2,676 research outputs found

    A heuristic for placement of limited range wavelength converters in all-optical networks

    Get PDF
    Wavelength routed optical networks have emerged as a technology that can effectively utilize the enormous bandwidth of the optical fiber. Wavelength converters play an important role in enhancing the fiber utilization and reducing the overall call blocking probability of the network. As the distortion of the optical signal increases with the increase in the range of wavelength conversion in optical wavelength converters, limited range wavelength conversion assumes importance. Placement of wavelength converters is a NP complete problem [K.C. Lee, V.O.K. Li, IEEE J. Lightwave Technol. 11 (1993) 962-970] in an arbitrary mesh network. In this paper, we investigate heuristics for placing limited range wavelength converters in arbitrary mesh wavelength routed optical networks. The objective is to achieve near optimal placement of limited range wavelength converters resulting in reduced blocking probabilities and low distortion of the optical signal. The proposed heuristic is to place limited range wavelength converters at the most congested nodes, nodes which lie on the long lightpaths and nodes where conversion of optical signals is significantly high. We observe that limited range converters at few nodes can provide almost the entire improvement in the blocking probability as the full range wavelength converters placed at all the nodes. Congestion control in the network is brought about by dynamically adjusting the weights of the channels in the link thereby balancing the load and reducing the average delay of the traffic in the entire network. Simulations have been carried out on a 12-node ring network, 14-node NSFNET, 19-node European Optical Network (EON), 28-node US long haul network, hypothetical 30-node INET network and the results agree with the analysis. (C) 2001 Elsevier Science B.V, All rights reserved

    Optimal multicast routing using genetic algorithm for WDM optical networks

    Get PDF
    We consider the multicast routing problem for large-scale wavelength division multiplexing (WDM) optical networks where transmission re-quests are established by point-to-multipoint connections. To realize multicast routing in WDM optical networks, some nodes need to havelight (optical) splitting capability. A node with splitting capability can forward an incoming message to more than one output link. We con-sider the problem of minimizing the number of split-capable nodes in the network for a given set of multicast requests. The maximum number of wavelengths that can be used is specified a priori. A genetic algorithm is proposed that exploits the combination of alternative shortest paths for the given multicast requests. This algorithm is examined for two realis-tic networks constructed based on the locations of major cities in Ibaraki Prefecture and those in Kanto District in Japan. Our experimental re-sults show that the proposed algorithm can reduce more than 10% of split-capable nodes compared with the case where the split-capable node placement optimization is not performed while the specified number of wavelengths is not exceeded.Includes bibliographical reference

    Investigation of the tolerance of wavelength-routed optical networks to traffic load variations.

    Get PDF
    This thesis focuses on the performance of circuit-switched wavelength-routed optical network with unpredictable traffic pattern variations. This characteristic of optical networks is termed traffic forecast tolerance. First, the increasing volume and heterogeneous nature of data and voice traffic is discussed. The challenges in designing robust optical networks to handle unpredictable traffic statistics are described. Other work relating to the same research issues are discussed. A general methodology to quantify the traffic forecast tolerance of optical networks is presented. A traffic model is proposed to simulate dynamic, non-uniform loads, and used to test wavelength-routed optical networks considering numerous network topologies. The number of wavelengths required and the effect of the routing and wavelength allocation algorithm are investigated. A new method of quantifying the network tolerance is proposed, based on the calculation of the increase in the standard deviation of the blocking probabilities with increasing traffic load non-uniformity. The performance of different networks are calculated and compared. The relationship between physical features of the network topology and traffic forecast tolerance is investigated. A large number of randomly connected networks with different sizes were assessed. It is shown that the average lightpath length and the number of wavelengths required for full interconnection of the nodes in static operation both exhibit a strong correlation with the network tolerance, regardless of the degree of load non-uniformity. Finally, the impact of wavelength conversion on network tolerance is investigated. Wavelength conversion significantly increases the robustness of optical networks to unpredictable traffic variations. In particular, two sparse wavelength conversion schemes are compared and discussed: distributed wavelength conversion and localized wavelength conversion. It is found that the distributed wavelength conversion scheme outperforms localized wavelength conversion scheme, both with uniform loading and in terms of the network tolerance. The results described in this thesis can be used for the analysis and design of reliable WDM optical networks that are robust to future traffic demand variations

    A new proposal of an efficient algorithm for routing and wavelength assignment in optical networks.

    Get PDF
    The routing and wavelength assignment (RWA) algorithms used in optical networks are critical to achieve good network performance. However, despite several previous studies to optimize the RWA, which is classified as an NP-Hard, it seems that there is not, a priori, any solution that would lead to standardization of this process. This article presents the proposed RWA algorithm based on a Generic Objective Function (GOF) which aims to establish a base from which it is possible to develop a standard or multiple standards for optical networks. The GOF algorithm introduces the concept of implicit constraint, which guarantees a simple solution to a problem not as trivial as the RWA

    A tabu search algorithm for sparse placement of wavelength converting nodes in optical networks

    Get PDF
    Cataloged from PDF version of article.All-optical Wavelength Division Multiplexing networks, providing extremely large bandwidths, are among the most promising solutions for the increasing need for high-speed data transport. In all-optical networks, data is transmitted solely in the optical domain along lightpaths from source to destination without being converted into the electronic form, and each lightpath is restricted to use the same wavelength on all the links along its path. This restriction is known as the wavelength continuity constraint. Optical wavelength conversion can increase the performance and capacity of optical networks by removing this restriction and relaxing the wavelength continuity constraint. However, optical wavelength conversion is a difficult and expensive technology. In this study, we analyze the problem of placing limited number of wavelength converting nodes in a multi- fiber network with static traffic demands. Optimum placement of wavelength converting nodes is an NP-complete problem. We propose a tabu search based heuristic algorithm for this problem. The objective of the algorithm is to achieve the performance of full wavelength conversion in terms of minimizing the total number of fibers used in the network by placing minimum number of wavelength converting nodes. Numerical results comparing the performance of the algorithm with the optimum solutions are presented. The proposed algorithm gives quite satisfactory results, it also has a relatively low computational complexity making it applicable to large scale networks.ƞengezer, NamıkM.S

    Cross-layer modeling and optimization of next-generation internet networks

    Get PDF
    Scaling traditional telecommunication networks so that they are able to cope with the volume of future traffic demands and the stringent European Commission (EC) regulations on emissions would entail unaffordable investments. For this very reason, the design of an innovative ultra-high bandwidth power-efficient network architecture is nowadays a bold topic within the research community. So far, the independent evolution of network layers has resulted in isolated, and hence, far-from-optimal contributions, which have eventually led to the issues today's networks are facing such as inefficient energy strategy, limited network scalability and flexibility, reduced network manageability and increased overall network and customer services costs. Consequently, there is currently large consensus among network operators and the research community that cross-layer interaction and coordination is fundamental for the proper architectural design of next-generation Internet networks. This thesis actively contributes to the this goal by addressing the modeling, optimization and performance analysis of a set of potential technologies to be deployed in future cross-layer network architectures. By applying a transversal design approach (i.e., joint consideration of several network layers), we aim for achieving the maximization of the integration of the different network layers involved in each specific problem. To this end, Part I provides a comprehensive evaluation of optical transport networks (OTNs) based on layer 2 (L2) sub-wavelength switching (SWS) technologies, also taking into consideration the impact of physical layer impairments (PLIs) (L0 phenomena). Indeed, the recent and relevant advances in optical technologies have dramatically increased the impact that PLIs have on the optical signal quality, particularly in the context of SWS networks. Then, in Part II of the thesis, we present a set of case studies where it is shown that the application of operations research (OR) methodologies in the desing/planning stage of future cross-layer Internet network architectures leads to the successful joint optimization of key network performance indicators (KPIs) such as cost (i.e., CAPEX/OPEX), resources usage and energy consumption. OR can definitely play an important role by allowing network designers/architects to obtain good near-optimal solutions to real-sized problems within practical running times

    TSCP: A tabu search algorithm for wavelength converting node placement in WDM optical networks

    Get PDF
    Sparse wavelength conversion can increase the performance of all-optical wavelength division multiplexing (WDM) networks signi cantly by relaxing the wavelength continuity constraint. In this paper, we study the wavelength converter placement problem in multi- ber networks with static traf c demands. We present a tabu search based heuristic algorithm. The objective of the algorithm is to satisfy all the traf c demands with the minimum total cost of bers achieved in the full conversion case, by placing minimum number of wavelength converting nodes. We also implement a greedy algorithm and compare the performances of these converter placement algorithms with the optimum solutions on a sample network. The Tabu search based algorithm achieves the optimum solution in 72% of the test cases and it increases the average number of wavelength converting nodes by less than 10% with respect to the optimum solution. The effect of the utilized routing scheme on the generated solutions and the correlation between the converter node locations and the amount of traf c passing through the nodes are also investigated. © 2005 IEEE
    • 

    corecore