10,061 research outputs found

    Assessment and preliminary design of an energy buffer for regenerative braking in electric vehicles

    Get PDF
    Energy buffer systems, capable of storing the vehicle energy during braking and reusing this stored energy during acceleration, were examined. Some of these buffer systems when incorporated in an electric vehicle would result in an improvement in the performance and range under stop and go driving conditions. Buffer systems considered included flywheels, hydropneumatic, pneumatic, spring, and regenerative braking. Buffer ranking and rating criteria were established. Buffer systems were rated based on predicted range improvements, consumer acceptance, driveability, safety, reliability and durability, and initial and life cycle costs. A hydropneumatic buffer system was selected

    Hubungan di antara pengaturan kerja fleksibel dan prestasi pekerja dalam kalangan ejen insurans wanita

    Get PDF
    Ejen insurans merupakan jurujual pertengahan bagi syarikat insurans di mana mereka memainkan peranan penting dalam memberi khidmat nasihat kewangan (Hannah, 2011). Ejen insurans bekerja berdasarkan persekitaran pengaturan kerja yang fleksibel di mana mereka boleh menyediakan jadual waktu bekerja sendiri. Sebahagian daripada mereka bertemu dengan pelanggan pada waktu perniagaan siang hari, sementara yang lain pula membuat kertas kerja dan menyediakan konsultasi untuk pelanggan pada waktu petang. Kebanyakan mereka bekerja selama 40 jam seminggu dan ada juga beberapa ejen yang bekerja lebih lama daripada 40 jam (Hannah, 2011). Prestasi ejen insurans sangat penting untuk mengekalkan jenama produk insurans. Penilaian terhadap prestasi di kalangan ejen insurans biasanya bergantung kepada kejayaan atau kegagalan mencapai sasaran penjualan (Insurance Agent Job Overview, 2019). Proses menjual produk insurans memerlukan masa kerana mereka perlu mendekati pelanggan sebanyak mungkin dan ketersediaan waktu bekerja yang tidak tetap

    Some drive train control problems in hybrid i.c engine/battery electric vehicles

    Get PDF
    This thesis describes the development of a microprocessor based control system for a parallel hybrid petrol/electric vehicle. All the fundamental systems needed to produce an operational vehicle have been developed and tested using a full sized experimental rig in the laboratory. The work begins with a review of the history of hybrid vehicles, placing emphasis on the ability of the petrol electric design to considerably reduce the consumption of oil based fuels, by transferring some of the load to the broad base of fuels used to generate electricity. Efficient operation of a hybrid depends on the correct scheduling of load between engine and motor, and correct choice of gear ratio. To make this possible torque control systems using indirect measurements provided by cheap sensors, have been developed. Design of the control systems is based on a theoretical analysis of both the engine and the motor. Prior to final controller design, using the pole placement method, the transfer functions arising from the theory are identified using a digital model reference technique. The resulting closed loop systems exhibit well tuned behaviour which agrees well with simulation. To complete the component control structure, a pneumatic actuation system was added to a 'manual gearbox' bringing it under complete computer control. All aspects of component control have been brought together so that an operator can drive the system through simulated cycles. Transitions between modes of operation during a cycle are presently based on speed, but the software is structured so that efficiency based strategies may be readily incorporated in future. Consistent control over cycles has been ensured by the development of a computer speed controller, which takes the place of an operator. This system demonstrates satisfactory transition between all operating modes

    Fluidic proportional thruster for SPARCS 4

    Get PDF
    Design, development, fabrication, and acceptance test results for two fluidic proportional thrusters for use in SPARCS

    Energy harvesting from vehicular traffic over speed bumps: A review

    Get PDF
    Energy used by vehicles to slow down in areas of limited speed is wasted. A traffic energy-harvesting device (TEHD) is capable of harvesting vehicle energy when passing over a speed bump. This paper presents a classification of the different technologies used in the existing TEHDs. Moreover, an estimation of the energy that could be harvested with the different technologies and their cost has been elaborated. The energy recovered with these devices could be used for marking and lighting of roads in urban areas, making transportation infrastructures more sustainable and environmentally friendly

    An Active helideck testbed for floating structures based on a Stewart-Gough platform

    Get PDF
    A parallel robot testbed based on Stewart-Gough platform called Active-helideck is designed, developed and tested as a helicopter floating helideck. The objective of this testbed is to show the advantages of helicopters that use an active helideck upon landing on and taking off from ships or from offshore structures. Active-helideck compensates simulated movements of a ship at sea. The main goal of this study is to maintain the robot’s end effector (helideck) in a quasi-static position in accordance to an absolute inertial frame. Compensation is carried out through the coordinate action of its six prismatic actuators in function of an inertial measurement unit. Moreover, the simulation of the sea movement is done by a parallel robot called ship platform with three degrees of freedom. The ship platform is built with a vertical oscillation along the z axis, i.e. heave, and rotates on remaining axes, i.e. roll and pitch. Active helideck is able to compensate simulated movements by considering the ship as an inertial frame as observed in the experiment

    NASA contributions to fluidic systems: A survey

    Get PDF
    A state-of-the art review of fluidic technology is presented. It is oriented towards systems applications rather than theory or design. It draws heavily upon work performed or sponsored by NASA in support of the space program and aeronautical research and development (R&D). Applications are emphasized in this survey because it is hoped that the examples described and the criteria presented for evaluating the suitability of fluidics to new applications will be of value to potential users of fluidic systems. This survey of the fluidics industry suggests some of the means whereby a company may use a fluidic system effectively either to manufacture a product or as part of the end product

    A Review of Smart Materials in Tactile Actuators for Information Delivery

    Full text link
    As the largest organ in the human body, the skin provides the important sensory channel for humans to receive external stimulations based on touch. By the information perceived through touch, people can feel and guess the properties of objects, like weight, temperature, textures, and motion, etc. In fact, those properties are nerve stimuli to our brain received by different kinds of receptors in the skin. Mechanical, electrical, and thermal stimuli can stimulate these receptors and cause different information to be conveyed through the nerves. Technologies for actuators to provide mechanical, electrical or thermal stimuli have been developed. These include static or vibrational actuation, electrostatic stimulation, focused ultrasound, and more. Smart materials, such as piezoelectric materials, carbon nanotubes, and shape memory alloys, play important roles in providing actuation for tactile sensation. This paper aims to review the background biological knowledge of human tactile sensing, to give an understanding of how we sense and interact with the world through the sense of touch, as well as the conventional and state-of-the-art technologies of tactile actuators for tactile feedback delivery

    The architecture of pneumatic regenerative systems for the diesel engine

    Get PDF
    For vehicles whose duty cycle is dominated by start-stop operation, fuel consumption may be significantly improved by better management of the start-stop process. Pneumatic hybrid technology represents one technology pathway to realise this goal. Vehicle kinetic energy is converted to pneumatic energy by compressing air into air tank(s) during the braking. The recovered air is reused to supply an air starter, or supply energy to the air path in order to reduce turbo-lag. This research aims to explore the concept and control of a novel pneumatic hybrid powertrain for a city bus application to identify the potential for improvements in fuel economy and drivability. In order to support the investigation of energy management, system architecture and control methodologies, two kinds of simulation models are created. Backward-facing simulation models have been built using Simulink. Forward-facing models have been developed in the GT-POWER and Simulink co-simulation. After comparison, the fully controllable hybrid braking system is chosen to realize the regenerative braking function. A number of architectures for managing a rapid energy transfer into the powertrain to reduce turbo-lag have been investigated. A city bus energy control strategy has been proposed to realize the Stop-Start Function, Boost Function, and Regenerative Braking Function as well as the normal operations. An optimisation study is conducted to identify the relationships between operating parameters and respectively fuel consumption, performance and energy usage. In conclusion, pneumatic hybrid technology can improve the city bus fuel economy by at least 6% in a typical bus driving cycle, and reduce the engine brake torque response and vehicle acceleration. Based on the findings, it can be learned that the pneumatic hybrid technology offers a clear and low-cost alternative to the electric hybrid technology in improving fuel economy and vehicle drivability
    corecore