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Abstract— A parallel robot testbed based on Stewart-Gough
platform called Active-helideck is designed, developed and tested
as a helicopter floating helideck. The objective of this testbed is
to show the advantages of helicopters that use an active helideck
upon landing on and taking off from ships or from offshore
structures. Active-helideck compensates simulated movements
of a ship at sea. The main goal of this study is to maintain
the robot’s end effector (helideck) in a quasi-static position
in accordance to an absolute inertial frame. Compensation is
carried out through the coordinate action of its six prismatic
actuators in function of an inertial measurement unit. Moreover,
the simulation of the sea movement is done by a parallel robot
called ship platform with three degrees of freedom. The ship
platform is built with a vertical oscillation along the z axis,
i.e. heave, and rotates on remaining axes, i.e. roll and pitch.
Active helideck is able to compensate simulated movements by
considering the ship as an inertial frame as observed in the
experiment.

I. INTRODUCTION

Offshore flight operations, mainly landing and taking off

are complex processes that require high levels of training,

competence and skill even in good weather flying condi-

tions. These operations can be seriously affected by adverse

weather or present surrounding effects around installations,

vessels or helidecks. Wind and waves are main weather

factors at offshore structures.

Wind over the deck and wave turbulence shed by the

ship’s super structure create challenging and unpredictable

conditions during takeoff and landing. Any movement of the

sea can produce pitch, roll, yaw, and/or heave at the helideck.

Different sea conditions make vessels behave in different

manners due to their size, hull design, stabilization systems

etc. A helicopter pilot operating at such platforms must

observe heave, pitch, and roll motion of the landing platform

and determine landing contact time based on human timing

reaction as well as aircraft performance [1]. Environmental

effects happen when the wind is blown out from funnels.

Hot exhaust gases from the combustion motors could affect

air temperature around or above helidecks. Gradients in air

temperature and/or velocity above helidecks could cause

additional problems to taking off and landing helicopters.

In order to assist crew in such difficult maneuvers or task,

different strategies have been implemented to determine wind

and wave measurements more precisely on board a ship.

The first author is supported by Spanish Ministerio de Educación (MEC)
under Programa Juan de la Cierva. The second author belongs to Universidad
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Fig. 1. Testbed: active helideck (AH) and ship platform (SP)

Mathematical models for ship movements are formulated [2],

[3]. Wave measurement using pressure sensors, horizontal

radars, vertically operating distance or velocity meter, and

analysis with fast communication systems have been de-

veloped [4]. Moreover, by means of a satellite (e.g. ERS-1

European Remote-Sensing Satellite-1), wind and wave fields,

sea-surface temperature, ocean tides, iceberg monitoring,

oil and pollution detection can be determined. Satellite

measurements combined with wave model give real time

wave information for sea operation [5], [4]. Furthermore, an

aircraft/ship dynamic interface analysis simulation software

package has been developed in order to analyze dynamic

interface that exists between ships and embarked aircraft. It

has been extensively validated and applied [6], [7].

Computer simulations are some approaches done for

studying this case. Oh et al. design an autopilot for au-

tonomous helicopter landing on a rocking ship through

a tether in helideck (target) tracking [8]. In this case, a

controller is considered to ensure the landing of a helicopter

on a ship based on measurement of angle between the

helicopter/ship and the cable. Dalamagkidis et al. design a

gimbaled landing platform on an unmanned ground vehicle.

Instead of a ship, an unmanned ground vehicle is used in

order to transport miniature vertical take off and landing
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Fig. 2. Schematic architecture of the 6-dof parallel robot used as active
helideck

(VTOL) vehicles to its target area serving as an on site take

off/landing and/or possibly as a refueling base [9].

Therefore, development of new equipment and technolo-

gies are required so as to ease helicopter crew with the

execution of flight operation. At present, a new approach

using an active helideck has been presented. Its aim is

to compensate possible movements of a landing platform

caused by wind and/or waves. A 6-dof parallel robot has been

designed, simulated and built. Its objective is to test active

helideck on a moving structure. A ship at sea movement

simulator called ship platform has been designed and built.

Three more important offshore structure movements: roll,

pitch and heave [2], are considered; therefore a 3 dof parallel

platform [12], two of rotation and one of movement along

the vertical axis have been used as a ship platform.

Firstly, this paper describes the testbed description, i.e. ac-

tive helideck and ship platform as shown in Fig. 1. Secondly,

kinematics model and control strategy for the testbed are

explained. It is then followed by the experimental procedure

and results. Lastly, conclusions are pointed out.

II. TESTBED DESCRIPTION

In order to compensate helideck movement with the wind

and wave effects on the ship’s hull, as well as simulating

this movement in the testbed, some dimension considerations

have taken into account.

The application presented in this paper, position amplitude

is 0.1 m in position, orientation amplitude is 6 ◦ and wave

period is 10s. Orientation angle and the wave period were

taken from RMS values of general operability limiting cri-

teria for ships [14]. On the other hand, a big ship has been

considered in order not to take into account scaling factors

in terms of size and mass/inertia properties or transients due

to helicopter landing/taking off for this testbed.

The testbed in this study is based on a parallel robot

architecture, i.e. a closed kinematics chain. A 6 dof Stewart-

Gough platform is selected for the active helideck [10], [11]

as shown in Fig. 2.

Stewart Platforms are mainly used for flight or driving

simulators [15] and for machine tools [16], [17]. The ad-

vantages of Stewart Platforms are the excellent weight and

payload capability ratio and precise positioning [11]. A

Stewart platform is commonly used in obtaining acceleration,
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Fig. 3. Schematic architecture of the 3-dof parallel robot used as ship
movement simulator

Fig. 4. Testbed for computational simulation and for real testing

but it can also generate an anti acceleration if the base

platform is moving [18]; application of Stewart platforms

compensate acceleration of a moving robot. However, only

vibrations of relatively minimal amplitude are considered

[18], [19], [20], [21]. A greater amplitude is considered in

vibration control simulation of a Stewart-Gough platform on

flexible suspension [22], where the platform compensates the

movements of a radio telescope mounted at a suspending

structure. In such case, expected wind-induced vibration can

be as high as 0.5 m in position and 3 ◦ in orientation. In

this given case, the reaction force caused by the motion of

the stabilized platform will lead to perturbation on the base

platform as the base platform is not fixed on the ground. It

will then induce vibration on the whole system.

Aiming at simulating the ship movement, the closed

kinematic chain used is the 3-dof parallel manipulator shown

in Fig. 3.

In this paper, the proposed alternative is a testbed com-

pounded by two main parts, see Fig. 4, the ship platform from

now on named SP, i.e. a ship at sea movement simulator, and

the active helideck from now on named AH, i.e. a Stewart-

Gough platform.
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A. Active helideck

The active Helideck (AH) is a Stewart-Gough platform

6-UPS (Universal, Prismatic, Spherical) whose end effector

(helideck) is connected to the base, i.e. SP end effector,

through six prismatic electrical actuators. Prismatic actuators

are connected to the end effector by spherical joints and to

the base by universal joints. Ballscrews actuated by electric

brush-less motors have been used considering prismatic

movement.

B. Ship platform

The SP requires that its platform end effector (base of

AH) moves along vertical axis (Z), taking into account ship

movement heave, rotation around axes X and Y with respect

to its base, and also roll and pitch from ship movements.

Therefore, a 3dof parallel platform is constructed which

consists of four pneumatic prismatic actuators respectively

controlled by proportional valves:

• Two pneumatic cylinders fixed to the base that are

connected by a universal joint to the end effector (ship

hull). These cylinders move simultaneously in order to

control height, i.e. heave of the SP end effector. These

two cylinder are cinematically considered as one central

cylinder.

• Two pneumatic cylinders provide the rotational move-

ments, i.e. roll and pitch; these cylinders, called external

cylinders, are connected by universal joints to the base

and by spherical joints to the end effector.

Therefore, AH compensates the movement of the SP in

order to maintain the deck, placed on its end effector, in

a quasi-static position. The constructed testbed is shown in

Fig. 4.

Two sensors are installed on the testbed in order to

obtain the information from the environment which allow

actuating the AH conveniently. An inertial measurement unit

(IMU) is located at the SP end effector in order to get

its instantaneous orientation, through Euler parameters. An

ultrasonic length sensor is used to quantify SP height that

has to be compensated in order to keep the helideck in a

quasi-static height.

III. KINEMATIC MODEL

Using the concepts of the parallel robot inverse kinematics,

control signals can be obtained in order to determine AH

coordinate movements according SP behavior. This inverse

kinematics calculates the limb lengths, which is reached

through the active prismatic joints (see Fig. 2), given the

SP location (position and orientation).

A. Mathematical tools

Two Cartesian coordinate systems are attached to base and

moving platform in order to calculate parallel robot inverse

kinematics. Frames A(X,Y, Z) and B(U, V, W ) respectively

as shown in Fig. 2.

Each joint location in the base is described by the position

vector Ai in the coordinate frames A. Similarly, each joint

location in the end effector is described by the position vector

A’  i

Y

Si

Ai

i

 iG

B

NorthG

Z

X

X

Z

V

WU

B

Y

A

Fig. 5. Reference frames fixed at experimental platform

Bj in the coordinate frame B. Therefore, the i-th limb length

is the magnitude of the vector directed from Ai to Bi, i.e. Si:

di = |Si| = Bi − Ai (1)

In order to carry out the vectorial subtraction of (1), the

vectors must be expressed in the same reference frame. A

point p expressed in reference frame B may be expressed

in reference frame A, using the matrix of homogeneous

transformation [23]:

ATB =

[

ARB (3×3)
Aq(3×1)

γ(1×3) ρ(1×1)

]

(2)

Then using the matrix of homogeneous transformation, the

position in the new reference frame is obtained by:

Ap = ATB
Bp (3)

Ap = Aq +A RB
Bp (4)

where, Ap = [px, py, pz, 1]T is the position, in homogeneous

coordinates, expressed in reference frame A and Bp =
[pu, pv, pw, 1]T is the position in homogeneous coordinates

as expressed in reference frame B.

B. Testbed kinematic model

Three reference frames are selected in the testbed: global

reference frame G, located at the SP base; reference frame A

located at the SP end effector (or AH base), and the reference

frame B located at AH end effector, see Fig. 6. Initially these

frames are oriented according the IMU axes as ruled by: X

axis yields along magnetic north direction and Z axis aligns

to gravitational force direction. The IMU is attached to the

SP end effector. It is used to measure its orientation through

the four Euler parameters (e0, e1, e2, e3).

The coordinates of the universal joint axes that connect

the prismatic actuators at AH end effector are determined

in a Cartesian coordinates system relative to reference frame

B. The points where the AH actuators are attached to their

base (Ai) are specified on reference frame A. Additionally,

the points where the SP pneumatic cylinders are attached to

the AH base (A′

i) are specified on reference frame A too.
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Finally, the points Gi where pneumatic cylinders are attached

to SP base (ground) are specified on reference frame G, as

shown in Fig. 5.

Using this model and the suitable homogeneous transfor-

mation matrix, eq. (2), the length of the SP and AH prismatic

joints for a given, respectively, SP and AH end effector

position and orientation following the presented procedure

can be obtained.

IV. CONTROL STRATEGY

The objective of this control strategy is to determine SP

and AH displacements; in such a way that SP represents the

sea movements that has to be compensate by AH aiming at a

quasi-static deck. A schematic diagram for the experimental

platform is presented in Fig. 6.

A. Ship platform strategies of movement

Ship movements are described through sinusoidal dis-

placements for the pistons. It is important to notice that

the central cylinder determines the ship hull heave. The

combination of central and external cylinders determines the

ship hull pitch and roll.

Displacement of the SP central cylinder is sinusoidal

around a initial position and independent from the two

external cylinders. This displacement causes the desired

heave for the SP. External cylinders move follow a sinusoidal

displacement too.

Control loop for the SP movement is closed with the IMU

attached in the SP end effector and with the ultrasonic length

sensor which measures the SP end effector height.

The rotation matrix is obtained by using values provided

by IMU, the reference frame A origin position is [0, 0, z]
with respect to reference frame G, where z is read by a

ultrasonic sensor, and the origin position of the reference

frame B, i.e. the desired deck height, has to be well-known

and it is indeed a variable to control.

Through the inverse kinematics, effective displacements

that must be reached to obtain the desired total displacement

of the actuator are calculated in accordance to current po-

sition and orientation of the SP. The sinusoidal movements

of the external actuators are out of phase in order to provide

movement around X axis, i.e. pitch. The central piston is

out of phase in order to obtain oscillations around the y

axis, i.e. roll.

B. Active helideck strategies of movement

The helideck end effector is required to remain in a

constant position and orientation with respect to the inertial

frame G. Aiming at such, it is then necessary to calculate the

AH actuator displacements according to the instantaneous SP

position and orientation. Nevertheless, applying the equations

of inverse kinematics, AH end effector position has to be

determined with respect to the reference frame G. Using (2),

transformation of coordinates are calculated:

APf =

[

ARG
APG

[

0 0 0
]

1

] [

GPf

1

]

(5)

where,
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Fig. 6. Testbed schematic diagram

GPf is the helideck end effector position with respect to

inertial reference frame G. This value is maintained

constant for any movement of inferior platform.
APG is the position of the frame G with respect to frame

A. This position is obtained by:

APG =A RG

(

−GPA

)

(6)

ARG is the rotation matrix of frame G respect to frame

A. This it is obtained transposing the rotation

matrix GRA .

Finally, AH actuator lengths are calculated by using par-

allel inverse kinematics (IPK).

C. Position control

Control stage is based on a dSPACE tm DS1103 card.

DS1103 is a digital signal processor (DSP) on a PC platform

where the controller can be easily programmed. The control

law is introduced in C environment, then compiled and

downloaded to DS1103 card using real time tools included in

the Control desk package [25]. The controller card captures

voltage signals from inertial measure unit, length sensor and

motor encoders. It also calculates every three millisecond
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Fig. 7. Helicopter approaching and landing on Helideck

new control signal and feeds the motor amplifiers and the

air piston proportional valves.

Control position for both platforms (i.e. SP and AH) is

performed through proportional derivative PD controllers so

as to assure stability even with errors in steady state. These

PD gains for electric motors and for pneumatic proportional

valves are tuned experimentally. It is important to consider

that due compressive air properties, air pistons’ behavior is

different when moving up or moving down. Therefore, two

different PD gains are set to each pneumatic piston.

V. EXPERIMENTAL TESTS

The tests have been carried out on the experimental

platform in the laboratory and then in field as have been

shown in sequence of Fig. 7. This test is required to verify

that the helideck (AH end effector) remains quasi-static in

spite of SP movements.

Initially, a trajectory planner is used for moving the

helideck to a position that allows the actuator movements

aiming at compensating the inferior platform movements at

any moment. During this time the inferior platform pneu-

matic actuators are locked.

Then, external pneumatic cylinders are driven in order

to carry out SP to a horizontal position. At that moment

AH control is activated to compensates the SP movement.

Then, all the pneumatic cylinders are moved to the middle

of their strokes and begin a sinusoidal movement. This

movement causes a variation in inferior platform orientation

and position, which is measured by the sensors. From the

sensors information, the processor calculates the AH actu-

ators’ displacement needed to hold its fixed location with

respect to the inertial frame. Using this information, the
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Fig. 8. Euler parameters (e0, e1, e2) for helideck and SP

actuators are energized through the amplifiers. After that the

helicopter approaches and lands on compensated helideck.

Finally, the position and orientation of helideck and infe-

rior platform are compared in order to observe the compen-

sation and the deck’s desired behavior.

A. Experimental results

From the experimental results, the position and orienta-

tion variation between helideck and inertial frame can be

observed.

The orientation is described through Euler parameters

(e0, e1, e2 and e3), where e0 is associated to the rotation

angle around the axis whose X, Y and Z components are

associated to e1, e2 and e3.

From Fig. 8, SP presents an angular oscillation around

X (roll) and Y (pitch) axis representing the sea move-

ment.Additionally, the helideck orientation remains quasi-

static in relation to the inertial frame in spite of the ori-

entation variation of its base, i.e. the SP. It is important to

highlight that the desired reference Euler parameters, for a

horizontal deck position, are e0 = 1 and e1 = e2 = e3 = 0.

In Fig. 9 is shown the helideck displacement with respect

to SP aiming at remaining quasi-static with respect to in-

ertial frame as desired. AH has to compensate the vertical

movements as well. Last plot of Figs. 9 shows the helideck

behavior for a given wave input, represented by inferior
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Fig. 9. X, Y and Z position coordinates for helideck with respect to SP

and to inertial frame.

platform vertical movement. It is worth mentioning that the

noise in the signal is caused by the use of the ultrasonic

length sensor.

VI. CONCLUSIONS AND FUTURE WORKS

A testbed based on Stewart-Gough platform has been used,

built and tested as helicopter deck.

It was observed through experimental test that the active

helideck is able to compensate the simulated movement

provided by the sea to a ship or off-shore structure in order to

ease helicopter landing and take-off maneuvers, considering

a big enough ship with inertial frame properties.

The Stewart-Gough platform used in this study can still

be improved with a larger base diameter so that the desired

helideck angles and height could be attained. However, active

helideck inertia due the ship platform motion could decrease.

A dimensional analysis for ship mass/inertia could be done

in order to closely simulate a real ship’s behavior.
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