the satellites are fault free: By using the centralized controller (5.10) with

b̂xi = bxi (i = 1, ..., 5) and setting the αi parameters equal to one, i.e. αi = 1 (i = 1, ..., 5),

and by using Lemma 5.1 to calculate the centralized feedback gain

K =
[
−2.9687 −3.2813

]
the maximum tracking error that is obtained is quite acceptable (namely, error = 0.005 <

0.010(m) = es). Figure 7.9-(a) depicts the cumulative control effort that is expensed.
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SO(kijij )

SO(kiij)

SO(kjij)

Figure 7.8: The directed graphs of the sub-observers corresponding to the bilinear
model (7.3).
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(a) (b)

(c)

Figure 7.9: The x-axis cumulative centralized control effort for (a) all satellites are fault
free, (b) faulty satellite #3 with the LLFR applied and α3 = 1, and (c) faulty satellite
#3 with the HLFR applied and α3 = 6.7.
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On the other hand one can use the decentralized controller (5.34) and Lemma 5.3

to calculate the decentralized feedback gains

β1
12 = [2.8042 1.7155] , β2

12 = [0.3532 − 0.8978]

β2
23 = [0.5200 3.3196] , β3

23 = [−0.2470 − 2.7707]

β3
34 = [0.2470 2.7707] , β4

34 = [−0.5200 − 3.3196]

β4
45 = [−0.3532 0.8978] , β5

45 = [−2.8042 − 1.7155]

and the parameter α = (α12, α23, α34, α45)T = (0.2, 0.4, 0.6, 0.8)T ∈ R4 (with ||AT3 (α)|| =

0.6325) chosen to minimize the energy of the input signal Ud in (5.34) by minimizing the

cost function

fcost(.) =

∫ ∞
t=0

UT
d (t)Ud(t)dt

The resulting maximum tracking error is quite acceptable (namely, error = 0.007 <

0.010(m) = es). Figure 7.10-(a) depicts the cumulative control effort that is expensed.

B. Satellites #2, #3, and #4 are faulty and the fault in satellite #3 is partially

recovered by the LLFR module: A 20% loss-of-effectiveness (LOE) fault is applied

to the x-axis actuators of satellites #2, #3, and #4. In this case, the HL supervisor

activates the LLFR module which performs cooperative fault estimation for the three

faulty satellites.

At first the LLFR module successfully performs the estimation task by the initial

set of sub-observers. Subsequently, at time t ≥ T2 = 100(sec), satellite #3 is subjected

to process dynamics unreliability W̄x3 that affects the estimation performance. This

unreliability is due to an unexpected communication delay that occurs when satellite #3

sends its control signal ux3(t) to the other satellites in its neighbor set N ({3}) for filtering.

In the following simulations this uncertainty is represented by W̄x3(t) = ux3(t−τ)−ux3(t),

where τ = 0.1(sec). In order to constrain and limit the effects of W̄x3 on the local estimates

and avoid its adverse effects on the estimates of all the states and parameters throughout

the formation, by using the results from equation (4.19) at time T2 the HL supervisor

makes a decision on switching from the initial set of sub-observers to the reconfigured set

of sub-observers, as described in more detail below.

We consider the following sequential simulation steps:

1. In the time interval T12 = [0, 100](sec), no unreliabilities are present in the sys-

tem (W̄xi = 0, i = 1, ..., 5). The weighted sub-observer dependency estimation
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(a) (b)

(c)

Figure 7.10: The x-axis cumulative decentralized control effort for (a) all satellites are
fault free, (b) faulty satellite #3 with the LLFR applied and ||AT3 || = 0.6325, and (c)
faulty satellite #3 with the HLFR applied and ||AT3 || = 0.2530.
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(WSODE) digraph is shown in Figure 7.11, where the vertices are assigned as fol-

lows

vsource =


0

0

0

0

0

 ,v1 =
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1

1

0

0

0
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
and the cumulative sub-observer costs are summarized in Table 7.1. For calculating

the sub-observer costs, we take CR = 0 (no recovery cost) and CE >> CC (the

estimation cost is weighted considerably more than the communication cost). For

brevity, only the costs corresponding to the paths that pass through the vertices

vsource, v1, v2, v3, and vsink are indicated in Table 7.1. It is concluded that the

minimum cumulative sub-observer cost (as per equation (4.19)) corresponds to the

initial set of sub-observers SetsoI = {SO(k12
12), SO(k23

23), SO(k34
34), SO(k45

45)}. This mini-

mum cost is calculated to be 0. The corresponding sub-observer dependency (SOD)

digraph is depicted in Figure 7.12, which is shown to be acyclic (as required by

Theorem 3.1 for stability analysis).

2. At time T1 = 0(sec) the estimation process is started with the initial set of sub-

observers SetsoI = {SO(k12
12), SO(k23

23), SO(k34
34), SO(k45

45)}, and the estimates for the fault

signals in the time interval T12 are shown in Figures 7.13, 7.14, 7.15, 7.16, and 7.17.

In order to show the effectiveness of our proposed fusion feedback (FF) algorithm, we

take the constrained-state sub-observers (CSSOs) SO(k12
12) and SO(k23

23), whose com-

mon state is πx2 , with the time constant τ = 20 as in equation (4.29). The effective-

ness of our proposed fusion feedback procedure (with ` = 10 as in equation (4.38))

is depicted in Figure 7.18-(a) as compared with that in Figure 7.18-(b), in which

there is no fusion feedback (` = 1). Figure 7.18-(a) shows that the constrained-state

condition π̂
(k12

12)
x2 − π̂(k23

23)
x2 = 0 on the common state πx2 is satisfied by using the fusion

feedback. Figure 7.19 shows the traces of the covariance matrices which remain

bounded. This implies that the fusion feedback method does not interfere with the

stability of the overall estimation algorithm. Moreover, the FF algorithm is ran for

the values of ` = 1.5, 2, 2.5, ..., 6. The maximum norm of the state constraint error

in the time interval [50 200](sec), that is maxt∈[50 200]|π̂
(k12

12)
x2 (t)− π̂(k23

23)
x2 (t)| versus ` is
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depicted in Figure 7.20-(a), and the maximum covariance matrix traces of SO(k12
12)

and SO(k23
23) versus ` are depicted in Figure 7.20-(b). These two figures indicate

that by increasing the parameter `, the maximum norm of the state constraint er-

ror becomes closer to zero by the FF algorithm, at the cost of increase in the two

maximum covariance matrix traces.

3. In the time interval T23 = [100, 200](sec), the unreliability W̄x3 = ux3(t−τ)−ux3(t),

that was described earlier in this chapter, is imposed on the system. This situa-

tion is detected by the FDI module as per Assumption 3.1 during the time inter-

val T23. In this case, the weighted sub-observer dependency estimation (WSODE)

digraph is shown in Figure 7.11 and the cumulative sub-observer costs are sum-

marized in Table 7.1. According to this table, the cumulative cost of the initial

set of sub-observer SetsoI is calculated to be 3CE, which corresponds to the un-

reliable estimates of the three states πx2 , πx3 , and πx4 . Since CE >> CC , by

using the results from equation (4.19) the supervisor reconfigures the set of sub-

observers such that the cumulative sub-observer cost (specially the estimation cost)

is minimized. Therefore, the supervisor selects the reconfigured set of sub-observers

SetsoR = {SO(k12
12), SO(k3

23), SO(k45
45)}, whose cumulative cost is CE + CCcost

(k3
23)

c,2 . The

corresponding sub-observer dependency (SOD) digraph is depicted in Figure 7.21,

which is shown to be acyclic (as required by Theorem 3.1 for stability analysis).

4. At time T2 = 100(sec), the estimation process switches to the reconfigured set of

sub-observers SetsoR = {SO(k12
12), SO(k3

23), SO(k45
45)}, and the estimates for the fault

signals are shown in the time interval T23 in Figures 7.22, 7.23, 7.24, 7.25, and 7.26.

In order to demonstrate the significance and effectiveness of our proposed cooper-

ative estimation framework that switches from the initial set of sub-observers SetsoI to

the reconfigured set of sub-observers SetsoR at time T2, both the time intervals T12 =

[0 100](sec) and T23 = [100 200](sec) are included in Figures 7.13 - 7.17 and Figures 7.22

- 7.26. One can compare the T23-interval estimation performance of the initial set of

sub-observers in Figures 7.13 - 7.17 with that of reconfigured set of sub-observers in Fig-

ures 7.22 - 7.26, respectively. This comparison is summarized in Table 7.2. In this table,

the means and variances of the fault signal estimation errors are provided for the initial

and the reconfigured sets of sub-observers. It is clearly demonstrated that our proposed

cooperative estimation scheme in the LLFR module successfully makes the decision on

switching from the initial set to the reconfigured set of sub-observers.

Using the reconfigured set of sub-observers SetsoR , the corresponding fault parameter

in satellite #3 is estimated within a 10% relative error, that is |εx3 |/bx3 = |b̂x3−bx3|/bx3 ≤
0.10. The estimates of the faults are ultimately used in the centralized LLFR controller.

By using the centralized controller (5.10), the parameters αi, and the centralized feedback
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Figure 7.11: The WSODE digraph for the scenario (B) in which the sub-observer SO(k),
k ∈ {kijij , kiij, k

j
ij} is denoted by “(k)” for simplicity. The costs (cumulative weights) are

summarized in Table 7.1.

Figure 7.12: The acyclic SOD digraph for the initial set of sub-observers for the scenario
(B). The sub-observer SO(k), k ∈ {kijij , kiij, k

j
ij} is denoted by “(k)” for simplicity. The

digraph has no edges that means the SOs can work independently.
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Figure 7.13: Actual, estimated, and the estimation error of the LOE fault in satellite #1
by using the initial set of sub-observers.
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Figure 7.14: Actual, estimated, and the estimation error of the LOE fault in satellite #2
by using the initial set of sub-observers.
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Figure 7.15: Actual, estimated, and the estimation error of the LOE fault in satellite #3
by using the initial set of sub-observers.

162



Figure 7.16: Actual, estimated, and the estimation error of the LOE fault in satellite #4
by using the initial set of sub-observers.
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Figure 7.17: Actual, estimated, and the estimation error of the LOE fault in satellite #5
by using the initial set of sub-observers.

(a) (b)

Figure 7.18: The constraint error of the common state πx2 , that is π̂
(k12

12)
x2 − π̂(k23

23)
x2 , (a) with

fusion feedback (` = 10) and (b) without fusion feedback (` = 1).
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(a) (b)

Figure 7.19: Trace of the error covariance matrices for the two sub-observers SO(k12
12) and

SO(k23
23) with (a) normal and (b) zoomed scale.

(a) (b)

Figure 7.20: (a) The maximum norm of the constraint error of the common state πx2

in the time interval [50 200](sec), that is maxt∈[50 200]|π̂
(k12

12)
x2 (t) − π̂

(k23
23)

x2 (t)|, and (b) the

maximum trace of the error covariance matrices for the two sub-observers SO(k12
12) and

SO(k23
23) in the time interval [50 200](sec).
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Figure 7.21: The acyclic SOD digraph for the reconfigured set of sub-observers. The sub-
observer SO(k), k ∈ {kijij , kiij, k

j
ij} is denoted by “(k)” for simplicity. The sub-observers

SO(k12
12) and SO(k45

45) can work independently, but SO(k3
23) depends on SO(k12

12).

Figure 7.22: Actual, estimated, and the estimation error of the LOE fault in satellite #1
by using the reconfigured set of sub-observers.
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Figure 7.23: Actual, estimated, and the estimation error of the LOE fault in satellite #2
by using the reconfigured set of sub-observers.
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Figure 7.24: Actual, estimated, and the estimation error of the LOE fault in satellite #3
by using the reconfigured set of sub-observers.
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Table 7.1: The cumulative sub-observer costs corresponding to the paths that pass through
the vertices vsource, v1, v2, v3, and vsink as shown in Figure 7.11. Each cost has two com-
ponents. The first component represents the estimation cost (the states whose estimates
are unreliable are written in parentheses), and the second component represents the com-
munication cost.

Sub-Observer Set Cumulative Costs (Estimation/Communication)
W̄x3 = 0 W̄x3 6= 0

{SO(k12
12), SO(k23

23), SO(k34
34), SO(k45

45)} 0
0

3 (πx2 ,πx3 ,πx4 )
0

{SO(k12
12), SO(k3

23), SO(k45
45)}

0

cost
(k323)

c,2

1 (πx3 )

cost
(k323)

c,2

{SO(k12
12), SO(k23

23), SO(k34
34), SO(k5

45)}
0

cost
(k545)

c,4

4 (πx2 ,πx3 ,πx4 ,πx5 )

cost
(k545)

c,4

{SO(k12
12), SO(k23

23), SO(k4
34), SO(k45

45)}
0

cost
(k434)

c,3

3 (πx2 ,πx3 ,πx4 )

cost
(k434)

c,3

{SO(k12
12), SO(k23

23), SO(k4
34), SO(k5

45)}
0

cost
(k434)

c,3 +cost
(k545)

c,4

4 (πx2 ,πx3 ,πx4 ,πx5 )

cost
(k434)

c,3 +cost
(k545)

c,4

{SO(k12
12), SO(k3

23), SO(k34
34), SO(k45

45)}
0

cost
(k323)

c,2

2 (πx3 ,πx4 )

cost
(k323)

c,2

{SO(k12
12), SO(k3

23), SO(k34
34), SO(k5

45)}
0

cost
(k323)

c,2 +cost
(k545)

c,4

4 (πx2 ,πx3 ,πx4 ,πx5 )

cost
(k323)

c,2 +cost
(k545)

c,4

{SO(k12
12), SO(k3

23), SO(k4
34), SO(k45

45)}
0

cost
(k323)

c,2 +cost
(k434)

c,3

2 (πx3 ,πx4 )

cost
(k323)

c,2 +cost
(k434)

c,3

{SO(k12
12), SO(k3

23), SO(k4
34), SO(k5

45)}
0

cost
(k323)

c,2 +cost
(k434)

c,3 +cost
(k545)

c,4

3 (πx3 ,πx4 ,πx5 )

cost
(k323)

c,2 +cost
(k434)

c,3 +cost
(k545)

c,4

{SO(k12
12), SO(k34

34), SO(k45
45)} 0

0
2 (πx3 ,πx4 )

0

gain K taken from part (A), the LLFR controller is activated. Figure 7.9-(b) depicts the

cumulative control effort that is expensed. The maximum tracking error that is obtained is

unacceptable due to the violation of the error specification es (namely, error = 0.018(m) >

0.010(m) = es). In other words, the faulty satellite #3 is partially recovered by the

centralized LLFR controller.

On the other hand, the estimates of the faults can be used in the decentralized LLFR

controller. By using the decentralized controller (5.34), the parameter vector α (with

||AT3 (α)|| = 0.6325) and the decentralized feedback gains (β1
12, β2

12, β2
23, β3

23, β3
34, β4

34, β4
45,

and β5
45) that are taken from part (A), and by using the estimates of the faults (including

the biased estimates) in the LLFR controller, the results obtained are still an unacceptable

increase in the maximum tracking error (namely, error = 0.023(m) > 0.010(m) = es).

Therefore, the faulty satellite #3 is partially recovered by the decentralized LLFR con-

troller. Figure 7.10-(b) depicts the cumulative control effort that is expensed.

In the case of a partially LL-recovered satellite #3, the decentralized controller

distributes the effects of the local fault among all the tracking errors throughout the

formation. However, the centralized controller constrains the local fault to the neighboring

tracking errors and, hence, prevents the effects of the fault from spreading throughout the
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Figure 7.25: Actual, estimated, and the estimation error of the LOE fault in satellite #4
by using the reconfigured set of sub-observers.

formation. These effects are shown and compared in Table 7.3. The above advantage of

the centralized controller is due to the fact that the associated error dynamics (5.15) has

a reduced-order state vector that only includes the tracking errors e23 and e34, which are

local to the faulty satellite #3. On the other hand, corresponding to the decentralized

controller, the error dynamics (5.39) has a full-order state vector that includes all the

tracking errors e12, e23, e34, and e45. Therefore, there is a trade-off between selecting

a centralized controller that requires a high level of communication resource among all

the satellites, albeit resulting in a local manifestation of the fault, and the decentralized

controller that requires a much reduced level of communication resource at the expense

of leading to a global manifestation of the fault.

Since the fault estimate in satellite #3 is biased and inaccurate, satellite #3 is

partially recovered by the LLFR module. Therefore, in part (C) below the supervisor

activates the FLFR module in order to perform a cooperative fault accommodation among

the five satellites in favor of the partially LL-recovered satellite #3.

C. The partially LL-recovered satellite #3 is cooperatively accommodated by

the FLFR module: The centralized controller (5.10) is implemented by using the
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Figure 7.26: Actual, estimated, and the estimation error of the LOE fault in satellite #5
by using the reconfigured set of sub-observers.
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Table 7.2: Comparison between the estimation performance of the initial set SetsoI and
reconfigured set SetsoR of sub-observers for the cooperative estimation system in the time
interval T23 = [100, 200](sec).

Estimation Error Mean
πx1 πx2 πx3 πx4 πx5

SetsoI 0.0006 0.0511 0.0452 0.0461 0.0005
SetsoR 0.0004 0.0005 0.0158 0.0005 0.0004

Estimation Error Variance
πx1 πx2 πx3 πx4 πx5

SetsoI 1.9× 10−4 1.1× 10−2 1.3× 10−2 1.8× 10−2 1.6× 10−4

SetsoR 1.3× 10−4 1.7× 10−4 2.6× 10−2 1.5× 10−4 1.2× 10−4

Table 7.3: Performance comparison between the centralized and the decentralized con-
trollers in terms of whether the local fault in satellite #3 affects the corresponding tracking
errors (“Y”=yes) or not (“N”=no).

Controller Effects of the local fault on the tracking errors
e12 e23 e24 e25 e13 e14 e15 e34 e35 e45

Centralized N Y N N Y N N Y Y N
Decentralized Y Y Y Y Y Y Y Y Y Y

parameters αi taken from part (A) except for α3 which corresponds to the partially LL-

recovered satellite #3 and is taken within the interval 1 < α3 ≤ 10, and by using the

centralized feedback gain K from part (A). Our proposed analytical method in Theo-

rem 5.2 gives α3 = 7.6, which gives an acceptable maximum tracking error (namely,

error = 0.008(m) < 0.010(m) = es). In this case, the cumulative control effort is shown

in Figure 7.9-(c). Comparing Figure 7.9-(c) with Figure 7.9-(b), one can conclude that

the more one increases the parameter α3 in the FLFR process, the less satellite #3 will

use control effort, and the more other satellites will use their control efforts to compensate

for the deficiency of satellite #3. This is an interesting interpretation of the FLFR in

favor of the partially LL-recovered satellite #3.

Alternatively, the decentralized controller (5.34) is next implemented by changing

the parameter vector α according to Theorem 5.6 such that ||AT3 (α)|| decreases from the

initial value of 0.6325 that is used in scenarios (A) and (B), and in addition by using

Theorem 5.5 the decentralized feedback gains are selected as

β1
12 = [2.9345 2.3452] , β2

12 = [0.2678 − 0.9986]

β2
23 = [0.8678 3.0980] , β3

23 = [−0.4480 − 2.3418]

β3
34 = [0.6460 2.0519] , β4

34 = [−0.5591 − 4.0048]

β4
45 = [−0.6395 0.9926] , β5

45 = [−3.6295 − 1.5503]

Our proposed analytical results from Theorem 5.6 yield ||AT3 (α)|| = 0.2530, which results
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in an acceptable maximum tracking error (namely, error = 0.008(m) < 0.010(m) = es).

In this case, the cumulative control effort is depicted in Figure 7.10-(c). Comparing

Figure 7.10-(c) with Figure 7.10-(b), one can conclude that the more ||AT3 (α)|| is decreased

by the FLFR process, the less satellite #3 will use its control effort, and the more other

satellites will consume their control efforts to compensate for the deficiency of the satellite

#3, as in the centralized control scheme.

In both centralized and decentralized controllers cases in the FLFR module, the

specification es is ensured to be satisfied. For a different comparative evaluation between

the centralized and the decentralized controllers performance in the three scenarios (A),

(B) and (C), the total error norm which is defined according to EN
t =

∑
eij∈ERMF

|Exij | is
now utilized, where Exij denotes the x-axis tracking error between satellites #i and #j.

Figure 7.27 indicates and shows the total error norm for the three scenarios. According to

this figure, the centralized controller imposes less total error norm on the formation system

than the decentralized controller in all the three scenarios. This fact is compromised by

a more stringent communication requirement for the centralized controller as compared

to the decentralized controller.

Figure 7.27: The total error norm.

In scenario (B) above, the unreliability W̄x3 is characterized by a communication

delay in the transmission of input data. Howerver, as explained earlier for equation (3.12),

the unreliability W̄x3 can also be due to the following sources, such as (a) dynamic model

of the augmented faults, (b) communication delay in transmission of output date, and

(c) communication delay in transmission of state estimates. The results corresponding

to all these sources are not presented explicitly due to their similarity with the results
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in scenario (B) above. In the following, we briefly present the results for the case of

unreliability due to the dynamic model of the augmented fault.

Consider a 20% loss-of-effectiveness (LOE) fault in the x-axis actuators of the satel-

lites #2, #3, and #4 as described in scenario (B) above. At first the LLFR module

successfully performs the estimation task by the initial set of sub-observers SetsoI . Sub-

sequently, at time t ≥ T2 = 100(sec), instead of the unreliability W̄x3 characterized

by a communication delay in the transmission of input data in scenario (B) above,

satellite #3 is now subjected to the process dynamic unreliability W̄x3 = 0.1 sin(0.2t).

This unreliability describes the dynamic model of the fault parameter in satellite #3

by πx3 = −0.2 + 0.1 sin(0.2t) or equivalently π̇x3 = 0.1 sin(0.2t) (as per equation (2.6)).

In order to constrain and limit the effects of W̄x3 on the local estimates and avoid its

adverse effects on the estimates of all the states and parameters throughout the forma-

tion, by using the results from equation (4.19) at time T2 the HL supervisor makes a

decision to switch from the initial set of sub-observers SetsoI to the reconfigured set of

sub-observers SetsoR . Table 7.4 summarizes the comparison between the T23-interval esti-

mation performance of the initial set of sub-observers SetsoI and that of the reconfigured

set of sub-observers SetsoR . As can be seen from this table, the means and variances of

the fault signal estimation errors are improved with SetsoR as compared with SetsoI . This

again verifies the effectiveness of our proposed cooperative estimation scheme.

Table 7.4: Comparison between the estimation performance of the initial set SetsoI and
reconfigured set SetsoR of sub-observers for the cooperative estimation system in the time
interval T23 = [100, 200](sec) for the case of dynamic fault model.

Estimation Error Mean
πx1 πx2 πx3 πx4 πx5

SetsoI 0.0009 0.0673 0.0946 0.0387 0.0007
SetsoR 0.0005 0.0006 0.0113 0.0004 0.0005

Estimation Error Variance
πx1 πx2 πx3 πx4 πx5

SetsoI 3.6× 10−4 2.3× 10−2 4.2× 10−2 3.6× 10−2 2.8× 10−4

SetsoR 3.4× 10−4 4.8× 10−4 3.8× 10−2 5.1× 10−4 2.5× 10−4

7.2 Satellite Formation Mission in Planetary Orbital

Environment (POE)

Consider a five-satellite formation flight system in the planetary orbital environment

(POE) [6], whose weighted absolute measurement formation (WAMF) digraph is shown

in Figure 7.28-(a). Assuming that the distances among the satellites are much smaller
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than the average orbit radius rt, the orbital dynamics of satellites can be approximated

by a linearized form that is known as the Hills equations [6]. For simplicity, we consider

the special case of a circular orbit (ṅ = 0) with angular velocity n =
√
gt/rt, namely the

Clohessy-Wiltshire (CW) equations of motion [6].

Taking Xxi,yi = (xi, vxi , yi, vyi)
T ∈ R4, Xzi = (zi, vzi)

T ∈ R2, Uxi,yi = (uxi , uyi)
T ∈

R2, Uzi = (uzi) ∈ R, Yxi,yi = (yxi , yvxi , yyi , yvyi )
T ∈ R4, Yzi = (yzi , yvzi )

T ∈ R2, and

including the effects of external disturbances Wxi,yi and Wzi and sensor measurement

noises Vxi,yi and Vzi , the equations of motion for the satellite #i, i = 1, ..., 5 is now

governed by

xy-axes dynamics:

{
Ẋxi,yi = Ax,yXxi,yi +Bxi,yiUxi,yi +Wxi,yi

Yxi,yi = Xxi,yi + Vxi,yi

(7.4)

z-axis dynamics:

{
Ẋzi = AzXzi +BziUzi +Wzi

Yzi = Xzi + Vzi

where

Ax,y =


0 1 0 0

3n2 0 0 2n

0 0 0 1

0 −2n 0 0

 , Bxi,yi =


0 0
bxi
mi

0

0 0

0
byi
mi


Az =

[
0 1

−n2 0

]
, Bzi =

[
0
bzi
mi

]

(xi, yi, zi)
T ∈ R3 and (vxi , vyi , vzi)

T ∈ R3 are the three-dimensional position and velocity

coordinates in the local inertial frame, respectively, (uxi , uyi , uzi)
T ∈ R3 is the input

vector, and (yxi , yyi , yzi)
T ∈ R3 and (yvxi , yvyi , yvzi )

T ∈ R3 are the measurements of the

position and velocity vectors, respectively. The actuators are modeled by the gains bxi ,

byi , and bzi , and the total mass of the satellite #i is represented by mi. The major

environmental disturbances in the POE are atmospheric drag and J2 perturbations [3],

whose comparative importances are indicated in Figure 1.4.

The initial formation is positioned in the xy-plane at 2000(Km) altitude, where

J2 is the major disturbance of order 10−3 as shown in Figure 1.4. The objective is a

counter-clockwise rotation maneuver in the xy-plane with the maximum frequency of

ω0 = 0.1(rad/s), such that the satellites always maintain a polygon shape with the side
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(a) (b)

Figure 7.28: The WAMF digraphs used by (a) the LLFR and (b) the FLFR modules,
in which the dashed lines represent the distances from the rotation centers CL and CF ,
respectively.

lengths of L = 200(m), while the tracking error specification that is selected as es =

0.010(m) is guaranteed. Since the xy-axes dynamics of the satellite is decoupled from

its z-axis dynamics, in the following we only consider the xy-axes dynamics as given by

equation (7.4).

7.2.1 Single Partially Low-Level (LL) Recovered Satellite

In this subsection, we consider the same three scenarios (A), (B), and (C) that were

considered in the previous section. The results on actuator fault estimation by using

the LLFR module are not presented here due to their similarity with the results in the

previous section. The results on actuator fault accommodation by the FLFR module are

presented for the three scenarios as detailed below.

A. All the satellites are fault free: We start with the WAMF digraph (as per Defi-

nition 2.7) which is shown in Figure 7.28-(a) with the adjacency matrix Ω as given by

Ω =


0 0 0 0 0

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

 (7.5)

The desired trajectories are designed based on the rotation center CL (as shown in

Figure 7.28-(a)) and equation (7.4), which yield Li = 0.5L/ sin(π/5), i = 1, ..., 5 and the

desired xy-axes input vectors are given as follows:
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[
udxi
udyi

]
= Li

[
b−1
xi

0

0 b−1
yi

][
(−ω2

0 − 2nω0 − 3n2) cos(ω0t+ φi)

(−ω2
0 − 2nω0) sin(ω0t+ φi)

]
(7.6)

where φi and Li represent the desired trajectory phase of satellite #i and its distance from

the rotation center, respectively. The information exchange requirement is determined

according to Remark 6.2. The feedback matrices Ki, i = 1, ..., 5 are designed by using

Lemma 6.1 as follows

Ki =

[
−2.9987 −3.2813 0.5417 0.7028

−0.5417 −0.7028 −2.9687 −3.2813

]
(7.7)

The maximum tracking error is found to be error = 0.005(m) < 0.010 = es that is

acceptable and within the overall mission specifications. The cumulative control effort is

depicted in Figure 7.29-(a).

B. Satellites #2, #3, and #4 are faulty and the fault in satellite #3 is partially

recovered by the LLFR controller: A 20% loss-of-effectiveness fault is applied to the

x-axis actuators of the satellites #2, #3, and #4. Similar to the discussion in the previous

section the HL supervisor activates the LLFR module. This module fully recovers the

faulty satellites except for the satellite #3, whose fault is estimated within a 10% relative

error tolerance, that is |εx3 |/bx3 = |b̂x3 − bx3|/bx3 ≤ 0.10. The LLFR module implements

the same WAMF diagraph as shown in Figure 7.28-(a), the same adjacency matrix as

given by equation (7.5) and the same desired trajectories (and the desired xy-axes input

vectors as given by equation (7.6)) as those designed based on the rotation center CL

in the previous scenario (A). Similar to scenario (A), the LLFR controller gain (7.7) is

designed by invoking Lemma 6.1. The information exchange requirement is determined

according to Remark 6.3. The cumulative control effort is depicted in Figure 7.29-(b).

Due to the inaccurate estimate of the faulty parameter, the maximum tracking error that

can be achieved by the LLFR module is found to be error = 0.02(m) > 0.01 = es, which

corresponds to the faulty satellite #3 and is clearly unacceptable and does not meet the

overall mission specifications. Therefore, satellite #3 is partially recovered by the LLFR

controller at the low-level (LL), and hence the supervisor activates the FLFR module.

C. The partially LL-recovered satellite #3 is accommodated by the FLFR mod-

ule: According to Theorem 6.1, the FLFR module reconfigures the formation structure

and implements the new WAMF digraph as shown in Figure 7.28-(b) with the new adja-

cency matrix Ω as given by
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Ω =


0 1 0 0 0

0 0 0 0 0

0 1 0 0 0

0 1 0 0 0

0 0 0 1 0

 (7.8)

The FLFR module activates a robust controller for the partially LL-recovered satel-

lite #3 by using Theorem 6.2 which gives

K3 =

[
−3.2857 −3.5824 0.8825 0.7295

−0.6295 −1.0386 −2.7385 −2.6201

]
(7.9)

Finally, in order to satisfy the error specification es, the FLFR module uses Theorem 6.3

to impose a constraint on the desired xy-axes input vectors (7.6) of the partially LL-

recovered satellite #3 and its neighbor satellite #2. This constraint requires smaller

distances Li, i = 1, 2 from the new rotation center CF as shown in Figure 7.28-(b) when

compared to the original rotation center CL that is shown in Figure 7.28-(a). The new

rotation center CF is chosen such that L1 = L2 = L/2 which satisfies the constraint that

is imposed by Theorem 6.3 in the FLFR module. Therefore, the maximum tracking error

that can be achieved by the FLFR module is found to be error = 0.009(m) < 0.010 = es,

which is acceptable and satisfies the overall mission specifications. The cumulative control

effort is depicted in Figure 7.29-(c).

7.2.2 Multiple Partially Low-Level (LL) Recovered Satellites

In this subsection, the satellites #2, #3, and #4 are subject to 20% loss-of-effectivenss

actuator faults. The HL supervisor activates the LLFR module (the details are not

presented here due to similarity to the discussions in the previous section). The result is

that only satellite #4 is fully recovered by the LLFR module, and the fault parameters

in the partially LL-recovered satellites #2 and #3 are estimated within 10% relative

error tolerances, that is |εxi|/bxi = |b̂xi − bxi|/bxi ≤ 0.10, i = 2, 3. The tolerances are

caused by process dynamics unreliabilities W̄xi = uxi(t − τ) − uxi(t) (i = 2, 3), where

τ = 0.1(sec), that affect the estimation performance. These unreliabilities are due to

unexpected communication delays that occur when satellites #2 and #3 send their control

signals uxi(t), i = 2, 3 to the other satellites in their neighbor sets N ({i}) for filtering.

In the LLFR module, the same WAMF digraph as shown in Figure 7.28 and the

same adjacency matrix as given by equation (7.5) are utilized. The fault estimates are

incorporated in the same controller gains Ki, i = 1, ..., 5 as given by equation (7.7), which

is designed by using Lemma 6.1. By applying the LLFR controllers, the error specification

is violated by the two satellites #2 and #3, that is error = 0.02(m) > 0.01 = es. The
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(a) (b)

(c)

Figure 7.29: The x-axis cumulative control effort for (a) all satellites are fault free, (b)
faulty satellite #3 with the LLFR applied, and (c) faulty satellite #3 with the HLFR
applied.
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cumulative control effort for the case of LLFR module is shown in Figure 7.31-(b). The

HL supervisor activates the FLFR module to account for the performance degradations

of the partially LL-recovered satellites.

Figure 7.30: The WAMF digraph that is used by the FLFR module in which the dashed
lines represent the distances from the rotation center CF .

At the FLFR module, Theorem 6.1 is used to reconfigure the formation structure

and implement the new WAMF digraph as shown in Figure 7.30 with the new adjacency

matrix Ω as given by

Ω =


0 0 0 0 0

1 0 0 0 0

1 0 0 0 0

1 0 0 0 0

0 0 0 1 0

 (7.10)

Theorem 6.2 is now used to design the feedback gains K2 and K3 as given in equation (7.9)

for the partially LL-recovered satellites. Finally, in order to satisfy the error specification

es of the formation, Theorem 6.3 is used to impose constraints on the desired xy-axes input

vectors (7.6) of the partially LL-recovered satellites #2 and #3 and their supporting

neighbor (SN) satellite #1 (as shown in Figure 7.30). Considering equation (7.6), the

FLFR module reduces the formation angular velocity of the rotation maneuver from

ω0 = 0.1(rad/s) to ω0 = 0.078(rad/s). Therefore, the error specification of the formation

mission is satisfied, that is error = 0.009(m) < 0.010 = es. The cumulative control effort

for the case of the FLFR module is shown in Figure 7.31-(c).
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(a) (b)

(c)

Figure 7.31: The x-axis cumulative control effort for (a) all satellites are fault free, (b)
faulty satellites #2 and #3 with the LLFR applied, and (c) faulty satellites #2 and #3
with the HLFR applied.
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7.3 Conclusions

In this chapter, the proposed cooperative fault estimation and accommodation framework

is applied to the satellite formation flight missions in deep space (DS) and planetary

orbital environment (POE). The lock-in-place and loss-of-effectiveness actuator faults

are considered in both cases of single and multiple permanent faults. The cooperative

fault estimation and accommodation tasks are performed based on the corresponding

estimation and formation digraphs, respectively. It is shown that the proposed estimation

and accommodation approaches can be integrated in order to constrain the effects of a

fault on the local estimates and to compensate for the performance deficiency of a faulty

satellite by imposing constraints on the desired input vectors. Simulation results do

confirm the effectiveness of our analytical work.
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Chapter 8

Conclusions and Future Work

In this chapter, the conclusions of this thesis are presented and a number of suggestions

for future work are stated.

8.1 Conclusions

In this thesis, the problem of fault detection, isolation, and recovery (FDIR) in forma-

tion flight of unmanned vehicles is investigated. Towards this end, the FDIR problem

is formulated into the problem of fault estimation and accommodation where a multi-

level hierarchical and cooperative scheme is proposed and developed. It is shown that

through the proposed framework we are able to improve and enhance the capabilities

of the existing fault estimation and accommodation techniques as applied to formation

flight of unmanned vehicles. The hierarchical architecture consists of three levels, namely

a low-level (LL), a formation-level (FL), and a high-level (HL) fault estimation and ac-

commodation modules.

The LL module corresponds to the vehicle and the system components in which

conventional filtering methods are used to estimate the severity of a fault. Moreover,

conventional linear control techniques are used to design low-level fault recovery (LLFR)

controllers that are based on information from fault parameter estimates. When a fault

is not properly estimated by the LL module, the performance of the LLFR controller

becomes degradated, and hence the faulty vehicle will be considered as partially LL-

recovered. In the high-level (HL) module, a performance monitoring (PM) scheme observes

the behavior of all the vehicles in the formation and sends the information on degradation

of the team performance to a HL supervisor. Once a degradation in the performance

of the partially LL-recovered vehicle is detected, the HL module forwards the selected

recovery solution to the FL module.

The HL supervisor observes the performance and behavior of the formation and
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makes a decision on the selection of the most suitable distributed sub-observer recon-

figuration and formation structure reconfiguration for the formation-level fault estima-

tion (FLFE) and formation-level fault recovery (FLFR) modules, respectively. In the

formation-level (FL) module, the interactions among the vehicles are taken into account

and incorporated to estimate and accommodate faults in the vehicles more effectively.

The FLFE module estimates the fault severities cooperatively by utilizing distributed es-

timation filters that are designated as sub-observers (SOs), whose cooperation and data

fusion are managed and maintained by a HL supervisor. The FLFR module takes into

account the performance degradations of a partially low-level recovered vehicle at the

expense of a HL-driven formation structure reconfiguration which imposes certain criteria

on the input signals of the other healthy vehicles.

Graph-based approaches and structural observability results are invoked to design

the LL estimation filters or sub-observers. The decision-making criteria and guidelines for

the HL supervisor are formulated as the problem of determining an optimal path on the

proposed estimation (E), weighted estimation (WE), sub-observer dependency estimation

(SODE), and weighted sub-observer dependency estimation (WSODE) digraphs.

In the low-level fault recovery (LLFR) module, the overall fault-augmented state

space model is formulated as a linear time-invariant (LTI) system corresponding to the

float, lock-in-place, and hard-over actuator failures. Consequently, conditions are de-

rived that are based on the decentralized fixed mode (DFM) to examine feasibility of the

cooperative sub-observers and guarantee stability of the overall estimation problem. Ro-

bust H∞ linear filtering technique is also used to design the distributed and cooperative

sub-observers.

On the other hand, corresponding to the case of loss-of-effectiveness actuator faults,

the overall fault-augmented state space model is formulated as a bilinear system from

the observability perspective and as a linear time-varying system from the filtering per-

spective. Therefore, the Kalman filtering (KF) technique is used to design the local sub-

observers for our proposed cooperative estimation scheme. The ultimate boundedness

of the estimation errors are analyzed by using Lyapunov theorey as well as the concept

of an acyclic digraph within a graph-based framework. Whenever a state is commonly

estimated by more than one sub-observer, a fusion feedback optimization problem is then

formulated to fuse the common state estimates in order to modify the Kalman gains ac-

cordingly. The fault estimates are ultimately incorporated in the LLFR controllers in

order to recover the formation performance subject to the actuator faults.

In order to evaluate the performance of the LLFR module, a HL performance mon-

itoring (PM) module is introduced that identifies the partially low-level (LL) recovered

vehicles that have violated the given desired error specifications of the formation mission.
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Consequently, the PM module notifies the HL supervisor regarding the partially LL-

recovered vehicles, and the HL supervisor makes a decision on activating the formation-

level fault recovery (FLFR) module to accommodate the faulty vehicles.

The FLFR module compensates the performance degradation of a partially LL-

recovered vehicle by imposing certain criteria on the input signals of the other healthy

vehicles. When only the relative state measurements among the vehicles are available,

the centralized and decentralized H∞ control parameters are adjusted to accommodate

the partially LL-recovered vehicle by enforcing the other healthy vehicles expending more

control effort to compensate for the performance degradation of the faulty vehicle. In case

of multiple actuator failures, a robust controller is designed to stabilize the nominal state

space model of the formation system, and a constraint is imposed on the desired system

inputs to satisfy the required error specification of the formation mission.

When only absolute state measurements of the formation vehicles are available, a

general FLFR technique is developed that is based on theories from robust control and

graph theory. Moreover, the notion of an adjacency matrix that is compatible with and

can be implemented in both the centralized and decentralized approaches are utilized

in this case. The FLFR module reconfigures the formation structure by adjusting the

weights of the adjacency matrix of the so-called weighted absolute measurement formation

(WAMF) digraph to prevent the error propagation effects of local faults. Subsequently,

the FLFR module implements a robust H∞ controller and imposes a constrain on the

desired inputs. In order to accommodate the faults in the case of multiple partially LL-

recovered vehicles, the notion of a supporting neighbor (SN) is introduced, whose desired

input is adjusted (constrained) to take into account the performance deficiencies of all the

partially LL-recovered vehicles.

For sake of illustration and to demonstrate the capabilities of the proposed solutions,

in simulations the case of a five-satellite formation is considered both in deep space (DS)

and in planetary orbital environment (POE). Three satellites are subjected to actuator

faults, among which one satellite is subjected to uncertainties and unmodeled dynamics.

These unreliabilities are represented by two scenarios, namely (a) an unexpected com-

munication delay occurs when a satellite sends its control signal to the other satellites in

its neighbor set for filtering, and (b) the fault is governed by a dynamic model instead

of a constant parameter. In both of these unmodeled dynamics and unreliabilities it is

shown that our proposed cooperative fault estimation technique does indeed constrain

and limit the undesirable effects on the estimation process towards the formation mis-

sion. Moreover, our proposed cooperative fault accommodation technique compensates

the performance degradation of a partially LL-recovered satellite by reconfiguring the for-

mation structure and by imposing certain criteria on the input signals of the other healthy
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satellites. Simulation results reported do indeed confirm the validity of our developed an-

alytical work.

8.2 Future Work

In this thesis, the faults considered belong to the “permanent” category fault and conven-

tional linear and bilinear dynamic models are employed for cooperative fault estimation.

A permanent fault is not necessarily constant and can be time-varying, as opposed to an

“intermittent” fault which is present for usually irregular intervals of time. Due to the

nature of an intermittent fault, it can be argued that an effective approach for modeling

these faults is through an event-based framework, e.g. through a discrete-event system

(DES) model, or a finite state machine, e.g. through Markov models. In future, the

situation of intermittent faults will also be investigated by using a hybrid model (e.g.

interactive multiple model (IMM) or probabilistic hybrid automata (PHA)) that will rep-

resent a dynamic system of the formation flight of unmanned vehicles under different

healthy and faulty scenarios. In order to estimate fault severities, our distributed and

cooperative estimation technique will be extended to the more general case of a hybrid

model. Conditions will be derived to guarantee stability of the overall estimation pro-

cess while an optimal amount of information exchange among the sub-observers will be

maintained. Moreover, our proposed cooperative fault accommodation strategy will be

extended to the case of partially low-level (LL) recovered vehicles with intermittent faults.

The intermittent faults will add nonlinearities to the linear model of the formation flight

of unmanned systems. Lyapunov theory will be a proper candidate for design of the LLFR

and FLFR controllers.

In this thesis, we considered the linear translational (orbital) dynamic model of un-

manned vehicles, which are decoupled from the attitude dynamics and are subject to the

measurement noise that are zero mean and white Guassian processes. For the case of non-

linear dynamic models with non-Gaussian noise, particle filtering (PF) (instead of Kalman

filtering (KF)) approach will be implemented to improve and extend our proposed dis-

tributed and cooperative estimation techniques. This extended estimation framework will

be used to estimate faults in case of coupled translational (orbital) and attitude dynamics

of unmanned vehicles in formation flight systems. The simulations will be conducted on

the 6 degrees-of-freedom (DOF) model of satellites. Moreover, Lyapunov-based controller

design techniques will be used in our cooperative fault accommodation framework to ex-

tend and apply the results to the case of a partially low-level (LL) recovered satellite with

nonlinear 6-DOF dynamic model.

In this thesis, the decision-making objective of the high-level (HL) “supervisor”
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in the cooperative fault estimation part is modeled by the problem of determining op-

timal paths in the corresponding proposed estimation (E), weighted estimation (WE),

sub-observer dependency estimation (SODE), and weighted sub-observer dependency es-

timation (WSODE) decision digraphs. Moreover, the HL performance monitoring (PM)

module in the cooperative fault accommodation part is modeled by a simple limit-checker,

which took the output measurements from all the sensors, compared them with the de-

sired outputs, and determined whether the tracking errors are less than a certain error

specification that is associated with the overall formation mission. In future, a discrete-

event system (DES) will be investigated to play the role of a high-level (HL) supervisor

in making decisions for both the cooperative fault estimation and accommodation parts.

The DES supervisor will alleviate the need for using a large number of various look-up

tables corresponding to the changes in the system parameters or the changes in the system

failures. It turns out that this is a nontrivial exercise specially when the system dimension

is too large as in the case of large-scale systems. The problem of finding the shortest path

between two specified vertices of a weighted decision digraph is one of the well-known

combinatorial optimization problems. Therefore, our future DES supervisory fault esti-

mation and accommodation framework will be extended to the combinatorial optimization

domain, and the combinatorial optimization techniques (e.g. Dijkstra algorithm) will be

used to make an optimal decision by the high-level DES supervisor.

In this thesis, the sources of “model unreliabilities” are considered to be communica-

tion delays and fault parameter variations that are tackled by the low-level fault recovery

(LLFR) module in the cooperative fault estimation module. The effects of model unre-

liabilities on the estimation performance are constrained by a HL supervisor that made

decisions on reconfiguring the set of sub-observers to limit the resulting propagation of un-

desired errors throughout the formation system. In future, the case of model unreliabilities

will be tackled by the formation-level fault recovery (FLFR) module in the cooperative

fault accommodation part through designing a robust controller for the formation flight

of unmanned vehicles. However, robustness of the FLFR controller to the model unrelia-

bilities may cause conflicts with robustness of the controller to the uncertainties that are

imposed by the partially LL-recovered vehicles. Therefore, a trade-off will be seeked that

will compromise the roles of the LLFR and the FLFR modules in compensating for the

model unreliabilities.

In the cooperative fault estimation part, we have assumed that there exists a fault

detection and isolation (FDI) module, whose detailed study is beyond the scope of this

thesis. However, in the FDI literature “estimation” techniques belong to one category of

fault detection and isolation methods. Extending our proposed distributed and cooper-

ative estimation scheme to also accomplish and be utilized to achieve the FDI task is a

challenging problem. The solution to this problem requires further investigation by using
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statistical analysis techniques, trend analysis tools, and hypothesis test methods on the

estimation signals. Furthermore, it requires making proper assumptions, identifying the

limitations, and verifying the cooperative or non-cooperative interactions between the (to-

be-proposed) “estimation-based FDI” module and the (already-proposed) “fault severity

estimation” module within our distributed and cooperative estimation framework. Ad-

dressing these issues rigorously do require and represent a major topic of research that is

worth pursuing as future work.

In this thesis, the fault recovery controllers are designed without considering the

actuator saturation constraints. In future, our proposed low-level fault recovery (LLFR)

and formation-level fault recovery (FLFR) modules will be extended to the general case

of formation flight systems subject to actuator saturation by using the Lyapunov-based

control techniques.
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