1,063 research outputs found

    The BOOMERANG North America Instrument: a balloon-borne bolometric radiometer optimized for measurements of cosmic background radiation anisotropies from 0.3 to 4 degrees

    Get PDF
    We describe the BOOMERANG North America (BNA) instrument, a balloon-borne bolometric radiometer designed to map the Cosmic Microwave Background (CMB) radiation with 0.3 deg resolution over a significant portion of the sky. This receiver employs new technologies in bolometers, readout electronics, millimeter-wave optics and filters, cryogenics, scan and attitude reconstruction. All these subsystems are described in detail in this paper. The system has been fully calibrated in flight using a variety of techniques which are described and compared. It has been able to obtain a measurement of the first peak in the CMB angular power spectrum in a single balloon flight, few hours long, and was a prototype of the BOOMERANG Long Duration Balloon (BLDB) experiment.Comment: 40 pages, 22 figures, submitted to Ap

    Viking '75 spacecraft design and test summary. Volume 1: Lander design

    Get PDF
    The Viking Mars program is summarized. The design of the Viking lander spacecraft is described

    A Balloon-Borne Millimeter-Wave Telescope for Cosmic Microwave Background Anisotropy Measurements

    Get PDF
    We report on the characteristics and design details of the Medium Scale Anisotropy Measurement (MSAM), a millimeter-wave, balloon-borne telescope that has been used to observe anisotropy in the Cosmic Microwave Background Radiation (CMBR) on 0\fdg5 angular scales. The gondola is capable of determining and maintaining absolute orientation to a few arcminutes during a one-night flight. Emphasis is placed on the optical and pointing performance as well as the weight and power budgets. We also discuss the total balloon/gondola mechanical system. The pendulation from this system is a ubiquitous perturbation on the pointing system. A detailed understanding in these areas is needed for developing the next generation of balloon-borne instruments.Comment: 37 pages, 15 figures, uses BoxedEPS.te

    Design of strapdown gyroscopes for a dynamic environment Interim scientific report

    Get PDF
    Error analysis for single degree of freedom integrating gyro, and figure of merit relating gyro errors to orientation error of strapdown inertial reference syste

    Energy efficient control of electrostatically actuated MEMS

    Get PDF
    Plenty of Micro-electro-mechanical Systems (MEMS) devices are actuated using electrostatic forces, and specially, parallel-plate actuators are extensively used, due to the simplicity of their design. Nevertheless, parallel-plate actuators have some limitations due to the nonlinearity of the generated force. The dissertation analyzes the dynamics of the lumped electrostatically actuated nonlinear system, in order to obtain insight on its characteristics, define desired performance goals and implement a controller for energy efficient robustly stable actuation of MEMS resonators. In the first part of the dissertation, the modeling of the electromechanical lumped system is developed. From a complete distributed parameters model for MEMS devices which rely on electrostatic actuation, a concentrated parameters simplification is derived to be used for analysis and control design. Based on the model, energy analysis of the pull-in instability is performed. The classic approach is revisited to extend the results to models with a nonlinear springs. Analysis of the effect of dynamics is studied as an important factor for the stability of the system. From this study, the Resonant Pull-in Condition for parallel-plate electrostatically actuated MEMS resonators is defined and experimentally validated. Given the importance of the nonlinear dynamics and its richness in behaviors, Harmonic Balance is chosen as a tool to characterize the steady-state oscillation of the resonators. This characterization leads to the understanding of the key factors for large and stable oscillation of resonators. An important conclusion is reached, Harmonic Balance predicts that any oscillation amplitude is possible for any desired frequency if the appropriate voltage is applied to the resonator. And the energy consumption is dependent on this chosen oscillation frequency. Based on Harmonic Balance results, four main goals are defined for the control strategy: Stable oscillation with large amplitudes of motion; Robust oscillation independently of MEMS imperfections; Pure sinus-like oscillation for high-grade sensing; and Low energy consumption. The second part of the dissertation deals with the controller selection, design and verification. A survey of prior work on MEMS control confirms that existing control approaches cannot provide the desired performance. Consequently, a new three-stage controller is proposed to obtain the desired oscillation with the expected stability and energy efficiency. The controller has three different control loops. The first control loop includes a Robust controller designed using on µ-synthesis, to deal with MEMS resonators uncertainties. The second control loop includes an Internal-Model-Principle Resonant controller, to generate the desired control action to obtain the desired oscillation. And the third control loop handles the energy consumption minimization through an Extremum Seeking Controller, which selects the most efficient working frequency for the desired oscillation. The proposed controller is able to automatically generate the needed control voltage, as predicted by the Harmonic Balance analysis, to operate the parallel-plate electrostatically actuated MEMS resonator at the desired oscillation. Performance verification of stability, robustness, sinus-like oscillation and energy efficiency is carried out through simulation. Finally, the needed steps for a real implementation are analyzed. Independent two-sided actuation for full-range amplitude oscillation is introduced to overcome the limitations of one-sided actuation. And a modification of standard Electromechanical Amplitude Modulation is analyzed and validated for position feedback implementation. With these improvements, a MEMS resonator with the desired specifications for testing the proposed control is designed for fabrication. Based on this design, testing procedure is discussed as future work.Molts microsistemes (MEMS) són actuats amb forces electrostàtiques, i especialment, els actuadors electrostàtics de plaques paral.leles són molt usats, degut a la simplicitat del seu disseny. Tot i això, aquests actuadors tenen limitacions degut a la no-linealitat de les forces generades. La tesi analitza el sistema mecànic no-lineal actuat electrostàticament que forma el MEMS, per tal d'entendre'n les característiques, definir objectius de control de l'oscil.lació, i implementar un controlador robust, estable i eficient energèticament. A la primera part de la tesi es desenvolupa el modelat del sistema electromecànic complert. A partir de la formulació de paràmetres distribuïts aplicada a dispositius MEMS amb actuació electrostàtica, es deriva una formulació de paràmetres concentrats per a l'anàlisi i el disseny del control. Basat en aquest model, s'analitza energèticament la inestabilitat anomenada Pull-in, ampliant els resultats de l'enfocament clàssic al model amb motlles no-lineals. Dins de l'anàlisi, l'evolució dinàmica s'estudia per ser un factor important per a l'estabilitat. D'aquest estudi, la Resonant Pull-in Condition per a actuadors electrostàtics de plaques paral.leles es defineix i es valida experimentalment. Donada la importància de la dinàmica no-lineal del sistema i la seva riquesa de comportaments, s'utilitza Balanç d'Harmònics per tal de caracteritzar les oscil.lacions en estacionari. Aquesta caracterització permet entendre els factors claus per a obtenir oscil.lacions estables i d'amplitud elevada. El Balanç d'Harmònics dóna una conclusió important: qualsevol amplitud d'oscil.lació és possible per a qualsevol freqüència desitjada si s'aplica el voltatge adequat al ressonador. I el consum energètic associat a aquesta oscil.lació depèn de la freqüència triada. Llavors, basat en aquests resultats, quatre objectius es plantegen per a l'estratègia de control: oscil.lació estable amb amplituds elevades; robustesa de l'oscil.lació independentment de les imperfeccions dels MEMS; oscil.lació sinusoïdal sense harmònics per a aplicacions d'alta precisió; i baix consum energètic. La segona part de la tesi tracta la selecció, disseny i verificació dun controlador adequat per a aquests objectius. La revisió dels treballs existents en control de MEMS confirma que cap dels enfocaments actuals permet obtenir els objectius desitjats. En conseqüència, es proposa el disseny d'un nou controlador amb tres etapes per tal d'obtenir l'oscil.lació desitjada amb estabilitat i eficiència energètica. El controlador té tres llaços de control. Al primer llaç, un controlador robust dissenyat amb µ-síntesis gestiona les incertes es dels MEMS. El segon llaç inclou un controlador Ressonant, basat en el Principi del Model Intern, per a generar l'acció de control necessària per a obtenir l'oscil.lació desitjada. I el tercer llaç de control gestiona la minimització de l'energia consumida mitjançant un controlador basat en Extremum Seeking, el qual selecciona la freqüència de treball més eficient energèticament per a l'oscil.lació triada. El controlador proposat és capaç de generar automàticament el voltatge necessari, igual al previst pel Balanç d'Harmònics, per tal d'operar electrostàticament amb plaques paral.leles els ressonadors MEMS. Mitjançant simulació se'n verifica l'estabilitat, robustesa, inexistència d'harmònics i eficiència energètica de l'oscil.lació. Finalment, la implementació real és analitzada. En primer lloc, un nou esquema d'actuació per dos costats amb voltatges independents es proposa per aconseguir l'oscil.lació del ressonador en tot el rang d'amplituds. I en segon lloc, una modificació del sensat amb Modulació d'Amplitud Electromecànica s'utilitza per tancar el llaç de control de posició. Amb aquestes millores, un ressonador MEMS es dissenya per a ser fabricat i validar el control. Basat en aquest disseny, es proposa un procediment de test plantejat com a treball futur.Postprint (published version

    Integrated interface electronics for capacitive MEMS inertial sensors

    Get PDF
    This thesis is composed of 13 publications and an overview of the research topic, which also summarizes the work. The research presented in this thesis concentrates on integrated circuits for the realization of interface electronics for capacitive MEMS (micro-electro-mechanical system) inertial sensors, i.e. accelerometers and gyroscopes. The research focuses on circuit techniques for capacitive detection and actuation and on high-voltage and clock generation within the sensor interface. Characteristics of capacitive accelerometers and gyroscopes and the electronic circuits for accessing the capacitive information in open- and closed-loop configurations are introduced in the thesis. One part of the experimental work, an accelerometer, is realized as a continuous-time closed-loop sensor, and is capable of achieving sub-micro-g resolution. The interface electronics is implemented in a 0.7-µm high-voltage technology. It consists of a force feedback loop, clock generation circuits, and a digitizer. Another part of the experimental work, an analog 2-axis gyroscope, is optimized not only for noise, but predominantly for low power consumption and a small chip area. The implementation includes a pseudo-continuous-time sense readout, analog continuous-time drive loop, phase-locked loop (PLL) for clock generation, and high-voltage circuits for electrostatic excitation and high-voltage detection. The interface is implemented in a 0.35-µm high-voltage technology within an active area of 2.5 mm². The gyroscope achieves a spot noise of 0.015 °/s/√H̅z̅ for the x-axis and 0.041 °/s/√H̅z̅ for the y-axis. Coherent demodulation and discrete-time signal processing are often an important part of the sensors and also typical examples that require clock signals. Thus, clock generation within the sensor interfaces is also reviewed. The related experimental work includes two integrated charge pump PLLs, which are optimized for compact realization but also considered with regard to their noise performance. Finally, this thesis discusses fully integrated high-voltage generation, which allows a higher electrostatic force and signal current in capacitive sensors. Open- and closed-loop Dickson charge pumps and high-voltage amplifiers have been realized fully on-chip, with the focus being on optimizing the chip area and on generating precise spurious free high-voltage signals up to 27 V

    Fixed-wing MAV attitude stability in atmospheric turbulence, part 1: Suitability of conventional sensors

    Get PDF
    Fixed-wing Micro-Aerial Vehicles (MAVs) need effective sensors that can rapidly detect turbulence induced motion perturbations. Current MAV attitude control systems rely on inertial sensors. These systems can be described as reactive; detecting the disturbance only after the aircraft has responded to the disturbing phenomena. In this part of the paper, the current state of the art in reactive attitude sensing for fixed-wing MAVs are reviewed. A scheme for classifying the range of existing and emerging sensing techniques is presented. The features and performance of the sensing approaches are discussed in the context of their application to MAV attitude control systems in turbulent environments. It is found that the use of single sensors is insufficient for MAV control in the presence of turbulence and that potential gains can be realised from multi-sensor systems. A successive paper to be published in this journal will investigate novel attitude sensors which have the potential to improve attitude control of MAVs in Turbulenc

    Vibration resistance, vibration testing, vibration monitoring and diagnostics of gyroscopes and other rotary systems

    Get PDF
    This article is devoted to the presentation in a historical development of the results achieved, founded by M.A. Pavlovsky scientific directions related to the study of vibration processes in rotary systemsДана стаття присвячена викладенню в історичному розвитку досягнутих результатів, започаткованих М.А.Павловським наукового напряму, пов’язаного з вивченням коливальних процесів в обертових системах

    ISWEC toward the sea - Development, Optimization and Testing of the Device Control Architecture

    Get PDF
    The work performed in this thesis is part of the ISWEC project. This is a floating device devoted to the conversion of the kinetic energy owned by the sea waves. The passage between a technology readiness level (TRL) of 4 up to a TRL of 6 is covered. The existing numerical model has been revised, validated and upgraded. The experimental data used come both from previous collected data and both from the one gathered during a MARINET founded project in Hydraulics and Maritime Research Center (HMRC) in Cork, Ireland (2014). During the last year also the data coming from the full scale experiments in Pantelleria, Italy, (2015) has been processed. The design and implementation of the device Supervisory Control And Data Acquisition system has been a relevant part of the doctorate activities. Several power harvesting control strategies for the ISWEC have been investigated and their productivity for the Pantelleria installation site computed. A comparison is presented. Some preliminary results of the 2015 experimental campaign are presented and a first comparison with the data obtained with the numerical models has been carried on
    corecore