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ABSTRACT

A review is presented of non-turbine neneral aviation engine pro-ran:

underway at the HASA-Lewis Research Center in Cleveland, Ohio. The provrim
encompasses conventional, lightweinht diesel and rotary en g ines. It's three
major thrusts are, in order of priority: (a) reduced SFC's; 	 (b) improved fuels

tolerance; and (c) reducin g emissions. Current and planned future proor-rs ir,

such areas as lean operation, improved fuel mananement, advanced coolin g tech-
niques and advanced engine concepts, are described. These are expected tc lad

the technology base, by the raid to latter I g ,^, g 's, for engines whose total fuel

costs are as much as 30" lower than today's conventional engines.
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SU1111AP Y

A review is presented of non-turbine general aviation engine pro-
'derway at the NASA-Lewis Research Center in Cleveland, Ohio. The

	

,rn ,	encompasses conventional, linhtwei(iht diesel and rotary engines.
'^	 ce major thrusts are, in Order of nriority: (a) reduced SFC's;

	(b) i	 oved fuels tolerance; and (c) reducing emissions. Current and

	

plan:	 future pro grams in such areas as lean operation, improved fuel
mana nement, advanced cooling technig-jes and advanced engine concepts, are
described. These are expected to ley the technology base, by the mid to
latter 1929's, for engines whose total fuel costs are as much as 301 lower
than today's conventional engines.

INTRODUCTION

General aviation fuel costs have nearly doubled since 1973 and the
industry has been plagued by intermittent shortanes of specialized fuel

g rades. The oil companies statements at this Conference, for instance,
indicate that avgas may rise to 11.50 per gallon or more by I g12. This
situation is believed likely to continue and become progressively worse in
the Forseeable future. It is particularly a problem for the piston-engine
segmen t, of the general aviation fleet, because these engines reflect a
W.U. II level of technolo gy and require very specific grades of gasoline. The
industry apparently lacks the independent financial and technological means
in such areas as advanced combustion and cooling research, to significantly
enlarge the fuel tolerance of either current or next- generation engines. Al-
though thefv 200,000 general aviation airplanes supply essential transportation
services to about 13,200 airports (compared to 425 served by commercial air-
lines), avnas represents only about 0.1" of the total transportation fuels
market. This may be too small to significantly constrain the refiners' future
product split decisions. ,overnment pressures toward the most energy-efficient
product split from availaLle crudes and other raw materials, may well have a
greater impact on these decisions. It is therefore appropriate that Govern-
ment technology be applied to help solve the resulting problems.
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At Lewis, the General Aviation Branch was formally established
earlier this year, following several years of initial facility and instru-

mentation development and preliminary efforts aimed at emissions reduction.
More recently, in view of the EPA's apparent intent to withdraw the emissions

standar . 's, the emphasis of the program has shifted toward fuel conservation
and multifuel and/or broad specification fuels capability. Figure 1 illustrates
out- rel tion to other general aviation programs within the Lewis organization.

In broad terms, our grim is to enable light planes to burn as little
as possible of the cheapest fuels available. More specifically, our long-
term (19'5) objective is to lay the technology base for an efficient, reason-
ably priced multifuel or alternative fuel engine whose fuel costs (based on
1977 dollars and prices) could be as much as 39°' less than present day engines.
Because of product longevity and comparatively low annual production rates,
the benefits of a next-generation multifuel engine, althou g h valuable to the
individual owner or operator, would require a period of years to significantly
upgrade the overall fleet. fence the program necessarily also includes con-
sideration of applicable technology for current-prodL'ction type engines. We
would prefer, however, to leave any detailed discussion of near-term develop-
ments to the respective engine companies. This discussion will therefore

address the longer-term prospects, including a couple of often-overlooked and
much-neglected concepts -- the rotary and the lightweight diesel -- that we
now see as having considerable promise in the 1985-1990 era.

PROGRAM TO DATE

Several Lewis accomplishments to date deserve mention. Three sophis-
ticated engine test cells have been built from scratch, with one more in
pronress. Figure 2 indicates the capabilities and leading features of the
currently-operational cells. Fi gure 3(a) is a view inside the aircraft engine

testcell, with the engine (a TSIO-300) in the foreground. The cooling-air
hood has been removed for clarity and the electric motorin g dynamometer may be

seen at the left. The associated control room is shown in Figure 3(b). These
highly automated cells feature real-time data readout via microprocessor tech-
nology, and we believe that they compare favorably with any of their kind in

the world. An example of our on-line data readout is given in Figure 4, which
illustrates in bar-chart format, the IMEP measured for 199 successive cycles

of one cylinder on 0e Chevrolet engine. The two samples shown, both for the
same speed and load, illustrate what can happen when the engine is excessively
leaned out. At left, the mixture stren g th was about stoichiometric and there
was little variation between the IM EP's of successive cycles. The engine was
then leaned out, but not to the Point where the operator could detect visual cr
audible signs of rough runnin g . New,rtheless, many slow burns and ore outright
misfire (the small neg-'-ive bar) can he seen. This results in increased HC
emissions and SFC. The high IMEP's seen in other cycles is indicative of high
peak pressure an :i Possibly detonation. Uith the aid of such real-time data
capabilities, the test engineer can make sure to get good data the first time,
every time. Lengthy delays for data reduction are largely eliminated. If
properly utilized, the automated test cell can be an order of magnitude more
productive than a conventional cell.

--	 --.



Using these in-house facilities and other Lewis resources, together
with a continuing series of industry contracts, we have completed substantial

programs in such areas as: basic engine characterization (Ref. 1); effect of
temperature, humidity and lean operation on fuel economy, emissions and cooling
requirements (Ref. 2); hydrogen enrichment of fuel (Ref. 3); and theoretical
analyses of cooling fins (Ref. 4). Also, progress has been made toward the
development of advanced analytical tools such as an Otto Cycle performance and
emissions prediction computer code (Ref. 5).

The results from these plus the contract programs are such that we
expect to demonstrate, by the end of 1979, the technolo gy base to approach
or meet the former emissions standards. This is not a moot accomplishment,
since reducin g emissions is clearly desirable even if no longer mandatory.
Also, most of the programs led to be fuel-conservative accomplishments as well.
For example, large amounts of scatter observed in prior emissions data prompted
us to include the effects of atmospheric temperature and humidity in our own
program. Typical results obtained in the aircraft engine test cell with
conventional mixture control are shown in Figure 5(a). The HC emissions level

is plotted vs. temperature for relative humidities of 0 and 30". The level
increased by a factor of about 4 between "cool, dry" and "hot, humid" con-
ditions. The fuel/air ratio increased by about 20" at the same time due to
the decreased air density and displacement of air by water vapor. Since the
engine was run at constant speed/load conditions, fuel consumption suffered by
the same amount. A second series of tests, illustrated in Figure 5(b) was
run to evaluate the situation when the fuel/air ratio was held constant at the
"cool, dry" value of 0.093. The result, as shown by the solid curve between
the two shaded regions (representing 80°' humidity) was a much smaller increase
in HC emissions. Since fuel/air was held constant, there was no penalty in
fuel consumption. The upper curve represents the 80% humidity case previously
shown, where the conventional mixture control allowed fuel/air to vary. The
shaded area between the two curves shows that most of the initially observed

increase in lir was due to the induced change in fuel/air. The lower shaded

area illustrates the smaller increase due to changes in temperature and humidity
alone. From these results, it is clear that an automatic mixture control
system, capable of holding a desired fuel/air ratio despite atmospheric variations,
is needed to improve both fuel economy and emissions.

The hydrogen injection program is another case in point. Both in our
own programs (Ref. 3) and a parallel JPL effort (Ref. 6) it was initially
thought that the free hydrogen, by permitting Leaner operation, would improve

both economy and emissions. A considerable amount of extra spark advance was
required to su pport lean operation, whether hydrogen was used or not. The
results are illustrated in Figure 6, where SFC is plot';ed vs. mixture strength
at typical load conditions for an automotive engine (NASA) and an aircraft,
engine (JPL). Operation with gasoline only is represented by the solid curves
while the dashed curves denote gasoline plus the indicated amounts of hydrogen.
In each case the spark advance was maintained at an optimum or near-optimum

setting, typically 30 0 - 35 0 BTDC for the aircraft engine and over 40 0 for the

auto engine. Under these conditions, the minimum SFC buckets occurred with

gasoline only even though the auto engine's lean limit was noticeably extended
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by using hydrogen. The amount of extra spark advance required to obtain
these results is incompatible with starling and hiqh-power operation. Thus,

a variable timin g ignition system is desirable and perhaps an essential

ingredient in realizing the indicated improvement of 5 or 10°'- SFC below the
normal stoichiometric or slightly rich condition in the aircraft engine.

ONGOING AND FUTURE PROGRAMS

With this basic work behind us, the current pro g ram (Fi g . 7) in-
cludes elements designed to achieve a technology base which will enable
general aviatior to live with the fuels of the future. As indicated, the
program includes near-term elements which could improve the fuel economy
of present-day type engines, as well as longer-term elements leading to
broad-specification or true multi-fuel capability (to gether with further
reductions in J C). While recogn17 4 nq the inherent multi-fuel capability
of other candidates such as gas turbine or Stirling engines, the program

discussed here is now oriented toward diesel and rotary combustion engines in
addition to advanced piston engines. 	 All of these can 'oenefit immediately

from the results of ongoin g automotive diesel and stratified charge research

prog rams and offer significant benefits without having to wait for "technology

breakthroughs" in one or more areas. We are of course, monitoring ongoing
turbine and automotive Stirlin.1 programs for applicable developments.

Advanced Piston Engines

Current production general aviation piston engines reflect a level
of technology that existed at the end of W. W. II. It seems reasonable to
expect that they could be improved substantially by incorporatin rl applicable
developments of the last 30 years. In particular, the automotive research
programs that have been mounted within the past decade, would appear to be
a rich source of ^-iew technology for general aviation. While the most in-
teresting developments are proprietary and cannot be discussed at this time,
it is to be hoped that arrangements beneficial to general aviation can be

worked out among the companies concerned.

For conventional engines, the lean out approach should yield about a
10" improvement in basic~ engine SFC levels. To realize this benefit, we have
initiated programs in: (1i improved fuel injection; (2) variable timing ignition

systems; and (3) improved cooling.

Improved fuel injection together with even air distribution is needed

to minimize the cylinder-to-cylinder variations of fuel/air ratio. More leaning
can then be accomplished, since the lean limit for the engine as a whole is set
by the leanest cylinder.

Variable timing ignition systems are required, because as shown by our
own and JPL testing, radical spark advance is required to extend the lean limit
and obtain very low SFC's on some engines. The degree of advance required is

incompatible with starting and high power requirements.
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In many turbocharged installations, the amount of leaning made
possible by the two items above would be accompanied by excessive CRT's and
detonation. This would negate the potential SF'C improvement due to leaning
unless better cooling is provided. Potential improvements are forseen in
several areas.

Exhaust port liners and/or thermal barrier coatings will decrease

the heat load into the cylinder head by as much as 35". Advanced designed
cooling fins and passages can more effectively dissipate the remainder of the
heat load. The resulting lower CRT's and elimination of hot spots will enable
the engine to run leaner and/or at a higher compression ratio without detonating.
For turbocharged engines, a 5 to 1C" reduction in SFC is anticipated from these
improvements. Alternatively, the lower CRT's could enable the engine to burn
lower octane fuel. Finure 8 illustrates a hypothetical cylinder head design

that incorporates the port liners, improved fuel injection and other advance-
ments into a well-integrated packa(le.

More efficient inlets, baffles, fins and exits can reduce the cooling
air pressure drop for a given heat load by a factor of 2 or more. The resulting_
decrease in cooling drag is equivalent to a further fuel economy improvement
Of u,) to 5

r
'. This is additive to the above and also applies to those engines

that are already capable of operating lean.

In the longer 'term, advanced combustion research is essential to
utilize cheaper, more readily ivaildbl p fuels. It should be noted that, hased
on current fuel prices, 100 octane av g as is 10 to 15a more expensive per gallon
than diesel or Jet-A fuels. These fuels however, contain about 10". more
BTI1's per nallon than avqas because of their graater density. Thus a fuel cost
saving potential of 20" or more is read i ly apparent, even if SR's are rot int-
proved at all. Automotive r e search results indicate that novel combustion

neometries coupled with vapor-phase fuel injection, may significantly broaden
the fuel tolerance of an otherwise conventional engine.

Diesel Engines

Diesel engines are of interest because of their well-known potential
for low SEC. They car also burn kerosine-type jet fuels with little difficulty.
These types of fuel are generally cheaper than avqas. Since the diesel
is not detonation-limited, it can run at hi g h compression ratios and/or ca,
ae turbocharged to exceptionally hi qh power densities. The problem with diesels
is weight. A normally aspirated diesel suffer:, an immediate specific power
penalty of about 15" compared to a gasoline engine because only about 85% of
the theoretically-,available air per cycle can be burned efficiently. At
typic,lly high diesel compression ratios, the high peak firing pressures result
In major structural weight penalties in addition. Based on these considerat'lons,
it was felt that a low compression, turbocharged diesel concept might offer the
best trade-off between weight and performance.
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1111tial efforts, however, showed that it is no simple matter to
obtain good diesel combustion at low compression ratios. Tests 	 the
I1. of Michigan (Ref. 7) of a dieselized aircraft cylinder mount pd on a
single-cylinder crank-case showed unexpectedly high SFC due to poor com-
bustion (Fin. 10). The problems are ultimately due to the major geometrical
differences between an aircraft gasoline engine's combustion char,'oer and the
typical diesel's. The former has low turbulence and a high surface-to-volume
ratio to promote coolin g . The latter normally would be a high turbulence
design with a compact combustion volume intended to keep the heat in. The
work however is bein g continued to optimize the combustion chamber geometry
and we expect to reach the indicated BSFC level of about 0.42 after another

years' effort.

Fi g ure 10 illustrates a turbocharged diesel concept in which an aux-
iliary combustor fed by compressor air is used to provide additional power
to the turbine. In this concept the power output is limited only by cooling
and structural consideration. The turbomachinery can be started and run
independently of the diesel cylinders to provide hot compressed air for

starting and low power operation. This concept has been under study and
development for some time by the Hyperbar Diesel Co. in France. The French
results (Ref. 8) indicated that SFC's at least as low as 0.38 can be obtained

at cruise to rated power conditions. At Lewis, we are initiating a research
program on this concept, using a single-cylinder rezn.^.rch enqine, with which

we hope to further improve this figure. Our diesel tEst cell (Figure 11) is
presently bzinq checked out, is scheduled for start up in December 1977 and
should be operating productively by early 1978.

Rotary Engines

The rotary or Wankel engine (Figure 12) is of great interest because of

its established advantages of simplicity, light weight, compactness, clean
low-drag installation features, low vibration and reduced cabin noise. Its reputed
disadvantages of high fuel consumption and emissions, have been largely over-
come .yy continued research, some in this country and some by foreign automotive
^nr,panies. For example, according to EPA "city cycle" drivinq test results,

the 1973 Mazda gave 10.5 rnpq while the 1977 version showed nearly a 1007

improvement to 20 mpg. The detailed SFC and raw-enissions data are proprietary
at this time, but it can be stated that the best of the late-model automotive

rotaries are becoming competitive with their piston-powered counterparts.

The price situation for rotaries is uncertain at this time. The
parts are few and simple but require high-qrade materials and very close-

tolerance machining. On the other hand, the concept clearly lends itself to
high-volume automated producibility. Co-production arrangements among
foreign companies are being considered (Ref. 9 and 10) to establish a favorable
production-volume basis. Unconfirmed reports (Ref. 10) also suggest that

General Motors will re-enter the rotary field in the early 1980's. If this
occurs, a voluine production basis would be established in this country as well.
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These potential developments are highly significant, because the same
tooling might also be used to manufacture derivative aircraft engines or
key components thereof at reasonable cost.

For aircraft applications, two distinct versions of the rotary
engine are of interest and they will be separately discussed. A naturally
aspirated, spark ignited version appears to be most attractive for lower-
power applications and whenever turbocharging would not be desirable. Figure
13 illustrates results obtained last year in testing a Curtiss-Wright RC-2-75
engine under a NASA contract (Ref. 11). It's best SFC of about 0.54 might
be good enough for an automotive application, but is not competitive with even

a current production normally aspirated aircraft engine. On the other hand,
it met the EPA N Ox and CO standards, and was only slightly above the HC
standard. It's specific weight of about 1.25 lbs/hp is most attractive. It
should be noted that the rotary, because of heat losses from its hi,lh surface
to volume combustion chamber, is less subject to detonation and ha y, a lower

octane requirement than a piston enc j ine. Also, it is insensitive to lead in

the fuel due to self-cleaning internal surfaces and having no valves to stick.
At a given compression ratio, therefore, the rotary is more fuel-tolerant than
a piston engine. Alternatively, the rotary can run a higher compression
ratio on the same fuel. Returning to Figure 13, single rotor tests at an
increased compression ratio (to .` 5:1) with other minor chan ges, showed
significantly better SFC's coupled with acceptable HC emissions.

The Polish PZL Franklin engines currently run a 9.5:1 compression
ratio on 100/130 octane avgas, according to the manufacturers' literature.
Based on the above arguments, we would expect that the rotary could run at
least that high. On that rationale, we have projected the 8.5:1 rotary test
points to 9.5:1 and expect to be at the more competitive level shown in about
a year. Based on unconfirmed reports concerning the new Toyota rotary

(Ref. 10) we anticipate that the results shown can be further improved by
employing a comparatively simple, partial charge-stratification scheme. This
may also improve the engine's fuel-tolerance and emissions characteristics.

Attempts to further improve the rotary's SFC by going to diesel operation
have thus far proven discouraging. Considering the effects of heat losses, seal

leakage and man ►afacturinn tolerances, it appears impracticable to obtain a high
enough compression ratio. On the other hand, much the same result can be
obtained via stratified charge operation. As Figure 14 su g gests, the principle
is that fuel is injected directly into the combustion chamber via a high
pressure infector, as in a diesel. But instead of depending on compression heat
to ignite the fuel spray, this is accomplished by a separate means such as an
arc or a timed high-energy spark. The rotary is uniquely well adaptable to
this approach for two reasons. First, the elongated rotary combustion chamber,
in its natural sweeping motion past fixed injection and ignition points yields
inherent charge-stratification. No power-robbing pre-chamber is needed; in

effect, the combustion volume is moved through a stationary flame front. This
keeps fuel out of the rotor trailinq-edge region where poor combustion is
apparently responsible for part of the rotary's past SFC and HC emissions problems.



Secondly, the firing impulses o' a two rotor IJankel engine are as smooth
as those of a 6-cylinder pisM, engine. This, it needs only 1/3 as many
high pressure injectors as a comparable diesel or stratified charge piston

engine; and hence is much better able to absorb the cost and weight penalties
of this sophisticated and typically expensive equipment.

The resulting engine would potentially have a true multifuel capability
in that it has neither octane nor cetane requirements. Like the diesel, it
can he turbocharged to very high power densities. Although presumahly designed
for optimum performarce and efficiency on a fuel of choice -- such as diesel

or Jet fuel -- it should have "keep flying" capability on (gasoline in case of
shorta ge or unavailability. Operationsat a small FBO may be a case in point.

Such advanta ges have not gone unnoticed by other investigators. A perusal of
fundamental and applied research in the recent literature (Refs. 12 through 14)

indicates tha* the technology is now at hand to develop a multifuel stratified
charge rotary whose SEC, as projected in Fi g ure 15, is at least comparable tc

that of the best current production aircraft engines. And all the while
it is usinq a cheap and very available fuel.

The results shown are for a naturally aspirated en g ine with a specific

weight of about 1.25. Our goal for 1985 is to improve these figures to a specific
weight of less than 1.0 and a SEC under 0.4n.

ECONOMIC IMPACT

The discussion thus far has only concerned technology, but several
other considerations are also most important. They all relate, directly or
indirectly, to the issue of cost. It already costs money to maintain the
industry's excellent present standards of safety, reliability, etc. Will

advanced technology add more to the bill? If so, who pays and where does the
money come from? These very legitimate questions cannot be definitively
answered now, but neither can they be avoided. Extensive studies will be

needed to fully assess the economic Impact of advanced technology on general
aviation. I disagree however, with the notion that high-technology products
are necessarily complicated and expensive; and would like to cite two examples

to support my view.

is being profitably

a premium of only
to account for the
recovered in fuel
Thereafte.-, this
So technology doesn't

nbined with value

The Diesel Rabbit automobile introduced this year
sold for about $170 more than its gasoline counterpart --

3-4% of the usual retail price range. Without attempting
economic value of diesel durability, this premium will be
cost savings* alone in about 2 years of average driving.
automobile will in effe-t be making money for its owner.
have to be expensive or unprofitable if it is properly coi

engineering.

* fused on EPA mileage estimates and late 1977 motor fuel retail prices.
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The second example concerns a hypothetical high-performance general
aviation business twin. The Appendix outlines some admittedly crude, success-
oriented and over-simplified calculations to compare a status-quo engine and
an advanced engine in the same airplane. For tl r_ one model considere(', this
provides a preliminary estimate of the annual fuel-cost savings that might
be expected from advanced pro p ulsion technology.

The numbers representing the baseline airplane and engine are not
specific to any current models but are thought to be representative. The
maximum cruise SFC is installation dependent and varies with the amount of
fuel required to cool the en g ine; the spread of 0.47 to 0.41 covers most
installations. Fuel prices were established for this exercise by extra-
polating the late 1977 prici.lg structure to the levels predicted at this Con-
ference for about 1982. On this basis, the annual fuel bill for 600 hours
utilization would range from about $35,000 to $30,000.

For the advancea r igine, presumably a lightweight diesel or stratified-
charge rotary, we chose the most optimistic numbers from the context of the
present discussions: SFC, = 0.38 lb/hp-hr; specific weight = 1 lb/hp; and
a cooling drag reduction equivalent to 4% of the cruise thrust np. This
results in an annual fuel bill of about $19,600 	 -- a savings of $12,800
to $15,400	 if it is assumed that the weight, saved in engine and fuel is
-,dded to the payload. In this case we achieve a 36-44 fuel cost savings
coupled with a 55 increase in payload.

Alternatively, if the airplane is simply flown li ghter, the engine
ma;;- be throttled back to cruise at the samc speed; the fuel bill is then
about $17,700 which represents a savings of nearly 50%.

The above results vary linearly with the annual utilization rate of the
airplane, as shown in Figure 16. For the nominal 600 hr. rate, the maximum
savings of about $17,300 probably represents 5 to 7`^ of the airplane's base
price. Thus, a premium of 10" of the selling price could be recovered in 11,
*_o 2 years. Thereafter, within its expected lifetime, the airplane would
probably repay its original base purchase price in fuel savings alone.

The above results assume that the best o f the anticipated developments
occur simultaneously and are in that sense optimistic. On the other hand, no
effort has been made here to estimate the 	 ssibly significant added benefits
that could be expected from re-sizinn and otherwise re-optimizing the airplane
to better match the new engine. This would be especially important for the
rotary engine since it differs in several major respects from current practice.
No economic credit was estimated for the better durability and reliability
anticinated of an advanced diesel or rotary engine. As these same factors
also influence safety, the ultimate benefit may be very significant. Con-
sidering these factors, even a 50" savings may be conservative.

As mentioned, extensive studies will be necessary to evaluate the
economic impact of advanced technology on all types, classes and uses of
general aviation. In the end, the more conservative fuel cost savings of

"T_
.^.-	 -- - —	 ---	 ---- - _
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30.". mentioned before may prove to be more representative. But even that

is enou gh to eventually amortize half the base price of many general aviation
airplanes. This should prove most attractive to owners and manufacturers
alike.

A sizeable investment will be required, however, to realize this
very desirable state of affairs. The Government research prog rams I described
are not cheap and the industry is conducting additional work on its own.
When the technology base has been laid, the industry will then have to develop,
certify and tool up for the new designs. How is all this to be paid for?

An extension of the preceding business-twin example su ggests that
the eventual benefit to the economy as a whole could be surprisingly large
and of a sufficient order of magnitude to justify a respectable investment.
Assume that an annual p roduction of 100 advanced propulsion airplanes is
established to upgrade a static, 2000 airplane fleet on a 20-year life cycle.
The airplanes, engines and utilization are as described in Appendix A, except

that the more conservative 30'. annual fuel cost savings is assumed. Each new
airplane then would "earn",on the order of $10,000 per year. The `first year,
100 upgraded airplanes replace 110 retirin g status-quo airplanes and collectively
"earn" S111. The second year, the 200 new airplanes "earn" $211, and so forth.
By the tenth year, 1000 upgraded airplanes are earning $1011. This when
added to the sum of all prior year savings ($111 + $21 .1	 , + $9M + $10M)
yields an accumulated total henefit to the economy of $55M, compared to

prolongin g the status quo. isy the end of the 20-year life cycle, the now-
upgraded fleet has produced a total benefit of $21OM to the economy and the
benefit is increasing at the rate of $20x1/year. Recall that this is for one
airplane model only, which represents less than 1/10 of the total general
aviation fleet and a modest fraction of the industry's dollar volume. If all
elements of the piston-engine fleet were similarly upgraded, the total benefit,
after (10 or 25 years may approach the $1 Billion order of magnitude. This would
appear to justify a sizeable initial investment.

CONCLUDING REMARKS

In conclusion, I would like to offer some comments that primarily

reelect my own viewpoint rather than matters of p,)licy or settled opinion
within r1ASA. Regardless of one's views on the real nature of the "energy
crisis", it does ap pear that conservation and energy efficiency will be
part of the scene for as far as we can see into the future. What does this
mean to nenerai aviation? My personal views on the subject are expressed on
the last i'iiure. Sooner or later -- perhaps by the early to midd l e 80's,
some customary grades of fuel may simply become unavailable. Or, they may

remain available, but at what price? Clearly, it will be economically
desirable to take advantage of the broad-specification, high volume fuels of
the future. As indicated, several work areas must be addressed to approach
this goal in either a long-term or short-term sense. It is equally desirable
to use less of those fuels, if only to keep from going broke.

..
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I have now inijicated the main technological steps along the path
I think we must follow, although only the longer-term aspects were dis-
cussed in this presentation. The ultimate benefits are indicated at the
bottom. Our earlier work shows that econnmy and emissions are interlocked
to such an extent that the former EP11 standards will probably be met anyway,
in the due course of events. Not by 19'30, but eventually. Much work
remains to demonstrate that some of the advanced engine's anticipated
advantages, in such areas as durability and reliability, are in fact real.

Extensive studies will be needed to more accurately evaluate the economic
impact of these developments, and it is hoped that all segments of the

industry will contribute to these studies. My own highly preliminary assess-
r^ent should be taken as indicatin g an order-of-magnitude potential only. But
the potential appears to be there. If the research programs turn out as
expected, the benefits are large enough to be compelling.
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APPENDIX - 5101 5 10 LjWATE OF ANNUAL FUEL COST SAVINGS

DUE_ TO ADVANCED ENGINES (ANTICIPATED 1982 FUEL PRICES)

Baseline Airplane: 6-place pressurized business twin, turhocharged

750 lb payload class, 200+ kt. max. cruise 0
20,000 ft and 1/d = 8.5

Utilization:	 600 hrs/year 0 max. cruise

Baseline E•nyine:	 Rating/weight:	 333 hp/500 lbs
Max. cruise power/SFC:	 250 hp*; 0.47 to (0.41) lbs/hp-hr
Fuel flow:	 235 lbs/hr (2-engines) (205 0 0.41 SFC)
Annual fuel use:	 141000 lbs
Fuel:	 100 octane avgas 0 $1.50/gal or MUM
Density/heating value:	 6.042 lbs/gal; 18600 BTU/lb
Annual fuel bill:	 134961 ($30504 0 0.41 SFC)

)anced Engine:	 R`tinn/weight:	 333 hp/333 lhs
Max. cruise power/SFC:	 240 hp**; 0.33
Fuel flow:	 194.2 lbs/hr (2-engines)
Annual fuel use:	 109440 lbs/year
F uel:	 Diesel 2 0 $1.35/ gal or 17.91/lb
Density/heating value:	 7.544 lb/gal; 18600 BTU/lb
Annual fuel bill:	 519590

Annual Sayi_ 1:	 $15378 to $10914 or 36-44%, of which about half is due to
direct SFC, improvement, plus reduced cooling drag; and the
remainder is due to lower fuel price/BTU

In Addition:	 Payload may be increased by over 400 lbs (55%) due to
the lighter engine and the 200 lb. fuel savings recorded
over a typical 4-hnur mission.

Alternatively:	 The airplane may be flown throttled-back since it is
lighter (assuming the 1/d ratio stays constant at about
8.5). This results in another fuel savings of about

72 lbs. over the same 4-hour mission, and brings the
annual fuel cost down to $17667. The savings is then
1 9.5%. ($12373 and 421 0 0.41 SFC).

*	 Includes 25 hp loss due to drag of conventional cooling system.

** Includes 15 hp loss due to drag of improved cooling system.
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Figure 1. - General awation reciprocating engine test facilities.
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• POSSIBIE CONSTRAINTS ON FUEL AVARABII ITYICOST. USE FUELS THAT REFLECT
AN "ENERGY EFFICIENT" PRODUCT SPLIT FROM AVAILABLE CRUDES AND OTHER
RAPT MATFRIAIS.

ALTERNATE FUELS OR MULTIFULE ENGINES VIA:
- IMPROVED COOLING
- IMPROVED FUEL AND IGNITIO.J SYSTEMS
- NOVEL COMBUSTION CHAMBERS
- STRATIFIED-CE ! ARGF OR DIESEL OPERATION

*USE LESS OF THOSE FUELS
REDUCED ENGINE SEC VIA

LEAN OPERATION
NOVEL ENGINE CYCLES

REDUCED COOLING & INSTALLATION DRAG VIA:
- LOWER HEAT LOAD
- IMPROVED AERO. INTEGRATION
- COMPACT DESIGNS

LIGHTER-WEIGHT ENGINES
- INCREASED SPECIFIC POWER
- NOVEL STRUCTURAL CONCEPTS
- ADVANCED MATERIALS

• AND. EXPECT BENEFITS IN TERMS OF
-SAFETY	 ENVIRONMENTAL ACCEPTABILITY
-RELIABILITY	 DURABILITY
-COST	 MAINTAINABIIITY

Figure 17. - What does conservation mean to general aviation?

70

16

N

2}
N

3
f


	GeneralDisclaimer.pdf
	0001A02.pdf
	0001A03.pdf
	0001A04.pdf
	0001A05.pdf
	0001A06.pdf
	0001A07.pdf
	0001A08.pdf
	0001A09.pdf
	0001A10.pdf
	0001A11.pdf
	0001A12.pdf
	0001A13.pdf
	0001A14.pdf
	0001B01.pdf
	0001B02.pdf
	0001B03.pdf
	0001B04.pdf
	0001B05.pdf
	0001B06.pdf
	0001B07.pdf
	0001B08.pdf
	0001B09.pdf
	0001B10.pdf
	0001B11.pdf
	0001B12.pdf
	0001B13.pdf
	0001B14.pdf

