
Journal of Real-Time Image Processing manuscript No.
(will be inserted by the editor)

Hongying Meng · Michael Freeman · Nick Pears · Chris Bailey

FPGA implementation of real-time human motion
recognition on a reconfigurable video processing
architecture

Received: date / Revised: date

Abstract In recent years, automatic human motion recog-
nition has been widely researched within the computer
vision and image processing communities. Here we pro-
pose a real-time embedded vision solution for human
motion recognition implemented on a ubiquitous device.
There are three main contributions in this paper. Firstly,
we have developed a fast human motion recognition sys-
tem with simple motion features and a linear Support
Vector Machine(SVM) classifier. The method has been
tested on a large, public human action dataset and achieved
competitive performance for the temporal template (eg.
“motion history image”) class of approaches. Secondly,
we have developed a reconfigurable, FPGA based video
processing architecture. One advantage of this architec-
ture is that the system processing performance can be
reconfigured for a particular application, with the addi-
tion of new or replicated processing cores. Finally, we
have successfully implemented a human motion recog-
nition system on this reconfigurable architecture. With
a small number of human actions (hand gestures), this
stand-alone system is performing reliably, with an 80%
average recognition rate using limited training data. This
type of system has applications in security systems, man-
machine communications and intelligent environments.

1 Introduction

Ambient Intelligence (AmI) reflects an emerging and pop-
ular field of research and development that is oriented to-
wards the goal of “intelligent” or “smart” environments
that react in an attentive, adaptive, and active way to the
presence and activities of humans and objects in order
to provide intelligent/smart services to the inhabitants
of these environments.

H. Meng · M. Freeman · N. pears · C. Bailey
Department of Computer Science, University of York,
Heslington, York, UK, YO10 5DD
Tel.: +44-1904-43-2730
Fax: +44-1904-43-2767
E-mail: menghongying@tsinghua.org.cn

An environment is said to be “perceptive” when it
is capable of recognizing and describing things, people
and activities within its volume. Input can be obtained
from sensors for sound, images, and haptics. For exam-
ple, video capture is low cost, widespread, and can be
used for monitoring human events.

Event recognition is an important goal for building
intelligent systems which can react to what is happening
in a scene. Event recognition is also a fundamental build-
ing block for interactive systems which can respond to
gestural commands, instruct and correct a user learning
athletics, gymnastics or dance movements, or interact
with live actors in an augmented dance or theatre per-
formance.

Recognizing motions or actions of human actors from
image sequences is also an important topic in computer
vision with many fundamental applications in video surveil-
lance, video indexing and social sciences. Event detection
in video is becoming an increasingly important appli-
cation for computer vision, particular in the context of
activity recognition [Aggarwal and Cai (1999)].

Model based methods are extremely challenging as
there is a large degree of variability in human behaviour.
The highly articulated nature of the body leads to high
dimensional models and the problem is further compli-
cated by the non-rigid behaviour of clothing. Compu-
tationally intensive methods are needed for nonlinear
modeling and optimisation. Recent research into anthro-
pology has revealed that body dynamics are far more
complicated than was earlier thought, affected by age,
ethnicity, gender and many other circumstances [Farnell
(1999)].

Appearance-based models are based on the extrac-
tion of a 2D shape model directly from the images, to be
classified (or matched) against a trained one. Motion-
based models do not rely on static models of the person,
but on human motion characteristics. Motion feature ex-
traction and selection are two of the key components in
these kinds of human action recognition systems.

In this paper, we propose a human motion recogni-
tion system that is both fast and accurate. It is designed

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Brunel University Research Archive

https://core.ac.uk/display/338314?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

for applications in security systems, man-machine com-
munication, and other cases of Ambient Intelligence. It
is implemented on our FPGA based reconfigurable video
processing architecture, which we call “Videoware”. Ex-
perimental results demonstrate the efficiency and relia-
bility of the system.

The rest of this paper is organised as follows: In sec-
tion 2, we give an introduction to our human motion
recognition system and we evaluate the performance of
the system on a challenging, large, public human action
dataset. In section 3, we introduce the reconfigurable
video processing architecture. In section 4, we introduce
the implementation of the human motion recognition on
the reconfigurable architecture and give some experimen-
tal results for this real-time embedded vision system. Fi-
nally, we present some discussion and the conclusions.

2 Human motion recognition system

2.1 Related works on human motion recognition

Aggarwal and Cai (1999) present an excellent overview of
human motion analysis. Of the appearance based meth-
ods, template matching has gained increasing interest
recently. Moeslund et al (2006) have produced a review
paper for the most recent advances.

Bobick and Davis (2001) pioneered the idea of tem-
poral templates. They use Motion Energy Images (MEI)
and Motion History Images (MHI) to recognize many
types of aerobics exercise. Bradski and Davis (2002) also
proposed the Motion Gradient Orientation (MGO) to
explicitly encode changes in an image introduced by mo-
tion events.

Davis (2001) presented a useful hierarchical exten-
sion for computing a local motion field from the original
MHI representation. The MHI was transformed into an
image pyramid, permitting efficient fixed-size gradient
masks to be convolved at all levels of the pyramid, thus
extracting motion information at a wide range of speeds.
The hierarchical MHI approach remains a computation-
ally inexpensive algorithm to represent, characterize, and
recognize human motion in video.

Ogata et al (2006) proposed Modified Motion His-
tory Images (MMHI) and used an eigenspace technique
to realize high-speed recognition. The experiment was
performed on recognizing six human motions and the re-
sults showed satisfactory performance of the technique.

We note that, in some of these methods [Schuldt
et al (2004), Weinland et al (2005), Dalal et al (2006),
Blank et al (2005), Oikonomopoulos et al (2006), Ke
et al (2005)], the motion features employed are relatively
complex, which implies significant computational cost on
building the features. Some methods [Bobick and Davis
(2001), Bradski and Davis (2002), Davis (2001), Wong
and Cipolla (2005), Wong and Cipolla (2006),Ogata et al
(2006), Blank et al (2005)] require segmentation, track-

Fig. 1 SVM based human motion recognition system. In the
learning part, the motion feature vector was used for training
a SVM classifier, and the parameters computed were used in
the recognition part.

ing or other prohibitive computational cost, that is not
suitable for real-time embedded vision applications.

To our knowledge, there are no publications on the
implementation of visual human motion recognition us-
ing a FPGA platform, which is the main theme of this
paper.

2.2 MHI/SVM based recognition system

We now propose a novel solution for fast human action
recognition. This has been reported in our previous work
[Meng et al (2006)]. In this approach, a linear SVM was
chosen as the classifiere and the Motion History Image
(MHI) provided our fundamental features.

There are two reasons for choosing a linear SVM as
the classifier in the system. Firstly SVM is a classifier
that has achieved very good performance in lots of real-
world classification problems. Secondly, SVM can deal
with very high dimensional feature vectors, which means
that there is plenty of freedom to choose the feature vec-
tors. Finally the classifier is able to operate very quickly
during the recognition process.

A normal recognition system includes two parts: a
learning part and a classification part. These two parts
of our recognition system are showed separately in figure
1.

The feature vectors are to be obtained using motion
information directly from the input video. It is expected
that the feature extraction algorithms and dimension re-
duction algorithms should be as simple as possible. The
high dimensional feature vector can also be dealt with
easily by the SVM.

The learning part is processed using video data col-
lected off-line. After that, the computed parameters for
the classifier can be used in a small, embedded com-
puting device such as a field-programmable gate array
(FPGA) or digital signal processor (DSP) based system,

3

which can be embedded in the application and can give
real-time performance.

2.3 Motion features

The recording of human actions usually needs large amounts
of digital storage space and it is time consuming to browse
the whole video to find the required information. It is also
difficult to deal with this huge amount of data in detec-
tion and recognition. Therefore, several motion features
have been proposed to compact the whole motion se-
quence into one image to represent the motion. The most
popular ones are Motion History Image (MHI), Modified
Motion History Image (MMHI) and Motion Gradient ori-
entation (MGO). These three motion features have the
same size as the frame of the video, but they maintain
the motion information within them. In our experiments,
it has been found that MHI achieved best performance.

A motion history image (MHI) is a kind of temporal
template. It is the weighted sum of past successive images
and the weights decay as time lapses. Therefore, an MHI
image contains past raw images within itself, where most
recent image is brighter than past ones.

Normally, an MHI Hτ (u, v, k) at time k and location
(u, v) is defined by the following equation 1:

Hτ (u, v, k) = {
τ if D(u, v, k) = 1
max{0,Hτ (u, v, k − 1) − 1}, otherwise

(1)

where D(u, v, k) is a binary image obtained from sub-
traction of frames, and τ is the maximum duration a
motion is stored. In general, τ is chosen as constant 255
where MHI can be easily represented as a grayscale im-
age. An MHI pixel can have a range of values, whereas
the Motion Energy Image (MEI) is its binary version.
This can easily be computed by thresholding Hτ > 0 .

Figure 2 shows the motion features of MHI (b) and
MMHI (c) of a bird flight in the sky (a). From these fea-
tures, we can clearly determine how the bird flew in the
sky even though we didn’t see the video clip, since these
features retain the motion information within them.

From these motion images, some researchers have at-
tempted to extract further low-dimensional feature vec-
tors. In Bobick and Davis (2001), Hu moments (it is
good at expressing shape discrimination) was used to
extract the motion feature from the MHI. However, in
order to keep the simplicity for hardware implementa-
tion, we use the simplest method to transform a motion
image MHI/MMHI into a plain vector based on the pixel
scan order (pixel by pixel) to feed a SVM classifier. For
a SVM classifier, the order of feature components should
not affect the performance.

2.4 Support Vector Machines

Support Vector Machines are a state-of-the-art classi-
fication technique with large application in a range of

fields including text classification, face recognition and
genomic classification, where patterns can be described
by a finite set of characteristic features.

We use the SVM for the classification component
of our system. This is due to SVM being an outstand-
ing classifier that has shown very good performance on
many real-world classification problems. Using arbitrary
positive definite kernels provides a possibility to extend
the SVM capability to handle high dimensional feature
spaces.

Orignally, SVM is binary classifier in a higher dimen-
sional space where a maximal separating hyperplane is
constructed. Two parallel hyperplanes are constructed
on each side of the hyperplane that separates the data.
The separating hyperplane is the hyperplane that maxi-
mizes the distance between the two parallel hyperplanes.
If we have a training dataset

{

xi|xi ∈ Rd
}

, and its bi-
nary labels are denoted as {yi|yi = ±1}, the norm-2 soft-
margin SVM can be represented as a constrained opti-
mization problem

min
w,b,ξ

1

2
||w||2 + C

∑

i

ξi (2)

s.t.

〈xi,w〉 + b ≥ 1 − ξi, yi = 1,
〈xi,w〉 + b ≤ −1 + ξi, yi = −1,

ξi ≥ 0,

where C is a penalty parameter and ξi are slack variables.
The vector w ∈ Rd points perpendicular to the separat-
ing hyperplane. Adding the offset parameter b allows us
to increase the margin. It can be converted by applying
Langrange multipliers into its Wolfe dual problem and
can be solved by quadratic programming methods.

The primal optimum solution for weight vector w can
be represented as

w =
∑

i

αiyixi. (3)

where 0 ≤ αi ≤ C. Obviouslty, w can be expressed
as a linear combination of the support vectors for which
αi > 0. For a testing feature vector x, the decision func-
tion η and its estimated label h are:

h (x) = sign (η (x)) = sign (〈w,x〉 + b) . (4)

The original optimal hyperplane algorithm was a lin-
ear classifier. However it has been suggested a way to
create non-linear classifiers by applying the kernel trick
[Aizerman et al (1964)]. The SVM can be generalized
to the case where the decision function is a non-linear
function of the data.

Multiclass SVMs are usually implemented by combin-
ing several two-class SVMs. In each binary SVM, only
one class is labelled as ”1” and the others labelled as
”-1”. The one-versus-all method uses a winner-takes-all
strategy.

4

Fig. 2 In this video sample, a bird flys in the sky (left). The features MHI (middle) and MMHI (right) both have retained
the motion information of the bird.

If there are M classes, then the SVM method will con-
struct M binary classifiers by learning. During the test-
ing process, each classifier will get a confidence coefficient
{ηj (x) |j = 1, 2, · · · ,M} and the class k with maximum
confidence coefficient will be assigned to this sample x.

h (x) = k, if ηk (x) = maxM
j=1

(ηj (x)) . (5)

In our system, there are several classes. Several SVM
classifier will be trained based on motion features such
as MHI obtained from human action video clips in a
training dataset. The motion image MHI is transformed
into a plain vector based on the pixel scan order.

2.5 Performance evaluation

For the evaluation, we use a challenging human action
recognition database recorded by Schuldt et al (2004).
It contains six types of human actions (walking, jogging,
running, boxing, hand waving and hand clapping) per-
formed several times by 25 subjects in four different sce-
narios: outdoors (s1), outdoors with scale variation (s2),
outdoors with different clothes (s3) and indoors (s4).

This database contains 2391 sequences. All sequences
were taken over homogeneous backgrounds with a static
camera with 25fps frame rate. The sequences were down-
sampled to the spatial resolution of 160x120 pixels and
have a length of four seconds on average. To the best of
our knowledge, this is the largest video database with se-
quences of human actions taken over different scenarios.
All sequences were divided with respect to the subjects
into a training set (8 persons), a validation set (8 per-
sons) and a test set (9 persons).

Figure 3 shows examples in each type of human ac-
tion in this dataset and their associate MHI motion fea-
tures. In order to compare our results with those in pa-
pers [Ke et al (2005),Schuldt et al (2004)], we use the ex-
act same training set and testing set in our experiments.
The only difference is that we did not use the validation
dataset in training. Our experiments are carried out on
all four different scenarios. In the same manner as paper
[Ke et al (2005)], each sequence is treated individually
during the training and classification process. In all the
following experiments, the parameters were are the same.

In our system, SVM was trained based on features
obtained from human action video clips in a training
dataset. Generally, we can have several types of actions
in a video dataset. These video clips have their own labels
such as “walking”, “running” and so on. In classification,
we actually get a six-class classification problem. At first,
we create six binary SVM classifiers, and each of them
is related to one of the six classes. For example, there is
one SVM classifier related to the class “walking”. In the
training dataset, the video with label “walking” will have
a label “1” in SVM classifier while others have a label “-
1” in SVM. Secondly, we will train these SVM classifiers
on the learning dataset. The SVM training can be imple-
mented using programs freely available on the web, such
as SV M light by Joachims (1999). Finally, we obtained
several SVM classifiers with the associated parameters.

Our experiments are carried out on the all four dif-
ferent scenarios: outdoors, outdoors with scale variation,
outdoors with different clothes and indoors. In the same
manner as paper [Ke et al (2005)], each sequence is treated
individually during the training and classification pro-
cess. In all the following experiments, the parameters
were chosen to be same.

For the whole dataset, the classification confusion
matrix is a good measure for the overall performance in
this multi-class classification problem. Tables 1 show the
classification confusion matrix based on the method pro-
posed in paper Ke et al (2005). Table 2 show the confu-
sion matrix obtained by our system, which uses the MHI.
The confusion matrices show the motion label (vertical)
versus the classification results (horizontal). Each cell
(i, j) in the table shows the percentage of class i action
being recognized as class j. Thus the main diagonal of
the matrices show the percentage of correctly recognized
actions, while the remaining cells show the percentages of
misclassification. The trace of our matrix is 381.2 while
the trace of Kes matrix is 377.8. Our results are slightly
better.

From these two tables, we can see that in this six
classes human action classification problem, our method
did very well in distinguishing the last three classes “box-
ing”, “handclaping” and “handwaving”. But it is not
efficient in distinguishing the first three classes “walk-
ing”, “jogging” and “running”. The reason is that this
dataset is really a challenging dataset. Some actions in

5

Fig. 3 Six types of human actions in the database: (a) walking, (b) jogging, (c) running, (c) boxing, (d) handclapping and
(e) handwaving. The frames of the actions and their associate MHI features

these three classes “walking”, “jogging” and “running”
are very difficult to classify even by human eyes. Some
object’s “jogging” actions are even slower other object’s
“running” action. However, in comparison with Ke’s method,
we use simple MHI rather than volumetric features in
which the dimension of feature vector might be a billion
and our performance is little bit better.

Table 1 Ke’s confusion matrix, trace=377.8

Walk Jog Run Box Clap Wave

Walk 80.6 11.1 8.3 0.0 0.0 0.0
Jog 30.6 36.2 33.3 0.0 0.0 0.0
Run 2.8 25.0 44.4 0.0 27.8 0.0
Box 0.0 2.8 11.1 69.4 11.1 5.6
Clap 0.0 0.0 5.6 36.1 55.6 2.8
Wave 0.0 5.6 0.0 2.8 0.0 91.7

Table 2 MHI’s confusion matrix, trace=381.2

Walk Jog Run Box Clap Wave

Walk 53.5 27.1 16.7 0.0 0.0 2.8
Jog 46.5 34.7 16.7 0.7 0.0 1.4
Run 34.7 28.5 36.1 0.0 0.0 0.7
Box 0.0 0.0 0.0 88.8 2.8 8.4
Clap 0.0 0.0 0.0 7.6 87.5 4.9
Wave 0.0 0.0 0.0 8.3 11.1 80.6

It should be mentioned here that the system per-
formance also depends on the number of classes. The
smaller the number of classes is, the better the perofor-
mance of the system will be.

3 Reconfigurable video processing architecture

Developments in AmI and ubiquitous computing have
lead to the concept of disappearing computing [Wejchert
(2000)], with a user being unaware that they are interact-
ing with a collection of computing nodes. Such devices
have been termed context aware applications [Schmidt
and Laerhoven (2001)], smart devices that sense the real
world they are operating in and use this information
combined with a set of rules to enhance their opera-
tion. To continue to expand the functionality available
from such devices improved sensor technologies must be
incorporated into these systems. The Amadeus Vide-
oware project [Pears (2004)] aims to develop a hardware
video processing architecture, which will support visually
driven human interaction with a wide range of ubiquitous
devices. These objectives require that computing tech-
nology is seamlessly integrated into an environment. This
has become a reality with the ever decreasing cost, size
and power requirements of embedded processors. How-
ever, an alternative approach to this traditional proces-
sor based solution is considered in this research. Instead
of using a general purpose processor, a more hardware
biased solution is taken, with the development of applica-
tion specific IP-cores for FPGA or ASIC devices that can
be optimized for the desired application. The main aim

6

Fig. 4 Simple SOC (Left) and MPSOC designs (Right).

of this approach is to minimize power requirements and
component costs by designing system on a chip (SOC)
based systems. These reductions in power requirements
and production costs are two of the main driving forces
in current electronic system design, illustrated by the
move away from board level design (standard compo-
nents, ASIC, ASSP) to SOC architectures. This trend
has continued within the FPGA and ASIC design flows.
Following Moore’s law, the ever increasing amounts of
resources available within these devices has allowed the
designer to move away from “simple” SOC designs to
multiprocessor SOC (MPSOC) and network on a chip
(NOC) designs as illustrated in figure 4.

The traditional SOC design is based around a top
level processor core, controlling the allocation of process-
ing tasks to set of data processing, hardware accelera-
tors. These IP-cores are typically hardwired i.e. control
structures are implemented as hard coded state machines
with highly pipelined or replicated data paths to improve
processing performance. The resulting IP-core can ob-
tain very high levels of processing performance, however,
they tend to be inflexible, being optimised for a specific
application. The development of these IP-cores is very
labour intensive, taking a significant amount of time to
design and debug when compared to a software imple-
mentation. With the increasing amounts of silicon area
available to the designer, general purpose and applica-
tion specific processor cores are replacing these hardware
accelerator IP-cores, leading to the development of MP-
SOC and NOC designs. The type and number of proces-
sor cores chosen is highly dependent on the applications
real time processing performance requirements, however,
these can include RISC [ARM (2007)] [MIPS (2007)],
DSP or configurable processor cores[ARC (2007)] [Ten-
silica (2007)]. The per-unit processing performance of
such systems when compared to a purely hardware im-
plementation will of course be lower, however, the key
advantage of this type of system is its flexibility, allow-
ing a single design to be reconfigured for different ap-
plications via firmware modifications. Therefore, mod-
ern SOC designs will typically include multiple processor
cores, each being allocated one or more tasks to improve

parallelism within the system. Those functions requiring
very high levels of processing performance which can not
be achieved by a software based implementation will of
course still need to be implemented as hardware accel-
erator IP-cores i.e. to allow the system to meet its real
time processing deadlines.

The aims of the Videoware project is to implement
a video component library (VCL) of generic image pro-
cessing, computer vision and pattern recognition algo-
rithms in an FPGA based architecture. The low level,
high bandwidth processes, such as smoothing and feature
extraction, will be implemented as hardware IP-cores,
whilst higher level, lower bandwidth processes, such as
task-oriented combination of visual cues, will be imple-
mented in a software architecture as shown in figures 5.
The advantage of this modular approach is that a sys-
tems processing performance can be reconfigured for a
particular application, with the addition of new or repli-
cated processing cores. This being simplified by using
a MPSOC design with only those functions required for
low level hardware interfacing or high levels of processing
performance being implemented purely in hardware.

The hardware architecture shown in figure 5 has been
implemented on a custom made FPGA board, the Amadeus
ubiquitous system environment (USE) board [Amadeus
(2004)]. This board is based on a Xilinx Spartan-III de-
vice [Xilinx (2007c)], with 2MB of external RAM and
8MB of external ROM (this memory is also used to
configure the FPGA via a CPLD configuration engine).
The FPGA size can be selected to match a systems re-
quirements, the board accepting three alternative de-
vices: XC3S1500 (1.5M gates), XC3S2000 (2M gates)
and XC3S4000 (4M gates). In addition to this a number
of interface boards have also been developed to allow
the easy connection of a camera [Kodak (2006)], com-
munications interfaces e.g. LEDs, RS232 and additional
external memory modules e.g. SDRAM and SRAM.

4 Implementation of human motion recognition

on the reconfigurable architecture

4.1 System design and implementation

To minimise development time i.e. the number of dif-
ferent hardware components that need to be developed,
processor instruction sets and software developments tools
that need to be learnt, each processing core is based on
the same processor architecture. For the Xilinx Spartan-
III device this means selecting from the Xilinx PicoBlaze
(8bit) [Xilinx (2007a)], Xilinx MicroBlaze (32bit) [Xilinx
(2007b)] or a third party processor IP-Core (not con-
sidered due to size constraints). When selecting a pro-
cessor core the data width, memory architecture and
instruction set need to be matched to the application.
In this case the majority of data sources use either an
unsigned 8bit integer value i.e. grey scale images, or a

7

Fig. 5 Videoware processing architecture.

Fig. 6 System block diagram.

signed 8.8 fixed point representation (8bit integer, 8bit
fraction). It was therefore decided that the 8bit Xilinx
PicoBlaze processor would be used as a 32bit processor
would require significant increases in both memory and
logic requirements. This decision does reduce the pro-
cessing performance of these cores e.g. operations requir-
ing 16bit or 32bit operands require multiple instructions.
The PicoBlaze processor is also not designed to be a raw
’number cruncher’ with an average performance of ap-
proximately 50 MIPS. Therefore, to compensate for this
a co-processor interface was added to the system bus al-
lowing identified software bottlenecks to be moved into
hardware e.g. signed 8.8 multiplication, signed 24.8 ac-
cumulator etc. In addition to this, operand pointer man-
agement has been moved out of software into dedicated

hardware within the processor-to-wishbone bridge. This
functionality was identified from the convolution opera-
tors required in a number of the video processing algo-
rithms. Read and write pointers are now implemented
in hardware being automatically updated when a value
has been fetched from or written to memory. The pro-
cessor can request either a single or block of data from
a base address with a selected offset, greatly simplifying
code structure and reducing code size. In general a soft-
ware biased design approach was taken when developing
each processing core i.e. a co-processor was only added
if a software based implementation does not achieve the
required processing performance.

The block diagram of the FPGA motion recognition
system is shown in figure 6. Each functional unit being

8

implemented as hardware components written in VHDL.
Control and IO tasks are centralised in the top level pro-
cessor module. This module contains:

– PicoBlaze processor : top level control software, on
boot-up initialises camera interface etc, synchronising
and allocating tasks to processing cores to fulfil the
systems processing requirements.

– Look up table ROM : configuration data used to ini-
tialise the system e.g. camera control register values,
frame size etc.

– Scratch pad RAM : temporary storage for interme-
diate results. The inclusion of this memory is depen-
dent on the variant of PicoBlaze processor used i.e.
the PicoBlaze KCPSM3 includes 64Bytes of internal
scratch pad memory within its architecture.

– PicoBlaze to Wishbone bridge : the PicoBlaze pro-
cessor does not support wait states i.e. delayed read
or write operations to memory, therefore, a bridge is
required to interface the PicoBlaze to the Wishbone
system bus [Silicore (2002)]. The processor requests
read or write operations from the bridge, data being
stored in internal FIFO buffers.

– Output port : used to drive a LED bank, indicating
the programs status, debugging information etc.

– Input port : simple push buttons used to start system
operations, DIP switch bank selects what configura-
tion data should be used e.g. camera sensitivity etc.

– Timer : periodic interrupt timer used to trigger sys-
tem events.

– Serial port : displays result and debug information on
PC based serial terminal.

– Interrupt handler : controls servicing of multiple in-
terrupts.

The functionality required to implement the motion
recognition system is distributed between two processing
modules, processing module 0 and 1. Processing module
0 is assigned low level, high bandwidth image capture
and communication tasks. This module contains:

– Intel hex upload / download engine : allows data to be
uploaded to and downloaded from the FPGA using
the extended Intel hex format. This allows the con-
tents of the status and control registers of the various
components on the system bus to be read and writ-
ten to, simplifying testing. This interface can also be
used to replace the top level processor module, allow-
ing the user to send configuration and control packets
to the FPGA.

– DMA engine : direct memory access controller, can
be configured to transfer blocks of data from memory
to memory, FIFO to memory, memory to FIFO, or
clear a block of memory.

– External synchronous SRAM : 2048 KB of memory
used as a frame buffer storing image data and inter-
mediate results.

Fig. 7 Processing core block diagram.

– Parallel port : primarily used to transfer image data
back to the host PC for SVM training and hardware
debugging.

– Camera I2C port : synchronous serial port allowing
the FPGA to configure the camera’s control registers.

– Camera parallel port : the camera is configured to
constantly stream image data to the FPGA. This
slave port captures image data, configured with dual
32KB frame buffers allowing the previous image to be
processed whilst the current image is captured. This
component also supports Bayer pattern to greyscale
conversion and down sampling to lower image reso-
lutions.

– Seven segment display : two seven segment LED dis-
plays used to display the motion recognition result
and debugging.

– Wishbone to Wishbone bridge : to enable different
processing cores to operate in parallel without im-
pacting on system bus bandwidth functionality can
be spread across a number of system buses i.e. high
bandwidth data accesses are isolated to the local sys-
tem bus.

– Processing core 0 : difference operator, used to gen-
erate the motion history image.

– Processing core 1 : sub-sample operator, used to down
sample image data to lower resolutions, using pixel
interpolation or selection.

Processing module 1 is assigned high level, lower band-
width data processing tasks. To maximise system perfor-
mance access to data is localised to the current system
bus i.e. additional memory is attached to each bus min-

9

imise Wishbone to Wishbone bridge transfers. Alterna-
tively, internal dual port BlockRam can also be used to
transfers data across systems bus boundaries. This mod-
ule contains :

– External asynchronous SRAM : edge detection frame
buffers

– Internal RAM : intermediate result buffer used in the
calculation of the motion history image

– Internal ROM : SVM classification data sets, inner
product of this data and the motion history image is
performed to identify motion.

– Processing core 2 : inner product, signed 8.8 multi-
plication with a 24.8 accumulator.

– Processing core 3 : filter, Gaussian or mean smooth-
ing of image data

– Processing core 4 : rotate, image orientation about
its centre

– Processing core 5 : edge detector, Robert’s cross or
Sobel edge detector operators

Note that processing cores 3 - 5 are not used in the
motion recognition system, but have been developed as
part of the VCL. The processing cores used in processing
module 0 and 1 are based on the same hardware archi-
tecture as shown in figure 7. This greatly simplifies hard-
ware development and testing, allowing the same compo-
nent to be used for a number of different tasks through
firmware modifications. Each processing core contains :

– PicoBlaze processor : depending on the algorithm
used (instruction code size), the KCPSM, KCPSM2
or KCPSM3 PicoBlaze processor core can be used.

– Co-processor interface : a generic co-processor inter-
face supporting eight parameter registers, four result
registers, control and status registers.

– Look up table ROM : system constants e.g. sine lookup
table, size 16 - 64B.

– Scratch pad RAM : intermediate results, size 16 -
128B

– Processing core to Wishbone bridge : this bridge has
more functionality than the PicoBlaze to Wishbone
bridge, supporting automatic read and write pointer
updates and offset calculations from these base point-
ers.

The Amadeus ubiquitous system environment (USE)
board and motion recognition processing pipeline is shown
in figure 8. A difference operator is performed on the
current and previous frames, updating a motion history
image. The inner product of the MHI and the SVM clas-
sification data sets is then performed, the result of each
accumulator then has a specific offset applied before a
threshold is performed, selecting the stored action that
most closely matches the observed motion. In the cur-
rent implementation this process is operated in a one
shot mode, however, this could be easily expanded to
include motion detection to start and stop this process
i.e. when the difference between two frames exceeds a
threshold the motion history image is generated, when it

Fig. 9 System function processing requirements.

falls below this threshold the inner product and threshold
phase are then performed. The processing performance
for each of these system functions is shown in figure 9.
These results are for a software only implementation i.e.
no co-processor support is incorporated in any of the
processing cores. The current hardware implementation
can capture image data at twelve frames per second i.e.
one frame every 80 ms. To allow the system to process
data at this frame rate the inner product calculation
performance must be improved. To achieve this level of
performance the system can be reconfigured, replicating
this processing core improving parallelism. Performance
can also be improved through the use of co-processors
e.g. moving the signed 8.8 multiplication operation out
of software into dedicated hardware. The result of these
improvements can be seen in figures 10 and 11. Figure 10
shows the processing performance of a software only im-
plementation performing six inner product calculations
using one to six processing cores i.e. one to six copies
of processing core 2 are added to the system bus. Fig-
ure 11 shows the processing performance of the same
system but with hardware support through the inclu-
sion of a co-processor in processing core 2. Using these
techniques the required processing performance can be
achieve, allowing a virtual pipeline to be constructed be-
tween these processing cores. It should be noted that the
number of processing cores that can be replicated is de-
pendent on the system bus and memory bandwidth, as
more processing cores are added a point will be reached
where processing on these cores will be stalled until data
bandwidth is freed. The performance of these processing
core is also dependent on image size. In the present sys-
tem the camera interface captures Bayer pattern images
at a resolution of 640x480. This is then converted to a
greyscale image and down sampled to either 200x160 or
100x80, defined via the camera’s control registers. The
camera input frame rate is therefore constant, however,
the image size can vary from 8KB to 32KB. This increase
in data will of course effect the systems processing re-
quirements e.g. 200x160 difference operator’s processing
requirements increases by a factor of 4. To increase pro-
cessing performance the difference operator processing
core can be replicated. However, multiple image pairs can
not be processed in parallel due to a data hazard (read
after write) on the MHI i.e. the reader, writer problem.
To remove this hazard, the current and previous motion
history images are divided into segments, with a single

10

Fig. 8 Amadeus ubiquitous system environment (USE) board and motion recognition processing pipeline.

Fig. 10 Software inner product implementation.

processing core allocated to each segment, removing the
data hazard problem, as shown in figure 12. The process-
ing performance of this system for an image resolution
of 200x160 with one to six processing cores is shown in
figure 11. These results highlight the difference between
task level parallelism (figures 10 and 11) and function
level parallelism (figure 13) when using replicated pro-
cessing cores. The parallel inner product system uses task
level parallelism. In such systems the number of tasks
can be greater than the number of processing cores with
tasks being allocated to each processing core as they be-
come available. As a result, processing performance is
limited by the maximum number of tasks that can be
allocated during each time slice e.g. with four process-
ing cores and six tasks two time slices will be required,
four tasking being processed in the first time slice and
two in the second. This granularity is illustrated by the
flat regions in figures 10 and 11 i.e. for a system with
three to five processing cores. In these systems two time
slices will be required, resulting in some processing cores
remaining idle during these periods. The parallel differ-
ence operator system uses function level parallelism. In
such systems the number of tasks is equal to the num-
ber of processing cores i.e. the number of segments is
matched to the number of processing cores available. As
a result, processing performance shows a incremental im-
provement with the number of processing cores added to
the system.

Fig. 11 Co-processor inner product implementation.

Fig. 12 Allocation of replicated difference operators.

Fig. 13 Software difference operator implementation.

11

Table 3 Hand motion recognition average confusion matrix

horizontal Vertical Others

Horizontal 94 2 4
Vertical 18 70 12
Others 4 18 76

This ability to scale a design to match an application
allows the designer to trade off speed and area require-
ments. In addition to this, each hardware component can
also be optimized for speed, size and power considera-
tions, giving a designer greater flexibility in distributing
the required processing capabilities amongst the selected
processing cores.

4.2 Performance testing on the stand alone system

In order to test the performance of the FPGA imple-
mentation of our human motion recognition system. We
recorded a hand motion dataset. In this dataset, there
are only three type of hand motions: horizontal motion,
vertical motion and “other motion”. We also recognise a
no-motion case as a extra class.

For each class, we recorded 20 video samples, with
the frame size set to 200x160 pixels. We recorded the
video clips with a variety of backgrounds to test the sys-
tem robustness to this variability. Figure 14 showed some
samples in this dataset.

One of the simplest multiclass classification schemes
built on top of real-valued binary classifiers is to train
N different binary classifiers, each one trained to distin-
guish the examples in a single class from the examples
in all remaining classes. When it is desired to classify a
new example, the N classifiers are run, and the classifier
which outputs the largest (most positive) value is chosen.
This scheme will be referred to as the “one-vs-all rule.

In our experiment, 15 samples were randomly chosen
from each class for training and the other 5 were used
for testing. We repeated the experiments 10 times. We
carried out the training on computer by using SV M light

(the defalt values were used for all the parameters in
this software). We extracted the MHI feature from each
video clip firstly. Then we trained 3 binary linear SVM
classifiers based on these features. So we got 3 parameter
matrix (The weight vector w) and bias b. We stored them
in the internel memory of the FPGA chip for the classifi-
cations. During the classification, 3 values were got from
each SVM calssifier and the one with the largest (most
positive) value is used to label the motion.

Table 3 shows the average classifiation rate. The av-
erage rate of correct classification is 80%. Clearly this
can be improved by using more training samples.

Using the system architecture shown in figure 6 two
hardware configurations can be achieved through firmware
modifications as shown in table 4. Both of these systems
operate in a one shot mode, capturing approximately

five seconds of video i.e. 60 frames at 12 frames/seconds.
The first of these is a test configuration, where each stage
of the processing pipeline is performed sequentially i.e.
video capture, difference operator, inner product, offset
addition and thresholding. At each stage intermediate
results can be downloaded using the Intel Hex upload /
download IP-core and compared to results produced by a
Matlab implementation running on a PC. As the results
in table 4 show this implementation may not be suitable
for some real time applications, having an output latency
of approximately 2.5 seconds. To improve processing per-
formance the system can be expanded to included four
inner product and difference operator processing cores
to form a true virtual pipeline as illustrated in figure 8.
This allows the difference operator to be overlapped with
video capture significantly reducing output latency.

Table 4 Hardware performance

Video capture Output latency

Sequential 5 sec 2.514 sec
Pipelined 5 sec 0.082 sec

5 Conclusions and discussion

In this paper, we proposed a system for fast human mo-
tion recognition. It has applications in security systems,
man-machine communication, and other cases of Ambi-
ent Intelligence. The proposed method does not rely on
accurate tracking as most other works do, since most
of the tracking algorithms may incur prohibitive com-
putational cost for the system. Our system achieves a
competitive performance with other temporal template
(eg. MHI) based methods.

The use of standard processor cores to replace hard-
ware accelerator IP-Cores greatly simplifies system de-
sign i.e. both in terms of component development and
debugging. When compared to equivalent systems test-
ing times are significantly reduced, through the use of
existing pre-tested processor and peripheral IP-cores and
software simulators. The disadvantage of a multiple pro-
cessor based design is the reduction in unit processing
performance when compared to an optimized applica-
tion specific IP-Core. To compensate for this, processing
cores can be replicated to increase system performance.
The advantage of this design approach is that the num-
ber of new hardware components that need to be de-
signed is greatly reduced, a common processing core can
be used for a number of different tasks through firmware
changes. These design advantages come at the cost of
increased silicon area, however, with the ever increas-
ing resources available to the designer within modern
FPGAs this tradeoff is becoming more acceptable when
compared to increasing development costs.

12

Fig. 14 Some samples in the hand motion dataset and their MHI features.

The human motion recognition system worked equally
well in hardware and in software. It is also robust on the
different types of background. Recognition performance
may be improved by recording more data for training
and the system worked as stand-alone unit, without any
support from PC after training process was completed.

Our recent work [Meng et al (2007b,a)] has improved
the system by introducing novel motion features and
combinations of motion features. Implementation of these
improved approaches on our reconfigurable video pro-
cessing architecture is the focus of our future work.

Acknowledgements The authors would like to thank DTI
and Broadcom Ltd. for the financial support for this research.

References

Aggarwal JK, Cai Q (1999) Human motion analysis: a re-
view. Comput Vis Image Underst 73(3):428–440, DOI
http://dx.doi.org/10.1006/cviu.1998.0744

Aizerman A, Braverman EM, Rozoner LI (1964) Theoreti-
cal foundations of the potential function method in pat-
tern recognition learning. Automation and Remote Con-
trol 25:821–837

Amadeus (2004) Use - ubiquitous system explorer (fpga
development platform). URL http://www.cs.york.ac.uk
/amadeus/projects/centre-use/

ARC (2007) Products and solutions : Arc config-
urable cpu/dsp cores. URL http://www.arc.com /config-
urablecores/

ARM (2007) Processor overview. URL http://www.arm.com
/products/CPUs/

Blank M, Gorelick L, Shechtman E, Irani M, Basri R (2005)
Actions as space-time shapes. In: ICCV, pp 1395–1402

Bobick AF, Davis JW (2001) The recognition of human move-
ment using temporal templates. IEEE Trans Pattern Anal
Mach Intell 23(3):257–267

Bradski GR, Davis JW (2002) Motion segmentation and pose
recognition with motion history gradients. Mach Vis Appl
13(3):174–184

Dalal N, Triggs B, Schmid C (2006) Human detection using
oriented histograms of flow and appearance. In: ECCV
(2), pp 428–441

Davis JW (2001) Hierarchical motion history images for rec-
ognizing human motion. In: IEEE Workshop on Detection
and Recognition of Events in Video, pp 39–46

Farnell B (1999) Moving bodies, acting selves. Annual Review
of Anthropology 28:341–373

Joachims T (1999) Making large-scale SVM learn-
ing practical. In: Advances in Kernel Methods -
Support Vector Learning, MIT-Press, USA, URL
http://svmlight.joachims.org/, oikonomopoulos, Anto-
nios and Patras, Ioannis and Pantic, Maja eds.

Ke Y, Sukthankar R, Hebert M (2005) Efficient visual event
detection using volumetric features. In: ICCV, pp 166–
173, beijing, China, Oct. 15-21, 2005

Kodak (2006) Kodak kac-9628 image sensor
648(h) x 488(v) color cmos image sensor. URL
http://www.kodak.com/ezpres/business/ccd/global
/plugins/acrobat/en/productsummary/CMOS /KAC-
9628ProductSummaryv2.0.pdf

Meng H, Pears N, Bailey C (2006) Recognizing human actions
based on motion information and SVM. In: 2nd IET In-
ternational Conference on Intelligent Environments, IET,
Athens, Greece, pp 239–245

Meng H, Pears N, Bailey C (2007a) A human action recog-
nition system for embedded computer vision application.
In: The 3rd IEEE workshop on Embeded Computer Vi-
sion, Minneapolis,USA.

Meng H, Pears N, Bailey C (2007b) Motion information com-
bination for fast human action recognition. In: 2nd In-
ternational Conference on Computer Vision Theory and
Applications (VISAPP07), Barcelona, Spain.

MIPS (2007) Architectures. URL http://www.mips.com
/products/architectures/

Moeslund T, Hilton A, Kruger V (2006) A survey of advances
in vision-based human motion capture and analysis. Com-
put Vis Image Underst 103(2-3):90–126

Ogata T, Tan JK, Ishikawa S (2006) High-speed human mo-
tion recognition based on a motion history image and an
eigenspace. IEICE Transactions on Information and Sys-
tems E89(1):281–289

Oikonomopoulos A, Patras I, Pantic M (2006) Kernel-based
recognition of human actions using spatiotemporal salient
points. In: Proceedings of CVPR workshop 06, vol 3, pp
151–156, URL http://pubs.doc.ic.ac.uk/Pantic-CVPR06-

13

1/
Pears N (2004) Projects: Videoware - video process-

ing architecture. URL http://www.cs.york.ac.uk
/amadeus/videoware/

Schmidt A, Laerhoven KV (2001) How to build smart appli-
ances. IEEE Personal Communications pp 66 – 71, URL
citeseer.ist.psu.edu/schmidt01how.html

Schuldt C, Laptev I, Caputo B (2004) Recognizing human
actions: a local SVM approach. In: ICPR, Cambridge,
U.K

Silicore (2002) Wishbone system-on-chip (soc) inter-
connection architecture for portable ip cores. URL
http://www.opencores.org/projects.cgi/web/wishbone
/wbspec b3.pdf

Tensilica (2007) Xtensa configurable processors -
overview. URL http://www.tensilica.com/products
/xtensa overview.htm

Weinland D, Ronfard R, Boyer E (2005) Motion his-
tory volumes for free viewpoint action recogni-
tion. In: IEEE International Workshop on model-
ing People and Human Interaction (PHI’05), URL
http://perception.inrialpes.fr/Publications/2005/WRB05

Wejchert J (2000) ”the disappearing computer”, infor-
mation document, ist call for proposals, european
commission, future and emerging technologies. URL
http://www.disappearing-computer.net/mission.html

Wong SF, Cipolla R (2005) Real-time adaptive hand motion
recognition using a sparse bayesian classifier. In: ICCV-
HCI, pp 170–179

Wong SF, Cipolla R (2006) Continuous gesture recognition
using a sparse bayesian classifier. In: ICPR (1), pp 1084–
1087

Xilinx (2007a) Microblaze processor. URL http:
//www.xilinx.com/ipcenter/processor central/picoblaze
/picoblaze user resources.htm

Xilinx (2007b) Microblaze soft processor core. URL
http://www.xilinx.com/xlnx/xebiz/designResources
/ip product details.jsp?key=micro blaze

Xilinx (2007c) Spartan-3 fpga family complete data
sheet. URL http://direct.xilinx.com/bvdocs /publica-
tions/ds099.pdf

