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ABSTRACT

Distributed Fault Detection in Formation of Multi-Agent Systems with Attack

Impact Analysis

Arefeh Amrollahi Biyooki

Autonomous Underwater Vehicles (AUVs) are capable of performing a variety of deep-

water marine applications as in multiple mobile robots and cooperative robot reconnaissance.

Due to the environment that AUVs operate in, fault detection and isolation as well as the

formation control of AUVs are more challenging than other Multi-Agent Systems (MASs).

In this thesis, two main challenges are tackled.

We first investigate the formation control and fault accommodation algorithms for

AUVs in presence of abnormal events such as faults and communication attacks in any of

the team members. These undesirable events can prevent the entire team to achieve a safe,

reliable, and efficient performance while executing underwater mission tasks. For instance,

AUVs may face unexpected actuator/sensor faults and the communication between AUVs

can be compromised, and consequently make the entire multi-agent system vulnerable to

cyber-attacks. Moreover, a possible deception attack on network system may have a negative

impact on the environment and more importantly the national security. Furthermore, there

are certain requirements for speed, position or depth of the AUV team. For this reason,

we propose a distributed fault detection scheme that is able to detect and isolate faults in

AUVs while maintaining their formation under security constraints. The effects of faults and

communication attacks with a control theoretical perspective will be studied.

Another contribution of this thesis is to study a state estimation problem for a linear
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dynamical system in presence of a Bias Injection Attack (BIA). For this purpose, a Kalman

Filter (KF) is used, where we show that the impact of an attack can be analyzed as the

solution of a quadratically constrained problem for which the exact solution can be found

efficiently. We also introduce a lower bound for the attack impact in terms of the number of

compromised actuators and combination of sensors and actuators. The theoretical findings

are accompanied by simulation results and numerical can study examples.
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Chapter 1

Introduction

1.1 Motivation

Recently autonomous Multi-Agent Systems (MASs) and their coordinated movements have

been the subject of many studies. These systems are controlled by cooperative control laws

and are designed to act in a way that serve the group common purpose. Moreover, MASs

can be found in biology, physics, applied mathematics, mechanics and control theory. The

applications of MASs can be seen from the motion of a flock of birds, a herd of land animals,

a school of fish and a swarming in natural systems as illustrated in Figure 1.1. Cooperative

control of MASs can be applied to various applications such as multiple Unmanned Aerial

Vehicles (UAVs) [1, 2], multiple Autonomous Underwater Vehicles (AUVs) [3, 4], multiple

mobile robots, [5,6], and multiple satellite clusters [7]. MASs are capable of executing more

complex tasks due to their great advantages such as improving system efficiency, flexibility

and reliability, reducing cost, and providing new capabilities that cannot be incorporated
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within a single agent system.

(a) (b)

(c)

Figure 1.1: Examples of biological systems exhibiting formation behaviors in nature: (a), (b) flocks
of birds, (c) schools of fishes [8].

Generally, the goal in MAS is to maintain a desired group shape formation. For

instance, a group of satellites may be required to set themselves into a specific formation in

order to efficiently provide and communicate coverage over a particular trajectory around

the globe. Also, a group of UAVs may be required to fly in a particular formation to provide

surveillance of a region or to decrease localization errors when positioning a target of interest.

Formation control is the problem of controlling the relative position and orientation of robots
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within a group in order to reach a desirable team formation. As the complexities of the

missions increase UAVs and AUVs could not accomplish the mission tasks individually, and

hence, application of MAS has provided lots of opportunities for various researches. The basic

idea is to use relatively inexpensive, simple and small AUVs instead of expensive specialized

ones to cooperatively fulfill the challenging AUV missions. The proposed approach can

increase the overall reliability of the system or fulfill the missions that cannot be executed by

a single AUV while decreasing the mission complexity. The degree of autonomy, capability

of Fault Detection and Isolation (FDI) and identification are the crucial factors for AUV

systems to successfully accomplish their mission tasks [9].

1.2 Literature Review

1.2.1 Multi-Agent Formation Control

There are many benefits in using a group of homogeneous or heterogeneous agents, instead

of a single agent to accomplish a task. When comparing the mission outcome of a group of

MASs controlling in the same environment to that of a single vehicle, the overall performance

is easy to evaluate as MAS group can enhance 1) task allocation, 2) performance, 3) the time

duration required, 4) the system effectiveness and 5) the safety to accomplish the desired

outcome. Besides, the technical advances in wireless communication, sensors, and embedded

systems have all play a part in the development of new generation of coordination algorithms

for unmanned aerial/ground/underwater/space vehicles [3].
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Generally, physical faults occur in an individual member of the team or communica-

tion among the team members. Moreover, we should consider different faults in various

applications that are applicable for multiple mobile robots, multiple AUVs [10] and a fleet

of marines, UAVs [11] and cooperative robot reconnaissance [12]. Control of MAS behavior

is categorized into centralized and decentralized systems.

1.2.1.1 Centralized Control

In centralized systems, a powerful core central unit makes decisions and communicates them

within the vehicles in the team. This core unit can optimize vehicle coordination, accom-

modate individual vehicle faults and monitor the accomplishment of the mission. However,

it is possible that any fault in the central unit leads to a failure of the entire system. Most

of the available literature on FDI of MASs are based on centralized fault diagnosis architec-

tures [13]. In practice, it is quite challenging to address the problem of FDI in a network

of MASs in the context of a centralized architecture due to the stringent computational

resources and communication bandwidth limitations. The Figure 1.2 shows a centralized

control architecture, consider the dynamics of each agents i = {1, . . . , Nv} and xi, ui are the

state and control input.

Few drawbacks of a centralized system are as follows: a more complex controller design

in case of having different agents in the network, task allocation, and more difficult task

allocation and measurement. Moreover, the agents will not operate if the centralized control

fails and the entire network breaks down.

4



Figure 1.2: Centralized control of n MASs [9].

1.2.1.2 Decentralized Control

In the past decade, MASs have been the subject of considerable research due to their ex-

tensive applications in a wide variety of areas involving chemical manufacturing industries,

geographical exploration, building automation and military industries [14–17]. It should be

emphasized that the consensus problem for MASs have attracted special interest because

of its clear practical insights. So far, various research as well as design methodologies have

been exploited to deal with the consensus problems for different types of MAS [18–20].

In networks, individual vehicles can communicate and share information, but each vehi-

cle receives particular task allocation to achieve part of the global mission. Some advantages

of using decentralized networks are robustness to single agent failure, better system stabil-

ity, better time constraints on applications, less communication load, and less computational

power required from the agents. Since FDI modules in networks usually receive only local in-

formation, they will inevitably be unable to take into account the information corresponding

to the neighbouring agents in their solution [21]. Consequently, the only viable and feasible
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architecture is a distributed one that is more suitable than a centralized architecture due

to its lower complexity and use of fewer network resources. Decentralized control architec-

ture is more effective than a decentralized control due to information exchanges among the

neighbouring agents. Figure 1.3 shows a decentralized control strategy of MASs.

Figure 1.3: Decentralized control strategy of n MASs [22].

Some advantages of decentralized control strategy are the increased flexibility, individ-

ual control of each agent, more robustness of the system as compared to the other architec-

tures, and a better communication among the direct neighbouring agents.

Different coordinate architectures and strategies have been developed for both cen-

tralized and decentralized methods. For instance, coordination of Multiple Mobile Robot

(MMR) group includes behavior-based [23], virtual structure [24], leader-follower [25, 26],

graph-based [27] and potential field approaches [28]. Figure 1.4 illustrates the block diagram
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of different coordination strategies within MASs.

Figure 1.4: Coordinate strategies of MASs [9].

1.2.2 Fault Tolerant Control in Formation of Multi-Agent Systems

The FDI of single agent and MASs have been thoroughly researched in the literature [29–

33]. The physical limitations and constraints of practical systems and saturation faults are

challenging phenomena, such as deflection of control surfaces of UAVs, voltage limits on

electrical motors, and flow rates of hydraulic actuator faults [34].

The problem of Fault Tolerant Control (FTC) in Markovian jump systems is inves-

tigated in the literature [35]. An adaptive observer-based approach is developed to detect

the occurrence and to estimate the severity of actuator faults in the systems. A statistical

local approach for the faults with very small amplitudes is considered in [36]. The FDI

techniques based on sliding-mode observers for the robust decentralized system is studied

in [37]. In [38], FD and Fault Estimation (FE) of network of sensing systems with incomplete
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measurements is presented. A consensus based overlapping decentralized FDI approach are

studied in [31]. In [39], the improvements in design and analysis of actuator FDI for a team of

MAS are presented. A cooperative hierarchical actuator fault accommodation for formation

of flying vehicles with absolute measurements and with various relative measurements are

investigated in [40, 41]. The agents are modeled as Linear-Time Invariants (LTIs) and local

fault recovery module can detect the LOE actuator faults and partially recover the faulty

agents. A decentralized formation-level fault recovery module is also designed to enhance

the overall performance of the team in [42].

The consensus problem for a second-order MAS is presented in [43] and a cooperative

algorithm is proposed which leads the team to achieve consensus in presence of random

directional communication link failures.

1.2.3 A Review of Attack and Security Approaches

Cyber-Physical System (CPS) consist of both logical elements such as embedded computers

and physical elements connected by communication channels such as Internet [44]. Cyber

attacks on control systems compromising measurement and actuator data integrity and avail-

ability have been considered in [45], where the authors have modeled attack effects on the

physical dynamics. In [46], several attack scenarios have been simulated and analyzed on the

Tennessee-Eastman process control system to study the attack impacts and its detectability.

Cyber security is one of the major concerns in Cyber-Physical Systems (CPSs). The

cyber security aspect of CPS can be classified into two classes namely: 1) the information
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security which is considered by encryption and data security, and 2) secure control theory

which studies how cyber attacks affects the control system of physical dynamics. The safety

tools using only information security are not sufficient for secure control of CPS because

they cannot describe the systems macro-behavior, hence they should be complemented with

a secure control theory.

Secure control theory focuses on an attack model that explains the uncertain and

erratic nature of cyber attacks [47] such as the Denial of Service Attack (DOS). DOS refers to

obstructing communication among networked agents and attacking the routing protocols. As

a countermeasure, in the literature [48] provides a secure control scheme in presence of DOS

attacks. Another game theoretic approach achieving a robust and resilient control against

DOS attacks is studied in [49,50]. Another type of attack model is the deception attack that

basically occurs by injecting incorrect information from sensors or to controllers [51]. For

the deception attack model, the attacker can receive the secret key or compromise certain

cyber elements in order to falsify the data. This type of attack has been researched in

the deception attack of electric power distribution systems in the area of secure control

theory [52]. The monitoring system could not detect all feasible deception attacks since the

attacker with a good knowledge of the system can design a sophisticated deception attack

that is approximately or absolutely undetectable.

The CPS is modeled as a stochastic linear system with a Gaussian white noise. Ma-

licious stealthy deception attacks attempt to drive the state estimate of the Kalman Filter

(KF) away from the actual state without being detected. Investigating all possible attacks
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in MAS is an important problem in many areas. Attack or vulnerability taxonomies are

designed for various methods [53] as provided below

• to develop automated tools for performing security assessment,

• to provide a way to explore unknown attacks,

• to understand the attacks implications and the defense mechanism against them.

For consecutive attacks, the maximum number of attacks is evaluated by recursive Riccati

equations. For randomly launched deception attacks, the desired attack probability is ob-

tained by solving a Riccati equation in [54]. Deception attacks compromising integrity have

received much attention. For instance, replay attacks on the sensor measurements, which

is an appropriate kind of deception attack have been studied. The authors in [55] consider

that all existing sensors are attacked and suitable counter-measures to detect the attacks

are considered. For this attack, adversaries do not have any model knowledge but they are

able to receive and corrupt the sensor data. Recently, another form of deception attacks has

been investigated and that is false-data injection attacks. For instance, in power networks,

an adversary with perfect model knowledge has been investigated in [56]. In particular,

in [57] the authors analyzed attack policies with limited model knowledge and performed

experiments on a power system control software showing that such attacks are stealthy and

can induce the erroneous belief that the system is at an unsafe state.

Data injection attacks on dynamic control systems have been studied. In [58], authors

consider the set of attack policies for covert (undetectable) false-data injection attacks with

detailed model knowledge and a full access to all sensor and actuator channels that describe
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the set of undetectable false-data injection attacks for infinite adversaries with full-state in-

formation, but possibly compromising only a subset of the existing sensors and actuators. In

the context of MAS, optimal adversary policies for data injection using full model knowledge

and state information are proposed in [59]. The work in [60] considers the detection and

reduction of false-data injection attacks on linear information dissemination algorithms over

communication networks.

The deception attack is also known as false data-injection attacks or malicious attacks.

The work in [61] illustrates that stealth attacks exist if the number of compromised measure-

ments reach a certain value. Moreover, two models on sparse stealth attacks are constructed

for two typical scenarios namely: 1) a model where random attacks in arbitrary measure-

ments can be compromised, and 2) a model where targeted attacks in specified states are

modified.

The deception attack occurs when an adversary replaces the true data exchanged be-

tween the agents by false signals. The deception or acceptance of false data means that

there is an unauthorized access and interface with an asset. The attacker changes a mes-

sage that contains data determining an action to be done, and the recipient thinks that

this message is true and acts accordingly. Another form of this attack occurs when some

information is modified and an authorized user accepts and approves the change while it is

wrong. A famous example of this type of threat is a man in the middle. In such attacks,

malicious users intercept and modify the data transmitted between users through a network

connection, without the recipient and sender realizing the presence of the intermediary. In
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deception attacks, false information is injected into sensors or controllers. The attacker ob-

tains the secret key or compromises some cyber elements in order to falsify the data rather

than obstruct it. These types of attacks have been studied in different applications such as

power grid [62] and sensor networks [63].

Different versions of the deception attack are defined as follows:

a. Fake messages: Having a fake identity makes it easy for an attacker to send deceptive

information to others.

b. Fake agents: An attacker plays many roles in a genuine interaction. Many fake bidder

agents are created by an attacker to demolish the auction.

c. Fake services: An attacker creates an entirely fake interaction with fake agents for

deception or disinformation such as a completely fake auction interaction with pseudo

bidders to attract real agents and betray them.

d. Reputation attack: A group of attackers work together to deceive the reputation

mechanism such that many malicious agents may collude to increase their own rank

and thus defraud a trust service into believing that they are trusted agents [64].

The interaction between physical and cyber system make control systems different from

conventional IT systems. Malicious actions can enter at network gateways in the close loop

and cause vulnerability effects.

Deception attack models for dynamical networked control system are as follows:

• Zero dynamics: Only sensor or actuator along with the plant model are considered.
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• Covert: Sensor and actuator as well as the plant model are considered.

• Replay: Only sensor, but no plant model is considered.

• Bias: Sensor and actuator as well as steady-state model are considered.

The FDI approaches can be applied for detecting the negative impact of cyber attacks on

networked control systems. However, these tools might be exploited more successfully if

similarities and differences between faults and attacks are well investigated. Both faults and

attacks can be developed at an unknown time instant and may lead to an unreliable variation

in the behavior of physical systems. The faults and attacks can be modeled by incorporating

additive signals in the state space model of the system. Faults and attacks have inherently

distinct features, making it difficult for traditional FDI techniques to implement in case of

cyber-physical attacks.

The most important difference between a fault and an attack lies in that the fault

occurs without deliberate human intervention that occur in the system components such

as actuators, sensors, or communication channels, while the attack is an intentional action

performed by malicious adversaries. In addition, simultaneous faults are suggested to be non-

colluding while cyber attacks could be performed in a coordinated way. For these reasons,

cyber-physical attacks may cause more destructive damage to the system than faults.

Another point is that cyber-physical attacks are much more difficult to detect and

isolate, particularly when they are implemented in a coordinated way. The attackers can

be controlled for partially or completely bypassing traditional irregularity detectors [65,66],

false data injection attacks [67], zero-dynamics attacks or covert attacks [68]. Also, it is
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necessary to apply some priority methods for analyzing that the attacks are detectable and

identifiable before performing detection and isolation techniques.

Faults often occur for a long time until they are detected, isolated and repaired but

malicious attacks may be performed within a short time period due to the limited resources

and covert intention of the adversaries [69, 70]. Moreover, for safety-critical applications,

it is required to detect the attacks with a detection delay that is upper bounded by a cer-

tain prescribed value [71–73]. For these reasons, the detection and identification of attacks

should be formulated as a sequential detection and isolation of transient changes in stochastic

dynamical systems. Norm-based state estimator is applied in [74] to guarantee the bounded-

ness of estimation errors caused by noise, modeling errors and cyber-attacks. Some work on

state estimation on stochastic time-varying nonlinear systems subject to randomly occurring

deception attacks are considered in [75] through framework of KF.

1.3 Thesis Contributions

• In Chapter 3, a performance analysis of a model-based distributed fault detection

scheme for Multi-Agent Systems (MASs) is presented. Next, potential attack scenarios

in MAS as well as the implementation and analysis of Fault Detection (FD) for MAS

under deception attacks and fault scenarios are presented. The major contribution

of this chapter is to develop a methodology and framework to distinguish faults and

attacks.

• In Chapter 4, the Bias Injection Attack (BIA) strategy to the Kalman filtering problem
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is extended, and the impact of the worst-case BIA in a stochastic setting is analyzed by

a quadratically-constrained optimization program. The main contribution of this chap-

ter is to use a combination of sensors and actuators in order to have minimum errors in

the output and to also maintain estimation errors lower than an upper bound. Finally,

we need to determine and choose which sensors and actuators should be secured.

1.4 Thesis Layout

• Chapter 1 provides a literature review on various aspects of multi-agent formation

control, Fault Tolerant Control (FTC) for formation of Multi-Agent Systems (MASs),

and attack and security approaches.

• Chapter 2 provides a background information on the topics that are used in this the-

sis. This chapter talks about the consensus problem in Multi-Agent Systems (MASs),

formation graph modeling, modeling of Autonomous Underwater Vehicles (AUVs),

fault diagnosis, and finally an introduction to Linear Kalman Filters (LKFs).

• Chapter 3 introduces the proposed distributed Fault Detection (FD) in the forma-

tion of AUVs and the communication network among the AUVs in the presence of a

deception attack. Moreover, each agent has a senor which measures the relative posi-

tion of the neighbouring agents, the relative position of the sensor and the difference

between the estimated agent position and the estimated neighbouring agent position

are proposed. All the simulation results are provided in Section 3.4.
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• Chapter 4 introduces the problem of estimating the attack impact in monitoring

systems. To tackle this issue, a Kalman filter equipped with a chi-squared detector

under Bias Injection Attack (BIA) is presented. Based on the worst-case attack impact,

a lower bound on the attack impact, the main goal is to pick which sensors or actuators

and the combination of sensors and actuators should be secured. The simulation results

are provided in Section 4.6.

• Chapter 5 presents the conclusion as well as potential future work.
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Chapter 2

Background Information

In this chapter, a review on background information needed for this work is presented.

First, the consensus problem in MAS is given in Section 2.2. A formation graph modeling

is presented in Section 2.1. Next, the dynamic model of Autonomous Underwater Vehicle

(AUV) is explained in Section 2.3. Fault Detection and Isolation (FDI) is introduced in

Section 2.4. Finally, in Sections 2.5 and 2.7, different types of actuator faults and the

Kalman Filter (KF) method are presented.

2.1 Formation Graph Modeling

Assume that the N agents evolving in a d-dimensional state space where xi ∈ Rd and

i = 1, . . . ,N . Let V = {1, . . . ,N} be a set of vertices in graph G = (V , E), where the

edge set E ⊂ V × V is in the set of unordered pairs of vertices. An edge (vi, vj) is in E if

agents i and j can interact with each other and the degree matrix is diagonal matrix D =
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diag(deg(v1), . . . , deg(vN)) where the number of vertices adjacent equal vi. The neighbour

of the node i is denoted by N = {j | (i, j) ∈ E}. The weighted adjacency matrix A = [aij] ∈

{0, 1}N×N , where aij is defined as follows:

aij =


1 if (vi, vj) ∈ E ,

0 if otherwise.

Another matrix that we may assign to a weighted graph is Laplacian matrix. It is defined

by L = D −A, where D denotes diagonal weighted in-degree matrix. The adjacency and

Laplacian matrices associated with our example graph shown in Figure 3.1 are given as

follows:

Figure 2.1: AUV formation with N=5.
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L =



2 −1 −1 0 0

−1 2 0 −1 0

−1 0 2 0 −1

0 −1 0 1 0

0 0 −1 0 1


, A =



0 1 1 0 0

1 0 0 1 0

1 0 0 0 1

0 1 0 0 0

0 0 1 0 0


(2.1)

The graph Laplacian is defined by L is a positive semi-definitive matrix and hence L = D −A

L = LT � 0 [76].

In order to use the Laplacian matrix in the cooperative control design procedure,

we first transform Laplacian matrix into its normal Jordan form L =MJM1, where M

denotes the transformation matrix. The main diagonal elements of matrix J are eigenvalues

of Laplacian matrix and columns of the transformation matrix are their associated right

eigenvectors [77].

Defitinion 1: Consider the MAS with the communication graph G and the proximity

graph A is a simple graph in which two vertices are connected by an edge if and only if the

vertices satisfy particular geometric requirements. The induced δ − disk proximity graph is

specified by G(t) = (V , E(t)) and (vi, vj) ∈ E(t) ⇔||xi(t)− xj(t)|| ≤ δ. Figure 2.2 illustrates

the notation of the proximity graph.

Lemma 2.1.1 Let L be the Laplacian associated with an undirected graph G. Then, L has

at least one zero eigenvalue and all of nonzero eigenvalues are positive. Furthermore, the

matrix L has exactly one zero eigenvalue if and only if the undirected graph G is connected,
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Figure 2.2: δ-disk proximity graph [76].

and the eigenvector associated with zero is 1 [78].

2.2 Consensus Problem in Multi-Agent Systems

The consensus problem is a particular example of a cooperative distributed algorithm that

has been extensively studied by control and computer scientists in the field of distributed

computing [79–81]. It is based on reaching an agreement on a certain quantity among all the

nodes in a network that is a function of the initial state of each node. This problem has gained

an increasing amount of attention from the control community due to its application in the

distributed control of networked dynamic systems, such as in sensor fusion [82], decentralized

estimation [83], and control of MAS like flocking, rendezvous, deployment, containment and

formation [84]. Several studies have been connected in order to understand how topological

properties of the network affect the performance of a group of dynamic agents using the
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consensus algorithm [85]. These studies also cover a distributed control law, analyzing con-

vergence analysis, an stability [78,86], controllability [87] and observability [88,89] properties

among others.

The consensus problem in MAS is to determine a distributed control strategy that

ensures all agents agree on a common value for a variable of interest. This value is generally

called the consensus value and can represent a state or an output of the agent. Consensus

algorithms are one of the tools that are applied for analysis of distributed systems, even

when the network information structure has a vital effect on the control design where only

part of the information is available to each agent. A consensus control means to design

a networked interaction protocol such that all agents reach an agreement on their certain

variables of common interest asymptotically or in a finite time. Each agent moves toward

the centroid of its neighbouring set as given below for the single-integrator dynamics

ẋi(t) = u, (2.2)

where

u =
∑
j∈N

(xi − xj). (2.3)

and equations (2.2) and (2.3) can be rewritten as follows

ẋi = − deg(vi)xi +
N∑
i=1

aijxj. (2.4)

where
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aij =


1 if (vi, vj) ∈ E ,

0 if otherwise.

Hence, consensus or agreement dynamics is given as follows:

u = −Lx. (2.5)

where x = [x1, . . . , xn]T .

2.3 Modeling of Autonomous Underwater Vehicles

In this section, important coordinate frames that are necessary for developing the AUV model

are explained. Then, the dynamics of an AUV is presented. Finally, nonlinear equations of

AUV motion in the horizontal plane are described.

2.3.1 Coordinate Frames

The Autonomous Underwater Vehicle (AUV) in six degrees of freedom depends on the choice

of coordinates. The equations of motion for the AUV can be defined using two coordinate

frames as:

• World-fixed reference frame {W} is defined by axes (OW -XW , YW , ZW ) where OW is

the origin of the W frame, XW axis points to the north, YW axis points to the east,

and the ZW axis points to the center of the earth.
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• Body-fixed reference frame {B} is defined by axes (OB -XB, YB, ZB) where OB is

the origin of the B frame. The body-fixed frame with orthogonal axes XB, YB, ZB is

coupled to the vehicle, the X-axis points to the forward direction, Y -axis points to the

right of the vehicle and the Z-axis points vertically down. The origin OB is selected to

coincide with the center of gravity of the vehicle. The directions of coordinate frames

are displayed in Figure 2.3 where degrees of freedom of the frame {B} are: surge, sway,

heave, roll, pitch and yaw [9]. Moreover, we have

Figure 2.3: Definition of the reference frames {W} and {B} [90].

• η = [ηT1 , η
T
2 ]T where η1 = [px, py, pz]

T and η2 = [pϕ, pθ, pψ]T denote the position and

orientation of {B} expressed in {W}, respectively.
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• ν = [νT1 , ν
T
2 ]T where ν1 = [vu, vv, vw]T and ν2 = [vp, vq, vr]

Tdenote the linear velocities

and angular velocities of the vehicle expressed in {B}, respectively.

• τ = [τT1 , τ
T
2 ]T where τ1 = [X, Y, Z]T and τ2 = [M,N,K]T denote the total forces and

moments acting on the vehicle expressed in {B}, respectively.

Euler Angles

Euler angles relate two coordinate systems in terms of their orientation, as the orientation

of the {B}-frame with respect to the {W}-frame. To orientate one coordinate system with

respect to another, it will be subjected to a sequence of three rotations. The Euler convention

used to describe the orientation from a body to world is the z -y-x convention. The B-frame

is first rotated around the z -axis, then around the y-axis, and finally around the x -axis.

This sequence of rotations corresponds to the rotation angles of yaw (pψ), pitch (pθ) and roll

(pϕ), respectively. The rotation matrix used to describe the orientation of the B-frame with

respect to the W -frame is illustrated as follows:

RW
B = (pϕ, pθ, pψ) = Rz(pψ)Ry(pθ)Rx(pϕ),

R30(pϕ, pθ, pψ) = R32(pψ)R21(pθ)R
10(pϕ),

(2.6a)

RW
B (η2)

−1 = RB
W (η2) (2.6b)
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Rz(pψ) =


cos(pψ) − sin(pψ) 0

sin(pψ) cos(pψ) 0

0 0 1

 (2.7a)

Ry(pθ) =


cos(pθ) 0 sin(pθ)

0 1 0

− sin(pθ) 0 cos(pθ)

 (2.7b)

Rx(pϕ) =


1 0 0

0 cos(pϕ) − sin(pϕ)

0 sin(pϕ) cos(pϕ)

 (2.7c)

The transformation matrix can be written as

JWB (η2) =


1 sin(pϕ) tan(pθ) cos(pϕ) tan(pθ)

0 cos(pϕ) − sin(pϕ)

0 sin(pϕ)/cos(pθ) cos(pϕ)/ cos(pθ)

 , (2.8a)

JWB (η2)
−1 = JBW (η2) (2.8b)

The consequence of using the Euler angles is to describe the vehicle motion by JWB (η2) can

not be displayed for a pitch angle of pθ = ±π/2. However, the AUV will always operate far

from this singular point. The kinematic AUV equations relative to the earth-fixed frame can
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be converted into the following compact 6-dimensional matrix form,

η̇ = J(η)ν ⇐⇒

η̇1
η̇2

 =

RW
B (η2) 0

0 JWB (η2)


ν1
ν2

 . (2.9)

2.3.2 AUV Nonlinear Equation of Motion

The general description of AUV equations of motion is obtained by applying the Newton-

Euler formulation to a rigid body in the fluid. The dynamic equations of a six degrees of

freedom AUV are in the form of [90]

Mv̇ + C(v)v +D(v)v + g(η) = τ, (2.10a)

η̇ = J(η)ν. (2.10b)

• Mass and Inertia Matrix

The mass and inertia consist of a rigid body mass (MRB) and added mass MA as illustrated

below:

M = MRB +MA. (2.11)

• Coriolis and Centripetal Matrix:

The coriolis and centripetal matrix consists of a rigid body and an added mass term that

include:

C(v) = CRB(v) + CA(v). (2.12)

• Hydrodynamic Damping Matrix:
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The hydrodynamic damping of underwater vehicles usually contains drag and lift forces.

However, the AUV operates only at a low speed which makes lift forces negligible as compared

to drag forces. The drag forces can be separated into a linear and a quadratic term as follows

D(v) = Dq(v) +Dl(v). (2.13)

where Dq(v) and Dl(v) are the quadratic and linear drag terms, respectively.

2.3.3 AUV Nonlinear Equations of Motion in Horizontal Plane

In this thesis, we assume that the AUVs move in a horizontal plane. Moreover, the AUV

is symmetric in all planes and the origin of the body-fixed frame OB, the center of gravity

CG, and the center of buoyancy CB of the AUV coincide with each other, i.e. OB = CG =

CB = [0 0 0]. Kinematic and dynamic equations of motion in the surge, sway, and yaw

are provided below

ṗx = vu cos(pψ)− vv sin(pψ), (2.14a)

ṗy = vu sin pψ + vv cos(pψ), (2.14b)

ṗψ = vr, (2.14c)

muv̇u −mvvvvr + dvvv = τu, (2.14d)

muv̇u −mvvvvr + dvvv = τv, (2.14e)

mrv̇r + (mv −mu)vuvv + drvr = τr. (2.14f)
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Equation (2.14) can be combined in a matrix form as follows

Mv̇ + C(v)v +Dv = τ, (2.15a)

η̇ = J(pψ)ν, (2.15b)

where v = [vu vv vr]
T and η = [px pψ pz]

T are the vectors of linear and angular veloc-

ities absolute positions and orientation in the world-fixed frame. J(pψ) in equation (2.15b)

is obtained as follows

J(pψ) =


cos(pψ) − sin(pψ) 0

sin(pψ) cospψ 0

0 0 1

 . (2.16)

The total mass and inertia constant parameters along X, Y and about Z axes are given by

M =


mu 0 0

0 mv 0

0 0 mr

 , (2.17)

The drag matrix D defined in equation (2.15a) consists of parameters du, dv, dr along X, Y

and Z axes, respectively, as

D =


du 0 0

0 dv 0

0 0 dr

 . (2.18)
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The Coriolis and centripetal matrix C(v) is expressed as follows:

C(v) =


0 0 −mvvv

0 0 muvu

mvvv −muvu 0

 , (2.19)

Finally, the vector τ in equation (2.15a) given below

τ =


τu

τv

τr

 . (2.20)

is the control input with τu τv and τr as the total forces and torques produced by the actuators

in surge, sway and yaw directions, respectively [9].

2.4 Fault Diagnosis

Fault Detection and Isolation (FDI) methods are developed based on the concept of redun-

dancy, which can be either hardware redundancy or analytical redundancy as illustrated in

Figure 2.4 [91]. In order to improve the reliability of a system, fault diagnosis is usually

used to monitor, locate, and detect a fault by applying the concept of redundancy, either

hardware or analytical redundancy [92].

29



Hardware Redundancy

The essential concept of the hardware redundancy is to have identical components with

the same input signals so that the duplicated output signals can be compared, leading

to diagnosis decision by a variety of methods such as limit checking and majority voting.

Hardware redundancy is reliable, but expensive and increases the weight as well as occupying

more space [92]. The common technique used in the hardware redundancy approaches are

the cross channel monitoring method, residual generation using parity generation, and signal

processing methods such as wavelet transformation [92].

Figure 2.4: Illustration of hardware and analytical redundancy for FDI

purposes [91].
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Analytical Redundancy

A general structure of an analytical redundancy-based (or model-based) Fault Detection,

Isolation and Recovery (FDIR) of the system is illustrated in Figure 2.4. Usually, analytical

redundancy approaches are classified into quantitative model-based, model-based methods,

and qualitative model-based methods. This classification of the diagnostic system is shown

in Figure 2.5. The analytical redundancy approaches (also termed functional, inherent or

Figure 2.5: Classification of fault diagnostic algorithms [93]

.

artificial redundancy) work on the basis of the functional dependence among the states,

input and the output of the system. The analytical redundancy can be categorized into two

classes as follows [94]:

• Direct redundancy: This method is achieved using a relationship between different sen-

sor measurements and differences among various sensor measurements that are useful

in obtaining other sensors.

• Temporal redundancy: This method depends on differential or various relationships
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among various sensors output and actuator inputs. With process input and output

data, temporal redundancy is useful for sensor and actuator fault detection [94].

The fault diagnosis problem can be divided into three steps. First, a set of variables known as

residuals can be generated by using one or more residual generation filters. These residuals

should ideally be zero (or have zero means) under no-fault conditions. The second step is

to make decisions on whether a fault has occurred (fault detection) determine the type of

faults that have occurred based on the residuals (fault isolation). Finally, the controller is

reconfigured in an online manner in case a fault is detected. Furthermore, a practical system

is usually subjected to noise and unknown disturbances. This results in residuals that are

not zero, even under no-fault conditions. [94].

• Residual Generation: Common approaches to generate residuals for FDI purposes are

observer-based and Kalman Filter (KF) methods [95], parity relation methods [96],

and parameter estimation methods.

• Robust Residual Evaluation: It is an essential strategy to develop robust hypothesis

testing algorithms to evaluate the residual. The strategy concentrates on a robust

approach of detecting a change in signal or system parameters that corresponds to a

fault. The simplest decision rule is to declare that a fault occurs when the instantaneous

value of a residual exceeds a threshold. More sophisticated residual evaluation methods

are based on statistical decision theories such as Generalized Likelihood Ratio (GLR)

test or a sequential probability ratio test [97,98].
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Fault Detection, Isolation and Recovery (FDIR) techniques are an important problem in

many disciplines. The there steps in FDIR are defined as follows: Diagnosis methods are

classified into three categories as follows:

• Fault detection: to make a binary decision either that something has gone wrong or

that everything is fine (determine the time of a fault occurrence).

• Fault isolation: to determine the location of the fault, e.g, which sensor or actuator

has become faulty.

• Fault identification: to estimate the size and type or nature of the fault.

Figure 2.6: Fault representation model used for designing the residual generation filter [91].

2.4.1 Residual Generation

As illustrated in Figure 2.6 the residual signal is generated based on the input vector u(t)

and the output vector y(t), and hence [91]

r(t) = g(u(t), y(t)). (2.21)
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The residual signal r(t) can be generated as a difference between the measured output y(t)

and an estimated output ŷ(t) as illustrated in equation (2.22),

r(t) = y(t)− ŷ(t). (2.22)

Decision Making

Most decision logics use the history and trend of the residuals and utilize powerful or optimal

statistical test techniques. Few well-known examples of these statistical tests are as follows

[91]:

1. Sequential Probability Ratio Test (SPRT),

2. Cumulative Sum (CUMSUM),

3. Generalized Likelihood Ratio (GLR),

4. Local approach.

Reconfiguration

The reconfiguration step involves modifying the controller in response to faults that are de-

tected and isolated in order to ensure safe or satisfactory system operation system. There are

different reconfiguration control methods based on online learning or system identification.

Figure 2.7 illustrates a summary of various FDIR techniques.
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Figure 2.7: Classification of FDIR techniques [91].

In the design of a fault diagnosis system, the following tasks and questions should be

considered [99]:

• How to handle the noise in the system?

• How to handle multiple faults?

• How to handle disturbances (additive uncertainty)?

• How to handle modeling errors (multiplicative uncertainty)?

• How to handle nonlinearites?

• How to cope with detection delays?

• How to overcome the complexity in a FDI algorithm design?
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• How to minimize the complexity in a FDI algorithm implementation (or execution)?

• What are the requirements for a prior modeling information?

• How good self learning and adaptive capabilities are?

2.5 Actuator Fault

A fault can occur in actuator, sensor or the plant. In terms of induced effects of faults on the

system performance, faults can be either additive or multiplicative. Actuator faults have an

important effect on the AUV system performance and may lead to the system malfunction

or failure. Actuator faults are commonly defined sudden change of the control input u to uci

(the actual input generated by the faulty actuator). The effectiveness coefficient matrix of

the actuator control parameters is expressed as follows:

1. Loss of Effectiveness (LOE): A decrease in the actuator gain that results in a deflection

that has a smaller gain with respect to the nominal value. Hence, the dynamics of the

i-th faulty agent can be modeled after the injection of fault at time tf as

ui(t) = k̄iuci(t), 0 < k̄i < 1 ∀t ≥ tf (2.23)

2. Lock in place: The actuator is locked to a certain position at an unknown time tf and

does not respond to subsequent commands as can be noted from equation (2.24)

ui(t) = uci(tf ) = k ∀t ≥ tf (2.24)
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where k is constant number.

3. Outage: In this scenario, the actuator produces zero force and moment hence it becomes

ineffective, hence,

ui(t) = 0, ∀t ≥ tf (2.25)

where the actuator input and output of the ith actuator are represented as uci(tf ) the time

that fault is injected to the ith actuator is denoted by tf , the actuator effectiveness coefficient

of the ith actuator is defined as ki(t) ∈ [εi, 1] where the minimum effectiveness. most of the

works have considered the actuator redundancy of underwater vehicles. On the other hand,

like most of the mechanical systems, Loss of Effectiveness (LOE) in actuators of underwater

vehicles is highly probable. Therefore, in order to overcome the lack of this topic in literature,

in this thesis we focused on LOE faults in actuators of underwater vehicles.

2.6 Sensor Fault

The AUVs are equipped with different type of sensors. Kalman Filter (KF) is one of the

most common approaches in sensor fusion that provides the required signals for the controller.

Common sensors used in AUVs are:

• IMU (Inertial Measurement Unit): It provides information about the vehicles linear ac-

celeration and angular velocity through a combination of accelerators, magnetometers

and gyroscopes.

• Depth sensor: It measures the depth of AUV by measuring the water pressure.
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• Altitude and frontal sonars: They indicate the existence of obstacles and the distance

from the sea bottom.

• Ground speed sonar: This sensor provides the linear velocity of the vehicle with refer-

ence to the ground.

• Current meter: It determines the relative measurements between the vehicle’s velocity

and the water.

• GNSS (Global Navigation Satellite System): It is utilized to reset the drift error of the

IMU and localize exactly the vehicle. It only works only at the surface.

• Compass: It measures the vehicle’s yaw.

• Baseline acoustic: It determines the exact localization of the vehicle in a specific range

of underwater environment by using one or more transmitters.

The various sensors that are used in an AUV depends on its application. Each sensor can

become faulty. The output zeroing or external disturbances can be considered as a failure

in AUV sensors [100].

2.7 Kalman Filter (KF)

Linear Kalman Filters (LKFs) are widely used to estimate system states and parameters.

Linear Kalman Filters (LKFs), or just KF is a linear quadratic estimation problem that

has two steps, namely the prediction and the update (correction). The state variables are
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estimated in the prediction step and are corrected upon receiving the next measurement.

The LKF can be described for the linear system as given by:

x(k + 1) = A(k)x(k) +B(k)u(k) + ω(k), x(0) = x0

z(k) = H(k)x(k) + υ(k),

(2.26)

where x(k), z(k), ω(k), υ(k) and x0 are the state variables, outputs, process and measurement

noise and the initial values of the states, respectively, A(k), B(k), and H(k) are the time-

varing state-space matrices. The w(k) and v(k) are the zero mean Gaussian noise with zero

mean and the covariance matrices W (k) and V (k), respectively. The covariance of the two

noise models are given by

Q = E[w(k)wT (k)], (2.27a)

R = E[v(k)vT (k)]. (2.27b)

The mean squared error is given by equation (2.29) and this is equivalent to

E[e(k)eT (k)] = P (k) (2.28)

where P (k) is the error covariance matrix at time k and is calculated as follows:

P (k) = E[e(k)eT (k)] = E[(x(k)− x̂(k))(x(k)− x̂(k))T ] (2.29)
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Figure 2.8: Flowchart for the KF [101].

Moreover, the KF estimates the process state at any given time. In the next step, the

feedback can be obtained in the form of noisy measurements. Two main groups, time update

equations and measurement equations are calculated in KF. The time update equations

obtain the current state and error covariance estimates to receive the a priori estimates for

the next step. The measurement update equations obtain a new measurement into the a
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priori estimate to receive an enhanced a posteriori estimate. These details are shown in

Figure 2.8.

2.8 Conclusion

In this chapter, background information that is necessary for model of multi Autonomous

Underwater Vehicles (AUVs) were presented. The consensus problem in MAS was explained

and the fundamental concepts of formation graph modeling were illustrated. In the next

section, the dynamic model of AUV was introduced. The essential topics of Fault Detection

and Isolation (FDI) were discussed. Finally, different types of actuator faults and a brief

review of Linear Kalman Filter (LKF) were presented. The objectives of this thesis are: 1)

analyzing the performance of a model-based distributed fault detection scheme for MAS,

2) considering potential attack scenarios in MAS as well as their implementation, 3) the

analysis of FD for MAS under BIA, 4) considering various fault scenarios and developing

a framework to distinguish faults and attacks. Moreover, the following two problems are

addressed in Chapter 4. First, an estimation problem in case of attack impact in the presence

of cyber-attacks is studied. Then, we analyze the problem of finding the worst-case BIAs.
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Chapter 3

Distributed Fault and Bias Injection

Attack Detection in the Formation of

AUVs

3.1 Introduction

In this chapter, the fault detection and Bias Injection Attack (BIA) in a network of AUVs

formation using Unscented Kalman Filters (UKFs) are presented. Both actuator and sen-

sor faults of AUVs are investigated. Moreover, the problem of cyber attack detection and

isolation is studied among communication of AUVs in the formation control. The commu-

nication network among the AUVs ensures that the effects to a BIA from the attacker and

AUV formation control using a consensus algorithm to reach a pre-specified formation is

42



achieved.

3.2 AUV System under Study

The underlying system is nonlinear and the actuator fault and sensor fault are incorporated

as illustrated in equation (3.1). We assume to have five AUVs that have nonlinear dynamics

and each node i has two states as governed by

Ẋi = f(Xi, ua.Fa,i) + wi, i = 1, . . . , N

yi = h(Xi) + Fs,i + vi,

(3.1)

where Xi = [xi, vi]
T ∈ R2 illustrates the state variable, ui represents the control input, wi

and vi represent the external disturbances and Fa,i, Fs,i are the actuator (LOE) and bias

sensor fault of the ith AUVs, respectively.

3.2.1 Formation Control of AUVs

This chapter considers a triangular formation consisting of the five agents. This simple setup

has been considered in the formation control in [102–105] and we refer the reader to these

papers for additional background and references on controlling triangular formations. A

triangular formation of five AUVs is shown in Figure 3.1.
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Figure 3.1: AUV formation with N=5.

The control input ui should be a function of the relative state of the vehicles, that is

where the control law is given as follows [13]:

ui(t) = −kivi(t) +
∑
j∈Ni

[(xj(t)− xi(t)) + γ(vj(t)− vi(t))]. (3.2)

where k and γ are the feedback gains for the velocity consensus. Applying a feedback control

for the position and velocity consensus, the augmented control input U = [u1, . . . , uN ]T can

be written as:

U = (K ⊗ Im)(X −Xd) + (G⊗ Im)V, (3.3)

where ⊗ denotes the Kronecker product, Xd is the desired state vector and V is the external

control input (reference input) and X, Xd are given by

X =

[
xT1 xT2 . . . xTN , v

T
1 , v

T
2 , . . . vTN

]T
, (3.4)

Xd =

[
xTd,1 xTd,2 . . . xTd,N , v

T
d,1, v

T
d,2, . . . vTd,N

]
.T (3.5)
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In equation (3.3), K and G are the control gain matrices that are given in equations (3.6a)

and (3.6b) respectively, that is

K =

 0N 0N

−L −γL − kIN

 , (3.6a)

G =

 0N

−IN

 , (3.6b)

where L is the Laplacian matrix and k = diag(k1, . . . , kN).

The formation performance with fault and without fault on the actuator and sensor of

one of the nodes of the AUVs will be studied in Section 3.4. Moreover, the FDI scheme for

the formation control is illustrated in Figure 3.2.
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Figure 3.2: The FDI strategy for the formation control of a team of AUVs [13].

The results in [13] provide methods to remove the agent under fault or BIA from

the network [13]. 1) The agent removed may correspond to either unexpected changes in

the system, or 2) the removal of faulty agent or 3) agent under d. In three scenarios,

it is desirable to maintain the detection capabilities of the distributed FD scheme despite

the model changes. A distributed FD scheme does not require the full knowledge of the

network [106].
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3.2.2 Unscented Kalman Filters (UKF)

The Unscented Kalman Filter (UKF) are a variant of KF that is applied for nonlinear sys-

tems. The UKF uses the Unscented Transformation to approximate the probability density

by deterministic sampling of points (called sigma points) representing the underlying distri-

bution as a Gaussian process. The nonlinear transformation of these points are expected to

represent the posterior distribution. The UKF tends to be more accurate and more robust as

compared to the Extended Kalman Filter (EKF), particularly for highly nonlinear systems.

An illustration of sampling and the calculation of mean and covariances for the Extended

Kalman Filter (EKF) and UKF are shown in Figure 3.3. During the prediction step, the

estimated state and covariances are augmented with the mean and covariances of the process

noise. The complete procedure of UKF implementation is provided below [107].

The method below is calculating the nonlinear transformation. Consider propagating

a random variable x (dimension L) through a nonlinear function y = g(x). Assume x has

mean x̄ and covariance Px. To calculate the statistics of y, a matrix X of 2L + 1 sigma

vectors Xi is given as follows:

Xo = x̄

Xi = x̄+ (
√

(L+ λ)Px)i i = 1, . . . , L

Xi = x̄+ (
√

(L+ λ)Px)i−L i = L+ 1, . . . , 2L

(3.7)

where λ = α2(L + k) − L is a scaling parameter. The constant α determines the spread of

the sigma points around x̄. α is a positive small values, (1 ≤ α ≤ 1e− 4), β = 2 and k is set
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to 0 or 3− L. These sigma vectors are propagated through the nonlinear function,

Yi = g(Xi) i = 0, . . . , 2L (3.8)

and the mean and covariance for y are equal a weighted sample mean and covariance of the

posterior sigma points,

ȳ ≈
2L∑
i=0

W
(m)
i Yi (3.9)

Py ≈
2L∑
i=0

W
(c)
i {Yi − ȳ}{Yi − ȳ}T (3.10)

Figure 3.3: The computational procedure of UKF [107] .
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Initialization:

X0 = [0]2L×1

X̂0 = E[X0] (3.11)

P0 = E[(X0 − X̂0)(X0 − X̂0)
T ] (3.12)

X̂a
0 = E[Xa] = [X̂T

0 0 0]T (3.13)

For k ∈ {1, . . . ,∞} time update in equation (3.1)

• Calculate sigma points:

X a
k−1 = [X̂a

k−1 X̂a
k−1 ±

√
(L+ λ)P a

k−1] (3.14)

Time Update:

• Evaluate the sigma points using the dynamical model in equation (3.1)

X x
k|k−1 = f [X̂x

k−1,X v
k−1] (3.15)

• Estimate the prediction state:

x̂k|k−1 =
2L∑
i=0

W
(m)
i X x

i,k|k−1 (3.16)
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• Estimate the error covariance:

P−k|k−1 =
2L∑
i=0

W c
i (X x

i,k|k−1 − x̂k|k−1)(Xi,k|k−1 − x̂k|k−1)T +Rv (3.17)

Measurement Update:

• Evaluate the sigma points from the noisy measurement:

Yi,k|k−1 = h(Xi,k|k−1) (3.18)

• Estimate the predicted measurement:

ŷk|k−1 =
2n∑
L=1

Wm
i Yi,k|k−1 (3.19)

• Estimate the innovation covariance matrix:

Pk|k−1 =
2n∑
i=1

W c
i (Yi,k|k−1 − ŷk|k−1)(Yi,k|k−1 − ŷk|k−1)T +RW (3.20)

• Estimate the cross-covariance matrix:

Pxy,k|k−1 =
2n∑
i=1

W c
i (Xi,k|k−1 − x̂k|k−1)(Yi,k|k−1 − ŷk|k−1)T (3.21)

• Calculate the Kalman gain:

Kk = Pxy,k|k−1P
−1
k|k−1 (3.22)
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• Estimate the update state:

x̂k|k = x̂k|k−1 +Kk(yk − ŷk|k−1) (3.23)

• Estimate the error covariance:

Pk|k = P−k|k−1 −KkPk|k−1K
T
k (3.24)

whereRv= Process noise covariance, Rw=measurement noise covariance, Xa = [XT vT wT ]T ,

X a = [(X x)T (X v)T (Xw)T ]T

3.2.3 Fault Detection Strategy

Residual generation is an integral part of the fault detection strategy. The residual signal

ri,k is defined by equation (2.22) as

ri,k = yi|k − ŷi|k, (3.25)

where ri,k represents the residual signal of agent i at time k. In case of no fault, the

residual signal has a zero-mean Gaussian distribution with a constant covariance matrix

Pri = HiPi,k|k−1H
T
i + RT

i,k, where Hi = ∂h(xi,k|k−1)/∂xi,k|k−1 is the linearized measurement

matrix around the operation point x̂i,k|k−1. Hence, faults can be diagnosed by testing the
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following hypothesis: 
H0 :ri,k ∼ N (0,Pri),

H1 :ri,k � N (0,Pri),
(3.26)

where N (0,Pri) is the Probability Density Function (PDF) of a Gaussian random variable

with a mean of zero and a covariance of Pri . In this thesis, we consider the above hypothesis

test by checking the ‘power’ of the residuals rTi,kP−1ri ri,k.

Compound Scalar Testing (CST)Algorithm

The CST is defined as follows:


Accept H0 if rTi,kP−1ri ri,k ≤ h,

Accept H1 if rTi,kP−1ri ri,k > h,

(3.27)

where h is a threshold value for the fault diagnosis and is greater than E[rTi,kP−1r ri,k] to reduce

the false alarm rate. If the null hypothesis H0 is used accepted the fault diagnosis algorithm

declares there is no fault in an agent i. On the other hand if H1 is accepted then there is a

fault in the agent i.

Generalized Likelihood Ratio (GLR )Algorithm

Another important aspect of a general control system is to integrate the FDI scheme with a

fault identification or estimation module in order to estimate the severity of a fault that has

occurred in different components of the system such as sensors and actuators. A modified

version of the GLR scheme is developed to estimate the severity of a sensor fault. The GLR
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was initially proposed and subsequently modified in [108–111]. The GLR can be used instead

of a maximum likelihood test.

Let us define Skj (θ1) as in equation (3.28) according to

Skj (θ1) =
k∑
i=j

ln
pθ1(yi)

pθ0(yi)
, (3.28)

where θ0 and θ1 are the sets that characterize the distributions of observations, pθ0 and pθ1 ,

before and after the change. We now define gk in the GLR algorithm that can be calculated

by using the minimum magnitude of change as follows:

gk = max
1≤j≤k

sup
θ1

Skj (θ1). (3.29)

The detection time ta is the minimum value of k at which gk > h, where h is the

detector threshold and the magnitude jump (θ1 − θ0) and ta is calculated. The conditional

maximum likelihood estimate for the change time is the value of j at which the maximum

value of gk is reached. Therefore, the conditional maximum likelihood change magnitude

and time are given by

(J̃, θ1) = arg max
1≤j≤ta

sup
θ1

Skj (θ1) =
ta∑
i=j

ln
pθ1(yi)

pθ0(yi)
, (3.30)

and t̂a = J̃ [98]. The key point is that the GLR test is due to from the fact that only the

mean value of these residuals may change when the analyzed system is affected by additive
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failure and the test statistic is given by

gk =
1

2σ2
n

max
1≤j≤k

1

k − j + 1

[ i=j∑
k

yi

]2 H1

≷
H0

γ (3.31)

where σ2
n is the variance, while pθ1 is assumed unknown, γ is the threshold, H1 and H0 are

two hypothesis test from equation (3.27).

3.3 Difference between Faults and Bias Injection Sig-

nals

The FDI approaches can be applied for detecting negative impacts of cyber attacks on

networked control systems. However, these tools might be exploited more successfully if we

could figure out the similarities and differences between faults and attacks. Both faults and

attacks can be developed at an unknown time instant and they cause unreliable variation

in the behavior of physical systems. The faults and attacks can be modeled by additive

signals in the discrete-time state space model. Faults and attacks possess inherently distinct

features, making it difficult for traditional FDI techniques to be implemented. Deception

attack signal is an intelligent signal in which the attacker has the knowledge of the system.

Firstly, the most significant difference between a fault and an attack lies in that fault is shown

as a phenomenon that occurs randomly in each component such as actuators, sensors, or

communication channels of a system. Moreover, simultaneous faults are suggested to be non-

colluding while cyber attacks could be performed in a coordinated way. For these reasons,
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cyber-physical attacks may cause more destructive damage to the system than faults.

Another point is that cyber-physical attacks are much more difficult to detect and

isolate since they can be implemented in a coordinated way. The attack vectors can be

controlled for partially or completely bypassing traditional irregularity detectors [65, 66],

false data injection attacks [67], zero-dynamics attacks or covert attacks [68].

Faults often occur for a long time until they are detected, isolated and repaired, but

malicious attacks may be performed within a short time period due to the limited resources of

the adversaries [69,70]. Moreover, for safety-critical applications, it is required to detect the

attacks with the detection delay upper bounded by a certain prescribed value [71–73]. For

these reasons, the detection and identification of attacks should be formulated as the sequen-

tial detection and isolation of transient changes in stochastic dynamical systems. Norm-based

state estimator is applied in [74] to guarantee the boundedness of estimation errors caused

by noise, modeling errors as well as cyber-attacks. Moreover, the deployment of bad data

detectors results in a bound constraint of attacks. Certain issues about state estimation

on stochastic time-varying nonlinear systems subject to randomly occurring BIA have been

investigated in the framework of Kalman filtering in [75].

3.3.1 Bias Injection Attack Model

The BIA can be modeled as follows:

ua(k) = ui(k) +Baau(k), (3.32)
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where the control input ui, au(k) ∈ R represents the signal that the attacker injects. The

vector Ba denotes the attack signature and is therefore directly dependent on the attacker.

In the proposed deception each agent is equipped with a UKF that estimates its states,

and then produces a residual for each output measurement. These residuals are normally

enough to detect and isolate sensor and actuator faults of agents. Here, it is assumed that

the attacks are acting on the communication models of agents as shown in Figure 3.1. The

set Ni is the defined UKF that estimate states of the neighbouring agents. The innovation

ri,k is defined as follows:

ri,k = yi|k − ŷi|k, (3.33)

Remark 3.3.1 By sending the innovation signal ri,k rather than the measurement yi|k or

the local estimate ŷi|k the innovation ri,k will approach a steady state distribution that can be

easily checked by a false data detector [112].

It is also assumed that each agent measures the relative measurement of the neigh-

bouring agents, the relative measurement of the sensor, and also the difference between the

actual neighbouring agent’s measurement and the estimated neighbouring agent’s measure-

ment residual signals denoted by ri,j is given by

ri,j = yi|k − ŷi|k. (3.34)

where yi|k (actual relative measurement) and ŷi|k (estimated relative measurement) are pre-

sented in Figure 3.4. The idea is that each agent detects and isolates the fault and attack

by looking at ri,k and ri,j signals. Whenever there is a fault in any agent i, both ri,k, ri,j and
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rj,i (j ∈ Ni) are affected but when BIA happens it only affects the ri,j but not ri,k. There-

fore, with a proper inference system, faults and BIA would be distinguished. However, this

problem gets more complicated with different assumptions on the attacker. Depending on

the amount of information the attacker has from the agent (both model and current state),

different scenarios are possible. In the most extreme case the attacker can produce (ui, ri,k)

pair that appears normal and in line with the sensor when the agent i is faulty. This BIA

can only happen when the attacker has prefect information of the agent i.

Figures 3.4 and 3.5 illustrate the overall framework for five agents, where important consid-

eration are as follows:

• Privacy: Only communicating the innovation (ri,k) rather than the state estimate(x̂),

• Analytical redundancy: the model of the agent is used.
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Figure 3.4: Overall framework of fault and attack diagnosis for Agent 1 where FD denotes Fault
Detection and AD denotes Attack Detection.

As can be seen in Figure 3.4, a UKF is designed to detect the fault for an individual

agent. Multiple UKFs are deigned for neighbouring agents to detect a BIA. One sensor is

considered to receive actual relative information. We receive the relative residual signal ri,j

for detecting a BIA among the commutations of every agent.
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Figure 3.5: Overall framework of faults and attacks diagnosis for five agents.

3.4 Simulation Result

In this section, simulation results and performance evaluation for the formation of nonlinear

AUVs given Section in 2.3.3 and FD scheme for different scenarios are presented. The system

with no fault is presented in Section 3.4.1, while in Section 3.4.2 the system with faults and
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the applied FD method are given. The AUV system with BIA and also the incorporated fault

are provided in Sections 3.4.4 and 3.4.5. The formation of nonlinear AUVs is in a regular

triangle that is given in Figure 3.5. Without loss of generality details of the dynamical model

parameters of each AUV is indicated in Table 3.1 where the sets of model parameters are

taken from [9].

Table 3.1: AUV Parameters [9].

Total mass and interim matrix (kg) M = diag[200 250 80]

Linear drag matrix (Ns/m) D = diag[170 100 50]
Sampling time (second) 0.2

C(v) =


0 0 −250vv

0 0 200vu

250vv −200vu 0

 , (3.35a)

L =



2 −1 −1 0 0

−1 2 0 −1 0

−1 0 2 0 −1

0 −1 0 1 0

0 0 −1 0 1


(3.35b)

Moreover, Table 3.2 summarizes the initial values for each agent and equations (3.35a) and

(3.35b) given C(v) and the Laplacian matrix L, respectively.

In addition, the UKF parameters are set as α = 1e − 2, β = 2, κ = 3 − n and n = 6,
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Table 3.2: Initial Conditions.

[ρx(0) ρy(0) ρψ(0) vu(0) vv(0) vr(0)]
AUV1 [0 0 π

4
0 0 0]

AUV2 [-1 -1 π
4

0 0 0]
AUV3 [-1 1 π

4
0 0 0]

AUV4 [-2 -2 π
4

0 0 0]
AUV5 [-2 2 π

4
0 0 0]

and we assume that the mission starts at t = 0 and will be terminated at time t = 2000 sec.

3.4.1 No Fault Scenario

The simulation results of the formation trajectories of all the five AUVs in a normal operation

(with no fault) is given in Figure 3.6. The goal of formation is that a group of AUV maintain

a desired formation (triangle).

Figure 3.6: Formation trajectories for healthy team.

Figures 3.7 illustrate the estimated orientation of each agent with no fault, respectively.
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Figure 3.7: The estimated trajectories corresponding to agents 1 to 5 in case of no fault.

Figure 3.8 shows the control input for all the five agents in case of healthy system.
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Figure 3.8: Control input signals corresponding to all five agents in case of no fault.

Figure 3.9 shows residual signals ri,k in equation (3.25) generated for all five agents.

As can be seen, the residual signal is almost zero (with some random noise) for the healthy

team.
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Figure 3.9: Residual signals (ri,k) corresponding to all the five agents in case of no fault.

Figure 3.10 shows the gmax value as defined in equation (3.29). As can be seen, gmax

values are noisy for all the agents.
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Figure 3.10: The result of GLR algorithm corresponding to all five agents in case of no fault.
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Figure 3.11: CST for all five agents in case of no fault.

Figure 3.11 shows the CST in equation (3.27), when the system is healthy as we can

see that the CST is under threshold h. The simulation results of fault detection in equation
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(3.36) equals zero for a team of healthy agents are presented in Figure 3.12.

FD =


1 faulty

0 no fault

(3.36)

Figure 3.12: The fault detection simulation results for all five agents in case of no fault.
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3.4.2 Actuator (LOE) and Sensor Fault

Figure 3.13 shows that both Agents 1 and 4 are under 90% LOE fault for the first actuator.

Moreover, Agent 2 experiences 45 degree bias sensor fault. In addition, the sensor fault is

injected to Agent 5 with an offset of 10m.

Figure 3.13: All AUVs under various faults.

As can be seen in Figures 3.14, the formation trajectories for four of AUVs, namely

Agents 1, 2, 4, and 5 do not follow triangular formation due to the presence of faults.

Figure 3.14: Formation trajectory in the presence of fault.
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Figure 3.15 illustrates the estimated orientation of each of agents in presence of faults.

Figure 3.15: The estimated trajectories (x̂) corresponding to all five agents in presence of faults.

Figure 3.16 shows the measured trajectories. As can be seen, Agent 2 has a jump

around t = 400 sec due to a 45 degrees sensor bias fault that lasts until t = 1200 sec. Note

that horizontal AUVs are considered here.

Figure 3.16: The measured trajectories corresponding to all five agents in presence of faults.
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Figure 3.17 shows the control inputs for all the five faulty agents. As noted, controller

has more oscillation when compared to the healthy system in Figure 3.8.

Figure 3.17: Control input for each agent in presence of faults.
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(a) (b)

(c) (d)

(e)

Figure 3.18: (a) Residual signal ri,k for Agent 1 (first actuator 90% LOE ), (b) ri,k for Agent 2
(45 degree bias sensor fault), (c) no fault, (d) Residual signal ri,k for Agent 4 (first actuator 90%
LOE), (e) 10m sensor fault
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The residual signals ri,k that are generated for all agents are illustrated in Figure 3.18

and residual signals corresponding to all the five agents due to 90% LOE fault for the first

actuator Agent 1 and Agent 3, Agent 2 experiencing a 45 degree bias sensor fault, and Agent

5 experiencing a sensor fault of 10m offset.
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(a) (b)

(c) (d)

(e)

Figure 3.19: GLR algorithm corresponding to Agents 1 to 5 with the presences of faults.

Moreover, gk value (GLRs algorithm) for all the agents are provided in Figure 3.19. As
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can be seen in Figure 3.19 the gk are not the same. Moreover, CSTs are above false alarm

rate for the faulty Agents 1, 2, 3, 5 as shown in Figure 3.30.
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(a) (b)

(c) (d)

(e)

Figure 3.20: The CST for all the agents when the system is under fault.

Figure 3.20 illustrates the result of fault detection for all agents.
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(a) (b)

(c) (d)

(e)

Figure 3.21: Fault detection (FD) for all agents.

In case of Agent 1 experiences 90% LOE fault, the fault detection time equals
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td (fault detection time) = 39.2 sec (196 samples × 0.2 Step Time). In case of Agent 2

experiencing 45 degree bias sensor fault, the fault detection time equals td = 0.4 sec. More-

over, when Agent 4 experiences a 90% LOE for the first actuator, td = 44 sec. The fault

detection time td = 0.4 sec when Agent 5 experiences a 10m offset sensor fault is given in

Table 3.3.

Table 3.3: Fault detection time when the system is under fault where the sampling period is 0.2
sec.

Number of

Agent

Type of Ab-

normal Event

When a fault

is started

When a fault

is terminated

When a fault

is detected

Fault Detec-

tion Time

[Samples]

Agent 1 First Actua-

tor 90% LOE

Fault

5000 6000 5196 196

Agent 2 45 degree

Bias Sensor

Fault

2000 6000 2002 2

Agent 4 First Actua-

tor 90% LOE

Fault

8000 9000 8220 220

Agent 5 Bias Sensor

Fault 10m

9000 10000 9002 2
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3.4.3 No Fault and No Attack

The relative residual signals measured for Agent 2 from Agent 1 and measured Agent 2 from

Agent 4 are close to zero. Figures 3.22 and 3.23 illustrate the results where there is no fault

and no attack.

Figure 3.22: Relative residual signal for Agent 2 measured from Agent 1 for the healthy system.

Figure 3.23: Relative residual signal for Agent 2 measured from Agent 4 for the healthy system.
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We can conclude that the residual signal ri,j in equation (3.34) is equal to zero for the

healthy system. The residual signals r21 and r24 show Agent 2 is under attack and Agents

1 and 4 are neighbours (r21 and r24 = 0 for healthy system). The residual signals r21 and

r24 that are generated from the developed detection algorithm are shown in Figure 3.22. In

this case, the position (x, y) measured from Agent 2 for the sensor and the relative states

are equivalent as shown in Figure 3.24.

Figure 3.24: The position (x, y) from the sensor and relative state measured from Agent 2 for the
healthy system.

3.4.4 Injection of the Bias Injection Attack Case

In Figure 3.27 the x and y position signals are getting away from each other and both are

diverging after the attack signal was injected at td = 400 sec. Consequently, r21x and r21y in

Figure 3.28 are increasing with r21y diverging at a faster pace. This illustrates the case where

an agent in the team of AUVs suffers from a BIA (modeled based on equation (3.32)). By
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observing both Figures 3.28 and 3.29, when Agent 2 is under an attack, the relative residuals

for Agent 2 measured from Agents 1 and 4 are NOT close to zero.

Figure 3.25: All AUVs are in formation when Agent 2 is under a BIA.

In this case, we can see that the Agent 2 does not follow the formation trajectories as

shown in Figure 3.26.

Figure 3.26: Formation trajectories of the five AUVs in presence of a BIA in Agent 2.
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Figure 3.27: The position (x, y) from the sensor and relative state for Agent 2 when Agent 2 is
under an attack.

Figure 3.27 shows that the position (x, y) from the sensor and relative state for Agent

2 are not equivalent since the system is under a BIA. The residual signals r21 and r24 that

are generated from the developed detection algorithm are shown in Figures 3.28 and 3.29

which shows that Agent 2 is under a BIA.
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Figure 3.28: Relative residuals for Agent 2 measured from Agent 1 when Agent 2 is under an attack.

Figure 3.29: Relative residuals for Agent 2 measured from Agent 4 when Agent 2 is under an attack.

Moreover, Figure 3.31 illustrates residual signals (ri,k) for all agents when Agent 2 is

under a BIA but with no fault. As can be seen, residual signals are close to zero for all the

six states of AUVs, so we conclude that the system is not under fault. Figure 3.30 shows

the CST for all agents that are under the threshold when the system is under BIA.Note the
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BIA is an intelligent signal that is difficult to be detected.

(a) (b)

(c) (d)

(e)

Figure 3.30: The CST for all agents with Agent 2 experiencing a BIA.
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(a) (b)

(c) (d)

(e)

Figure 3.31: Residual signals (ri,k) for all agents with Agent 2 experiencing a BIA

We can see in Figure 3.31 the residual signal ri,k equals to zero but the system is under
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attack since the BIA is an intelligent signal and undetectable in the system but with the

developed frame work in Figure 3.1, we can detect the BIA with residual ri,j as shown in

Figures 3.28 and 3.29.

3.4.5 Injection of both Bias Injection Attack and Fault

In this case, Agent 2 experiences a 45 degree bias sensor fault as well as BIA among the

communication channels. Agent 4 is under 80% LOE fault for the second actuator and Agent

1 is under 90% LOE fault for the first actuator as demonstrated in Figure 3.32.

Figure 3.32: All AUVs in formation under attacks as well as faults.

It can be easily seen that all agents except Agents 3 and 5 do not have the same

trajectories. Figure 3.33 illustrates that Agents 1, 2 and 4 do not follow the formation.
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Figure 3.33: Formation trajectories in the presence of both attacks and faults.

Figure 3.34 illustrates that the position (x, y) from the sensor and relative states for

Agent 2 are not equivalent because the system is under a communication attack or fault.

Hence, when both fault and attack are injected to the system, position signals (x, y) and the

estimated position signals (x̂, ŷ) have more oscillations as compared to the system that is

under attack as illustrated in Figure 3.25. Moreover, with the FD algorithm, we can detect

whether agents are under BIA or fault.
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Figure 3.34: The position (x, y) from the sensor and relative state for Agent 2 when Agent 2 is
under communication attack and fault.

Figure 3.35 illustrates the relative residual signals for Agent 2 measured from Agent 1

when Agent 2 is under attack.

Figure 3.35: Relative residuals for Agent 2 measured from Agent 1 when the team under attack
and fault.

Figure 3.36 illustrates when Agent 2 is under attack and the relative residual signals
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for Agent 2 measured from Agent 4 when Agent 2 is under attack and residual signals r21

and r24 deviate from zero starting at t = 400 sec.

Figure 3.36: Relative residual signals for Agent 2 measured from Agent 4 when the team is under
attacks and faults.
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(a) (b)

(c) (d)

(e)

Figure 3.37: (a) Residual signal ri,k for Agent 1 (first actuator 90% LOE ), (b) Residual signal ri,k
for Agent 2 (45 degree bias sensor fault), (c) no fault, (d) Residual signal ri,k for Agent 4 (second
actuator 80% LOE), (e) no fault.
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Figure 3.37 depicts residuals signals ri,k in equation (3.25) corresponding to all agents

in case of Agent 2 experiencing 45 degree bias sensor fault, a BIA among communication

for Agent 2, Agent 4 experiencing 80% LOE fault in the second actuator, and Agent 1

experiencing 90% LOE fault in its first actuator and when Agents 1, 2, 4 are under fault.
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(a) (b)

(c) (d)

(e)

Figure 3.38: The GLR algorithm for all agents under the BIA and faults.

Figure 3.38 depicts the gk value equation (3.29) that is not equivalent when the system
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is under BIA, sensor fault and actuator fault. The CSTs are above threshold for the faulty

Agent 1,2 and 4 as shown in Figure 3.39.

(a) (b)

(c) (d)

(e)

Figure 3.39: The CST for all agents under a BIA and fault.
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(a) (b)

(c) (d)

(e)

Figure 3.40: FD signals for all agents under a BIA and fault.
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We define a binary AD signal for the residual signal ri,j as follows:

AD =


1 ri,j > ha

0 ri,j < ha

(3.37)

When Agent 2 is under attack, the UKF that is developed for the neighbouring agent will

yield the residual ri,j equation (3.34) where thereshold (ha) = 0.05, AD = 1 when there is

an attack and AD = 0, otherwise. As noted in equation (3.37), AD is obtained by applying

a threshold mechanism. The threshold is set to 0.05 as illustrated in Figures 3.22 and 3.23.

(a) (b)

(c) (d)

Figure 3.41: The AD when the Agent 2 is under attack.
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Table 3.4: Fault detection time when the system is under BIA and fault.

Number of

Agent

Type of Ab-

normal Event

When a fault

is started.

When a fault

is terminated

When a fault

is detected

Detection

Time [Sam-

ples]

Agent 1 First Actua-

tor 90% LOE

Fault

5000 6000 5001 1

Agent 2 45 degree

Bias Sensor

Fault

2000 6000 2002 2

Agent 4 Second Ac-

tuator 80%

LOE Fault

8000 9000 8376 376

Figure 3.38 depicts the FD value equation (3.36) that is binary signal when the system

is under BIA, sensor fault and actuator fault. The FDI times for Agent 1, Agent 2 and Agent

4 are td (fault detection time) = 140 (samples) ×0.2 (step time) = 28 sec, td = 0.4 sec and

td = 64 sec, respectively.
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3.5 Performance Analysis

The performance of the developed FD and AD scheme can be analyzed by a confusion matrix

(also known as the binary contingency table) approach as applied as following:

Given a classifier and a data instance, there are four possible outcomes that are:

• True Positive (TP): if the instance has been correctly identified,

• True Negative (TN): if the instance has been correctly rejected,

• False Positive (FP): if the instance has been incorrectly identified,

• False Negative (FN): if the instance has been incorrectly rejected,

In order to measure the performance measures different results are used and the Detection

Rate (DR) is computed. This metric is given by:

Detection Rate (DR) =
TP

TP + FN
(3.38)
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Fault TP FN FP TN DR

90% LOE Fault

(Agent 1)

671 281 2210 6791 77%

45 degree Bias Sensor

Fault (Agent 2)

3780 219 3803 2198 95%

80% LOE Fault

(Agent 4)

543 456 1001 8000 56%

Table 3.5: The confusion matrix when the system is under both fault and BIA.

The parameters for confusion matrix when the system is under fault is illustrated in

Tables 3.5, 3.6 and 3.7 which show parameters for the confusion matrix when only Agent 2

is under BIA.

BIA ADT TP TN FP FN DR

Agent 2(r21x) 2076 3913 2000 4001 86 98%

Agent 2(r21y) 2116 3877 2000 4001 122 97%

Table 3.6: The confusion matrix for relative residuals r21 for both x and y positions.

BIA ADT TP TN FP FN DR

Agent 2(r24x) 2169 3908 2000 4001 91 98%

Agent 2(r24y) 2224 3877 2000 4001 122 97%

Table 3.7: The confusion matrix for relative residuals r24 for both x and y positions.
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The BIA signal is injected at t = 400 sec (2000 samples× 0.2 step time= 400 sec). The

BIA is between the communication of the following agents: (Agent 2, 1) and (Agent 2, 4)

as illustrated in the Figures 3.35 and 3.36. Two residual signals r21 and r24 in both x and y

positions as illustrated in Tables 3.6 and 3.7, where the Attack Detection Time (ADT) for

r21x and r21y are t = 415 sec (2076 samples) and t = 433 sec (2169 samples) and t = 444 sec

(2224 samples), respectively.
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3.6 Conclusion

In this chapter, a fault detection as well as BIA in AUVs while maintaining their formation is

investigated. A distributed fault detection scheme is proposed that is based on the General-

ized Likelihood Ratio (GLR) and Unscented Kalman Filter (UKF) methods. Moreover, each

agent has a sensor that measures the actual relative position of neighbouring agents. Every

agent has multiple UKF that measures estimated relative positions. The main observation is

that each agent can detect faults as well as BIAs. All of the simulation results were provided

in Section 3.4. The following suggestion can be considered for future work. 1) considering

various stochastic switching network typologies, 2) considering disturbance and uncertainties

for homogeneous agents, 3) studying various types of faults such as lock-in-place, float, hard

over, and 4) extending the work to a team of nonlinear agents.
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Chapter 4

Attack Impacts on Linear-Time

Invariant Agents

4.1 Introduction

Cyber-Physical Systems (CPSs) have been extensively used in various fields, such as health-

care, environmental monitoring, intelligent transportation and aerospace information secu-

rity [113]. An important type of cyber-attack is studied in the control community that is

known as the false data injection. In such attacks, the attacker interrupts and changes some

of the measurements and/or control signals in a coordinated way. These attacks can have

a malicious goal such as destabilizing the system or considerably increasing the estimation

error while staying undetected by detection algorithms. Different approaches for detecting

false data injection attacks and mitigating their impacts have been studied in [114].

The problem of security allocation in stochastic linear dynamical systems have been
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studied [52]. A state estimation problem where a KF is used as an estimator, and a chi-

squared test is used to detect anomalies have been considered [115]. Furthermore, analyzing

on protection against Bias Injection Attack (BIA) has been investigated in [116]. In BIAs,

the attacker goal is to increase the mean square estimation error by adding a constant bias to

some of the sensor measurements while remaining undetected. The finding of a criterion for

selecting sensors for security is the main goal in order to mitigate the attack impacts [117].

In this chapter, an estimation problem in the presence of bias injection attack is considered.

The Kalman Filter (KF) is used to estimate the system state, and a chi-squared test is used

for detecting anomalies such as BIA and our contribution is to provide the attack impact

and derive a lower bound of the impact attack in terms of the combination number of sensors

and actuators.

4.2 The System Under Study

The plant is considered as a linear time-invariant system given by

x(k + 1) = Ax(k) +Bu(k) +Baau(k) + w(k),

ya(k) = Cx(k) +Day(k) + v(k),

(4.1)

where A ∈ Rn×n, x(k) ∈ Rn is the system state vector, B ∈ Rn×m and u(k) ∈ Rm is

the control matrix and input, ya(k) ∈ Rp is the measurement output under only attack,

and w(k) ∈ Rn and v(k) ∈ Rp are the process and measurement noises, respectively. The

vector ay(k) ∈ Rna indicates the signal that the attacker injects in the output. The matrix

101



D ∈ Rp×na is the matrix that maps ay(k) to the measurement output ya(k). The elements

(i1, 1), (i2, 2), . . . , (ina , na) of the matrix D are ones, and the rest is zero. The indices i1 <

i2 < · · · < ina denote the measurements that are under the attacker’s control.

The secured sensors will not be affected by the attacker. The secured sensors as

explained secure some of the existing or placing additional sensors, such as to make un-

detectable attacks introduced harder to achieve [52]. Assume that the attacker controls

the specific number of sensors. The secured sensors have rows of zeros in D. The vector

au(k) ∈ Rma denotes the signal that the attacker injects in the impact, and ma is the number

of the attacker inputs. The matrix Ba ∈ Rn×ma denotes the attack matrix. The elements

(j1, 1), (j2, 2), . . . , (jma ,ma) of the matrix Ba are one, and the rest are zero. The indices

j1 < j2 < · · · < jma in Ba denote the measurement that are under the attackers control, in the

vector u(k). The secured actuators cannot be affected by the attacker. The rows of Ba matrix

are equal to zero for the secured actuators. The added random Gaussian noise signals are

independent and identically distributed vectors with (w(k) ∼ N (0,Σw), v(k) ∼ N (0,Σv)).

The state-space realization (A,B,C) has no invariant zeros. In particular, this assumption

implies that the pair (A,C) is observable and the pair (Σ
− 1

2
r , A) is stabilizable. The at-

tack matrices Ba and D are dependent on the physical structure of actuators and sensors.

Moreover, the attack matrices should satisfy the following criteria:

span D ⊂ span C and span Ba ⊂ span B.
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4.2.1 The Monitoring System

The state vector x(k) is estimated by using the KF to reach a steady state. Let x̂(k) be

the estimate of the system state vector under attack. Then, the estimator dynamics can be

represented as follows:

x̂(k + 1 | k) = (A−KC)x̂(k | k − 1) +Kya(k) +Bu(k), (4.2)

where the Kalman gain K and error covariance matrix Σe are provided below:

Σe = E((x̂(k + 1)− x(k + 1))(x̂(k + 1)− x(k + 1)))T , (4.3)

K = AΣeC
T (CΣeC

T + Σw)−1,

and the steady state Riccati equation of the error covariance matrix Σe is given by

Σe = AΣeA
T − AΣeC

T (CΣeC
T + Σw)−1CΣeA

T + Σw,

since (C,A) is observable. Note that the matrix A−KC is asymptotically stable [118]. While

a CPS is under attack, the monitoring system can compare a sequence of the compromised

data to the expected output of the healthy system in order to detect any cyber attacks.

Since a cyber attack can be regarded as a new attack capabilities in the CPS, existing fault

diagnosis algorithms can be used to detect such attacks.
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4.2.2 Detection Algorithm

In this chapter, we consider a popular attack detection algorithm that constantly checks

the statistical properties of the residual signal generated by the steady-state KF. Such a

setup has wide engineering applications and can be extended to nonlinear and non-Gaussian

processes [119]. The residual signal that is considered in the detection algorithm is defined

as follows:

r(k) = ya(k)− Cx̂(k | k − 1), (4.4)

where Cx̂(k | k−1) denotes an estimate of Cx(k), and consequently r(k) shows the difference

between ya(k) and its modeled behavior. In case of no anomaly, r(k) is a white Gaussian

process with a zero mean and a covariance matrix given in equation (4.5) [117].

Σr = CΣeC
T + Σw. (4.5)

Therefore, cyber attacks can be diagnosed by testing the hypotheses in equation (4.6). In

this chapter, we only consider BIA


H0 : r(k) ∼ N (0,Σr),

H1 : r(k) � N (0,Σr),

(4.6)

where N (0,Σ) illustrates the Gaussian distribution with zero mean and the covariance Σ.

There are various statistical hypothesis testing algorithms such as the Sequential Probability

Ratio Test (SPRT) [120], the Cumulative Sum (CUMSUM) [121], Generalized Likelihood

Ratio (GLR) test [122]. An easy way to realize the residual signal is through Compound
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Scalar Testing (CST) that checks r(k)TΣ−1r r(k) [92], and the corresponding hypothesis test

is as follows: 
Accept H0 if r(k)TΣ−1r r(k) ≤ τ,

Accept H1 if r(k)T (k)Σ−1r r(k) > τ,

(4.7)

where ya(k) ∈ Rp is the measurement output under only attack, τ > p1 is a threshold value.

If there are attacks, rT (k)Σ−1r r(k) > τ , and hence follows the χ2
k distribution with p degrees

of freedom. Then, E[rT (k)Σ−1r r(k)] = Ip and it is highly likely that the null hypothesis H0

will be accepted due to the statistical characteristics of the χ2
k distribution and CST declares

r(k)TΣ−1r r(k) > τ , implying that there is an anomaly in the system that may be induced by

cyber-attacks. Since the entire testing process is stochastic, there is a chance of getting false

alarms according to the threshold value τ as illustrated in Figure 4.1.

Figure 4.1: Probability distribution of residual power [6].

The presence of anomalies change the distribution of r(k), and a simple method is used

to test whether the Euclidean distance is more than a large threshold (τ > 0). The random

105



variable χ2
k is distributed according to a chi-squared test as follows:

χ2
k = rT (k)Σ−1r r(k) =

∥∥∥Σ
− 1

2
r r(k)

∥∥∥2
2
. (4.8)

In absence of anomalies, the random variable χ2
k in equation (4.8) is usually relatively

small. When χ2
k exceeds the threshold χ2

k > τ , it might be an indication that an anomaly

has occurred. However, it is important to realize that any threshold τ in equation (4.9) may

be crossed even when anomalies are not present and hence generating false alarms. These

false alarms may occur due to random noise with the probability distribution function as

follows:

P(
∥∥∥Σ
− 1

2
r r(k)

∥∥∥2
2
> τ) := α. (4.9)

Large values of τ would decrease the false alarm probability α along with the sensitivity to

detection of anomalies.

4.3 Non-Central Chi-Squared Distribution

Let X be an p-dimensional Gaussian random vector with a mean value µX and the covariance

matrix of ΣX = Ip. This distribution is illustrated by two parameters, where the first

parameter is the number of degrees of freedom (n), that is the dimension of the random

vector X. The other parameter is the non-centrality parameters that is explained by λ. This

parameter introduces the squared Euclidean norm of the mean value of X that is λ = ‖µx‖22.
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Complementary cumulative distribution function of the random variable χ2
µ is given below

P(χ2
µ > τ) = Qn

2
(
√
λ,
√
τ), (4.10)

where τ > 0 and Qn
2
(
√
λ,
√
τ) denotes the generalized Marcum Q-function, which is defined

by Qv(a, b) and is continuous in a and b , v > 0 [123].

Lemma 4.3.1 The generalized Marcum Q-function Qv(a, b) is strictly increasing in a for

all a ≥ and b, v > 0.

Proof. We refer the interested reader to [124]. 2

From Lemma 4.3.1, it follows directly that for fixed n, and τ , Qn
2
(
√
λ,
√
τ) is strictly increas-

ing in λ.

4.4 Generalized Eigenvalues and Eigenvectors

Definition 4.4.1 [125] Let M, N be matrices Cn×n. The set of generalized eigenvalues of

the matrix pencil (pair) (M, N) is given by λ(M,N) = {λ ∈ C : det(M − λN) = 0}.

The generalized eigenvector x of (M, N) is a nontrivial solution to the equation Mx =

λNx N � 0 and M � 0. The pencil (M,N) has exactly n real non-negative generalized

eigenvalues.

Lemma 4.4.1 Let M � 0 and N � 0 with M,N ∈ RN×N , and let 0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λn

be the generalized eigenvalues of the pencil (M, N). Then, for any {j ∈ 1, . . . , n} we have
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λj = min
UjRn

dim(U)=j

max
x∈U
x6=0

xTMx

xTNx
, (4.11)

where U denotes a subspace of the vector space Rn.

Proof. We refer the interested reader to [126]. 2

4.5 Bias Injection Attacks (BIAs)

In the BIA, a false data injection is considered where the adversary’s goal is to inject a

constant bias in the system without being detected. Furthermore, the bias is calculated so

that the impact at the steady-state is maximized and the attack ak+1 is described by [117]

ak+1 = βak + (1− β)a∗∞, (4.12)

where a0 = 0, 0 < β < 1 and a∗∞ will be provided in Theorem 4.5.5.

The BIAs are classified into the following three cases:

• Case 1: The attacker is able to dispute the data from sensors [117].

• Case 2: The attacker is able to dispute the data from actuators.

• Case 3: The attacker is able to dispute the data from sensors and controllers.

The contribution of this chapter is to extend the analysis and mitigation results of the

of bias injection attack for actuators (Case 2) in Section 4.5.2 and also in the simultaneous

attack on both sensors and actuators (Case 3) in Section 4.5.3. The end result would be a
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condition on the minimum number of sensors/actuators that should be secured in a system

to maintain the estimation error less than a pre-specified upper bound.

The contributions are two fold for Case 2 in Section 4.5.2 and Case 3 in Section 4.5.3.

First, the estimation problem in presence of cyber-attacks will be considered. Second, we

formulate the problem of finding the worst case bias injection attacks. Finally, we provide

an analysis of the attack impact and derive a lower bound of the attack impact in terms

of the number of actuators for Case 2 and combination of sensors/actuators for Case 3. A

numerical example is presented for Case 2 in Section 4.6.2. Numerical examples for the

combination of sensors and actuators (Case 3) are presented in Section 4.6.3.

4.5.1 Case 1: Secured Sensors

In this scenario, the attacker designs a BIA to corrupt only sensors of the system. A linear

time-invariant system is given by

x(k + 1) = Ax(k) +Bu(k) + w(k),

ya(k) = Cx(k) +Day(k) + v(k).

(4.13)

The attack measurement ya(k) is used to obtain the state estimates. The KF is used

to estimate x̂ay(k | k − 1) in equation (4.14). It is the sum of the response to y(k) and a(k)

which is given by

x̂ay(k | k − 1) = x̂(k | k − 1) + ∆x̂y(k | k − 1), (4.14)
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where ∆x̂y(k | k − 1) is only dependent on the attack signal that is propagated by

x̂ay(k + 1 | k) = (A−KC)x̂ay(k | k − 1) +Kya(k) +Bu(k). (4.15)

Moreover, in the event of a BIA, the attack signal ay(k) converges slowly to some constant

vector [116]. We formulate the problem of finding the vector ay that maximizes the mean

square estimation error in the steady state and does not increase the alarm probability more

than a certain threshold by substituting the equation (4.14) into equation (4.15) as

x̂(k+1 | k)+∆x̂y(k+1 | k) = (A−KC)(x̂(k | k−1)+∆x̂y(k | k−1))+Ky(k)+KDay(k)+Bu(k),

∆x̂y(k + 1 | k) = (A−KC)∆x̂y(k | k − 1) +KDay(k). (4.16)

The matrix A−KC of the Kalman filter is asymptotically stable, hence, both ∆x̂y(k) and

∆r(k) reach steady states. The steady state equation for ∆x̂y(k) is given as follows:

∆x̂y = (A−KC)∆x̂y +KDay, (4.17)

The steady state equation for ∆r(k) is given by

∆r = Day − C∆x̂y. (4.18)

The solution to equation (4.16) is calculated by

∆x̂y = (In − A+KC)−1KDay := Gx̂KDay, (4.19)
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where the matrix In−A+KC is invertible and Gx̂ = (In−A+KC)−1. Substituting equation

(4.19) into equation (4.18) yields

∆r = Day − CGx̂Day = (Ip − CGx̂)Day := GrDay, (4.20)

where Gr = (Ip − CGx̂).

Remark 4.5.1 Note that the bias injection attack is not detected during the transient phase.

Moreover, the attacker can smoother the transient behavior by adding the attack slowly [116].

There is an error between the state vector x(k) and the corrupted estimate x̂ay(k). We

specify the objective of the attacker as to maximize the expected state estimation error as

shown below,

x(k)− x̂ay(k) = e(k)−∆x̂y(k),

max
ay∈Rna

E‖e(k)−∆x̂y‖22. (4.21)

The objective is that E ‖e(k)−∆x̂y‖22= E{‖e(k)‖22 − 2∆x̂Ty e(k) + ‖∆x̂y‖22} and the term

E{2∆x̂Ty e(k)} is equal to zero because ∆x̂y is constant that is defined in equation (4.21),

and e(k) has a zero mean. The term E ‖e(k)‖22 = Tr(Σe) is constant, and is part of the error

that comes from noise. In order to solve equation (4.21), the attacker should find the attack

signal such that the following expected value is maximized,

E‖∆x̂y‖22 = ‖Gx̂KDay‖22.

The BIAs preserve the nature of the distribution of the residual signal since it remains
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Gaussian. However, the attack changes the mean value of the distribution and the probability

of alarms can increase. As a result, the constraint for the attacker is to not considerably

increase the alarm probability. This constraint can be modeled as follows:

P(
∥∥∥Σ
− 1

2
r (r(k) + ∆r)

∥∥∥2
2
> τ) ≤ α + ∆α ≤ 1. (4.22)

In order to investigate the worst cyber attack the following optimization problem is formal-

ized that represents the intent of the cyber attacks.

Problem 1:

max
a∈Rna

‖Gx̂KDay‖22 ,

s.t. P(
∥∥∥Σ
− 1

2
r (r(k) + ∆r)

∥∥∥2
2
> τ) ≤ α + ∆α.

(4.23)

where ∆α > 0, α + ∆α ≤ 1 is a threshold and the alarm probability in the presence of

attacks raises to α + ∆α and the attack will remain undetected.. Few assumptions will be

considered for the worst case scenario for the attacker.

Assumption 4.5.1 The attacker is assumed to have the full knowledge of the CPS and the

detection algorithm. Moreover, the attacker is able to control all unsecured sensors.

Under the above assumption, the attacker can use the full system model to design the attack

strategy. The worst attackers with limited information about the system could only cause

less trouble to the system than those with perfect knowledge. For a particular value of δ in

equation (4.24), Problem 1 can be modeled as Problem 2. It has an analytical solution and

we will prove that for the particular choice of δ Problem 1 is equivalent to Problem 2.
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Problem 2:

max
a∈Rna

‖Gx̂KDay‖22 ,

s.t.
∥∥∥Σ
− 1

2
r (GrDay)

∥∥∥2
2
≤ δ2.

(4.24)

The random variable Σ
− 1

2
r r(k) in equation (4.24) has a Gaussian distribution with a unit

covariance and a zero mean, while the goal of the bias injection attack is only to change the

mean value, the attacker can change the distribution form zero to Σ
− 1

2
r ∆r. This is due to the

fact that the spherical symmetry of the distribution, the spherical symmetry of the integrated

area, and the direction of change are not effected. It should be noted that
∥∥∥Σ
− 1

2
r ∆r

∥∥∥2
2

has

an impact on the alarm rate.

Lemma 4.5.1 The following alarm probability

P(
∥∥∥Σ
− 1

2
r (r(k) + ∆r)

∥∥∥2
2
> τ)

is approximately increasing in
∥∥∥Σ
− 1

2
r (∆r)

∥∥∥2
2

=
∥∥∥Σ
− 1

2
r (GrDay)

∥∥∥2
2

[117].

Theorem 4.5.1 If Assumption 4.5.1 holds, then there exists δ ∈ R such that Problem 1 and

Problem 2 are equivalent [117].

Let r̄ ∈ RP be a unit vector and δ satisfies the following criterion

P(
∥∥∥Σ
− 1

2
r (r(k) + δr)

∥∥∥2
2
> τ) ≤ α + ∆α. (4.25)

The generalized Marcum Q-function increases in the non-centrality parameter for p > 0.

Therefore, the non-centrality parameter is equal to
∥∥∥Σ
− 1

2
r (GrDay)

∥∥∥2
2

and such δ exists, since
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the alarm probability is the Marcum Q-function, and this function is continuous and strictly

increasing in δ2 for p, τ > 0.

4.5.1.1 Mitigating the Impact of the Sensor Attacks

It is always of interest to first check if the attacker is able to increase the error arbitrarily and

large damage that is undetectable at the same time. A sufficient condition is the existence

of Day 6= 0 such that Σ
− 1

2
r GrDay = Σ

− 1
2

r ∆r = 0. From equation (4.18), Day = C∆x̂y and

the solution for Problem 2 is analyzed as follows [117]:

∆x̂y = (A−KC)∆x̂y +KDay,

= A∆x̂y +K(Day − C∆x̂y) = A∆x̂y.

(4.26)

Corollary 4.5.1 [117] If the matrix A does not have an eigenvalue equal to 1, it follows

that null{Gr} = {∅}.

The corollary (4.5.1) has nontrivial solution, only when the matrix A has λ = 1.

Assumption 4.5.2 The matrix A does not have an eigenvalue of 1.

Under Assumption 4.5.2, the solution of Problem 2 can be considered as follows:

Theorem 4.5.2 Suppose that Assumption 4.5.2 holds. Then, the solution of Problem 2 is

obtained by [116]

a∗y = ± δ∥∥∥Σ
− 1

2
r (GrDν∗)

∥∥∥
2

ν∗,
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where ν∗ is the unit generalized eigenvector that corresponds to the maximal generalized

eigenvalue λ∗ of the pencil

(DTGT
x̂Gx̂D,D

TGT
r Σ−1r GrD), (4.27)

and the maximal increase of mean squared error is defined as

∥∥Gx̂Da
∗
y

∥∥2
2

= λ∗δ2. (4.28)

Therefore, we can conclude that attack has an impact on two parameters λ∗ and δ2. The pa-

rameter δ2 and λ∗ depend on the properties of equation (4.27). The corresponding simulation

results are provided in Section 4.6.1.

4.5.2 Case 2: Secured Actuators

Our contribution is to provide the analysis of attack impact and derive a lower bound of

attack impact in terms of the number of actuators. If the attacker can attack only the

actuators of the linear system, then the linear system model will be as follows:

x(k + 1) = Ax(k) +Bu(k) +Baau(k) + w(k),

ya(k) = Cx(k) + v(k).

(4.29)

where the attacker changes the value of au(k). Note that the secured actuator cannot be

affected by the attacker. When the rows of Ba matrix for the corresponding actuators are

equal to zero, the extract attack impact is used to construct the state estimate, as follows
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x̂au(k | k − 1) = x̂(k | k − 1) + ∆x̂u(k | k − 1),

x̂au(k + 1 | k) = (A−KC)x̂au(k | k − 1) +Ky(k) +Bu(k) +Baau(k), (4.30)

∆x̂u(k + 1 | k) = (A−KC)∆x̂u(k | k − 1) +Baau(k). (4.31)

Consider the attack signal and the residual signal is given by

y − Cx̂au(k) = r(k)− C∆x̂u(k) = r(k) + ∆r(k), (4.32)

and the steady state equations for ∆x̂u and ∆r are as follows:

∆x̂u = (A−KC)∆x̂u +Baau, (4.33)

∆r = Baau − C∆x̂u, (4.34)

where the matrix A − KC is stable and the matrix In − A + KC is invertible. Then, the

solution to equation (4.31) is obtained by

∆x̂u = (In − A+KC)−1Baau := Gx̂Baau, (4.35)

where Gx̂ = (In − A+KC)−1. Substituting equation (4.35) into equation (4.36) yields

∆r = Baau − CGx̂Baau = GrBaau, (4.36)
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where Gr = (Ip−CGx̂). The error between x(k) and the corrupted estimate x̂au(k) is given

by

x(k)− x̂au(k) = e(k)−∆x̂u(k). (4.37)

The goal of the attacker is to increase the mean square error in equation (4.38) once ∆x̂u(k)

reaches steady state ∆x̂u, that is

max
a∈Rma

E‖e(k)−∆x̂u‖22. (4.38)

The attacker’s desire is to find au that maximizes

E‖∆x̂u‖22 = ‖Gx̂Baau‖22 .

The attacker problem for Case 2 is now given below

Problem 3:

max
a∈Rma

‖Gx̂Baau‖22 ,

s.t. P(
∥∥∥Σ
− 1

2
r (r(k) + ∆r)

∥∥∥2
2
> τ) ≤ α + ∆α.

(4.39)

where ∆α > 0, α + ∆α ≤ 1 is a threshold and the alarm probability in the presence of

attacks raises to α + ∆α and the attack will remain undetected.. Few assumptions will be

considered for the worst case scenario for the attacker.

Assumption 4.5.3 The attacker is assumed to have full knowledge of the CPS and the

detection algorithm is used in Problem 3. Moreover, the attacker is able to control all the

unsecured actuators.
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Under this assumption, the attacker can use the full system model to design the attack

strategy. That is, the worst attackers with limited information about the system could only

cause less trouble to the system than those with perfect knowledge. Then, for a particular

value of δ in equation (4.40), Problem 3 can be modeled as a quadratic problem with a

constraint where Problem 4 has an analytical solution, and the problem statement as the

worst case impact of BIA is considered as given below,

Problem 4:

max
a∈Rma

‖Gx̂Baau‖22

s.t.
∥∥∥Σ
− 1

2
r (GrBaau)

∥∥∥2
2
≤ δ2.

(4.40)

The random variable Σ
− 1

2
r r(k) in equation (4.40) has a Gaussian distribution with a

unit covariance and zero mean. The bias injection attack is only to change the mean value,

the attacker can change the distribution from zero to Σ
− 1

2
r ∆r. This is due to the fact that

given the spherical symmetry of the distribution and the spherical symmetry of the integrated

area the direction of change is not effected. The magnitude
∥∥∥Σ
− 1

2
r ∆r

∥∥∥2
2

has an effect on the

alarm rate.

Lemma 4.5.2 The following alarm probability (τ)

P(
∥∥∥Σ
− 1

2
r (r(k) + ∆r)

∥∥∥2
2
> τ),

is approximately increasing in
∥∥∥Σ
− 1

2
r (∆r)

∥∥∥2
2

=
∥∥∥Σ
− 1

2
r (GrBaau)

∥∥∥2
2
.

Proof. The random variable Σ
− 1

2
r (r + ∆r) is Gaussian with the mean value Σ

− 1
2

r (∆r) =
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Σ
− 1

2
r GrBaau and the covariance matrix E{Σ−

1
2

r r(k)rT (k)(Σ
− 1

2
r )T} = Ip.Hence,

∥∥∥Σ
− 1

2
r (r(k) + ∆r)

∥∥∥2
2

follows the non-central chi-squared distribution as explained by two parameters that are the

degrees of freedom n (the dimension of the random variable r(k) ∈ Rp ), and the non-

centrality parameter (the magnitude of the mean value
∥∥∥Σ
− 1

2
r (GrBaau)

∥∥∥2
2
). The distribution

function of the non-central chi-squared random variable is represented by the alarm proba-

bility. This function is equal to Marcum Q-function that is defined in [124]. The generalized

Marcum Q-function increases in the non-centrality parameter for p > 0. Therefore, the

non-centrality parameter is equal to
∥∥∥Σ
− 1

2
r (GrBaau)

∥∥∥2
2
. 2

After finding the solution for the optimization Problem 3, the next step is to prove that

Problem 3 can be transformed into equation (4.40)

Theorem 4.5.3 If Assumption 4.5.3 holds, then there exists δ ∈ R such that Problem 3 and

Problem 4 are equivalent.

Let r̄ ∈ RP be a unit vector and δ satisfies the following criterion

P(
∥∥∥Σ
− 1

2
r (r(k) + δr)

∥∥∥2
2
> τ) ≤ α + ∆α. (4.41)

The alarm probability equals to the Marcum Q-function, and this function is continuous

and increasing in δ2 for p, τ > 0 [124]. Assume that there exists au that satisfies the constraint

in equation (4.22)

P(
∥∥∥Σ
− 1

2
r (r(k) +GrBaau)

∥∥∥2
2
> τ) ≤ α + ∆α. (4.42)
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Consider the constraint was defined in equation (4.40),

∥∥∥Σ
− 1

2
r (GrBaau)

∥∥∥2
2
> δ2.

Also, we have ∥∥∥Σ
− 1

2
r (GrBaau)

∥∥∥2
2
> δ2 = ‖δr̄‖22 .

From equation (4.41) and equation (4.42), we have the following

P(
∥∥∥Σ
− 1

2
r (r(k) +GrBaau)

∥∥∥2
2
> τ) ≤ P(

∥∥∥Σ
− 1

2
r (r(k) + δr)

∥∥∥2
2
> τ). (4.43)

This is in contradiction with Lemma (4.5.2) in which the alarm rate is increasing in
∥∥∥Σ
− 1

2
r (GrBaau)

∥∥∥2
2
.

4.5.2.1 Mitigating the Impact of the Actuators Attack

Assume that the attacker is able to increase the error arbitrarily. A sufficient condition

for the existence of Baau 6= 0 such that Σ
− 1

2
r GrBaau =Σ

− 1
2

r ∆r = 0. From equation (4.34),

Baau = C∆x̂u and the solution for Problem 4 is analyzed as follows [117]:

∆x̂u = (A−KC)∆x̂u +Baau,

= A∆x̂u + (Baau −KC∆x̂u) = A∆x̂u,

(4.44)

Note that the attack mitigation is borrowed from equation (4.33)

Corollary 4.5.2 The matrix Gx̂ is positive definite. Hence, null{Gx̂} = 0.
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Hence, Problem 4 has analytical solution (provided below) that is bounded.

a∗u = ± δ∥∥∥Σ
− 1

2
r (GrBaν∗)

∥∥∥
2

ν∗,

where ν∗ is the unit length generalized eigenvector that is equivalent to the maximal gener-

alized eigenvalue λ∗ of the pencil matrix is obtained by

(BT
aG

T
x̂Gx̂Ba, B

T
aG

T
r Σ−1r GrBa). (4.45)

Also, the maximal increase of mean squared error is defined as

‖Gx̂Baa
∗
u‖

2
2 = λ∗δ2. (4.46)

Since in general we do not know how much is the attacker willing to risk, λ∗ can be used as

an estimate of the attack impact in equation (4.46). The corresponding simulation results

are provided in Section 4.6.2.

4.5.3 Case 3: Secured Sensors and Actuators

In this scenario, we consider BIAs that are more complex than previous two cases by consid-

ering both the actuator and sensor attack. Our contribution is to provide the attack impact

and derive a lower bound of the impact attack in term of the combination number of sensors

and actuators. The attacker can inject attack sequences to both sensors and actuators of
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the system as follows:

∆x̂(k + 1) = ∆x̂y(k + 1) + ∆x̂u(k + 1),

∆x̂(k + 1) = (A−KC)∆x̂(k) +KDay(k) +Baau(k),

∆r(k) = Day(k)− C∆x̂(k).

(4.47)

∆x̂ = (A−KC)∆x̂+KDay +Baau, (4.48)

Since the matrix A−KC is stable and the matrix In − A+KC is invertible, hence

∆x̂ = (In − A+KC)−1(KDay +Baau) = Gx̂KDay +Gx̂Baau, (4.49)

∆r = Day − C(Gx̂KDay +Gx̂Baau) = GrDay − CGx̂Baau, (4.50)

Gr = (Ip − CGx̂K),

Gx̂ = (In − A+KC)−1.

The attacker problem in Case 3 is now given below:

Problem 5:

max
a∈Rma×na

‖Gx̂KDay +Gx̂Baau‖22 ,

s.t. P(
∥∥∥Σ
− 1

2
r (r(k) + ∆r)

∥∥∥2
2
> τ) ≤ α + ∆α.

(4.51)

where ∆α > 0, α + ∆α ≤ 1 is a threshold and the alarm probability in the presence of

attacks raises to α + ∆α and the attack will remain undetected. Few assumptions will be

considered for the worst case scenario for the attacker.
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Assumption 4.5.4 The attacker knows the structure of Problem 5 and the attacker is able

to control all the sensors and actuators that are not secured.

Problem 6:

max
a∈Rma×na

‖Gx̂KDay +Gx̂Baau‖22 ,

s.t.
∥∥∥Σ
− 1

2
r (GrDay − CGx̂Baau)

∥∥∥2
2
≤ δ2.

(4.52)

The attack can induce unbounded estimation error by the measuring au and ay. We have to

look at the space of au and ay. Problem 6 for Case 3 can be defined as follows:

max
a∈Rma×na

‖Gxaa‖
2
2 ,

s.t.
∥∥∥Σ
− 1

2
r (Graa)

∥∥∥2
2
≤ δ2,

(4.53)

where matrices Gxa and Gra are given below

Gxa =

Gx̂KD 0

0 Gx̂Ba

 ,

Gra =

Σ
− 1

2
r GrD 0

0 −Σ
− 1

2
r CGx̂Ba

 ,
Lemma 4.5.3 The optimization problem (4.53) is bounded if and only if ker{Gra} ⊂ ker{Gxa}

where a is defined as

a =

ay
au

 .
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Lemma 4.5.4 The following alarm probability

P(
∥∥∥Σ
− 1

2
r (r(k) + ∆r)

∥∥∥2
2
> τ),

is approximately increasing in
∥∥∥Σ
− 1

2
r (∆r)

∥∥∥2
2

=
∥∥∥Σ
− 1

2
r (Graa)

∥∥∥2
2
.

Proof. The random variable Σ
− 1

2
r (r + ∆r) is Gaussian with the mean value Σ

− 1
2

r (∆r) =

Σ
− 1

2
r Graa and the covariance matrix E{Σ−

1
2

r r(k)rT (k)(Σ
− 1

2
r )T} = Ip.Hence,

∥∥∥Σ
− 1

2
r (r(k) + ∆r)

∥∥∥2
2

follows the non-central chi-squared distribution. The non-centrality parameter is the mag-

nitude of the mean value
∥∥∥Σ
− 1

2
r (Graa)

∥∥∥2
2
. 2

Theorem 4.5.4 If Assumption 4.5.4 holds, then there exists δ ∈ R such that Problem 5 and

Problem 6 are equivalent.

The proof is similar to Theorem 4.3.3.

Let r̄ ∈ RP be a unit vector and δ satisfies the following criterion

P(
∥∥∥Σ
− 1

2
r (r(k) + δr)

∥∥∥2
2
> τ) ≤ α + ∆α. (4.54)

Assume that there exists a that satisfies the constraint in equation (4.25)

P(
∥∥∥Σ
− 1

2
r (r(k) +Graa)

∥∥∥2
2
> τ) ≤ α + ∆α. (4.55)
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Consider the constraint that was defined in equation (4.52),

∥∥∥Σ
− 1

2
r (Graa)

∥∥∥2
2
> δ2.

Also, we have ∥∥∥Σ
− 1

2
r (Graa)

∥∥∥2
2
> δ2 = ‖δr̄‖22 ,

From equation (4.54) and equation (4.55), we have the following

P(
∥∥∥Σ
− 1

2
r (r(k) +Graa)

∥∥∥2
2
> τ) ≤ P(

∥∥∥Σ
− 1

2
r (r(k) + δr)

∥∥∥2
2
> τ). (4.56)

This is in contradiction with Lemma (4.5.4) in which the alarm rate is increasing in
∥∥∥Σ
− 1

2
r (Graa)

∥∥∥2
2
.

4.5.3.1 Mitigating the Impact of Sensors and Actuators Attacks

Here, the optimal combination of secured sensors and actuators is proposed. Moreover, a

condition on the necessary number of the sensors and actuators to be secured is considered,

so that the impact of the BIA is less than the desired threshold. Assume that the attacker

is able to increase the error arbitrarily.

∆x̂ = (A−KC)∆x̂+KDay +Baau,

= A∆x̂+K(Day − C∆x̂) +Baau.

(4.57)

Assumption 4.5.5 We assume A does not have an eigenvalue of 1.

Corollary 4.5.3 We know from corollaries 4.5.1 and 4.5.2 that null{Gx} = {∅} and if A
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does not have an eigenvalue of 1, the we have null{Gr} = {∅}. Moreover, according to

Lemma 4.5.3, for boundedness of optimization in equation (4.5.3), we have to prove that

ker{Gra} ⊂ ker{Gxa}, the matrix Gra is a Jordan-block matrix and its eigenvalues are the

union of eigenvalues of matrices −Σ
− 1

2
r CGx̂Ba, Σ

− 1
2

r GrD and Gxa is Jordan-block too. Now,

assuming A does not have eigenvalue equal to one, it follows that ker{Gra} ⊂ ker{Gxa}.

The solution of Problem 6 under Assumption 4.5.5 is given in [116].

Theorem 4.5.5 Suppose Assumption 4.5.5 holds. Then, the solution of Problem 6 is given

by

a∗ = ± δ∥∥∥Σ
− 1

2
r (Graν

∗)
∥∥∥
2

ν∗,

where ν∗ is the unit generalized eigenvector that corresponds to the maximal generalized λ∗

of the pencil in Theorem 4.4.1.

(GT
xaGxa , G

T
raΣ

−1
r Gra), (4.58)

and the maximal increase of mean squared error is

∥∥∥Σ
− 1

2
r (Gxaa

∗)
∥∥∥2
2

= λ∗δ2. (4.59)

The results for the different combination of the secured sensors and actuators are

provided in Section 4.6.3.
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4.6 Simulation Result

To demonstrate the effectiveness of the proposed results a linearized model of the quadruple

tank process is used. The parameters of the linear time-invariant system that is defined in

equation (4.1) are chosen as follows [117]:

A =



0.9 0 0.3 0

0 0.9 0 0.3

0 0 0.9 0

0 0 0 0.9


, C =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


,

Σν = 10−2



0.8 0.2 2.7 0.7

0.2 0.8 0.7 2.7

2.7 0.7 9.0 2.3

0.7 2.7 2.3 9.0


, Σw =



2.5 0 0 0

0 2.5 0 0

0 0 0.5 0

0 0 0 0.5


,

and δ2 = 1 when the attack impact in equation (4.59) is equal to the largest generalized

eigenvalue of A.

4.6.1 Case 1 (Secured Sensors)

In this case, sensor attacks are considered. When none of the sensors is secured, the matrix

D = Ip will be an identity matrix, and the pencil matrix is equal to (GT
x̂Gx̂, G

T
r̂ Σ−1r GT

r̂ ). The

generalized eigenvalues is defined as λ = {0.0156, 0.021, 65.45, 116.32}.

We consider for simplicity δ2 = 1. The maximal generalized eigenvalue for different
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combination of secured sensors are provided in Table 4.1. Since, the second largest general-

ized eigenvalue is λ3 = 65.45 and the third largest eigenvalue equals 0.02, so, the necessary

number of sensors should be secured that will be analyzed. When Sensors {1, 3} are secured,

reducing maximal impact 116.32/1.43 ≈ 81 times in Table 4.1. From Table 4.1, we can see

that Sensor 3 is more important to be secured than Sensor 2. We can see considerable esti-

mation errors in scenarios where Sensors {1, 2} (λ∗ = 2.68) and Sensors {1, 3} (λ∗ = 84.49)

are secured in Table 4.1. As a result, when the sensor has more noise, it is important to be

secured under an attack.

Table 4.1: Maximal generalized eigenvalues for different combination of secured sensors.

Secured Sensors λ∗ Secured Sensors λ∗

1 {1, 2, 3, 4} 0 9 {1,4} 2.15

2 ∅ 116.32 10 {2,3} 2.15

3 {1} 84.57 11 {2,4} 84.49

4 {2} 84.73 12 {3,4} 1.43

5 {3} 84.73 13 {1,2,3} 2.14

6 {4} 84.73 14 {1,2,4} 2.14

7 {1,2} 2.68 15 {1,3,4} 1.42

8 {1,3} 84.49 16 {2,3,4} 1.42
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Figure 4.2: Maximal generalized eigenvalues for different combination of secured sensors.

4.6.2 Case 2 (Secured Actuators)

In this case, actuator attacks are considered. If none of actuators are secured, then Ba = In

and the pencil matrix in Theorem 4.4.1 is equal to

(BT
aG

T
x̂Gx̂Ba, B

T
aG

T
r Σ−1r GrBa).

and the worst case eigenvalue is equal to 2.7 as shown in Table 4.2 as λ = {0.65, 0.72, 2.7, 2.72}.

The maximal generalized eigenvalue for different combination of actuators are shown

in Table 4.2.
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Table 4.2: Maximal generalized eigenvalues for different combination of the secured actuators.

Secured Actuators λ∗ Secured Actuators λ∗

1 {1, 2, 3, 4} 0 9 {1,4} 2.52

2 ∅ 2.72 10 {2,3} 2.52

3 {1} 2.71 11 {2,4} 2.70

4 {2} 2.71 12 {3,4} 2.52

5 {3} 2.71 13 {1,2,3} 0.77

6 {1,2} 2.7 14 {1,2,4} 0.77

7 {1,3} 2.70 15 {1, 3, 4} 2.51

8 {1,4} 2.52 16 {2,3,4} 2.51

Figure 4.3: Maximal generalized eigenvalues for different combination of secured actuators.
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4.6.3 Case 3 (Secured Sensors and Actuators)

In this case, bias injection attacks on both sensors and actuators are considered that is more

complex than the previous two cases. None of the sensors and actuators are secured, hence

D = Ip and Ba = In. Moreover, the pencil matrix is equal to

(GT
xaGxa , G

T
raΣ

−1
r Gra).

The generalized eigenvalues are λ1 = 0.015, λ2 = 0.021, λ3 = 0.65, λ4 = 0.73, λ5 = 2.69,

λ6 = 2.72, λ7 = 65.45 and λ8 = 116.32. The maximum generalized eigenvalues are calculated

for different combination of secured sensors and actuators and they are provided in Tables

4.3, 4.4, and 4.5. As a result, if the number of secured actuators and sensors are increased,

we do not have less estimation error. The minimum estimation error depends on which

sensors and actuators are secured. The main observation is in Table (4.5) when the Sensor

{1, 2} are secured in which the estimation error has the least value.
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Table 4.3: Maximal generalized eigenvalues for different combination of the secured sensors and
actuators.

Secured Sensors (SS) Secured Actuators (SA) λ∗ SS SA λ∗

91 {1,2,3,4} {2} 2.71 125 {2,3,4} {3} 2.71

92 {1,2,3,4} {1} 2.71 126 {2,3,4} {3} 2.71

93 {1,2,3,4} 116.32 127 {2,3,4} {1} 2.71

94 {4} {2,3,4} 84.73 128 {1} {2,3,4} 84.57

95 {4} {1,3,4} 84.73 129 {1} {1,3,4} 84.57

96 {4} {1,2,4} 84.73 130 {1} {1,2,4} 84.57

97 {4} {1,2,3} 84.73 131 {1} {1,2,4} 84.57

98 {3} {2,3,4} 84.73 132 {1,4} {3,4} 2.52

99 {3} {1,3,4} 84.73 133 {1,4} {2,4} 2.70

100 {3} {1,2,4} 84.73 134 {1,4} {2,3} 2.52

101 {3} {!,2,3} 84.73 135 {1,4} {1,4} 2.52

102 {3,4} {3,4} 3.52 136 {1,4} {1,3} 2.70

103 {3,4} {2,4} 2.70 137 {1,4} {1,2} 2.15

104 {3,4} {2,3} 2.52 138 {1,3} {3,4} 84.49

105 {3,4} {1,4} 2.52 139 {1,3} {2,4} 84.49

140 {1,3} {2,3} 84.49 145 {1,3,4} {3} 2.71

141 {1,3} {1,2} 84.49 146 {1,3,4} {2} 2.71

142 {1,3} {1,3} 84.49 147 {1,3,4} {1} 2.71
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Table 4.4: Maximal generalized eigenvalues for different combination of secured sensors and actu-
ators.

SS SA λ∗ SS SA λ∗

143 {1,3} {1,2} 84.49 148 {1,2} {3,4} 2.52

144 {1,3,4} {4} 2.71 149 {1,2} {2,4} 2.52

151 {1,2} {3,4} 2.52 186 {3,4} {1,4} 84.57

152 {1,2} {1,3} 2.72 187 {3,4} {1,3} 84.57

153 {1,2} {1,2} 2.26 188 {2} {1,2} 84.57

154 {1,2,4} {4} 2.71 189 {2,4} {4} 84.57

155 {1,2,4} {3} 2.71 190 {2,4} {3} 84.57

156 {1,2,4} {2} 2.71 191 {2,4} {2} 84.57

157 {1,2,4} {1} 2.71 192 {2,4} {1} 84.57

158 {1,2,3} {3} 2.71 193 {2,3} {4} 2.71

159 {4} {3} 2.71 194 {2,3} {3} 2.71

160 {4} {2} 2.71 195 {2,3} {2} 2.71

161 {4} {2} 2.71 196 {2,3} {1} 2.71

162 {1,2,3,4} 2.71 197 {1,2,3} {1} 2.71

163 {2,3,4} 116.3 198 {2,3,4} {1} 2.71

164 {1,3,4} 116.3 199 {1,4} {2,4} 84.57

165 {1,2,4} 116.3 200 {1} {2,3} 84.57

166 {1,2,3} 116.3 201 {1} {1,4} 84.57
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Table 4.5: Maximal generalized eigenvalue for different combination of secured sensors and actua-
tors.

SS SA λ∗ SS SA λ∗

221 {2,3} 116.32 239 {2,3} 2.72

222 {1,4} 116.32 240 {1} {4} 84.57

223 {1,3} 116.32 241 {1} {3} 84.57

224 {1,2} 84.73 242 {1} {2} 84.57

225 {4} {4} 84.73 243 {1} {1} 84.57

226 {4} {3} 84.73 244 {1,4} 2.72

227 {4} {2} 84.73 245 {1,3} 84.49

228 {4} {1} 84.73 246 {1,2} 2.72

229 {3} {4} 84.73 247 {4} 116.32

230 {3} {3} 84.73 248 {3} 116.32

231 {3} {2} 84.73 249 {2} 116.32

232 {3} {1} 84.73 250 {1} 116.32

233 {3,4} 2.71 251 {4} 84.73

234 {2} {4} 84.57 252 {3} 84.73

235 {2} {3} 84.57 253 {2} 84.73

236 {2} {2} 84.57 254 {1} 84.73

237 {2} {1} 84.57 255 ∅ ∅ 116.32

238 {2,4} 84.57 256 {1,2,3,4} {1,2,3,4} 0
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Figure 4.4: Maximal generalized eigenvalue for different combination of the secured sensors and
actuators.

4.7 Conclusion

In this chapter, the main underling problem considered is that it is expensive to secure all

sensors and actuators. Hence, we have to choose which sensors and actuators should be

secured. The final goal is to find the optimal combination of sensors and actuators that

has the minimum error in the output or to maintain an estimation error lower than an

upper bound. Since, the worst case scenario is considered, it is assumed that attackers

have the knowledge of the system. Therefore, an optimization problem is considered from

attacker’s point of view in which the attacker tries to the maximize the estimation error in

the induced plant while remaining undetected. The problem of estimating the impact of BIA

was also presented. The system consisted of a noisy plant, a Kalman filter, and an χ2-squared

anomaly detector. Moreover, the lower bound of the attack impact is also investigated. The
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corresponding simulation results were provided in Sections 4.6.1, 4.6.2 and 4.6.3. The main

observation from Table 4.5 is that Sensors {1, 2} are secured with the minimum estimation

error. For the combination of sensors and actuators, Scenario 194 with an estimation error of

2.71 can be considered in Table 4.4. Other scenarios with different estimation errors can also

be analyzed. For future work, a more general system model such as linear time-varying or

nonlinear and hybrid can be studied, and consequently, the complexity of network topology

and protocols can be extended.
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Chapter 5

Conclusions and Future Work

In this chapter, we summarize the results of this thesis and present potential directions for

future work.

5.1 Conclusion

• In Chapter 3, possible detection and isolation fault strategy and deception attack

techniques on a formation control of Autonomous Underwater Vehicles (AUVs) were

presented. The distributed fault detection scheme based on the Generalized Likelihood

Ratio (GLR) and the Unscented Kalman Filter (UKF) were used. The developed

Fault Detection (FD) methodology is able to detect a faulty AUV in the formation

was presented.

• In Chapter 3, the system was under both actuator (LOE), bias sensor fault as well as

a deception attack. The consensus problem of multi AUVs was also studied. A method
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to detect and isolate faulty agents under a deception attack was proposed in Figure 3.5.

The performance of the developed FD and AD schemes are analyzed and the confusion

matrix was provided in Tables 3.5, 3.6 and 3.7. We have simultaneously detected

deception attacks and faults for each agent. All simulation results are presented in

Section 3.4.

• In Chapter 4, the problem of estimating the impact of Bias Injection Attack (BIA)

is considered. A Kalman Filter (KF) is used to estimate the system states and a

χ2-squared anomaly detector is utilized to select the secured sensors/actuators. We

investigated the problem of finding the worst case Bias Injection Attack (BIA) that

is reduced to a quadratic program for which the optimal value can be found using

well-known algorithms.

• In Chapter 4, our contribution is to provide the analysis of attack impact and derive a

lower bound of attack impact in terms of the number of actuators and the combination

of sensors and actuators. A lower bound of the attack impact is also derived and the

corresponding simulation results are illustrated.

5.2 Suggestions for Future Work

The potential future work for Chapter 3 are:

• To extend the proposed framework for various stochastic switching network typologies

where the network architecture of agents are changing over time.
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• To extend the proposed methodology for homogeneous agents with the disturbance

and uncertainties in FDI estimations.

• To extend the proposed framework for outage faults in a team of nonlinear agents.

• To use 6-DOF AUV model resulting in a wider application in underwater missions.

• To extend the proposed FTC to address various types of faults in actuators such as

lock-in-place, float, and hard over.

• To extend the proposed framework for different types of attack such as covert, replay

and zero dynamic attacks.

• To extend the design of the proposed fault-tolerant control schemes for scenarios with

fewer redundancy.

• To improve the performance of the proposed methodologies.

Potential future directions for Chapter 4 are:

• To work on a more general system model such as linear time-varying or nonlinear and

hybrid.

• To conduct a detailed analysis of cyber attacks within the Cyber-Physical System

(CPS) network. Compared to the single agent, analyzing the impact of cyber attacks

on CPS is more challenging due to the complexity of network topology and protocols.
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