823 research outputs found

    Prediction of isometric motor tasks and effort levels based on high-density EMG in patients with incomplete spinal cord injury

    Get PDF
    Objective. The development of modern assistive and rehabilitation devices requires reliable and easy-to-use methods to extract neural information for control of devices. Group-specific pattern recognition identifiers are influenced by inter-subject variability. Based on high-density EMG (HD-EMG) maps, our research group has already shown that inter-subject muscle activation patterns exist in a population of healthy subjects. The aim of this paper is to analyze muscle activation patterns associated with four tasks (flexion/extension of the elbow, and supination/pronation of the forearm) at three different effort levels in a group of patients with incomplete Spinal Cord Injury (iSCI). Approach. Muscle activation patterns were evaluated by the automatic identification of these four isometric tasks along with the identification of levels of voluntary contractions. Two types of classifiers were considered in the identification: linear discriminant analysis and support vector machine. Main results. Results show that performance of classification increases when combining features extracted from intensity and spatial information of HD-EMG maps (accuracy = 97.5%). Moreover, when compared to a population with injuries at different levels, a lower variability between activation maps was obtained within a group of patients with similar injury suggesting stronger task-specific and effort-level-specific co-activation patterns, which enable better prediction results. Significance. Despite the challenge of identifying both the four tasks and the three effort levels in patients with iSCI, promising results were obtained which support the use of HD-EMG features for providing useful information regarding motion and force intentionPeer ReviewedPostprint (author's final draft

    Human-centered Electric Prosthetic (HELP) Hand

    Get PDF
    Through a partnership with Indian non-profit Bhagwan Mahaveer Viklang Sahayata Samiti, we designed a functional, robust, and and low cost electrically powered prosthetic hand that communicates with unilateral, transradial, urban Indian amputees through a biointerface. The device uses compliant tendon actuation, a small linear servo, and a wearable garment outfitted with flex sensors to produce a device that, once placed inside a prosthetic glove, is anthropomorphic in both look and feel. The prosthesis was developed such that future groups can design for manufacturing and distribution in India

    Improving the Performance of Dynamic Electromyogram-to-Force Models for the Hand-Wrist and Multiple Fingers

    Get PDF
    Relating surface electromyogram (EMG) activity to force/torque models is used in many areas including: prosthesis control systems, to regulate direction and speed of movement in reaching and matching tasks; clinical biomechanics, to assess muscle deficiency and effort levels; and ergonomics analysis, to assess risk of work-related injury such as back pain, fatigue and skill tests. This thesis work concentrated on improving the performance of dynamic EMG-to-force models for the hand-wrist and multiple fingers. My contributions include: 1) rapid calibration of dynamic hand-wrist EMG-force models using a minimum number of electrodes, 2) efficiently training two degree of freedom (DoF) hand-wrist EMG-force models, and 3) estimating individual and combined fingertip forces from forearm EMG during constant-pose, force-varying tasks. My calibration approach for hand-wrist EMG-force models optimized three main factors for 1-DoF and 2-DoF tasks: training duration (14, 22, 30, 38, 44, 52, 60, 68, 76 s), number of electrodes (2 through 16), and model forms (subject-specific, DoF-specific, universal). The results show that training duration can be reduced from historical 76 s to 40–60 s without statistically affecting the average error for both 1-DoF and 2-DoF tasks. Reducing the number of electrodes depended on the number of DoFs. One-DoF models can be reduced to 2 electrodes with average test error range of 8.3–9.2% maximum voluntary contraction (MVC), depending on the DoF (e.g., flexion-extension, radial-ulnar deviation, pronation-supination, open-close). Additionally, 2-DoF models can be reduced to 6 electrodes with average error of 7.17–9.21 %MVC. Subject-specific models had the lowest error for 1-DoF tasks while DoF-specific and universal were the lowest for 2-DoF tasks. In the EMG-finger project, we studied independent contraction of one, two, three or four fingers (thumb excluded), as well as contraction of four fingers in unison. Using regression, we found that a pseudo-inverse tolerance (ratio of largest to smallest singular value) of 0.01 was optimal. Lower values produced erratic models and higher values produced models with higher errors. EMG-force errors using one finger ranged from 2.5–3.8 %MVC, using the optimal pseudoinverse tolerance. With additional fingers (two, three or four), the average error ranged from 5–8 %MVC. When four fingers contracted in unison, the average error was 4.3 %MVC. Additionally, I participated in two team projects—EMG-force dynamic models about the elbow and relating forearm muscle EMG to finger force during slowly force varying contractions. This work is also described herein

    Studies of the relationship between the surface electromyogram, joint torque and impedance

    Get PDF
    This compendium-format dissertation (i.e., comprised mostly of published and in-process articles) primarily reports on system identification methods that relate the surface electromyogram (EMG)—the electrical activity of skeletal muscles—to mechanical kinetics. The methods focus on activities of the elbow and hand-wrist. The relationship between the surface EMG and joint impedance was initially studied. My work provided a complete second-order EMG-based impedance characterization of stiffness, viscosity and inertia over a complete range of nominal torques, from a single perturbation trial with slowly varied torque. A single perturbation trial provides a more convenient method for impedance evaluation. The RMS errors of the EMG-based method were 20.01% for stiffness and 7.05% for viscosity, compared with the traditional mechanical measurement. Three projects studied the relationship between EMG and force/torque, a topic that has been studied for a number of years. Optimal models use whitened EMG amplitude, combining multiple EMG channels and a polynomial equation to describe this relationship. First, we used three techniques to improve current models at the elbow joint. Three more features were extracted from the EMG (waveform length, slope sign change rate and zero crossing rate), in addition to EMG amplitude. Each EMG channel was used separately, compared to previous studies which combined multiple channels from biceps and, separately, from triceps muscles. Finally, an exponential power law model was used. Each of these improvement techniques showed better performance (P\u3c0.05 and ~0.7 percent maximum voluntary contraction (%MVC) error reduction from a nominal error of 5.5%MVC) than the current “optimal” model. However, the combination of pairs of these techniques did not further improve results. Second, traditional prostheses only control 1 degree of freedom (DoF) at a time. My work provided evidence for the feasibility of controlling 2-DoF wrist movements simultaneously, with a minimum number of electrodes. Results suggested that as few as four conventional electrodes, optimally located about the forearm, could provide 2-DoF simultaneous, independent and proportional control with error ranging from 9.0–10.4 %MVC, which is similar to the 1-DoF approach (error from 8.8–9.8 %MVC) currently used for commercial prosthesis control. The third project was similar to the second, except that this project studied controlling a 1-DoF wrist with one hand DoF simultaneously. It also demonstrated good performance with the error ranging from 7.8-8.7 %MVC, compared with 1-DoF control. Additionally, I participated in two team projects—EMG decomposition and static wrist EMG to torque—which are described herein

    Design and Development of a Transhumeral Prosthetic Mounting System

    Get PDF
    Current methods of prosthesis attachment for those with trans-humeral amputations fail to balance load bearing capability with freedom of movement. This design increases axial and torsional load bearing capability of the prosthesis (to 60 pounds and 12 foot-pounds, respectively) without limiting the range of motion in the shoulder needed to perform activities of daily living. This is accomplished via a harness system, an exoskeletal shoulder joint, and an arm interface that links the prosthesis to the device

    Control Design and Implementation of an Active Transtibial Prosthesis

    Get PDF
    Prior work at Marquette University developed the Marquette Prosthesis, an active transtibial prosthesis that utilized a torsional spring and a four-bar mechanism. The controls for the Marquette Prosthesis implemented a finite state control algorithm to determine the state of gait of the amputee along with two lower level controllers, a PI moment controller to control the moment during stance and a PID position controller to control the position during stance. The Marquette Prosthesis was successful in mimicking the gait profile presented by Winter. However, after completing human subject testing, the Marquette Prosthesis was insufficient in trying to match the gait profile of those who varied from this textbook stride. Active transtibial prostheses typically apply finite state control algorithms that struggle with cadence and gait variability of the amputee. Recent work in artificial neural networks (ANN) have shown the possibility to predict the user\u27s intent which can be used as an input signal in an improved controller. The Marquette Prosthesis II was developed that uses a stiffness controller to control the relationship between the position and torque of the ankle. A model of the improved Marquette Prosthesis II was developed in Simulink to ensure that the stiffness controller was robust enough and that this type of control was possible with the limitations of the Marquette Prosthesis, i.e., the link lengths, torsional spring and motor. The mechanical system of the Marquette Prosthesis was then changed such that the spring was in series between the motor and four-bar mechanism to establish a relationship between the motor position, torque of the spring and four-bar mechanism. The control hardware was selected and the stiffness controller was implemented on the Marquette Prosthesis II. The Marquette Prosthesis II control algorithm was tested and validated to show that this approach is feasible

    Myoelectric Control Architectures to Drive Upper Limb Exoskeletons

    Get PDF
    Myoelectric interfaces are sensing devices based on electromyography (EMG) able to read the electrical activity of motoneurons and muscles. These interfaces can be used to infer movement volition and to control assistive devices. Currently, these interfaces are widely used to control robotic prostheses for amputees, but their use could be beneficial even for people suffering from motor disabilities where the peripheral nervous system is intact and the impairment is only due to the muscles, e.g. muscular dystrophy, myopathies, or ageing. In combination with recent robotic orthoses and exoskeletons, myoelectric interfaces could dramatically improve these patients’ quality of life. Unfortunately, despite a wide plethora of methodologies has been proposed so far, a natural, intuitive, and reliable interface able to follow impaired subjects’ volition is still missing. The first contribution of this work is to provide a review of existing approaches. In this work we found that existing EMG-based control interfaces can be viewed as specific cases of a generic myoelectric control architecture composed by three distinct functional modules: a decoder to extract the movement intention from EMG signals, a controller to accomplish the desired motion through an actual command given to the actuators, and an adapter to connect them. The latter is responsible for translating the signal from decoder’s output to controller’s input domain and for modulating the level of provided assistance. We used this concept to analyse the case of study of linear regression decoders and an elbow exoskeleton. This thesis has the scientific objective to determine how these modules affect performance of EMG-driven exoskeletons and wearer’s fatigue. To experimentally test and compare myoelectric interfaces this work proposes: (1) a procedure to automatically tune the decoder module in order to equally compare or to normalize the decoder output among different sessions and subjects; (2) a procedure to automatically tune gravity compensation even for subjects suffering from severe disabilities, allowing them to perform the experimental tests; (3) a methodology to guide the impaired patients through the experimental session; (4) an evaluation procedure and metrics allowing statistically significant and unbiased comparison of different myoelectric interfaces. A further contribution of this work is the design of an experimental test bed composed by an elbow exoskeleton and by a software framework able to collect EMG signals and make them available to the exoskeleton’s actuators with minimal latency. Using this test bed, we were able to test different myoelectric interfaces based on our architecture, with different modules choices and tunings. We used linear regression decoders calibrated to predict the muscular torque, low-level controllers having torque or velocity as reference, and adapters consisting of a properly dimensioned gain or simple dynamic systems, such as an integrator or a mass-damping system. The results we obtained allow to conclude that EMG-based control is a viable technology to assist muscular weakness patients. Moreover, all the components of the myoelectric control architecture – decoder, adapter, controller, and their tuning – significantly affect the task-based performance measures we collect. Further investigations should be devoted to a methodology to automatically tune all the components, not the decoders only, and to the quantitative study of the effect the adapter has on the regulation of the assistance level and of the tradeoff between speed and accuracy
    • 

    corecore