1,195 research outputs found

    Bi-directional Dcm Dc-to-dc Converter For Hybrid Electric Vehicles

    Get PDF
    With the recent revival of the hybrid vehicle much advancement in power management has been made. The most popular hybrid vehicle, the hybrid electric vehicle, has many topologies developed to realize this hybrid vehicle. From these topologies, as sub set was created to define a particular group of vehicles where the converter discussed in this thesis has the most advantage. This sub set is defined by two electric sources of power coupled together at a common bus. This set up presents many unique operating conditions which can be handled seamlessly by the DC-to-DC converter when designed properly. The DC-to-DC converter discussed in this thesis is operated in Discontinuous Conduction Mode (DCM) of operation because of its unique advantages over the Continuous Conduction Mode (CCM) operated converter. The most relevant being the reduction of size of the magnetic components such as inductor, capacitor and transformers. However, the DC-to-DC converter operated in DCM does not have the inherent capability of bi-directional power flow. This problem can be overcome with a unique digital control technique developed here. The control is developed in a hierarchical fashion to separate the functions required for this sub set of hybrid electric vehicle topologies. This layered approach for the controller allows for the seamless integration of this converter into the vehicle. The first and lowest level of control includes a group of voltage and controller regulators. The average and small signal model of these controllers were developed here to be stable and have a relatively fast recovery time to handle the transient dynamics of the vehicle system. The second level of control commands and organizes the regulators from the first level of control to perform high level task that is more specific to the operation of the vehicle. This level of control is divided into three modes called hybrid boost, hybrid buck and electric vehicle mode. These modes are developed to handle the specific operating conditions found when the vehicle is operated in the specific mode. The third level of control is used to command the second level of control and is left opened via a communication area network (CAN) bus controller. This level of control is intended to come from the vehicle s system controller. Because the DC-to-DC converter is operated in DCM, this introduces added voltage ripple on the output voltage as well as higher current ripple demand from the input voltage. Since this is generally undesirable, the converter is split into three phases and properly interleaved. The interleaving operation is used to counteract the effects of the added voltage and current ripple. Finally, a level of protection is added to protect the converter and surrounding components from harm. All protection is designed and implemented digitally in DSP

    High Frequency Power Converter with ZVT for Variable DC-link in Electric Vehicles

    Get PDF
    abstract: The most important metrics considered for electric vehicles are power density, efficiency, and reliability of the powertrain modules. The powertrain comprises of an Electric Machine (EM), power electronic converters, an Energy Management System (EMS), and an Energy Storage System (ESS). The power electronic converters are used to couple the motor with the battery stack. Including a DC/DC converter in the powertrain module is favored as it adds an additional degree of freedom to achieve flexibility in optimizing the battery module and inverter independently. However, it is essential that the converter is rated for high peak power and can maintain high efficiency while operating over a wide range of load conditions to not compromise on system efficiency. Additionally, the converter must strictly adhere to all automotive standards. Currently, several hard-switching topologies have been employed such as conventional boost DC/DC, interleaved step-up DC/DC, and full-bridge DC/DC converter. These converters face respective limitations in achieving high step-up conversion ratio, size and weight issues, or high component count. In this work, a bi-directional synchronous boost DC/DC converter with easy interleaving capability is proposed with a novel ZVT mechanism. This converter steps up the EV battery voltage of 200V-300V to a wide range of variable output voltages ranging from 310V-800V. High power density and efficiency are achieved through high switching frequency of 250kHz for each phase with effective frequency doubling through interleaving. Also, use of wide bandgap high voltage SiC switches allows high efficiency operation even at high temperatures. Comprehensive analysis, design details and extensive simulation results are presented. Incorporating ZVT branch with adaptive time delay results in converter efficiency close to 98%. Experimental results from a 2.5kW hardware prototype validate the performance of the proposed approach. A peak efficiency of 98.17% has been observed in hardware in the boost or motoring mode.Dissertation/ThesisMasters Thesis Electrical Engineering 201

    Control of Flywheel Energy Storage Systems in Electrical Vehicle Charging Stations

    Get PDF

    A Comprehensive Review of DC-DC Converters for EV Applications

    Get PDF
    DC-DC converters in Electric vehicles (EVs) have the role of interfacing power sources to the DC-link and the DC-link to the required voltage levels for usage of different systems in EVs like DC drive, electric traction, entertainment, safety and etc. Improvement of gain and performance in these converters has a huge impact on the overall performance and future of EVs. So, different configurations have been suggested by many researches. In this paper, bidirectional DC-DC converters (BDCs) are divided into four categories as isolated-soft, isolated-hard, non-isolated-soft and non-isolated-hard depending on the isolation and type of switching. Moreover, the control strategies, comparative factors, selection for a specific application and recent trends are reviewed completely. As a matter of fact, over than 200 papers have been categorized and considered to help the researchers who work on BDCs for EV application

    Development of an Efficient Hybrid Energy Storage System (HESS) for Electric and Hybrid Electric Vehicles

    Get PDF
    The popularity of the internal combustion engine (ICE) vehicles has contributed to global warming problem and degradation of air quality around the world. Furthermore, the vehicles’ massive demand on gas has played a role in the depletion of fossil fuel reserves and the considerable rise in the gas price over the past twenty years. Those existing challenges force the auto-industry to move towards the technology development of vehicle electrification. An electrified vehicle is driven by one or more electric motors. And the electricity comes from the onboard energy storage system (ESS). Currently, no single type of green energy source could meet all the requirements to drive a vehicle. A hybrid energy storage system (HESS), as a combination of battery and ultra-capacitor units, is expected to improve the overall performance of vehicles’ ESS. This thesis focuses on the design of HESS and the development of a HESS prototype for electric vehicles (EVs) and hybrid electric vehicles (HEVs). Battery unit (BU), ultra-capacitor unit (UC) and a DC/DC converter interfacing BU and UC are the three main components of HESS. The research work first reviews literatures regarding characteristics of BU, UC and power electronic converters. HESS design is then conducted based on the considerations of power capability, energy efficiency, size and cost optimization. Besides theoretical analysis, a HESS prototype is developed to prove the principles of operation as well. The results from experiment are compared with those from simulation

    Hardware integration of ultracapacitor based energy storage to provide grid support and to improve power quality of the distribution grid

    Get PDF
    Grid integration of distributed energy resources (DERs) is increasing rapidly. Integration of various types of energy storage technologies like batteries, ultracapacitors (UCAPs), superconducting magnets and flywheels to support intermittent DERs, such as solar and wind, in order to improve their reliability is becoming necessary. Of all the energy storage technologies UCAPs have low energy density, high power density and fast charge/discharge characteristics. They also have more charge/discharge cycles and higher terminal voltage per module when compared to batteries. All these characteristics make UCAPs ideal choice for providing support to events on the distribution grid which require high power for short spans of time. UCAPs have traditionally been limited to regenerative braking and wind power smoothing applications. The major contribution of this dissertation is in integrating UCAPs for a broader range of applications like active/reactive power support, renewable intermittency smoothing, voltage sag/swell compensation and power quality conditioning to the distribution grid. Renewable intermittency smoothing is an application which requires bi-directional transfer of power from the grid to the UCAPs and vice-versa by charging and discharging the UCAPs. This application requires high active power support in the 10s-3min time scale which can be achieved by integrating UCAPs through a shunt active power filter (APF) which can also be used to provide active/reactive power support. Temporary voltage sag/swell compensation is another application which requires high active power support in the 3s-1min time scale which can be provided integrating UCAPs into the grid through series dynamic voltage restorer (DVR). All the above functionalities can also be provided by integrating the UCAPs into a power conditioner topology. --Abstract, page iv

    Interleaved DC-DC Converter with Wide Band Gap Devices and ZVT Switching for Flexible DC-Link in Electric Vehicle Powertrains

    Get PDF
    abstract: The following report details the motivation, design, analysis, simulation and hardware implementation of a DC/DC converter in EV drivetrain architectures. The primary objective of the project was to improve overall system efficiency in an EV drivetrain. The methodology employed to this end required a variable or flexible DC-Link voltage at the input of the inverter stage. Amongst the several advantages associated with such a system are the independent optimization of the battery stack and the inverter over a wide range of motor operating conditions. The incorporation of a DC/DC converter into the drivetrain helps lower system losses but since it is an additional component, a number of considerations need to be made during its design. These include stringent requirements on power density, converter efficiency and reliability. These targets for the converter are met through a number of different ways. The switches used are Silicon Carbide FETs. These are wide band gap (WBG) devices that can operate at high frequencies and temperatures. Since they allow for high frequency operation, a switching frequency of 250 khz is proposed and implemented. This helps with power density by reducing the size of passive components. High efficiencies are made possible by using a simple soft switching technique by augmenting the DC/DC converter with an auxiliary branch to enable zero voltage transition. The efficacy of the approach is tested through simulation and hardware implementation of two different prototypes. The Gen-I prototype was a single soft switched synchronous boost converter rated at 2.5kw. Both the motoring mode and regenerative modes of operation (Boost and Buck) were hardware tested for over 2kw and efficiency results of over 98.15% were achieved. The Gen-II prototype and the main focus of this work is an interleaved soft switched synchronous boost converter. This converter has been implemented in hardware as well and has been tested at 6.7kw and an efficiency of over 98% has been achieved in the boost mode of operation.Dissertation/ThesisMasters Thesis Electrical Engineering 201

    Development of a multi-port DC-DC converter for a magnetically-coupled residential micro-grid

    Full text link
    University of Technology Sydney. Faculty of Engineering and Information Technology.Over the last century, the global average air temperature at the earth surface has been raised for about 0.74ºC, which has generated serious concerns all around the world about the global warming and consequent environmental problems. The electricity generation as one of the major contributors to the environmental pollutions should undergo a fundamental change towards the clean energy sources. In the residential sector, one of the major electricity users, the demand for renewable energy sources is increasing significantly. This thesis presents an effort to develop a residential micro-grid, including multiple renewable energy sources, energy storage, and local loads with multiport power electronic converters capable of bidirectional power flow and intelligent algorithms for power converter and micro-grid controls. A topology of multi-port converter using a high frequency magnetic link is proposed for residential micro-grid applications. Using the magnetic link in the proposed multi-port converter can reduce the complexity and size of the entire micro-grid effectively. The micro-grid is designed to supply a 4.5 kW residential load from combined energy sources of a PV array, a fuel cell stack, and a battery bank. It is controlled by a Texas instrument DSP (C2000/TMS320F28335) at the device level and a PC system as the energy management unit (EMU) at the system level. A single phase bidirectional inverter is designed to link the proposed micro-gird to the main grid. The inverter is controlled by a second DSP at the device level and by the EMU at the system level. The proposed micro-grid is able to operate in different operation modes based on the power flow directions and energy management scenarios. The EMU defines the appropriate operation mode of the system based on the short-term and long-term predictions of PV generation, and load demand by changing the power flow directions between the sources, energy storage unit, and loads. Due to the importance of the magnetic link in the micro-grid performance and complexity of design of high-frequency multi-winding magnetic components, a major part of the research is focused on the design, development and experimental test of the magnetic link. The geometry of the magnetic link including the dimensions of magnetic core and windings are designed through numerical analysis by using the reluctance network model (RNM). The core loss and copper loss analysis of the magnetic link are carried out accurately considering the non-sinusoidal effect of voltage and current waveforms. The designed component is then evaluated for the thermal limits by using the thermal electric model. The last part of this stage is the prototyping, experimental tests, and measurement of the component parameters and performance. The second part of the research is mainly focused on the design and analysis of the converters as the device level analysis of proposed micro-grid. It contains the analysis of the three dc-dc converters in the steady and transient states, discussion on the modulation technique of each converter, power flow control techniques, small signal modelling, and closed loop control design. The converter steady state waveforms are simulated and the soft-switching operation range is discussed. The converter waveforms are experimentally measured and compared with the numerical simulation results. The third part of the research is dedicated to the system level control of the micro-grid and energy management analysis. In this section, the main operation modes of the system are defined for both grid-connected and isolated operation conditions according to the power flow directions in the system. An energy management strategy is proposed considering both the short- and long-term energy forecasts and the real-time operational data of the system. The proposed strategy is implemented in an energy management unit using MATLAB/GUI and is used to control the system operation modes considering different control objectives and scenarios

    Battery charging system incorporating an equalisation circuit for electric vehicles

    Get PDF
    Ph.D. ThesisHybrid electric vehicles (HEVs) and electric vehicles (EVs) are gaining in popularity mainly due to the fact that unlike combustion-powered vehicles, they do not pollute with greenhouse gases and toxic particles. Most HEVs and EVs are powered by lithium-ion battery packs which have high power density and longer cycle lives compared to other battery types. Each pack is made out of many battery cells in series connected and due to manufacturing tolerances and chemical processes in individual cells each cell has its own electric characteristics. In order to achieve a balanced voltage across all cells, a battery management system (BMS) must be employed to actively monitor and balance the cells voltage. On-board battery chargers are installed in HEVs/EVs to charge the lithium-ion battery pack from the grid. This charger converts AC grid voltage into a controllable DC output voltage, but it adds weight to the vehicle, reducing the overall efficiency of an HEV/EV and also increasing its cost. The aim of researches in multi-functional power electronics is to design systems which perform several different functions at the same time. These systems promise cost and weight reductions since only one circuit is used to conduct different functions. An example is the electric drive in an HEV/EV. On one hand, it propels the car forward when driving, while on the other hand the battery can be charged via a modified electric motor and inverter topology. Thus, no additional on-board charger is required. This thesis describes a new multi-functional circuit for HEVs/EVs which combines the functions of voltage equalisation with grid charging. Compared to a drive system, the proposed circuit does not rely on an electric motor to charge the battery. Various battery chargers and equalisation circuits are first compared. Then, the design of the proposed circuit is described and simulation results are presented for charging and voltage balancing. An experimental test rig was built and practical results have been captured and compared with simulation results for validation. The advantages and disadvantages of the proposed circuit are discussed at the end of the thesis. Keywords- Multi-functional system, Battery charging, Voltage equalisation, Lithium-ion batter

    Soft-Switching Techniques of Power Conversion System in Automotive Chargers

    Get PDF
    abstract: This thesis investigates different unidirectional topologies for the on-board charger in an electric vehicle and proposes soft-switching solutions in both the AC/DC and DC/DC stage of the converter with a power rating of 3.3 kW. With an overview on different charger topologies and their applicability with respect to the target specification a soft-switching technique to reduce the switching losses of a single phase boost-type PFC is proposed. This work is followed by a modification to the popular soft-switching topology, the dual active bridge (DAB) converter for application requiring unidirectional power flow. The topology named as the semi-dual active bridge (S-DAB) is obtained by replacing the fully active (four switches) bridge on the load side of a DAB by a semi-active (two switches and two diodes) bridge. The operating principles, waveforms in different intervals and expression for power transfer, which differ significantly from the basic DAB topology, are presented in detail. The zero-voltage switching (ZVS) characteristics and requirements are analyzed in detail and compared to those of DAB. A small-signal model of the new configuration is also derived. The analysis and performance of S-DAB are validated through extensive simulation and experimental results from a hardware prototype. Secondly, a low-loss auxiliary circuit for a power factor correction (PFC) circuit to achieve zero voltage transition is also proposed to improve the efficiency and operating frequency of the converter. The high dynamic energy generated in the switching node during turn-on is diverted by providing a parallel path through an auxiliary inductor and a transistor placed across the main inductor. The paper discusses the operating principles, design, and merits of the proposed scheme with hardware validation on a 3.3 kW/ 500 kHz PFC prototype. Modifications to the proposed zero voltage transition (ZVT) circuit is also investigated by implementing two topological variations. Firstly, an integrated magnetic structure is built combining the main inductor and auxiliary inductor in a single core reducing the total footprint of the circuit board. This improvement also reduces the size of the auxiliary capacitor required in the ZVT operation. The second modification redirects the ZVT energy from the input end to the DC link through additional half-bridge circuit and inductor. The half-bridge operating at constant 50% duty cycle simulates a switching leg of the following DC/DC stage of the converter. A hardware prototype of the above-mentioned PFC and DC/DC stage was developed and the operating principles were verified using the same.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201
    • …
    corecore