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FOREWORD

It has been stated (Ref. 20) that the major obstacle to the realiza-

tion of practical gimballess inertial reference equipment is the lack of inertial

instruments specifically designed for this application. This report is directed

to the design of single-degree-of-freedom integrating gyros and associated torqu-

ing loop parameters, specifically for the strapdown application. It contains the

results of preliminary studies conducted to ascertain the basis for parameter

design trade-offs in single-degree-of-freedom gyros for use in strapdown iner-

tial reference systems.

This document is an Interim Scientific Report of research by The

Analytic Sciences Corporation for Electronics Research Center, Cambridge,

Massachusetts, under contract NAS 12-508. The work was performed by

Drs. Arthur Gelb and Arthur A. Sutherland, Jr. of The Analytic Sciences

Corporation. Prof. Wallace E. Vander Velde, M.I.T. Department of Aero-

nautics and Astronautics, consulted during the program.
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ABSTRACT

A detailed error model is presented for the single-degree-of-

freedom integrating gyro and the possibility of environmental vibrations gene-

rating sizeable constant drift rates in this instrument is demonstrated. A

figure-of-merit relating gyro errors to the orientation error of the strapdown

inertial reference system, independent of the transformation computations, is

presented. An equation describing the behavior of this quantity as a function

of the gyro histories is developed and exercised. Minimization of this figure-

of-merit is a rational basis for the design of strapdown gyros.

The question of error compensation is treated, based on the use of

information derived from the gyros under consideration, as well as from addi-

tional sensors. In this connection, a scheme for gyro monitoring is advanced.

Two simplified strapdown gyro design examples are presented, in which the

binary torqued rebalance loop is characterized using a quasi-linearization de-

scription and random vibrational motions are described through a simple ap-

proximation. In minimizing the figure-of-merit, the optimized gyro designs

are shown to be mission (i. e., environment) dependent.
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SUMMARY

Strapdown inertial measurement units, in which the sensors are

rigidly attached to the vehicle, offer many potential advantages over their

gimballed counterparts° These include: less weight, lower power consump-

tion, more flexible packaging, easier assembly and maintenance, as well as

lower cost and improved reliability. On the other hand, in the strapdown sys-

tem a greater burden is placed on the sensors and computational facilities.

This report is oriented towards a major aspect of the sensor problem - reduc-

tion of strapdown system errors caused by gyros.

As a result of body mounting, vehicle rotational motions are trans-

mitted directly to the gyros, forcing consideration of many error terms which

are of little relative importance when stabilized platforms are used. The gyro

float rebalance loop and coordinate transformation calculation required in

strapdown systems also provide mechanisms for the generation of important

gyro-caused system errors. All of these errors must be considered in the

course of developing high accuracy strapdown inertial reference systems.

One question that arises is "What gyro and loop parameters are at

the disposal of the designer, and how should they be chosen to optimize the per-

formance of the single-degree-of-freedom integrating gyro subsystem ?"

These parameters include: damping coefficient, rotor and gimbal moments of

inertia, rotor speed, maximum driving torque, loop sampling frequency, non-

linearity dead-band, and so on. They are not necessarily free for independent

choice. Further, the error measure to be used in choosing these parameters

is a matter which has not been adequately treated. In addition, the possibility

for active compensation of gyro errors bears heavily on the best choice of gyro

design parameters.
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In addressing the problem of strapdown gyro design, this report

first provides a comprehensive review of the most important single-degree-

of-freedom strapdown gyro error sources. It is demonstrated that errors

caused by the strapdown rotational environment can be considerably larger than

those of principal interest when gimballed platforms are used° Continuous

torqued, linear rebalance loops are discussed, and torquing error and loop

bandwidth calculations are made. Binary and ternary pulse torqued rebalance

loops are also treated, with torquing error, limit cycle behavior and loop

bandwidth receiving special attention. It is shown that torquer dynamic charac-

teristics, as well as static characteristics, need be carefully specified in an

optimized gyro. In particular, for the binary-torqued rebalance loop studied,

gyro bandwidth varies inversely as the square-root of the torquer time con-

stant.

With the goal of optimizing gyro parameter design in mind, a con-

nection is established between system errors and gyro loop errors° This

figure-of-merit relates the performance of gyros to the accuracy of a strap-

down inertial reference system, independent of the details of the transforma-

tion computation, thereby providing a generalized measure of the effectiveness

of strapdown gyros. It allows the calculation of system attitude error build-

up by direct manipulation of time series of gyro errors and vehicle motions

without requiring a simulation of the transformation matrix calculations. Mini-

mization of this figure-of-merit is one rational basis for the design of strap-

down gyros.

Several schemes for compensating motion-induced gyro errors are

considered, including: self-compensation through the use of the three gyro

outputs, use of special angular motion sensors, a new form of gyro monitor-

ing, and gyro rebalance loop dynamic compensation, with the advantages and

disadvantages of each technique discussed. The rebalance loop limit cycle is

shown to be a potential source of large error, and removal of limit cycles

vii
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from the output of pulse torqued gyros is treated. Using approximations

developed during the course of the Phase I effort, two design examples are

presented. They illustrate an approach to the determination of the optimum

set of single-degree-of-feeedom gyro physical parameters. In addition, they

permit evaluation of the effects of various compensation schemes on the opti-

mum choice of parameters°

Foremost among the conclusions drawn in this report is that a

practical limit exists on the error reduction obtainable solely through gyro

parameter manipulation; active compensation, using external sensors and/or

information available in the strapdown gyro triad, appears necessary for most

missions. Thus, active error compensation must be considered integral to the

strapdown single-degree-of-freedom gyro design problem, with such compen-

sation chosen to favor those errors which cannot be reduced by gyro parameter

manipulation. An equally important conclusion is that the presence of motion-

induced errors precludes use of the static testing procedures common for

platform gyros. Strapdown gyros must be subjected to dynamic testing.
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0 INTRODUCTION

1.1 GYROSCOPES

Gyroscopes are angular motion sensors. They are commonly based

on the use of a spinning member, the rotor, as the sensing element. All gyro-

scopes can be classified under two major groups: single-degree-of-freedom

gyros and two-degree-of-freedom gyros. The two-degree-of-freedom gyro

senses angular motion directly, by measuring the displacement of the rotor

spin axis relative to the case. The rotor may be mounted in mechanical gim-

bals, or may be supported by electric or magnetic fields as in the electrostatic-

ally suspended vacuum gyro and cryogenic gyro•

In the case of the single-degree-of-freedom gyro the spinning rotor

is mounted in a gimbal which allows it only one degree-of-freedom relative to

the case. See Fig. 1.1-1. The equation of motion of an "ideal" single-degree-

of-freedom gyro can be determined by equating reaction torques about the out-

put axis to the "applied" gyroscopic precession torque which results from case

motion about the input axis, viz:

o• •

Ioo(X o+ C(x o+K(x ° =H_i (i.I-I)

where

s o = gimbal-to-case angle about the output axis

Ioo = rotor plus gimbal moment of inertia (dyne-cm/rad/sec _)

*Notable exceptions are the laser gyro and tuning fork gyro, among others.
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C = viscous damping coefficient (dyne-cm/rad/sec)

K = spring constant (dyne-cm/rad)

H = rotor angular momentum

_. = angular rate of the case about input axis
l

As indicated by Eq. (1.1-1), in the absence of motion about other axes, a con-

stant value of _i results in the following steady-state value of a o"

H
ao K 1

Hence, this gyro is referred to as a rate gyro, as the gimbal angle is a direct

measure of case rate° In the situation where K = 0, we get a steady-state

gimbal angle rate,

• H

{_o C

Thus, gimbal angle is related directly to the integral of the input rate, and

this gyro is therefore called a rate integrating gyro° By mounting the gyro

rotor in an enclosure which serves as the gimbal and floating the whole as-

sembly in a fluid of appropriate density, the gyro output axis bearings are un-

loaded and thus some uncertainty torques are minimized. This configuration,

called the floated rate integrating gyro, is extensively used for very high ac-

curacy applications such as inertial navigation.

In gimballed platform applications, the gyro float angle, ao, is

continuously nulled by platform gimbal servo action. In strapdown system ap-

plications, the gyro float angle is hulled by the application of a torque gene-

rated by passing an electric current through the windings of an output axis

torquer. The current, which may be continuous (analog) or a series of pulses

(digital), is derived from a measurement of the float angle. The closed loop

comprised of float dynamics, float angle pick-off, torquing electronics

I
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I
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Spin Reference
Axis(s)

Output Axis

(o)

Rotor

Input Axis
(i)

Figure 1.1-1. Single-Degree-of-Freedom Gyro
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and output axis torquer is called the rebalance loop. The rebalance current is

taken as a measure of input rate (for continuous torqued gyros) or incremental

input angle (for pulse torqued gyros). Figure 1° 1-2 shows a general schematic

diagram of a strapdown gyro rebalance loop.

1.2 STRAPDOWN GYRO DESIGN

Strapdown single-degree-of-freedom gyros display many different

kinds of errors. There are those which would be found in a gimballed system

application, where the gyro is isolated from vehicle rotational motions. But

there also exists a whole new class of errors specifically due to the interaction

of the strapdown gyro with its rotational environment, as well as others due to

both the rebalance loop mechanization and the computational process which

operates on the gyro output signals° To draw proper conclusions relative to

strapdown gyro design, it is necessary to realize that certain kinds of gyro

errors will be more important than others, as their effects are viewed in the

strapdown system output error° What is needed is a system level performance

measure for the gyro-originated errors. Furthermore, the possibilities for

error compensation should be accounted for in the design of strapdown gyros,

so that gyro design parameters can be chosen to favor those errors which can-

not be well compensated. Elements of the design problem are illustrated in

Fig. 1.2-1o

4
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Single-degree-of-freedom integrating gyro
I-"
I
I

Rotor

Angular
Momentum

_i H

I
I "Input"
I Gyroscopic

I Torque
I
I
I
I
I
I
I
I
I
I

Disturbance

Torque M d

Rebalance

Torque

F r

Float

Dynamics

Signal
Gen-
erator

Ksg

Torque I
Generator

Ktg ,

Analog or digital

torquing electronics
1

I I

I
I
I

I
I
I
I

i

I
I

I

..I l

Figure 1.1-2. Strapdown Gyro Rebalance Loop Schematic.
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Performance
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Figure 1.2-1 Strapdown Gyro Design Problem
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e STRAPDOWN SINGLE-DEGREE-OF-FREEDOM

GYRO ERROR MODEL

2.1 GYRO ERROR MODEL

Gyro drift rate results from unwanted torques on the float. For refer-

ence purposes the various types of torques are displayed in Fig. 2.1-1. The

nomenclature used in this figure as well as in subsequent sections is presented

below. In each case the subscripts o, i, s refer to output, input and spin axes,

respectively.

a o, a i, a s

°_o' _i' _s

_o,_i,_s

_O _ Qti,/_ S

_o' _ i

Ioo, Iii, Iss

Ioo ,Iii 'Iss
r r r

Ios , Ioi , Isi
g g g

= case linear accelerations

= case angular rates

= case angular accelerations

= gimbal-to-case angular misalignments

= rotor-to- gimbal angular misalignments

= float moments of inertia (including gimbal
and rotor components)

= rotor moments of inertia

= gimbal products of inertia

9s = rotor spin rate relative to the gimbal

H = Iss _s
r

We now proceed to a discussion of the various torques and their origins.

7
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2.2 ANGULAR MOTION TORQUES

The torques due to rigid body rotational motion are derived in

Appendix A, the result of which is presented below for convenience:

[Mr] o' = Ioo(_o+ ¢bo) + (Iii- Iss) WsWi - H w i

+ Ios [¢b s- WoWi]
g

+ Ioi [¢b i+wow s ]
g

+ Isig[W2s - wi_

2 2
+ C_o[ (Iss - Iii)(Ws - wi ) + HWs]

+ Ots[-(Iss- Iii) WoWs - Hw ° - Ioo_i]

+ oti[ (Iss - Iii) WoWi + Ioo ¢_s]

2_
+ 80 [(Iss - Iii )(Ws wi_ +Hws]

r r

+ _i[(Iss - Ioo ) (-¢b s + WoW i) - Iss
r r r

5s] (2.2-1)

In the strapdown system mechanization, gyro float angle off null is interpreted

in terms of case motion about the input axis. Thus, terms other than -Hw i on

the right hand side of Eq. (2.2-1) must be regarded as error torques. The

first term, Ioo_o, is the inertial reaction corresponding to gimbal-to-case

angular acceleration. In combination with float viscous damping torque, C _o'

it is responsible for the basic gyro time constant, and appears in the "ideal"

gyro model of Eq° (1. 1-1). Other entries, such as rebalance loop applied

torque and random error torques, complete the description of float torques.
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2.2. 1 Output Axis Acceleration

This term results from case motion about the output axis.

given by

It is

output axis angular
acceleration torque = Ioocoo (2.2-2)

and is one of the larger error contributors in strapdown system mechaniza-

tions (see Sec. 3. 3). Several schemes for compensation of this error are

discussed in Chapter 4.

2.2. 2 Cross-Coupling

Cross-coupling error torques are due to float angles off null. The

cross-coupling terms in Eqo (2.2-1) are:

cross-coupling 2 2
- ( s-coi)torques - ao[ (Iss-Iii) + Hcos] (2.2- 3)

The first term is commonly called anisoinertia coupling° The second term is

often referred to as cross-coupling, and results from a portion of the case

rate about the spin reference axis being applied along the actual gimbal input

axis°

It is easily demonstrated that the cross-coupling term can result

in a rectified gyro float torque. Consider the following case input rates:

co. =W. sinwt
1 1

coo = Wi sin (wt + 70 )

cos = W s sin (wt + _,s ) (2.2-4)

10
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Presuming that the dominant torques acting on the float are given by

dominant
float torques _ Ioo _o - H°_i

it can be seen that for a linear, continuous rebalance loop the steady-state

float angle response can (approximately) be expressed as a combination of

sinusoids, each at frequency w. Thus, writing the float angle as the linear

rebalance loop response to the dominant float torques yields

So(t) - WiLl(W ) sin (wt + AI(W)) + w WoL2(w) sin (wt + A2(w)) (2.2-5)

where

H

(KsgKtgKl-IooW2)2 + (Cw)2

kl(W) = - tan-
1 Cw

2
KsgKtgKl" Ioow

and

I
OO

L2(w) - H LI(W)

Ir

(w) - (w)+

and K 1 represents the gain of linear torquing electronics in Fig. 1. 1-2.

The second term in Eq. (2.2-5), proportional to w, is the float response to

output axis angular acceleration. From Eqs. (2. 2-5) and (2. 2-3) it can be

seen that the cross-coupling term results in a non-zero average value

11
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\

(i. e., rectified) torque. It is given by

average cross-
coupling torque

HW
S

m

[WiLl(W) cos ill(W) 'rs ] + w WoL2(w) cos (k2(w)-Ys) ]

The first term in this equation is called spin-output rectification, and the

second is called spin-input rectification.

2. 2.3 Anisoinertia-Rotor Speed Loop

Conventionally, the anisoinertia torque has been taken as the term

(Iii-Iss) coscoi appearing in Eq. (2.2-1). But proper consideration of this term

requires simultaneous treatment of rotor speed errors. This is shown in the

following.

The rotor is driven by a hysteresis synchronous motor. When

rotating in synchronism, the torque applied to the rotor is proportional to the

phase difference between the rotor and the rotating field. This leads to the

simplified rotor speed error model illustrated in Fig. 2. 2-1, where cos is the

input and 5 _ is the output. In Laplace transform notation, we get (friction and

windage torques, which are relatively small, are neglected):

s 2
5_2(s) = - 2 cos(S) (2.2-6)

s + Kh/Iss
r

Considering the "ideal" gyroscopic torque to be -Hcoi, or, equiva-

lently, -Iss _sWi , it can be seen that a rotor speed error leads to the following

error torque:

rotor speed 8_ w i
error torque = - Iss r

12
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1/Iss
r

Friction and Windage |

TorqueEffects,lnc_._._rementa111

F--
Kh _.

S

_=

Kh=

angular velocity of case about spin reference axis

change in rotor speed relative to the gimbal

torque constant (hysteresis synchronous motor),
dyne-cm/rad

Figure 2.2-1. Error Model of Rotor Speed Control Loop.
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Thus, the effective anisoinertia error torque can be written as

effective

anisoinertia = (Iii-Iss) _s_i- Iss 5_
error torque r

(2.2- 7)

The importance of the additional term can be seen by considering

two limiting cases° First, assume Ws to be slowly varying that 8_ --- 0 at all

times. From Eq. (2. 2-7) we get

anisoinertia - (Iii- Iss ) _s_i (2.2-8)error torque

Eliminating this term thus becomes a matter of setting Iii and Iss equal. Since

Iii = Iii + Iii and Iss = Iss + Iss (2.2-9)
g r g r

an inertially asymmetric rotor leads to the requirement for an inertially

asymmetric gimbal.

Next, consider the situation where Ws is varying so rapidly that the

speed control loop can not follow it at all. That is, 5_ _ -_s" From

Eq. (2. 2-7) we now get

anisoinertia - Iss) _s_i + _s wi
error torque = (Iii Iss r

= (Iii- Issg ) Ws_i (2.2-10)

Eliminating this error torque places different requirements on gimbal and

rotor inertias. This effect can be argued physically by observing that the

14
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gyro rotor is essentially uncoupled (about the spin axis) from the rest of the

instrument when high angular rates occur about the spin axis. As a result of

this uncoupling, the inertia of the rotor about the spin axis does not contribute

to float error torques.

Of course, the changing effective anisoinertia term is a problem

when attempts are made to reduce gyro error torques. For the input rates

described in Eq. (2.2-4), it is readily shown that Eqs. (2.2-6) and (2.2-7)

yield a rectified torque term given by:

average effective
anisoinertia torque I /. Kh/Issr _WW.

Iii-Issg+Iss r tw,2_Kh/isSr _--_

cos Ys

(2.2-11)

The frequency sensitive nature of this term is apparent.

2. 2.4 Gimbal Products of Inertia

While they are probably small relative to other torques on an

instantaneous basis, gimbal product of inertia terms can nevertheless be

responsible for rectified float torques as well. The product of inertia terms

are, from Eq. (2.2-1),

gimbal product of --I

inertia torques OSg g

+ Ioi [ dJi + a_oa_s]
g

(2.2-12)
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When subjected to the case angular rates described by Eq. (2° 2-4), the non-

zero average value of the gimbal product of inertia torques is

average gimbal 1
product of = _ [-Ios
inertia torque g

WoW i cos ro

+ Isi (W2s-W_) + Ioi WoWsCOS (_o-_,S) ] (2o2-13)
g g

2. 2.5 Gimbal and Rotor Misalignment

We have already discussed the error torques due to gimbal-to-case

misalignment about the output axis (a ° ). There are also important torques

due to gimbal-to-case misalignments about the spin and input axes, as well as

rotor-to-gimbal misalignments about the input and output axes. Rotor-to-

gimbal misalignment about the spin axis is of no significance. The pertinent

error torques are, from Eq. (2.2-1),

and

gimbal- to- case
misalignment

torques
= _ s[-(Iss- Iii) OJoO_s - H o_o- Ioo &i]

+ _i [ (Iss- Iii) °_o°: i ÷ Ioo _s ] (2. 2-14)

rotor-to- gimbal

misalignment
torques

2 o_) H
= Go[ (Iss r- Iiir) (°° s- + 00s]

I ) (-Cbs+O_oO_i)-Iss _S]
+ Si[(Issr- °°r r

(2°2-15)

where the misalignment angles are all treated as small and constant. The

terms in these equations are similar in origin to others already discussed°
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There are anisoinertia terms, cross-coupling terms, anisoinertia coupling

terms, case angular-acceleration terms due to cross-coupling, and rotor

speed error terms. In the presence of constant angular rates or accelerations

for long durations, these terms can be quite significant.

When subjected to the case angular rates described by Eq. (2. 2-4),

the non-zero average value of the misalignment terms is as follows:

average value of a s
misalignment = - -_

torques

1

+-_-

(Iss-Iii)WoW s cos (Yo- Ys)

(Iss-lii) WoW i cos 7'0

+-_ ( ss ii
r r

+ _ (Iss - Ioo ) WoW i cos _'o (2.2-16)
r r

These terms can be expected to be small.

Suspension System Design - The gimbal and rotor misalignment

errors have, in addition to a constant portion resulting from imperfect gyro

construction, time varying characteristics which result from radial and axial

suspension system compliance. These additional contributions are generated

by gyroscopic torques due to output axis angular rates and inertia torques

caused by angular accelerations. They can provide motion-induced error

torques over and above those shown in Eq. (2. 2-16) for constant misalignment.

When designing suspension systems for the rotor and gimbals these errors

must be computed and sufficient stiffness provided to keep them within

acceptable limits.

17



F

THE ANALYTIC SCIENCES CORPORATION

2.2.6 Coning Errors

Gyro errors result when the sensor outputs are used to represent

quantities which they only approximate. An example already treated is the

cross-coupling error of a single-degree-of-freedom gyro. This error arises

because the torque on the float is assumed to be caused by the angular rate

about a case-fixed axis while it is actually the result of the rate about a

slightly displaced gimbal-fixed axis.

A gyro error of similar origin arises in the gimballed platform use

of a single-degree-of-freedom rate integrating gyro. If angular vibrations are

applied to the inertial system at a frequency higher than the bandwidth of the

motion isolation system (gimbal servo loops), the platform experiences

oscillatory angular motiom In that case the gyro input axis changes spacial

orientation and the integral of inertial angular rate about this sensor-fixed

axis does not necessarily represent the rotation angle about its nominal

direction.

Coning errors take their name from the fact that the motion

commonly used to demonstrate them is one in which the gyro input axis

describes a cone in space. It has been demonstrated (Ref. 1) that such a

"coning" motion is generated and the gyro periodically returns to its original

spacial orientation only under certain circumstances. This motion is

described by one angular vibration about a space fixed axis perpendicular to

the axis of the cone and another about an axis fixed in the gyro, essentially

orthogonal to the first vibration and to the gyro input axis. If we consider

only small amplitude vibrations, the angular rate of the gyro case relative

to inertial space for this motion can be written as

-_IC =

18
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where

v = A. sin wt
1

describes vibration about the space-fixed axis and

T} = A 2 sin(wt + g/)

describes vibration about the axis fixed in the gyro. The vector __WiCis

resolved in the gyro case coordinates. The inertial angular rate about the

gyro input axis, _, integrated over one period of vibration, indicates an

apparent reorientation angle:

p= _ A1A 2 sin_ (2.2-17)

But this is an error because we know the motion prescribed causes no net

reorientation over one vibration period. The error results from integrating

the angular rate projection along the gyro input axis while it describes a cone

and using the result to imply a rotation about some axis which is assumed

fixed in space.

2.2.7 Rotational Compliance

The gyro model employed in previous sections implicitly assumes

one rotational degree-of-freedom about the spin axis, and that the rotor is

otherwise rigidly connected to the float structure. Similarly, one rotational

degree of freedom was assumed about the output axis and that the float is

otherwise rigidly connected to the case. In a real gyroscope, however, there

does exist finite compliance between the rotor and the float as well as between

the float and the case. These additional degrees of freedom are responsible

for high frequency resonant phenomena in the gyroscope. A discussion of
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suitable spring-mass models for the compliance effects can be found in Ref. 1.

For our present purposes it is sufficient to recognize the existence of these

terms, and to note that the resonant frequencies involved bracket the structural

natural frequency given by:

(COn)r =

where K is the spring constant between the rotor and gimbal about the input

(output) axis, in dyne-cm/rad. This frequency is typically on the order of

400 or more Hz. The potential effect of rotational compliance on limit cycle

frequencies is discussed in Appendix F.

2. 2.8 Rotor Dynamic Unbalance

A disturbance torque about the gyro output axis can result if the

rotor does not have perfect dynamic balance. This effect occurs only at the

rotor spin frequency and is independent of the environment. However, it does

have some bearing on compensation schemes within the gyro loop. The torque

enters the loop as a disturbance at rotor spin frequency and care must be taken

not to provide a high gain at that frequency when placing compensation in the

rebalance loop. Rotor dynamic imbalance in two gyros is a potential source

of system coning error.
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2. 3 LINEAR ACCELERATION TOI_UES

Gyro torques produced by linear case accelerations occur in

gimballed as well as strapdown systems. For purposes of discussion, these

terms are grouped under the headings of Mass Unbalance and Linear

Compliance.

2. 3.1 Mass Unbalance

Mass unbalance torque is caused by a displacement between the

output axis and the float center of mass. If we call 8 s and 8i the displacement

components along the spin and input axes, respectively, then the output axis

mass unbalance torque can be written as (see Fig. 2.3-1)

mass unbalance = m(8 x a) • o
torque

= m(8 sai - 8 ias ) (2. s-i)

where o is a unit vector along the output axis

_5 = 5 s and a =

5 i

There exists another torque which, although not a mass unbalance term, is

proportional to the first power of acceleration along the output axis. Hence,

it is included in this section. It is attributed to damping fluid thermal

convection currents resulting from a temperature gradient and an acceleration

field along the output axis. For uniformity with Eq. (2.3-1) this term can be

written in the form

thermal

convection = m 8 0 a°
torque

(2. s-2)
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2. 3. 2 Linear Compliance

Consider the linear compliance matrix

Koo Kos i J
[K] = KSO KSS ::il (2,_ _)

Kio Kis Kii

where the first and second subscripts denote the directions of deflection and

applied specific force, respectively. The linear compliance coefficients

account for the net effect of both rotor and gimbal deflectiom Terms with the

same subscripts are called direct-compliances, while terms with different

subscripts are called cross-compliances. It follows from the definition of the

compliance matrix that, for slowly varying inputs,

_5 = m [K] a (2. 3-4)

As in the case of mass unbalance, we compute the linear compliance torque

about the float output axis in the form

A

linear compliance = m(8 x a) • o
torque - -

= m2[Ksoaoai + Ksi a_ + (Kss-Kii) aias

- Kioaoas- Kis a2]s (2.3-5)

The quantity (Kss-Kii)aia s, similar in form to the anisoinertia terms of

Section 2. 2, is called the anisoelastic torque. Observe that each of the terms

in Eq. (2. 3-5) can produce a non-zero average value torque for identical

frequency inputs.
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It is to be noted that, for high frequency vibration inputs, the

dynamic counterpart to Eq. (2.3-4) must be employed. In this spring-mass

linear compliance system, resonance phenomena are, of course, encountered.

Discussion of these phenomena can be found in Ref. 2.

Finally, there exists a float torque which cannot be described in

terms of rotation or acceleration. It is the random torque responsible for the

drift rate which is a limiting factor in cruise type gimbaUed platform systems.

As we shall see, it can be quite small in comparison with other error terms

in strapdown single-degree-of-freedom gyros.

spin axis

S

output axis

a o

i nput axis

Figure 2.3-1. Mass Unbalance Terms for the Float Assembly
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i

2.4 REBALANCE LOOP ERRORS

In holding the gyro float angle close to null the rebalance loop

generates information which represents input angular velocity. One

important aspect of strapdown gyro design is to provide a torquing system

which has the required accuracy throughout the range of input rates anticipated.

Required dynamic range can be defined in terms of input rate (wi) and

allowable error rate (We) as

re u,r  dynamic _ (deg _ k,-h-r"J x 3600
range input rate, w i \s--_/

(2.4-1)

This relationship has been plotted in Fig. 2.4-1. Estimates as to the

operational accuracy of analog and digital torquing systems are better than

100 PPM and 10 PPM, respectively. As an illustration of the severity of the

problem, consider the case where an input rate of 3 deg/sec is to be

measured within an error corresponding to 0.01 deg/hr. The required

dynamic range is better than 1 PPM.

Aspects of rebalance loop design including: configuration, limit

cycle considerations, loop bandwidth and torquer scale factor error are

discussed in the following sections. While floatation damping is assumed,

all results apply to the case of non-floated, electric-network-stabilized

single-axis gyros as well.

2.4. 1 Rebalance Loop Configurations

Analog Torquing - Analog torquing may provide an attractive

rebalance loop configuration for the lower accuracy strapdown system

applications. As a result of analog torquing, float angle off null can be kept

quite small, thus minimizing cross-coupling torques.
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Required
Torquing
Accuracy

(PPM

1000

IO0

10

1

0.1

0.01

coe = 1 deg/hr

\

• 0.1

O. 01

O. 001

I I I I

O. Ol O. 1 1 10 100

coi, Input Rate (deg/sec)

Figure 2.4-1 Required Torquing Accuracy vs. Input Rate
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Figure 2.4-2(a) illustrates a linear, continuous torqued loop. The

output, which is an indication of w i, can be processed through a delta-

modulator read-out, thus providing an incremental angle suitable for input

to a digital computer. A different but interesting possibility is to simply

quantize the angular rate information for digital computer input. This may

be better for use with a low speed general purpose digital computer and a

high order integration algorithm. Finally, the possibility of using the output

directly in an analog computation scheme may hold promise for certain low

accuracy strapdown system applications.

Digital Torquing - In pulse-rebalanced loop configurations, the

gyro torquer current is provided in the form of a series of pulses. The

pulse waveform may be rectangular, sine, or any other shape desired. The

integrated or average torque over a given time interval is proportional to

the sum of current pulses over that time interval. Ideally, each current

pulse represents a change in angular orientation about the input axis. This

can be seen by first writing the equation of torque balance for the float.

For a floated, rate integrating gyro, we get

Ioo go + C_o : H_)i - iKtg + Md (2.4-2)

where iKtg represents the torque generator moment applied about the gyro

output axis, and M d denotes the disturbance torque portion of Eq. (2.2-I).

Rearranging terms in Eq. (2.4-2) and integrating over the duration of one

current pulse (say, from t to t + At) yields

t+At t+At I

Kt---_g idt = A0 + H H
H t t

C
- _ [ ao(t+At) - 6o(t)] -_ [_o (t+_t)-_o(t)]

(2.4-3)
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Float

Dynamics

c_i S(Ioos+C)

Torque
Generator

Signal
Generator

Linear
Gain

i (a)
I

Scaled
Indicated

Rate

T

I Zero order
J hold

1-e -sT

S

Pu Jses
Indicating
Angle Change

I

I Zero order
I hold
I

I(c)

T

v

Pu Ises
Indicating

AngJe Change

Figure 2.4-2. Rebalance Loop Configurations.
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/

7
r_

where
t+_

A0 = _ wi(t )dt (2.4-4)
J t

Now it can be argued that, since the average float position is at null or a

constant off null, the expected value of the last two terms in Eq. (2.4-3) is

zero. In any event, they have bounded magnitude and represent rotational

information temporarily stored in the dynamics of the float. Also, the

average drift rate Md/H is presumably zero (any known torques having been

calibrated). This leads to the interpretation of a (scaled) pulse of current in

terms of an incremental rotation about the gyro input axis.

Two pulse torque modes are commonly considered - binary

torquing and ternary torquing. In binary, or two-state torquing, the sign of

the torque depends upon the sign of the gyro float angle at the last sampling

time. Ternary torquing, which requires more complex electronics, provides

for three torquing levels. These are plus, minus or zero, depending upon the

sign and magnitude of the float angle.

Pulse torquing is used both with electromagnetic (i. e., Microsyn)

and permanent magnet torquers. Due to the torque-current squared

relationship Microsyn torquers require the application of constant waveform

current pulses so that the instrument can be calibrated for pulses of

consistent shape. Other disadvantages include side-loading and residual

magnetic torque errors. The permanent magnet torquer is a linear torquer-

current device, and does not suffer from side-loading or residual magnetic

effects. But permanent magnet torquers suffer errors due to scale factor

stability problems and rotor flex leads, as well as AC sensitivities (i. e.

torque generator reaction torque).

Figure 2.4-2 illustrates two pulse rebalanced loop configurations.

The sampling is periodic and the sampling rate is chosen on the basis of the

desired information quantum and the maximum gyro case rate. In each case
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the loop output is _, a discrete angle. The torque generators are fed

from a constant current source, with the current switched between two

opposing windings to produce torque of different signs, or switched to a

dummy load or off to produce zero torque. The torque generator acts as

a zero-order hold in the feedback path. Figure 2.4-3 provides additional

details of the electrical functions performed. It illustrates the torquing

electronics functions left unspecified in Fig. i. 1-2 for the case of pulse

rebalance gyros.

f
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Figure 2.4-3 Pulse Torquing Electronics
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Binary torqued loops always display a limit cycle, which is a

self-sustained oscillation, even in the absence of an input. The limit cycle

may assume a variety of modes, depending upon the ratio of float time

constant to sampling time. The limit cycle is undesirable because instrument

cross-coupling errors are directly proportional to the amplitude of the limit

cycle if there are coherent body oscillations. Furthermore, any portion of

the limit cycle which propagates into the coordinate transformation updating

algorithm can cause a burn-out error condition during boost of a space

vehicle. Finally, since torque is applied all the time, the balance between

plus and minus torque levels is especially critical.

Ternary torquing (or "pulse-on-demand" torquing) can circumvent

the no-input limit cycle mode, but still will result in various mode shapes in

the presence of an input. The most severe case is a one-half maximum rate

input, in which case all loop operation centers about the switching boundary

of the loop nonlinearity. This is analogous to a binary torquing condition,

but with half the drive level. Thus, moding errors are always less in

ternary torqued systems than in binary torqued systems for gyros of the

same dynamic properties. On the other hand, the average float offset angle,

which gives rise to cross-coupling errors in the presence of a monotonic

input, is generally larger than in the case of binary torquing due to the dead

zone in the torquing logic. Also, it is more difficult to maintain the

calibration of the switching circuitry to three standard conditions than two.

Figure 2.4-4 illustrates moding behavior for binary and ternary

systems in response to the same constant input rate. The ternary system

output is arranged to give no "wrong way" pulses, this being the desirable

output format. Notice that instantaneous deviations from the average torque

are smallest in the case of ternary torquing.
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time

Binary Torquing (Two Level)

torque

average torque

time

Ternary Torquing (Three Level)

Figure 2.4-4. Typical Moding Patterns Yielding

the Same Average Torque
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i °

2.4.2 Limit Cycle Calculations

The amplitudes and frequencies of limit cycles in nonlinear systems

are readily computed by the describing function method (Refs. 3, 4).

In the describing function method, one assumes the existence of

a loop limit cycle and then tests to determine conditions under which it will

maintain itself. In a periodic regime, the loop nonlinearity output will be

some form of square-wave. If there is sufficient low-pass filtering between

the nonlinearity output and its input the filtered square wave, upon arriving at

the nonlinearity input, closely approximates a single sinusoid. In that event,

there is no need to consider nonlinearity output higher harmonics in the first

place. Thus, the describing function gain (NA(A)) of the nonlinearity is

defined as the complex ratio of nonlinearity output first harmonic to the

corresponding input first harmonic. In the case of memoryless (i. e., single-

valued) nonlinearities such as binary and ternary elements, the describing

function gain is a real number. Appendix B contains describing function

calculations for the nonlinearities of interest; some useful results are

repeated below.

4D
binary element: NA(A) = _-'A for all A (2.4-5)

ternary element:  A'A> ;0=_ 1-
for A >_8

= 0 for A _ 8 (2.4-6)

In the following examples it is assumed that the rebalance loop sampling

frequency is sufficiently high that delays due to sampling can be neglected in

limit cycle calculations. The effect of sampling delays is discussed in

detail in Appendix E.
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Example 1 - Consider the binary torqued rebalance loop illustrated

in Fig. 2.4-5(a). The describing function condition for a loop limit cycle is

NA(A ) H(j¢0_)--- 1 (2.4-7)

where H(jwi) is the open-loop linear elements transfer function (sampling

ignored), evaluated at the limit cycle frequency w_ rad/sec, viz:

K K./C
s_ tg

H(jw_) = jw_(Tfjwl+ 1)('rtgJW_+ 1)
(2.4-8)

where _f = Ioo/C is the float time constant and Ttg is the torquer time

constant. Inserting Eqs. (2.4-8) and (2.4-5) into Eq. (2.4-7) yields the

following magnitude and angle conditions required for a solution: -

magnitude condition: 4D KsgKtg 1

('N' 'H'=I) 7rA C ¢0_ _2_.rfw_+l _r2tg c°2+ 1-1 (2"4-9)

angle condition: Tr tan" 1 "rfa_ tan- 1( _ N + _: H = - 7r) 2 - rtgW _ = - 7r
(2.4-10)

Using the trigonometric identity

tan-1 x + tan-1 Y = tan-1

Eq. (2.4-10) can be solved for w_. There results

x+y_

1-xy]

w_ = - rad/sec
rf Ttg

(2.4-11)
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Inserting this result into Eq. (2.4-9) yields

A = 4D KsgKtg Tf Ttg volts (2.4-12)

C 1"f+_g

This solution corresponds to a stable limit cycle.

If _-f = 1 x 10 -3 sec and _'tg = 0.1 _'f, then Eq. (2.4-11) yields

co_ 3. 18 x 103 rad/sec = 500 cps. If loop sampling frequency is in excess

of 5,000 cps, for example, sample and hold operations contribute very small

phase lag and can be neglected.

Example 2 - For the ternary torqued rebalance loop of Fig. 2.4-5(b),

a condition under which limit cycling will not occur is readily established.

For a limit cycle to occur, the associated frequency would have to be given

by Eq. (2.4-11), since the present describing function is, as before, non-

phase shifting. This allows the evaluation IH(jco_) I as

TT

[H(jco_)l = KsgKtg f tg._
C rf+_g (2.4-13)

If the maximum value of NA(A) is such that it, multiplied by IH(jco_) I, is

less than unity, Eq. (2.4-7) will not be satisfied and limit cycling will not

occur. From Eq. (2.4-6) the maximum value of N A occurs when:

which yields A = _/26 and, correspondingly,

NA(A)I 2D_5
max

(2.4-14)
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I

1/c
s(Tfs + 1)

Kt_l

• tgS + 1

1 - e-ST L

i-s

(a) Binary Torqued

OJ
_/c

s( sf s + 1)

Kt_
s+l

_tg

(b) Ternary Torqued

Figure 2.4-5. Example Pulse Rebalance Loop Configurations
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Thus, a limit cycle will not occur if

i.

2D KsgKtg TfTtg

c
< 1 (2.4-15)

2.4.3 Loop Bandwidth Calculations

Consider the linear, continuous torqued rebalance loop shown in

Fig. 2.4-6. The gain K 1 has units of milliamp/millivolt and represents the

operation of linear conversion of signal generator voltage output to torque

generator current input. As a good approximation in this linear system,

torquer dynamics have been omitted, coidenotes the continuous output,

which is an estimate of the input rate w.. The second-order transfer
1

function from w. to w. can be written as follows:
1 I

£°i (s) 2 XsKtgK1/I°°

wi s + (C/Ioo) s + (KsgKtgK1/Ioo)

2

n

2 2
s + 21;' Wn s + w n

(2.4-16)

where the natural frequency and damping ratio are given as

Wn = _ KsgKtgK1/Ioo rad/sec (2.4-17)

C

2 _ IooKsgKtgK 1

(2.4'18)
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Figure 2.4-6. Example Analog Rebalance Loop Configuration.
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f

For a second-order system, bandwidth, defined as the frequency at which the

closed-loop amplitude transfer equals 1/_/2, can be calculated directly in

terms of _ and w n. The result is (Ref. 5)

wBW = w n _i-2_2+ _2-4_2 + 4_ 4 (2.4-19)

Assuming the following loop parameters

we get

2
Ioo =250gm-cm ,

K = 20 mv/mrad,
sg

K 1 = 1,000 ma/mv

5
C = 1 x 10 dyne-cm-sec

Ktg = 1,200 dyne-cm/ma

w = 314 rad/sec = 50 cps, _ = 0. 64
n

and

wBW = 345 rad/sec = 55 cps

Now consider the limit cycling, binary torqued loop of Fig. 2.4-5(a).

The problem in computing bandwidth for this loop is one of specifying the

equivalent nonlinearity gain to signals of interest, assuming once again that

dynalnics of the sample and hold operations can be ignored. In the case of

slowly varying input signals (relative to the limit cycle period), the signal

appearing at the input to the nonlinearity can be modeled as a sinusoid (the

limit cycle) plus a bias (response to the input signal). The gain to the bias,

defined as the ratio of nonlinearity output dc amplitude to nonlinearity input

dc amplitude (the bias, B), has been called the dual input describing function

(Ref. 6). It is denoted NB(A, B).
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The calculation of NB(A , B) for a binary nonlinearity, Appendix B,

reveals that

NB(A, B ) 2D -i B=_-_ sin <_> (2.4-20)

In the limit of small B/A this becomes

2D
NB(A' 0)-= _-A (2.4-21)

A very important result of recent research in describing function theory

suggests that "the gain of the nonlinearity to a small signal in the presence of

other signals is the same regardless of the shape of the small signal,"

(Ref. 3). This means that the use of NB(A, 0) to represent the nonlinearity

gain to information passing through the rebalance loop can be justified on the

basis of "smallness" as well as "slowness. "

To compute the bandwidth of the limit cycling loop we can use the

results of the linear system calculation, Eqs. (2.4-17), (2.4-18) and (2.4-19),

with K 1 replaced by NB(A , 0). Neglecting the torquer dynamic lag in the

feedback path causes no important error at this point in the calculation.

Eqs. (2.4-21) and (2.4-12) we get

From

NB(A, 0) - C Tf + Ttg _ K1 (2.4-22)
2KsgKtg _f_tg

Equations (2.4-17) and (2.4-18) now yield

1 .[ Tf + Ttg

w n - _ _ 2Ttg

_ - 2 (.rf+trgtg)

rad/sec (2.4-2 3)

(2.4-24)
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Note that a very interesting phenomenon has occurred. Both con and _ are

independent of all of the loop gains (Ksg, Ktg , D) ! It is this very behavior

which is capitalized upon the design of certain adaptive control systems.

Figure 2.4-7 describes con and _ as functions of the ratio Tf/Ttg.

Utilizing the gyro parameters values employed in earlier portions

of this section, we can compute

co = 1,500 rad/sec = 240 cps, _ = 0. 135
n

and

coBW = 2,300 rad/sec = 365 cps

Of course, these results are only valid for sufficiently high sampling

frequencies. Nevertheless, comparison of these results with those obtained

for the corresponding analog torqued rebalance loop shows a very important

facet of pulse rebalanced loop behavior. See Fig. 2.4-8. The effect of

changing the float time constant while holding Ttg fixed is illustrated in

Fig. 2.4-9. The arrow indicates the direction of increasing damping if Ioo

is assumed fixed.

Consideration of the sinusoidal response of a nominally non-limit-

cycling ternary torqued rebalance loop is involved with questions of limit

cycle induction, amplitude-sensitive responses and jump resonance phenomena.

Under these circumstances the interpretation of bandwidth, per se, has limited

meaning. Thus, it is not pursued any further here. Finally, it is recalled

that the gyro rebalance loops shown in Fig. 2.4-5 contain convenient

simplifications of the rotor-gimbal dynamics and nonlinear characteristics.

In particular, angular compliance and switching hysteresis effects have been

ignored. Appendix F treats the influence of angular compliance on limit cycles

in some detail. A preliminary conclusion is that these additional dynamics

should be considered in any thorough limit cycle investigation for gyros with
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Figure 2.4-9 Effect of Varying C on Loop Frequency Response
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d

typical physical parameters. Hysteresis in the nonlinear element arises from

detection threshold in the signal generator, ac amplifier and demodulator in

combination. It provides some amplitude-dependent phase lag to the

describing function but is not considered significant in limit cycle analysis

of representative gyros (see Appendix E).

2.4.4 Torquing Errors

Analog torquing errors can be classified in terms of three dominant

parts:

bias
scale factor

nonlinearity

A bias torque, Mb, results in a steady state drift rate given by

torquer bias Mb
- deg/hr

drift rate H (2.4-25)

In the case of a torquer scale factor error, 7/, the actual torquer gain is

Ktg(1 + 7/) as compared to the value Ktg which is believed to exist. The

resulting error is

torquer scale deg/hr (2.4-26)factor error = _?wi

To see the effect of torquer nonlinearity, let us consider the

situation where the torquer input-output characteristic is pie cewise-linear,

with a slope change at the origin. That is,

y =K +
tg x for x >i 0

=K. x forx <0
g
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where K+tg and Ktg- are slightly different from the nominal value Ktg. If this

nonlinearity is in the feedback path of the system in Fig. 2.4-6, the

amplitude response (A) at station y due to a sinusoidal input o_i = W i sin wt is

H

_ (K1KsgKt/Ioo-W2)2 + (w C/Ioo )2

where the effect of the nonlinearity has been neglected owing to its small

influence on A.

Now we make the observation that, for the rebalance loop of

Fig. 2.4-6 to be in a steady state, the waveform at station y must contain a

bias if K +
tg _ Ktg" This follows from the fact that if there is no bias at y,

there will be a bias at the output of the torque generator due to the asymmetric

torquer characteristic. But this would cause the float to have an average

motion in one direction, hence the system would not be in a steady state.

Therefore a bias must exist at y.

The bias at y is readily computed using the appropriate dual input

describing function calculated in Appendix B. As the nonlinearity output bias

must be zero, we simply set the quantity BNB(A, B) equal to zero. For small

B/A, Eq. (B-9) yields

BNB(A ,B) _ B Ktg + A- 2 _ =0

or

i K+ - 1

B _- - 2 _tg - Ktg A (2.4-27)

K + +
tg Ktg
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\

,p

and BKt_/H is the drift rate term due to torquer nonlinearity. In the special

case where

K +tg=Ktg(1.  tg) and Ktg- Ktg(1-  tg)

the drift rate term becomes

torquer nonlinearity 2etg K
_ --tg A (2.4-28)

drift rate _ H

For input frequencies within the bandpass of the rebalance loop we get

A = HWi/Ktg and hence the drift rate is equal to -2etgWi/_ deg/hr.

In the case of binary torquing we can model the torquing error in

terms of a general plus-pulse weight and a general minus-pulse weight - each

of which differs a bit from standard. Taking the standard pulse weight as

the incremental angle A0 and general plus- and minus-pulse weights as
+

AO(1 + _b ) and -AO (1 + _?b), respectively, for a pulse duration of T sec the

drift rate becomes

binary torqued A0 +

limit cycle error = 2"T (_b
(small input case)

- TIb ) deg/hr (2.4-29)

This expression is valid for small inputs, which do not materially affect the

limit cycle waveform. For large, monotonic inputs, the binary rebalance

loop pulse train must assume a non-zero average value corresponding to the
+

input rate. The resulting moding pattern will be periodic, with n positive

pulses and n- negative pulses during a time interval (n++ n-)T such that

- 00.
1

46



,_IALYTIC SCIENCES CORPORATION
.. i

for rational wi/(AS/T). The corresponding rate error is

+ + - - 1

_b - n nb A...00
+ T

n +n-

which can be rewritten as

(÷; b)
binary torqued rib 7"/ AO
moding pattern error =
(large input case) -T

+
b+_/

2 w i deg/hr

(2.4-30)

+ = 7/b = 7/b , this reduces to 7/bW i deg/hr.In the case where _/b

For ternary torquing we can model the error as due to an error in

plus-pulse weight, an error in minus-pulse weight, and an error in the zero

level. Drift in the absence of an input is due to errors in the zero torque

level:

ternary torqued calibration o (____0)error (no inputs) = _/b
(2.4-31)

Again, the expression is approximately valid for small inputs. If we consider

ratios of Wi/(A8/T) of the nature 1/q where q is an integer (other rational

ratios do not provide unique moding without specification of gyro dynamics)

the error rate with ternary torquing is:

ternary torqued moding

error (large inputs with

rational w i/ (AO /T) )

= 7/b(A0/T)+ (7"/;-7/b)W i (2.4-32)

* + - is positive or
The quantity _/b represents _/b or 7/b depending on whether w i

negative. Figure 2.4-10 is a plot of the errors described by Eqs. (2.4-30)

and (2.4-32). Of course the errors indicated are only correct for rational
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values ofo0i/_8/T ) with binary switching and ratios with characteristic

I/q for ternary switching.

It is to be noted that in the case of both binary and ternary torquing

the major issue is that of the stability of the pulse weights.
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Figure 2.4-10 Torquer Scale Factor Errors

1

49



THE ANALYTIC SCIENCES CORPORATION

2.5 TYPICAL GYRO ERRORS

Environmental disturbances acting on a single-degree-of-freedom

gyro are capable of generating constant torques, as shown in previous sections.

The maximum amplitude of the resultant constant drift rate is calculated in

this section for several of these effects. Angular-motion-induced drift rates

are emphasized because these are unique to strapdown gyros. Table 2.5-1

displays the range of values assumed by important coefficients in a group of

nine typical single-degree-of-freedom floated gyros intended for strapdown

system usage.

Example - for purposes of comparison, the following representative
,

group of parameters is chosen:

H = 2 x 105 gm-cm2/sec,- I .

Olg
2

= 250 gm-cm ,Ioo I .

2 Sl g
Iss = 80 gm-cm ,

r 2
I.. = I = 50 grn-cm

ll r OO r

2
= I = I. 50 grn-cm

OS
g

2
= 0. 30 gm-cm

Iss-Iii
_I - 4(deg/hr)/(rad/sec)2

I
OO

L2(w ) :-_ L l(w)

Ll(W) = 2.0 x 10 -3
rad

rad/sec ' a measure of rebalance loop stiffness

• m5 deg/hrm61 or s -5x10 .2
H H g

2 ar _ -2 deg/hrm__
H _"ss - KiiJ = 10 2

g

Torquer nonlinearity = etg = 0.01%

Misaligmnent angles = + 5 se'-_

*Note that these parameters are provided here for the purpose of illustration

only. They are not necessarily identical with those given in preceding or

subsequent examples.
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TABLE 2.5-1

RANGE OF TYPICAL VALUES OF GYRO PARAMETERS

Parameter Symbol Units_

Rotor Angular
Momentum

Float Output Axis
Moment of Inertia

Linear Damping
Coefficient

Float Time Constant

Rotor Spin Axis
Moment of Inertia

Anisoinertia Error

Coefficient

Uncertainty in Float
Mass Unba lance

Anisoe lastic
Error Coefficient

Torquer Scale
Factor Error

Torquer Time
Constant

Misalignment Angles

Torquer Sensitivity

Signal Generator

Sensitivity

H

I OO

C

_f

ISS r

Iss-lii

H

m_ i mb s

H ' H

m2
-if- (Kss-K i i)

11

Ztg

a i , a s, /3o,/3 i

gm-cm 2

sec

gm-cm 2

dyne-cm-sec

msec

gm-cm 2

deg/hr

(rad/sec) 2

deg//hr

deg/hr

g2

%

sec

sec

Typical Range

Minimum

5x 104

100

Maximum

3x 106

250

6 x 104 8 x 105

0.25 6.0

40 140

4 30

5 x 10-3 3.3 x 10-1

4 x 10-3 1 x 10-1

1 x 10 -2 5 x 10-2

25 100

15

K tg

K
sg

deg//hr
me

volt/rad

75 1200

5 40
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The vehicle is assumed to be subject to a one g specific force and to

experience angular vibration described by Eq. (2.2-4) with

=W = 0.2 rad/secWi =Wo s

w = 10 rad/sec

The vibrations are representative of those anticipated in a typical boost

vehicle. The peak constant gyro drift rates (assuming the worst combinations

of misalignment, _1' _2' _' and _ and specific force orientation) in a singleO S

gyro are presented in Table 2.5-2. The drift rates shown are calculated by

dividing the constant error torque for each effect by the rotor angular

momentum.

It should be noted that the anisoinertia error coefficient chosen in

this example was at the low end of the range presented. This was done to

illustrate the fact that choosing rotor and gimbal inertias to minimize drift

rate when the rotor is coupled to the gimbal by the rotor speed regulation

loop causes excessive drift rates when the rotor is uncoupled.

It can be seen from Table 2.5-2 that the strapdown rotational

environment produces gyro drift rates which are large compared to the

random drift rates and acceleration-caused gyro errors that are characteristic

of gimballed platform systems. Although they may be small_ the misalignment

caused drift rate errors in a strapdown system are greater than in a gimballed

platform because of the severe angular rates that can occur about the cross

axe s.
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TABLE 2.5-2

MAXIMUM CONSTANT GYRO DRIFT RATE
FOR THE EXAMPLE

Error Terms Constant Drift Rate (deg/'hr)

Spin-Input Cross Coupling 8.00

Spln-Output Cross-Coupl ing 0.10

Anlsoinertia (Rotor Coupled) 0.08

Anisoinertia (Rotor Uncoupled) 1.52

Float Mass Unbalance 0.05

0.01Anisoelasticity

Torquer Nonlinearity

Misalignment

Gimbal Products of Inertia

Pseudo-Coning due to

Output Axis Effect

2.60

0.50

0.084

5.00

Computed on the basis of 0.05 rad/sec constant angular rates.

See Appendix D.
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,,',L=:::.J_r_ PAGE BLANK NOT FILMED.

. RELATIONSHIP BETWEEN STRAPDOWN SYSTEM ERRORS

AND GYRD ERRORS

A measure of the quality of any inertial system, gimballed or strap-

down, is some weighted combination of its attitude, position and velocity indica-

tion capabilities, depending on the mission involved. This chapter deals with a

relationship between the individual gyro errors and the attitude indication accu-

racy of a strapdown inertial reference system.

3.1 A FIGURE-OF-MERIT

Figure 3.1-1 is a schematic representation of a strapdown system.

The navigation computations are the same as for gimballed inertial systems.

The unique feature of strapdown systems is the coordinate transformation which

resolves the acceleration vector _b from body axes into stabilized axes. The

gyros measure inertial rotation rate in body axes, -_-b" These indications are

then used to calculate system attitude in the form of a coordinate transformation

matrix, C. Inevitably, errors A___ and_b occur in the measured vectors _b

and___b. Furthermore, as a result of A_, an error will occur in the transfor-

mation matrix C, which we designate AC. We take as a measure of gyro per-

formance at the system level, the figure-of-merit

1
J = _ tr (AC T AC) (3.1-1)

where the notation tr(ACTAc) is the trace of the matrix AcTAc, which is the

sum of its diagonal elements. Appendix C demonstrates that
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2 2 2

= {PX + _PZJ + _y

where the quantities _0x, _y and _oz represent small angle misalignments between

the true reference coordinate system and the computed reference axes. Figure

3.1-2 illustrates these relations. The quantity J is a measure of the total sys-

tem attitude error; the direction of the error vector is irretrievably lost in the

process of reducing the figure-of-merit to a scalar quantity. When the accelera-

tion vector, measured in body coordinates, is transformed into the reference

frame, an error arises due to AC. Appendix C shows that minimizing J mini-

mizes the upper bound on the length of that error vector. Thus, our goal is to

minimize J.

Acce lerometers
ab

r

Coordinate

Transformation

C

Acceleration ]
in Body Axis co

System -- b

Gyros

a r Navigation
Ca Icu lati on

Position and

Velocity

v

Figure 3.1-1. Strapdown Inertial Navigator.
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Y
Yc

X c

X

Z f

ZC

x, y, z = true coordinates

Xc, Yc, Zc = computer ind|cated
coordinates

= error rotation, from

true to computed
coordinates

Figure 3.1-2 Small Orientation Errors.
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3.2 SYSTEM ERROR GROWTH

In order to evaluate the effect of gyro errors on system attitude

error, growth of the figure-of-merit, J, must be related to the behavior of

errors at the input to the transformation matrix calculation. This is done

in considerably detail in Ref. 19 and the results are discussed in Appendix D

herein. The relations used are conceived to be independent of the computa-

tion algorithm used to update the transformation matrix C.

3.2.1 Effect of Individual Gyro Errors

The system attitude error, as reflected in the figure-of-merit,

behaves as the integral of individual gyro errors. This is discussed in

Appendix D. For example, a constant error in angular rate indication by a

single gyro produces a system attitude error which grows linearly with time;

for this form of contribution to system attitude error, gyro drift rate is

identical to system drift rate. Such behavior is not surprising and only re-

flects the growth of gimballed platform errors under similar circumstances.

Since sizeable constant error torques are generated in single-degree-of-

freedom gyros by environmental angular motion, this effect is a principal

contributor to strapdown system errors.

3.2.2 Effect of Errors From Gyro Pairs

The major system attitude drift rate arising from errors in several

gyros appears when two angular motion sensors generate errors which are

oscillatory in nature, of the same frequency, and have a 2 phase difference.

Considered separately, gyro errors of this nature do not contribute growing
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system attitude errors but when combined in the direction cosine matrix cal-

culations a constant system drift rate is generated (see Appendix D). This

important system error is generated because the erroneous gyro outputs are

interpreted as true oscillatory angular motion about two orthogonal body axes.

Motion of this kind produces a constant angular rate about a third axis, space-

fixed and essentially orthogonal to the pair of body axes. The direction cosine

matrix calculations imply such a vehicle motion from the incorrect gyro out-

puts. In terms of sinusoidal oscillatory angular rate errors a' and b' coming

from a pair of gyros with input axes perpendicular, the constant system drift

rate can be expressed as

constant system a'b'
drift rate =_ sin (3.2-1)

where u is the frequency of the oscillations and @ is the relative phase between

them. Equation (3.2-1) expresses the major system drift rate generated by

the combination of gyro errors in the system computer as it maintains an in-

dication of the sensor package attitude. Errors of this type are frequently

called "pseudo-coning" drift rates because the gyro errors causing them fool

the computer into believing that the sensor package is undergoing a coning

motion.

It is important to note that pseudo-coning errors can be generated

by an oscillatory error from a single gyro if the sensor package is also ex-

periencing true oscillatory motion about an axis monitored by another gyro.

This combination generates one of the major system drift rates when single-

degree-of-freedom gyros are used in strapdown systems. A detailed illustra-

tion is deferred until the next section but the mechanism for error growth is

the same as that discussed above. The combination of properly phased trt_e

vehicle oscillation (accurately measured by the appropriate gyro) and false

angular motion cause the computer to indicate a constant rate about a third

axis.
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3. 3 SYSTEM DRIFT RATE DUE TO OUTPUT AXIS ANGULAR

ACCE LERATION ERRORS

When an oscillatory angular environment exists, output axis angular

acceleration errors cause the major system ,,pseudo-coning,' drift rate. When

the gyros are arranged in an orthogonal triad, an angular oscillation about the

input axis of one gyro can produce output axis angular acceleration errors in

a second gyro. Furthermore, if the motion frequency is within the gyro

bandwidth, the true oscillation and the oscillatory error have a relative phase

which produces the maximum pseudo-coning drift rate.

Output Axis Error Pseudo-Coning Drift Rate from Three Gyros -

Consider the error generated in the single-degree-of-freedom gyro, gyro (_

of Fig. 3. 3-1, by angular acceleration about the output axis. Assume the

gyro triad experiences angular motion described by the vector w shown, where

the orientation of this vector has a uniform probability in three-dimensional

space. Also assume that the gyros measuring the angular rates about the

body-fixed axes x and z are error-free. The error torque about the output

axis of gyro (_ is given by

= ¢b
Md Ioo z

= AI v sin _ cos v t
OO

(3.3-1)

If gyro (_ has a unity transmission characteristic, this torque generates an

error in the indication of body angular rate along the y or input axis of

The error-free gyro,

axis, indicates

AI v

e - oo sin _b cos vt (3. 3-2)
H

Y

measuring the component of angular rate along the z

w =Asin q_sin v t
Z

(3. 3-3)
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Z

OA
= A sin v T

small angular

displacement of

body axis ®

IA

A

_Y

system attitude drift rate due to output axis angular acceleration error averaged over

all (equally probable) orientations of_is:

_A 2

I°° cos 2 v_- For Gyro Q3H

A2 ®Ioo 2 For Gyro
3H cos v _"

Figure 3.3-1, A Pseudo-Coning System Attitude Error
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Due to the motion coz' the body axes are rotated relative to a set of axes fixed

in inertial space by an angle (assumed small) given by

8z = _ coz dt

= _ A sin _b cos vt (3.3-4)

The projection of e
CO

Yb

on the stationary (inertially fixed) x axis is

e - - e 0 (3. 3-5)

_x I cob zY

The probability density function, p(_, 0) for the two angles describing the

orientation of the co vector is

p(_b, 0) = cos _b . _r 0__0_2_

The average projection of the false angular rate on the stationary x axis (over

all orientations of the angular rate vector) is

A2I 2
OO COS

The projection contains a secular component of -A2Ioo/6H. This is a constant

system attitude drift rate due to pseudo-coning (see Appendix D).

If an identical (not error-free) gyro, gyro (_ in Fig. 3.3-1, is

oriented to measure body angular rates about the z axis, the projections of the

output axis angular acceleration errors on the stationary x axis from gyros
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(D and (_ cancel. However, no such cancellation can be arranged for the

pseudo-coning drift rate generated in the third gyro of the triad. It can be

seen that output axis angular acceleration gyro errors cause a pseudo-coning

system drift rate that has a non-zero ensemble average value. This is unique

among the system drift rates generated by angular motion and results from the

fact that the two oscillatory angular rates (true motion and the gyro error)

which are rectified in the cosine matrix calculation result from motion about

the same vehicle axis. Consequently, they always have the same correlation.

Using the numbers supplied in Section 2.5 the output axis pseudo-coning error

generated by oscillatory motion is 5. 0 deg/hr about each vehicle axis.

3.4 CONSTANT SYSTEM ATTITUDE DRIFT RATE AS A FUNCTION

OF ANGULAR OSCILLATION FREQUENCY

If angular oscillations with unity amplitude are assumed about

all three axes of a single-degree-of-freedom gyro triad, constant system drift

rates can be computed and the results are easily related to angular motion with

different amplitudes. The constant system drift rates calculated here are those

generated by one gyro (of course in the case of pseudo-coning drift rate the

appropriate pair of gyros is assumed).

Unless otherwise stated, the gyro physical parameters are those

presented in the example of Section 2.5. Two additional parameters, the

linear damping coefficient, C, and the torque generator time constant, _-tg'

must be specified. Equations (2.4-23) and (2.4-24) together with the

relation

I
OO

=--U-

permit calculation of the natural frequency and damping ratio of the linearized

model of a binary pulse torqued gyro. Lags due to the sampling nature of the

gyro loop are ignored.
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The constant system drift rates generated by each gyro (or gyro pair if

appropriate) are computed as a function of oscillation frequency when the angu-

lar motion components are all assumed to have the same phase. The constant

portion of the pseudo-coning effect due to output axis angular acceleration is

dominant, followed by the anisoinertia error generated when the oscillation

frequency is above the natural frequency of the wheel speed regulation loop.

The anisoinertia drift rate is not plotted because it is not frequency dependent

except in the vicinity of the regulation loop resonance. When the rotor inertia

is coupled to the float about the spin axis (low oscillation frequency) the drift

rate per gyro is negative 2 degrees per hour. For oscillations above the

wheel speed regulation loop natural frequency the rotor and float are not

coupled and the drift rate is 39 degrees/hour per gyro. (It should be

remembered that the numbers quoted here are for angular oscillations about

each axis with an amplitude of one radian per second. Since these drift

rate magnitudes vary as the square of the amplitude, error growth decreases

rapidly with angular rate magnitude. ) In order to permit a more meaningful

comparison, the pseudo-coning error is assumed to be reduced by compensa-

tion to one tenth its uncompensated value. Other error sources which generate

significant frequency dependent system attitude drift rates are spin-input and

spin-output cross coupling.

Figure 3.4-1 is a plot of the constant system drift rates

computed for each gyro. Three values of the damping coefficient are illustrated

to demonstrate the fact that the system errors are highly dependent on the

gyro parameters assumed. The effect of three gyros is obtained by multiplying

the ordinates shown by _ It is emphasized that a sizeable additional drift

rate resulting from anisoinertia effects is not shown. It would add almost

40 degrees/hour to the plot over most of the frequency range illustrated. Also,

the pseudo-coning error is assumed compensated as described above. The shape

of the curve in Fig. 3.4-1 is directly related to the transmission characteris-

tics calculated for the chosen gyro parameters through describing function
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Figure 3.4-1 Constant Attitude Drift Rate Resulting From
Errors in a Single Gyro (In-Phase Motion)
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analysis. The drift rates reach high peaks near the gyro natural frequencies.

The amplitude of the peaks is large because the damping ratios calculated

for the gyro loops are very low and the errors depend on the amplitude

transmission characteristics of the sensors.

Figure 3.4-2 is a plot of the constant system drift rates computed

for a gyro experiencing angular rate oscillations with amplitudes of 1 rad/sec

and a relative phase of _/2 radians. The only effects that generate constant

gyro errors in this case are spin-input and spin-output crosscoupling. The

calculations are made assuming the oscillations about the input and output axes

are in phase and lead the oscillation about the spin axis by one quarter period.

The dominant contribution is made by spin-input crosscoupling and is largest

at frequencies near the gyro natural frequency. Because the parameters

selected provide low damping ratios, the amplitude in this region is large.

Calculation of a strapdown system drift rate using Fig. 3.4-2 is not straight-

forward because the relative phase between oscillations described above

cannot be experienced by all three strapdown gyros simultaneously. Scaling the

results for different oscillation amplitudes is accomplished in the same

manner as for the conditions represented in Fig. 3.4-1.

.
When the co-spectral and quadrature spectral densities are known

for random angular rates about vehicle axes, Figs. 3.4-1 and 3.4-2 can be used

to determine the RMS system drift rate generated by a triad containing this par-

ticular gyro. Of course, anisoinertia errors must be added because they are

not shown in the figures. The procedure is to divide the appropriate spectral

densities into sufficiently small segments, multiply by the ordinate shown in

Fig. 3.4-1 or 3.4-2 at the center frequency of each segment and add the re-

sults.

*See Ref. 13, p. 33.
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e COMPENSATION OF GYRO ERRORS

4ol MOTION INDUCED ERRORS

System drift rates due to motion-induced gyro errors are a serious

problem in strapdown inertial systems. Several methods for reducing these

errors by measuring the motion environment and applying counter torques as

corrections to the single-degree-of-freedom gyro are treated (see Fig. 4.0-1).

4.1o 1 Compensation Without Additional Measurements

It is possible to infer all the motion information that is needed to

compute the major error torques on single-degree-of-freedom gyros directly

from the gyro outputs themselves. In some cases, such as the recovery of

angular acceleration information from the output of a pulse torqued gyro, con-

siderable filtering is required. However, under the assumption that all deri-

vatives and necessary integrals of angular rates can be recovered accurately,

outputs from the essential inertial sensors can be used to compute error

torques and corrective torques can be applied. This is an attractive approach

for reducing strapdown system drift rate. Unfortunately, this scheme closes

new information loops containing two or more of the strapdown gyros. Chap-

ter 4 of Ref. 19 demonstrates that when output axis angular acceleration errors

are compensated in the manner described above the system is stable for a

reasonable set of gyro parameters. However, when crosscoupling errors are

compensated using motion information from the three essential gyros only

(and also measuring float angles) stability is best established by a detailed

simulation. If more than one kind of gyro error is to be compensated in this

way, stability analysis is further complicated. The approach described offers

considerable advantages over others in terms of reliability and system weight
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and power requirementso However, in the absence of simulation results indicat-

ing stability and accuracy we will concentrate on other means for reducing

motion generated gyro errors.

Another technique proposed (Ref. 16) uses signals and instruments

already available without generating closed loops. The electrical suspension

systems of single-degree-of-freedom gyros provide the forces and torques

necessary to cause the gimbal-rotor combination to follow case (and therefore

vehicle) motions. If one set of restraint devices provides forces only in the

plane containing the gyro input and output axes, the difference between re-

straint forces on the two ends of the gimbal can be used to deduce angular

acceleration about the gyro spin reference axis. Thus one gyro's suspension

system can be used to indicate angular acceleration about the output axis of

another gyro. This technique relies heavily on the absence of cross-

compliance in the suspension system.

4. 1.2 External Measurement Devices

Motion-induced gyro errors can be compensated through the use of

additional motion sensing devices. Two approaches are discussed below: the

use of three additional gyros paired with the essential sensors of the strapdown

gyro triad and use of specially designed sensors to measure the pertinent

motion parameters.

Redundant Sensors - The use of three additional gyros, paired with

members of the primary gyro triad, permits significant reduction of motion-

induced errors through simple averaging of the outputs. Figure 4.1-1

illustrates this scheme. Initially, it is assumed that the gyros paired have

identical physical parameters and they offer identical transmission

characteristics between moments applied to the gimbals and the point at which

their outputs are averaged. Also their initial states at the start of motion are

assumed to be the same. Each gyro pair has nominal input axes aligned

parallel to provide redundant measurement of angular motion about that axis.

Their outputs are averaged and, with the proper relative orientation of spin

reference axes, certain gyro errors are cancelled or statistically reduced by

the averaging process.
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The Use of Gyro Pairs

It was demonstrated in Section 2.5 (Table 2.5-2) that gyro errors

generated by interaction between the gyro motion environment and necessary

physical characteristics of the gyro can be much larger than those produced

by imperfect construction and operation. It is in reducing these errors that

the pairing of identical gyros has its greatest value. If the two sensors are

oriented as shown in Fig. 4.1-2, output averaging provides cancellation of

several important angular motion induced gyro errors. For example, consider

spin-input cross-coupling errors. An angular rate about IA will cause the

gimbals of the two gyros to rotate through the same angle but in opposite

directions. A simultaneous angular rate about one of the gyros' spin reference

axes (remember they are both experiencing the same vehicle motion) provides

a positive error torque on one gyro and a negative torque of equal magnitude

on the other. When the effects of the two error torques appear at the outputs

of the identical gyros and are added they cancel. In a similar manner, the

errors due to anisoinertia-rotor-speed loop effects, output axis angular

acceleration and anisoinertia cross-coupling, for that portion of gimbal angle

which results from output axis angular acceleration, are removed. Assuming

perfect cancellations, the use of three identical gyro pairs with their outputs
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averaged reduces the RSS error due to oscillatory motion provided by the

sources outlined in Table 2.5-2 from 9.9 deg/hr to 2.6 deg/hr. The latter

drift rate is almost entirely a result of torquer nonlinearity.

IA IA

\ /

Figure 4.1-2 Orientation of Gyro Pairs

In addition to reducing the motion-induced gyro errors caused by

necessary physical parameters, all the errors generated by imperfect

construction are averaged. Consequently, RMS errors due to mass unbalance,

anisoelasticity, gimbal products of inertia, etc., are reduced by a factor of

l_when the outputs of two identical gyros are averaged.

The effect of mismatching the two gyros is easily demonstrated. If

the difference in effective anisoinertia is designated 8 AT and a difference in Ioo

is 8 Ioo, the uncompensated portion of anisoinertia and output axis acceleration

errors for this scheme is represented as a drift rate:

drift rate due

to mismatch 1/2 (84 1 wiw s + 8 Ioo d_o) (4. 1-1)
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u.

,i

In terms of the uncompensated drift rate caused by these two major error

sources, the drift rate due to mismatch is the same fraction as the ratio of

mismatch in a particular parameter to the nominal value of that parameter.

For example, if 5 zXI/AI and 5 Ioo/Ioo are always less than 1% the compensated

drift rate from a pair of gyros (as a result of anisoinertia and output axis

acceleration) is always less than 1% of the uncompensated value. Since

accurate knowledge of such basic sensor parameters as gyro gain is always

important, a mismatch in these quantities is apt to be much smaller than in

inertia terms. As in the case of errors due to imperfect gyro construction

discussed earlier, RMS errors due to mismatch of parameters do add directly

and the total mismatch drift rate behaves as the root sum square of its

components.

If the two identical sensors are misaligned, perfect cancellation of

errors will not occur. For example, net misalignment angles about the spin

and input axes of 10 se_'_ will generate an error in the averaged gyro outputs of

I
misalignment = 5.0x 10-5 oo • •
drift rate T (°Js-¢°i) (4. 1-2)

It can be seen from Eq. (4. 1-2) that misalignment errors will be a small

fraction of the corresponding uncompensated drift rates.

Specially Designed Measurement Devices - As an alternative to the

use of redundant sets of gyros, several means for measuring angular motion

with additional devices or with modifications to gyros have been proposed. In

all cases it is anticipated that the measurements made are used to provide

either corrective torques on the gimbals or corrections directly to the outputs.

Figure 4. 1-3 illustrates the application of corrections to a gyro based on

measurements of the environment (and in the case of crosscoupling errors, of

the gimbal output angle). Part (a) of the figure demonstrates correction of the

gyro output. Figure 4. 1-3(b) illustrates the application of correction torques

in the form of pulses..This makes use of the very accurate pulsing electronics

and torquer already available in the instrument. The use of analog corrective
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torquing is represented by Fig. 4. I-3(c). The possibility of using a separate

set of torquer windings for this scheme is indicated by including an additional

block for torquer dynamics. Both of the latter approaches offer the advantage

of reducing the gimbal output angle (hence crosscoupling errors) as a

consequence of applying corrections.

Output axis angular acceleration can be compensated using an

instrument, similar in construction to a floated gyro, but having a float that is

a homogeneous cylinder (Ref. 15). This instrument has signal and torque

generators, and the float is held to small off-null angles by a tight rebalance

loop. The theory of operation is that, if this unit is mounted rigidly to a

single-degree-of-freedom gyro with output axes parallel, then the signal

applied to the torque generator of the compensator float is proportional to the

output-axis error torque experienced by the gyro. Thus, the same signal can

be applied to the gyro for compensation purposes. This scheme, and others

involving angular accelerometers having an output axis moment of inertia

different from the gyro being compensated are conceptually identical with the

use of matched gyro pairs described above. Analysis of errors in the

compensated gyro output is the same as for paired gyros.

Several of the important angular motion induced gyro errors are

generated by angular rates about the spin and input axes. In order to compute

corrective torques, small additional rate gyros can be installed. The

necessary accuracy of these rate gyros can be determined. For example, if

two additional rate gyros are used to measure the angular rates w i and w s

experienced by a primary gyro, the residual drift rate due to anisoinertia is

given by

residual drift = (E 1+ E2) wAl+ blb 2rate
(4. 1-3)

where E 1 and E2 are scale factor errors (in fractional form) in the two gyros

and b 1 and b 2 are corresponding bias errors. The symbol c0Al represents the
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uncompensated anisoinertia error. It can be seen from Eq. (4. 1-3) that scale

factor errors in the additional rate gyros of 0.5% or less are needed to reduce

the anisoinertia error in the compensated gyro output by two orders of

magnitude. For the gyro described in Section 2.5, the product of rate gyro

bias errors, b 1 b 2 must be less than 108 (deg/hr) 2 to prevent generation of an

additional drift rate of 0.01 deg/hr by this compensation technique. Obviously,

bias errors in the additional sensors will not harm the accuracy of

compensation in this case.

Crosscoupling errors can be compensated by applying a corrective

torque proportional to a measured float angle and the angular rate, ,.Os,

indicated by an additional rate gyro. In this case, the compensation errors are

given by

croscou lngcompensation - + w
error So

(4. 1-4)

where _ is the scale factor error in the rate gyro and the symbol w
g_

represents the uncompensated crosscoupling error. The ratio 5ao/_:

is effectively a scale factor error in measuring the float angle. From Eq.

(4. 1-4) it is reasonable to expect that crosscoupling errors can be reduced

by several orders of magnitude through this form of compensation.

4.1.3 Summary

Three approaches to the correction of gyro errors have been discussed.

One uses indications of the angular motion environment available from the

outputs of the basic gyro triad, while another requires three additional rate

gyros and three angular accelerometers. Both of these schemes use the

angular motions to compute correction torques for application about the output

axes of the three essential gyros. A third method uses three additional gyros,

identical with the original three, and averages their outputs to remove several
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major motion induced errors. Computer requirements are essentially the

same for the first two approaches, but the calculation load is much less when

paired gyros are used.

The techniques employing additional measurement devices are shown

to be capable of reducing major motion-induced gyro errors by several orders

of magnitude. Unfortunately, the inclusion of several more angular motion

sensors in the strapdown system increases its cost and weight while reducing

reliability. The first approach, using the outputs of the basic gyro triad

to compute torque corrections, presents a difficult stability analysis problem

but adds little to the complexity of the strapdown sensor package. For that

reason it is recommended that the stability and accuracy analysis of a gyro triad

compensated in this manner be thoroughly investigated through simulation.
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4.2 LIMIT CYCLE ERRORS

4.2.1 System Errors Generated by Limit Cycles

The limit cycle characteristics of binary pulse torqued gyros are a

source of large system errors if they are allowed to pass unhindered into the

direction cosine matrix calculations. For example an n, n mode limit cycle

will produce an oscillatory attitude error with a triangular waveform. The

first component of the Fourier expansion of this oscillation is a sinusoid with
8

the same period as the limit cycle and an amplitude of --_ times the peak

value of the triangular waveform. The peak angular error is given in terms of

the angle increment A0 and the mode number as

hA0
peak angular error =

The first term in the harmonic expansion of the limit cycle angular error can

be written as

However,

---4nA8 (4.2-1)
angular error - 2 sin (u_ r + p)

2_
2n-

Tu_

and

A8 = oo. T
I
max

Equation (4.2-1) can be expressed in terms of the maximum input angular rate,

w i , and the limit cycle frequency:
max

¢_" (4.2-2)
4 Imax

angular error - _ _ sin (_ 1- + p)
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If two identical gyros experience limit cycles at the same frequency with _/2

phase difference, the erroneous indication of constant angular rate about the

third axis is

system drift rate = I/2 Wimax w t
w t

8 max

2 w_ (4.2-3)

Equation (4.2-3) demonstrates the inverse relationship between potential limit

cycle induced system drift rates and the limit cycle frequency. When

_ = 3.18 × 103 rad/sec (see Section 2.4.2)

and

_°

1
max

= 1 rad/sec

the maximum potential system drift rate due to out-of-phase limit cycles in only

tw_.__oof the three gyros is

potential system = 53 deg/hr
drift rate

(Consideration of the next term in the harmonic expansion provides an additional

drift rate of only 0.2 deg/hr. ) Clearly, errors of this magnitude must not be

permitted to occur as a result of rebalance loop limit cycles. Equation (4.:2-3)

suggests two means to keep potential system errors due to limit cycles small

(if they are permitted to enter the direction cosine calculations). If the vehicle

is known to be operating in a benign angular motion environment, reduction of

_lmax. will reduce these errors. It may be desirable to provide several maxi-

mum gyro rebalance torque levels (equivalent to several values of _imax ). In

addition, it is desirable to get the highest limit cycle frequency possible through

the use of dynamic compensation in the gyro loop (see Section 4.2.3).
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A third approach to reducing this error is to cause different limit

cycle frequencies to occur in each of the three gyros. When the difference

between two limit cycle frequencies is small compared to the cycle frequencies:

A_
--<< 1

00£

the maximum potential system attitude error is given by

2

_- 1 8 Xmax

peak attitude error - A¢O lr 2 o_ (4. 2-4)

Notice that the approximate expression in Eq. (4. 2-4) is simply Eq. (4.2-3)

divided by the difference between limit cycle frequencies. For the conditions

described above, it is only necessary to separate the limit cycle frequencies

by 2.5 Hz in order to keep the peak system error described in Eq. (4. 2-4)

below 3.6 _'c. Frequency separation is an attractive approach to bounding

system attitude errors from gyro limit cycles. Using Eq. (2.4-11), it is

determined that any difference in the product Ttg Tf of more than 1% betweenthe

two gyros will cause a limit cycle frequency difference of more than 2.5 Hz in

the case under consideration. (Of course the effect of sampling is ignored in

this calculation. )

4.2.2 Limit Cycle Trapping

To the extent that the limit cycle is well defined it is possible to

remove this oscillatory error by filtering the gyro output before it enters the

transformation matrix computation. In particular, if an n, n mode limit cycle

is known to be the only one which occurs in the absence of gyro input, summation

of the gyro output over 2n sample periods will remove the limit cycle error.

Since indications of angular motion about the gyro input axis appear as

modifications to the limit cycle output mode these will not be removed by the

summation if they occur at frequencies well below that of the limit cycle.
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Any changes in the gyro output mode which are symmetric and occur entirely

within a particular set of 2n periods will not appear at the input to the computer.

Information can be lost in this way. Any alteration of the gyro output limit cycle

mode that has a frequency characteristic higher than that of the limit cycle is

partially filtered out by this scheme.

Errors Resulting From Tr_ing to Trap the Wrong Limit Cycle-As

stated above, entrapment of erroneous gyro outputs requires a precise knowledge

of the limit cycle frequency• If the limit cycle does not occur at the expected fre-

quency serious system errors can result• For example, consider summation over

2n gyro sample periods. Suppose the limit cycle has a mode characterized by n'

positive outputs followed by n' negative pulses. The error in computer input re-

sulting from imperfectly trapping the limit cycle appears as follows:

n' even n' odd

Input Number Error Input Number Error

1

2

In-n'i e/n 1

In-n'lAe/n 2

(n'/21n-n'l)+l

In-n'l_O/n (n'/21n-n'D-1

ln-n'lAe/n n'/21n-n'l

• (n'/21n-n'l)+l

-In-n'Iz_e/n n'/in-n'i

In-n'l_e/n

0

In-n'l,xe/n

In-n'IAe/n

Correct and incorrect limit cycle trapping are illustrated in Fig. 4.2-1 for the

case where no input motion is taking place.
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Figure 4.2-1 Illustration of Incorrect Limit Cycle Trapping
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V !

The erroneous angular oscillations generated have a frequency of w_co_T/_[n-n I-

• When If is even and In-n' I = I, the first component of the Fourier series for

the triangular attitude error oscillation is 2n'A0/n_ 2. For all but very small

values of n' the amplitude is essentially the same when n' is odd (i. e.,

2 (n' - I) A0/n_2). When n' is even, a potential constant system attitude drift

rate due to similar incorrect entrapment about two orthogonal vehicle axes is

given by

system drift rate = 1/2
2 n'

2 n "&0
/T

(an__)5 _ _' co 2 T 3
( imax ) ln-n'l (4. 2-5)

Assuming

n !

_;' 1, ]n-n'l = 1
n

and

= 3.18 x 103 rad/sec

Equation (4.2-5) provides the relation illustrated in Fig. 4.2-2 between

system drift rate due to incorrect limit cycle trapping and the sample period T.

4. 2.3 Dynamic Compensation of the Gyro Loop

From the point of reducing system errors caused by gyro limit

cycles, high values of _0_ are desireable. In addition, small limit cycle

periods will reduce potential acceleration resolution errors at critical

moments such as booster burnout. Also, high limit cycle frequencies

diminish float angle excursions, thereby reducing uncompensated crosscoupling

errors. Dynamic compensation within the rebalance loop is useful in raising
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the moding frequency of pulse torqued gyros. However, with the exception

just noted, it does not help remove the major motion-induced gyro errors.

Table 2.5-2 establishes the fact that very large system drift rates are

generated by angular motions whose effects are rectified by gyro physical

parameters (such as anisoinertia) and appear as constant error torques on

the gimbal output axis. No compensation of the gyro loop can prevent the

establishment of this torque and no practical gyro will prevent its appearance

as a constant angular rate error at the gyro output unless a counter-torque

is applied.

Compensation within the rebalance loop can help reduce gyro

output errors by changing the transmission characteristics of the gyro in order

to attenuate the effects of error torques on the basis of their frequency.

Unfortunately, many of the serious error torques occur in the same range of

frequencies as the true input angular rate the gyro must measure. Therefore

reduction of errors at the gyro output by frequency filtering implies the

creation of new errors because some of the true input motion is thrown

away. If, in any band of frequencies, the error torques are considerably

larger than those generated by input motions (for example, if the gyro rotor

is not properly balanced), loop compensation to reduce transmission at those

frequencies might be useful. In addition, proper compensation of the electronic

rebalance loop around a single-degree-of-freedom gyro can increase its

bandwidth and prevent high frequency vehicle coning motion from going unde-

tected.

Location of Compensation Within the Rebalance Loop - Many

potential locations exist for dynamic compensation within a gyro rebalance

loop. Figure 4.2-3 illustrates four of them. In general, any compensation

occuring between the sampling operationandthe zero order hold shown is

digital in nature, while the remainder are analog. Figures 4.2-3(a) and

4.2-3(b) illustrate digital compensation in the feedback and forward signal

paths respectively. Both approaches can be used to change the transmission

characteristics of the gyro and if linear compensation is used a large body
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digital compensation, c and d show analog compensation)
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of knowledge exists to aid the designer (see Ref. 17). The feedback path

compensation shown can also be analog in nature. In that case it would be

located to the left of the zero order hold in the diagram. Both of these forms

of loop compensation are used to change the limit cycle characteristics of

pulse rebalanced gyros. (See Appendix E for a discussion of limit cycle

compensation. )

The third loop in the figure illustrates a possible location for

compensation to remove an error that occurs over a narrow frequency band.

It is essentially a notch filter placed to reduce the effective float transmission

characteristic at that frequency. Finally, an alternative signal path for

compensation is illustrated. This approach is suggested (Ref. 18) as a means

for reducing limit cycle mode length in binary torqued gyros.

4.2.4 Application of Dither Signals At the Nonlinearity Input

One suggested approach to controlling limit cycle frequency and

reducing system errors caused by nonlinear torquing electronics is to introduce

a deliberate periodic signal at the input to the nonlinear detection circuit (see

Ref. 21). The periodic signal, d(t), frequently called dither, can be a sinusoid,

triangular wave, sawtooth, etc. The gyro is still torqued according to the

nonlinearity output which is sampled every T seconds. If the amplitude and

frequency of the dither signal are well chosen, averaging the nonlinearity output

over one dither cycle will produce an essentially linear indication of float angle.

Figure 4. 2-4 illustrates use of a triangular dither waveform. If

the float angle varies slowly relative to the dither frequency, the average binary

nonlinearity output Cover one dither period) depends on the float angle as shown

in Fig. 4.2 -4(c). A similar relation results for a ternary nonlinearity in a well

scaled rebalance loop, that is, one with sufficient torquing level. In that case

the linear slope changes at the input values + CA d - 5 ).

The introduction of a periodic signal at the input to the nonlinear

detection logic of a pulse torqued gyro establishes a controllable period for

averaging the output pulses. As in the case of limit cycle trapping, signals at

frequencies below that of the dither will be attenuated. On the other hand the
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Average binary nonlinearity
output over one dither period

-Ad !//_

A d

(c) input output relation for "slow" signals

(equivalent nonlinearity)

Figure 4.2-4 Compensatory Use of a Dither Signal at the

Nonlinearity Input
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dither period must be kept well above the sampling period or the linearization

illustrated in Fig. 4.2-4 (c) will be distorted by large quantization errors.

Consequently, the gyro exhibits a forced oscillation at the dither frequency.

Although errors due to this oscillation do not appear at the input to the direction

cosine calculations, sizeable float angles can be created and associated cross-

coupling errors can be large. Use of dither is regarded as another approach

to compensation of the rebalance loop. The resulting linearized loop model

can be treated by linear techniques for all float angles less than Ad/Ksg rad.
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o CHOOSING GYRO PARAMETERS

Major strapdown system errors are generated by mechanisms which

depend on basic single-degree-of-freedom gyro parameters. This fact suggests

that gyro-induced attitude errors can be reduced by proper design of the angular

motion sensors. In this chapter we investigate the accuracy improvements that

can be achieved through gyro optimization°

5ol GYRO ERRORS DUE TO RANDOM MOTION

In order to select the optimum set of gyro parameters for a practical

mission it is necessary to compute gyro and system errors generated by ran-

dom vehicle motion. Presently available descriptions of random motion are

limited and the analysis is therefore restricted by several simplifications° In

particular, sinusoidal angular rates about the three orthogonal inertial sensor

package axes are assumed to have the same phase. This permits specification

of co-spectral density functions between pairs of axes in terms of a single

spectral density function and proportionality constants° In addition, the co-
.

herence function between angular rates about different axes is unity in this

case. Figures 3o 4-1 and 3.4-2 indicate that such in-phase angular rates pro-

vide the chief source of constant system drift rate, particularly when the gyro

bandwidth exceeds the highest motion frequency. Gyro loop dynamics are de

scribed by a linear, second order transfer function.

*See Refo 13, p. 33.
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Constant Gyro Drift Rates -If the angular rate vector, _, in

Fig. 5.1-1 maintains a fixed orientation in the sensor package, the major con-

stant gyro errors can be expressed in terms of the spectral density function

¢ (v), direction cosines describing the projections of _ on the three principal

axes and the gyro transfer function:

constant gyro = K1 K2drift rate f H(v) ¢

0

(v) dv (5.1-1)

where K 1 and K 2 are constants which represent the orientation of the _ vector

and appropriate gyro physical parameters. The function H(v) is included to

represent gyro transmission characteristics when they appear. For example,

if spin-input crosscoupling errors are considered K 2 is the steady state gyro

float angle sensitivity (rad/(rad/sec)) and H(v) is given by

H(v) = Real l G(S)ls=jv } (5.1-2)

where G (s) is the Laplace Transform gyro transfer function. K 1 is the pro-

duct of direction cosines between the _ vector and the spin and input axes of

the gyro under consideration and a minus sign precedes the expression.

Orientation of the Angular Vibration Vector -It is not realistic to

expect the _ vector to maintain a fixed attitude within the vehicle° Instead, a

simplified description of varying orientation is used: the random angular vibra-

tion vector is presumed to maintain a fixed direction in vehicle coordinates for

intervals of equal length T' and to assume a new attitude at the end of each in-

tervalo The orientations are independent from one period to any other but may

obey some probability distribution to account for different amplitudes in the

vibration spectra about the vehicle axes° This is a good description of import-

ant random angular motions such as structural vibration and lightly damped

vehicle dynamics.
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Vehicle Axes

Figure 5.1-1 In Phase Angular Oscillations
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Using Eqo (50 1-1), the system attitude error due to a constant gyro

error grows by the amount

5 (i) = K 1 (i) K 2 T'

GO

0

(v) dv (5ol-3)

during the i th interval of length T'. Since the orientation of oa is independent

from one interval to another the coefficient K 1 (i) is also independent. Assum-

ing symmetric distributions for the orientation of to,

5_ =0 foralli

_(i) 60) = o for i _ j

(5.1-4)

The mean square total system attitude error at the end of N intervals is given

by

N

i=l

(5.1-5)

If T' is constant and if ¢toc0 (v) and the probability distribution for the orienta-

tion of oa are stationary,

= N K 1 K 2 H(v) ¢ (v) dv (5.1-0)0J0b
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Equation (5.1-6) uses an integral expression to provide the average drift rate

over an interval T'. However, the integral is only correct when considering

averages over an infinite time. Appendix G illustrates conditions for which the

integral is approximately correct for finite-time averages. We will assume

those conditions are satisfied in the examples which follow.

The constant system drift rate resulting from output axis angular

acceleration errors can also be viewed as an integral over the random motion

spectrum according to

constant system 2 Ioo of H(v) ¢
drift rate = K 3 _ _
per gyro

(v) dv (5.1-7)

where K 3 is the direction cosine between the _ vector and the output axis of

the gyro whose error is being considered and H is defined as

2

HCv)= s=j

Since

the mean square system attitude error resulting in this case is not dependent

on the interval T':

(5.1-8)
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Figure 5.1-2. Frequency Spectrum Reduction
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Constant System Drift Rates From Correlated Errors in Pairs of

Gyros -In addition to constant system drift rates which result from constant

angular rate errors in individual gyros and from output axis pseudo-coning

effects, growing attitude errors can also be generated by properly correlated

oscillatory errors from pairs of gyros. Calculation of this kind of system drift

rate cannot be accomplished without statistical descriptions of the random an-

gular motion which are considerably more complex than the spectral density

function. As an approximate approach to the problem, ¢ (u) was divided into
woo

segments and each section was approximated by a pure sinusoid at the center

frequency having the same power as the segment it represents (see Fig° 5.1-2).

The sinusoids obtained were used to compute time-varying gyro errors accord-

ing to Eq° (2.2-1). Properly correlated errors from pairs of gyros were then

used to compute the constant system drift rate resulting from this form of

pseudo-coning. In the examples which follow, this contribution to system atti-

tude errors was found to be insignificant.

5.2 OPTIMIZATION OF GYRO PARAMETERS

Designable Parameters -In any attempt to specify a gyro which

minimizes the motion induced errors described in Chapter 2, the sources of

inaccuracy can be divided into two broad categories: errors whose generation

involves parameters basic to the sensor operation and errors arising from im-

perfect construction and other considerations which the designer always tries to

minimize. Examples of the latter category include anisoelasticity and torquer

scale factor errors. A list of the first group, referred to hereafter as "de-

signable parameters," is provided by Fig. 5.2-1. Subsequent discussion will

concentrate on the designable parameters because when dealing with all other

error sources, the design goal is obviously to minimize the factor under con-

sideration. In many cases the designable parameters can be lumped together

and the optimum design problem involves specifying the best values for groups
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of parameters. Figure 50 2-2 illustrates parameter groupings possible for a

simple model of a ternary pulse rebalanced gyro.

Limiting Constraints -Several gyro parameters or groups of param-

eters are confined within limits imposed by the environment or by hardware

considerations. For example, the parameter group KtgD/H (D' in Fig. 5.2-2(b))

must exceed the maximum anticipated input angular rate. If this condition is

violated, the gimbal angle cannot be held near null and, in practical gyros, the

gimbal will rotate until it is restrained by mechanical stops, causing the history

of input angular motion stored in the float to be rendered incorrect.

When a maximum gyro output angle increment, A0max, is specified

in order to keep quantization and commutativity errors in the direction cosine

matrix calculations within certain bounds, the gyro sample period T must obey

the relation: KtgDT/H _ A0ma x. If the gimbal is not torqued for the entire

period, the pulse length T must be substituted for T in this relation. In other
P

words, once the torque generator output has been scaled to imply an input an-

gular rate, the value of an output pulse is directly related to the torque pulse

period. Also, the inequality discussed earlier becomes (rp/T) KtgD/H > _imax

if torquing does not occur over the entire period. These expressions may be

further modified if the torquer lag precludes application of essentially rectan-

gular torque pulses.

A theoretical restriction is imposed on the rotor moments of inertia

Iii r and Iss r if, as is common in single-degree-of-freedom gyros, the rotor

shape is a wheel. This restriction is that Iii r > Issr/2. Furthermore, since

Ioor = Iii r the important parameter group Ioo/H is bounded according to

Ioo/H >--_---.

In the optimization examples which follow, the above constraints

provide limits on the range over which parameters can be varied, reducing

the size of the parameter space which must be searched to find the optimum.
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SINGLE DEGREE OF FREEDOM FLOATED RATE GYRO

• Rotor Spin Angular Momentum, H

• Gimbal Plus Rotor Output Axis Moment of Inertia, Ioo

• Fluid Damping Coefficient, C

• Rotor Spin Axis Moment of Inertia, Issr

• Gimbal Plus Rotor Anisoinertia, Iss-lii

• Torque Generator Time Constant, Ttg

• Signal Generator Sensitivity, Ksg

• Torque Generator Sensitivity, Ktg

• Wheel Speed Regulation Loop Frequency Response

• Pulse Torquing Period, T

• Torque Level, D pulse torqued gyros

• Gimbal Angle Threshold, 5

Figure 5.2-1 Designable Parameters.
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Simplifications Used in the Examples - The examples which follow

are concerned with binary pulse torqued gyros. The gyro transmission charac-

teristics are those of a linearized second order system, and depend on rf and

rtg according to the equations provided in Section 2.4.3. One of the basic re-

sults of that section is that the transmission characteristics of the linearized

gyro loop are independent of loop gains Ksg , Ktg and D. Also, it is assumed

in the examples that gyro errors due to limit cycles are not allowed to reach

the direction cosine calculations. Consequently, these three parameters do

not appear in the examples. Following Section 2.40 3, the gyro sample period,

T, is not considered significant in determining the limit cycle (and therefore

the transmission characteristics.). In addition, no maximum size for the gyro

output increment, AS, is established. The sample period does not enter the

examples as a parameter to be optimized. Finally, since only a binary pulse

torqued gyro is considered the nonlinearity threshold, 8, does not enter the

design problems° The remainder of the designable parameters listed in

Fig. 50 2-1, atotal of six, remain available for manipulation in the examples.

Of these, the terms Iss - Iii and Iss r are grouped to describe the effective

anisoinertia. The time constants rtg and Tf = Ioo/C describe linearized gyro

dynamics, particularly the gyro bandwidth. When the effect of gyro loop damp-

ing ratio is ignored the independent groups of designable parameters are re-

duced to three: gyro bandwidth (depending on rtg, C and Ioo) , the ratio Ioo/H

and the ratio of an effective anisoinertia to Ioo. When the major contribution

of anisoinertia errors is assumed to take place in a frequency range where the

effective anisoinertia is constant, this term is assumed to be removed by de-

sign and the optimization takes place in the two parameter space of the gyro

bandwidth and Ioo/H.

The characteristic time T' describing the correlation of the c_ vector

orientation in vehicle axes also enters in the gyro optimization. When expressed

as a function of time, the mean square system attitude error, J(t), behaves as
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Figure 5.2-2 Parameter Grouping in a Ternary Torqued
Pulse Rebalanced Gyro
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J(t) = ATit + Bt 2 (5.2-I)

where the first term comes from gyro errors represented in Eq. (5.1-6) and

the second from errors expressed in Eq. (5.1-8).

Optimization Procedure - The optimization procedure used in the

examples can be summarized as follows:

o A starting set of gyro parameters is specified. To the

extent that the effect of the individual parameters is under-
stood, a set of values which may be close to the optimum
is chosen.

. The major system error contributors are determined for

the initial gyro parameters. In the given environment some
gyro error terms may not be significant and their elimination
simplifies the optimization problem.

. The system attitude error is expressed as a function of the

major error sources and in terms of the designable gyro

parameters° The motion environment is reduced to the form
of numerical coefficients at this point but gyro parameters
appear explicitly in the expression.

o The figure-of-merit is minimized with respect to all the

gyro parameters appearing in the equation developed in
step 3. Since all error sources do not contribute to system
error growth in the same manner this usually requires
specification of an "evaluation time", t, and minimization of

the system error at that time.

o At the conclusion of minimization a check is made to see if

the same error terms dominate when the gyro has the opti-

mum set of parameters. If not, steps two through five are
repeated.
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_r

50 3 EXAMPLE I

The vehicle angular motion experienced by the sensor package in

this problem consists of a constant angular rate of 0.1 rad/sec about one

vehicle axis and a random angular rate motion about each axis described by a

constant spectral density • = 10 -3 (rad/sec)2/Hz from zero to 1000 Hz. The

random motion correlation period, T', is 0.5 sec. This environment is pre-

sumed to be representative of that experienced in a lunar module during powered

descent.

Step 1 - The initial set of gyro parameters is that provided in the

example of Section 20 5. In addition, the float damping coefficient and torque

generator time constant are 8 x 105 dyne-cm-sec and 50 _sec respectively.

Linearization of a binary pulse torqued gyro with these characteristics yields

a second order gyro transfer function with natural frequency of 972 Hz and a

damping ratio of 0.260 However, in order to simplify the problem for hand

calculations the gyro is assumed to have a unity transfer function over the

entire random angular motion bandwidth. As a result of this assumption, there

are no potential system errors due to undetected vehicle coning motion unless

the gyro parameters change. This bandwidth-dependent error must be con-

sidered when different gyro characteristics result from optimization.

Step 2 -The dominant system error sources generated in the gyro

whose characteristics are given above all result from random motion. They

are the constant drift rates due to anisoinertia errors at high motion frequencies,

spin-input crosscoupling and pseudo-coning from output axis angular accelera-

tion errors. System errors arising from the constant angular rate postulated

were negligible, as were system pseudo-coning errors generated by oscillatory

errors in pairs of gyros.
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Step 3 - The expression for the system attitude error growth, as

reflected in the figure-of-merit discussed in Chapter 3, is:

J(t) -3

+ 3T' (Iii - Iss ) • con]
HO +

2_ Ioo con 2_ H
t (5.3-1)

For simplicity the gyro bandwidth coBW is equated with natural frequency con"

The first term in Eq. (50 3-1) describes the contribution of output axis angular

acceleration gyro errors through pseudo-coning. The second term results

from constant gyro errors due to spin-input crosscoupling and high frequency

(oscillations above the rotor speed regulation loop bandwidth) anisoinertia terms.

The figure-of-merit, J(t), is in (tad) 2 and T t and t are to be specified in seconds.

It is desired to minimize J(t) at some specific time, t'. By making

the following definitions:

A t'
a=-_-

I..-I
11 SS

,g
I

O0

I
A oo

C=- H

2 (T,)2R__ 30
2

4_

Equation (5.3=1) can be written in a form more suitable for analytic optimiza-

tion:

E1 tac 2 con + + bc co
aR = c _n

2

(5.3-2)
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If any attempt has been made to reduce anisoinertia errors by design of gimbal

and rotor moments of inertia, b << 1. This fact is also reflected in Eq. (5.3-2)

by the observation that J(t°)/aRis minimized with respect to b when b = 0 re-

gardless of the other parameters. In addition, it is reasonable to assume that

a >> 1. The use of these two inequalities permits Eq. (5.3-2) to be reduced to

1
J(t') 2 2+ + 2b (5.3-3)
aR - ac _n 2 2

C
n

This is the equation that is used to determine the optimum set of gyro param-

eters as reflected in the quantities b, c and o

n

Step 4 - It can be seen from Eq. (5.3-3) that the optimum value of

the parameter group b is zero. Designing the effective anisoinertia for high

frequency oscillations to be zero minimizes system errors from this cause

independently. Setting the partial derivatives of J-(t')/aR with respect to c and

_n equal to zero provides two identical equations for the optimum groups of

gyro parameters:

4 4
ac _ = 1 (5.3-4)

n

Evaluation of second partial derivatives reveals that Eq. (5.3-4) specifies a

minimum. If _ is selected to permit accurate measurement of all anticipated
n

angular rates by the gyros, Eq. (5.3-4) provides the optimum value of the

parameter group c for each choice of evaluation time t a and correlation period

T _. Using Eq. (2.4-23) and assuming that vf >> rtg, Eq° (5.3-4) provides a

relation for Ioo, C and H in terms of rtg and t'/T':

I C 2
oo _ rtg

H2
(5.3-5)
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The minimum value of J-(_')/aR is given by

[J(t')/aR] min = 2(._fa" + b) (5.3-6)

Choosing t / = 1 min and con = 1000 Hz, a = 120 and the optimum value of the

parameter group c is 4.82 × 10 -5 sec (the starting value of c was 1.25 x 10 -3

sec). This requires _ > 1650 Hz. The minimum system error is:

~ g)2= (0.406 de[ J(t')] min

This figure compares with a value for J(t') of (7.21 deg) 2 when the original

gyro parameters are substituted into Eq. (5.3-3).

Step 5 - Computation of all the gyro-induced system errors reveals

that the dominant error sources have not changed as a consequence of gyro

parameter optimization.

Effect of ComPensating Output Axis Acceleration Errors - The fact

the optimum value of c = Ioo/H is much less than that obtained with the initial

set of gyro parameters reflects tha fact that in this example output axis an-

gular acceleration errors are the major contributors to system attitude errors.

If we assume that these gyro errors are reduced to 10% of their former value

by some kind of compensation, Eq. (5.3-3) becomes

J(t') 0.01ac 2 2+ 1
aR - con 2 2 + 2b (5.3-7)

C COn

The optimum set of parameters obey

4
ac

b=0

4
con = 100

(5.3-8)
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.and

If
n

[z(t')l _
L aR J rain 10

= I000 Hz, the optimum value of c is I. 52 x I0 -4 (_ > 525 Hz) and

= (0.129 deg) 2[ J-(t') ] min

(5.3-9)

5.4 EXAMPLE II

The second design example presumes an angular motion environ-

ment representative of that which may be experienced by a strapdown inertial

navigator in a large transport airplane. Random angular motion about each

axis is described by a flat spectral density of 10 -4 (rad/sec)2/rad/sec (notice

the units are different from those in the first problem) out to v r = 2 _ rad/sec

and zero elsewhere. In addition a sinusoidal angular motion exists about two

axes (x and z). This has an amplitude of 0.1 rad/sec with frequency of 2 _/I0

rad/sec (0.1 Hz). The motions have the same phase and represent the dutch
,

roll oscillation mode of the aircraft.

Step 1 - The starting gyro parameters and sensor orientations are

identical with those chosen for the first example.

Step 2 - The significant system attitude error contributions from the

sinusoidal motion result from pseudo-coning due to output axis acceleration

errors in the x and y gyros and the constant errors generated in the z gyro by

spin-input crosscoupling and anisoinertia effects.

*The phase difference between x and z axis oscillations due to the dutch roll

mode may range from 125 degrees up to 180 degrees for different aircraft.

The 180 degree value is chosen here for simplicity.
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/
/

Step 3 -Because the dutch roll oscillation axis is fixed in the vehicle,

it generates errors which cause J to grow as a parabola. The anisoinertia in this

case is Iii- Iss since the oscillation is well within anticipated wheel speed regu-

lation loop bandwidths. In terms of the oscillation amplitude, B = 0.1 rad/sec,

- Iss, the contribution of the dutch roll motions to J(t) (or J(t)) isand AI = Iii

given by:

Jd.r.(t) = B 4 t 2 )c 2 I AI 1
-_-- + c ..... + 2I + ------2

\\ oo/ oo 2 _¢n

+ 2 2 + 2 (5.4-1)

4 c _n 2 Ioo _n

Under the assumption that A I/Ioo < < 1 (again minimizing J with respect to the

anisoinertia term simply involves setting AI to zero):

B4t212 1 --_n 1
Jdr(t)__ c + 2 4 + (5.4-2)

"" 2c _n

In Eq. (5.4-2) J is in (rad) 2 and t is in seconds.

The significant contributors to system error as a result of the ran-

dom angular motion are pseudo-coning due to output axis acceleration errors,

and constant gyro errors caused by spin-input crosscoupling and anisoinertia.

A restriction is arbitrarily imposed to the effect that all random motion is

sensed by the gyro, that is _ > v . In terms of the random motion spectral
n r

density ¢ and bandwidth v the contribution to J(t) is given by
r

/Jr.(t) 3 _2 (v r c 2 u_ I _ \ oo /
= +3T¢ (v 4 + 2 +_ c

n oo n

(5.4-3)
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Defining

and noticing that for this problem

d= _ AI
I

OO

B 4 >> 3 ¢2 v 2
r

i

the expression for J(t') is

) t )cJ(t') a 4 2 2d 2 c 2 a ¢2 v2 1
--__:-,2 = - +3¢ v r + _ +3 r 2 4
atT'_ _n

ta B 4 2 2 d) 1+ --g---+6 _ v r 2 (5.4-4)

n

= + k2 c 2 + k3 7
_n

Minimization of J(t')/a(T ,)2 with respect to _¢n leads to the requirement

= _ in order to remove crosscoupling errors. Of course, an infinite gyro
n

bandwidth is not feasible but one can be easily chosen to satisfy the requirement

_¢ > v . Optimization of J(t')/a(T')2 with respect to d requires that _I be
n r

zero. The minimum system error occurs when

4 k2
c - 4 (5.4-5)

k 1 u_n

and

J(t') mill

a(T ,)2

- 2

n

(2 _ + k 3) (5.4-6)
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Step. 4 - Ift' is chosen as 2 hours and T ' as one minute, a = 120.

For the same value of Wn as the starting gyro (972 Hz), the optimum value of

c is 1.38 x 10-4 sec and

_(t ')]min = (0.68 deg) 2

Using the original set of gyro parameters J(t') is (3.67 deg) 2.

Step 5 - The major contributors to system error are the same for

the optimum gyro.

Again output axis errors, in the form of pseudo-coning, are the

largest contributors to Jmin(t'). Reduction through compensation of these

errors by a factor of ten changes the coefficients kl, k 2 and k 3. The equation

(Eq. (5.4-5)) for the optimum value of c remains unchanged but the optimum value

value of c becomes 4.36 × 10 -4 sec and

_(t')]mi n = (0.22 deg) 2

The optimum set of gyro parameter groups for the output axis

motion compensated gyros are:

(i) OO

C_ Ttg ,n C = 972 Hz (arbitrarily chosen to satisfy
1.0Hz _ _ _ _ and the fact

that errorsPdecrease with

large values of _ n )

I
OO

H
- 4.36 x 10 -4 sec

Iii = Iss

I
SS

r

is arbitrary
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5.5 SUMMARY

The examples presented in this chapter serve to illustrate an ap-

proach to the determination of the optimum set of gyro designable parameters.

Many of the calculations performed were of a coarse nature but the use of

digital computers permits detailed analysis of any degree desired. The equa-

tion for the growth of system attitude errors in the example is a function of

three groups of designable parameters. These three groups in turn depend on

a total of six parameters (wheel speed regulation loop bandwidth does not appear

because it was assumed high or low depending on the motion spectrum). The

most common groupings were Ioo_/H, (I..11 - Iss_)/Ioo_, (Iii - Iss)/Ioo and _ n"

The natural frequency, _ n' in turn is a function of _f = Ioo/C and rtg.

Significant decreases in system RMS attitude error at the evaluation

time, t ', resulted when optimum gyro parameters were substituted for those

originally assumed. However_ error growth when the optimum set of gyros is

used may still be prohibitive and compensation is necessary to further reduce

strapdown system drift rate. In the examples, compensating the optimum gyro

to reduce its chief error source does not produce a "one-to-one" reduction

in system error. The intent of this chapter is to demonstrate a useful approach

to the synthesis of an optimum (but mission dependent) set of gyro parameters

and to indicate the system error reduction that can be achieved by parameter

manipulation. No comment is made on the difficulty involved in building a gyro

containing the optimum parameter groups specified in the examples.
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6. CONCLUSION

6.1 CONCLUSIONS

During the course of Phase I research, several useful tools for the

analytic design of single-degree-of-freedom strapdown floated integrating gyros

have been developed. These include a quantitative figure-of-merit on which

optimum gyro design can be based, and a quasi-linear description of the trans-

mission characteristics of binary-torqued rebalance loops, as well as neces-

sary gyro error models, compensation methods, and environment descriptions.

The design procedure developed is well suited for implementation on a digital

computer, although the text design examples were highly simplified to allow a

pencil -and -paper solution.

Several comclusions can be drawn from the examples presented,

although these are necessarily preliminary in nature, depending upon the ap-

proximations made. Foremost among these is the conclusion that gyro param-

eter manipulation cannot always provide sufficient reduction in gyro errors:

the system drift rates calculated for the optimized gyros in Chapter 5 remained

unsatisfactory for many applications. Consequently, it seems that error re-

duction in single-degree-of-freedom strapdown gyros must be aided by some

means in addition to manipulation of the basic sensor parameters; external

compensation appears necessary.

Given the need for compensation, the gyro errors can be divided

according to the means employed to reduce them. Certain parameters are

specified in order to minimize the errors generated by their existence while

the errors caused by other parameters are reduced through compensation.
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Compensation, of course, implies calibration. The rotor speed loop, for

example, must be damped to minimize anisoinertia errors. In addition, the

rotor speed loop frequency response must be measured to enable compensation

of residual dynamic errors.

Another interesting conclusion is that the rebalance loop bandwidth

may be heavily dependent on torquer dynamic characteristics. In particular,

the quasi-linear binary-torqued gyro model showed the loop bandwidth to be

inversely proportional to the square-root of the torquer time constant. This

indicates that the torquer dynamic characteristics should be carefully specified

in optimum gyro design. Furthermore, the torque generator design should in-

clude the consideration of accommodating additional torquing signals for pur-

poses of gyro error compensation. As a consequence of required gyro torqu-

ing accuracy, the necessary stability of rebalance loop electronics is to be

emphasized.

Compensation within the gyro rebalance loop appears to have limited

value. While it can produce improvements in gyro transmission characteris-

tics and reduce limit cycles when they exist, its value in removing motion

induced gyro errors on the basis of frequency discrimination is limited. For

example, since the DC sensitivity of the gyro is fixed, the major system errors

arising from constant error torques in individual gyros are not affected by the

choice of compensation and switching logic. One main contribution of loop com-

pensation to error reduction results from increasing gyro bandwidth.

Finally, it can be concluded that the importance of motion-induced

errors precludes use of the static testing procedures common for platform

gyros. In order to determine the quality of performance, strapdown gyros

must be subjected to dynamic testing. In addition, a large list of items to be

determined by gyro testing is suggested by the work to date. If certain gyro

error sources are to be removed through the calculation of compensating

torques or output signals, gyro tests should be performed with the additional
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compensation equipment and, under some conditions, whole strapdown sensor

packages may require testing as a unit.

6.2 CONTINUATION OF EFFORT

The results of the work reported herein suggest several areas of

continuing investigation. First, as a means of consolidating the conclusions

just stated and to establish the validity of several approximations used, a

digital simulation will be made of the dynamics of single-degree-of-freedom

strapdown gyros. Included in the simulation will be the equations relating

system level performance to gyro errors. The computer program will be in

a flexible, modular form to permit its use for studying other single-degree-

of-freedom sensors.

A catalog will be made of existing and proposed devices for measur-

ing the vehicle motion environment and computing motion-induced gyro errors.

An effort will be made to determine the size and types of errors in these in-

struments as a means of estimating how accurately gyro errors can be com-

pensated. All proposed techniques will be evaluated using the digital simula-

tion program.

Based on insight gained in the work of Phase I, laboratory experi-

ments will be designed to test proposed devices and calculations for the reduc-

tion of gyro-induced system errors. Laboratory tests will also be specified

to determine the validity of mathematical descriptions for gyro error genera-

tion that have been used in the effort reported above.

An investigation will be conducted into the feasibility of a digital

computer gyro design program which will be capable of specifying the optimum

set of gyro parameters and compensation devices for any given vehicle environ-

ment (mission). Alternately, the program may be able to choose the best
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strapdown sensors from a catalog of available instruments. The basic inputs

are conceived to be vehicle environment, design goals and the accuracies,

weights, and power consumption tradeoffs that represent the state-of-the-art

at a particular time.

Finally, the experience gained in analyzing the single-degree-of-

freedom gyro will be applied to the single-degree-of-freedom pendulous ac-

celerometer. An attempt will be made to provide a unified approach to the

selection of gyros and accelerometers to meet specifications for a particular

strapdown system mission°
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APPENDIX A

DERIVATION OF ANGULAR MOTION INDUCED ERROR TORQUES

FOR THE SDF GYRO

The single-degree-of-freedom gyro float torques caused by case an-

gular motion are derived herein. We begin by writing the torque on the float

assembly (i. e., gimbal plus rotor), in the form

dH_f

Mf = ( _ )I (A-I)

which is the rate of change in angular momentum of the float relative to

inertial space. Rewriting this equation relative to the gimbal frame using

dH_f

Mf : (--_-)G + _IG x _Hf

the law of Coriolis yields

(A-2)

where _---IG is the angular velocity of the gimbal with respect to inertial space.

At this point we adopt the notation of subscripted square brackets to denote the

frame in which vectors are expressed. Thus, writing components of all vec-

tors of Eq. (A-2) in the gimbal (G) frame yields

dHf

[.Mf] G = [ ( --_-)GJG + [__IGJG x [H_f] G (A-3)

Continuing, note that the angular velocity of the gimbal with respect

to inertial space can be written as the vector sum of the angular velocity of

the case with respect to inertial space and the angular velocity of the gimbal

with respect to the case, viz:

[gIG]G : Eu_icJ G + E_co] o (A-4)
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Figure A-1 illustrates the geometry of rotor, gimbal and case, including

possible misalignment of the rotor relative to the gimbal _8) and the gimbal

relative to the case (a_). With the exception of cxo, all other components of

and fl are assumed constant. Let the quantities 5, §, _ denote unit vectors

along the o, s, i axes, respectively, with the obvious extensions to the primed

coordinate systems. The required terms in Eq. (A-4) can now be written as:

[ _a_CG]G = _o 5' (A-5)

and

F_c IG = L_C]C - m× L_C]C (A-6)

where terms on the right hand side of Eq. (A-6) are all expressed using G-

frame unit vectors. If we define

^ ^ ^ (A 7)= _ o + (_ S + 0O. i_IC ]C o s I

then it follows that

^1 .A/

[-_IC]G = °0o °' + _s s + a_.l 1

o' s' -_'

% % =i

%_ _iS

= (_o - (Xs_i + ai_s) 5'

(U)s - C_.¢_ )£'+ + ao_i 1 o (A-8)

+_ _)i'
+ ¢_i - _o_s s o
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s(spin)

C(case)

G(gimbal)

R(rotor)

o(output)

SI

0'

O II

Figure A-1. Exploded View of Single-Degree-of-Freedom Gyro
Showing Small Misalignment Angles __,/3_.
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The angular momentum of the float assembly can be written as the

vector dot product of the float moment of inertia tensor (second-order tensor

or dyad) and the angular velocity of the gimbal with respect to inertial space.

The float angular momentum ___f) can be written as the vector sum of the gim-

bal angular momentum (ILI_g)and the rotor angular momentum (ILI_r), viz:

[Hf]G = [_g]G + [Hr]G (A-9)

Operations with the moment of inertia tensor yield

[ Hg] G = (Io " FQOIG]G)O' + (I_s ^'_ _ . [ 00iG]G)S
g g

+ (i i . [O_IG]G)I, (A-10)
g

where

= ^ ^./I &I o'+I s'+I 1
--O OO OS Oi

g g g g

I =AI '+I s +I.i
--S OS SS .- El

g g g g
(A-11)

I. _= I o' + I . s' + I.. x
-z oi sl zz

g g g g

Ioo , etc., are the gimbal moments of inertia and Iosg , etc., are the gimbal

products of inertia. For the rotor we write (where R is the rotor frame)

[_Hr] G : [Hr] R +_ x [H_r] R 0k-12)

where, as before, terms on the right hand side of this equation are all ex-

pressed using G-frame unit vectors. Also,
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[Hr]R_ = (I_o "
r

[U_IR]R) o" + (I
r

+ (I i [0°IR] R) _"
r

where, in principal axes, we get:

(A-13)

and

^H

I =I o
--0 O0

r r

^ II1

I =I s
--S S S

r r

A.III. =I.. i
--I Ii

r r

(A-14)

[_IR]R = [-_ GR ] R + [_- IG]R

= i]s_"+ [__IG]G-_ x [u__IG ]G
(A-15)

1% is the rotor speed relative to the gimbal.
s

At this point it is possible to compute all of the basic expressions of

interest. The results are given below, with all calculations valid to first-

order in small angles. Terms comprised of products of inertia multiplied

by small angles have been dropped.

-- (&o+ %-_s _. +a._ )o' + (_ +a _.-_ ._ )s'
1 i S S 0 1 1 0

+ (_i-_o _s +%_o ){'
(A-16)
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[Hf]G:[Ioo((_o+_o-(XsU_i+(xic_ )+I (_ +0( (_.)+I . .u_.S OS S 0 1 Ol I

g g

+I _i((_ +o( _ ) - I c_ +0( u_ )]_)'OO S O i SS _i(_s + S O i

r r

+[I (_ +(_ u_.-(x.u;)+I (& +_ )+I . u_.
SS S O I 1 O OS O O Sl 1

g g

+I (_ +_o_i-_i(_o +& ))+I fl.(_ +_ )-I..SS S O OO 1 O O ii
r r r

where

+LI..(o_.-a _ +a _ )+I . (& +o_ )+I.
n I o s s o ol o o sl

g

-I.. +I11 s ss s)3i'
r r

I =I +I
O0 O0 O0

g r

S
g

(A-17)

I =I +I

ss SSg SSr (A-18)

Recalling Eq.

we get

I.. = I.. + I..
11 11 11

g r

(A-3) and the fact that only output axis torques are of interest,

[Mf] o, = I (_ +u_ )+(l..-I )Q_u_. -Hu_.
-- OO O O 11 SS S 1 '1

+ i [_ -u_
os s o _i_1

g

+ loi [_i + _o_s ] + Isi [_S - _; ]
g g

+ (_o[(Iss- I..)(0_2-0_. a) + Hu_ ]II S 1 S

- He%- I _i ]+ 0_s[-(Iss-lii)00oU_s oo

+ (_iL(Iss-I..)o_ 0_. + I _ ]
11 O 1 OO S

+ _o[(I - I.. )(C_2 - _.e) +Hc_ ]
SS 11 S 1 S

r r

+ _i[(Iss - I )(-(_ +_ (_i)- I _ ]
OO S O SS S

r r r

-K

(A-19)
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where we have used the definition

H=I
SS S

r

The term -He. represents the "ideal" gyro float torque.
1

terms in Eq. (A-17) are error torques.

All of the remaining
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APPENDIX B

DESCRIBING FUNCTION CALCULATIONS

Describing Function

The describing function for a nonlinearity may be defined as follows:

NA(A ) _ phasor representation of output component at frequencyphasor representation of input component at frequency u_

(A)
_ ejqh(A) (B-l)

A

where A 1 (A) and _1 (A) represent the amplitude and phase of the first-harmonic

in the output of the nonlinearity when its input is

x = A sin a_t

= A sin ¢ (B-2)

Denoting the output of the nonlinearity by y(x), Fourier series manipulations

result in the following form for N A (A)

29

NA(A) =-I-_A _ y.(A sin_b) e -j¢d¢

0

(B-3)

If the nonlinearity is odd and memoryless, this can be simplified to

9/2

4
NA(A) -yA _ y(A sin{)) sinCd{)

0
(B-4)
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Example 1 - Figure B-1 (a) illustrates a sinusoidal input and the

corresponding output for a binary (two-level) nonlinearity. From Eq. (B-4),

the describing function is computed as

_./2
4

NA(A) = _-_ D sin _ d_

0

_A
4D (B-5)

Example 2 - Figure B-1 (b) illustrates a sinusoidal input and the cor-

responding output for a ternary (three-level) nonlinearity. From Eq. (B-4),

the describing function is computed as

_/2

NA(A) -- _ 7 D sin_d_

4D

7rA cos _x

,

4D 6 ' (B-6)

Dual Input Describing Function

For our present purposes we define the dc gain of a nonlinearity to be

the ratio of dc output to dc input, over one limit cycle period. Thus, for

x=B+Asin_;, we get

21T

1
NB(A, B) = _ _ y(B+A sin_) d@ (B-7)

0
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Y

D

X

A

D

y(t)

time

(a) Binary (Two-Level) Nonlinearity

D

Y

X

8

A

D

8

f ×(t)

time

(b) Ternary (Three-Level) Nonlinearity, _ 1 = sln-l(8/A)

Figure B-1. Nonlinearity Input and Output Waveforms.
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Example 3 - The model input and corresponding output waveforms for

a binary nonlinearity are shown in Fig. B-2a. Equation (B-7) yields

_f0+ _ 21/- _ 2_ 1
1 D d@ + f (-D) d_ + _ (D) d@NB(A, B) - 2_B

_r+ _b2 2 7r - @_

=_ B
2D sin-I (A) (B-8)
yB

Example 4 -A two-segment piecewise-linear asymmetric nonlinearity

is illustrated in Fig. B-2b. Equation (B-7) yields, for the equivalent dc gain,

NB(A'B) = 2_/ f m_(B+A sin_)d_+_ rna(B+Asin#)d_ + m_(B+Asin_)_.

2=

_ m_ +rn_. _ A
- 2 + ?r [_ + "_ cos @2 ]

_ B A _( )_ (I3-9)_ m1+m_ +_ sin-I __ + _
2 ?r B
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Y

D

x

D

--D

f y(t)

B-Asin @2 = 0

7T

*@2

7

I

@

(a) Binary Nonlinearity

Y

m I(B+A)

B+A

x

A

B-A sin @2 = 0

7T

m2(B-A)

B-A _ _ x(t)

277
@

(b) Two-Segment Asymmetric Nonlinearity

Figure B-2. Input and Output Waveforms for Two Nonlinearities with
Bias Plus Sinusoid Input.
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APPENDIX C

GYRO FIGURE-OF-MERIT

C.I Interpretation in Terms of System Attitude Errors

We will demonstrate that the figure-of-merit, J, expressed by

J = ½tr (AcT_c)

is useful in describing system attitude error. It is assumed that the strap-

down system performs well enough that the orientation described by the com-

puted transformation matrix is in error by only a small angle. The direction

cosine matrix contained in the computer will be designated C c while the true

system orientation will be represented by C. The matrix AC is defined by

C =C+AC
C

(C.1-1)

C is an orthogonal matrix. This quality specifies:

cTc = I

Premultiplication of an arbitrary vector by C c is equivalent to rotating that

vector through what might generally be a large angle. Premultiplying the

result by the transpose of C is equivalent to another rotation which, if C c and

C were equal, would return the vector to its original orientation. When the

computer indicated transformation matrix is incorrect (AC _ 0), the net rota-

tion of the vector can be represented by__, a vector constructed from the

small angle rotations _x' _Oy, and @z about the x, y, and z axes. This situa-

tion is illustrated in Fig. 3.1-2. Because of the assumption of small angles,

the product CTCc can be approximated by
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cT C N__
C

1 -_0z _Oy

_z i -_x

-@y _ox i

Using the orthogonality condition and Eq. (C. 1-1), we get

cTAc

0 -Xpz Cpy

CPz 0 -¢Px

-Cpy Cpx 0

Again because of the orthogonality condition,

(cTAc)T(cTAc) = _cTAc

P

2 + 2

- -%%
2

-¢Px cp y. cp: + CPz -_Py_Pz

-_x_z -_y _Pz cp: +_a

From this we can see that

The figure of merit chosen is thus equal to the square of the length of a small

vector which represents the system orientation error.
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C.2 Interpretation in Terms of Navigation Errors

The figure-of-merit,

j = _ tr(AcTAc)

relating system attitude errors to gyro errors is also meaningful when the

error in the transformed acceleration vector is considered.

The error in the transformed acceleration vector, A_ar, resulting

from gyro errors is given by

A_a r = AC a b

where a b is the true acceleration vector in vehicle coordinates.

of the error vector is given by

The length

A.__a/ A__ar: abT AcTAc a b (C.2-1)

Defining a new vector, d by

d _- AC T AC ab ,

Eq. (C. 2-1) becomes the dot product

A_aaTr Aa r = a b d

It is well known that

_ab•J I[- b il ,l[_dlb
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where the norm or length of the vectors is defined

A consistent norm for a matrix A is defined by

II A II : taijl

½

With the norms defined, it is known that:

I1 d II < JJ_:_TAc I]

It can easily be shown that

,tl ACT£_C II =/2 J

Consequently, the upper bound on the length of the error vector of the trans-

formed acceleration can be expressed by

_r--rAaT Aa < /-2J II a b II

It can be seen that minimizing the figure-of-merit also minimizes this upper

bound.
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APPENDIX D

EFFECT OF GYRO ERRORS ON STRAPDOWN SYSTEM ERRORS

D.I EQUATIONS FOR THE GROWTH OF THE FIGURE-OF-MERIT

In order to relate gyro output errors to the system-oriented mea-

sure of goodness we must describe the use made of gyro outputs to maintain

a record of system attitude. The description of system attitude relative to a

space-fixed set of coordinates is contained in a direction cosine matrix, C.

It obeys the differential equation (Ref. 7):

6 : CG (D. 1-1)

where G is a skew symmetric matrix constructed from the inertial rotation

rate of the body, resolved into body axes:

0 -¢_
z y

Z X

-_y _x 0

In the typical application, a digital computer is used to implement

some form of the differential equation for C because of the accuracy and drift-

free nature required of the computations. We choose as a model of the digital

computer calculation the difference equation

A®

Cn+ i = Cn e n (D. i- 2)
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where

(n+l)/T

-_ f f/(T) dTA® n -

nT

This equation does not account for the non-commutativity of general rotations

about the three body axes. However, commutativity error is a function of com-

puter speed and the computation algorithm. We desire only to relate system

attitude errors to gyro errors -independent of transformation algorithms or

the transformation computer. Equation (D. 1-2) permits us to relate small

perturbations in _®n and the resulting error in the transformation matrix. It

provides a first-order correct model of the error transmission for any al-

gorithm and transformation computer.

_C.

Equation (D. 1-2) is perturbed to arrive at a difference equation for

ACn+ 1 = AC n C T E nn Cn+l + Cn+l

+ (higher order terms in small quantities) (D. 1-3)

where E n is the error in A®n, viz:
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E
n

0 (n+l)T_z _ coz)dt

nT

(n. 1)T

z - coz)dt
nT

0

(n+ 1)T (n+ 1)T- (_y - coy)dt

nT nT

A

(cox - ¢Ox)dt

w

f(n+ _o Y - coy)dt

1)T

nT

(n+l)Tf

- J (_x - cox)dt

nT

0

That is, E n is the gyro output error matrix. Using Eq. (D • 1-3), the cost

function, J, defined in Chapter 3 can be expressed in terms of a difference

equation:

= +2tr T2 Jn+l 2 Jn (Cn+l CnAC Cn+l En)

+ tr (E T E n) (D. 1-4)

With the assumption that AC ° = 0, by repeatedly shifting indices in Eq. (D. 1-3)

and substituting into Eq. (D. 1-4), AC is eliminated. Defining Pn as 2Jn, we

get:

n

Pn+l = Pn + 2 tr

'j=l

C T.C . .ET.C T , C :E
n+1 n+1-] n-] n+1-j n+1 n + tr (ETEn) (D. 1-5)
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Equation (D. I-5) is a difference equation expressing the propagation

of the figure-of-merit as a function of the individual gyro errors. It results

from retaining only second or lower order terms in these errors. It also in-

volves all the direction cosine matrices from the start of _lculation. No loss

of generality results from taking C o to be the identity matrix° In other words,

the growth of the cost function is independent of the vehicle attitude at the

start of computation. This reflects the non-directional nature of the measure-

of-goodness chosen. No particular type of gyro is required for this expression

to be valid° The only forcing terms are the errors in indicated attitude change

about three orthogonal, vehicle-fixed axes. No sensor orientations within

the vehicle are necessarily implied. Inspection of the terms of Eq. (D. 1-5)

reveals that no cross-products of gyro errors are included. Such terms do

appear, however, if higher ordered products of error matrices are retained

from Eq. (D. 1-3). Since the skew symmetric property of the E matrix pre-

vents any contribution to the trace of a third order product of error matrices,

fourth order terms must be retained before gyro error cross-product contri-

butions to system attitude error appear° This effect is discussed in Section

D.3.

D. 2 FIRST ORDER EFFECTS OF INDIVIDUAL GYRO ERRORS

If the vehicle is presumed to maintain a fixed attitude,

C i=C kforalli, k

and Eqo (D. i-5) becomes

n

Pn+l =pn + 2tr _ ETn-j En+tr (EnTEn)

j=l

(D.2-1)
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This equation relates the system attitude error to the gyro errors as expressed

in the E matrices° Only the first order gyro error effects in the absence of

vehicle motion are displayed. The last term on the right side is effectively

twice the squared length of an error vector, that is

tr (ETE n) 2 (en2x 2 2)= + eny + enz
(D. 2-2)

If the errors are stationary random variables and the mean value of J is sought,

the equation can be written in terms of ensemble averages (denoted by the bar):

n

P-n+l = Pn +2tr E ET-jEn +tr (ETEn)

j=l

(1).2-3)

In this case, Eq. _, 2-2) can be written in terms of mean square errors along

the three orthogonal body axes and the second term in Eq. (D. 2-3) is analogous

to an autocorrelation function. In particular

T (_p _eyey(jT)tr(En_jEn) = 2 exex_JT) + + _ezez(JT

It is apparent that the attitude error growth as expressed in Eq.

dependent on the autocorrelation properties of the gyro errors.

(D. 2-4)

(D. 2-1) is

A differential equation for the growth of the system attitude error

is developed in Appendix C of Ref. 19:

• Itp(t) = 2 tr

0

D T (t - T) D(t) dT (D.2-5)
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where continuous direction cosine matrix calculations are assumed and D is

the matrix of angular rate indication errors analogous to the E matrix used

above. Continuous calculations are a good approximation to the situation

where the computation period, T, is small relative to the period of the gyro

errors and to the duration of error growth being considered. Equation (D. 2-5)

can be used to demonstrate the system attitude error growth resulting from

random individual gyro errors with particular correlation characteristics.

Figure D. 2-1 illustrates rms attitude error resulting from uncorrelated errors,

random bias errors and in-phase sinusoidal errors in individual gyros. It

can be seen that the system errors behave as the output of integrators whose

inputs are the gyro errors.

D. 3 EFFECT OF CORRELATION BETWEEN ERRORS IN PAIRS OF GYROS

Sizeable system attitude errors arise from the rectification of gyro

errors in the direction cosine matrix calculation. The most serious of these

errors take the form of constant attitude drift rates which result from the

erroneous indication or lack of indication of vehicle coning motion. It can be

demonstrated that vehicle angular oscillations about pairs of orthogonal body-

fixed axes or space-fixed axes produce constant angular rates about the third

orthogonal axis. Any failure by the gyros to indicate this type of motion when

it exists or any erroneous indication that such motion is taking place produces

a system attitude drift rate.

*These errors are not necessarily unique with strapdown systems. The kine-

matics of an "ideal" platform are the same as those of an "ideal" transfor-

mation computation. However, the magnitude and correlation between gyro

errors is different for the two systems.
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RMS Attitude

Error

n

White Noise (a)

RMS Attitude
Error

Bias (b)

n

RMS Attitude
Error

Sinusoid (c)

_t

Figure D.2-1. Attitude Error Growth.
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If we consider perfect implementation of the direction cosine matrix

differential equation:

C=C_

and perfect vehicle angular rate indication by the gyros, no system attitude

errors develop regardless of the vehicle motion• Strapdown system attitude

errors arise from coning motion of the vehicle only if the differential equation

for the transformation matrix is not implemented exactly (computer errors)

or if the vehicle angular rates are not provided correctly (gyro errors). If

vibratory vehicle motion exists and the gyros have unmatched phase lags

attitude drift rate will occur (Ref. 9, Appendix G). If the phase lags are

identical, the information is late in reaching the computer and the calculated

direction cosine matrix lags behind the true transformation but no growing

attitude error results• Quantization of rate information by a pulse restored

gyro also provides a system attitude drift rate in the presence of coning mo-

tion.

Angular oscillations can occur about two body axes that generate a

constant angular rate about the third axis and still cause the vehicle to return

periodically to the same orientation. If the oscillations take place at a fre-

quency above the gyro bandwidth only the constant rate will be sensed and the

direction cosine matrix will indicate a growing change in orientation that con-

stitutes a system attitude error. Consequently, if the oscillatory angular

motion spectrum of ,the sensor package is significant at frequencies beyond the

gyro bandwidth a potential system drift rate exists. The coning motion of the

sensor package is therefore a consideration in designing gyro bandwidth.

Rectification of Oscillatory Gyro Errors and Body Motions -The

retention of terms in Eq. (D. 1-5) which describe vehicle motion illustrates

the fact that the direction cosine calculations will rectify certain correlated
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oscillatory gyro errors and body motions. The attitude drift rate results from

a combination of true body motion and erroneously indicated body motion that

appears as coning motion about two body fixed axes. This form of pseudo-

coning is usually described as coming from gyro output axis angular accelera-

tion errors because they have the necessary phase relative to oscillatory body

motion. However, the computation rectification is more general and occurs

for any gyro errors and body angular motions which are properly related.

Section 3.3.2 of Ref° 19 shows that if the vehicle experiences an angular oscilla-

tion with amplitude a about one axis and if a false angular oscillation with ampli-

tude b at the same frequency and having y/2 phase difference is indicated about

another axis, a net system attitude error occurs about the third axis which

causes the figure of merit to grow according to

2 2
Pn- 2 n

Equation (D. 3-1) can be expressed in terms of a true angular rate oscillation

with amplitude a' and an erroneous angular rate oscillation with amplitude b'

as:

p(t) = (a')2(b')2 t 22 (D.3-2)
'2_

where _0 is the oscillation frequency. Using Eq. (D. 3-2) to analyze output axis

effect errors, a system attitude drift rate of 5.0 deg/hr is calculated for the

parameters and environment presented in Section 2.50 While pseudo-coning

errors due to in-phase oscillatory body motion and gyro errors can come from

many sources, the output axis acceleration effect is clearly an important one.

Rectification of Oscillatory Gyro Errors -A pseudo-coning attitude

drift rate can result from oscillatory gyro errors. To identify this effect in

the difference equation for the figure-of-merit it is necessary to retain fourth

order products of the error matrices and to evaluate triple summations.
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Alternatively, pseudo-coning caused by oscillatory gyro errors can be easily

demonstrated by considering the growth of the transformation error, AC, in the

absence of vehicle angular motion. Taking C to be the identity matrix at all

times and including two of the higher order terms from Eq. (D. 1-3), we can

write a difference equation for AC:

(En) 2
(I+ + E + (D.3-3)ACn+I = ACn En) n 2

We postulate two out-of-phase oscillatory gyro error sequences such as those

which can result from limit cycling of pulse rebalanced instruments:

e =0, a, 0, -a, ° . .
Z

e =b, O, -b, O, . . .
Y

The error matrices are a periodic sequence characterized by:

E
O

0

= 0

-a

0

0

0

a

0

0

E 1

0

= b

0

-b

0

0

0

0

0

E 2=-Eo, E 3=-El, E 4=Eo, etCo

Appendix C shows that the off-diagonal elements of AC represent the

small misalignment angles _x' _y

D

and _z

0 "¢Pz Y

_z 0 "¢Px

"_Py Cx 0
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The gyro error sequence chosen provides an erroneous indication of out-of-

phase oscillatory motion about two vehicle axes. The transformation compu-

tation cannot distinguish this from a similar true motion and should indicate a

constant average angular rate about the third axis, x° Repeated substitution of

the sequence of error matrices into Eq. (D. 3-3) indicates an average growth

in _ox of ab every cycle, or:

• ab
_°x -- 4--T- (D. 3-4)

It can be demonstrated that sinusoidal angular oscillations of the same frequency,

_, about two orthogonal body axes, with amplitudes a 1 and bl, and having rr/2

relative phase,, produce an average angular rate about a third orthogonal axis

given by

actual coning rate = 2 (D. 3-5)

See Ref. 11, Appendix G. Taking a 1 and b 1 to be the first coefficients of the

Fourier series expansions of ey and e z respectively.

2b
a 1 =

2a
bl= _.

and noting that (4T is the period)

277

_= 4T

this approximation to the coning rate is given by

ab
coning drift rate _ --_-
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The difference between the pseudo-coning rate computed using Eq. (D. 3-3)

and the approximation above is small. The out-of-phase errors from two dif-

ferent gyros are combined in the direction cosine calculations to produce sys-

tem attitude drift rate that approximates the coning rate given by Eq. (D. 3-5).

It can be seen that the limit cycling nature of binary pulse rebalanced

gyros can provide strapdown system errors through this mechanism. If os-

cillatory gyro output errors caused by limit cycles are permitted to enter the

direction cosine matrix calculations, two gyros experiencing limit cycles with

the same frequency and appropriate phase will generate a constant system drift

rate° The size of this drift rate is explored in Section 4.2.

Gross Vehicle Rotation -All of the analysis in this appendix assumes

a vehicle which does not change angular orientation° A modification of the re,

sults presented here to include the case of a rotating vehicle is given in Sec-

tions 3.4 and 3° 5 of Ref. 19.
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APPENDIX E

EFFECT OF SAMPLING ON REBALANCE LOOP MODING

This appendix deals with the determination of limit cycle modes in

sampled nonlinear rebalance loops, where the limit cycles tested have periods

which are whole multiples of the sampling period. These are not the only limit

cycles which may be possible in such systems, but experience with both real

and simulated systems has shown them to be by far the most commonly-occuring

modes.

The configuration of the system is shown in Fig. E-1. The binary ele-

ment is shown as having possible hysteresis for reasons discussed in Section

2.4. A zero order hold is considered to follow the sampling switch. The linear

part may include any number of continuous and discrete linear elements, and

torquer dynamics can be assumed lumped in the linear part.

C
'_ ..[ Linear

) _ Part

x(t)

z(t)

y (t) / y*(t)

Ze ro I

Order "

H old

Figure E-I. Two-Level Relay Rebalance Loop Configuration

*The material in this Appendix follows Ref. 3, Section 9. 1.
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The Describin_ Function

One has free choice in deciding how much of the system to characterize

with a describing function - so long as the nonlinear part is included. The ana-

lysis of this system is most like the analysis of continuous systems considered

heretofore if one chooses to represent the effect of the nonlinearity, the sam-

piing switch, and the zero order hold by a describing function. To this end, x(t)

is taken to be a sinusoid, unbiased to begin with, and the fundamental harmonic

component of z (t) is calculated. The frequencies we shall consider are whole

fractions of the sampling frequency, cos = 2_/T. Moreover, we shall center

attention on the even fractions - 1/2, 1/4, 1/6, . . . - since these are the limit

cycle modes one might expect to see in the present case where the linear part

of the system includes a pole at the origin - an integration. As a result, z(t)

must be an unbiased function in any steady-state limit cycle with no input to the

system. The drive signal into the linear part will then consist of a periodic

cycle which includes an equal number of sampling periods of plus and minus

drive. The only arrangement of these periods of plus and minus drive which is

consistent with the sinusoid assumed as the input to the nonlinearity is n posi-

tive drive periods followed by n negative drive periods in the case of a cycle

with period 2nT, where T is the sampling period. Such a cycle will be termed

an n, n mode.

The input and output waveforms for the 2, 2 mode are shown in Fig. E-2.

x(t) is a sinusoid with period 4T and z(t) is a square wave with that period. The

output of the hold, z(t), is shown lagging the output of the nonlinearity, y(t), due

to the fact that y (t) is not in phase with the sampling points. The lag between

the zero crossing of y(t) and the next sampling point is not known a priori; it can

take any value between 0 and T in time or 0 and _/n in phase angle. The ampli-

tude of the fundamental harmonic of z(t) is (4/_)D and the phase lag of that corn-
-1

ponent relative to x(t) is sin 5/A + _ where _o is the sampling lag. The de-

scribing function for the chain of elements: nonlinearity, sampling switch, and

hold, is then
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Y(t)

A

_-T--_

Sampling Points

Figure E-2. Signal Waveforms for the 2,2 Mode

E-3



THE ANALYTIC SCIENCES CORPORATION

/_ -1N_, _o)= _ sin 6/A-_
< (E-I)

This expression holds for an n, n mode of any order.

The Linear Part

The remainder of the system, the linear part as shown in Fig. E-l, is

characterized by its steady-state sinusoidal response at the frequency (I/2n)_ s"

Since this is a continuous linear operator, the only requirement for applicability

of describing function theory is that it attenuate the higher harmonics of z (t)

sufficiently to return essentially the fundamental sinusoid to x(t).

Determination of Modes

Having a describing function, N(A, _), to characterize the nonlinear part,

sampler, and hold, and a steady-state sinusoidal response function, H_), to

characterize the remaining linear part, the condition for the possible existence

of a limit cycle mode is as always

1 + N (A, (p)H(]_) = 0 (E-2)

The gain-phase plot is a convenient means of displaying the solutions to this

equation. Although only the frequencies (1/2n) u_s are of interest, it is often

useful - especLally for the design of compensation - to plot the complete H (ju_)

function. A typical curve is shown in Fig° E-3. Solutions of Eq. (E-2)are re-

presented by intersections of this curve of H(ju_) with -1/N(A, _o). N(A, _) in

this case is defined only for the discrete set of frequencies (1/2n)_ s, and it de-

pends both on A and n, the order of the mode. It is convenient to separate that

part of N which depends only on A from that which depends on n for simplicity

in plotting the function. Thus define

4i)/_ 1 a/A (E-3)N'(A)= sin-
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Figure E-3.
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Gain-Phase Plot for Sampled Rebalance Loop
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which is the describing function given in Eq. (E-I) except for the sampling lag

_o. This _o may take any value in the range (0, _/n), and since this range depends

on n - and thus 00 - the bands of possible sampling lags can conveniently be shown

as lines originating at the point of H_o0) for each frequency and extending a dis-

tance corresponding to Ir/n. With the sampling lag accounted for separately in

this manner, the describing function which is plotted, -I/N'(A), is nothing more

than the describing function for the two-level relay with hysteresis as it appears

in continuous systems.

The completed plot, Fig. E-3, indicates all possible limit cycle modes.

For the case shown, the only intersections of H(j_) plus the sampling lag with

-1/N'(A) occur at the frequencies 1/6 u s and 1/8 _s" Thus only the 3, 3 and

4, 4 modes are possible in this case. The higher frequency modes are not pos-

sible because the nonlinearity and linear part have too much phase lag even if

the sampling action contributes none, and the lower frequency modes are not

possible because even with the maximum possible sampling delay, the sinusoidal

signal does not accumulate 360 degrees of phase lag around the loop. The inter-

sections indicating the possible modes are circled in the figure. The frequency

of each mode is indicated on the scale of H(j_) at that point, the amplitude of

each mode at the input to the nonlinearity is indicated on the scale of -1/N' (A)

at that point, and the phase lag due to the sampling delay in each mode is indi-

cated by the phase difference between H (j¢o) and -1/N'(A) at those points.

Notice that for frequencies much smaller than the sampling frequency, the

possible limit cycle frequencies become closely spaced and the maximum sampl-

ing lag is small. In this "low" frequency region the sampling has little effect on

the behavior of the system. Hence the neglect of the sampling process in Sec-

tion 2.4.

When more than one limit cycle mode is possible, the limit cycle which

will be observed depends on the prior history of the system variables. If the

modes are stable there is some region of initial conditions from which the sys-

tem will settle into each mode. These regions are often much smaller for some
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modes than for others. In any case, a system must be designed so all possible

modes are acceptable. H one or more indicated modes are not acceptable,

usually because the amplitude at some point in the system is too large, these

modes must be eliminated by compensation.

Design of Compensation

In most instances the compensation required to improve those perform-

ance characteristics which can be evaluated by the use of describing functions is

quite evident. So it is in this instance. If the 4, 4 mode as indicated on Fig.

E-3 has an unacceptably large amplitude, it can be eliminated by providing at

least (45 - _4 ) degrees of phase lead at the frequency 1/8 u s somewhere around

the loop. After such compensation, the 3, 3 mode will still be possible, and in

all likelihood one or both of the higher frequency modes as well. If the 3, 3

mode is to be eliminated also, the compensation is designed to provide at least

(60 -¢3 ) degrees of lead at 1/6 _s" The amplitudes of the remaining possible

modes at various stations around the loop will differ with the location of the

compensation, and this can be evaluated using just steady-state frequency re-

sponse characteristics. The linear compensation can be implemented with

either a continuous or discrete compensator.

Note that, in the absence of hysteresis, 6 = 0, and the curve of -1/N'(A)

extends along the entire phase = -180 _ line. Thus, the moding which occurs in

this case is readily apparent from Fig. E-3. Discussion of compensation follows

as above.
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APPENDIX F

ANGULAR COMPLIANCE EFFECTS ON LIMIT CYCLES

IN PULSE TORQUED GYROS

The use of a second order differential equation to describe the

dynamic relation between float angle and applied torque in a single-degree-of-

freedom gyro permits simple calculation of limit cycle characteristics. The

effects considered in this dynamic model of the gyro float are only those of

lumped rotor and gimbal inertia and linear fluid damping. Because the limit

cycle float motion can be of high frequency it is desirable to investigate the

possible effect of angular compliance between the rotor and gimbal. Angular

flexure can generate sizeable error torques about the float output axis by

coupling with the spin angular momentum. Consequently, the potential exists

for significant modification of the torque-to-float angle transfer function used

in determining gyro limit cycles.

Figure F-1 illustrates the effects essential for considering rotor-

to-gimbal compliance. The rotor is connected to the gimbal along the gyro

input (IA) and output (OA) axes by structural members with stiffness k 1 and k 2

respectively. No structural damping will be considered. Angular rotations of

the rotor and gimbal with respect to an inertially fixed reference frame are

represented as A and A with the appropriate subscript to show axis of rota-
r g

tion.

Summing moments on the rotor about the gyro input axis:

=-k 1 (Ari-Agi)-HAIiir Ar i r o
(F-1)
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Summing moments about the gyro output axis"

k2 - Ago)+Ioo r Ar ° = _ (Aro HAt i
(F -2)

Assuming that the gyro case and gimbal form an essentially rigid structure

about the gyro input axis, Ag i can be represented in Laplace Transform nota-

tion as the integral of the angular rate of the gyro about its input axis, _i"

A - 1 (F -3)

gi s

Similarly, Ag o can be represented in terms of the angular rate about the output

axis and the angle between the gyro case and gimbal, ao:

A =.__9_0 +a (F-4)
go s o

Assuming equal rotor inertias and stiffness about the input and output axes,

Eqs. (F-l) and (F-2) can be written in terms of the Laplace Transform operator,

s, as a vector-matrix equation:

I s2+k Hs
r

2
-Hs I s +k

r

A
r.

1

A
r

_ o_

k

S 1

kA

_ go_

(F -5)

The rotor exerts a moment on the gimbal about the latter's output axis accord-

ing to

rotor moment = k (A r - Ag o)on gimbal o
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Figure F-1 Rotor-to-Gimbal Compliance
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coi
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Figure F-2 Signal Flow Diagram Including Compliance Effects
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Using Eq. (F-5)

k 2 ks 2 (12s2
rotor moment H u_i + kI + H 2) Ag o

on gimbal (Is2 + k)2 + H2s 2 (Is2 + k)2 + H2s2 (F-6)

For limit cycle analysis only quantities which are state variables in the closed

nonlinear loop are considered. Only the second term in Eq. (F-6) is of interest

is represented by its component, c_ . A signal flow dia-
and the variable Ag o o

gram of the pulse torqued gyro including compliance effects is shown in

Fig. F-2. The torque generator is represented as a first order lag with time

constant Ttg. In order to determine limit cycle characteristics it is necessary

to obtain the linear transfer function relating s o to the torque generator output,

Mtg. This is determined from the closed loop transfer function of the linear

feedback loop shown in Fig. F-3, where the float dynamics are represented

float dynamics =

according to

i/_OOg

S(S + 1/rf)

I
O0

=
C

Defining:

_H

COg =I'-
r

2__ k
0011- I-

r

(F-7)

the transfer function for the loop shown in Fig. F-3 is
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Mtg +_

I
oog

ks2(ir 2 2s + k I r + H 2)

H 2 2
(I r s 2 + k) 2 + s
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O

Figure F-3 Transfer Loop Between Torque Generator

Output and Float Angle

ot o
(s)

Mtg

Ktg

+I
s rtg

ot o

T

Figure F-4 Loop for Limit Cycle Analysis When Angular
Compliance is Considered
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{2
O

M t
g

=

4 2 2 2 4
S ( +C_ )S +CU

+2_n _ n
I

s • g s 4 + (2 _n + + S

Ioog rf OOg

I I

oo ¢_n2 2_ s 2 _4 _n2 _ s + oo+_g (2 +_g) + I ÷ k +k g 4
Tf n OOg rf n

(F-8)

The nonlinear loop which provides the basis for determining the gyro

limit cycle when angular compliance effects are considered is shown in Fig. F-4.

A rectangular gain-phase plot for the linear portion of this loop is given in

Fig° F-5. The characteristics shown are for the gyro parameters presented in

Section 2.5 with C = 8 × 105 dyne-cm-sec, Ttg 50 _sec and a compliance

natural frequency of 400 Hz. For comparison the gain-phase relation that re-

sults when compliance effects are ignored is also plotted in Fig. F-5. For the

pulse torqued gyro the quantity -1/N A lies entirely on the -180 deg phase line.

The two gain-phase characteristics (with and without compliance} are identical

in the high and low frequency ranges but the consideration of compliance re-

sults in a more complex behavior in the midfrequency range. The dashed gain-

phase line crosses the -1/N A line at three points where the solid (no compliance)

line crosses only once. It is evident that in any detailed determination of a gyro

limit cycle, compliance effects must be considered.
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Figure F-5 Gain-Phase Plot Showing Compliance Effects.
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APPENDIX G

THE EFFECT OF CORRELATION PERIOD T'

ON SYSTEM ATTITUDE ERROR GROWTH

Calculation of the mean square change in system attitude error over

one correlation period, T', which results from integration of individual gyro

errors follows from:

_(i) --
ti+T'.

f 5 (i, r) dr

t.
1

ti+T'

t.
1

ti+T'

S dr 2 ;(i, rl);(i, 1"2 )

t.
1

Noting that, for stationary functions 5 :

(G-l)

6(i, rl) a(i , r2)=_gg (r 2 - r 1)

and making the change of variable

r 3 = r 2 - r 1
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Eq. (G-l) can be written as

5 2

ti+T ' ,_ r 1

= I drl ; i+T dv3_°5_

t i t i - r 1

(T 3) (G-2)

The area of integration is illustrated in Fig. G-1.

r 3

W I

-T'

r 3 = t. - r I + T'

t.1 /\_ ti+T'

> _ r 1

r 3 = t. - r 11

Figure G-I. Area of Integration
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Integration can occur over the two triangles separately:

T' t.+T1 '-_'3

7= f f
0 t.

1

+

0 t.+T '

dr3 drl ¢_ (r3)

-T' ti-r a

T I
/*

= 2 | do (T'- p),pa_ (o) (G-3)
vu

0

We assume the spectral density of the random angular motion vector _ is con-

stant out to the vicinity of a frequency v c and decreases rapidly thereafter. In

addition, the gyro is presumed to have a bandwidth in excess of v (in order to
C

prevent vehicle coning motion from going undetected).

Consequently, in the example of spin-input crosscoupling cited in

Section 5.1, the error rate 6 (i) is given by

6(i, t) = Kl(i) K 2 oj2(t) ((3-4)

If both K 1 (i) and _ (t) are stationary, independent zero mean random quantities

and K 2 is constant:

(r) =6(i, t) 6(i, t+ r)

2
= K 1 K 2 _o 2 2 (r) (G-S)

G-3



THE ANALYTIC SCIENCES CORPORATION

If to is assumed to have a Gaussian amplitude distribution, _ 2 2 (_) can be
to

expressed in terms of the autocorrelation function and mean _quare value of

to (see p. 94 of Ref. 13):

2

_ 2 2(r)= _ 4to+2E_ototo (r)_ (G-6)
to to

From the earlier description of the spectral density function of to it), _toto (r)

can be expressed in terms of Vc:

-Vci
()~ 2e (G-7)

_toto T = (Yto

Combining Eqs. (6-3), (6-5), (G-6) and (G-7) and integrating, the mean square

value of 5 is found to be:

I_ -2v T' ]

4 2T' e c -I (G-8)2 : K---2- ,)2+__ +
Vc (Vc)2

A few calculations reveal that, for the practical range of Vc, the first term in

Eq° (G-8) dominates if

v T'_ 40 (G- 9)
C

The boundary expressed by Eq. (G-9) is a hyperbola in the first quadrant of

the Vc,T'plane as illustrated in Fig. G-2. When this condition is satisfied: the

attitude error growth due to integration of individual gyro errors is essentially

the same as that computed using Eq. (5.1-1).
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