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SUMMARY

This paper considers the problem of reconstructing state information in all the nodes of a complex network
of dynamical systems. The individual nodes comprise a knownlinear part and unknown but bounded
uncertainties in certain channels of the system. A supervisory adaptive sliding mode observer configuration
is proposed for estimating the states. A linear matrix inequality (LMI) approach is suggested to synthesise
the gains of the sliding mode observer. Although deployed centrally to estimate all the states of the complex
network, the design process depends only on the dynamics of an individual node of the network. The
methodology is demonstrated by considering a network of Chua oscillators.
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1. INTRODUCTION

The study of networks comprising a large number of dynamical systems, hasbeen the subject of
significant research in recent years [27, 18, 11, 39]. Centralised monitoring of the overall system
behaviour is important, and particulary for real engineering systems, safety and reliability is an
important issue. In this paper, a specific representation of the general scale-free dynamical network
model, as reported in [26], and compatible with the one studied in [39], will be adopted. The
motivation for the work reported in this paper stems from the requirements of increasing the
level of autonomy in ‘systems of systems’: i.e. a collection of dynamical systemsoperated over
a network, and controlled to perform synchronously (or coordinated toattain a common objective).
These problems are prevalent in many areas of research – for example mobile robots, formation
flying of UAV’s and satellites, vehicle platoons, and distributed state estimation applications such
as localisation. For further details, see [27].

State observers for large scale systems have been employed in a number ofdifferent contexts. In
[16], for a network of agents modelled by second order dynamics (position and velocity), the states
of the neighbourhood are estimated (at agent level), and these estimates are then used in a dynamic
coordination law to ensure leader following. Observers to estimate the states of the neighbourhood
agents (posed as the dual problem of controller design) have been reported in [43]. Refs. [16, 43]
employ full order state observers, whilst reduced order functional observers are proposed in [17]
for finite dimensional networks of linear systems. In [17], the parallel Luenberger observers are
designed for each node, with an identical neighbourhood interconnection structure as that of the
original network, and then observer based control laws have been devised to achieve consensus.
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In [23] the leader-follower consensus problem is addressed using functional observers to estimate
the states of neighbourhood agents from only the output information of the neighbourhood agents
(where the dynamics of the agents is assumed to be linear). A cooperative fault accommodation
framework is proposed in [3] which makes use of relative state measurements, and is extended to
the general case of formation flying of vehicles in a planetary orbital environment with absolute
measurements in [4]. Large scale observer based schemes have also been applied to power networks
to detect conventional electrical faults [1], but also cyber physical attacks [33]. The work in this
paper addresses a similar observation problem, extended to a certain classof nonlinear/uncertain
systems, based on sliding mode concepts.

Sliding mode observers, which constitute a specific subclass of robust nonlinear observers, have
been studied extensively [7, 22, 12, 8, 9, 5, 14, 13, 6, 15, 30]. The underlying idea is to drive
the state estimation error onto a sliding surface infinite timeand then achieve at least asymptotic
and often finite time convergence of the state estimate to the real state. In the early paper [2], an
adaptive sliding mode observer was designed to synchronise a master-slave configuration for a class
of nonlinear systems. In [31], a sliding mode observer was used for cryptography based on chaotic
masking modulation, which is another relevant area of synchronisation involving coupled master-
slave nonlinear systems. Furthermore, adaptive sliding mode control has also been applied in [41]
for synchronisation of general master slave systems. Monitoring of complex networks from a fault
detection perspective have also become prevalent. Patton and co-workers have proposed a generic
framework for FDI in networked systems [29, 19] based on unknown input observers, whilst [28, 24]
have considered fault detection problems in networks based on relative measurement information.
These early papers focused on generic problem formulations but more recently, problem specific
contributions have appeared: for example in [40], a bespoke sliding mode observer has been
designed for online monitoring and fault detection in satellite formations. Disturbance estimates
from a super-twist observer have also been exploited in [25] to enhance the robustness of formation
control of satellites.

The focus of this paper is the synthesis of a centralised observer for a class of dynamical systems
operating over an undirected network.The aim of this paper is to design, synthesise gains and
analyse the convergence of the overall network system at an individual node level (i.e., independent
of the number of nodes comprising the large scale system). The resulting design is a centralised
monitoring scheme for the entire network, which is original in the context of theclass of observers
which are considered.The individual node level dynamics comprises a linear system and an
unknown bounded nonlinear/uncertain part. The objective is to estimate the state of the network
at a supervisory level from only measurement signals, using an adaptive sliding mode observer.The
adaptive observer design for the network will be formulated as Linear Matrix Inequalities, which
are solved at an individual node level, which is a crucial benefit of this approach.

2. SYSTEM DESCRIPTION

This paper considers a scale free network ofN interconnected dynamical systems, indexed as
1, 2, . . . , N . The interconnections are assumed to be of bidirectional nature, and hence the individual
sub-systems can be viewed as nodes in an undirected graph. Specificallythe dynamics of theith

node is given by

ẋi = Axi +Dξi(xi, ui) +Bui − α(t)

N∑

j=1

LijΓxj (1)

yi = Cxi (2)

wherexi ∈ IRn, ui ∈ IRm and yi ∈ IRp represent the state, the control inputs and the measured
outputs respectively. The termsξi represent an unknown bounded uncertainty or a disturbance
impacting on the dynamics. Although unknown, eachξi term is assumed to be bounded. Specifically,
it is assumed‖ξi(xi, ui)‖ ≤ β0, where the constant termβ0 is assumed to be unknown but finite.
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ADAPTIVE OBSERVATION IN NETWORK OF DYNAMICAL SYSTEMS 3

Assumption 1
The triple(A,D,C) consists of constant matricesA ∈ IRn×n, D ∈ IRn×q andC ∈ IRp×n, whereC
andD are full row and column rank respectively, andp ≥ q.

Assumption 2
The system(A,D,C) is minimum phase.

Assumption 3
The distribution matrices satisfy the condition, rank(CD) = q.

In (1), the matrixΓ = τij ∈ IRn×n captures the local coupling configuration among the states
of the nodes. It is assumed that entries ofΓ are either0 or 1 and represent the existence or non-
existence of coupling in the respective channels of the network. The Laplacian of the underlying
graphG, and written asL ∈ IRN×N , captures the interconnections of the network. Whenever node
i interacts with nodej, there exists an edge between nodesi andj, andLij = Lji = −1, otherwise
Lij = Lji = 0. The diagonal terms are given byLii = ki, for i = 1, . . . , N whereki is the degree of
nodei, and represents the total number of connections incident at theith node. The resulting graph
Laplacian is a symmetric positive semi-definite matrix. Furthermore, the smallest eigenvalue ofL is
zero and the corresponding eigenvector is given by1 [32]. This “row sum equal to zero”property
will be exploited in this paper. The scalarα(t) ∈ IR+ for all t ∈ IR+ is assumed to be a known time
varying coupling strength, with a known upper boundα̂ = supt∈IR+ α(t).

The problem addressed in this paper is to design an adaptive sliding mode observer, at a
supervisory level, to robustly reconstruct the states of the entire networkx = Col(x1, . . . , xN )
based only on information about the measured outputsy = Col(y1, . . . , yN ) and the control inputs
u = Col(u1, . . . , uN ).

3. SLIDING MODE NETWORK OBSERVER

Exploiting Assumptions2 and 3, there exists a non-singular transformationxi 7→ T0xi for each
node, which transforms the original co-ordinates into ones in which the triple(A,D,C) possesses
the following canonical form(for example see Section 5.3 in [9])

A =

[
A11 A12

A21 A22

]

D =

[
0
D0

]

C =
[
0 C2

]
(3)

whereA11 ∈ IR(n−p)×(n−p), D0 ∈ IRq×q is non-singular, andC2 ∈ IRp×p is orthogonal. Define
A211 as the topp− q rows ofA21, then it can be shown the pair(A11, A211) is detectable and
the unobservable modes of(A11, A211) are the invariant zeros of(A,D,C) [10]. For streamlining
the notation used later in the paper, defineD2 = Col

[
0 D0

]
∈ IRp×q as the bottomp rows ofD.

This coordinate system will be used for the observer synthesis.
In the coordinate system associated with the canonical form in (3), write the configuration matrix

(which has no particular structure) as

Γ =

[
Γ11 Γ12

Γ21 Γ22

]

(4)

whereΓ22 ∈ IRp×p.
Let zi ∈ IRn be the state estimate of theith node which satisfies

żi = Azi +Bui − α(t)

N∑

j=1

LijΓzj −Glieyi
−Gni

νi, i = 1, . . . , N (5)

whereeyi
= C(xi − zi). Let the global output error estimate be given byey = Col(ey1

, . . . eyN
). For

use later in the paper, consistent with (3), create the partitionzi = Col(z1i, z2i) such thatz1i ∈ IRn−p
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andz2i ∈ IRp. The discontinuous injection termsνi in (5) are given by:

νi = −ρ(t) eyi

‖eyi
‖ , if eyi

6= 0 (6)

In (6) the (scalar) modulation functionρ : IR+ 7→ IR+, will be subject to an adaptive law, which will
be defined later.

The design freedom in (5) is represented by the gain matricesGli ∈ IRn×p andGni
∈ IRn×p.

These must be selected to ensure the state estimation error is driven to the sliding surface in finite
time. A suitable choice for the matrixGni

in the co-ordinate system in (3) isGni
= Col(LCT

2 , C
T
2 ),

whereL =
[
Lo 0

]
with Lo ∈ IR(n−p)×(p−q) [10]. The matricesLo andGli will be determined

later in the paper using an LMI optimisation procedure.
Defineei := xi − zi as the state estimation error in theith node. It can be verified from (1) and

(5) that in the coordinates of (3)

ėi=Aei+Dξi(xi, ui)−α(t)
N∑

j=1

LijΓej+Glieyi
+Gni

νi (7)

for i = 1, ..., N . In the coordinates associated with (3), let e1i ∈ IRn−p and e2i ∈ IRp such that
Col(e1i , e2i) = ei. Note thate2i is directly related to the output error estimateeyi

, sinceeyi
=

C2e2i wheredet(C2) 6= 0 ( and in factCT
2 C2 = C2C

T
2 = I, since by constructionC2 from (3) is

orthogonal). For the error system in (7), the objective is to induce a sliding motion on

S =
⋃

i=1...N

(Si = {(e1i , e2i) ∈ IRn | e2i = 0}) . (8)

For each node, consider a change of coordinatesfrom [42] of the form,ei 7→ TLei, where

TL :=

[
In−p −L
0 Ip

]

. (9)

In the new coordinates, the plant matrixA in (3) is written as

[
Ã11 Ã12

A21 Ã22

]

= TLAT
−1
L (10)

whereÃ11 := (A11 − LoA211) ∈ IR(n−p)×(n−p) and the local coupling matrix terms in (4) are

[
Γ̃11 Γ̃12

Γ21 Γ̃22

]

= TLΓT
−1
L (11)

whereΓ̃11 = Γ11 − LΓ21 ∈ IR(n−p)×(n−p). Here, it is assumed that the gainL (or in factLo) can be
chosen so that there exists a symmetric positive definite matrixP1 ∈ IR(n−p)×(n−p) such that

P1 < 0 (12)

−P1Γ̃11 − Γ̃T
11P1 ≤ 0 (13)

P1Ã11 + ÃT
11P1 + q̃In−p ≤ 0 (14)

where q̃ ∈ IR+ is a chosen design scalar. The inequalities in (12)-(14) can be formulated as a
convex optimization problem via a system of LMI’s. In the LMI representation, the matrix variables
P1 andM := P1L are used as decision variables.It can be seen from (12)-(14) that the LMI’s
to be solved are independent of the number of nodes in the network (N ) and only depend on
(n− p)× (n− p) + (n− p)× (p− q) decision variables.
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ADAPTIVE OBSERVATION IN NETWORK OF DYNAMICAL SYSTEMS 5

Remark 1
Suppose the system in (1)-(2) is treated as a centralised system

ẋ = A(t)x+ Bu+ FΞ (15)

y = Cx (16)

wherex ∈ RNn, u ∈ RNm, y ∈ RNp andΞ = Col(ξ1, . . . , ξN ). In equations (15)-(16), the matrices
areA(t) = (IN ⊗A)− α(t)(L ⊗ Γ), B = (IN ⊗B), C = (IN ⊗ C), andD = (IN ⊗D), and in
particular the specific structures of(A(t),D,C) are ignored. Then it would be theoretically possible
to design a centralised observer of the types proposed in [35, 36, 38]†. In such a design there would
be 2Nn×Np elements in the gain matrices to select, and quadratic Lyapunov function matrices
with (nN + 1)Nn/2 elements. In this paper all the computation depend only on the size of the
individual node dynamicsn, p, andm andnot on the size of the network. For large scale systems
(say forN of order 1000), from a purely computational view point the calculations willbecome
unmanageable. For example it is highly likely the LMI based methods in [36] and [35] would
become impractical. Using the symbolic approach in [38] is also likely to be infeasible. (In fact
it is highly probable even traditional robust pole placement algorithms [20] will be found wanting
from a numerical perspective.

Consistent with (3), partition the error state vector in the transformed coordinates associated
with (9) as Col(ẽ1i , e2i) = TLei, for i = 1, . . . , N where by definitionẽ1i := e1i − Le2i . In the
partitioned form, define the observer gain matrixGli = Col(G1i , G2i), for i = 1, . . . , N where
G1i ∈ IR(n−p)×p. In the coordinates of (9), the error system from (7) can be written as

˙̃e1i = Ã11ẽ1i + Ã12e2i + [In−p − L]Glieyi
− α(t)

N∑

j=1

Lij(Γ̃11ẽ1j + Γ̃12e2j ) (17)

ė2i = A21ẽ1i + Ã22e2i +D2ξi(.) +G2ieyi
+CT

2 ν − α(t)

N∑

j=1

Lij(Γ21ẽ1j +Γ̃22e2j ) (18)

for i = 1, . . . , N . Now define explicitly

G2i := ΨCT
2 − Ã22C

T
2 (19)

G1i := LG2i − Ã12C
T
2 (20)

for i = 1, . . . , N , whereΨ ∈ IRp×p is a designer selected Hurwitz matrix.
Let ẽ1 = Col(ẽ11 , . . . ẽ1N ) ande2 = Col(e21 , . . . e2N ) then substitutingG1i andG2i defined above

into (17)-(18), the error dynamics in the transformed coordinates can be written as

˙̃e1 = ((IN ⊗ Ã11)− α(t)(L ⊗ Γ̃11))ẽ1 +Φ1(t, e2) (21)

ė2 = ((IN ⊗A21)− α(t)(L ⊗ Γ21))ẽ1 +Φ2(t, e2)

+(IN ⊗Ψ)e2 + (IN ⊗D)ξ(x, u) + (IN ⊗ CT
2 )ν (22)

whereν := Col(ν1, . . . νN ) andξ(x, u) = Col(ξ1(·), ..., ξN (·)). In the error systems (21) - (22), the
injection termsΦ1(t, e2) := −α(t)(L ⊗ Γ̃12)e2 andΦ2(t, e2) := −α(t)(L ⊗ Γ̃22)e2. SinceΦ1(t, e2)
is linear with respect toe2, it follows

‖Φ1(t, e2)‖ ≤ α(t)K1‖e2‖ (23)

for all (t, e2) ∈ IR× IRpN , whereK1 = ‖(L ⊗ Γ̃12)‖ is a positive scalar.
As a precursor to analysing (21)-(22), consider the unforced time varying linear system

˙̃e1 =
(
IN ⊗ Ã11 − α(t)(L ⊗ Γ̃11)

)
ẽ1 (24)

†Technically the observers in [35, 36, 38] are formulated for LTI systems, but ifα(t) is known, the time varying system
matrixA(t) could be written polytopically and the approaches in [35, 36] adapted accordingly.
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6

which can be thought of as the reduced order motion, if sliding occurs onS. Consider a candidate
Lyapunov function for (24) of the form V(ẽ1) := ẽ1P̃ ẽ1, where P̃ = (IN ⊗ P1) and P1 is the
s.p.d matrix satisfying the conditions defined earlier in (13)-(14). Since the Laplacian matrixL
is symmetric, by spectral decomposition, it can be written as

L = V ΛV T (25)

whereΛ = Diag(λ1, . . . , λN ) and theλi ∈ IR+ are the real non negative eigenvalues [32], andV
is an orthogonal matrix composed of the associated eigenvectors. As in [26], consider a change of
coordinates̃e1 7→ Tv ẽ1 = η where

Tv := (V T ⊗ I(n−p)) (26)

BecauseV TV = IN , Tv in (26) is also an orthogonal transformation. Then from the properties of
Kronecker products,Tv(IN ⊗ Ã11)Tv

T = (IN ⊗ Ã11) and

Tv(L ⊗ Γ̃11)Tv
T = (V TLV )⊗ Γ̃11 = Λ⊗ Γ̃11

Applying the transformation in (26) to equation (24), and exploiting the results identified above, it
follows that

η̇ =
(
IN ⊗ Ã11 − α(t)(Λ⊗ Γ̃11)

)
η (27)

Note that sinceΛ is diagonal, (27) can be written in a node level representation as

η̇i = (A11 − LA21 − α(t)λiΓ̃11)
︸ ︷︷ ︸

Ãi(t)

ηi (28)

for ηi, i = 1 . . . N whereη = Col(η1, . . . ηN ). In the new coordinatesV(ẽ1) becomes

V(η) := ηTP̃ η =

n∑

i=1

ηT
i P1ηi

becauseTv is orthogonal and has the specific structure in (26). For the differential equations in
(28) consider a candidate Lyapunov functionVi(ηi) = ηT

i P1ηi, whereP1 ∈ IR(n−p)×(n−p) is the
symmetric positive definite matrix obtained by solving (12)-(14). The time derivative ofVi(ηi)
along the trajectories of (28) is given by

V̇i(ηi)|(28) = ηT
i (P1Ãi(t) + Ãi(t)

TP1)ηi

= ηT
i

(

P1(A11 − LA21) + (A11 − LA21)
TP1

)

ηi−α(t)λiηT
i (P1Γ̃11 + Γ̃T

11P1)ηi(29)

Sinceα(t) is a positive bounded scalar andλi ≥ 0, α(t)λi ≥ 0. Then from (13) (P1Γ̃11 + Γ̃T
11P1)

is positive semi-definite, and the time-varying expression−α(t)λiηT
i (P1Γ̃11 + Γ̃T

11P1)ηi in (29) is
negative semi-definite for allηi 6= 0 andV̇i(ηi) ≤ −q̃‖ηi‖2, whereq̃ is the positive scalar quantity
in (14). ConsequentlẏV(ẽ1) ≤ −q̃‖ẽ1‖2 in the case whenΦ1(t, e2) = 0 in (21).

Further definẽV =
√
V. SinceV is positive definite, this is well defined. With these definitions,

and using Rayleigh’s inequality [21]

λmin(P1)‖e1‖2 ≤ V(ẽ1) ≤ λmax(P1)‖e1‖2 ,

it follows that the derivative ofV along the trajectories of (21) is

V̇|(21) ≤ − q̃

λmax(P1)
Ṽ2 + 2V

√

λmax(P1)α(t)K1‖e2‖ (30)

Since by definitionV = Ṽ2 it follows V̇ = 2 ˙̃VṼ and hence using (30) yields ˙̃V(ẽ1) as

˙̃V(ẽ1) ≤ − q̃

2λmax(P1)
Ṽ + α(t)

√

λmax(P1)K1‖e2‖ (31)
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ADAPTIVE OBSERVATION IN NETWORK OF DYNAMICAL SYSTEMS 7

For notational simplicity the inequality in (31) can be written as

˙̃V ≤ −m0Ṽ +m1α(t)‖e2(t)‖ (32)

for appropriate known positive scalarsm0 andm1 and a known coupling strengthα(t).
Define adaptive filter dynamics as

ṙ1(t) = −m0r1(t) +m1α(t)‖e2(t)‖ (33)

where r1 ∈ IR represents the adapting scalar element. Note thateyi
= C2e2i , where C2 is

orthogonal, which implies‖eyi
‖ = ‖e2i‖ and‖ey‖ = ‖e2‖. Hence (33) can be written as

ṙ1(t) = −m0r1(t) +m1α(t)‖ey(t)‖ (34)

From first principles, it can be seen‖r1(t)‖ > Ṽ(t) for all time t > 0, providedr1(0) ≥ Ṽ(0). Note
thatr1(t) is an adaptive gain, which can be realized in real time, and depends only on‖ey‖ which
is known. Consequently ifr1(0) > Ṽ(0) then

r1(t)
2 > V(t) ≥ λmin(P1)‖ẽ1‖2 =⇒ r1(t) ≥

√

λmin(P1)‖ẽ1(t)‖

for all time. Now consider the dynamics in (22). Again by linearity it can be argued that

‖Φ2(t, e2)‖ ≤ α(t)K2‖e2‖ (35)

whereK2 = ‖(L ⊗ Γ̃22)‖ is some positive constant.
Define a second adaptive scalar gainr2 according to the following dynamics

ṙ2(t) = γ‖ey(t)‖ (36)

where γ is a positive design scalar. The objective is now to show the standard slidingmode
reachability condition [9, 37] can be satisfied to show that a sliding motion occurs in finite time.
The choice is such thatr2(t) remains bounded ande2(t) asymptotically becomes zero. Define scalar
error variable as

er(t) := ‖D2‖β0 − r2(t) (37)

Clearly if er(t) can be shown to be bounded, thenr2(t) is bounded and the asymptotic convergence
of e2(t) is true. In what follows, it is advantageous to assume that the matrixΨ in (19) has the
special formΨ := −ψIp whereψ ∈ IR+ is a design scalar. The objective is now to showe2(t) → 0.
To this end consider the function

V = eT
2 e2 +

1

γ
e2r (38)

Taking the derivative ofV in (38) along the trajectory of (22) and the adaptation dynamics defined
in (36), yields

V̇ ≤ 2
γ
er ėr + 2‖e2‖‖(IN ⊗A21)‖‖ẽ1‖ − 2ψ‖e2‖2

+2α(t)‖(L ⊗ Γ21)‖‖e2‖‖ẽ1‖+ 2α(t)‖(L ⊗ Γ̃22)‖‖e2‖2

+2K2‖e2‖2 + 2‖e2‖‖D2‖β0 − 2eT
2 (IN ⊗ CT

2 )ν (39)

It is easy to see from the properties of Kronecker products that

eT
2 (IN ⊗ CT

2 ) = eT
2 (IN ⊗ C2)

T = ((IN ⊗ C2)e2)
T = eT

y

And then from the definition ofν in (6), it follows:

eT
2 (IN ⊗ CT

2 )ν = −ρ
N∑

i=1

‖eyi‖ ≤ −ρ‖ey‖

Int. J. Adapt. Control Signal Process.(2015)
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Consequently, if the design scalarψ is chosen to satisfyψ >
(
α(t)‖(L ⊗ Γ̃22)‖+K2

)
then

V̇ ≤ 2‖e2‖‖(IN ⊗A21)‖‖ẽ1‖+ 2α(t)‖(L ⊗ Γ21)‖‖e2‖‖ẽ1‖
+2‖e2‖‖D2‖β0 − 2ρ‖ey‖+ 2

γ
er ėr (40)

Let a21 := ‖IN ⊗A21‖ = ‖A21‖ and compute a boundγ21 ≥ α(t)‖L ⊗ Γ21‖. (Since α(t) is
bounded byα̂ then such a constant exists.) Moreover, note thatr1(t) >

√

λmin(P1)‖ẽ1(t)‖ for
all t > 0. Using these norm bounds and the facts‖ey‖ = ‖e2‖ in (40), yields

V̇ ≤2

(

a21+γ21
√

λmin(P1)
r1(t)+‖D2‖β0 − ρ(t)

)

‖e2‖+ 2
γ
er ėr (41)

Define the modulation gainρ(t) in (6) as

ρ(t) :=
(a21 + γ21)
√

λmin(P1)
r1(t) + r2(t) + r0 (42)

wherer0 is a positive design scalar. Substitutingρ(t) in (41) yields

V̇ ≤ 2‖D2‖β0‖e2‖ − 2r2(t)‖e2‖ − 2r0‖e2‖+ 2
γ
er ėr

= 2‖e2‖(‖D2‖β0 − r2(t))− 2r0‖e2‖+ 2
γ
er ėr (43)

Using the definition ofer in (37),

V̇ ≤ 2er‖e2‖ − 2r0‖e2‖+ 2
γ
er ėr (44)

It follows from (37) that ėr = −ṙ2, then substituting forṙ2 from (36) yields ėr = −γ‖e2‖.
Consequently from inequality (44) it is obvious that

V̇ ≤ −2r0‖e2‖ (45)

SinceV̇ ≤ 0 it follows that the signalse2 ander remain bounded and hencer2(t) remains bounded.
Furthermore from (45), using Barbalat’s lemma [21], ‖e2(t)‖ → 0 asymptotically.

In addition, if over an interval of time[ t1 t2 ] the gainr2(t) satisfiesr2(t) > ‖D2ξ(t)‖, then
sliding will occur within ts = ‖e2(t1)‖/r0 units of time providedt1 + ts ≤ t2. This follows from
employing the Lyapunov functionVs = eT

2 e2 and noting that, using arguments similar to those
leading up to (43), in this situation

V̇s ≤ 2‖D2‖‖ξ‖‖e2‖ − 2r2(t)‖e2‖ − 2r0‖e2‖
≤ −2r0‖e2‖ (46)

if r2(t) > ‖D2ξ(t)‖. Consequently

V̇s ≤ −2r0
√

Vs (47)

which implied‖e2‖ ≡ 0 in a timets ≤ ‖e2(t1)‖/r0. During sliding,e2 = 0 and from (36) the gain
r2(t) no longer increases. Sliding will be maintained provided the gainr2(t1 + ts) > ‖D2ξ(t)‖ for
all t > t1 + ts. If this does not hold (which is possible ifr2(t1 + ts) < ‖D2‖β0) then sliding may
be temporarily broken, and then from (36), the gainr2(t) will increase and sliding will be regained
in finite time using arguments similar to those above. If at any pointr2(t) > ‖D2‖β0, sliding will
be achieved and maintained for all subsequent time.

During a sliding mode in whichey ≡ 0, it follows e2 = 0 and the reduced order sliding mode is
governed by (24) (or equivalently (27)). The system was shown to be quadratically stable using the
Lyapunov functionV(ẽ1), if P1 satisfies (12)-(14).
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Figure 1. State estimation error

4. NUMERICAL EXAMPLE

To demonstrate the theory developed in this paper, a network of six Chua oscillators is considered,
henceN = 6. Here a Lur’e type ([21]) representation for Chua’s circuit will be used, which ties in
with the preceding development. Specifically here it is assumed that

ẋi = Axi +Dξi(xi)− α(t)

N∑

j=1

LijΓxj +Bui (48)

yi = Cxi (49)

where

A =

[
−al1 a 0
1 −1 1
0 −b 0

]

, D=

[
−a(l0 − l1)

0
0

]

, C=

[

1 0 0
0 1 0

]

(50)

The nonlinearity is given byξi(xi) = 1
2 (|xi1 + c| − |xi1 − c|), which has a sector bound[0, 1]. The

chosen values of the parameters in (50) area = 9, b = 14.286, c = 1, l0 = −1/7, l1 = 2/7 in order
to obtain double scroll attractor behaviour [39, 34]. The underlying graph topology of the Chua
oscillators, which are assumed to be coupled via resistors, is based on the nearest neighbour rule
[27] which naturally definesLij in (48). The interconnection matrixΓ = Diag(1, 0, 0) models the
interconnection among the states of the Chua oscillators. The time varying coupling strengthα(t) is
modelled as a sinusoidal signal with an input frequency of 0.5Hz, amplitude 0.5 and bias 1.0. This
ensuresα(t) ≥ 0 andα(t) has a known upper bound̂α = 2.

For simulation purposes, a controller is required to ensure synchronisation. As in [34], the
control input matrixB in (48) is taken as the identity and the state error feedback controller
from [34] is exploited. Synchronisation to a pre-defined master behaviour (with initialconditions
xmaster(0) = [0.0196, 0.6813, 0.3795]) is obtained.

The main objective is robust reconstruction of all the node states in the network. It is easy to
check the triple(A,D,C) satisfies the Assumptions (1) - (3). The 4-block partition structure in (3)
is then obtained by suitable coordinate transformation. The states of every node of the network are
estimated from the measurement signalsyi using the adaptive sliding mode observer in (5). Here,
one assumption is that each node communicates its output information to the supervisory monitoring
one in order to compute‖ey‖ centrally, since this information is used in the adaptive filter dynamics
in (34) and (36). For implementation purposes the expression in (36) is replaced by an adaptation
law involving a ‘dead-zone’ so thatṙ2(t) = 0 if ‖ey‖ ≤ ǫ otherwiseṙ2(t) = γ‖ey‖ whereǫ is a small
positive scalar. In the simulations which followǫ = 0.0001. The design freedom̃q ∈ IR+ in (14) has
been chosen as unity.
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Figure 2. The states of the adaptive filter dynamics (r1, r2)

Solving the inequalities in (13)-(14), a Lyapunov matrix,P1 is synthesized. Appropriate gains
for the adaptive law in (34) and (36) have been selected asm0 = −1,m1 = 3.0425 andγ = 5. In
(42), the bounds and the design scalars are selected asa21 = 1, γ21 = 0,K1 = 4.3028,K2 = 0 and
r0 = 2. Figure1 shows the entire state estimation errore = Col(e1, . . . , e6). Figure2 shows the
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Figure 3. State estimation of one individual node

statesr1(t) andr2(t) of the adaptive filter dynamics defined in (34) and (36) (shown only for a short
period of time). In Figure2, the adaptation of the gains stops at the time instant sliding occurs. To
demonstrate the efficacy of the proposed scheme, an individual node has been selected randomly
and the true states and the estimated states are shown in Figure3.

5. CONCLUSION

This paper has proposed an adaptive sliding mode observer scheme forrobustly reconstructing
state information in a complex network of dynamical systems. The proposed centralised observer
robustly reconstructs the states in the presence of a varying coupling strength of known bound,
and a class of unknown bounded uncertainties/disturbances. The stabilityconditions derived for the
network observer depend only on the dimensions of a typical individual node in the network. The
design procedure to synthesize the observer gain is formulated as an LMIoptimisation problem and
performed at a node level. As such the number of decision variables is independent of the number of
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nodes in the network. A network of Chua circuits with six nodes is used to demonstrate the novelty
of the proposed approach.
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