1,652 research outputs found

    Automotive technology status and projections. Volume 1: Executive summary

    Get PDF
    Fuel economy, exhaust emissions, multifuel capability, advanced materials and cost/manufacturability for both conventional and advanced alternative power systems were assessed. To insure valid comparisons of vehicles with alternative power systems, the concept of an Otto-Engine-Equivalent (OEE) vehicle was utilized. Each engine type was sized to provide equivalent vehicle performance. Sensitivity to different performance criteria was evaluated. Fuel economy projections are made for each engine type considering both the legislated emission standards and possible future emissions requirements

    Automotive technology status and projections. Volume 2: Assessment report

    Get PDF
    Current and advanced conventional engines, advanced alternative engines, advanced power train components, and other energy conserving automobile modifications which could be implemented by the end of this century are examined. Topics covered include gas turbine engines, Stirling engines, advanced automatic transmissions, alternative fuels, and metal and ceramic technology. Critical problems are examined and areas for future research are indicated

    Numerical analysis of a downsized 2-stroke uniflow engine

    Get PDF
    In order to optimize the 2-stroke uniflow engine performance on vehicle applications, numerical analysis has been introduced, 3D CFD model has been built for the optimization of intake charge organization. The scavenging process was investigated and the intake port design details were improved. Then the output data from 3D CFD calculation were applied to a 1D engine model to process the analysis on engine performance. The boost system optimization of the engine has been carried out also. Furthermore, a vehicle model was also set up to investigate the engine in-vehicle performance

    General aviation energy-conservation research programs at NASA-Lewis Research Center

    Get PDF
    The major thrust of NASA's nonturbine general aviation engine programs is directed toward (1) reduced specific fuel consumption, (2) improved fuel tolerance; and (3) emission reduction. Current and planned future programs in such areas as lean operation, improved fuel management, advanced cooling techniques and advanced engine concepts, are described. These are expected to lay the technology base, by the mid to latter 1980's, for engines whose total fuel costs are as much as 30% lower than today's conventional engines

    Automotive Powertrain Control — A Survey

    Full text link
    This paper surveys recent and historical publications on automotive powertrain control. Control-oriented models of gasoline and diesel engines and their aftertreatment systems are reviewed, and challenging control problems for conventional engines, hybrid vehicles and fuel cell powertrains are discussed. Fundamentals are revisited and advancements are highlighted. A comprehensive list of references is provided.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72023/1/j.1934-6093.2006.tb00275.x.pd

    Catalog of selected heavy duty transport energy management models

    Get PDF
    A catalog of energy management models for heavy duty transport systems powered by diesel engines is presented. The catalog results from a literature survey, supplemented by telephone interviews and mailed questionnaires to discover the major computer models currently used in the transportation industry in the following categories: heavy duty transport systems, which consist of highway (vehicle simulation), marine (ship simulation), rail (locomotive simulation), and pipeline (pumping station simulation); and heavy duty diesel engines, which involve models that match the intake/exhaust system to the engine, fuel efficiency, emissions, combustion chamber shape, fuel injection system, heat transfer, intake/exhaust system, operating performance, and waste heat utilization devices, i.e., turbocharger, bottoming cycle

    EGR transient operations in highly dynamic driving cycles

    Full text link
    [EN] EGR is one of the proven and well tested strategies within the specific operating range of the engine. Necessity of an implementation of this exhaust gas recirculation all over the engine operating range is emerging. Therefore, a systematic study has been carried out to identify the specific and frequent transient operations on newly developed dynamic cycles like WLTC and RDE. To perform detailed observations, these transients are imitated individually on the diesel engine test bench. High frequency gas analyzers are used to track the instantaneous CO2 and NOx concentration respectively at the intake and exhaust lines of the engine. A parametric study has been carried out using different valve movement profiles of the LPEGR and HPEGR during severe engine load change operations. An analysis is presented suggesting the best suited valve control during these harsh transients which can be helpful for transient calibration of a turbocharged diesel engine. The effect of length of Long route LPEGR line is also acknowledged. This study reveals the dynamic behavior of a diesel engine during transient operation with exhaust gas recirculation. It outlines the trade-off between performance and NOx emission and opacity for the initial phase of the transient before acquiring the steady state situation.Galindo, J.; Climent, H.; Pla Moreno, B.; Patil, CY. (2020). EGR transient operations in highly dynamic driving cycles. International Journal of Automotive Technology. 21(4):865-879. https://doi.org/10.1007/s12239-020-0084-xS865879214Asad, U., Tjong, J. and Zheng, M. (2014). Exhaust gas recirculation–Zero dimensional modelling and characterization for transient diesel combustion control. Energy Conversion and Management, 86, 309–324.Balau, A., Kooijman, D., Vazquez Rodarte, I. and Ligterink, N. (2015). Stochastic real-world drive cycle generation based on a two stage Markov chain approach. SAE Int. J. Materials and Manufacturing8, 2, 390–397.Benajes, J., Luján, J. M. and Serrano, J. R. (2000). Predictive modelling study of the transient load response in a heavy-duty turbocharged diesel engine. SAE Paper No. 2000-01-0583.Benajes, J., Lujan, J. M., Bermudez, V. and Serrano, J. R. (2002). Modelling of turbocharged diesel engines in transient operation. Part 1: Insight into the relevant physical phenomena. Proc. Institution of Mechanical Engineers, Part D: J. Automobile Engineering216, 5, 431–441.Black, J., Eastwood, P. G., Tufail, K., Winstanley, T., Hardalupas, Y. and Taylor, A. M. K. P. (2007). Diesel engine transient control and emissions response during a european extra-urban drive cycle (EUDC). SAE Paper No. 2007-01-1938.Blanco-Rodriguez, D.-I. D. (2014). Modelling and Observation of Exhaust Gas Concentrations for Diesel Engine Control. Springer. Valencia, Spain.Brookshire, D. and Arnold, S. D. (2007). US7165540B2. United States.Buchwald, R., Lautrich, G., Maiwald, O. and Sommer, A. (2006). Boost and EGR system for the highly premixed diesel combustion. SAE Paper No. 2006-01-0204.Chung, J., Kim, H. and Sunwoo, M. (2018). Reduction of transient NOx emissions based on set-point adaptation of real-time combustion control for light-duty diesel engines. Applied Thermal Engineering, 137, 729–738.Darlington, A., Glover, K. and Collings, N. (2006). A simple diesel engine air-path model to predict the cylinder charge during transients: Strategies for reducing transient emissions spikes. SAE Paper No. 2006-01-3373Daya, R., Hoard, J., Chanda, S. and Singh, M. (2017). Insulated catalyst with heat storage for real-world vehicle emissions reduction. Int. J. Engine Research18, 9, 886–899.Donateo, T. and Giovinazzi, M. (2017). Building a cycle for real driving emissions. Energy Procedia, 126, 891–898.European Parliament & Council of the European Union (2016). Commission Regulation (EU) 2016/427 of 10 March 2016 Amending Regulation (EC) No 692/2008 as Regards Emissions from Light Passenger and Commercial Vehicles (Euro 6) (Text with EEA Relevance). Official J. European Union, 82(31/03/2016), 1–98.Giakoumis, E. G., Rakopoulos, C. D., Dimaratos, A. M. and Rakopoulos, D. C. (2012). Exhaust emissions of diesel engines operating under transient conditions with biodiesel fuel blends. Progress in Energy and Combustion Science38, 5, 691–715.Gong, Q., Midlam-Mohler, S., Marano, V., Rizzoni, G. and Guezennec, Y. (2010). Statistical analysis of PHEV fleet data. Proc. IEEE Vehicle Power and Propulsion Conf., Lille, France.Heuwetter, D., Glewen, W., Meyer, C., Foster, D. E., Andrie, M. and Krieger, R. (2011). Effects of low pressure EGR on transient air system performance and emissions for low temperature diesel combustion. SAE Paper No. 2011-24-0062.Khalef, M. S., Soba, A. and Korsgren, J. (2016). Study of EGR and turbocharger combinations and their influence on diesel engine’s efficiency and emissions. SAE Paper No. 2016-01-0676.Kooijman, D. G., Balau, A. E., Wilkins, S., Ligterink, N. and Cuelenaere, R. (2015). WLTP random cycle generator. Proc. IEEE Vehicle Power and Propulsion Conf. (VPPC), Montreal, Quebec, Canada.Lakshminarayanan, P. A. and Aswin, S. (2017). Estimation of particulate matter from smoke, oil consumption and fuel sulphur. SAE Paper No. 2017-01-7002.Lana, C. A., Kappaganthu, K., Kothandaraman, G. and PerfettoKarthik, D. J. S. C. G. H. D. K. (2016). US20160237928A1. United States.Leach, F. C. P., Davy, M. and Peckham, M. (2019). Cyclic NO2: NOx ratio from a diesel engine undergoing transient load steps. Int. J. Engine Research.Leach, F., Davy, M. and Peckham, M. (2018). Cycle-tocycle NO and NOx emissions from a HSDI diesel engine. Proc. ASME Internal Combustion Engine Division Fall Technical Conf., San Diego, California, USA.Liu, F. and Pfeiffer, J. (2015). Estimation algorithms for low pressure cooled EGR in spark-ignition engines. SAE Paper No. 2015-01-1620.Liu, F., Pfeiffer, J. M., Caudle, R., Marshall, P. and Olin, P. (2016). Low pressure cooled EGR transient estimation and measurement for an turbocharged SI engine. SAE Paper No. 2016-01-0618.Luján, J. M., Climent, H., Ruiz, S. and Moratal, A. (2018a). Influence of ambient temperature on diesel engine raw pollutants and fuel consumption in different driving cycles. Int. J. Engine Research20, 8–9, 877–888.Luján, J. M., Bermúdez, V., Dolz, V. and Monsalve-Serrano, J. (2018b). An assessment of the real-world driving gaseous emissions from a Euro 6 light-duty diesel vehicle using a portable emissions measurement system (PEMS). Atmospheric Environment, 174, 112–121.Luján, J. M., Climent, H., Arnau, F. J. and Miguel-García, J. (2018c). Analysis of low-pressure exhaust gases recirculation transport and control in transient operation of automotive diesel engines. Applied Thermal Engineering, 137, 184–192.Luján, J. M., Guardiola, C., Pla, B. and Reig, A. (2015). Switching strategy between HP (high pressure)- and LPEGR (low pressure exhaust gas recirculation) systems for reduced fuel consumption and emissions. Energy90, Part 2, 1790–1798.Maiboom, A., Tauzia, X. and Hétet, J. F. (2008). Experimental study of various effects of exhaust gas recirculation (EGR) on combustion and emissions of an automotive direct injection diesel engine. Energy33, 1, 22–34.Park, J. and Choi, J. (2016). Optimization of dual-loop exhaust gas recirculation splitting for a light-duty diesel engine with model-based control. Applied Energy, 181, 268–277.Park, J., Song, S. and Lee, K. S. (2015). Numerical investigation of a dual-loop EGR split strategy using a split index and multi-objective Pareto optimization. Applied Energy, 142, 21–32.Park, Y. and Bae, C. (2014). Experimental study on the effects of high/low pressure EGR proportion in a passenger car diesel engine. Applied Energy, 133, 308–316.Reifarth, S. and Angstrom, H.-E. (2009). Transient EGR in a long-route and short-route EGR system. Proc. ASME Internal Combustion Engine Division Spring Technical Conf., Milwaukee, Wisconsin, USA.Reifarth, S. and Angstrom, H.-E. (2010). Transient EGR in a high-speed DI diesel engine for a set of different EGRroutings. SAE Paper No. 2010-01-1271.Serrano, J. R., Climent, H., Guardiola, C. and Piqueras, P. (2009). Methodology for characterisation and simulation of turbocharged diesel engines combustion during transient operation. Part 2: Phenomenological combustion simulation. Applied Thermal Engineering29, 1, 150–158.Shutty, J. (2009). Control strategy optimization for hybrid EGR engines. SAE Paper No. 2009-01-1451.Soltis, R., Hilditch, J., Clark, T., House, C., Gerhart, M. and Surnilla, G. (2016). Intake oxygen sensor for EGR measurement. SAE Paper No. 2016-01-1070.Sutela, C., Collings, N. and Hands, T. (2000). Real time CO2 measurement to determine transient intake gas composition under EGR conditions. SAE Paper No. 2000-01-2953.Thunis, P., Lefebvre, W., Weiss, M., Vranckx, S., Clappier, A., Degraeuwe, B. and Janssen, S. (2017). Impact of passenger car NOX emissions on urban NO2 pollution–Scenario analysis for 8 European cities. Atmospheric Environment, 171, 330–337.Triantafyllopoulos, G., Katsaounis, D., Karamitros, D., Ntziachristos, L. and Samaras, Z. (2018). Experimental assessment of the potential to decrease diesel NOx emissions beyond minimum requirements for Euro 6 real drive emissions (RDE) compliance. Science of the Total Environment, 618, 1400–1407.Tutuianu, M., Bonnel, P., Ciuffo, B., Haniu, T., Ichikawa, N., Marotta, A., Pavlovic, J. and Steven, H. (2015). Development of the World-wide harmonized Light duty Test Cycle (WLTC) and a possible pathway for its introduction in the European legislation. Transportation Research Part D: Transport and Environment, 40, 61–75.Yamada, H., Misawa, K., Suzuki, D., Tanaka, K., Matsumoto, J., Fujii, M. and Tanaka, K. (2011). Detailed analysis of diesel vehicle exhaust emissions: Nitrogen oxides, hydrocarbons and particulate size distributions. Proc. Combustion Institute33, 2, 2895–2902.Yang, L., Franco, V., Mock, P., Kolke, R., Zhang, S., Wu, Y. and German, J. (2015). Experimental assessment of NOx emissions from 73 Euro 6 diesel passenger cars. Environmental Science and Technology49, 24, 14409–14415.Zamboni, G. and Capobianco, M. (2012). Experimental study on the effects of HP and LP EGR in an automotive turbocharged diesel engine. Applied Energy, 94, 117–128.Zamboni, G., Moggia, S. and Capobianco, M. (2017). Effects of a dual-loop exhaust gas recirculation system and variable nozzle turbine control on the operating parameters of an automotive diesel engine. Energies10, 1, 47

    A novel fuzzy logic variable geometry turbocharger and exhaust gas recirculation control scheme for optimizing the performance and emissions of a diesel engine

    Get PDF
    Variable geometry turbocharger and exhaust gas recirculation valves are widely installed on diesel engines to allow optimized control of intake air mass flow and exhaust gas recirculation ratio. The positions of variable geometry turbocharger vanes and exhaust gas recirculation valve are predominantly regulated by dual-loop proportional–integral–derivative controllers to achieve predefined set-points of intake air pressure and exhaust gas recirculation mass flow. The set-points are determined by extensive mapping of the intake air pressure and exhaust gas recirculation mass flow against various engine speeds and loads concerning engine performance and emissions. However, due to the inherent nonlinearities of diesel engines and the strong interferences between variable geometry turbocharger and exhaust gas recirculation, an extensive map of gains for the P, I, and D terms of the proportional–integral–derivative controllers is required to achieve desired control performance. The present simulation study proposes a novel fuzzy logic control scheme to determine appropriate positions of variable geometry turbocharger vanes and exhaust gas recirculation valve in real-time. Once determined, the actual positions of the vanes and valve are regulated by two local proportional–integral–derivative controllers. The fuzzy logic control rules are derived based on an understanding of the interactions among the variable geometry turbocharger, exhaust gas recirculation, and diesel engine. The results obtained from an experimentally validated one-dimensional transient diesel engine model showed that the proposed fuzzy logic control scheme is capable of efficiently optimizing variable geometry turbocharger and exhaust gas recirculation positions under transient engine operating conditions in real-time. Compared to the baseline proportional–integral–derivative controllers approach, both engine’s efficiency and total turbo efficiency have been improved by the proposed fuzzy logic control scheme while NOx and soot emissions have been significantly reduced by 34% and 82%, respectively

    Multi-fuel rotary engine for general aviation aircraft

    Get PDF
    Design studies of advanced multifuel general aviation and commuter aircraft rotary stratified charge engines are summarized. Conceptual design studies were performed at two levels of technology, on advanced general aviation engines sized to provide 186/250 shaft kW/hp under cruise conditions at 7620 (25000 m/ft) altitude. A follow on study extended the results to larger (2500 hp max.) engine sizes suitable for applications such as commuter transports and helicopters. The study engine designs were derived from relevant engine development background including both prior and recent engine test results using direct injected unthrottled rotary engine technology. Aircraft studies, using these resultant growth engines, define anticipated system effects of the performance and power density improvements for both single engine and twin engine airplanes. The calculated results indicate superior system performance and 27 to 33 percent fuel economy improvement for the rotary engine airplanes as compared to equivalent airframe concept designs with current baseline engines. The research and technology activities required to attain the projected engine performance levels are also discussed
    • …
    corecore