11,851 research outputs found

    Real-time human action recognition on an embedded, reconfigurable video processing architecture

    Get PDF
    Copyright @ 2008 Springer-Verlag.In recent years, automatic human motion recognition has been widely researched within the computer vision and image processing communities. Here we propose a real-time embedded vision solution for human motion recognition implemented on a ubiquitous device. There are three main contributions in this paper. Firstly, we have developed a fast human motion recognition system with simple motion features and a linear Support Vector Machine (SVM) classifier. The method has been tested on a large, public human action dataset and achieved competitive performance for the temporal template (eg. ā€œmotion history imageā€) class of approaches. Secondly, we have developed a reconfigurable, FPGA based video processing architecture. One advantage of this architecture is that the system processing performance can be reconfiured for a particular application, with the addition of new or replicated processing cores. Finally, we have successfully implemented a human motion recognition system on this reconfigurable architecture. With a small number of human actions (hand gestures), this stand-alone system is performing reliably, with an 80% average recognition rate using limited training data. This type of system has applications in security systems, man-machine communications and intelligent environments.DTI and Broadcom Ltd

    FPGA implementation of real-time human motion recognition on a reconfigurable video processing architecture

    Get PDF
    In recent years, automatic human motion recognition has been widely researched within the computer vision and image processing communities. Here we propose a real-time embedded vision solution for human motion recognition implemented on a ubiquitous device. There are three main contributions in this paper. Firstly, we have developed a fast human motion recognition system with simple motion features and a linear Support Vector Machine(SVM) classifier. The method has been tested on a large, public human action dataset and achieved competitive performance for the temporal template (eg. ``motion history image") class of approaches. Secondly, we have developed a reconfigurable, FPGA based video processing architecture. One advantage of this architecture is that the system processing performance can be reconfigured for a particular application, with the addition of new or replicated processing cores. Finally, we have successfully implemented a human motion recognition system on this reconfigurable architecture. With a small number of human actions (hand gestures), this stand-alone system is performing reliably, with an 80% average recognition rate using limited training data. This type of system has applications in security systems, man-machine communications and intelligent environments

    PhyNetLab: An IoT-Based Warehouse Testbed

    Full text link
    Future warehouses will be made of modular embedded entities with communication ability and energy aware operation attached to the traditional materials handling and warehousing objects. This advancement is mainly to fulfill the flexibility and scalability needs of the emerging warehouses. However, it leads to a new layer of complexity during development and evaluation of such systems due to the multidisciplinarity in logistics, embedded systems, and wireless communications. Although each discipline provides theoretical approaches and simulations for these tasks, many issues are often discovered in a real deployment of the full system. In this paper we introduce PhyNetLab as a real scale warehouse testbed made of cyber physical objects (PhyNodes) developed for this type of application. The presented platform provides a possibility to check the industrial requirement of an IoT-based warehouse in addition to the typical wireless sensor networks tests. We describe the hardware and software components of the nodes in addition to the overall structure of the testbed. Finally, we will demonstrate the advantages of the testbed by evaluating the performance of the ETSI compliant radio channel access procedure for an IoT warehouse

    The MANGO clockless network-on-chip: Concepts and implementation

    Get PDF

    A test architecture design for SoCs using ATAM method

    Get PDF
    Test arranging is a basic issue in structure on-a-chip (S.O.C) experiment mechanization. Capable investigation designs constrain the general organization check request time, keep away from analysis reserve conflicts, in addition to purpose of restriction control disseminating in the midst of examination manner. In this broadsheet, we absent a fused method to manage a couple of test arranging issues. We first present a system to choose perfect timetables for sensibly evaluated SOCā€™s among need associations, i.e., plans that spare alluring orderings among tests. This furthermore acquaints a capable heuristic estimation with plan examinations designed for enormous S.O.Cs through need necessities in polynomial occasion. We portray a narrative figuring with the purpose of uses pre-emption of tests to secure capable date-books in favour of SOCs. Exploratory marks on behalf of an educational S-O-C plus a cutting edge SOC exhibit with the aim of capable investigation timetables be able to subsist gained in sensible CPU occasion

    A Hardware Security Solution against Scan-Based Attacks

    Get PDF
    Scan based Design for Test (DfT) schemes have been widely used to achieve high fault coverage for integrated circuits. The scan technique provides full access to the internal nodes of the device-under-test to control them or observe their response to input test vectors. While such comprehensive access is highly desirable for testing, it is not acceptable for secure chips as it is subject to exploitation by various attacks. In this work, new methods are presented to protect the security of critical information against scan-based attacks. In the proposed methods, access to the circuit containing secret information via the scan chain has been severely limited in order to reduce the risk of a security breach. To ensure the testability of the circuit, a built-in self-test which utilizes an LFSR as the test pattern generator (TPG) is proposed. The proposed schemes can be used as a countermeasure against side channel attacks with a low area overhead as compared to the existing solutions in literature
    • ā€¦
    corecore