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ABSTRACT

Control and Fault Accommodation for Attitude Control

Subsystem of Formation Flying Satellites Subject to

Constraints

Stringent precision requirements, communication limitations and automated fault accom-

modation are three important considerations that need to be taken into account in design

of formation control of satellites. In this work a more accurate relative state modeling for

the attitude dynamics is developed and a semi-decentralized control strategy is proposed

that is accomplished by the model predictive control (MPC) scheme. The proposed MPC

incorporates the effects of the actuator constraints in design of the control laws. Further-

more, a semi-decentralized active system recovery scheme is proposed that uses on-line

fault information to compensate for the identified characteristics losses under actuator fault

conditions.

Simulation results for a team of four satellites in formation are presented and the

formation precision is compared with the centralized scheme. The results verify that the

proposed semi-decentralized strategy yields a quite satisfactory formation performance in a

sense that the team behaves similar to a centralized MPC control scheme, however without

imposing significant computational complexity that is associated with solving the problem

of high dimension with stringent communication requirement as in the centralized scheme.

Moreover, the performance of our proposed semi-decentralized recovery scheme is com-

pared with the centralized recovery scheme subject to the reaction wheel (RW) faults in

the attitude control subsystem (ACS) of the formation flying satellites. The proposed

semi-decentralized recovery scheme satisfies the formation recovery specifications and also

imposes lower fault compensation control effort cost as compared with the centralized

recovery scheme. It has been validated through multiple fault severity scenarios.
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Chapter 1

Introduction

1.1 Statement of the Problem

The attitude control subsystems (ACS) of the formation flying satellites coordinate the

orientation of satellites. Stringent precision requirements, communication limitations,

physical limitations of the process and fault tolerance are of major importance in

the design of formation control. Firstly, the closed-loop control structure including

the system modeling and the corresponding measurements provide different levels

of precision in the formation control. Secondly, developing a semi-decentralized

scheme reduces the computational complexity and the communication requirements.

Thirdly, considering physical constraints of the components, e.g., actuator saturation

constraints, in determining the control law increases reliability of the control design,

and finally, utilizing the system with a fault accommodation scheme, yields a graceful

recovery performance of individual agents and an acceptable level of formation precision

under the fault conditions. In the following section we review the available approaches

for addressing the aforementioned issues.

1



1.2 Previous Work

In this section we review the available works with emphasize on the formation control

and fault accommodation schemes.

1.2.1 The Coordination Methods and Information Distribu-

tion for Multi-Agents Formation Control

Multi-agent systems are becoming more popular in a wide range of applications.

Formation flying satellites exhibit numerous advantages in many space missions. For

data collection applications it allows integration of data from several satellites and

inferring an accurate measurement instead of employing multiple instruments on a

single satellite. According to NASA’s Goddard Space Flight Center (GSFC), satellites

formation flying is defined as: [1]

"The tracking or maintenance of a desired relative separation, orientation or

position between or among spacecraft."

Performing a team task in a multi-agent system requires coordination among agents.

This coordination can be accomplished through different control distribution schemes

namely centralized and decentralized methods. Smith and Hadaegh in [2] described

decentralization as a trade-off between formation performance and complexity of the

controller and communication requirements. They considered decentralization for

both design and implementation. In the decentralized design the actuation of each

individual agent is calculated based on a subset of formation variables as opposed

to all. This subset of information requires certain exchanges among agents. In the

decentralized implementation the individual controllers determine their local actuation

in contrast to a central controller which determines all the required actuation and

communicate that to all agents. The design for these local controllers can be either

a centralized or a decentralized design. The semi-decentralized control is the term

2



used by Semsar and Khorasani in [3] to convey the interactions through the control

design and the independent operation of the regulators through a decentralized control

implementation scheme. In contrast to this scheme, in a distributed control scheme, as

defined by Scattolini in [4], some information is transmitted among the regulators and

the regulators do not operate in a completely independent fashion. In this framework,

some information is transmitted among agents such that each of them has knowledge

on future behavior of the others. The main idea of decentralized, semi-decentralized

and distributed frameworks is to break a centralized problem into problems of smaller

size. This approach is profitable in terms of computational complexity, communication

requirements and not being affected by the problem of one point of failure for the

entire team, but at the same time the solution will be suboptimal in terms of cost

and task coordination. Another challenge for this approach is to ensure that the

distributed decision making causes consistent actions among the agents.

Another specification for the multi-agent formation control is their formation

coordination method. Three important methods are leader-follower, virtual structure

and behavior-based.

In a leader-follower structure, one or more agents are designated as leader and the

rest of the agents follow their path such that their relative state is kept as desired [5–8].

This architecture is employed in the missions where the group trajectory is strict and

becomes executed by the leader. In this architecture the objective for the followers

is formation keeping which is translated to a regulation or tracking problem. In this

structure there is no feedback from the followers to the leader and the leader determines

the overall behavior of the team in an open-loop fashion. It has the disadvantage of

an inherent single point of failure feature.

In the virtual structure method, the idea is that all agents follow a virtual leader

[9, 10]. Once the virtual leader trajectory is determined, similar arguments applied to

the leader-follower structure can be applied to this architecture and the implementation
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Table 1.1: Comparison of Coordination Methods

Method
Leader-Follower / Virtual

Structure (non consensus-based
case)

behavior-based
ch

ar
ac

te
ri

st
ic

Mission
Application

Leader trajectory : strict and
open-loop with respect to

followers

Assignment of desirable behavior
to each agent

Formation
Keeping

Complexity
Simple and straightforward

More complex because of
interactions

Individual
Goals

Regulating relative state with
respect to the leader

Pairwise relative states tracking
and possibility of including
individual states tracking

Behavior in
The Presence

of Fault

Fault in the leader: problem of a
single point of failure,

Fault in the followers: open-loop
operation of leader and thus

incapable of team compensation

Capable of incorporating
compensation strategies because
of the close interactions among

agents

is similar. However the strategy for the virtual leader trajectory determination specifies

the formation characteristics. This trajectory can be either a fixed information

communicated to all the agents, it can be obtained through implementing a consensus

strategy among agents, or it can be a combination of these. By specifying a consensus

reaching strategy, the structure becomes more flexible as each agent’s movements can

be influenced by others and all the agents actively influence the formation performance

as opposed to the case where the virtual leader acts independently. Communication

topology is a key factor that influences accomplishing the consensus among agents

and consequently the stability of the entire system. The consensus also creates

synchronization among agents. In this structure finally the whole structure behaves

as one rigid body. The simple form of the virtual structure architecture, where the

virtual leader information is communicated to all agents, shares all the disadvantages

corresponding to the leader-follower structure. In the more complex scheme the
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problem of consensus exists. In this case there is not a leader for the followers to

follow so they must reach to an agreement through some strategy.

The third structure is the behavior-based structure [11, 12]. This structure fits

certain types of formation mission where rather than an strict formation keeping

objective, the goal is to achieve multiple desired behaviors including goal seeking and

formation keeping. The final control move is determined based on a performance

index that consists of a weighted average for achieving each behavior. Therefore this

structure is more flexible and also, has the potential to exhibit a desirable performance

in the case of fault. In Table 1.1 we highlight some important characteristics of this

structure by comparing it with other two architectures. In the formation missions, a

proper cooperative control between the pairs of agents through the behavior-based

structure ensures connectivity and successful team performance rather than relying

on a leader in leader-follower based architectures. Depending on the priority executed

on the control strategy in this architecture, the set of agents would be stricter in

individual or team performance criteria.

Followed by the coordination task imposed on the multi-agent systems, the overall

dynamics of the system is more complicated when compared with the single agent

system. This is due to the coupled nature of multi-agent systems as each agent relies

on the behavior of the adjacent neighboring agents. In other words, controlling each

agent is a function of its states and its adjacent neighbor’s states. Adjacent neighbors

are the agents that have a direct communication. Thus the overall system can be

considered as a system with multiple inputs and outputs.

1.2.2 Decentralized Formation Control

An optimal control method relies on an internal model of the system. In the formation

control, if a cooperative design based on relative states is desirable, then the internal

model will generally include the neighboring agent’s input signal as variables in
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an optimal control strategy. Therefore, due to the explicit presence of neighboring

agent’s input signal as variables in the local control design, a decentralized control

implementation does not seem to be achievable unless one imposes the assumption

of fixed dynamics for the neighboring agents when performs the design of each local

controller [3, 13]. Due to this feature of the optimal control method most of the

available research focusing on decentralized formation control implementation utilize

other types of control laws such as PD or output feedback [10,11,14–16]. The drawback

of these methods is that the input constraints cannot be incorporated into the design

solution.

Wang and Davison in [15] analyzed the stability of a decentralized scheme which

relies on local control stations with output-feedback based control law (dynamic

output feedback). The stability is related to the input-output relations in each local

controllers that can be inferred through the controllability and observability features.

The notion of fixed-modes is introduced to provide the necessary conditions for the

stability of the system. The actuator saturation constraints can not be taken into

account through their proposed control law.

In the work published by Chang et al. in [13] the decentralized formation keeping

control is based on relative dynamics. In this work a decentralized control implementa-

tion is achieved by making the relative dynamic equations employed in each individual

controller input-decoupled by analyzing the relative dynamical behavior within the

proximity of a certain operating condition. The linearized input-decoupled relative

dynamics equation is valid for the specified operating point and is not generic. This

is the main drawback of this scheme. The final control input is considered to be the

weighted sum of control moves corresponding to the relative states for each pair of

agents.

Lawton et al. in [14] introduced a decentralized scheme for formation maneuvers.

They developed a behavior-based approach and proposed the control law for achieving
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the desired behaviors. In their approach which they labeled, coupled dynamics ap-

proach, two competing behaviors of goal seeking and formation keeping are considered

and the objective is that vehicles stays in formation while reaching the final goal.

The local feedback is from both relative and absolute measurements. The proposed

control law has the advantage of not relying on internal model of the system. Lawton

and Beard in [11] developed a leader-follower and behavior-based control law for

attitude formation maneuver. However, the actuator saturation constraints can not

be incorporated in this design scheme. Ren and Beard in [10] modified the control law

which was proposed by Lawton to develop a decentralized virtual structure scheme

for the same application.

Semsar and Khorasani in [3] designed a semi-decentralized optimal controller. In

this optimal control design, the objective function includes an individual term and

an interaction term. Solving the optimization problem is performed by making the

assumption that other agents dynamics are fixed and the effect of other agents are

incorporated in the design through the interaction terms. Finite and infinite horizon

cases for the optimal controller are both analyzed where in the former case a differential

riccati equation (DRE) must be solved and in the latter case an agreement protocol is

given as the solution to the problem.

1.2.3 Model Predictive Control (MPC)-Based Formation Con-

trol

The model predictive control (MPC) method has been widely used in various control

applications. In the survey by Garcia et al. [17] the constraint handling capability of

MPC is highlighted. Morari and Lee in [18] provide an overview of this method and

describe the evolution of the formulation since its origins. Reader is referred to [19]

and [20] for a detailed formulation of linear MPC problem. On-line computational

efforts involved in the MPC design is relatively high which is one of limitations of this
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method [21–24].

Finite horizon numerical-based methods such as MPC provide a more flexible

formulation of an objective function which allows incorporating the neighboring agent’s

dynamics in each local control design as opposed to imposing the assumption of fixed

dynamics for the neighboring agents. This method requires prediction of the states

during future horizons while no explicit requirement exists to include neighboring

agent dynamics into the design as long as the predicted values are provided in the

optimization problem. However, providing these information imposes significant

communication requirements on the system. The methods proposed by [25–30] rely

on exchange of optimal solutions in the form of the predicted values or the planned

data that are transmitted from the neighboring agents and this imposes stringent

communication requirements for every control update.

Longhi et al. in [27] worked based on a leader-follower structure and utilized a

decentralized MPC control as a supervisory module which plans the movements in

a way that the relative states track the desired values. In this work every leader

communicates the resulting control move to its followers. They need the information

as an interaction vector, that is, a reference for future behavior of their neighbor to be

able to perform a proper prediction for their own behavior since their relative states

depend on future moves of their neighbor as well. Then the next follower which is

the leader for a couple of other agents performs the same task. The key point here is

considering each relative state a function of control moves corresponding to each of

the involved agents and thus, a coupled dynamics for the relative states. However the

formation is achieved by a leader-follower structure which inherits the problem of single

point of failure. Also the communications load is very high because of communicating

the control moves to the followers. The movements are implemented in a vehicle level

by allocating proper inflation and drive to the bladders.

In the paper published by Hadaegh et al. [26] MPC is aiming at tracking the
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desired absolute state values rather than relative. The coordination among agents is

achieved by transmitting optimal predicted states by the leader and online calculation

of desired follower states at each instant of prediction horizon accordingly.

Dunbar and Muray in [25] discussed both centralized and distributed control of

multi-vehicle formations. The control strategy that they used was receding horizon.

They compared stability issues in these two cases. In the centralized control the only

information about agents required by the central controller is their current states

while in distributed control future control trajectory for neighboring agents is also

required for each agent. This data will be communicated prior to the next receding

horizon update for each agent. This is because in distributed control, considering each

individual agent, the variables to be determined by the controller are only control

moves for the same agent as opposed to the centralized case where all control moves

were determined by a central controller. However, the communication imposes a large

communication load on the system.

Keviczky et al. in [31] discussed a degree of conservatism introduced by a decent-

ralized approach. Authors in [32], which is based on the receding horizon control

scheme, proposed an approach in which a decentralized formulation does not rely

on the exchange of optimal solutions among the neighbors and they provided the

necessary conditions for ensuring the stability of their approach. Their strategy

involves solving the optimization problem as a function of the input of each agent

itself and its neighbors. At the implementation level, the inputs for the neighbors are

discarded and only the first sample of the control trajectory for the corresponding

agent was implemented. They also presented their methodology on the application of

coordination of autonomous vehicle formation in their work published in 2008 [33].

The reference [28] implemented robust decentralized MPC for a a team of unmanned

aerial vehicles (UAVs) and compared the decentralized and centralized schemes in

terms of computation time and target arrival time.
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In a cooperative MPC-based framework, the predictions of the neighbors states

must be provided in a local control design. Thus either the predicted values must

be transmitted from agents or determined in the same agent. The next two sections

discuss the significance of providing a system recovery scheme in formation flying

satellites.

1.2.4 Formation Flying Satellites Fault Accommodation

Utilizing multi-agent systems with fault detection, identification and recovery (FDIR)

is a new area of research which has been extensively studied in different applications.

Consider formation flying satellites for instance, they offer many advantages in space

missions including space interferometry and defense but at the same time are considered

as safety critical systems and depending on the coordination policy and the required

performance specifications, one ill-managed fault might cause the whole mission to

fail or impose large costs to the system. Therefore, incorporating an automated active

fault accommodation in satellites will save costs and increase the reliability in terms

of mission success by obtaining an acceptable degraded performance.

Adaptive control-based methods are widely used for developing fault accommoda-

tion schemes. Reader is referred to [34] as a comprehensive study of adaptive control

schemes and their stability analysis. From the point of view of controller design in

the fault condition, one can perform the design based on an explicit plant model or

based on an implicit plant model. The former results in a control scheme in which

the controller parameters are adapted indirectly according to the fault estimates

without relying on an estimation update law [35, 36]. The control design must be

parametrized with respect to the fault estimates and the controller parameters be

selected such that the desirable specifications are satisfied. The latter relies on the

controller parameters adapted directly through updating their estimates and the fault

accommodation scheme relies on this fault compensating update law such that the
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stability of the system is guaranteed [37,38].

Semsar and Khorasani in [37] developed an adaptive control for the position

of UAV leader-follower formation, based on the estimates of uncertainty. In their

adaptive Lyapanov-based control framework, ensuring the magnitude limits of control

signal is not guaranteed. The reference [35] also assumed a formation flying with a

leader-follower structure and developed a fault-tolerant scheme for the follower vehicle.

They assumed that vector of control inputs is a redundant control. The reconfiguration

is performed by updating the corresponding control allocation matrix in adaptive

way to deal with possible fault detection and identification (FDI) inaccuracies during

the course of time. Their assumption is not practical and cost efficient for many

applications because it requires presence of multiple actuators producing same effect

on the plant dynamics.

A direct adaptive control scheme provides a certain level of robustness with

respect to the fault uncertainties. However, the imposed extra design constraints in

these schemes results in a trade-off between the performance and robustness which

might be undesirable in some applications. Furthermore, an indirect adaptive scheme

or an active reconfiguration mechanism can be adjusted to address a wider range

of abnormalities. This is achieved at the expense of utilizing a fault detection and

identification (FDI) module and also providing an active fault accommodation strategy

rather than an adaptively compensating scheme.

Azizi and Khorasani in [39] used relative-state measurements in their framework

and proposed a two-level accommodation approach which decomposed the control law

into two parts. One part addressed the closed-loop system stability and the other,

the tracking-error performance. The closed-loop system stability was shown to be

guaranteed even in the presence of inaccurate fault estimation. The tracking-error

performance was guaranteed to be zero in fault-free condition or when the fault was

accurately estimated. This is not a realistic assumption because in practice there is
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always a limited error in estimating the magnitude of fault. The authors addressed this

problem by adjusting the controller parameters according to an achievable tracking-

error specification which was suggested to be determined by solving an optimization

problem. They did not address accommodating the absolute states of satellites in

fault condition. In addition, control signal limits are not guaranteed to fit within the

allowable limits by their method of control.

Authors in [40] provided passive and active variable structure reliable control

(VSRC) control design laws subject to actuator faults and analyzed the performance of

two schemes. In an adaptive Lyapanov-based control framework [37], and conventional

linear dynamic output feedback [39] control signal limits were not guaranteed to fit

within the allowable limits.

FDI is one important part of any active fault tolerant system. This module performs

detection, isolation and identification (diagnosis) of the faults in a system. Comparing

the actual output of the system with an index from a redundant component yields a

monitoring for the status of the system and further analysis on the residual signal

yields isolation and identification. The concept of FDI is based on utilizing the system

with the analytical redundancy. In general, redundancy can be hardware or software

redundancy. Hardware redundancy has many limitations and for many applications

utilizing a redundant component is either impossible or expensive. Software redundancy

or analytical redundancy requires a priori knowledge about the system.

Considering the required a priori knowledge, FDI methods can be grouped into two

important diagnostic algorithms, namely, model-based methods and historical-data

based methods. The first category requires a fundamental understanding of the system

which can be described by a mathematical model of the system. There has been

extensive research in this area. Hwang et al. in [41] discussed various FDI model-

based techniques. Venkatasubramanina et al. presented a review paper [42] which

includes important remarks about model-based FDI with their focus on process control.
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Quantitative model-based FDI approaches consists of observer-based method [43–45],

parity space method [46] and extended kalman filter (EKF). Moreover, the concepts

of system identification can be utilized for the purpose of fault detection. For instance

parameter estimation methods such as least square parameter estimation can be

adapted for this goal as proposed by Isermann in [47]. Gertler in [48] presented the

residual generation methods of model-based FDI and compared the procedure required

for residual enhancement for each of these method. Residual enhancement can be

accomplished by two main approaches, namely, structured residuals and fixed-direction

residuals.

Frank and Ding in [49] focused on fault detection using observer-based approaches

in a robust fashion. Fault detection is the first step for a FDI. The detection will be

carried out by residual generation and residual evaluation using a decision function.

Patton and Chen in [50] discussed observer-based fault detection and isolation with

its robustness issues. Utilizing parity relations for the purpose of fault detection

and isolation is another important method of residual generation. Gertler in [48]

showed that any model-based residual generator can also be expressed in the form of

parity relations. The same author in his other work [51] presented the methodology

for developing parity equations for the purpose of FDI for additive and parametric

faults. The derivations from both transfer function and state space representation

were outlined.

Hostiorical-based methods are the second group of algorithms that provide a tool

for FDI [52–56]. These methods require large amounts of historical data. Srinivasan

et al. in [53] employed neural networks for the purpose of fault detection and isolation.

They solved the least square problem of parameter estimation by using a Hopfield

network. This way they took advantage of parallel processing capability of the Hopfield

networks. The process of fault detection is carried out based on identifying some

transition zones for the estimation errors (residuals). These zones are identified
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by performing statistical tests during certain intervals (moving window). It was

established in this work that when the system is in transition period, due to a fault

occurrence, some statistical quantities such as auto-correlation, mean and sum of

squares will change from zero (corresponding to white noise) to a non-zero value. The

next contribution of the work was to perform fault isolation by classifying different

fault situations. They used adaptive resonance theory (ART) neural network to

introduce an unsupervised learning environment and clustering algorithm capable of

identifying new unencountered faults.

Integration of FDI and recovery module is an important issue in FDIR. Patton

in [57] discussed the interactions of FDI and the control system. Three approaches

are possible for this integration. (i) An open-loop approach is defined as the case

where the FDI module has no effect on the control function. In this case, the control

system influences the FDI operation and can influence the residual signals and violate

the capability of the FDI to detect or isolate a fault. Therefore, FDI robustness with

respect to the control signal must be provided. (ii) As suggested by [57], another

approach for integrating FDI and the controller is establishing a relation between

the FDI information and the controller. Once the fault is diagnosed by the FDI, the

recovery module starts the fault accommodation. This procedure can be carried out

through controller reconfiguration or controller re-structuring. The former performs

the recovery without changing the control philosophy while in the latter, a new control

structure is employed. Reader is referred to [58] for a more detailed discussion of

reconfigurable control. (iii) Another strategy is developing a robust FDI approach and

mixing the control design and fault estimation. Imposing the extra design constraints,

results in a trade-off between the performance and robustness which is not desirable

for the precision control applications.
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1.2.5 Satellite’s Reaction Wheel (RW) Fault Accommoda-

tion

Satellite instrumentation including sensors and actuators are prone to develop a

malfunction. Actuators are important components of a satellite. Basically, they

provide translational and angular accelerations. Actuators are heavier compared

with the sensors, and it is impossible for certain applications to provide the system

with redundant actuators. Thus studying its fault and analytic redundancy is of

importance.

According to Sidi [59] and [60] there are four general classes of control actuators

as sources of force and torque, namely, propulsion systems, solar radiation pressure,

momentum exchange devices and magnetic torqrods. Momentum exchange devices

allow distribution of momentum inside the satellite without changing the total inertial

momentum of the entire system. Due to this intrinsic property, they do not involve

fuel expending. They are electrically powered and thus, are well suited for long

duration missions. We consider the attitude control subsystem (ACS) actuator to

be a momentum exchange device. There are two basic momentum exchange devices,

namely, momentum wheels and reaction wheels (RWs). The former kind is primarily

used for inertial attitude stability and the latter for attitude tracking control and

maneuvering. We focus on reaction wheel devices as the source of actuation.

Drawbacks of RW are relatively small effective torque produced and possible RW

saturation [61]. The latter drawback is related to physical limitations of this device. In

other words, it can not exert more than a certain amount of torque. An accumulated

influence of disturbance torques will impose excessive torque on wheels through the

control law and causes it to saturate [62].

When a defect due to a partial malfunction of the RW occurs in a satellite, its

maneuverability deteriorates. As an example, Dawn, NASA’s spacecraft dedicated to

collecting data in space, experienced a RW fault in August 2012 [63] . The nature
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of the RW fault was increased friction. The system software responded by turning

the wheels off. The accommodation action to resume the mission was made from the

ground station by switching to thrusters for attitude control. NASA’s Mars Odyssey,

the longest-working spacecraft ever sent to Mars, experienced a RW fault in June

2012 [64]. One of the three primaries RW was temporarily immobilized. In response,

the system software placed the satellite in a reduced-activity mode. In order to recover,

engineers from the ground station switched from the immobilized wheel to a spare.

1.2.6 Model Predictive Control (MPC)-Based Fault Accom-

modation

Due to the online control design in model predictive control (MPC), this method

is more robust than static feedback control mechanisms and has the capability to

deal with certain faults even without reconfiguration. Moreover, it is possible to

incorporate robustness with respect to model uncertainties in the MPC design [65–68].

For the applications where there are no redundant actuators, an active system recovery

strategy can be executed and the MPC controller can be reconfigured according to the

data received form the FDI module. This property is attributed to the control signal

being computed at each sample time making changes to the problem formulation

possible. It also has the capability to find solutions near the constraints which is the

case when a fault occurs. Moreover, in some cases the nature of fault is nonlinear,

for instance, the fault of actuator stuck. In those cases, the input constraints which

are nonlinear components of the MPC strategy can handle it. In addition, depending

on the type of fault, fault occurrence is likely to result in increased torque demand

by the controller and yielding actuator saturation which can be avoided by using the

MPC method [69].

One important issue in developing an MPC controller with set-point regulation

objective is the problem of feasibility of the equilibrium point. In the set-point
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regulation problem for nonlinear systems using linear control methods, it is necessary

to have knowledge about the steady-state value of the input that maintains the desired

set-point, which according to [70], can be sensitive to parameter perturbations. In order

to maintain the MPC problem a feasible optimization problem, the input set-point

values must be reconfigured such that its value become an equilibrium-point for the

faulty system. Once the input set point is reconfigured, the input constraints also need

to be reconfigured. There are different approaches suggested in literature for recovering

the system model from infeasibility. Extensive research has been dedicated to the

stability of this methodology of control and provided relevant sufficient conditions in

this regard.

The mismatch between internal model of the MPC and real process on the other

hand, does not cause infeasibility of the problem but will create an offset between

the desired set point and the final values, thus, it must be reconfigured such that an

accepted performance will be achieved. In developing a robust MPC the mismatch

can be captured by a disturbance model and further analysis is required to tackle the

resulting offset [71].

An active fault tolerant MPC scheme accommodates faults by re-designing the

control design using direct fault information from the FDI module [72–78]. Authors

in [72] discussed the integration of FDI and recovery module in detail. They proposed a

recovery strategy based on a modification made on the MPC formulation, particularly,

for soft faults such as bias in the actuator or sensor. The modification they made is

adding extra innovation terms in the MPC internal model. For producing robustness

with respect to FDI information, they introduced an integral action in the added

term and therefore, the error in the estimated faults will be corrected in the course

of time. They compared it with the conventional method. In the conventional

approach MPC state space model is integrated with state observers with new states

representing faults or model mismatches in the system. Consequently conventional
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approaches can guaranty fault tolerance for limited number of faults that does not

deteriorate observability condition. Although their proposed method is not efficient

in terms of determined control signal but it can handle actuator and sensor fault

simultaneously. Kerrigan et al. in [73] demonstrated the relative robustness of MPC

in the presence of internal faults in a ship propulsion system and active fault tolerance

is practiced for sensor fault by utilizing FDI information for making correction to

faulty sensor measurements. Miksch et al. in [74] presented an online accommodation

of actuator faults using the MPC. Different issues involved in this practice has been

investigated including feasibility evaluation of control problem after occurrence of fault

and its corresponding solutions yielding a feasible solution but a degraded performance.

Authors in [79] developed an MPC scheme that is capable of compensating for faults of

communication loss/delay in cooperative multiple vehicles. Joosten et al. [80] proposed

incorporating a control allocation strategy in the MPC framework towards providing

fault tolerance.

The MPC method can be joint with other techniques through modifying its

formulation for developing a fault tolerant scheme. Examples include subspace

predictive control (SPC), dynamic safety margin (DSM) and admissibility evaluation

using constraint satisfaction problem (CSP) techniques [81–83].

1.3 Thesis Contributions

The contributions of the thesis are listed below.

1. A more realistic linear dynamical modeling of satellites is used in the control

design instead of a simplified model that is used in most of the available literature.

The objective is to improve the formation precision and also to handle component

faults by developing an online recovery scheme. The linear dynamical model of

a satellite that is used for the control design is improved in terms of satellite
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absolute dynamics as well as the relative dynamics. In particular, (i) the actuator

dynamics is included in a single satellite dynamical model that enhances the

representation precision due to the use of a more realistic model that also results

in fault handling capability , and (ii) a more precise approximation of the relative

attitude dynamical model is obtained by using similarity transformations that

contributes to an improved formation precision.

2. A behavior-based formation control strategy is proposed in which the objectives

of the behavior-based control are specified as (a) goal seeking where a desirable

orientation is assigned to each individual agent to track, and (b) formation

keeping where the relative orientation of the agents is maintained to a desirable

value. Associated with the second objective, the relative state measurements

and the coupled dynamics model are used for achieving the desirable formation

behavior. In other words, we propose to incorporate the interactions among the

agents in the control design by using coupled dynamics model. The coupled

dynamics model contributes to achieving a precise formation by (i) providing

a precise knowledge through a relative attitude determination system [84] and

(ii) development of a novel behavior-based control scheme based on coupled

dynamic modeling.

3. A semi-decentralized MPC-based scheme is proposed that satisfies the formation

control objectives and mitigates the computational complexity and communica-

tion requirements as demonstrated quantitatively through simulation studies.

4. The centralized approach to solving the problem is presented and the proposed

semi-decentralized approach is compared with this centralized approach in the

simulation studies and the improvements and limitations are identified.

5. The decentralized approach to solving the problem is presented and the proposed

semi-decentralized approach is compared with this non-cooperative decentralized
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approach in the simulation studies and the improvements and limitations are

highlighted.

6. The centralized LQR-based approach is provided and its performance is compared

with the centralized MPC-based approach in the simulation studies and the

improvements and limitations are highlighted.

7. A two-level active system recovery strategy is proposed that incorporates the

fault information into the semi-decentralized MPC-based control to compensate

for the identified characteristics losses. The local-level recovery accommodates

the faulty agent’s performance by using local fault information and the formation-

level recovery enhances the recovery performance by reducing the oscillatory

behavior.

8. A centralized recovery scheme is provided and the formation system recovery

performance by using this centralized recovery approach is compared with our

proposed semi-decentralized recovery scheme subject to the RW faults in the

ACS of formation flying satellites.

9. A decentralized recovery scheme is provided and its limitations subject to the RW

faults in the ACS of formation flying satellites are analyzed in the stimulation

studies.

1.4 Conclusions

In the most of the current works in the domain of attitude motion control of satellites,

actuator dynamics and constraints are not taken into account and this component

is characterized as an ideal component. In this thesis, the actuator dynamics is

incorporated in the satellite modeling to obtain a more realistic model for the satellite,

in fault free and actuator fault conditions. A more realistic modeling contributes to
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achieving more precision in the formation control. Moreover, by taking the actuator

dynamics into account in the control design, the recovery of the system under certain

fault conditions that are related to the higher order dynamics will also be realized.

The relative-state based control of attitude motion is specifically of interest due to

high-precision capabilities of relative attitude determination systems. The nonlinearity

of the relative-state dynamics with respect to absolute states, which has not been

included in the available linearized relative dynamical modeling in the literature, is

taken into account in this work by combining relative and absolute states through

utilizing suitable coordinate system transformation, and results in introducing a more

accurate relative dynamical modeling and development of a novel behavior-based

control formulation based on coupled dynamic modeling.

The stringent communication requirements problem involved in the cooperative

formation control inspired us to develop a semi-decentralized MPC-based scheme

because the reliance of communicating the input information among agents within a

dynamically coupled MPC approach, yields excessive communication requirements.

Therefore, individual subsystems are characterized such that the predictions are

performed based on the input information of each individual agent. Using this strategy

each agent undergoes a lower level of computational load and communications with

neighbors. The proposed semi-decentralized scheme takes into account actuator

dynamics and the actuator constraints.

Fault in actuators, a control component of the system, can lead to loss of conver-

gence or an offset from the desirable steady-state values. An ill-managed fault can

cause the whole mission to fail or impose large costs to the formation system. To avoid

the aforementioned problems, an active system recovery scheme is developed that

incorporates the fault information into the semi-decentralized MPC-based control to

compensate for the identified characteristics losses. The recovery strategy accommod-

ates the faults in two levels. The first level recovers the faulty agent performance by
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using a local recovery scheme, and the second level enhances the recovery performance

by using a formation recovery scheme. This study focuses on two common faults on

the satellites RWs, namely loss of effectiveness and friction faults. These faults were

identified as sources of RW malfunction in two of the recent reports corresponding

to Mars Odyssey and Dawn, NASA’s spacecraft and as mentioned previously, were

handled by switching to redundant components. Providing an automatic fault recovery

scheme, as addressed in this work, reduces the mission cost significantly by not relying

on the need for component redundancy. The FDI channel accuracy and time delay

considerations are taken into account in the simulation studies.

The organization of this thesis is as follows. Chapter 2 covers a single satellite

attitude dynamics modeling and also formation flying satellite relative dynamics

modeling and the information flow structure. Two common RW faults are described

and their mathematical modeling is presented and two optimal control-based methods

of MPC and LQR are explained. Chapter 3 discusses the proposed semi-decentralized

MPC-based approach for fault-free condition. In this chapter the proposed semi-

decentralized control design is compared with centralized and decentralized control

schemes. A centralized LQR-based approach is also provided and compared with the

centralized MPC-based scheme. Chapter 4 focuses on faulty case and investigates the

performance of the proposed semi-decentralized system recovery strategy by comparing

it with other schemes, namely, centralized and decentralized recovery schemes. Finally

in Chapter 5 concluding remarks of this study are summarized and the potential

future works are suggested.

1.5 Publication of the Author

• [Submitted] N. R. Esfahani and K. Khorasani, “Model predictive control (MPC)-

based attitude control of formation flying satellites: A semi-decentralized ap-

22



proach,” in European Control Conference, 2014.
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Chapter 2

Background Information

In this chapter the kinematic and dynamic equations describing the attitude motion

of a single satellite are provided. The reaction wheel (RW) which is a very common

actuator in satellites and its dynamics are included in this modeling. The formation

flying satellites information flow, and the relative motion dynamics are presented,

and the mathematical modeling of fault in this component of the attitude control

subsystem (ACS) is provided. Finally, the model predictive control (MPC) and the

linear quadratic regulator (LQR) frameworks are briefly explained.

2.1 Single Satellite Attitude Dynamics and Its Lin-

ear Model

2.1.1 Attitude Representation

Attitude dynamics describe the rotational motion of an object about its center of

mass [59, 85]. There exist alternative representations for parametrization of the

attitude of an object in three dimensional space such as direction cosine matrix, Euler

axes/angle, Euler symmetric parameters (quaternion), Gibbs vector and Euler angles.

Reader is referred to [85] where a comparison between these methods is presented.
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Diebal in [86] provided a detailed theory, for conversion among direction cosine, Euler

angles and quaternion representations, and their key properties. In this study, the

quaternion representation is selected for the control design. The reason behind this

selection is that they are free from the problem of singularity that exists in the Euler

angles representation. Also number of redundant parameters is less than direction

cosine matrix representation (four versus six). Furthermore, Quaternion parameters

follow a convenient product rule that is efficient for successive rotations. Nevertheless,

there exists a constraint in quaternion parametrization which is known as unit norm

constraint. One approach to deal with this constraint is using reduced quaternion

model for control design [87]. In this approach the constraint will be satisfied in a

natural way. However, there exists one point corresponding to the principle angle

of π at which the reduced model is not valid. Another approach is performing a

normalization on quaternion parameters to impose the constraint to be satisfied. This

task must be carried out in each control design iteration. In this work the second

approach is used in order to provide a universal design for the attitude control without

any invalid point. Sun and star sensors can provide the data for inertial-pointing

missions and according to [88] are compatible with inertial quaternions.

In the quaternion formulation, the quaternion vector is defined as

q =




q

q4


 =




Î cos
(

Φ
2

)

sin
(

Φ
2

)


 (2.1)

where q =
[

q1 q2 q3

]T

, q4 , Φ and Î are a vector part, a scalar part of quaternion,

a principle angle and a principle line, respectively. There are two important operations

corresponding to the quaternion, namely, an inverse quaternion and the quaternion

multiplication which are given by equations (2.2), (2.3), respectively.

q−1 =
[

−qT q4

]
, (2.2)
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and

qc = qa ⊗ qb, (2.3)

where the multiplication operator ⊗ is defined as

q⊗ =




q4 q3 −q2 q1

−q3 q4 q1 q2

q2 −q1 q4 q3

−q1 −q2 −q3 q4




. (2.4)

In the next section, the nonlinear dynamics and kinematic equations of a single

satellite attitude motion using quaternion representation are discussed.

2.1.2 Nonlinear Dynamics and Kinematic Equations

The attitude measurements are made in the satellite body-fixed frame and it is required

to consider its motion in this frame which we call hereby as "rotating coordinates".

The satellite kinematic will be obtained by taking the time derivative of the

quaternion as discussed in [86]. Finally equations (2.5) and (2.6) describe the satellite

kinematic equations.

q̇ = −1

2
[ω×] q +

1

2
q4ω (2.5)

q̇4 = −1

2
ωT q, (2.6)

where q is the vector part of quaternion and ω =
[

ω1 ω2 ω3

]T

is the angular

velocity of the satellite in the coordinate system defined above. The operation [ω×]

denotes a skew symmetric matrix and is defined as

[ω×] =




0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0




. (2.7)
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The foundation of attitude motion dynamics is based on the well-known Euler’s

moment equation (equation (2.8)). This equation describes the rate of change of any

vector (A) in a fixed coordinate (I) in terms of the rate of change of that vector as

observed in a rotating coordinate (B) plus a vector product involving angular velocity

of the rotating coordinate (ω). [59]

d

dt
A |I=

dA

dt
|B +ω × A, (2.8)

This moment equation is used to derive an expression for the angular momentum

of the entire system (h ∈ R
3) as a function of the inertia matrix (Is ∈ R

3×3) and the

angular velocity of the rotating coordinate (equation (2.9)).

h = Isω, (2.9)

Also, the equation is used to obtain the rate of change of the angular momentum

vector in fixed coordinates (ḣI) to derive the satellite dynamics (equation (2.10)).

Thus we have

Te = ḣI = ḣ + [ω×] h. (2.10)

In equation (2.10), Te ∈ R
3 is the external torque and can be broken down into

Tc ∈ R
3 and Td ∈ R

3, which denote the external control moment (due to gas jets and

magnetic coils) and the disturbance torques due to environmental effects, respectively.

We are considering the case where the control torque is provided by reaction wheel

(RW), which is one type of momentum exchange devices, instead of the propellant

expelling thrusters. According to [85], the produced torque due to these devices is not

an external torque and does not change the total angular momentum of the satellite.

Consequently, the left hand side of the equation (2.10) is equal to Td. A description of

satellite disturbance torques is provided in Section 2.1.4.
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The satellite dynamics, including the RW dynamics is subject to a slight modifica-

tion. In this case the momentum of the entire system consists of the momentum of

the rigid body, i.e., hB and the momentum of the moment exchange devices, i.e., hw,

as follows

h = hB + hw = Isω + hw. (2.11)

Substituting for h from equation (2.11) in equation (2.10) yields

Isω̇ + ḣw + [ω×] (Isω) + [ω×] hw = Td, (2.12)

where hw ∈ R
3 denotes the net angular momentum due to the rotation of the wheels

relative to the spacecraft. Finally the satellite dynamics is expressed as

ω̇ = −I−1
s [ω×] (Isω) − I−1

s [ω×] hw − I−1
s ḣw + Td (2.13)

In the next section, the RW dynamics is included in the single satellite’s dynamics

expression.

2.1.2.1 Reaction Wheel (RW) Dynamics

The dynamics of the RW is considered to be nearly ideal [89]. The block diagram for

the RW approximate model is shown in Figure 2.1.

The following differential equation holds for the wheel speed ωw =
[

ωw1 ωw2 ωw3

]T

.

ω̇w = I−1
w Nm − I−1

w τvωw, (2.14)

where Iw ∈ R
3×3 and τv ∈ R

3×3 are diagonal matrices related to the wheels inertia

and friction (viscous friction), and Nm ∈ R
3 is the motor torque given by

Nm = GdKtu, (2.15)
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Figure 2.1: Nearly Ideal RW Block Diagram.

where Gd ∈ R
3×3 and Kt ∈ R

3×3 are diagonal matrices related to the driver gain and

the motor torque constant associated with RW motor and u ∈ R
3 is the controller

torque command. Furthermore, the RW angular momentum is the product of the

flywheel inertia and the wheel speed, i.e.

hw = Iwωw, (2.16)

so that one gets

ḣw = Iwω̇w = Nm − τvωw. (2.17)

Moreover, the reaction torque (produced torque) is opposite to the net torque and

given by

Nr = −ḣw. (2.18)

Substituting for Nm into equation (2.17) and then substituting for hw and ḣw,

from equations (2.16) and (2.17) into equation (2.13) yields the dynamics of a single

satellite including its actuator dynamics given by

ω̇ = −I−1
s [ω×] (Isω) − I−1

s [ω×] Iwωw + I−1
s τvωw − I−1

s GdKtu + Td (2.19)
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2.1.3 Linearized Dynamics and Kinematic Equations

In this section, the satellites dynamics is linearized in a neighborhood of any arbitrary

operating point. Let ẋj = f (xj, uj) represent the satellite j nonlinear dynamics

and kinematic equation where xj =
[

ωT
j qT

j q4j ωT
wj

]T

∈ R
10 and uj ∈ R

3

represent the single satellite state vector and the controller command which is input

to each of the three RWs corresponding to the satellite’s three axes (namely, pitch,

yaw and roll) and the disturbance torques are neglected. Using the Jacobian and

Tayor series expansion, in a neighborhood of any operating point (x̂j, ûj), one gets

f (xj, uj) = f (x̂j, ûj)+
∂

∂xj
f |(x̂j ,ûj) (xj − x̂j)+

∂
∂uj

f |(x̂j ,ûj) (uj − ûj)+h.o.t. Therefore,

by neglecting the higher order terms, the linearized state-space equation for the absolute

attitude dynamics will be expressed as

˙δxj = Acj
δxj + Bcj

δuj (2.20)

where

Acj
=

∂

∂xj

f |(x̂j ,ûj)=




−I−1
s ([ω̂j×]Is−[(Isω̂j)×]−[(Iwω̂wj )×]) 0 0 I−1

s τv−I−1
s [ω̂j×]Iw

1

2
[q̂j×]+ 1

2
q̂4jE3×3 − 1

2
[ω̂j×] 1

2
ω̂j 0

− 1

2
q̂T

j
− 1

2
ω̂T

j
0 0

0 0 0 −I−1
w τv




,

Bcj
=

∂

∂uj

f |(x̂j ,ûj)=




−I−1
s GdKt

0

0

I−1
w GdKt




(2.21)

where E denotes the identity matrix. Note that in the above expression δxj and δuj

denote perturbation variables (δxj = xj − x̂j and δuj = uj − ûj). The difference

equation representing the discrete-time linearized state equations of the continuous-
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time linearized state space model over the sampling period Ts for nay satellite j is

now obtained as

δxj (k + 1) = Ajδxj (k) + Bjδuj (k) (2.22)

where

Aj = eAcj
Ts , Bj =

´ Ts

0
eAcj

λBcj
dλ . (2.23)

2.1.4 Environmental Disturbances

Different forces/torques dominate in different space regions [85]. Aerodynamic disturb-

ance torques due to aerodynamic forces dominate in the orbits close to the Earth. In

larger distances from the Earth, these forces fall off and gravity gradient and magnetic

field disturbance torques are larger. The other disturbance torque is the solar radiation

disturbance which dominates in the interplanetary medium.

The aerodynamic torque depends on the orbital altitude and the satellite geometry.

The magnitude of this disturbance torque can be obtained by Ta = F (Cpa − Cg) ,

where F = 0.5 (ρCdAV 2) , and Cd denotes the drag coefficient (usually between 2 and

2.5), ρ denotes the atmospheric density, A represents the surface area and V denotes

the satellite velocity, Cpa denotes the location of the satellite’s center of aerodynamic

pressure and Cg represents the location of the center of gravity [88]. The gravity

gradient torque depends on the satellite inertias about its axis and also the orbital

altitude. The maximum magnitude of this disturbance torque can be obtained by

Tg = 3µ
2R3 ‖Iz − Iy‖ for each satellite where µ = 3.988 × 1014 m3/s2 denotes the Earth’s

gravity constant and R denotes the orbital radius. The magnetic field disturbance can

be obtained by Tm = DB and therefore, is affected by the satellite’s residual magnetic

dipole D, where its typical value for a small sized satellite is D = 1 A.m2, and the

Earth’s magnetic field can be obtained by B = 2M
R3 , where M = 7.98 × 1015 tesla.m3

denotes the magnetic moment of the Earth. Finally, the solar radiation disturbances
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is affected by the satellite’s geometry and surface reflectivity. The worst case of

the solar radiation pressure torque can be obtained by Tsp = F (Cps − Cg) . In this

expression the maximum value of F can be obtained by F = Fs

c
As (1 + q) , where

Fs = 1.367 W/m2 denotes the solar constant, c = 3 × 108 m/s denotes the speed

of light, As denotes the surface area, Cps denotes the location of the center of solar

pressure, and q denotes the reflectance factor.

2.2 Formation Flying Satellites Relative Dynamic

Equations

For the purpose of design of the MPC controller based on relative state measurements,

the relative dynamic equations are needed in order to predict the future relative states.

Chang et al. in [13] derived the linearized relative dynamic equations for the satellites

formation flying. Their linearized relative dynamics neglected certain variables such as

the absolute states by analyzing the relative dynamical behavior within the proximity

of a certain operating condition. In this study, a generic relative dynamical modeling

is obtained which is valid for any operating condition of the formation flying satellite

system. Based on the problem objectives, both relative and absolute states must be

predicted within the MPC framework. On the other hand, as will be shown in this

subsection, a more precise relative state dynamics for the attitude motion relies on

the absolute states. Combining both absolute and relative dynamics and by using a

dynamic coupling approach enables one to satisfy the two objectives and at the same

time benefit from a precise dynamical model for representing the attitude dynamics

motion.
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2.2.1 Nonlinear Relative Dynamic Equations

Consider the agents j and k, where xj =
[

ωT
j qT

j q4j ωT
wj

]T

∈ R
10, xk =

[
ωT

k qT
k q4k ωT

wk

]T

∈ R
10, represent their state vector and uj ∈ R

3 and uk ∈ R
3,

represent their controller command which is input to each of the three RWs. In

the relative attitude dynamics, the coordinates change. Relative quaternion can be

obtained using the following operation

qjk = qj ⊗ q−1
k (2.24)

Using equation (2.5) and (2.6) the kinematic equations for the relative attitude

motion can be obtained as

q̇jk =




q̇jk

q̇4jk


 =




1
2

(q4jkωjk − [ωjk×] qjk)

−1
2
ωT

jkqjk


 (2.25)

where qjk =
[

qT
jk q4jk

]T

=
[

q1jk q2jk q3jk q4jk

]T

and ωjk represent the qua-

ternion mapping of the satellite j body-fixed coordinate with respect to the satellite

k body-fixed coordinate, and the angular velocity of the satellite j with respect to

the satellite k, respectively. Relationships between the relative angular velocity of the

satellites j and k and their absolute values can be described as

ωjk = ωj − Cjkωk (2.26)

where Cjk is the direction cosine matrix for the transformation from satellite k body-
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fixed coordinates to satellite j body-fixed coordinates and can be obtained from

Cjk =




1 − 2
(
q2

2jk + q2
3jk

)
2 (q1jkq2jk + q3jkq4jk) 2 (q1jkq3jk − q2jkq4jk)

2 (q1jkq2jk − q3jkq4jk) 1 − 2
(
q2

1jk + q2
3jk

)
2 (q2jkq3jk + q1jkq4jk)

2 (q1jkq3jk + q2jkq4jk) 2 (q2jkq3jk − q1jkq4jk) 1 − 2
(
q2

1jk + q2
2jk

)




(2.27)

As can be observed from equation (2.26) corresponding to ωjk, the matrix Cjk is

involved in the equation, which is due to the change of coordinates. For deriving the

relative states dynamics we need the derivative of equation (2.26), i.e.

ω̇jk = ω̇j − Ċjkωk − Cjkω̇k (2.28)

Based on the properties of the direction cosine matrix we have Ċjk = − [ωjk×] Cjk.

Substituting for ω̇j and ω̇k in equation (2.28) from their dynamics relationships and

substituting for ωk from equation (2.26) yields

ω̇jk = f
(
ωj, ωwj

, ωjk, qjk, ωwk
, uj, uk

)
(2.29)

where f (.) is a nonlinear function. As can be observed from equation (2.29), the

absolute angular velocities appear in the relative dynamics equation. Thus, the

linearized dynamics equation must include these terms as well as the relative states.

2.2.2 Relative States and Absolute States Linear Relation

In this subsection, the linear relation between absolute states and relative states is

derived based on their nonlinear relation (equations (2.24) and (2.26)). We need this

relation to further use it in similarity transformation.

For the purpose of model linearization, let the operating point for the absolute

attitude state vector of satellite j and k be specified as x̂j =
[

ω̂T
j q̂T

j q̂4j ω̂T
wj

]T
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and x̂k =
[

ω̂T
k q̂T

k q̂4k ω̂T
wk

]T

. In this section, for each individual agent, the

relative states will be derived as a linear combination of absolute states. We define the

following two nonlinear functions that map the absolute states to the relative states

qjk = ϕq

(
qj, qk

)
= qj ⊗ q−1

k =




qjk

q4jk


 =




qj ⊗ qk + q4j (−qk) + q4k (qj)

qj.q
T
k




(2.30)

ωjk = ϕω

(
ωj, ωk, qj, qk

)
= ωj − Cjkωk (2.31)

Due to the Jacobian and the Taylor series expansion for the equations (2.30) and

(2.31), one gets

qjk = ϕq

(
q̂j, q̂k

)
+

[
∂

∂qj
ϕq

∂
∂qk

ϕq

]



qj − q̂j

qk − q̂k


 + h.o.t. (2.32)

ωjk = ϕω

(
ω̂j, ω̂j, q̂j, q̂k

)
+

[
∂

∂ωj
ϕω

∂
∂ωk

ϕω
∂

∂qj
ϕω

∂
∂qk

ϕω

]




ωj − ω̂j

ωk − ω̂k

qj − q̂j

qk − q̂k




+ h.o.t.

where ϕq

(
q̂j, q̂k

)
is the vector function ϕq (.) which is evaluated at the operating point

and ∂
∂qj

ϕq, ∂
∂qk

ϕq ∈ R
4×4 represent the matrix derivatives of the vector function ϕq (.)

evaluated at the operating point and ∂
∂ωj

ϕω, ∂
∂ωk

ϕω ∈ R
3×3 and ∂

∂qj
ϕω, ∂

∂qk
ϕω ∈ R

3×4

correspond to the vector function ϕω (.). The matrix derivatives are obtained as follows

∂
∂qj

ϕq =




∂
∂qj

qjk
∂

∂q4j
qjk

∂
∂qj

q4jk
∂

∂q4j
q4jk


 =




− [q̂k×] + q̂4kE3×3 −q̂k

q̂
T

k


 ,

∂
∂qk

ϕq =




∂
∂qk

qjk
∂

∂q4k
qjk

∂
∂qk

q4jk
∂

∂q4k
q4jk


 =




[q̂j×] − q̂4jE3×3 q̂j

q̂
T

j


 ,

(2.33)
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∂
∂ωj

ϕω = E3×3,
∂

∂ωk
ϕω = −Cjk

0 ,

∂
∂qj

ϕω = −Ĉ
′′jk (

q̂jk, ω̂k

)
∂

∂qj
ϕq, ∂

∂qk
ϕω = −Ĉ

′′jk (
q̂jk, ω̂k

)
∂

∂qk
ϕq

(2.34)

where Ĉjk is the matrix Cjk evaluated at the operating point and Ĉ
′′jk

(.) is defined

as follows:

The equation (2.31) has very high degree of non-linearity with respect to qj and

qk because of the matrix Cjk. The partial derivatives of the matrix Cjk with respect

to the partial elements of qjk (q1jk, q2jk, q3jk and q4jk) can be obtained as

C ′
1 = ∂

∂q1jk
Cjk =




0 2q̂2jk 2q̂3jk

2q̂2jk −4q̂1jk 2q̂4jk

2q̂3jk −2q̂4jk −4q̂1jk




, C ′
2 = ∂

∂q2jk
Cjk =




−4q̂2jk 2q̂1jk −2q̂4jk

2q̂1jk 0 2q̂3jk

2q̂4jk 2q̂3jk −4q̂2jk




,

C ′
3 = ∂

∂q3jk
Cjk =




−4q̂3jk 2q̂4jk 2q̂1jk

−2q̂4jk q̂3jk 2q̂2jk

2q̂1jk 2q̂2jk 0




, C ′
4 = ∂

∂q4jk
Cjk =




0 2q̂3jk −2q̂2jk

−2q̂3jk 0 2q̂1jk

2q̂2jk −2q̂1jk 0




,

(2.35)

and Ĉ ′′jk ∈ R
3×4 is defined as a function of q̂jk and ω̂k as follows

Ĉ
′′jk (

q̂jk, ω̂k

)
=

[
C ′

1ω̂k C ′
2ω̂k C ′

3ω̂k C ′
4ω̂k

]
(2.36)

Finally, by neglecting the higher order terms, the slightly perturbed state vectors

δqjk = qjk − q̂jk and δωjk = ωjk − ω̂jk will be expressed as

δqjk =




δqjk

δq4jk


 ≈

[
∂

∂qj
ϕq

∂
∂qk

ϕq

]



δqj

δqk


 (2.37)
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δωjk ≈
[

∂
∂ωj

ϕω
∂

∂ωk
ϕω

∂
∂qj

ϕω
∂

∂qk
ϕω

]




δωj

δωk

δqj

δqk




(2.38)

Using equations (2.37) and (2.38), the relative angular velocity and attitude

quaternion of the agent j and k can be derived as a linear combination of the absolute

angular velocities and attitude quaternions as follows




δωjk

δqjk


 =




∂
∂ωj

ϕω
∂

∂qj
ϕω

∂
∂ωk

ϕω
∂

∂qk
ϕω

04×3
∂

∂qj
ϕq 04×3

∂
∂qk

ϕq




︸ ︷︷ ︸
T ′

jk




δωj

δqj

δωk

δqk




(2.39)

where T ′
jk is a 7×14 matrix. The wheel angular velocity states is also included in

order to use the matrix later in the dynamics equations, and therefore, equation (2.39)

is written as




δωjk

δqjk


 =




∂
∂ωj

ϕω
∂

∂qj
ϕω 03×3

∂
∂ωk

ϕω
∂

∂qk
ϕω 03×3

04×3
∂

∂qj
ϕq 04×3 04×3

∂
∂qk

ϕq 04×3




︸ ︷︷ ︸
T ′′

jk




δωj

δqj

δωwj

δωk

δqk

δωwk




(2.40)

It can be shown that the matrix T ′′
jk ∈ R

7×20 is a full-rank matrix because regardless

of the operating-point, the first seven columns are linearly independent. Using this

matrix, in the next section, we derive the linear relative dynamics equations.
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2.2.3 Linearized Relative Dynamics Equations

Next, a similarity transformation is derived for representing the networked system in

a new coordinate system which includes the absolute and the relative state vectors.

Problem A. Given the augmented vector consisting of absolute state vectors of agents,

defined as
[

xT

j xT

k

]T

, there exists a similarity transformation T that transforms the

coordinates to a new system of coordinates such that the transformed states become

absolute state of one agent and their relative states, i.e.




xj

xjk


 = T




xj

xk


 (2.41)

where xjk =
[

ωT

jk qT

jk ωT

wk

]T

∈ R
10.

Given

[
xT

j xT
jk

]T

=
[

ωT
j qT

j ωT
wj

ωT
jk qT

jk ωT
wk

]T

and
[

xT
j xT

k

]T

=
[

ωT
j qT

j ωT
wj

ωT
k qT

k ωT
wk

]T (2.42)

and using equation (2.40), T can be written in the form of

T =




E10×10 010×7 010×3

T ′′
jk

03×10 03×7 E3×3




20×20

(2.43)

where E denotes the identity matrix and T ′′
jk ∈ R

7×20 was calculated in equation (2.40).

As can be observed from equation (2.43), regardless of the operating point and given

that the matrix T ′′
jk is full-rank, it can be concluded that the matrix T is invertible

(linearly independent rows of the matrix).

Using T from equation (2.43), the dynamic equations in the new coordinate system
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are obtained as




xj (k + 1)

xjk (k + 1)


 = T




Aj 0

0 Ak


 T −1




xj (k)

xjk (k)


 + T




Bj 0

0 Bk







uj (k)

uk (k)


 (2.44)

where (Aj, Bj) and (Ak, Bk) are as specified in equation (2.23).

Remark 1. The state variables denote the perturbation variables.

Remark 2. The new coordinate system represents relative dynamics in a coupling

manner as apposed to the original coordinate system in which agents were decoupled.

Next, we describe the information flow among the agents and follow the conventional

method in the literature for representing the interactions and use a graph structure

[90–93].

A simple fixed-undirected graph is represented by g = (V, A) where V is the set of

nodes and A ⊆ V × V is the set of edges. If i ∈ V and j ∈ V and the pair (i, j) ∈ A

then the nodes i and j are adjacent and we denote this by i ∼ j.

An orientation in a graph is the assignment of a direction to each edge such that

the positive direction of the arc (i, j) is from i to j. Let gγ denote the graph g with

an arbitrary orientation γ. The incidence matrix B (gγ) of a directed graph gγ is the

matrix with its rows and columns indexed by nodes and arcs of gγ, respectively. The

i , j entry of this matrix is equal to 1 if the edge j is incoming to the node i , -1 if the

edge j is outgoing from the node i and 0 otherwise. The Laplacian of g is defined as

the following symmetric matrix

L (g) = B (g) B (g)T (2.45)

L (g) is always positive semi-definite and some important features about the graph

can be captured from its eigenvalues. For a connected graph the number of zero

eigenvalues are one and the second smallest eigenvalue, denoted by λ2 is called algebraic
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connectivity of the graph and is related to the structure of interconnections. Now we

define a graph for our problem :

Definition 1. (Formation Neighboring Graph).

The formation neighboring graph Gf (Vf , Af ) is an undirected graph which consists

of a set of vertices Vf and a set of edges Af such that:

1. Vf = {1, 2 . . . , Nv} is indexed by the agents in the team and Nv is the number

of agents.

2. Af = {(j, k) ∈ Vf × Vf | j ∼ k} is the set of unordered pairs representing neigh-

boring relations, where j ∼ k denotes neighboring nodes in the graph. Neigh-

boring nodes represent the agents that share their relative state information.

Let x̃j denote the vector of concatenation of all the relative states of agent j with

respect to its neighbors, i.e. x̃j = {xjk ∈ R
10| (j, k) ∈ Af}. Moreover, let the corres-

ponding similarity transformation matrix be denoted by Tj, i.e.
[

xT
j x̃T

j

]T

=

Tj

[
xT

j xT
k · · ·

]T

and let the extended dynamic model described by equation

(2.44), which includes the agent xj and its neighbors (x̃j) in the model, be de-

noted by
(
Aj, Bj

)
∈ R

10Nv×10Nv×10Nv×3Nv , where Aj = Tj




Aj 0 0

0 Ak 0

0 0
. . .




T −1
j and

Bj = Tj




Bj 0 0

0 Bk 0

0 0
. . .



.

The structure of the information flow (relative state information) in the team

depends on the control strategy. In a centralized control strategy, the central controller

has a global information about the team. Therefore, a neighboring formation graph

and a neighboring relation is not specified for this case as all the agents are considered

as neighbors. In a semi-decentralized control strategy each agent requires only a subset
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of information exchange, which is denoted as exchange with its neighboring agents,

and therefore a formation neighboring graph must be specified.

2.3 Fault Modeling

In Chapter 4 of this thesis, the satellite under fault condition is considered and a

recovery approach is presented. Thus, one requires preliminary knowledge on the fault

modeling. In this part, we focus on modeling two common faults in the satellites

reaction wheels (RW), namely the reduction of motor torque constant or loss of

effectiveness (LOE) fault and the friction fault. These faults were identified as sources

of RW malfunction in two of the recent reports corresponding to Mars Odyssey and

Dawn, NASA’s spacecraft. Associated with any fault is a type, an extent and type of

representing. The type of fault is a time-behavior description of it, which according

to [94] for a physical system, can be categorized as abrupt, incipient or intermittent.

Figure 2.2 shows a comparison of these types. Also different extent/severity levels can

be considered for a fault ranging from a partial fault to a total failure. Finally, any

fault can be represented in the system model parameters by multiplicative or additive

terms. In this study we concentrate on the case where an abrupt partial fault of loss

of effectiveness or fraction fault occurs. Both of the faults that are considered here

are parametric faults of the state space model and thus are multiplicative faults.

Figure 2.2: Time behavior of fault: (a) abrupt, (b) incipient, (c) intermittent.

41



2.3.1 Partial Loss of Effectiveness (LOE) Fault

Let the equation xj (k + 1) = Ajxj (k) + Bjuj (k) describe the dynamics for any

satellite j. Recall that based on the RW model presented in subsection 2.1.2.1, the

controller command uj is related to the RW produced torque by the motor torque

constant (Kt) and the driver gain (Gd). The motor torque constant (Kt) is related

to the magnetic flux linkage and the average phase current [95]. The magnetic flux

linkage in motor might change abruptly. This fault usually occurs because of RW

motor inefficiency. Under this fault condition, one will have

K ′
t = ΓKt (2.46)

where K ′
t ∈ R

3×3 represents the motor torque constant under the fault condition and

Γ ∈ R
3 is the effectiveness matrix with the form

Γ =




Γ1 0 0

0 Γ2 0

0 0 Γ3




, (2.47)

where Γl for 1 ≤ l ≤ 3 denotes the effectiveness corresponding to each of 3-axis RWs

and has a value between zero and one. This fault causes the produced torque to be

reduced by a certain value and is known as fault of loss of effectiveness.

2.3.2 Friction Fault

Recall that based on the RW model presented in section 2.1.2.1, the final reaction

torque (Nr) is influenced by the existing viscous friction in the wheel bearing (τv).

The viscous friction is the friction generated in the bearings due to bearing lubricant.

Bearing lubricant is significantly sensitive to temperature and thus, the friction
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constant (τv) is related to the temperature through the following relationship [89]

τυ =
(

0.049 − 0.0002
◦C

(T + 30◦C)
)

mN − m

rad/sec
(2.48)

Dramatic temperature changes (4T ) results in considerable change of friction

constant (τv) in a way that the new friction constant will be given by

τ ′
v = τv ± Π, (2.49)

where τ ′
v ∈ R

3×3 represents the friction constant in fault condition and Π ∈ R
3×3, the

viscous friction loss/gain matrix, can be obtained by

Π =
(

0.0002
◦C

4 T
)

mN − m

rad/sec
, (2.50)

where

4T =




4T1 0 0

0 4T2 0

0 0 4T3




∈ R
3×3,

and 4Tl for 1 ≤ l ≤ 3 denotes the temperature change in the each of the 3-axis RWs.

Consequently, the single satellite model in this fault situation can be described by the

following equation

xj (k + 1) = (Aj ± AΠ)xj (k) + BjΓuj (k) (2.51)

where

AΠ = e




03×3 03×4 I−1
s Π

04×3 04×4 04×3

03×3 03×4 −I−1
w Π




Ts

. (2.52)
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2.4 Model Predictive Control (MPC) Framework

In this section we introduce linear MPC method. MPC is an optimal control strategy.

More specifically, it is a constrained finite-time optimal control (CFTOC). In the

linear MPC, the future values of states of the system are predicted using the dynamic

model of the system and the current states information. Therefore, a discrete-time

setting is used and using the standard state-space formulation of system model and

the current state information, the future states are predicted. The cost function is

defined by equation (2.53) in the form of quadratic, where the time horizon for this

cost function is finite and known as prediction horizon (N ), that is

J (k) =
N−1∑

i=0

{xT (k + i|k) Qx(k + i|k) + uT (k + i|k) Ru (k + i|k)}+

xT (k + N |k) Qx (k + N |k) (2.53)

where x (k + i|k) ∈ R
n represents the prediction of the states vector at the time k+i

based on the measurements at the time k and {u (k|k) , u (k + 1|k) , . . . , u (k + M − 1|k)}

are the set of designed inputs that minimize the objective function and the input to

the system from the time M can be assumed to be constant. In that case M is the

control horizon. R ∈ R
l×l is a positive definite matrix representing the input penalty

matrix and Q ∈ R
n×n is a positive semi-definite matrix representing the state penalty

matrix. The terminal cost is considered as a separate term (Q ∈ R
n×n). As will be

explained later and has been shown in the literature this weighting cost matrix can be

designed in a way to provide the conditions for the system closed-loop stability.

Consider the following discrete-time state-space equation as the internal model of

the system,

x (k + i + 1|k) = Ax (k + i|k) + Bu (k + i|k) for i = 0, . . . , N − 1, (2.54)
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where A ∈ R
n×n and B ∈ R

n×l describe the internal linear model of the system.

Using the current state information at the instant k , i.e., x (k) as the feedback

from the system and equation (2.54) will enable us to calculate the predictions of the

future value for the system as a function of a sequence of future control moves as

follows

x (k|k) = x (k)

x (k + 1|k) = Ax (k) + Bu (k|k)

...

⇒ x (k + i|k) = Aix (k) + Ai−1Bu (k|k) + . . . + Bu (k + i − 1|k) for i = 0, . . . , N

(2.55)

Thus, the states predictions can be obtained by




x (k + 1|k)

x (k + 2|k)

...

x (k + N |k)




︸ ︷︷ ︸
x(k)

=




A

A2

...

AN




︸ ︷︷ ︸
M

x (k)+




B 0 · · · 0

AB B · · · 0

...
...

. . .
...

AN−1B AN−2B · · · B




︸ ︷︷ ︸
Φ




u (k|k)

u (k + 1|k)

...

u (k + N − 1|k)




︸ ︷︷ ︸
u(k)

(2.56)

which can be represented by the following compact form

x (k) = Mx (k) + Φu (k) (2.57)

By substituting for x (k + i|k) where 1 ≤ i ≤ N from equation (2.57) in equation

(2.53), we obtain the cost function as

J (k) = uT (k) Hu (k) + 2xT (k) F T u (k) + xT (k) Gx (k) (2.58)
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where

H = ΦT Q̃Φ + R̃ F = ΦT Q̃M

G = MT Q̃M + Q
(2.59)

with

Q̃ =




Q 0 · · · 0

0
. . .

...

... Q 0

0 0 0 Q




nN×nN

R̃ =




R 0 · · · 0

0
. . .

...

... R 0

0 0 0 R




lN×lN

(2.60)

As can be observed from equation (2.58), the problem is converted to an optimiza-

tion problem as a function of the input sequence. In the absence of constraints the

optimal solution to this problem has a closed form which can be derived by taking

the derivative of the cost function

u∗ (k) = arg min
u

J (k) (2.61)

Given that H is a positive definite matrix, the condition OuJ = 0 yields that u∗ (k)

that is obtained below, minimizes the objective function [96].

OuJ = 2Hu + 2Fx = 0 ⇒ u∗ (k) = −H−1Fx (k) (2.62)

In the presence of constraints there will be no analytical closed-form solution for

u∗ (k) with respect to the feedback signal. The inequality constraints represent feasible

solution sets and are linear input and state constraints in the form of

u ≤ u (k + i | k) ≤ ū for i = 0, . . . , N − 1 (2.63)
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x ≤ x (k + i | k) ≤ x for i = 1, . . . , N (2.64)

Where u and ū represent the lower and the upper bound for the input and x and x

represent the lower and upper bound for the state vector. By substituting x (k + i | k)

where 1 ≤ i ≤ N from equation (2.56) in equation (2.64) , the set of constraints can

be rewritten in the following compact form




I

−I


 u (k) ≤




1ū

−1u







Φi

−Φi


 u (k) ≤




x

−x


 +




−Ai

Ai


 x (k) , i = 1, . . . , N

(2.65)

where 1 = [Il · · · Il]
T ∈ R

N.l×l, and l is the dimension of u, and Φi are the i th block

row of Φ. Consequently the set of inequality constraints of equations (2.63) and (2.64)

can be expressed as constraints on u (k) in the following form

AΦu (k) ≤ b0 + Bxx (k) (2.66)

where AΦ, b0 and Bx are constant matrices. The problem can now be viewed as a

quadratic programming, a special case of convex optimization, and numerical methods

such as active-set, interior-point and trust-region can be employed to solve this

problem [21,97].

The following implementation remarks are of significance:

Remark 3. In the above MPC formulation the origin is shifted to the steady-state

values of x (k + i | k) and u (k + i | k) .

Remark 4. For a general nonlinear system the internal model of the system used

in prediction equations will be the linearized state-space equations discretized using

47



the zero-order-hold method. However, one does not re-linearize the system at each

sampling time and the same linearized model can be used for a number of control

updates (sampling steps).

Remark 5. In this formulation, full-state measurements availability is assumed.

Remark 6. At each control update k (sampling step), using the states feedback provided

to the controller, an open-loop optimal control problem, i.e., equation (2.61) is solved.

The first element of the optimal solution, i.e., u∗ (k|k) is known as a receding horizon

control law and will be implemented on the system during the following sampling

interval.

Remark 7. The choice of the prediction horizon affects the performance of the system.

2.5 Linear Quadratic Regulator (LQR) Framework

Optimal control methods can be divided to two main groups. The methods that

consider an infinite horizon cost function and the ones that consider a finite horizon

cost function. If the problem constraints are going to be taken into consideration,

solving an infinitely large-horizon optimal control will have a large computational cost.

But in the case were the constraints are not being considered solving an infinite-horizon

optimal control will make the problem simpler because of existence of an analytical

solution which is dependent on the system parameters and can be calculated offline.

This motivated us to compare the performance of these two approaches in fault-free

situation for formation flying satellites and investigate their different properties. In

this section the discrete-time LQR control approach and the necessary and sufficient

conditions for obtaining a stable closed-loop system are presented. We focus on the

discrete-time approach to keep consistency with the MPC approach.
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Consider the following general linear system and the quadratic cost

x (k + 1) = Ax (k) + Bu (k) (2.67)

J = x (N)T QNx (N) +
N−1∑

k=0

{
x (k)T Qx (k) + u (k)T Ru (k)

}
(2.68)

where x (k) ∈ R
n, u (k) ∈ R

m, A ∈ R
n×n, B ∈ R

n×m, and matrices QN ∈ R
n×n,

Q ∈ R
n×n are positive semi-definite and R ∈ R

m×m is a positive definite matrix.

Using dynamic programming and the algorithm based on cost-to-go, the input

that minimizes the cost function at any time k can be obtained. In this algorithm

the procedure starts at the terminal time N and proceeds backward. The following

proposition provides the necessary and sufficient conditions for obtaining infinite-

horizon discrete-time control law and the proof is provided in [98].

Proposition 1. ( [98]) Let Q = R
n×n and R ∈ R

m×m denote a positive semi-definite

symmetric matrix and a positive definite symmetric matrix, respectively. Consider the

following discrete-time Ricatti equation,

Pk+1 = AT

(
Pk − PkB

(
BT PkB + R

)−1
BT Pk

)
A + Q. k = 0, 1, . . .

(2.69)

Assume that the pair (A,B) is controllable. Assume also that we can measure all

of the states. Then,

(a) There exists a positive definite symmetric matrix P such that for every positive

semi-definite symmetric initial matrix P0 we have limk→∞ Pk = P . Furthermore,

P is the unique solution of the algebraic matrix equation (2.70) within the class of

positive semi-definite symmetric matrices,

P = AT
(

P − PB
(
BT PB + R

)−1
BT P

)
A + Q. (2.70)
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(b) The corresponding closed-loop system is stable, that is, the eigen-values of the

matrix D = A + BL, where

L = −
(
BT PB + R

)−1
BT PA, (2.71)

are strictly within the unit circle.

2.6 Conclusions

In this chapter the preliminary background for satellite dynamics modeling and

control are presented and developed. Firstly, the modeling of a single satellite attitude

dynamics is presented, that is, the linearized dynamic equation for a single satellite is

obtained. The dynamics of the RW actuator is taken into account in this modeling.

Next, using similarity transformations the relative dynamics equation for the satellite

formation is derived and the information flow structure for formation satellites is

provided. The mathematical modeling of certain RW faults are presented in this

chapter and finally, the MPC and the LQR frameworks are discussed. The introduced

notations will be used in the remainder of the thesis.
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Chapter 3

Centralized, Semi-Decentralized

and Decentralized Attitude

Control Subject to Constraints

In this chapter, behavior-based formation control strategies are developed. The

objectives of the behavior-based control are specified as: (a) goal seeking where a

desirable orientation is assigned to each individual agent to track, and (b) formation

keeping where the relative orientation of the agents is maintained to a desirable value.

Associated with the second objective, the relative state measurements and the coupled

dynamics model are used for achieving the desirable formation behavior. In other

words, we propose to incorporate the interactions among the agents in the control

design by using coupled dynamics model. The coupled dynamics model contributes to

achieving a precise formation by (i) providing a precise knowledge through a relative

attitude determination system [84] and (ii) development of a novel behavior-based

control formulation based on coupled dynamic modeling.

The cooperative control of attitude motion of formation flying satellites can

be accomplished by different control distribution schemes and hierarchies, namely,
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centralized, semi-decentralized and decentralized schemes.

The centralized approach to solving the problem assumes that the central controller

has a global information about the team and it determines the local agents inputs and

communicates it to the local agents. This structure imposes stringent communication

requirements on the system and the level of complexity for the control design is

considerable due to solving a global problem of large size. Moreover, it inherits the

problem of a single point of failure.

Dividing the centralized problem into sub problems of lower dimension, that

is, developing a semi-decentralized scheme, allows addressing the aforementioned

drawbacks of a centralized control scheme. In a semi-decentralize scheme, neighboring

agents share their states information and each agent determines its optimal input.

On the other hand, a decentralized scheme implies independent operation of agents

and therefore, the formation keeping objective cannot be satisfied by using this control

scheme.

In the following sections, the centralized approach toward solving the formation

problem is presented where the MPC and the LQR approaches for achieving the

team objectives are provided. Next, the semi-decentralized solution of the problem

is proposed that uses the MPC to achieve the team objectives and finally, a fully-

decentralized non-cooperative scheme is presented. All the aforementioned MPC-based

approaches take into account actuator constraints. The performance of the proposed

semi-decentralized scheme is evaluated and compared with the other schemes by

simulation studies.

3.1 Centralized MPC Control Scheme

This section presents the centralized solution to the MPC problem for formation flying

of multi-agent systems. A behavior-based coordination method for the entire team is
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developed with its desirable behaviors defined based on two objectives. The first ob-

jective is goal seeking where a desirable orientation is assigned to each individual agent

to track. The second objective is formation keeping where the relative orientations of

the agents with respect to each other are maintained to the desirable value. Note that

the latter imposes interactions and coupling effects on the system. In the MPC control

scheme, both absolute and relative state measurements are communicated from each

agent to the central controller and the optimal input for each agent is determined by

the controller through minimizing one global cost function, which is formed based on

a behavior-based approach and then communicated to each agent.

In this structure the following dynamic equations govern the control design through

performing the predictions based on the input dynamic information of all the agents.

We concatenate the states, the inputs and the corresponding system models and obtain




x1 (k + 1)

x̃1 (k + 1)

...

xNv
(k + 1)

x̃Nv
(k + 1)




︸ ︷︷ ︸
x(k+1)

=




A1 0 0

0
. . . 0

0 0 ANv




︸ ︷︷ ︸
A




x1 (k)

x̃1 (k)

...

xNv
(k)

x̃Nv
(k)




︸ ︷︷ ︸
x(k)

+




B1

...

BNv




︸ ︷︷ ︸
B




u1 (k)

...

uNv
(k)




︸ ︷︷ ︸
u(k)

(3.1)

where x ∈ R
10N2

v , u ∈ R
3Nv and

(
A, B

)
∈ R

10N2
v ×10N2

v ×10N2
v ×3Nv .

Remark 1. Due to the centralized control structure, x̃j represents the relative state of

agent j with respect to all other agents, i.e., x̃j = {xjk ∈ R
10|k ∈ Vf − {j}}.

Remark 2. The concatenated dynamical model is composed of the agents absolute

states dynamics and their relative states dynamics and therefore the model is of high

dimensions as can be concluded from the dimensions specified above.

We are now in a position to formally state our centralized MPC-based control

problem. We use the vector norm notation in the following formulation, i.e., ‖.‖2
P

53



denotes the vector norm, namely the P−weighted 2-norm (‖x‖2
P = xTPx).

Problem A. At any time instant tk, k ∈ {0, 1, 2, . . .} , given x (k), find the input

sequence {u (k|k) , u (k + 1|k) , . . . , u (k + m − 1|k)} ∈ R
3Nv , that minimizes the cost

function J,

J = min
u(k|k),...,u(k+m−1|k)

∑N−1
l=0 {‖x (k + l|k)‖2

Q + ‖u (k + l|k)‖2
R} + ‖x (k + N |k)‖2

Q (3.2)

where the prediction equations are as follows





x (k + l + 1 | k) = Ax (k + l | k) + Bu (k + l | k) , l = 0, . . . , N − 1

x (k|k) = x (k)

(3.3)

Moreover, the constraints of the problem are given by





x (k + l|k) ∈ X l = 1, . . . , N

u (k + l|k) ∈ U l = 1, . . . , M − 1

u (k + l|k) = u (k + M − 1|k) l ≥ M

zu (k + N |k) = Ṽu

[

x (k + N |k)

]
= 0

(3.4)

In this cost function, the first two terms are linked to minimizing the pre-

dicted x (k + l | k) and the magnitude of the input u (k + l | k), respectively, for

l = 0, . . . , N − 1 and the last term reflects minimizing the terminal predicted states,

Q ∈ R
10N2

v ×10N2
v denotes a positive definite matrix representing the state penalty

matrix for the concatenated state vector and is considered constant over the prediction

horizon, and Q ∈ R
10N2

v ×10N2
v represents the penalty matrix for the terminal states.

This matrix must be determined such that necessary conditions of the closed-loop

system stability are satisfied. Moreover, R ∈ R
3Nv×3Nv denotes a positive definite

matrix representing the input penalty matrix and is considered constant over the
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prediction horizon. Also, A and B represent the linear state space model as given in

equation (3.1). Finally, X = {x | x ≤ x ≤ x} and U = {x | u ≤ x ≤ u} , represent the

sets of linear constraints where (x, x),
(
x̃, x̃

)
and (u, u) capture the lower and upper

limits of the predicted states and the input, respectively, and Ṽu must be determined

such that the necessary conditions of the closed-loop system stability are satisfied

(Theorem 1 in Subsection 3.3.1).

Here are some remarks on this optimization problem:

Remark 3. The objective in the above constrained minimization problem is state

set-point tracking control, and for the sake of simplicity in the formulation, a shift of

coordinates with respect to the desired set-point
(
x̂j, ̂̃xj, ûj, ̂̃uj

)
is performed.

Remark 4. The available algorithms for solving the above constrained optimization

problem include interior point, active set and trust-region reflective

We present the implementation algorithm for our proposed control approach in

Algorithm 3.1.

Algorithm 3.1 Centralized MPC Scheme

1. At any time tk, k ∈ {0, 1, 2, . . .}:

• For any agent j:

(a) Measure xj (k) and x̃j (k).

(b) Communicate xj (k) and x̃j (k) to the central controller.

• The central controller:

(a) Receives the state x (k).

(b) Solves Problem A by using any available algorithm such as the interior
point, etc. yielding u∗ (k + l | k) for l = 0, 1, . . . , M − 1.

(c) Communicates u∗
j (k | k) to each corresponding agent j.

2. Over any interval [tk, tk+1), k ∈ {0, 1, 2, . . .}:

• For any agent j:
Apply u∗

j (k | k).

In the next section, we provide coping the problem using another relevant optimal

55



control method, namely, the LQR.

3.2 Centralized LQR Control Scheme

As explained in Section 3.1, the following linear model, governs the control design in

the centralized control scheme,




x1 (k + 1)

x̃1 (k + 1)

...

xNv
(k + 1)

x̃Nv
(k + 1)




︸ ︷︷ ︸
x(k+1)

=




A1 0 0

0
. . . 0

0 0 ANv




︸ ︷︷ ︸
A




x1 (k)

x̃1 (k)

...

xNv
(k)

x̃Nv
(k)




︸ ︷︷ ︸
x(k)

+




B1

...

BNv




︸ ︷︷ ︸
B




u1 (k)

...

uNv
(k)




︸ ︷︷ ︸
u(k)

(3.5)

y (k) =




C1 0 0

0
. . . 0

0 0 C1




︸ ︷︷ ︸
C




x1 (k)

x̃1 (k)

...

xNv
(k)

x̃Nv
(k)




︸ ︷︷ ︸
x(k)

(3.6)

where an output vector is also considered for the purpose of control of an error vector.

Matrix C ∈ R
3Nv×10N2

v is chosen such that the outputs are quaternion vectors for each

satellite i.e.,

C1 =
[

C2 03×10(Nv−1)

]
, and C2 =




0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0




.

(3.7)

By using the controller Hessenberg canonical decomposition form, the control of
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the controllable subsystem is addressed,




xco (k + 1)

xco (k + 1)


 =




Aco A12

0 Aco







xco (k)

xco (k)


 +




Bco

0


 u (k) (3.8)

Remark 5. The concatenated dynamical model in equation (3.5) is of high dimensions

as was specified before. However, the only controllable modes are related to the agents

absolute dynamics. As will be shown in Subsection 3.3.1, if one considers the arbitrary

point of
[

0 0 0 q̂
T

ω̂T
w

]T

as the operating point condition, a single satellite is

uncontrollable and its controllable subsystem is a 6-order subsystem. Therefore, the

dimension of the controllable subsystem for the concatenated dynamical model is

obtained as xco ∈ R
24, (that is 4 × 6 = 24).

One of the conventional methods for providing set-point tracking property for the

system is employing an integrator. The input to the integrator is the error between

measured output and the desired set-point. The tracking objective will be achieved

by designing a proper proportional compensator for the integrator. Therefore, by

adding the extra error dynamics the tracking performance will be improved. Then

both objectives can be fulfilled by designing an LQR state feedback control law for

the augmented states as follows.

Let the 24-dimensional discrete-time controllable-subsystem state equation for the

system described in equation (3.8) be obtained as follows

xco (k + 1) = Acoxco (k) + Bcou (k)

y (k) = yco (k) + yco (k) = Ccoxco (k) + Ccoxco (k)
. (3.9)

And the state space formulation after augmenting with the integral of error is
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expressed as

xco (k + 1) = Acoxco (k) + Bcou (k)

eI (k + 1) = eI (k) + Tse (k) = eI (k) + Ts (rco − yco (k))
, (3.10)

where Ts denotes the sampling period. Thus the standard augmented state space

representation will be obtained as




xco (k + 1)

eI (k + 1)




︸ ︷︷ ︸
xau(k+1)

=




Aco 0

−TsCco I




︸ ︷︷ ︸
Aau




xco (k)

eI (k)




︸ ︷︷ ︸
xau(k)

+




Bco

0




︸ ︷︷ ︸
Bau

u (k) +




0

TsI


 rco, (3.11)

Where rco denotes the desirable controllable output set-point which is transformed to

new coordinates corresponding to the controller Hessenberg canonical decomposition

form. The design of the state-feedback u(k), such that the augmented closed-loop

system becomes stable, yields an improved reference tracking performance and can be

accomplished by LQR method. Finally, the state-feedback will be in the form of :

u (k) = Lxau (k) =
[

LP LI

]



xco (k)

eI (k)


 (3.12)

The following LQR formulation (Problem B) introduces the set-point tracking

problem using the centralized LQR control scheme [98].

Problem B. Given the controllable pair (Aau, Bau) , find the matrix L, such that

u (k) = Lxau (k) minimizes the following cost function J ,

J =
∞∑

k=0

{
xau (k)T Qxau (k) + u (k)T Ru (k)

}
. (3.13)

In equation (3.13), the first term is linked to minimizing the states xau (k) and the

second term is linked to the size of control input u (k) for k = 0, . . . , ∞. Q and R
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denote a positive semi-definite and a positive definite matrix, respectively, with proper

dimensions. According to [98], if we obtain the unique solution P of the following

algebraic matrix equation (3.14) within the class of positive semi-definite symmetric

matrices,

P = AT
au

(
P − PBau

(
BT

auPBau + R
)−1

BT
auP

)
Aau + Q, (3.14)

and if we let

L = −
(
BT

auPBau + R
)−1

BT
auPAau, (3.15)

then the eigen-values of the matrix D = Aau + BauL, are strictly within the unit circle

which implies the stability of the corresponding closed-loop system.

Remark 6. The objective in this minimization problem is state set-point tracking

control, and for the sake of simplicity in the formulation, a shift of coordinates with

respect to the desired set-points is performed.

3.3 Semi-Decentralized MPC Control Scheme

In this section, the semi-decentralized solution of the problem is proposed in which only

neighboring agents share their relative state measurements and each agent determines

its optimal input based on a behavior-based approach. A behavior-based coordination

method for each individual agent is developed where the first objective is goal seeking

and the second objective is formation keeping where the relative orientation of the

agents with respect to their neighbors is maintained to the desirable value. Our

objective here is to obtain a coupled dynamic equation such that the effects of each

individual input is reflected in the relative states. We demonstrate this approach by

using an example:

Example 1. Consider the communication topology that is depicted in Figure 3.1.

The specified graph describes a connected graph (its Laplacian has only one zero
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eigenvalue), with Vf = {1, 2, 3, 4} and Af = {(1, 2) , (1, 3) , (2, 4), (3, 4)}.

Given that for each individual agent, the effects of its input are reflected in the

states of the agent and also relative states, we use the following definition to design

each local controller such that the predictions are performed based on the input

activity information of each individual agent.

Figure 3.1: A Semi-Decentralized Communication Topology.

Definition 1. (Coupled Subsystem). A coupled subsystem j is a subsystem with the

state vector that is composed of x
(j)
j and x̃

(j)
j defined as responses of the states xj and

x̃j to the input uj. We represent this vector response by superscripts to distinguish it

from the overall state of the system. The coupling equation is now given by




x
(j)
j (k + 1)

x̃
(j)
j (k + 1)


 = Aj




x
(j)
j (k)

x̃
(j)
j (k)


 + Bjuj (k) (3.16)

where the pair
(
Aj, Bj

)
is obtained as follows:

The following similarity transformation exists for the augmented state vector corres-

ponding to the subsystem 1, i.e., agent 1 in the Example 1, namely
[

x
(1)T

1 x̃
(1)T

1

]T

=
[

x
(1)T

1 x
(1)T

12 x
(1)T

13

]T

= T1

[
x

(1)T

1 x
(1)T

2 x
(1)T

3

]T

. T1 can be found as
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T1 =




I10×10 010×7 010×3 010×7 010×3

T ′′
12 (1 : 10) T ′′

12 (11 : 20) 07×3 07×7 07×3

03×10 03×7 I3×3 03×7 03×3

T ′′
13 (1 : 10) 07×7 07×3 07×7 T ′′

13 (11 : 20)

03×10 03×7 03×3 03×7 I3×3




,

where T ′′
jk (n1 : n2) denotes the columns n1 to n2 of the matrix T ′′

jk, which is given in

equation (2.40), for any (j, k) ∈ Af . Thus, the pair
(
Aj, Bj

)
in equation (3.16) for

the subsystem 1 in Example 1 is obtained as

A1 = T1




A1 0 0

0 A2 0

0 0 A3




T −1
1 and B1 = T1




B1

0

0




. (3.17)

The objective here is simultaneous control of absolute states of a given agent and

its relative states with respect to the neighbors (semi-decentralized control). In the

remainder of this section, and for the sake of simplicity, we focus on design of the

control law governing the behavior of the agent j. The same design strategy is applied

to all other agents.

In this structure for any agent j, the following dynamic equation governs the control

design through performing the predictions based on the input dynamic information of

each agent, that is




xj (k + 1)

x̃j (k + 1)


 = Aj




xj (k)

x̃j (k)


 + Bjuj (k) , (3.18)

which corresponds to the model in equation (3.16) where for the sake of brevity,

the superscripts are omitted. We are now in a position to formally state our semi-

decentralized MPC-based control problem.
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Problem C. For every agent j ∈ Vf and at any time instant tk, k ∈ {0, 1, 2, . . .},

given xj (k) and x̃j (k), i.e. the agent j absolute and relative states measurements, find

the input sequence {uj (k|k) , uj (k + 1|k) , . . . , uj (k + m − 1|k)} ∈ R
3 that minimizes

the cost function Jj,

Jj =
N−1∑

l=0

{‖xj (k + l|k)‖2
Qj

+ ‖x̃j (k + l|k)‖2
Q̃j

+ ‖uj (k + l|k)‖2
Rj

}+

‖xj (k + N |k)‖2
Qj

+ ‖x̃j (k + N |k)‖2

Q̃j

,

where the prediction equations are as follows








xj (k + l + 1|k)

x̃j (k + l + 1|k)


 = Aj




xj (k + l|k)

x̃j (k + l|k)


 + Bjuj (k + l|k) , l = 0, . . . , N − 1

xj (k|k) = xj (k)

x̃j (k|k) = x̃j (k)

Moreover, the constraints of the problem are given by





xj (k + l|k) ∈ Xj l = 1, . . . , N

x̃j (k + l|k) ∈ X̃j l = 1, . . . , N

uj (k + l|k) ∈ Uj l = 1, . . . , M − 1

uj (k + l|k) = uj (k + M − 1|k) l ≥ M

zu
j (k + N |k) = Ṽuj




xj (k + N |k)

x̃j (k + N |k)


 = 0

In this cost function, Qj ∈ R
10×10 and Q̃j denote positive definite matrices repres-

enting the state penalty matrices for the absolute states and relative states, respectively,
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and are considered constant over the prediction horizon, and Qj ∈ R
10×10 and Q̃j rep-

resent the penalty matrices for the terminal states. These matrices must be determined

such that necessary conditions of the closed-loop system stability are satisfied. The

dimensions of Q̃j and Q̃j depend on the communication topology, Rj ∈ R
3×3 denotes

a positive definite matrix representing the input penalty matrix and is considered

constant over the prediction horizon. Also, Aj and Bj represent the linear state space

model as given in equation (3.18). The dimensions of Aj and Bj depend on the

communication topology. Finally, Xj =
{
x | xj ≤ x ≤ xj

}
, X̃j =

{
x | x̃j ≤ x ≤ x̃j

}

and Uj =
{
x | uj ≤ x ≤ uj

}
, represent the sets of linear constraints where

(
xj, xj

)
,

(
x̃j, x̃j

)
and

(
uj, uj

)
capture the lower and upper limits of the predicted absolute

states, predicted relative states and the input, respectively, and Ṽuj
must be determined

such that the necessary conditions of the closed-loop system stability are satisfied.

Here are some remarks on the above optimization problem:

Remark 7. The objective in the above constrained minimization problem is state

set-point tracking control, and for the sake of simplicity in the formulation, a shift of

coordinates with respect to the desired set-point
(
x̂j, ̂̃xj, ûj

)
is performed.

Remark 8. The available algorithm for solving this constrained optimization problem

include interior point, active set and trust-region reflective.

We present the implementation algorithm for our proposed control approach in

Algorithm 3.2. In the following subsection, we also discuss the stability issues for the

formulated MPC problem.

3.3.1 Stability Analysis

Early versions of the MPC method did not ensure stability and relied on tuning.

After 1990, the MPC algorithm was developed to guarantee stability. Indeed the

stability issue resulted in new formulations for the MPC method. A comprehensive

survey [99] discussed the stability issues of the MPC. Based on this survey Keerthi
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Algorithm 3.2 Semi-Decentralized MPC Scheme for any agent j ∈ Vf

1. At any time tk, k ∈ {0, 1, 2, . . .}:

(a) Measure the current absolute state xj (k) and measure or receive current
relative states x̃j (k).

(b) Solve Problem C for agent j by using any available algorithm such as the
interior point, etc., yielding u∗

j (k + l | k) for l = 0, 1, . . . , M − 1.

2. Over any interval [tk, tk+1), k ∈ {0, 1, 2, . . .}:
Apply u∗

j (k | k) .

and Gilbert in 1988 [100] and Mayne and Michalska in [101] established the stability

of nonlinear constrained MPC for the first time. They used Lyapunov analysis and

selected value function of the MPC as the Lyapunov function and employed terminal

equality constraint for establishing its closed-loop stability. Muske and Rawlings in

1993 proved nominal constrained stability for the linear constrained receding horizon

regulator with perfect measurement of the states at each sampling step [102].

Recall that the linear discrete-time model, based on which the semi-decentralized

MPC control was developed was as follows:




xj (k + 1)

x̃j (k + 1)


 = Aj




xj (k)

x̃j (k)


 + Bjuj (k) (3.19)

The overall system behavior is shaped from the collective responses of the local

controllers. This collective response, based on the principle of superposition, is

obtained as the the following dynamical model




xj (k + 1)

xk (k + 1)

...




=




Aj 0 0

0 Ak 0

0 0
. . .







xj (k)

xk (k)

...




+




Bj 0 0

0 Bk 0

0 0
. . .







uj (k)

uk (k)

...




. (3.20)

Therefore, the stability properties of the system can be analyzed by evaluating
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the stability properties for a single satellite. Recall from Chapter 2 that any single

satellite (i.e., agent j) with the nonlinear model ẋj = f (xj, uj) , in the neighborhood

of any operating point (x̂j, ûj) with x̂j =
[

ω̂T q̂T q̂4 ω̂T
w

]T

has the following linear

form:

xj (k + 1) = Ajxj (k) + Bjuj (k) (3.21)

where

Aj = eAcj
Ts , Bj =

Ts
ˆ

0

eAcj
λBcj

dλ (3.22)

and

Acj
=




−I−1
s ([ω̂j×]Is−[(Isω̂j)×]−[(Iwω̂wj )×]) 0 0 I−1

s τv−I−1
s [ω̂j×]Iw

1

2
[q̂j×]+ 1

2
q̂4jE3×3 − 1

2
[ω̂j×] 1

2
ω̂j 0

− 1

2
q̂T

j
− 1

2
ω̂T

j
0 0

0 0 0 −I−1
w τv




, Bcj
=




−I−1
s GdKt

0

0

I−1
w GdKt




(3.23)

The first condition that we must verify for using the stability result in [102] is

whether the considered models are stabilizable and detectable. We are assuming

availability of full state measurements, thus the condition of detectability is verified.

For the purpose of evaluating the stabilizability property of a single agent, the operating

point must be specified. Note that our control problem is a set-point tracking problem.

Any set-point (x̂j, ûj) with x̂j =
[

ω̂T
j q̂T

j q̂4j ω̂T
wj

]T

must satisfy the equilibrium

condition which is f (x̂j, ûj) = 0. The pair (x̂j, ûj) consists of the equilibrium state

and the equilibrium input. As a result, from the kinematic equation (2.5) and dynamic

equation (2.14), one will obtain

ω̂j =
[

0 0 0

]T

,

ûj =
τvω̂wj

GdKt
,

(3.24)
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In other words, a set-point tracking problem can only be solved for applications where

the desired behavior of satellites is defined as inertial-pointing condition, that is, the

condition where the desired value for the angular velocity (ω̂j) is zero. Note also that

in this equilibrium-point, the torque applied by the RW balances the drag torque

caused by the bearing friction [103]. In the inertial-pointing operating condition which

is the condition for the set-point regulation problem,
[

q̂T
j q̂4j

]
can be any arbitrary

desired set-point vector satisfying unit-norm constraint of quaternion and ω̂T
wj

can be

any arbitrary desired set-point vector. The top left 3 × 3 matrix of Acj
will be the

following matrix

I−1
s




0 −Iw3
ω̂w3j

Iw2
ω̂w2j

Iw3
ω̂w3j

0 −Iw1
ω̂w1j

−Iw2
ω̂w2j

Iw1
ω̂w1j

0




=




0 −I−1
s1

Iw3
ω̂w3j

I−1
s1

Iw2
ω̂w2j

I−1
s2

Iw3
ω̂w3j

0 −I−1
s2

Iw1
ω̂w1j

−I−1
s3

Iw2
ω̂w2j

I−1
s3

Iw1
ω̂w1j

0




,

(3.25)

and one gets the characteristic polynomial of this matrix as

λ3 + α1λ + α2 = 0 (3.26)

where

α1 =I−1
s3

I−1
s2

I2
w1

ω̂2
w1j

+ I−1
s3

I−1
s1

I2
w2

ω̂2
w2j

+ I−1
s2

I−1
s1

I2
w3

ω̂2
w3j

≥ 0, (3.27)

α2 =I−1
s1

I−1
s2

I−1
s2

Iw1
Iw2

Iw3
ω̂w2j

ω̂w2j
ω̂w2j

− I−1
s1

I−1
s2

I−1
s2

Iw1
Iw2

Iw3
ω̂w2j

ω̂w2j
ω̂w2j

= 0,

(3.28)

therefore, the three eigenvalues are λ1 = 0, λ2 = i
√

σ and λ3 = −i
√

σ, where σ ≥ 0 is

a function of Is, Iw and ω̂wj
. The Jordan canonical form of the matrix Acj

is evaluated

to be
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J
(
Acj

)
=




0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 −I−1
w τv 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 i
√

σ 0 0 0 0

0 0 0 0 0 0 −i
√

σ 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0




, (3.29)

and finding the Jordan canonical form corresponding to the discrete-time model Aj

yields

J (Aj) =




1 Ts 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 e−I−1
w τvTs 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 ei
√

σTs 0 0 0 0

0 0 0 0 0 0 e−i
√

σTs 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1




, (3.30)

and therefore, for each agent, there exist two modes on the unit circle crossing the

positive real axis, with the associated Jordan block of order two, and two modes on

the unit circle in the complex plane, that imply instability of the open-loop system.

67



Based on the controllability matrix for the pair (Aj, Bj) , it follows that it is

not full rank, and thus the pair (Aj, Bj) is not controllable. This problem arises

because of including higher order dynamics of the system, in particular, ωw. We

now obtain the controller Hessenberg canonical decomposition form, the form that

decomposes the system into controllable and uncontrollable subsystems, by finding the

corresponding similarity transformation matrix and use staircase algorithm proposed

by Rosenbrock [104] to calculate this matrix.

Consider the single satellite (i.e agent j) state equation

xj (k + 1) = Ajxj (k) + Bjuj (k) (3.31)

By using the corresponding transformation matrix, the equation (3.31) will be

transformed into




xjco
(k + 1)

xjco
(k + 1)


 =




Ajco
A12

0 Ajco







xjco
(k)

xjco
(k)


 +




Bjco

0


 uj (k) (3.32)

where Ajco
∈ R

6×6 and Ajco
∈ R

4×4 and the 6-dimensional sub equation of equation

(3.32) is controllable:

xjco
(k + 1) = Ajco

xjco
(k) + Bjco

uj (k) (3.33)

After forming the staircase-form, one observes that the controllable and uncontrol-

lable subsystems have the following Jordan forms:
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J (Ajco
) =




0 0 0

e−I−1
w τvTs 0 0 0

0 0 0

0 0 0 ei
√

σTs 0 0

0 0 0 0 e−i
√

σTs 0

0 0 0 0 0 1




(3.34)

and

J (Ajco
) =




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1




(3.35)

Obviously, the eigenvalues of the matrix J (Ajco
) are composed of four simple eigen-

values on the unit circle crossing the positive real axis only. Thus, the uncontrollable

subsystem is stable and the system is stabilizable [105].

Muske and Rawling in 1993 discussed implementing linear model MPC for unstable

but stabilizable plants. According to [102], for unstable modes the input sequence in

the optimization problem must be selected in a way such that the predictions of those

modes at the time instant k + N are zero (appending terminal equality constraints

in the framework). We refer to the following theorem for proving the stability of

MPC and use results of their work for achieving a stable closed-loop performance in

fault-free conditions.

Theorem 1. ( [102]) For the internal model

x (k + i + 1|k) = Ax (k + i|k) + Bu (k + i|k) for i = 0, . . . , N − 1 (3.36)

where A is unstable. Provided (A, B) is stabilizable and N ≥ r, in which r is the
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number of unstable modes of A, x (k) = 0 is an asymptotically stable solution of

the closed-loop MPC with feasible constraints equations (3.38), (3.39), and objective

function given as equation (3.37) for R > 0 and Q ≥ 0, that is

J (k) =
N−1∑

i=0

{xT (k + i|k) Qx(k + i|k) + uT (k + i|k) Ru (k + i|k)}+

xT (k + N |k) Qx (k + N |k) (3.37)

The initial state must satisfy x0 ∈ XN where XN denotes the set of x0 for which

there exists an input sequence {u (0) , u (1|0) , . . . , u (N − 1|0)} satisfying the following

inequality constraints:

u ≤ u (k + i | k) ≤ ū for i = 0, . . . , N − 1 (3.38)

x ≤ x (k + i | k) ≤ x for i = 1, . . . , N (3.39)

Moreover, x0 must satisfy the following equality constraints:

zu (k + N |k) = Ṽux (k + N |x) = 0 (3.40)

where Ṽu is determined from Jordan decomposition of A as below

A = V J V −1 =
[

Vu Vs

]



Ju 0

0 Js







Ṽu

Ṽs


 (3.41)

Furthermore, the terminal state penalty must be determined from

Q = Ṽ T

s ΣṼs (3.42)
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Σ =
∞∑

i=0

JT
i

s V T

s QVsJ
i
s = V T

s QVs + JT

s ΣJs (3.43)

Proof: The proof of this theorem can be found in [102].

3.4 Decentralized MPC Control Scheme

In this section, the decentralized solution to the problem of formation flying of multi-

agent systems is provided. A decentralized scheme is defined as a scheme where the

agents do not share any information with each other. Therefore, the only objective

for each individual agent is their goal seeking. In this scheme, any agent j uses the

previously specified linear discrete-time dynamic model of single satellite j, i.e.,

xj (k + 1) = Ajxj (k) + Bjuj (k) , (3.44)

where Aj ∈ R10×10, Bj ∈ R10×3, xj =
[

ωT
α qT

α ωT
wα

]T

and uj ∈ R
3 indicates the

controller command which is input to each of three RWs corresponding to three-axis

of any satellite j ∈ Vf where Vf denotes the set of agents in the team.

We now state the set-point tracking problem for the agent j using the decentralized

control scheme.

Problem D. For every agent j ∈ Vf and at any time instant tk, k ∈ {0, 1, 2, . . .},

given xj (k) , i.e. the agent j absolute states measurements, find the input sequence

{uj (k|k) , uj (k + 1|k) , . . . , uj (k + m − 1|k)} ∈ R
3 that minimizes the cost function

Jj,

Jj =
∑N−1

l=0

{
‖xj (k + l|k)‖2

Qj
+ ‖uj (k + l|k)‖2

Rj

}
+ ‖xj (k + N |k)‖2

Qj

(3.45)

71



where the prediction equations are as follows





xj (k + l + 1|k) = Ajxj (k + l|k) + Bjuj (k + l|k) l = 0, . . . , N − 1

xj (k|k) = xj (k)

(3.46)

Moreover, the constraints of the problem are given by





xj (k + l|k) ∈ Xj l = 1, . . . , N

uj (k + l|k) ∈ Uj l = 0, . . . , M − 1

uj (k + l|k) = uj (k + M − 1|k) l ≥ M

zu
j (k + N |k) = Ṽuj

xj (k + N |k) = 0

(3.47)

In this cost function, the terms are linked to minimizing the predicted xj (k + l | k) ,

the size of control input uj (k + l | k) for l = 0, . . . , N − 1 and minimizing the terminal

predicted states respectively.

Remark 9. The objective in the above constrained minimization problem is state

set-point tracking control where, and for the sake of simplicity in the formulation, a

shift of coordinates with respect to the desired set-point (x̂j, ûj) is performed.

Remark 10. The available algorithm for solving this constrained optimization problem

include interior point, active set and trust-region reflective.

Remark 11. Only xj is incorporated in the cost function and the control input involved

in this cost function for the agent j is only the input for the agent j, therefore, the

controller has a decentralized design scheme.

We present the implementation algorithm for the decentralized control approach

in Algorithm 3.3.

In can be noticed that the equation (3.44) governing the control law in this

decentralized control is stabilizable and detectable. Hence, the same theorem stated
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Algorithm 3.3 Decentralized MPC scheme for any individual agent j

1. At any time tk, k ∈ {0, 1, 2, . . .}:

(a) Measure current absolute state xj (k) .

(b) Solve Problem D for the agent j by using any available algorithm such as
the interior point, etc., yielding u∗

j (k + l | k) for l = 0, 1, . . . , M − 1.

2. Over any interval [tk, tk+1), k ∈ {0, 1, 2, . . .}:
Apply u∗

j (k | k) .

for the semi-decentralized case can be employed here.

3.5 Simulation Results

In this section, the performance of our proposed control strategies are analyzed

through simulations. A team of four coordinating satellites is considered and their

communication topology for the semi-decentralized case is the one which is depicted

in Figure 3.2. The considered graph is connected and symmetric. These properties

are desirable for formation applications. Moreover, the graph is not fully connected

and therefore, does not impose significant communication requirements. The data

communication is assumed to be ideal with zero time delay and loss. Table 3.3 shows

the parameters that are considered for modeling the satellites and also saturation

constraints and other details related to the RW parameters. Table 3.1 summarizes

the initial state values for each agent and Table 3.2 summarizes the operating point

information corresponding to the mission specified as an inertial-pointing formation of

satellites. The satellites are assumed to be launched into a low Earth orbit and the

orbital altitude is specified in Table 3.3.

The dominant environmental disturbance torques corresponding to this orbital

altitude include gravity gradient, magnetic field and solar radiation disturbances.

The aerodynamic torque is negligible in the orbits with altitude above 500 km. We
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assume 2 m by 1.5 m cross section satellites with the center of solar pressure to

center of gravity difference of 0.3 m and reflectance factor of q = 0.6. The cumulative

disturbance torques are calculated for all satellites and provided in Table 3.4. The

cumulative disturbance torque acting on each satellite is modeled as zero-mean

Gaussian white-noises with standard deviation of σTd
=

[
Td Td Td

]
(N.m). The

measurements vector is also modeled as x =
[

ωT qT ωT
w

]T

+ ε, where ε denotes

the measurements error and modeled as zero-mean Gaussian white-noise with standard

deviation of σε =
[

0.1 × 10−4 rad/sec 0.35 mrad 0.1 × 10−5 rad/sec

]
, in which

the attitude measurements error can be translated to quaternion and obtained as
[

1.7 × 10−4 1.7 × 10−4 1.7 × 10−4 4.5 × 10−8

]
.

The controller parameters are summarized in Table 3.5. We do not consider any

constraint on states and rate of change of inputs. The optimization problem is solved

by using the interior point method. In order to perform a quantitative analysis and

comparison of the behavior of the system, particularly steady state and transient

behavior, the following performance indices (PIs) are defined,

J̃trj
=
´ t̃sj

t=0 z̃2
j (t) dt J̃tr = 1

2

∑4
j=1 J̃trj

Jssj
= z2

j (ts) Jss =
∑4

j=1 Jssj

J̃ssj
= z̃2

j

(
t̃sj

)
J̃ss =

∑4
j=1 J̃ssj

ts = 1
4

∑4
j=1 tsj

t̃s = 1
4

∑4
j=1 t̃sj

(3.48)

Jujl
=
´ tuj

t=0 u2
jl

(t) dt Juj
=

∑
l=x,y,z Jujl

Ju =
∑

j=1:4 Juj
(3.49)

where zj represents either the first, second or the third component of the absolute

attitude quaternion vector and z̃j denotes the corresponding components for the relative

attitude quaternion vector with respect to one neighboring agent associated with the

agent j, tsj
and t̃sj

indicate their corresponding settling times and ujl
represents the

control input for the l-axis RW, and tuj
denotes the settling time for this control input.
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Note that since in the transient condition only the formation performance is important,

this transient-behavior PI targets only relative attitude quaternion variables. The

upper limits of the PIs Jss and J̃ss, namely Jss ≤ ε and J̃ss ≤ ε̃, are selected to be as

follows based on the desirable specifications for the steady-state performance of the

formation flying system.

ε = 5 × 10−4

ε̃ = 5 × 10−11,
(3.50)

The computational complexity of the control schemes are compared by examining

the average number of required iterations (ITER) and the average time (tsolv) that is

taken by the solver to compute the optimal solution at each control update. For the

case of the semi-decentralized control scheme, these measures are quite similar to one

another for all the agents. The optimization is solved by the FMINCON function of

MATLAB and the processor is 4-cored operating at 2.80 GHz, and is managed by a

64-bit operating system.

The following comparisons are made to evaluate the effectiveness of the proposed

semi-decentralized approach.

Figure 3.2: Communication Topology (Semi-Decentralized Control)
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Table 3.1: Initial State Values

SAT 1 SAT 2

ω0

rad/sec
q0 ωw0

rad/sec
Nm0

N.m
ω0

rad/sec
q0 ωw0

rad/sec
Nm0

N.m



0
0
0







0.47
0.47
0.47
0.58







2400
2400
2400







0.5
0.5
0.5







0
0
0







0.43
0.43
0.43
0.67







2400
2400
2400







0.5
0.5
0.5




SAT 3 SAT 4

ω0

rad/sec
q0 ωw0

rad/sec
Nm0

N.m
ω0

rad/sec
q0 ωw0

rad/sec
Nm0

N.m



0
0
0







0.5
0.5
0.5
0.5







2400
2400
2400







0.5
0.5
0.5







0
0
0







0.45
0.45
0.45
0.63







2400
2400
2400







0.5
0.5
0.5




Table 3.2: Operating Point

ω̂jk for 1 ≤ j ≤ 4and 1 ≤ k ≤ 4
[

0 0 0
]T

rad/sec

q̂jk for 1 ≤ j ≤ 4and 1 ≤ k ≤ 4
[

0 0 0
]T

ω̂j for 1 ≤ j ≤ 4
[

0 0 0
]T

rad/sec

q̂j for 1 ≤ j ≤ 4
[

0.5866 0.5816 0.5743 0.039
]T

ω̂wj
for 1 ≤ j ≤ 4

[
2500 2500 2500

]T
rad/sec

N̂mj
for 1 ≤ j ≤ 4

[
0.5 0.5 0.5

]T
N.m
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Table 3.3: Parameters of the System

Angular velocity of the
satellite with respect to the

Earth associated with
altitude of 981.39Km [59]

(all SATs)

ω0 = 0.001 rad/sec

Principal moments of
inertia for SAT 1

I = diag
[

41.2 39.6 38.4
]
N.m.s2

Principal moments of
inertia for SAT 2

I = diag
[

40.4 40.8 39.2
]
N.m.s2

Principal moments of
inertia for SAT 3

I = diag
[

40.8 40.4 41.2
]

N.m.s2

Principal moments of
inertia for SAT 4

I = diag
[

40.4 40.8 38.8
]
N.m.s2

Flywheel inertia (all SATs) IW = diag
[

0.007 0.007 0.007
]
N.m.s2

RW driver gain (all SATs) Gd = 0.19 A/V
Motor torque constant (all

SATs)
Kt = 0.029 N.m/A

Viscous friction (all SATs) τd = 0.2 mN.m
rad/sec

Maximum limit on torque
produced by the RW [106]

(all SATs)
Nm = 1 N.m

Sampling Time (all SATs) Ts = 0.25 sec

Table 3.4: Satellites Disturbance Torques

SAT 1 SAT 2 SAT 3 SAT 4

Td 4.18 × 10−5 4.24 × 10−5 4.06 × 10−5 4.30 × 10−5
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Table 3.5: MPC Controller Parameters (Consistent for All of the Satellites)

Absolute state
penalty matrix Q = diag

[
2×104 2×104 2×104 5×104 5×104 5×104 5×104 10−4 10−4 10−4

]T

Absolute
terminal state
penalty matrix

Q̄ = diag
[

2×104 2×104 2×104 5×104 5×104 5×104 5×104 10−4 10−4 10−4

]T

Relative state
penalty matrix

Q̃ = diag
[

2×104 2×104 2×104 5×105 5×105 5×105 5×105 10−4 10−4 10−4

]T

Relative
terminal state
penalty matrix

¯̃Q = diag
[

2×104 2×104 2×104 5×105 5×105 5×105 5×105 10−4 10−4 10−4

]T

Input penalty
matrix

R = 10−5 × I3×3

Prediction
horizon

N = 5

Control horizon m = 1
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3.5.1 Semi-Decentralized MPC Scheme vs. Centralized MPC

Scheme

The first comparative study is performed between a centralized control scheme and

a semi-decentralized control scheme. The x-axis absolute attitude quaternion of all

the satellites, the relative attitude quaternion and the corresponding control torques

for the semi-decentralized and centralized control schemes are shown in Figures 3.3,

3.4 and 3.5, respectively. The response characteristics are summarized in Table 3.6.

Figure 3.4 and also the PI J̃tr show that the relative states in the semi-decentralized

case shows a fairly similar behavior with the centralized scheme but without imposing

significant computational complexity due to solving one problem of higher dimensions,

as shown by comparing tsolv and ITER in Table 3.6, and without imposing significant

communication requirements associated with the centralized scheme. Figure 3.5 shows

that the RW constraints are satisfied in these control design schemes and the RW

torque never exceeded the specified threshold. The cumulative control effort costs

(Ju) for the two schemes show that the centralized scheme yields a lower control effort

cost. This feature is related to the global optimization problem that is solved for the

entire team in this centralized scheme.

Table 3.6: Goal-Seeking/Formation Performance and Time Response for the x-axis,
Control Effort Costs and Computational Efforts in Semi-Decentralized and Centralized
Schemes

J̃tr Jss J̃ss Ju t̃s ts tsolv ITER

Semi-Dec. MPC 0.158
2.7 ×
10−4

1.4 ×
10−11 494.09 6.93 12.58 0.31 21

Centralized
MPC

0.082
4.5 ×
10−4

4 ×
10−11 380.44 8.68 16.75 3.41 83
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Figure 3.3: X-axis Attitude Quaternion.
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Figure 3.5: X-axis RW Torque.
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3.5.2 Semi-Decentralized MPC Scheme vs. Decentralized

MPC Scheme

The second comparative study is performed between semi-decentralized and decent-

ralized control schemes. The x-axis absolute attitude quaternion of all the satellites,

the relative attitude quaternion and the corresponding control torques for the semi-

decentralized and decentralized control schemes are shown in Figures 3.6, 3.7 and

3.8, respectively. The response characteristics are summarized in Table 3.7. By

comparing the evolution of relative attitude in Figure 3.7, it can be concluded that the

proposed semi-decentralized scheme enhances the formation performance as the agent

are reaching their final goal. Also evaluating the PI J̃tr for these two scheme verify

this enhancement as J̃tr in the cooperative case is calculated to be 0.158 while in the

non-cooperative case calculated to be 0.385. This result highlights the effectiveness of

the proposed cooperative formation keeping scheme. The results reveal an improved

absolute steady-state performance Jss in the decentralized case but the magnitude of

absolute state error, i.e., the tracking performance for the goal seeking remains ac-

ceptable in the semi-decentralized scheme as well. Moreover, the relative steady-state

tracking error J̃ss achieved from the decentralized scheme is shown to be larger than

the required specifications.

Table 3.7: Goal Seeking/Formation Performance and Time Response for the x-axis,
and Control Effort Costs in Semi-Decentralized and Decentralized Schemes

J̃tr Jss J̃ss Ju t̃s ts

Decentralized
MPC

0.385
1.64 ×
10−4

1.7 ×
10−7 533.05 15.6 14.03

Semi-Dec. MPC 0.158
2.7 ×
10−4

1.4 ×
10−11 494.09 6.93 12.58
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Figure 3.6: X-axis Attitude Quaternion.
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Figure 3.7: X-axis Relative Attitude Quaternion.
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Figure 3.8: X-axis RW Torque.

Table 3.8: Cumulative Control Effort Cost in MPC Schemes

Decentralized
Semi-

decentralized
Centralized

Ju 533.05 494.09 380.44
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3.5.3 Centralized MPC Scheme vs. Centralized LQR Scheme

The third comparative study is performed between centralized MPC and centralized

LQR control schemes. The x-axis absolute attitude quaternion of all the satellites,

the relative attitude quaternion and the corresponding control torques for the semi-

decentralized and decentralized control schemes are shown in Figures 3.9, 3.10 and

3.11, respectively. The response characteristics are summarized in Table 3.9. Figure

3.10 and also the PI J̃tr show that formation performance in the LQR scheme is not

as accurate as in the MPC case. Whereas by incorporating the error integral in this

control scheme, the individual steady-state performances is improved in the LQR

scheme. The relative steady-state tracking error J̃ss is shown to be larger than the

required specifications by using the LQR method. The LQR method requires tuning

such that the input does not exceed the threshold because input constraints can not

be incorporated into the design directly. The input limit imposes larger settling-time

for the control variable in this scheme as given in Table 3.9. However the LQR design

can be performed offline which reduces the on-board computational burdens.

Table 3.9: Goal Seeking/Formation Performance and Time Response for the x-axis,
and Control Effort Costs in Centralized LQR and MPC Schemes

J̃tr Jss J̃ss Ju t̃s ts

Centralized LQR 0.1
3.04 ×
10−4

7.05 ×
10−8 501.25 20.5 13.9

Centralized MPC 0.082
4.5 ×
10−4 4×10−11 380.44 8.68 16.75

Table 3.10: LQR Controller Parameters (Consistent for all the Satellites)

Q (controllable
modes and
integral of

output error)

Q = diag
[

2×105 2×105 2×105 5×104 5×104 5×104 5×104 10−4 10−4 10−4

]T

R R = 0.8 × I3×3
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Figure 3.9: X-axis Attitude Quaternion.
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Figure 3.10: X-axis Relative Attitude Quaternion.
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Figure 3.11: X-axis RW Torque.

3.6 Conclusions

In this chapter, a behavior-based formation flying control using a semi-decentralized

control scheme is developed for a team of cooperative agents. In this control scheme,

the control objective is achieved with an MPC-based control law that incorporates

the actuator saturation constraints and it is shown that the proposed control scheme,

which utilizes relative state measurements and the coupled dynamical model, maintains

the agents in formation while reaching the final goal. It is shown that the proposed

semi-decentralized strategy yields a quite satisfactory formation performance such

that the team fairly behaves similar to a centralized MPC control scheme but without

imposing significant computational complexity (based on the performance indices tsolv

and ITER) and stringent communication requirements of the centralized approach.

A comparison of response characteristics for the three control schemes, namely de-

centralized, semi-decentralized and centralized is presented below to demonstrate the

effectiveness of the proposed semi-decentralized scheme. The following summarizes
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the performance evaluation we have obtained:

1. Absolute States Steady-State Tracking Error

In the decentralized scheme, as the only objective criteria is defined as goal seeking

for each individual vehicle, the best absolute states steady-state tracking per-

formance is achieved (based on the performance index Jss). This characteristic is

compromised within a semi-decentralized scheme due to incorporating the formation

keeping objective.

2. Formation Behavior

The formation behavior achieved by the centralized scheme is shown to be the

best among other control structures (based on the performance indices J̃ss and J̃tr)

which is due to solving a global optimization problem. However, the formation

behavior achieved by the semi-decentralized scheme is fairly comparable with the

centralized structure.

3. Control Effort Costs

The cumulative control effort cost for all of the three schemes are calculated, which

shows that the centralized scheme yields the lowest control effort cost (based on the

performance index Ju). This feature is related to the global optimization problem

solved for the entire team in this architecture. By comparing the semi-decentralized

and the decentralized schemes, one observes that the cumulative control cost is

lower in the semi-decentralized scheme, which is due to an enhanced closed-loop

performance in this scheme that yields saving costs.

4. Time Response

One of the main advantages of the proposed semi-decentralized scheme is its

improvement in the sense of fast time-response. Specially the length of the time
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taken to achieve formation is significantly improved in this scheme compared with

the centralized and decentralized schemes (based on the performance index t̃s).

The MPC method is compared with another relevant optimal control method,

namely LQR. The main advantage of the MPC is its capability to handle actuator

constraints within the design whereas in the LQR this must performed by tuning the

controller gains. The second advantage of the MPC is the improved formation keeping

performance which is mainly due to failure of the LQR to incorporate uncontrollable

modes which correspond to the attitude kinematics. Moreover, the results show a

lower convergence time for the MPC method and a lower cumulative control effort

cost. However, the LQR method reduces online-computational burden significantly

through the offline control design capability.
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Chapter 4

Centralized, Semi-Decentralized

and Decentralized Fault

Accommodation

In the previous chapter, formation control strategies namely decentralized, semi-

decentralized and centralized strategies were introduced. The MPC method was

employed to design the controller for each of the strategies which handled reaction

wheel (RW) constraints as opposed to an LQR-based approach. Fault occurrence

in a component of an agent causes the individual tracking performance of the agent

to become deteriorated and due to the agents’ interactions, failure to consider an

automatic system recovery in a cooperative control scheme leads to an undesirable

team behavior. Therefore, proper fault management would assist in obtaining an

acceptable recovery performance for both formation and individual behavior. Satellite

attitude control subsystem (ACS) instrumentation including sensors and actuators

are prone to develop a malfunction. Actuators are heavy and it is impossible for

certain applications to provide the system with redundant actuators. Thus, studying

its fault and analytic redundancy is of importance. In this work, we focus on two

90



common faults on the satellites RW, namely loss of effectiveness and friction faults.

These faults were identified as sources of RW malfunction in two of the recent reports

corresponding to Mars Odyssey and Dawn, NASA’s spacecraft.

In this chapter, active system recovery strategies are proposed that use on-line fault

information in the centralized, semi-decentralized and decentralized control designs

to compensate for the identified characteristic losses. Each of the aforementioned

control structures requires different amounts of fault information communicated among

agents. In the decentralized control scheme, one fault in one agent does not influence

other agents performance and therefore, in a decentralized recovery scheme ( Section

4.4 ), each individual faulty agent recovers its decentralized control scheme. On the

other hand, in the semi-decentralized control scheme fault occurrence in one agent

influences the performance of other agents. In this case, the healthy neighboring

agents face conflicting goals in terms of formation keeping goal and individual tracking

goal. Therefore, an active control recovery that incorporates the neighboring agents

fault information into the control design, provides an improved team performance and

saving costs ( Section 4.3 ). Finally, in a centralized control reconfiguration through

the centralized control scheme, the central controller requires the fault information

from all the agents ( Section 4.2 ).

In general, a semi-decentralized control scheme provides more reliability in faulty

cases as compared with centralized schemes, which is due to exploiting parallelism [107].

At the end of this chapter, the performance of the proposed semi-decentralized recovery

scheme is evaluated and compared with the centralized and decentralized system

recovery schemes in the simulation studies. Below, as a preliminary criteria for the

fault accommodation problem, we define an acceptable degraded performance.

Definition 1. Given the criteria for an acceptable performance specified by two
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previously defined Performance Indices (PI) of

Jssj
= z2

j (tss) Jss =
∑4

j=1 Jssj

J̃ssj
= z̃2

j (tss) J̃ss =
∑4

j=1 J̃ssj

(4.1)

with the condition to satisfy the criterion

Jss ≤ εn

J̃ss ≤ ε̃n

, (4.2)

where zj represent either the first, second or the third component of the absolute

attitude quaternion vector and z̃j denotes the corresponding component for the relative

attitude quaternion vector with respect to one neighboring agent associated with the

vehicle j, the acceptable degraded performance for each vehicle j is defined by new

lower bounds specified for the maximum PIs and satisfying this new criterion.

Jss ≤ εf

J̃ss ≤ ε̃f ,
(4.3)

Particularly εf ≥ εn and εf ≥ ε̃n . In other words, the steady-state tracking perform-

ances are degraded under fault conditions. Note that the performance indices only

target the steady-state attitude values.

4.1 MPC Fault Recovery Subject to Loss of Effect-

iveness (LOE) and Friction Faults

Followed by fault occurrence, the system deviates from the nominal operating point

(input and state). A fault accommodating MPC controller must determine the new

control parameters to drive the system to a condition where an acceptable performance
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is achieved [108]. The parameters that are configurable in an MPC design are (a) the

internal model, (b) the input set-point, (c) the input constraints, and (d) the penalty

matrices in the cost function. In general, our MPC recovery strategy targets three

reconfigurations as follows. The first one guarantees the MPC problem feasibility, the

second one reduces the offset from the desirable state set-point, and the third one

enhances the agents recovery performance in a semi-decentralized control recovery

scheme (Section 4.3 ). In the following analysis in Subsection 4.1.1, due to the change

of the operating condition in the faulty case, the variables denote the original state

variables rather than the perturbation variables as were considered in the previous

chapter.

4.1.1 Problem Feasibility

Recall from the previous chapter that the input constraints set for solving the optim-

ization problem for any agent j was given by Uj =
{
x | uj ≤ x ≤ uj

}
. Without loss of

generality let uj = −uj. Two important factors that determine this set are process

requirement and feasibility. The physical interpretation of these factors can be stated

as follows.

The former, process requirement, places an upper bound on this set to prevent

physical saturation, which is one of the drawbacks of RW [61], [62], i.e.,

(i) uj ≤ us,

where us denotes the input upper saturation limit in the nominal condition. Assume

that the maximum level of torque that can be provided by the RW is Ns [N.m] and

therefore, Nm = GdKtuj < Ns [N.m] where Nm denotes the torque produced by the

motor. Hence, us = Ns

GdKt
, where us denotes the input saturation limit in the nominal

condition.
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The latter constraints set determination factor, which is feasibility, places a lower

bound on this set as follows. The necessary condition in a set-point tracking problem

states that the set-point must be a feasible point of the optimization problem and

must satisfy its constraints. i.e.,

(ii) uj < ûj < uj.

Given ûj =
τvω̂wj

GdKt
< us, and by letting uj = −uj = us, the conditions (i), i.e.,

uj ≤ us, and (ii), i.e., uj < ûj < uj are satisfied in the nominal condition.

The previous conditions (i) and (ii), which were specified for the healthy case will

be translated into the following conditions in the faulty cases, namely

(iii) ufj
≤ ufs

,

(iv) ufj
< ujfe

< ufj
,

where ujfe
denotes the equilibrium point in the faulty cases. We differentiate the

notation of the faulty case equilibrium point with the healthy case equilibrium point

because the fault might drive the system to a condition where in contrast to the

healthy case, its equilibrium point does not remain at our disposal by adjusting the

input set-point.

In order to maintain the constraint set feasible after fault occurrence, a reconfigur-

ation and obtaining the new set Ufj
=

{
x | ufj

≤ x ≤ ufj

}
is required as follows.

In the case of LOE fault, the produced torque by the actuator will reduce in ac-

cordance with the magnitude of fault and the saturation limit will increase accordingly

to ufs
= Ns

GdK′

t
= Ns

Gd(Γ∗Kt)
, where Γ∗ denotes the process LOE fault. It can be easily

shown that given the condition (i) was satisfied in the healthy case and by letting

ufj
= −ufj

= uj

Γ
− Πω̂wj

Gd(ΓKt)
, where the matrices Γ and Π are estimated by the FDI

module, and by assuming that the corresponding Γ estimate inaccuracies to be severity
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under-estimation, i.e., Γ∗ < Γ, the condition (iii) is met for the faults of reduced

friction and LOE. Moreover, the equilibrium point must satisfy ujfe
< ufj

, so that the

condition (iv) is satisfied.

Remark 1. Under severe LOE fault conditions, the FDI accuracy level must be higher

so that the value assigned to the ufj
be a large value and the desirable equilibrium

point lies in the interior of the specified feasible solution set so that the problem

converges to this desirable equilibrium point.

Remark 2. The friction fault estimate inaccuracy does not violate the feasibility

conditions. Therefore, inaccurate friction fault does not lead to loss of convergence.

The only influence of this fault is injecting offset to the steady-state values as will be

discussed in the subsequent Subsection 4.1.2.

4.1.2 Tracking Performance

The input-set point and the internal model of the optimal control design influence

the steady-state values of the states of the system under control. Depending on the

structure of the fault, the input set-point that drives the system to the desired state

set-point might need reconfiguration. Therefore, once a fault of LOE or friction fault

occurs, this value for the input set-point must change accordingly to ûfj
=

τ ′

vω̂wj

GdK′

t
where

the matrices τ ′
v = τv ± Π and K ′

t = ΓKt are estimated by the FDI module.

The mismatch between the real system and the internal model results in an un-

desirable offset in the states steady-state values when set-point tracking is performed.

Availability of an accurate linear model approximation for the system, reduces this

offset. Therefore, availability of an accurate diagnostics of the fault contributes to re-

moving this offset. As stated earlier, the expression xj (k + 1) = Ajxj (k) + Bjuj (k)

represents the internal model for any agent j. As far as two previously explained

faults are concerned, provided the diagnostics data from the FDI module, this model

will be modified to
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xj (k + 1) =
(
Aj ± AΠj

)

︸ ︷︷ ︸
Afj

xj (k) + BjΓj︸ ︷︷ ︸
Bfj

uj (k) ,
(4.4)

where the matrices AΠj
and Γj are estimated by the FDI module.

Remark 3. The integration of the recovery with the FDI module is an important

issue. Our recovery approach is based on [57] where a relation is established between

the FDI module and the controller as follows. Once the fault is diagnosed by the

FDI module, the recovery module uses the FDI module information to perform

the fault accommodation through the controller reconfiguration. The FDI module

information accuracy and the fault detection time-delay are two conditions that affect

the integration of the FDI module and recovery module and therefore, influence the

recovery reliability. If one assumes the condition where the FDI module information

is ideal, that is, perfect accuracy and zero time-delay, then the problem is reduced to

analyzing the ability of the control system to control the system in the new, given

condition, and generally, the fault might change the system characteristic in a way

that the MPC solution is undesirable. On the other hand, if one assumes the realistic

condition, in which two practical aspects of inaccuracy in diagnostics and the time

required for fault detection (td) are taken into account, one must analyze the effects

of the discrepancy in the real process and the controller design parameters. In this

thesis, the impacts of the FDI information inaccuracy and the fault detection time

delay on the formation system performance is investigated in simulation studies.
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4.2 Centralized Fault Accommodation Approach

Using the Centralized MPC-based Formation

Control

Given the reconfiguration procedure for an MPC control subject to faults of LOE and

friction fault, we can now address the centralized recovery of the faulty formation

system through the centralized formation control approach. In this scheme, due to the

centralized nature of the controller, the reconfiguration also needs to be performed in a

centralized manner. In other words, the fault information needs to be communicated to

the central controller, and the corresponding reconfiguration be performed accordingly.

The previously developed centralized approach is reconfigured in the fault condi-

tions. In other words, provided the information about the fault by the FDI module, it

is possible to reconfigure MPC in such a way that cooperative task is not lost and an

acceptable performance is achieved.

Recall from the previous chapter that the internal model employed in the centralized

approach was a concatenated, coupled model as follows




x1 (k + 1)

x̃1 (k + 1)

...

xNv
(k + 1)

x̃Nv
(k + 1)




︸ ︷︷ ︸
x(k+1)

=




A1 0 0

0
. . . 0

0 0 ANv




︸ ︷︷ ︸
A




x1 (k)

x̃1 (k)

...

xNv
(k)

x̃Nv
(k)




︸ ︷︷ ︸
x(k)

+




B1

...

BNv




︸ ︷︷ ︸
B




u1 (k)

...

uNv
(k)




︸ ︷︷ ︸
u(k)

, (4.5)
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where

Aj = Tj




Aj 0 0

0 Ak 0

0 0
. . .




T −1
j and Bj = Tj




Bj 0 0

0 Bk 0

0 0
. . .




. (4.6)

Therefore, under the fault conditions one gets




x1 (k + 1)

x̃1 (k + 1)

...

xNv
(k + 1)

x̃Nv
(k + 1)




︸ ︷︷ ︸
x(k+1)

=




Af1
0 0

0
. . . 0

0 0 AfNv




︸ ︷︷ ︸
Af




x1 (k)

x̃1 (k)

...

xNv
(k)

x̃Nv
(k)




︸ ︷︷ ︸
x(k)

+




Bf1

...

BfNv




︸ ︷︷ ︸
Bf




u1 (k)

...

uNv
(k)




︸ ︷︷ ︸
u(k)

, (4.7)

where

Afj
= Tj




Afj
0 0

0 Afk
0

0 0
. . .




T −1
j and Bfj

= Tj




Bfj
0 0

0 Bfk
0

0 0
. . .




. (4.8)

The following problem (Problem A) introduces the centralized recovery scheme

through the centralized MPC-based control scheme. For the sake of simplicity in the

formulation, a shift of coordinates with respect to the reconfigured desired set-point

(x̂, ûf ) is performed. The fault is assumed to occur at the time instant tf and the fault

detection time delay is assumed to be td.

Problem A. At any time instant tk | tk ≥ tf + td, given x (k) and also given the FDI

information about the faults for any agent j ∈ Vf , namely, AΠj
and Γj, find the input

sequence {u (k|k) , u (k + 1|k) , . . . , u (k + m − 1|k)} ∈ R
3Nv , that minimizes the cost
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function J,

J =
∑N−1

l=0 {‖x (k + l|k)‖2
Q + ‖u (k + l|k)‖2

R} + ‖x (k + N |k)‖2
Q , (4.9)

where the prediction equations are as follows





x (k + l + 1 | k) = Afx (k + l | k) + Bfu (k + l | k) , l = 0, . . . , N − 1

x (k|k) = x (k)

(4.10)

and the constraints of the problem are given by





x (k + l|k) ∈ X l = 1, . . . N

u (k + l|k) ∈ Uf l = 0, . . . , M − 1

u (k + l|k) = u (k + M − 1|k) l ≥ M

zu (k + N |k) = Ṽu

[

x (k + N |k)

]
= 0

(4.11)

In the above cost function, the first two terms are linked to minimizing the

predicted x (k + l | k) and the magnitude of the input u (k + l | k), respectively, for

l = 0, . . . , N − 1 and the last term reflects minimizing the terminal predicted states,

Q ∈ R
10N2

v ×10N2
v denotes a positive definite matrix representing the state penalty

matrix for the concatenated state vector and is considered constant over the prediction

horizon, and Q ∈ R
10N2

v ×10N2
v represents the penalty matrix for the terminal states.

This matrix must be determined such that necessary conditions of the closed-loop

system stability are satisfied. Moreover, R ∈ R
3Nv×3Nv denotes a positive definite

matrix representing the input penalty matrix and is considered constant over the

prediction horizon. Also, Af and Bf represent the linear state space model as given in

equation (4.7). Finally, X = {x | x ≤ x ≤ x} and Uf =
{
x | uf ≤ x ≤ uf

}
, represent

the sets of linear constraints where (x, x),
(
x̃, x̃

)
and

(
uf , uf

)
capture the lower and
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upper limits of the predicted states and the input, respectively, and Ṽu must be

determined such that the necessary conditions of the closed-loop system stability are

satisfied.

The implementation algorithm for our proposed system recovery approach subject

to the LOE and friction fault using the MPC and based on the centralized control

approach is presented in Algorithm 4.1.

Algorithm 4.1 Centralized System Recovery

1. At any time tk | tk ≥ tf + td

• For any agent j:

(a) Measure xj (k) and x̃j (k).

(b) Communicate xj (k) and x̃j (k) to the central controller.

(c) Communicate the estimated local faults, i.e., AΠj
and Γj to the central

controller.

• The central controller:

(a) Receives the state x (k).

(b) Receives all the estimated local faults and reconfigures the internal
model (Af , Bf), the input set-point (ûf) and the control input con-
straints (Uf ) according to the information which is collected from the
local FDIs

(c) Solves Problem A by using any available algorithm such as the interior
point, etc. yielding u∗ (k + l | k) for l = 0, 1, . . . , M − 1.

(d) Communicates u∗
j (k | k) to each corresponding agent j.

2. Over any interval [tk, tk+1), k ∈ {0, 1, 2, . . .}:

• For any agent j:
Apply u∗

j (k | k).
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4.3 Semi-Decentralized Fault Accommodation Ap-

proach using the Semi-Decentralized MPC-Based

Formation Control

In this section, the semi-decentralized recovery of the faulty formation system through

the semi-decentralized formation control approach is addressed. To this end, a two

level system recovery approach is proposed. At the first level, the faulty agent is

recovered locally by reconfiguring its local control design. Given that the behavior of

neighbors of the faulty agent influence the faulty agent behavior, at the second level we

propose to reconfigure the neighboring agents controller such that they maintain their

nominal attitude rather than keeping an strict formation with the faulty agent and

this way they provide a desirable reference for the faulty agent behavior. It is shown

that providing such system recovery for the healthy neighboring agents enhances the

recovery performance of the team. Therefore, the proposed semi-decentralized system

recovery is performed in two levels, namely, (i) local control recovery of the faulty

agent, and (ii) improvement of the recovery performance by using the formation level

fault recovery.

4.3.1 Local Fault Recovery

Recall form the previous chapter that, in the semi-decentralized formation control

structure, for any agent j, the following dynamic equation governs the control design

through performing the predictions based on the input dynamic information of each

agent, that is 


xj (k + 1)

x̃j (k + 1)


 = Aj




xj (k)

x̃j (k)


 + Bjuj (k) (4.12)

Let the agent j’th actuator be faulty. Based on the prediction equations (4.12), an
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LOE fault in this agent influences the matrix Bj = Tj




Bj

0

...

0




. On the other hand,

the friction fault influences the matrix Aj = Tj




Aj 0 0

0 Ak 0

0 0
. . .




T −1
j . The steady-state

behavior of the system is influenced by the controllable subsystem and therefore, once

a friction fault occurs in agent j, matrix Aj must be reconfigured.

Now consider the dynamic equation that governs the control design and predictions

for agent k, where (j, k) ∈ Af , that is

Ak = Tk




Ak 0 0

0 Aj 0

0 0
. . .




T −1
k and Bk = Tk




Bk

0

...

0




. (4.13)

Due to the structure of the semi-decentralized control scheme, an LOE fault

in agent j can not be incorporated in the agent k internal model. Moreover, the

uncontrollable subsystem of the model
(
Ak, Bk

)
does not influence the steady-state

behavior of the system and therefore, once a friction fault occurs in agent j, it does not

influence the steady-state offset through the coupled subsystem k dynamical model.

Consequently, we attribute the internal model reconfigurations in the semi-decentralized

control scheme, to the reconfiguration of the absolute state component of the faulty

agent’s coupled subsystem model. Therefore, when a fault occurs in agent j, the
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coupled subsystem j dynamical model will be given by

Afj
= Tj




Afj
0 0

0 Ak 0

0 0
. . .




T −1
j and Bfj

= Tj




Bfj

0

...

0




, (4.14)

and any coupled subsystem k dynamical model will remain unchanged. In subsequent

Subsection 4.3.2, the system recovery for agent k, where (j, k) ∈ Af is proposed.

The following MPC formulation (Problem B) introduces the set-point tracking

problem for the faulty agent j using the semi-decentralized control. The fault is

assumed to occur at the time instant tf in agent j and the fault detection time delay is

assumed to be td. For the sake of simplicity in the formulation, a shift of coordinates

with respect to the reconfigured desired set-point
(
x̂j, ̂̃xj, ûjf

)
is performed.

Problem B. For any agent j ∈ Vf and at any time instant tk | tk ≥ tf + td, given

xj (k) and x̃j (k), i.e. the agent j absolute and relative states measurements and also

given the FDI information about the faults in the agent j, namely, AΠj
and Γj, find

the input sequence {uj (k|k) , uj (k + 1|k) , . . . , uj (k + m − 1|k)} ∈ R
3 that minimizes

the cost function Jj,

Jj =
N−1∑

l=0

{‖xj (k + l|k)‖2
Qj

+ ‖x̃j (k + l|k)‖2
Q̃j

+ ‖uj (k + l|k)‖2
Rj

}+

‖xj (k + N |k)‖2
Qj

+ ‖x̃j (k + N |k)‖2

Q̃j

, (4.15)
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where the prediction equations are as follows








xj (k + l + 1|k)

x̃j (k + l + 1|k)


 = Afj




xj (k + l|k)

x̃j (k + l|k)


 + Bfj

uj (k + l|k) l = 0, . . . , N − 1

xj (k|k) = xj (k)

x̃j (k|k) = x̃j (k)

(4.16)

and the constraints of the problem are given by





xj (k + l|k) ∈ Xj l = 1, . . . , N

x̃j (k + l|k) ∈ X̃j l = 1, . . . , N

uj (k + l|k) ∈ Ufj
l = 0, . . . , M − 1

uj (k + l|k) = uj (k + M − 1|k) l ≥ M

zu
j (k + N |k) = Ṽuj




xj (k + N |k)

x̃j (k + N |k)


 = 0

(4.17)

In equation (4.15), the first three terms are linked to minimizing the predicted

xj (k + l | k) , the predicted x̃j (k + l | k) and the size of control input uj (k + l | k)

respectively for l = 0, . . . , N −1 and the last two terms reflect minimizing the terminal

predicted states. Q̃j and Qj ∈ R
10×10 denote positive definite matrices representing

state penalty matrices for relative states and absolute states respectively and are

considered constant over the prediction horizon. The dimension of Q̃j depends of the

communication topology. Q̃j and Qj ∈ R
10×10 represent the corresponding penalty

matrices for the terminal state. As explained in Section 3.3.1, these matrices must

be determined such that necessary conditions of the stability are satisfied. The

dimension of Q̃j depends on the communication topology. Rj ∈ R
3×3 is a positive

definite matrix representing input penalty matrix and is considered constant over
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the prediction horizon. Afj
and Bfj

represent the linear states space model in the

equation (4.14). The dimensions of Afj
and Bfj

depend on the communication topology.

X̃j =
{
x | x̃j ≤ x ≤ x̃j

}
, Xj =

{
x | xj ≤ x ≤ xj

}
and Ufj

=
{
x | ufj

≤ x ≤ ufj

}

represent sets of linear constraints where
(
x̃j, x̃j

)
,

(
xj, xj

)
and

(
ufj

, ufj

)
indicate the

lower and upper limit for predicted relative states, predicted absolute states and the

control input respectively. Ṽuj
must be determined such that necessary conditions of

stability are satisfied.

Remark 4. The proposed local level recovery strategy is based on the local FDI module

information, that is, once a fault occurs in any agent j ∈ Vf , only the local controller

is reconfigured and communicating the fault information among agents is not required,

and therefore, no excessive bandwidth requirement is imposed on the system. However,

if an enhanced recovery performance is desirable, then a formation level recovery

strategy must be implemented in which the fault information must be communicated

from the faulty agent to the neighboring agents as will be described in the subsequent

section.

4.3.2 Formation Level Fault Recovery

The above procedure targeted recovering the individual performance of the faulty

agent by reconfiguring its internal model, its input set-point and input constraints.

However, it is important to note that another factor that can influence the recovery

performance of the faulty agent is the healthy neighboring agent performances. By

forcing those neighbors to maintain their nominal behavior in the faulty case, the faulty

agent will be reinforced to reach the same behavior through its baseline formation

control law. Recall from the previous chapter that the control law for any each agent
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k ((j, k) ∈ Af ) was determined based on minimizing the cost function Jk :

Jk =
N−1∑

l=0

{‖xk (k + l|k)‖2
Qk

+ ‖x̃k (k + l|k)‖2
Q̃k

+ ‖uk (k + l|k)‖2
Rk

}+

‖xk (k + N |k)‖2
Qk

+ ‖x̃k (k + N |k)‖2

Q̃k

.

Given that the desirable optimal solution under fault condition is that healthy

agents maintain their nominal attitude and the faulty agent keeps the formation, by

relaxing the formation performance criteria for the neighboring agents in the faulty

case, the optimal solution converges to the desirable equilibrium point. Note that the

more sever the fault, the more the performance degrades and therefore, the formation

criteria of the neighboring agent must be relaxed to prevent their absolute performance

degradations. Therefore, by letting

Q̃fk
= ΛjQ̃k (4.18)

where Λj ∈ R denotes the fault severity index and 0 ≤ Λj ≤ 1, the aforementioned

objective is satisfied and the neighboring formation keeping criteria is reconfigured

based on the magnitude of the performance degradation. In the case of LOE fault, we

let Λj = Γlj, and in the case of reduced friction fault, we let Λj =
τvlj

−Πlj

τvlj

, where the

l−axis RW of the agent j is assumed to be faulty.

The following MPC formulation (Problem C) introduces the set-point tracking

problem for any healthy agent k | (j, k) ∈ Af using the semi-decentralized control.

The fault is assumed to occur at the time instant tf in agent j and the fault detection

time delay is assumed to be td. For the sake of simplicity in the formulation, a shift of

coordinates with respect to the reconfigured desired set-point
(
x̂k, ̂̃xk, ûk

)
is performed.

Problem C. For any agent k | (j, k) ∈ Af and at any time instant tk | tk ≥ tf + td,

given xk (k) and x̃k (k), i.e. the agent k absolute and relative states measurements
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and also given the FDI information about the faults in the agent j, namely, Πj and

Γj, find the input sequence {uk (k|k) , uk (k + 1|k) , . . . , uk (k + m − 1|k)} ∈ R
3 that

minimizes the cost function Jk,

Jk =
N−1∑

l=0

{‖xk (k + l|k)‖2
Qk

+ ‖x̃k (k + l|k)‖2
Q̃fk

+ ‖uk (k + l|k)‖2
Rk

}+

‖xk (k + N |k)‖2
Qk

+ ‖x̃k (k + N |k)‖2

Q̃fk

, (4.19)

where the prediction equations are as follows








xk (k + l + 1|k)

x̃k (k + l + 1|k)


 = Ak




xk (k + l|k)

x̃k (k + l|k)


 + Bkuk (k + l|k) l = 0, . . . , N − 1

xk (k|k) = xk (k)

x̃k (k|k) = x̃k (k)

(4.20)

and the constraints of the problem are given by





xk (k + l|k) ∈ Xk l = 1, . . . , N

x̃k (k + l|k) ∈ X̃k l = 1, . . . , N

uk (k + l|k) ∈ Uk l = 0, . . . , M − 1

uk (k + l|k) = uk (k + M − 1|k) l ≥ M

zu
k (k + N |k) = Ṽuk




xk (k + N |k)

x̃k (k + N |k)


 = 0

(4.21)

In equation (4.19), the first three terms are linked to minimizing the predicted

xk (k + l | k) , the predicted x̃k (k + l | k) and the size of control input uk (k + l | k)

respectively for l = 0, . . . , N −1 and the last two terms reflect minimizing the terminal
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predicted states. Q̃fk
and Qk ∈ R

10×10 denote positive definite matrices representing

state penalty matrices for relative states and absolute states respectively and are

considered constant over the prediction horizon. Q̃fk
is obtained from equation (4.18)

and its dimension depends of the communication topology. Q̃fk
and Qk ∈ R

10×10

represent the corresponding penalty matrices for the terminal state. As explained

in Section 3.3.1, these matrices must be determined such that necessary conditions

of the stability are satisfied. The dimension of Q̃fk
depends on the communication

topology. Rk ∈ R
3×3 is a positive definite matrix representing input penalty matrix

and is considered constant over the prediction horizon. Ak and Bk represent the linear

states space models and were specified earlier. The dimensions of Ak and Bk depend

on the communication topology. X̃k =
{
x | x̃k ≤ x ≤ x̃k

}
, Xk = {x | xk ≤ x ≤ xk}

and Uk = {x | uk ≤ x ≤ uk} represent sets of linear constraints where
(
x̃k, x̃k

)
, (xk, xk)

and (uk, uk) indicate the lower and upper limit for predicted relative states, predicted

absolute states and the control input respectively. Ṽuk
must be determined such that

necessary conditions of stability are satisfied.

Remark 5. The proposed formation level fault recovery implies that the healthy

neighboring agents participate in the fault accommodation, rather than passively

relying on the baseline coordination laws without any explicit control reconfiguration.

We present the implementation algorithm for our proposed semi-decentralized

recovery approach in Algorithm 4.2.

Remark 6. Under the partial LOE and friction fault conditions, the open-loop stability

properties of the system remain similar to the healthy condition because the unstable

modes are independent of the fault parameters. Furthermore, the controllability

properties are only influenced if the LOE severity is a total loss which makes the

unstable but controllable modes, uncontrollable.
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Algorithm 4.2 Semi-Decentralized System Recovery for Faulty Agent j ∈ Vf and
any Agent k | (k, j) ∈ Af

1. At any time tk | tk ≥ tf + td :

• Agent j:

(a) Measures the current absolute state xj (k) and measures or receives
current relative states x̃j (k).

(b) Obtains the fault information from the local FDI and reconfigures the
internal model (Afj

, Bfj
), the input set-point (ujfe

) and the control
input constraints (Ufj

) accordingly.

(c) Solves Problem B by using any available algorithm such as the interior
point, etc., yielding u∗

j (k + l | k) for l = 0, 1, . . . , M − 1.

(d) Communicates the estimated local faults, i.e., Πj and Γj to any agent
k | (k, j) ∈ Af .

• For any agent k | (k, j) ∈ Af :

(a) Measure the current absolute state xk (k) and measure or receive current
relative states x̃k (k).

(b) Receive the fault information from the neighboring agents FDIs and

reconfigure the penalty matrices Q̃fk
and Q̃fk

.

(c) Solve Problem C for agent k by using any available algorithm such as
the interior point, etc., yielding u∗

k (k + l | k) for l = 0, 1, . . . , M − 1.

2. Over any interval [tk, tk+1), k ∈ {0, 1, 2, . . .}:

• Agent j: Applies u∗
j (k | k).

• For any agent k | (k, j) ∈ Af : Apply u∗
k (k | k).
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4.4 Decentralized Fault Accommodation Approach

Using the Decentralized MPC-based Forma-

tion Control

In this section, the decentralized recovery of the faulty formation system through

the decentralized formation control approach is addressed. Recall form the previous

chapter that in the decentralized formation control structure any agent j uses its

dynamical model for the state predictions, that is

xj (k + 1) = Ajxj (k) + Bjuj (k) , (4.22)

In the decentralized control scheme, one fault in an agent does not influence other

agents performances and therefore, in a decentralized recovery scheme, each individual

faulty agent recovers its decentralized control scheme. An LOE fault in agent j

influences the matrix Bj, and a friction fault influences the matrix Aj of the prediction

equations. Therefore, under fault conditions one gets

xj (k + 1) = Afj
xj (k) + Bfj

uj (k) , (4.23)

where
(
Afj

, Bfj

)
are obtained from equation (4.4). The following MPC formulation

(Problem D) introduces the set-point tracking problem for the faulty agent j using the

decentralized control with the decentralized recovery scheme. The fault is assumed to

occur at the time instant tf and the fault detection time-delay is assumed to be td.

For the sake of simplicity in the formulation, a shift of coordinates with respect to the

reconfigured desired set-point
(
x̂j, ûjf

)
is performed.

Problem D. For any agent j ∈ Vf and at any time instant tk | tk ≥ tf + td,

given xj (k) , i.e. the agent j absolute states measurements and also given the FDI
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information about the faults in the agent j, namely, AΠj
and Γj, find the input sequence

{uj (k|k) , uj (k + 1|k) , . . . , uj (k + m − 1|k)} ∈ R
3 that minimizes the cost function

Jj,

Jj =
N−1∑

l=0

{‖xj (k + l|k)‖2
Qj

+ ‖uj (k + l|k)‖2
Rj

} + ‖xj (k + N |k)‖2
Qj

, (4.24)

where the prediction equations are as follows





xj (k + l + 1|k) = Afj
xj (k + l|k) + Bfj

uj (k + l|k) l = 0, . . . , N − 1

xj (k|k) = xj (k)

(4.25)

and the constraints of the problem are given by





xj (k + l|k) ∈ Xj l = 1, . . . , N

uj (k + l|k) ∈ Ufj
l = 0, . . . , M − 1

uj (k + l|k) = uj (k + M − 1|k) l ≥ M

zu
j (k + N |k) = Ṽuj

xj (k + N |k) = 0

(4.26)

In equation (4.24), the terms are linked to minimizing the predicted xj (k + l | k) ,

the size of control input uj (k + l | k) for l = 0, . . . , N − 1 and minimizing the terminal

predicted states respectively. Xj =
{
x | xj ≤ x ≤ xj

}
and Ufj

=
{
x | ufj

≤ x ≤ ufj

}

represent sets of linear constraints where
(
xj, xj

)
and

(
ufj

, ufj

)
indicate the lower

and upper limit for predicted relative states, predicted absolute states and the control

input respectively. Ṽuj
must be determined such that necessary conditions of stability

are satisfied.

We present the implementation algorithm for the presented recovery approach in

Algorithm 4.3.
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Algorithm 4.3 Decentralized Local System Recovery for Any Agent j ∈ Vf

1. At any time tk | tk ≥ tf + td :

(a) Measure the current absolute state xj (k) .

(b) Obtain the fault information from the local FDI and reconfigure the internal
model (Afj

, Bfj
), the input set-point (ujfe

) and the control input constraints
(Ufj

) accordingly.

(c) Solve Problem D for agent j by using any available algorithm such as the
interior point, etc., yielding u∗

j (k + l | k) for l = 0, 1, . . . , M − 1.

2. Over any interval [tk, tk+1), k ∈ {0, 1, 2, . . .}:
Apply u∗

j (k | k).

4.5 Simulation Results

In this section, the performance of our proposed recovery strategies are analyzed

through simulations. Similar to the previous chapter simulation studies, a team of

four coordinating satellites is considered and their communication topology for the

semi-decentralized control is the one depicted in Figure 3.2. The data communication

is assumed to be ideal with zero communication time delay and loss.

The parameters that are considered for modeling the satellites and also the sat-

uration constraints, other details related to the RW parameters and disturbance

and noise characteristics are similar to the previous chapter simulation studies. The

controller weightings are also selected to be similar to those selected in the previous

chapter except one which is reconfigured under fault condition as it was outlined

in Section 4.3.2. We do not consider any constraint on states and rate of change

of inputs. The optimization problem is solved by using interior point method. In

order to perform a quantitative analysis and comparison of the behavior of the system

after fault occurrence, the previously defined PIs (defined in the previous chapter

simulation studies) are employed. The upper limits of the PIs Jss and J̃ss, namely

Jss ≤ εf and J̃ss ≤ ε̃f , are selected to be εf = 10 × 10−4 and ε̃f = 10 × 10−5, based on
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acceptable degraded specifications for the steady-state performance of the formation

flying system.

The faults are injected to the system at the time tf = 25 sec. The fault scenarios

are described in the following and for each scenario the maximum FDI information

inaccuracy that does not violate the acceptable degraded performance specifications

in terms of the tracking performance is evaluated by the simulations and provided.

• Scenario a.1: A high severity LOE fault with the magnitude of 90% is con-

sidered in this scenario. The maximum FDI information under-estimation inac-

curacy that provides an acceptable degraded performance after fault recovery is

evaluated to be 5% .

• Scenario a.2: A moderate magnitude LOE fault with the magnitude of 70% is

considered in this scenario. The maximum FDI information under-estimation

inaccuracy that provides an acceptable degraded performance after fault recovery

is evaluated to be 30%.

• Scenario a.3: A low severity LOE fault with the magnitude of 15% is considered

in this scenario. The nominal control schemes can handle this fault and recover

the system without the need for employing any system recovery scheme.

• Scenario b.1: A high severity reduced friction fault with the magnitude of 90%

is considered in this scenario. The maximum FDI information under-estimation

inaccuracy that provides an acceptable degraded performance after fault recovery

is evaluated to be 50%.

• Scenario b.2: A moderate magnitude reduced friction fault with the magnitude

of 50% is considered in this scenario. The nominal control schemes can handle

this fault and recover the system without the need for employing any system

recovery scheme.
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4.5.1 Semi-Decentralized Two-Level Recovery Scheme

In this subsection, the recovery performance of the proposed two-level semi-decentralized

recovery strategy under the fault scenarios a.1 and b.1 is evaluated. The FDI fault

detection time delays for both scenarios are assumed to be td = 5 sec. In Section 4.5.4

we consider the effects of different time delays on the performance of the recovery

system.

4.5.1.1 LOE Fault - Scenario a.1

In this subsection, we compare the performance of one-level (local) recovery scheme

with the two-level scheme under fault scenario a.1. Figure 4.1 and also the PI Jss for the

two recovery schemes verify that the desirable set-point tracking after fault recovery is

satisfied by using the one-level recovery scheme but without imposing communication

requirements in terms of fault information associated with the two-level recovery

scheme. However, the absolute attitude quaternions in the one-level semi-decentralized

recovery scheme show an oscillatory recovery behavior with a longer settling time

characteristic. This behavior arises due to the larger input signal overshoot of the

faulty agent in the one-level semi-decentralized recovery scheme, compared with the

two-level semi-decentralized recovery scheme as shown in Figure 4.3. Furthermore, the

input signals corresponding to the neighboring healthy agents in the one-level recovery

scheme show a lower overshoot whereas in the two-level scheme the over-shoots are

increased.

Figure 4.2 and also the PI J̃ss shows that the formation behavior are fairly

comparable in these two scheme and both are satisfactory according to the required

specifications.

Figure 4.3 also shows that in the one-level recovery scheme, the healthy agents

input signals are violated once the fault occurs, which reveals the behavior-based

nature of our semi-decentralized control approach.
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Table 4.1: Goal Seeking/Formation Performance, Time Response for the x-axis, and
Control Effort Costs, Computational Efforts after One-Level and Two-Level Semi-
Decentralized Fault Recovery, 90% LOE Fault with 5% FDI Inaccuracy

J̃tr Jss J̃ss Ju t̃s ts tsolv ITER

Two-level
recovery

0.158
2.9 ×
10−4

2.6 ×
10−5 815.18 45.4 72.17 0.32 20

One-level
recovery

0.158
8.31×
10−4

1.75×
10−5 1005.8 41.6 74.23 0.32 21

0 20 40 60
0.4

0.45

0.5

0.55

time (sec)

a
t
t
i
t
u
d
e
 
(
 
_
_
 
)

SAT 1

 

 

0 20 40 60
0.4

0.45

0.5

0.55

time (sec)

a
t
t
i
t
u
d
e
 
(
 
_
_
 
)

SAT 2

 

 

0 20 40 60
0.4

0.45

0.5

0.55

time (sec)

a
t
t
i
t
u
d
e
 
(
 
_
_
 
)

SAT 3

 

 

0 20 40 60
0.4

0.45

0.5

0.55

time (sec)

a
t
t
i
t
u
d
e
 
(
 
_
_
 
)

SAT 4

 

 

two−level recovery

one−level reocvery

two−level recovery

one−level reocvery

two−level recovery

one−level reocvery

two−level recovery

one−level reocvery

Figure 4.1: X-axis Attitude Quaternion After Control Recovery, 90% LOE Fault with
5% FDI Inaccuracy.
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Figure 4.2: X-axis Relative Attitude Quaternion After Control Recovery, 90% LOE
Fault with 5% FDI Inaccuracy.

0 20 40 60
−1.5

−1

−0.5

0

0.5

1

1.5

time (sec)

 
t
o
r
q
u
e
 
(
N
.
m
)
 

SAT 1

 

 

0 20 40 60
−1.5

−1

−0.5

0

0.5

1

1.5

time (sec)

 
t
o
r
q
u
e
 
(
N
.
m
)
 

SAT 2

 

 

0 20 40 60
−1.5

−1

−0.5

0

0.5

1

1.5

time (sec)

 
t
o
r
q
u
e
 
(
N
.
m
)
 

SAT 3

 

 

0 20 40 60
−1.5

−1

−0.5

0

0.5

1

1.5

time (sec)

 
t
o
r
q
u
e
 
(
N
.
m
)
 

SAT 4

 

 

two−level recovery

one−level reocvery

two−level recovery

one−level reocvery

two−level recovery

one−level reocvery

two−level recovery

one−level reocvery

Figure 4.3: X-axis RW Torque After Control Recovery, 90% LOE Fault with 5% FDI
Inaccuracy.
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4.5.1.2 Friction Fault - Scenario b.1

The simulation results in Figures 4.4, 4.5, 4.6 and Table 4.2 show that reasonably

similar results hold in the fault scenario b.1. A magnified view of the attitude recovery

behavior is shown in Figure 4.4 to provide an indication of the two-level recovery

performance, as due to lower levels of performance degradation in case of friction

faults, the influence of the two-level recovery is modest.

Table 4.2: Goal Seeking/Formation Performance, Time Response for the x-axis, and
Control Effort Costs, Computational Efforts after One-Level and Two-Level Semi-
Decentralized Fault Recovery, 90% Friction Fault with 50% FDI Inaccuracy

J̃tr Jss J̃ss Ju t̃s ts tsolv ITER

Two-level
recovery

0.158
4.9 ×
10−5

8.04×
10−6 766.49 38.79 58.55 0.37 24

One-level
recovery

0.158
5.006×
10−5

8.1 ×
10−6 809.45 33.7 65.5 0.36 23
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(b) Magnified View.

Figure 4.4: X-axis Attitude Quaternion After Control Recovery, 90% Friction Fault
with 50% FDI Inaccuracy.

118



0 20 40 60

−0.04

−0.02

0

0.02

0.04

0.06

0.08

time (sec)

a
t
t
i
t
u
d
e
 
(
 
_
_
 
)

SAT 1,2

 

 

0 20 40 60

−0.04

−0.02

0

0.02

0.04

0.06

0.08

time (sec)

a
t
t
i
t
u
d
e
 
(
 
_
_
 
)

SAT 2,4

 

 

0 20 40 60

−0.04

−0.02

0

0.02

0.04

0.06

0.08

time (sec)

a
t
t
i
t
u
d
e
 
(
 
_
_
 
)

SAT 3,1

 

 

0 20 40 60
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

time (sec)
a
t
t
i
t
u
d
e
 
(
 
_
_
 
)

SAT 4,3

 

 

two−level recovery

one−level reocvery

two−level recovery

one−level reocvery

two−level recovery

one−level reocvery

two−level recovery

one−level reocvery

Figure 4.5: X-axis Relative Attitude Quaternion After Control Recovery, 90% Friction
Fault with 50% FDI Inaccuracy.
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Figure 4.6: X-axis RW Torque After Control Recovery, 90% Friction Fault with 50%
FDI Inaccuracy.
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4.5.2 Semi-Decentralized vs. Centralized Fault Accommoda-

tion

In this subsection, the recovery performance of the centralized and semi-decentralized

recovery schemes are evaluated and compared subject to LOE and friction faults and

under different fault severity scenarios. The FDI fault detection time delays for all

of the cases are assumed to be td = 5 sec. In Section 4.5.4 we consider the effects of

different time delays on the performance of the recovery system.

4.5.2.1 LOE Fault - Scenario a.1

In this part of simulations a high severity LOE fault (90%) is injected to the system and

the recovery performance of the semi-decentralized and centralized recovery schemes

are compared.

Figures 4.7, 4.8 and 4.9 show that in this fault scenario, if the FDI information

inaccuracy is 20%, that is, larger than the maximum allowable values that we evaluated

earlier, then it yields an unstable closed-loop behavior. Therefore, it necessitates

employing a more accurate FDI module and recovery scheme in this case.
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Figure 4.7: X-axis Attitude Quaternion After Control Recovery, 90% LOE Fault with
20% FDI Inaccuracy.
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Figure 4.8: X-axis Relative Attitude Quaternion After Control Recovery, 90% LOE
Fault with 20% FDI Inaccuracy.
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Figure 4.9: X-axis RW Torque After Control Recovery, 90% LOE Fault with 20% FDI
Inaccuracy.
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The maximum FDI information inaccuracy that provides an acceptable degraded

performance after fault recovery is evaluated to be 5% as stated previously. Figures

4.10, 4.11 and 4.12 show the x-axis absolute attitude quaternion of all the satellites,

the relative attitude quaternion and the corresponding control torques for the semi-

decentralized and centralized recovery schemes under the fault scenario a.1.

Figures 4.10, 4.11 and also the PIs Jss and J̃ss for this scenario verify that the

desirable set-point tracking and formation specifications after fault recovery are met

by using the semi-decentralized fault accommodation but without imposing significant

computational complexity associated with solving one problem of higher dimensions,

as shown by comparing tsolv and ITER in Table 4.3, and without imposing significant

communication requirements in terms of states information and fault information

associated with the centralized scheme. Furthermore, Figure 4.11 shows that the

formation performance between the healthy agents is not influenced by the fault

occurrence in the centralized recovery approach and the agents keep their formation

while their absolute attitudes are being recovered. As can be observed in Figure 4.12,

the RW constraints are satisfied in these control design schemes and the RW torque

never exceeded the specified threshold. The cumulative control effort costs (Ju) for

the two schemes show that the semi-decentralized recovery scheme yields lower fault

compensation control effort costs.

Table 4.3: Goal Seeking/Formation Performance, Time Response for the x-axis, and
Control Effort Costs, Computational Efforts after Semi-Decentralized and Centralized
Fault Recovery, 90% LOE Fault with 5% FDI Inaccuracy

J̃tr Jss J̃ss Ju t̃s ts tsolv ITER

Semi-Dec.
Recovery

0.158
2.94×
10−4

2.5 ×
10−5 817.2 45.6 70.8 0.30 20

Centralized
Recovery

0.082
5.5 ×
10−4

2.5 ×
10−5 1148.2 59.6 51.2 3.78 89.04
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Figure 4.10: X-axis Attitude Quaternion After Control Recovery, 90% LOE Fault
with 5% FDI Inaccuracy.
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Figure 4.11: X-axis Relative Attitude Quaternion After Control Recovery, 90% LOE
Fault with 5% FDI Inaccuracy.
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Figure 4.12: X-axis RW Torque After Control Recovery, 90% LOE Fault with 5% FDI
Inaccuracy.
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4.5.2.2 LOE Fault - Scenario a.2

In this part of simulations a moderate magnitude LOE fault (70%) is injected to the

system and the recovery performance of the semi-decentralized and centralized recovery

schemes are compared. The maximum FDI information accuracy that provides an

acceptable degraded performance after fault recovery is evaluated to be 30% as stated

previously.

Figures 4.13, 4.14 and 4.15 show the x-axis absolute attitude quaternion of all the

satellites, the relative attitude quaternion and the corresponding control torques for

the semi-decentralized and centralized recovery schemes under the fault scenario a.2.

Figures 4.13, 4.14 and also the PIs Jss and J̃ss for this scenario verify that

similar to the high severity LOE fault scenario, the desirable set-point tracking and

formation specifications after fault recovery are met by using the semi-decentralized

fault accommodation as well as the centralized scheme. Furthermore, Figure 4.14

shows that, similar to the high severity LOE fault scenario, the formation performance

between the healthy agents is not influenced by the fault occurrence in the centralized

recovery approach and the agents keep their formation while their absolute attitudes

are being recovered. Figure 4.15 also shows that the RW constraints are satisfied

in these control design schemes and the RW torque never exceeded the specified

threshold. The cumulative control effort costs (Ju) for the two schemes show that

the semi-decentralized recovery scheme yields lower fault compensation control effort

costs.

Compared with the previous high severity fault condition, a moderate magnitude

fault condition is less sensitive to the FDI information inaccuracy. However, the larger

FDI inaccuracy that is considered in this case yields more oscillatory behavior and

longer settling times under this fault scenario.
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Table 4.4: Goal Seeking/Formation Performance, Time Response for the x-axis, and
Control Effort Costs, Computational Efforts after Semi-Decentralized and Centralized
Fault Recovery, 70% LOE Fault with 30% FDI Inaccuracy

J̃tr Jss J̃ss Ju t̃s ts tsolv ITER

Semi-Dec.
recovery

0.158
6.9 ×
10−4

2.2 ×
10−5 969.71 45.03 74.71 0.32 21

Centralized
recovery

0.082
4.7 ×
10−4

4 ×
10−5 1161.3 59.59 73.5 3.45 83
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Figure 4.13: X-axis Attitude Quaternion After Control Recovery, 70% LOE Fault
with 30% FDI Inaccuracy.
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Figure 4.14: X-axis Relative Attitude Quaternion After Control Recovery, 70% LOE
Fault with 30% FDI Inaccuracy.
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Figure 4.15: X-axis RW Torque After Control Recovery, 70% LOE Fault with 30%
FDI Inaccuracy.
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4.5.2.3 LOE Fault - Scenario a.3

In this part of simulations a low-severity LOE fault (15%) is injected to the system.

The simulation results show that the nominal control schemes can handle this fault and

recover the system without any system recovery schemes. The recovery performance

of the semi-decentralized and centralized control schemes are compared.

Figures 4.16, 4.17 and 4.18 show the x-axis absolute attitude quaternion of all the

satellites, the relative attitude quaternion and the corresponding control torques for

the semi-decentralized and centralized control schemes under the fault scenario a.3.

Figures 4.16, 4.17 and also the PIs Jss and J̃ss for this scenario verify that the

desirable set-point tracking and formation specifications are met by using the semi-

decentralized and centralized control scheme without any system recovery. In the

semi-decentralized scheme, the significant computational complexity associated with

solving one problem of higher dimensions and communication requirements associated

with centralized scheme is not imposed on the system. Figure 4.17 shows that neither

the individual performance of healthy agents, nor the formation performance between

the healthy agents, are influenced by fault occurrence in the centralized control

approach and they keep their goal seeking formation. It can be observed from Figure

4.18 that the RW constraints are satisfied in these control design schemes and the RW

torque never exceeded the specified threshold. The cumulative control effort costs

(Ju) for the two schemes show that the centralized control scheme yields lower control

effort costs.
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Table 4.5: Goal Seeking/Formation Performance, Time Response for the x-axis, and
Control Effort Costs, Computational Efforts for Semi-Decentralized and Centralized
Control Schemes, 15% LOE Fault with no FDI and Reocvery

J̃tr Jss J̃ss Ju t̃s ts tsolv ITER

Semi-Dec.
Control

0.158
3.6 ×
10−4

1.4 ×
10−6 1121.7 73.56 74.88 0.37 24

Centralized
Control

0.0827
3.7 ×
10−4

2.7 ×
10−6 1743.2 73.81 74.98 4.89 112
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Figure 4.16: X-axis Attitude Quaternion, 15% LOE Fault with No FDI and Recovery.
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Figure 4.17: X-axis Relative Attitude Quaternion, 15% LOE Fault with No FDI and
Recovery.
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Figure 4.18: X-axis RW Torque, 15% LOE Fault with No FDI and Recovery.
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4.5.2.4 Friction Fault - Scenario b.1

In this part of simulations a high severity friction fault (90%) is injected to the system

and the recovery performance of the semi-decentralized and centralized recovery

schemes are compared. The maximum FDI information accuracy that provides an

acceptable degraded performance after fault recovery is evaluated to be 50% as stated

previously. As discussed in Section 4.1.1, inaccurate estimations of this fault by

the FDI does not violate the closed-loop system stability and it only violates the

steady-state error offset.

Figures 4.19, 4.20 and 4.21 show the x-axis absolute attitude quaternion of all the

satellites, the relative attitude quaternion and the corresponding control torques for

the semi-decentralized and centralized recovery schemes for the fault scenario b.1.

Figures 4.19, 4.20 and also the PIs Jss and J̃ss for this scenario verify that the

desirable set-point tracking and formation specifications after fault recovery are met

by using the semi-decentralized fault accommodation as well as the centralized scheme.

Figure 4.21 also shows that healthy agents input signals are subject to considerably

larger overshoots in the semi-decentralized recovery approach. Furthermore, Figure

4.20 shows that the formation performance between the healthy agents is influenced

by the fault occurrence in the centralized as well as the semi-decentralized recovery

approach. It can be observed from Figure 4.21 that the RW constraints are satisfied

in these control design schemes and the RW torque never exceeded the specified

threshold.
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Table 4.6: Goal Seeking/Formation Performance, Time Response for the x-axis, and
Control Effort Costs, Computational Efforts after Semi-Decentralized and Centralized
Fault Recovery, 90% Friction Fault with 50% FDI Inaccuracy

J̃tr Jss J̃ss Ju t̃s ts tsolv ITER

Semi-Dec.
recovery

0.158
4.8 ×
10−5

1.07×
10−5 998.05 55.37 74.86 0.34 22

Centralized
recovery

0.082
2.7 ×
10−4

1.8 ×
10−5 1469.2 54.6 74.96 3.4 70
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Figure 4.19: X-axis Attitude Quaternion After Control Recovery, 90% Friction Fault
with 50% FDI Inaccuracy.
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Figure 4.20: X-axis Relative Attitude Quaternion After Control Recovery, 90% Friction
Fault with 50% FDI Inaccuracy.
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Figure 4.21: X-axis RW Torque with Control Recovery, 90% Friction Fault with 50%
FDI Inaccuracy.
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4.5.2.5 Friction Fault - Scenario b.2

In this part of simulations a moderate friction fault (50%) is injected to the system.

The simulation results show that the nominal control schemes can handle this fault and

recover the system without any system recovery scheme. The recovery performance of

the semi-decentralized and centralized control schemes are compared.

Figures 4.22, 4.23 and 4.24 show the x-axis absolute attitude quaternion of all the

satellites, the relative attitude quaternion and the corresponding control torques for

the semi-decentralized and centralized recovery schemes for the fault scenario b.2.

Figures 4.22, 4.23 and also the PIs Jss and J̃ss for this scenario verify that the

desirable set-point tracking and formation specifications are met by using the semi-

decentralized and centralized control scheme without any system recovery. The

observations corresponding to the previous case, the high severity fault case, are

also observed in this case, that is, the healthy agents input signals are subject to

considerably larger overshoots in the semi-decentralized control approach as it is

shown in Figure 4.24. Furthermore, Figure 4.23 shows that the formation performance

between the healthy agents are influenced by the fault occurrence in the centralized

as well as the semi-decentralized control approach. Figure 4.24 shows that the RW

constraints are satisfied in these control design schemes and the RW torque never

exceeded the specified threshold. The cumulative control effort costs (Ju) for the two

schemes show that the centralized control scheme yields lower control effort costs.

Compared with the previous severe faulty condition, a moderate magnitude faulty

condition is less sensitive with respect to the FDI information inaccuracy.
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Table 4.7: Goal Seeking/Formation Performance, Time Response for the x-axis, and
Control Effort Costs, Computational Efforts for Semi-Decentralized and Centralized
Control Schemes, 50% Friction Fault with No FDI and Recovery

J̃tr Jss J̃ss Ju t̃s ts tsolv ITER

Semi-Dec.
control

0.158
2.3 ×
10−5

1.23×
10−5 1035.5 49.83 74.81 0.35 23

Centralized
control

0.082
2.6 ×
10−4

2.2 ×
10−5 1636.8 51.91 74.96 2.97 69
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Figure 4.22: X-axis Attitude Quaternion, 50% Friction Fault with No FDI and
Recovery.
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Figure 4.23: X-axis Relative Attitude Quaternion, 50% Friction Fault with No FDI
and Recovery.
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Figure 4.24: X-axis RW Torque, 50% Friction Fault with No FDI and Recovery.
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4.5.3 Semi-Decentralized vs. Decentralized Fault Accommod-

ation

In this subsection, the recovery performance of the decentralized and semi-decentralized

recovery schemes are compared subject to a high severity LOE fault. The FDI fault

detection time delay is assumed to be td = 5 sec.

In this part of simulations a high severity LOE fault (90%) is injected to the system

and the recovery performance of the semi-decentralized and decentralized recovery

schemes are compared. The FDI information inaccuracy is considered to be 5% in

the following simulations in order to keep consistency with the previous simulations

performed in Section 4.5.2.

Figures 4.25, 4.26 and 4.27 show the x-axis absolute attitude quaternion of all the

satellites, the relative attitude quaternion and the corresponding control torques for

the semi-decentralized and decentralized recovery schemes under the fault scenario

a.1.

Figures 4.25, 4.26 and also the PI J̃ss for this scenario verify that the desirable

formation specifications after fault recovery is not satisfied by using the decentralized

fault accommodation. As can be observed in Figure 4.27, the RW constraints are

satisfied in these control design schemes and the RW torque never exceeded the

specified threshold. The cumulative control effort costs (Ju) for the two schemes show

that the decentralized recovery scheme yields lower fault compensation control effort

costs.
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Table 4.8: Goal Seeking/Formation Performance, Time Response for the x-axis, and
Control Effort Costs, Computational Efforts after Semi-Decentralized and Decentralized
Fault Recovery, 90% LOE Fault with 5% FDI Inaccuracy

J̃tr Jss J̃ss Ju t̃s ts tsolv ITER

Semi-Dec.
Recovery

0.158
4.02×
10−4

2.6 ×
10−5 869.38 50.16 70.2 0.30 20

Decentralized
Recovery

0.38
3.5 ×
10−4

1.1 ×
10−3 1176.7 63.39 74.63 0.23 19
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Figure 4.25: X-axis Attitude Quaternion After Control Recovery, 90% LOE Fault
with 5% FDI Inaccuracy.
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Figure 4.26: X-axis Relative Attitude Quaternion After Control Recovery, 90% LOE
Fault with 5% FDI Inaccuracy.
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Figure 4.27: X-axis RW Torque After Control Recovery, 90% LOE Fault with 5% FDI
Inaccuracy.
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4.5.4 Influence of the Fault Detection Time Delay

In this subsection, the influence of fault detection time delay on the recovery per-

formance of the semi-decentralized recovery scheme is investigated. A moderate

magnitude LOE fault (70%) is injected to the system where the FDI information

inaccuracy is considered as the value evaluated before (30% FDI inaccuracy). The

recovery performances of the formation system when the fault detection time delays

are considered as td1
= 3 sec, td2

= 5 sec, td3
= 7 sec are investigated. Table 4.9 shows

that a longer fault detection time delay imposes larger fault compensation control

effort costs as expected.

Table 4.9: Goal Seeking/Formation Performance, Time Response for the x-axis, and
Control Effort Costs after Semi-Decentralized Fault Recovery, 70% LOE Fault with 30%
FDI Inaccuracy

J̃tr Jss J̃ss Ju t̃ss tss

td1
= 3 sec 0.158

4.05 ×
10−4

2.6 ×
10−5 883.39 48.8 66.64

td2
= 5 sec 0.158

7.1 ×
10−4

2.3 ×
10−5 959.6 46.7 74.79

td3
= 7 sec 0.158

7.02 ×
10−4

2.3 ×
10−5 1032.7 48.45 74.37
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Figure 4.28: X-axis Attitude Quaternion After Control Recovery, 70% LOE Fault
with 30% FDI Inaccuracy.
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Figure 4.29: X-axis Relative Attitude Quaternion After Control Recovery, 70% LOE
Fault with 30% FDI Inaccuracy.
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Figure 4.30: X-axis RW Torque After Control Recovery, 70% LOE Fault with 30%
FDI Inaccuracy.
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4.6 Conclusions

In this chapter, the fault accommodation of an actuator fault in formation flying

satellites is addressed. The MPC-based recovery strategies for two types of actuator

faults of loss of effectiveness (LOE) and reduced friction fault are provided and the

implementation procedure for the overall multi-agent system, namely centralized,

semi-decentralized and decentralized recovery schemes are proposed.

The proposed semi-decentralized recovery strategy is performed at two levels. At

the local level, the faulty agent controller is reconfigured according to the local fault

information. Due to the conservative control recovery by the exclusive recovery of

the faulty agent, executing this recovery results in an oscillatory performance. At

the formation level recovery, the control laws of the faulty agent’s neighbors are

reconfigured to account for the fault and therefore the conservatism is reduced by

increasing the neighboring agents role in the system recovery and consequently a

graceful recovery performance without the previous oscillations is achieved.

It has been validated through multiple fault severity scenarios that the performance

of the semi-decentralized scheme after fault recovery satisfies the design specifications

(based on the performance indices J̃ss and Jss) without imposing significant computa-

tional efforts (based on the performance indices tsolv and ITER) and stringent commu-

nication requirements of the centralized approach. Moreover, the semi-decentralized

recovery scheme imposes less cumulative fault compensation control effort costs (based

on the performance index Ju). On the other hand, the simulation results reveal

that a non-cooperative decentralized fault accommodation scheme fails to provide an

acceptable recovery performance under fault conditions.

Studying different fault scenarios also leads to the following observations:

1. Robustness of the Control Approaches

The simulation results show that both semi-decentralized and centralized control
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approaches have the capability to accommodate low severity faults (up to 15%

LOE and 50% reduced friction fault) without any recovery action. This property

arises because in the MPC method the feedback gain is determined in every control

update.

2. Influence of the FDI Information Accuracy and Fault Detection Time Delay

The simulation results reveal that the FDI information inaccuracy influences the

high severity faults more than moderate or low severity faults. Moreover, LOE

faults are more sensitive than friction faults to this information inaccuracy. The

last part of simulations analyzed the influence of different fault detection time

delays on the recovery performances. A longer fault detection time imposed larger

fault compensation control effort costs as expected.
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Chapter 5

Conclusions and Future Work

In this thesis we have explored the problem of attitude control of formation flying

satellites. The purpose of the work is to improve the formation precision, incorporate

actuator constraints, take into account the stringent communication requirements,

and provide an automated system recovery scheme subject to common actuator faults.

A more accurate relative state modeling for the attitude dynamics is developed

which takes into account the actuator dynamics and also provides a generic relative

dynamical modeling which is valid for any operating condition of the formation

flying satellite system. The relative state measurements and the coupled dynamics

model are used for achieving the desirable formation behavior. In other words,

we propose to incorporate the interactions among the agents in the control design

by using coupled dynamics model. The coupled dynamics model contributes to

achieving a precise formation by (i) providing a precise knowledge through a relative

attitude determination system, and (ii) development of a novel behavior-based control

formulation based on coupled dynamic modeling.

A centralized approach to solving the formation problem is presented and a semi-

decentralized MPC-based scheme is proposed that divides the centralized formation

problem into sub problems of lower dimension which leads to lower computational
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complexity and communication requirements and does not inherit the problem of a

single point of failure, and therefore, provides the formation control method with

significant advantages over the centralized scheme. The simulation results show that

the control objectives are satisfied by using the proposed semi-decentralized control

scheme. More specifically, the formation and the individual tracking performances are

fairly comparable with a centralized control approach.

Towards obtaining an automated system recovery subject to common actuator

faults, a semi-decentralized system recovery scheme is proposed that incorporates

the fault information into the previously developed semi-decentralized MPC-based

control to compensate for the identified characteristics losses. The recovery strategy

is performed at two levels where the first level accommodates the fault locally and

the second level enhances the recovery performance through the formation control.

Simulation studies show that the recovered system meets the design specifications

without imposing stringent communication requirements of a centralized recovery

approach. Moreover, the proposed semi-decentralized recovery scheme imposes less

cumulative fault compensation control effort costs.

In this thesis, a high precision formation control scheme is proposed where the

control law design incorporates the process constraints and communication requirement

limitations. Furthermore, a fault accommodation approach corresponding to the

proposed formation control scheme subject to common actuator faults is developed.

To evaluate the performance of the proposed semi-decentralized control and fault

recovery schemes, the results on comparing their performance with centralized and

decentralized control and recovery schemes and by using another control law method,

namely, the LQR method are presented and the behavior under different fault severity

conditions is examined. We now suggest some of the areas of possible future research

related to this work.

• The proposed formation control formulation which is based on coupled dynamical
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modeling was employed for developing a behavior-based formation method.

However, the formulation has the potential to be modified to address a leader-

follower formation method as well. Once the approach is adapted to address

the leader-follower formation method, two cases of centralized control and

semi-decentralized control schemes can be investigated.

• The developed methodology can be adapted and applied to any other attitude

formation control of multi-agents including robotics, unmanned aerial vehicles

(UAVs) and autonomous underwater vehicles (AUVs).

• Our system recovery approach accommodates the faults of loss of effectiveness

(LOE) and reduced friction. It can be adapted to address other types of structural

faults as well as actuator faults and sensor faults.

• Due to the nature of the MPC scheme and its control law being updated in each

step, a progressive method of FDI in which the information accuracy increases

over time is also capable of being incorporated into an MPC control scheme.

The approach might save costs because of taking faster actions compared with

our proposed scheme in which the fault information is available after the fault

detection time delay.

• The development of nonlinear MPC-based control and fault recovery approaches

for formation flying satellites can be considered as another extension of this

study. Due to the highly nonlinear dynamics of the attitude motion of formation

flying satellites, nonlinear MPC might improve the formation precision due to

not involving the approximation errors that are introduced by the linearization

process in the linear MPC approach.
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